WO2015131802A1 - 检查设备、方法和*** - Google Patents

检查设备、方法和*** Download PDF

Info

Publication number
WO2015131802A1
WO2015131802A1 PCT/CN2015/073558 CN2015073558W WO2015131802A1 WO 2015131802 A1 WO2015131802 A1 WO 2015131802A1 CN 2015073558 W CN2015073558 W CN 2015073558W WO 2015131802 A1 WO2015131802 A1 WO 2015131802A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
ray
collimator
scattered
distributed
Prior art date
Application number
PCT/CN2015/073558
Other languages
English (en)
French (fr)
Inventor
陈志强
张丽
杨戴天杙
黄清萍
Original Assignee
清华大学
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 同方威视技术股份有限公司 filed Critical 清华大学
Priority to ES15759349T priority Critical patent/ES2871025T3/es
Priority to EP15759349.2A priority patent/EP3115773B1/en
Priority to RU2016137612A priority patent/RU2636810C1/ru
Priority to AU2015226613A priority patent/AU2015226613A1/en
Priority to KR1020167026749A priority patent/KR101862692B1/ko
Priority to JP2016558258A priority patent/JP6306738B2/ja
Priority to US15/122,659 priority patent/US10408966B2/en
Priority to BR112016016805-4A priority patent/BR112016016805B1/pt
Publication of WO2015131802A1 publication Critical patent/WO2015131802A1/zh
Priority to AU2017265073A priority patent/AU2017265073B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/10Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being confined in a container, e.g. in a luggage X-ray scanners
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/222Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays measuring scattered radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/223Mixed interrogation beams, e.g. using more than one type of radiation beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/232Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays having relative motion between the source, detector and object other than by conveyor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/50Detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/643Specific applications or type of materials object on conveyor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials

Definitions

  • the present disclosure relates to an inspection system based on coherent X-ray scattering techniques, and more particularly to an inspection apparatus, method and system for determining whether an object to be inspected contains specific contents such as explosives or dangerous goods.
  • Some commonly used detection methods such as CT detection technology, can obtain the spatial position distribution of various substances in the object box as well as important information such as density, quality, and effective atomic number, and use this to distinguish the categories of different substances.
  • CT detection technology can obtain the spatial position distribution of various substances in the object box as well as important information such as density, quality, and effective atomic number, and use this to distinguish the categories of different substances.
  • Coherent X-ray scattering (X-ray diffraction) technology detects substances (mainly crystalline substances), mainly based on the Bragg diffraction formula:
  • the angle ⁇ measured by the detector is fixed, that is, the energy spectrum of the scattered X-ray is measured at a fixed scattering angle.
  • the lattice constant d satisfying the above formula has a one-to-one relationship with the incident photon energy component E.
  • the fingerprint characteristics of the crystal material - the lattice constants d 1 , d 2 , ... d n can be determined, so that different substances can be identified.
  • typical explosive materials are mainly composed of different crystalline materials.
  • the crystal type is distinguished by lattice constants, so this method is an effective means of detecting explosives.
  • inverted fan beam detection method has also been proposed.
  • the system of inverted fan beams uses fewer detectors for stationary measurements, but loses the ability to position three-dimensionally.
  • the scattered lines of objects at different locations perpendicular to the beam direction in the detection plane will converge onto the detector.
  • One point is that the spectral lines of the objects at the two positions are superimposed, which affects the signal-to-noise ratio and reduces the resolution of the substance.
  • an inspection apparatus, method and system based on coherent ray scattering technology are proposed, which have three-dimensional positioning capability, and have higher resolution and lower system cost.
  • an inspection apparatus comprising: a distributed ray source including a plurality of source points, generating a ray; a light source collimator disposed at a beam exit end of the distributed ray source, The rays generated by the distributed ray source are concentrated along a fan-shaped radial line to form an inverted fan beam; the scatter collimator is configured to allow only one or more specific scatters generated by the interaction of the ray with the object to be inspected An angular scattered ray passes; at least one detector disposed downstream of the scatter collimator, each detector comprising a plurality of detecting units, the plurality of detecting units having energy resolving power and being substantially disposed on the cylinder And receiving a scattered ray passing through the scatter collimator; and processing means for calculating scattered ray energy spectrum information of the object to be inspected based on the signal output by the detector.
  • the processing device further calculates a lattice constant based on the peak position information included in the scattered ray energy spectrum information, compares the calculated lattice constant with a predetermined value, and determines whether the object to be inspected contains an explosive or Dangerous goods.
  • the inspection apparatus further includes control means for controlling a specific source point in the distributed radiation source to generate a ray according to the position information of the region of interest in the input object to be inspected, and inspecting the region of interest .
  • the plurality of source points of the distributed light source are distributed as follows: arc, straight line, U-shaped, inverted U-shaped, L-shaped or inverted-L-shaped.
  • the scatter collimator comprises a plurality of nested cylinders on the bottom surface and the bottom surface, the plurality of nested cylinder surfaces having a circular slit at a predetermined distance, and the bottom surface along There is a gap in the axial direction of the cylinder.
  • the scatter collimator comprises a bottom surface and a plurality of nested spherical surfaces on the bottom surface, the plurality of nested spherical surfaces having a circular slit at a predetermined distance, and the bottom surface along the bottom surface The diameter of the line is open.
  • the scatter collimator is made of a radiation absorbing material.
  • the scatter collimator is specifically made of a plurality of columns parallel with a ray absorbing material Axial conical surface.
  • the scatter collimator is in particular a plurality of parallel sheets.
  • the detector is specifically a CZT detector or an HPGe detector.
  • an inspection system comprising: a carrier mechanism carrying a linear motion of an object to be inspected; a first scanning stage comprising a transmission imaging device or a CT imaging device for performing a transmission inspection or CT on an object to be inspected Detecting, receiving, by the processing device, a signal generated by the first scanning stage, and determining at least one region of interest of the object to be inspected based on the signal, the second scanning stage being spaced apart from the first scanning level by a predetermined direction along the moving direction of the object a distance setting, the second scanning stage comprises: a distributed ray source comprising a plurality of source points, generating a ray; a light source collimator disposed at a beam exit end of the distributed ray source to generate the distributed ray source The ray converges along a fan-shaped radial line to form an inverted fan beam; the scatter collimator is configured to allow only scattered rays of one or more specific scattering angles generated by the interaction of the scattered ray with
  • an inspection method comprising: generating a ray through a distributed ray source including a plurality of source points; concentrating rays generated by the distributed ray source along a fan-shaped radial line to form An inverted fan beam; the ray is collimated by a scatter collimator disposed at the front end of the detector such that only scattered rays having one or more specific scattering angles generated by interaction of the ray with the object to be inspected are allowed to pass; a detector having an energy resolving power and disposed on the cylinder receives the scattered ray passing through the scatter collimator; and calculating a signal based on the signal output by the detector Check the scattered ray energy spectrum information of the object.
  • the inspection method further includes the steps of: calculating a lattice constant based on the peak position information included in the scattered ray energy spectrum information, comparing the calculated lattice constant with a predetermined value to determine whether the object to be inspected is Contains explosives or dangerous goods.
  • the inspection method further comprises the step of controlling a specific source point in the distributed ray source to generate a ray according to the position information of the region of interest in the input object to be inspected, and inspecting the region of interest.
  • the targeted detection is performed.
  • a cylindrical detector it is possible to acquire signals from detection units at certain locations, thereby providing three-dimensional positioning capability.
  • FIG. 1 is a schematic structural view of an inspection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing a distribution of light sources and a schematic view of a detection area in an inspection apparatus according to another embodiment of the present invention
  • FIG. 3 is a schematic structural view showing an inspection apparatus detecting scattered rays at a fixed angle according to an embodiment of the present invention
  • FIG. 4 depicts a schematic structural view of a scatter line collimator in accordance with one embodiment of the present invention
  • FIG. 5 is a schematic structural view of a scattering line collimator according to another embodiment of the present invention.
  • Figure 6 shows a side view of an inspection apparatus in accordance with one embodiment of the present invention.
  • Figure 7 shows a side view of an inspection apparatus in accordance with another embodiment of the present invention.
  • Figure 8 shows a side view of an inspection apparatus in accordance with yet another embodiment of the present invention.
  • FIG. 9 is a block diagram showing the structure of a light source in an inspection apparatus according to an embodiment of the present invention.
  • FIG. 10 is a block diagram showing the structure of a light source in an inspection apparatus according to another embodiment of the present invention.
  • Figure 11 shows the distribution of the rectangular cross section (actual detection area) of the object on the cylindrical detector.
  • FIG. 1 shows a schematic structural view of an inspection apparatus according to an embodiment of the present disclosure.
  • the inspection apparatus shown inspects the object under inspection 130, which includes a distributed light source 110, a light source collimator 120 in front of the distributed light source, a scatter collimator 140, and a detector 150.
  • the source collimator 120 causes the rays to converge along the radial direction of the fan beam to the origin of the coordinate system.
  • the scatter collimator 140 is disposed above the XOY plane
  • the detector 150 is a cylindrical detector
  • the axis is the Y-axis, and includes a plurality of detecting units disposed on the cylinder surface.
  • the ray passing through the light source collimator 120 is a scalloped surface (perpendicular to the photo)
  • the plane of incidence has a small opening angle ⁇ ) which contains a rectangular section of the object under inspection 130 in the XOZ plane.
  • small opening angle
  • the object to be inspected 130 passes along the conveyor belt (for example, along the Y axis)
  • the object to be inspected 130 is scanned.
  • the scatter collimator 140 on the XOY plane defines that the scatter line only at a certain angle can be incident on the detector 150.
  • a control and processing device 160 such as a computer, coupled to distributed light source 110 and detector 150, etc., then calculates scattered ray energy spectrum information for the object under inspection based on the signal output by detector 150.
  • the scatter collimator 140 is composed of two parts: a first portion consisting of a plurality of coaxial (two to three) cylindrical X-ray absorbing materials on the cylinder surface separated by a certain distance. A round slit that allows passage of rays at a conical surface; the second portion has an X-ray absorbing material on the XOY plane and a straight slit on a section of the Y-axis. The combination of the two determines the ray angle of the incident detector and determines the slit width and relative distance based on the desired angular resolution of the system and spatial resolution.
  • FIG. 2 is a schematic diagram of a distribution of light sources and a schematic view of a detection area in an inspection apparatus according to another embodiment of the present invention.
  • the inspection apparatus of this embodiment employs a distributed light source 210, and an inverted fan-shaped beam is obtained under the control of the light source collimator 220 to converge at the origin.
  • the light source 210 is distributed on the straight line segment, and the light source collimator 220 is disposed on the outgoing path of the source point, and the collimated beam is along the fan-shaped path.
  • the control and processing device 160 controls the special in the distributed ray source 210 based on the positional information of the region of interest in the input object under inspection.
  • the source point produces a ray that checks the region of interest. For example, as shown in FIG. 2, controlling the exit of a particular source point in the distributed light source 210, a particular portion (ROI) in the object under inspection 130 can be inspected.
  • the detection area is a detection area outer ring 260, a circle 270 arc in the detection area, and a partial ring area surrounded by rays emitted from the two ends of the light source to the origin.
  • the object to be inspected 280 can be inscribed in the annular area and moved along the conveyor belt 290 perpendicular to the paper surface. Assume that the object to be inspected is a cube, and is l in width and high in h in FIG. Then the opening angle of the light source to the origin is:
  • the arc-shaped light source distribution length is:
  • the linear light source distribution length is:
  • R is the radius of the curved source and R 1 is the distance from the bottom of the object from the origin of the coordinate.
  • a plurality of light source points can be distributed within the length, and can be independently formed by a control system, or a group of adjacent light sources can be grouped into groups. Out of the unit for independence.
  • Region 280 in Figure 2 is a region of interest (ROI), which may be a region of suspect material that is calibrated by a pre-stage CT system or a transmission inspection system.
  • ROI region of interest
  • FIG. 3 is a structural diagram illustrating the inspection apparatus detecting scattered rays at a fixed angle according to an embodiment of the present invention.
  • the distributed light source 210 passes through the illumination plane of the inverted fan beam generated by the light source collimator 220, at the center of the convergence point (the origin of the coordinates), on the arc of different radii, and the incident ray (radius) Rays scattered at an angle can converge with a point on the Y-axis, which are distributed over: the apex is on the Y-axis and the half-cone angle is Conical surface, where ⁇ is the scattering angle.
  • the scattered rays on the conical surface will converge after different points on the Y-axis, and they will still be distributed at the same vertex, the same cone angle, and the conical surface with the opposite opening direction, as shown in Figure 3.
  • Form a funnel-shaped geometry By placing a particular scatter collimator on XOY to define the scatter line, it is possible that only scattered ray that satisfies the above description can be directed toward the detector along a funnel-like conical surface.
  • the Y-coordinate of the cone apex corresponding to the arc 260 having the original point as the center radius is large, and the divergence of the converged vertices is projected to the detector 250.
  • the origin of the arc is 270, and the apex of the cone corresponding to the arc 270 with a small radius is close to the origin of the coordinate system.
  • the scattered ray is diverged by the convergence point and is projected to the top arc of the detector 250.
  • the detector area in the embodiment of the present invention is much smaller than the detector area in the case of the parallel beam in the prior art, which reduces the requirement of the detector.
  • the specific reason is that the ray has a certain convergence performance, so the detector can be sized according to the spatial resolution requirements of the system.
  • the inspection device of the embodiment of the invention has the advantages of utilizing the characteristics of the convergence of the inverted fan beam, and skillfully adopting the funnel detection structure, which can control the required detector according to the spatial resolution ratio requirement of the system. Size, in a system design with three-dimensional positioning capability, the apparatus of the present embodiment can minimize the required detector area.
  • the scattered lines are distributed over a series of coaxial conical surfaces.
  • the scatter collimator can be designed to form a series of parallel coaxial conical surfaces with X-ray absorbing materials, which can well limit the angle of the scattered lines and more accurately receive the scattering from the specific angle required for scattering. Line, but the requirements for aligning the straightener will be higher.
  • the parallel lines may be used to define the scattered lines, but since the scattered lines are actually distributed on a conical surface having a certain curvature, such parallel plate clamping collimators may cause a certain angular deviation. .
  • the scattering detector is composed of two parts, the first part is a coaxial half-cylindrical surface 420 and 430 which are coaxial with each other on the Y-axis (actually only a half cylinder exists above the XOY plane).
  • the second part is the flat plate placed on the XOY plane, which is related to the funnel geometry model used in this design.
  • a series of slits are opened at corresponding positions on the two cylindrical surfaces, and it is determined that the scattered rays on the conical surface incident at a certain angle pass.
  • the plate collimator 410 placed on the XOY plane below the cylindrical collimator has a linear slit 405 on the Y-axis, which further confirms that only scattered rays converge on the Y-axis can pass through and illuminate the detector Corresponding parts.
  • a detector having an energy resolving power measures a fixed angle of X-scattered radiation from different ROIs to obtain a corresponding substance.
  • an energy resolving power such as a CZT (CdZnTe) detector or a HPGe (High-Purity Ge) detector
  • the lattice constant information of the substance can be obtained by using the number in the processing device.
  • the type of the substance can be distinguished.
  • FIG. 5 is a schematic structural view of a scattered-line collimator according to another embodiment of the present invention.
  • the scatter collimator consists of two parts.
  • the structure above the XOY plane consists of a nested spherical surface (the center of the sphere is on the Y-axis, where the Y-axis is perpendicular to the paper facing), at a fixed angle.
  • the apex of the conical surface distributed by the scattered scatter line is located on the same diameter of the virtual sphere (Y-axis), so that the intersection of the conical surface and the spherical surface is an arc on the spherical surface.
  • the plurality of slits 525 define the exact incident direction of the scattered lines, and the flat collimator placed on the XOY plane below the spherical collimator 520 has a straight slit in the Y-axis. This further confirms that only scattered rays that converge on the Y-axis can pass through and illuminate the corresponding portion of the detector.
  • the scatter collimator proposed in the embodiment of the present invention is composed of two parts, and jointly determines that only the scattered rays distributed on the conical surface of a certain apex angle can be incident on the detector.
  • the detector is placed in the portion after the light is concentrated, that is, the funnel-shaped lower part (see Figure 3).
  • a more accurate scattering collimator design can be used to reduce the angular error of the system.
  • the scattered line cannot be defined by the slit collimator.
  • the "string" in the X-axis direction may be brought, which makes the error larger.
  • Figure 6 shows a side view of an inspection apparatus in accordance with one embodiment of the present invention.
  • the device of the embodiment of the invention is based on the coherent X-ray scattering technique, and as a post-stage detection device for explosives detection, the pre-stage can be used in series with the CT detection system, and the position of the suspicious substance in the object to be inspected 630 is obtained from the CT detection device. information.
  • Figure 6 depicts the relative position of the various parts of the whole system.
  • the optical machine 610 is placed at the uppermost end perpendicular to the paper surface.
  • the object to be inspected 630 is moved horizontally to the right by the conveyor belt 660, and the scattered rays pass through the scattering collimation under the conveyor belt.
  • the 640 is projected onto the detector 650.
  • the distribution of the distributed optical machine and the corresponding parts are controlled by a PC or other processing system.
  • the information recording and processing of the detector, the detector 650 and the optical machine 610 do not need mechanical movement, and the conveyor belt 660 does not need to be stopped, which improves the efficiency of the entire system detection.
  • Figure 7 shows a side view of an inspection apparatus according to another embodiment of the present invention, which differs from the structure of Figure 6 in that the system is provided with a set of scatter collimators 740 and detection at different scattering angles on both sides of the illumination plane. 751, 752.
  • the light machine 710 is placed at the uppermost end perpendicular to the paper surface, and the object to be inspected 730 is moved horizontally to the right side by the conveyor belt 760, and the scattered rays are projected onto the detectors 751 and 752 through the scattering collimator 740 under the conveyor belt.
  • This allows simultaneous measurement of scattered ray information at two fixed angles.
  • the design consideration is based on formula (1).
  • the X-ray energy E is generally distributed between 20 and 100 keV, and the lattice constant is on the order of 10 -10 m. Therefore, the typical scattering angle is small, so the above formula can be approximated as:
  • n takes 1.
  • formula (2) it can be found that when coherent scatter measurement is performed on a certain object, the larger the ⁇ angle, the corresponding energy spectrum peak position will shift to the left (ie, decrease), that is, the characteristic peak corresponds.
  • the X-ray energy becomes smaller; when ⁇ becomes smaller, the peak will shift to the right.
  • the energy resolution of the high-energy part is higher, but at this time corresponds to a smaller angle ⁇ , so the corresponding system angular resolution Will be worse.
  • the coherent X-ray scattering system is more sensitive to angular resolution. Therefore, when measured at a small angle, the overall resolution will decrease and the resulting line quality will deteriorate.
  • Fig. 7 designs a structure in which two angles are simultaneously measured, ⁇ 1 < ⁇ 2 (e.g., ⁇ 1 ⁇ 3°, ⁇ 2 ⁇ 5°).
  • Figure 8 shows a side view of an inspection apparatus in accordance with yet another embodiment of the present invention.
  • This mode allows the system to measure the X-scattered ray energy spectrum at four angles at the same time, and obtains four spectra, which can be combined (obtaining angle-capacity joint distribution of four angles) to improve the signal-to-noise ratio of the data to be processed.
  • the difference from the structure of Fig. 6 is that the system is provided with two sets of scatter collimators 840 and detectors 851, 852, 853, 854 at different scattering angles on both sides of the illumination plane.
  • the light machine 810 is placed at the uppermost end perpendicular to the paper surface, and the object to be inspected 830 is moved horizontally to the right side under the driving of the conveyor belt 860, and the scattered rays are projected to the detectors 851 and 852 and the detector through the scattering collimator 840 under the conveyor belt. 853 and 854.
  • the illumination ranges of the two sets of scattered lines on the collimator are separated on the same side of the illumination plane to prevent mutual interference.
  • the rays at two angles are respectively illuminated on the two cylindrical detectors. After obtaining four sets of energy spectrum curves, the best effect can be selected first, or the four curves can be combined for different angles to improve the signal-to-noise ratio of the curve.
  • Figures 9 and 10 show a more efficient schematic of the structure, the main purpose being to reduce the size of the overall system equipment. For the arc or straight line segment, the distribution range of the light source is too large, and the overall size of the system is too large.
  • Figure 9 shows a U-shaped (or inverted U-shaped) design featuring a system that is bilaterally symmetrical, and there is no difference in the illumination of the detected cube object (rectangular section).
  • the inverted U-shaped distributed light source 910 and the light source collimator 930 are disposed between the distributed light source simulated circular orbit radius/detection zone outermost circle radius 960 and the detection zone circle radius 970.
  • the U-shaped design makes the distributed light source smaller in size perpendicular to the transport direction of the conveyor belt. The light source is almost close to the rectangular detection area.
  • this design makes it possible to greatly reduce the radius of the circle in the detection area, and also reduces the overall system. the height of.
  • the opening angle ⁇ of the rays emitted by each light source point is sufficiently small as shown in FIG.
  • the change of the angular resolution caused by the opening angle of each ray is analyzed as follows. It is assumed that the angle ⁇ of each ray is 0.4° after passing through the light source collimator, and the edge ray 1-1 of the ray 1 intersects the ray 2 With point A, they can scatter along the same trajectory into the detector at point A, and their scattering angles will differ.
  • the scattering collimator defines a scattering angle of 3°
  • the angular error due to ⁇ is approximately
  • the angular error caused by the actual scatter collimator is not considered here.
  • the scatter collimator can accurately define the angle of the incident detector, and the angle defined by the scatter collimator is changed to 2.91°
  • the possible scattering angle range of the scattering line actually entering the detector is due to the error caused by ⁇ . : 2.91 ° ⁇ 3.09 °
  • the average angle is still 3 °
  • the ray does not cover the entire cross section of the object with angular resolution guaranteed.
  • the interval between the two rays is sufficiently small, and the interval is determined according to the size range of the target object actually detected, and the embodiment is proposed in the detection area.
  • the distance between two adjacent rays shall not exceed 12 mm.
  • a light source point is arranged every 0.6°, and a total of 227 light source points are required.
  • the area recorded by the detector is a letter of a partial ring area in the detection plane.
  • the actual monitoring area is only a rectangle that is inscribed in the area of the ring. Therefore, on the cylindrical detector described above, there will be a part of the area as the area I, II, III, IV as shown in Fig. 11 without useful information, and the meaningful area is only the rectangular area projected through the funnel-shaped cone surface.
  • a part of the cylindrical detector, as shown in Fig. 11, is the region V (symmetric structure).
  • Figure 10 shows the L-shaped design pattern.
  • the system design is asymmetric, but the basic principle and measurement method are the same.
  • the inverted L-type distributed light source 1010 and the light source collimator 1030 are disposed in a detection area between the distributed light source simulation circular orbit radius/detection zone outermost circle radius 1060 and the detection zone circle radius 1070.
  • the detector will appear in an asymmetrical form on the lower right side of the object, and the distribution of the rectangular region scattered lines on the detector is as shown in the in-frame region 1120 of Figure 11 (L-shaped configuration).
  • the L-shape reduces one arm of the U-shape, and the asymmetric design of Figure 9 requires fewer source points. Both U-shaped and L-shaped designs are designed to reduce the size of the entire system.
  • Embodiments of the present invention propose the use of a two-dimensional cylindrical surface detector, so that the system has a three-dimensional positioning capability based on the basic maintenance advantages.
  • the detector area is smaller than the parallel beam method.
  • two different angles can be measured simultaneously.
  • the energy distribution curve of the scattered ray Therefore, the information obtained from the two angles can be used or combined according to the specific situation to improve the material resolution capability of the system.
  • a coherent X-ray scattering system employing an inverted fan beam distributed light source that utilizes an energy resolving detector to measure the energy distribution of scattered X-rays at a fixed angle to obtain a material lattice constant. Thereby distinguishing the type of substance.
  • the distributed light source is distributed on a circular arc or on a straight line. Under the limitation of the light source collimator, the rays converge along the radial direction through the object to the origin of the coordinate system.
  • the positioning information of the suspicious substance from the pre-stage CT is received, and the light source corresponding to the corresponding position can be purposely controlled to emit the beam, and the corresponding part is irradiated to perform the targeted detection.
  • the detector is a cylindrical structure with a precisely designed collimator.
  • the scattered rays at different positions on the detection plane will be irradiated at different positions of the detector, and the data acquisition system can receive the positioning information of the suspected substance by the CT of the preceding stage, and the signals of some of the position detecting units can be obtained purposefully.
  • the collimator of the entire system is divided into two parts: the light source collimator and the scattered line collimator (again: the detector collimator).
  • the purpose of the light source collimator is to define the direction of the rays emitted by the light source points at different positions such that the rays passing through the collimator form an inverted fan beam, and the penetration detection regions converge at the origin of the coordinate system.
  • the scattered line collimator controls the angle of the scattered ray incident on the detector face, allowing only a fixed angle ⁇ and a scattered line on a conical surface to pass through and be recorded by the detector.
  • the object continuously passes through the detection area, driven by the conveyor belt. Both the X source and the detector do not require motion.
  • the lattice constant d i can be calculated, and the curve is compared with the spectrum of various substances in the system data, and finally, Determine the type of substance and determine whether it is an explosive.
  • the light source in combination with an inverted fan beam design and a distributed light source design, has a sink
  • the detector area is greatly reduced compared to the parallel beam mode.
  • the size of the detector in the inspection apparatus is only about 15% of the area required for the parallel beam mode, which reduces the cost of the system.
  • a specially designed detector collimator and a two-dimensional detector are used, so that the invention does not require the movement of the detector and the light source in the process of detecting the object box, thereby reducing the mechanical complexity of the system and improving the system.
  • System detection speed, stability and accuracy are used.
  • the detecting means of the invention can simultaneously measure a plurality of ROIs, and has more three-dimensional positioning ability than the original inverted fan beam mode, and can separately detect the articles in any part of the object box.
  • U-shaped and L-shaped light source distributions are employed, reducing the overall system size.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Toxicology (AREA)
  • Molecular Biology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种检查设备、方法和***。该设备包括:分布式射线源(110),包括多个源点;光源准直器(120),设置在分布式射线源的射线出束端,将其产生的射线沿着扇形的径线汇聚,形成倒扇形射线束;散射准直器(140),配置为仅允许射线与被检查物体(130)的相互作用产生的具有一个或多个特定散射角的散射射线通过;至少一个探测器(150),设置在散射准直器的下游,每个探测器包括多个探测单元,该多个探测单元具备能量分辨能力并且基本上设置在柱面上,以接收通过散射准直器的散射射线;以及处理装置(160),基于探测器输出的信号计算被检查物体的散射射线能谱信息。上述设备利用具有能量分辨能力的探测器,在固定角度下测量散射X射线的能量分布,获得物质晶格常数,从而分辨物质的种类。

Description

检查设备、方法和*** 技术领域
本公开涉及基于相干X射线散射技术的检查***,具体涉及一种确定被检查物体中是否包含***物或者危险品之类特定内容的检查设备、方法和***。
背景技术
对行李箱等物品中***物、毒品的检测,受到了越来越多的重视。现有的一些常用检测手段,例如CT检测技术,可以获得物品箱中各种物质的空间位置分布以及密度、质量、有效原子序数等重要信息,用此来分辨不同物质的类别。当***检测到可疑物质时,将报警并交给下一级的检测装置检测或进行人工检测。
但是,利用密度和原子序数等信息判断某物质是否为***物的报错率依然比较高。为了降低整体***的报错率,减少人工检测的次数,以及提高***可信度,提出了在CT检测***后串联上基于相干X射线散射的检测***,可以较明显的降低***的报错率。
相干X射线散射(X射线衍射)技术检测物质(主要为晶体物质),主要基于布拉格衍射公式:
Figure PCTCN2015073558-appb-000001
其中,n为衍射增强级别,在***物检测中一般n=1;λ为入射射线的波长;d为晶格间距,也为晶格常数;θ为射线散射后的偏转角;h为普朗克常数;c为光速;E为入射光子的能量。各个参数满足上述公式的时候,将发生相干 加强,对应的散射为弹性散射,X光子能量不变。
在基于能量分布的衍射图样中,固定探测器测量的角度θ,即在固定的散射角度测量散射X射线的能谱。满足上述公式的晶格常数d与入射光子能量成分E具有一对一的关系。这样,根据能谱峰的位置E1、E2、...En,可以确定晶体物质的指纹特征——晶格常数d1、d2、...dn,从而可以鉴别不同的物质。例如,典型的***物质主要是由不同的晶体物质组成的,通过晶格常数分辨晶体类型,因此该方法是一种有效的***物检测手段。
同样也可以采用单能的X射线源,然后在不同散射角度下对X光子进行计数。通过θ与d的一一对应关系来获得晶体信息。这种方法对探测器的要求降低,但是对光源的单色性要求提高。并且改变角度测量效率较低,在实验设备中有应用,但在实际设计与应用中,采用的较少。
也有人提出了一种倒扇束检测方法。倒扇束的***使用较少的探测器做到固定式的测量,但是失去了三维定位的能力,经过检测平面内垂直于射束方向的、不同位置处物体的散射线将汇聚到探测器上的一点,使得两位置处的物体的谱线叠加,影响信噪比,降低物质的分辨能力。
发明内容
考虑到现有技术中的一个或多个问题,提出了一种基于相干射线散射技术的检查设备、方法和***,具备三维定位能力,并且具有较高分辨能力并降低了***成本。
根据本公开的一个方面,提出了一种检查设备,包括:分布式射线源,包括多个源点,产生射线;光源准直器,设置在分布式射线源的射线出束端, 将所述分布式射线源产生的射线沿着扇形的径线汇聚,形成倒扇形射线束;散射准直器,配置为仅允许射线与被检查物体的相互作用产生的具有一个或多个特定散射角的散射射线通过;至少一个探测器,设置在所述散射准直器的下游,每个探测器包括多个探测单元,所述多个探测单元具备能量分辨能力并且基本上设置在柱面上,以接收通过所述散射准直器的散射射线;以及处理装置,基于所述探测器输出的信号计算被检查物体的散射射线能谱信息。
优选地,所述处理装置还基于所述散射射线能谱信息中包含的峰位信息计算晶格常数,将计算的晶格常数与预定值进行比较来判断该被检查物体中是否包含***物或者危险品。
优选地,所述的检查设备还包括控制装置,根据输入的被检查物品中的感兴趣区域的位置信息控制所述分布式射线源中的特定源点产生射线,对所述感兴趣区域进行检查。
优选地,所述分布式光源的多个源点按照如下方式分布:圆弧、直线、U型、倒U型、L型或者倒L型。
优选地,所述散射准直器包括底面和底面上的多个嵌套的柱面,所述多个嵌套的柱面上相隔预定的距离开有圆形缝隙,并且所述底面上沿着柱面的轴向方向开有缝隙。
优选地,所述散射准直器包括底面和在底面上的多个嵌套的球面,所述多个嵌套的球面上相隔预定的距离开有圆形缝隙,并且所述底面上沿着底面的径线开有缝隙。
优选地,所述散射准直器由对射线吸收材料制成。
优选地,所述散射准直器具体为用射线吸收物质制作成多个列平行的共 轴圆锥面。
优选地,所述散射准直器具体为多个平行的薄片。
优选地,所述探测器具体为CZT探测器或者HPGe探测器。
根据本公开的另一方面,提出了一种检查***,包括:承载机构,承载被检查物体直线运动;第一扫描级,包括透射成像装置或者CT成像装置,对被检查物体进行透射检查或者CT检查;处理装置,接收第一扫描级产生的信号,并且基于该信号确定被检查物体中的至少一个感兴趣区域,第二扫描级,沿着物体运动方向与所述第一扫描级间隔预定的距离设置,所述第二扫描级包括:分布式射线源,包括多个源点,产生射线;光源准直器,设置在分布式射线源的射线出束端,将所述分布式射线源产生的射线沿着扇形的径线汇聚,形成倒扇形射线束;散射准直器,配置为仅允许散射射线与被检查物体的相互作用产生的具有一个或多个特定散射角的散射射线通过;探测器,设置在所述散射准直器的下游,包括多个探测单元,所述多个探测单元具备能量分辨能力,设置在柱面上并接收通过所述散射准直器的散射射线;其中,所述处理装置指示所述第二扫描级针对所述至少一个感兴趣区域进行检查,并且基于所述探测器输出的信号计算被检查物体的散射射线能谱信息。
根据本公开的再一方面,提出了一种检查方法,包括:通过包括多个源点的分布式射线源产生射线;将所述分布式射线源产生的射线沿着扇形的径线汇聚,形成倒扇形射线束;通过设置在探测器前端的散射准直器对射线进行准直,使得仅允许射线与被检查物体的相互作用产生的具有一个或多个特定散射角的散射射线通过;由具备能量分辨能力并设置在柱面上的探测器接收通过所述散射准直器的散射射线;以及基于所述探测器输出的信号计算被 检查物体的散射射线能谱信息。
优选地,所述的检查方法还包括步骤:基于所述散射射线能谱信息中包含的峰位信息计算晶格常数,将计算的晶格常数与预定值进行比较来判断该被检查物体中是否包含***物或者危险品。
优选地,所述的检查方法还包括步骤:根据输入的被检查物品中的感兴趣区域的位置信息控制所述分布式射线源中的特定源点产生射线,对所述感兴趣区域进行检查。
利用上述的技术方案,通过控制分布式光源中特定的几个光源点出束,来照射物体的对应部分,进行针对性的检测。此外,由于使用了柱面探测器,能够获取某些位置的探测单元的信号,从而具备了三维定位能力。
附图说明
下面的附图有助于更好地理解接下来对本公开不同实施例的描述。这些附图并非按照实际的特征、尺寸及比例绘制,而是示意性地示出了本公开一些实施方式的主要特征。这些附图和实施方式以非限制性、非穷举性的方式提供了本公开的一些实施例。为简明起见,不同附图中具有相同功能的相同或类似的组件或结构采用相同的附图标记。
图1为根据本发明实施例的检查设备的结构示意图;
图2为根据本发明另一实施例的检查设备中的光源分布示意图以及探测区域示意图;
图3为根据本发明的实施例描述检查设备探测固定角度下散射射线的结构示意图;
图4描述了根据本发明一个实施例的散射线准直器的结构示意图;
图5为根据本发明另一实施例的散射线准直器的结构示意图;
图6示出了根据本发明一个实施例的检查设备的侧视图;
图7示出了根据本发明另一实施例的检查设备的侧视图;
图8示出了根据本发明又一实施例的检查设备的侧视图;
图9示出了根据本发明一个实施例的检查设备中的光源的结构示意图;
图10示出了根据本发明另一实施例的检查设备中的光源的结构示意图;
图11示出了物体矩形截面(实际检测区)散射信息柱面探测器上的分布区域。
具体实施方式
下面将详细说明本公开的一些实施例。在接下来的说明中,一些具体的细节,例如实施例中的具体结构和部件的具体参数,都用于对本公开的实施例提供更好的理解。本技术领域的技术人员可以理解,即使在缺少一些细节或者其他方法、元件、材料等结合的情况下,本公开的实施例也可以被实现。
图1示出了根据本公开实施例的检查设备的结构示意图。如图1所示,示出的检查设备对被检查物体130进行检查,它包括分布式光源110、在分布式光源前的光源准直器120、散射准直器140和探测器150。如图所示,光源准直器120使得射线沿着扇束的径向汇聚到坐标系原点。散射准直器140设置在XOY平面上方,探测器150为柱面探测器,轴线为Y轴,包括多个设置在柱面上的探测单元。
根据一些实施例,通过光源准直器120的射线为一个扇形面(垂直于照 射平面有一定的小张角Δβ),该平面包含了被检查物体130在XOZ平面内的一个矩形断面。当被检查物体130沿传送带(例如沿着Y轴)通过时,被检查物体130被扫描。射线通过被检查物体130时,发生散射,在XOY平面上的散射准直器140限定仅在某确定角度下的散射线才能够入射到探测器150上。诸如计算机之类的与分布式光源110和探测器150等连接的控制和处理装置160然后基于探测器150输出的信号计算被检查物体的散射射线能谱信息。
根据一些实施例,散射准直器140由两部分组成:第一部分,由同轴的多个(两到三个)圆柱面X射线吸收物质组成,在柱面上,相隔一定的距离开有一条圆形的细缝,允许某个角度圆锥面上的射线通过;第二部分在XOY平面上有一层X射线吸收物质,并在Y轴上某一段上开有一条直缝。这两者的结合确定了入射探测器的射线角度,并根据所需的***角度分辨率以及空间分辨率来决定缝宽和相对距离。
图2为根据本发明另一实施例的检查设备中的光源分布示意图以及探测区域示意图。本实施例的检查设备采用的是分布式光源210,在光源准直器220的控制下得到倒扇形的射束,汇聚于原点。在一些实施例中,光源分布可以有多种:第一种是分布于半径为R,圆心在原点的圆弧205上,光源准直器分布在光源点前,径向分布;第二种是分布于直线段上,如图2中粗黑线所示,光源210分布在直线段上,光源准直器220设置在源点的出束路径上,经过准直的射线束沿着扇形的径向汇聚,穿透检查区域外圈260和检查区域内圈270中的被检查物体230,发生散射(衍射)。控制和处理装置160根据输入的被检查物品中的感兴趣区域的位置信息控制分布式射线源210中的特 定源点产生射线,对感兴趣区域进行检查。例如,如图2所示,控制分布式光源210中的特定源点的出束,可以对被检查物体130中的特定部分(ROI)进行检查。探测区域为如图2所示的检测区外圈260、检测区内圈270圆弧以及光源两端射向原点的射线所包围起来的部分圆环区域。被检查物体280可以内接圆环区域,沿传送带290垂直于纸面运动。假设被检查物体为立方体,且在图2中宽为l,高为h。那么光源对原点的张角为:
Figure PCTCN2015073558-appb-000002
圆弧形的光源分布长度为:
Figure PCTCN2015073558-appb-000003
直线型的光源分布长度为:
Figure PCTCN2015073558-appb-000004
其中R为弧形光源的半径,R1为物体底面距离坐标原点的距离。
一般情况下,在这段长度内可以分布多个光源点(间隔一定的角度),并可以在控制***的控制下,独立的出束,或者相邻的几个光源点组成一组,以组为单位独立的出束。图2中区域280为感兴趣区域(ROI),该区域可以为前级CT***或者透射检查***标定的可疑物质区域。
图3为根据本发明的实施例描述检查设备探测固定角度下散射射线的结构示意图。如图3所示,分布式光源210通过光源准直器220产生的倒扇形光束的照射面内,在以汇聚点(坐标原点)为圆心,不同半径的圆弧上,与入射线(半径)以一定角度散射的射线可以汇聚与Y轴上的一点,这些射线 都分布于:顶点在Y轴上,半锥角为
Figure PCTCN2015073558-appb-000005
的圆锥面上,其中θ为散射角。处于圆锥面上的散射线在Y轴上不同点处汇聚后,将继续发散开来,同时它们仍然分布在同顶点,同锥角,开口方向相反的圆锥面上,如图3所示,形成一个漏斗状几何图形。通过在XOY上放置特定的散射准直器限定散射线,可以使得只有满足上述描述的散射射线可以沿着类似漏斗状的圆锥面射向探测器。
如图3所示,在照射平面内(XOZ平面内),以原点为圆心半径较大的圆弧260对应的圆锥顶点的Y坐标较大,通过汇聚的顶点发散后将投射到探测器250的底部圆弧处。在照射平面内,以原点为圆心,半径较小的圆弧270对应的圆锥顶点靠近坐标系原点,散射射线通过汇聚点发散后将投射到探测器250的顶端圆弧处。这样,在照射面内的不同位置处发生的散射射线将投射到柱面探测器250的不同探测单元上,配合物体沿着Y轴的匀速运动,该检查设备具有探测物体的三维定位能力,并且可以同时测量探测区域内多个ROI。
本发明实施例中的探测器面积远小于现有技术中平行光束情况下的探测器面积,减少了探测器的需求量。具体原因在于,射线具有一定的汇聚性能,故探测器可以根据***空间分辨率的要求调整尺寸。
本发明实施例的检查设备的优点便在于利用了倒扇束光线汇聚的特点,并巧妙的采用了漏斗式探测结构,这种结构可以根据***的空间分辨率比例要求,控制所需探测器的大小,在具有三维定位能力的***设计中,本实施例的设备可以做到所需探测器面积最小化。
在一些实施例中,散射线分布在一系列共轴的圆锥面上。在一些实施例 中,可以将散射准直器设计为用X射线吸收物质制作成一系列平行的共轴圆锥面,这样可以很好的限制散射线的角度,较为准确的接收所需的特定角度散射而来的散射线,但是这样对准直器的要求会高一些。
在其他的实施例中,可以用一些平行的薄片来限定散射线,但是由于散射线实际上分布在有一定弧度的圆锥面上,这样平行的平板夹缝准直器,会带来一定的角度偏差。
在图4的实施例中示出了另外的散射探测器构成。如图4所示,散射探测器由两部分组成,第一部分是以Y轴为轴线的同轴的相互嵌套的两个半圆柱面420和430(实际上只在XOY平面上方存在半个圆柱面),第二部分是放置在XOY平面上的平板,这是由本设计采用了漏斗型几何模型有关的。由于X射线通过物体时,发生θ角散射的部分射线将沿着不同的圆锥面汇聚到Y轴上,它们与圆柱形的准直器的交线为分布在圆柱面上的一个个圆弧。根据***的几何关系以及角度分辨率的要求,在两圆柱面上对应的位置处开一系列的窄缝,就可以确定让一定角度入射的圆锥面上的散射射线通过了。放置在圆柱面准直器下方的XOY平面上的平板准直器410在Y轴上开有一段直线缝隙405,这进一步确定了,仅在Y轴上汇聚的散射射线可以通过并照射在探测器相应部位。通过图4所示的散射准直器的设计,就可以保证固定角度的散射射线可以按照图3所描述的漏斗状几何关系被探测器探测了。在一些实施例中,拥有能量分辨能力的探测器(如CZT(CdZnTe)探测器或者HPGe(High-Purity Ge)探测器)测量到来自不同ROI的固定角度的X散射射线,可以得到对应物质的按能量分布的相干散射图像(或者衍射图样),通过分析谱峰的位置,可以得到物质的晶格常数信息,通过在处理装置中与数 据库中各种物质(如***物)的参考谱线相比较,可以分辨出该物质的种类。
图5为根据本发明另一实施例的散射线准直器的结构示意图。如图5所示,散射准直器由两部分组成,位于XOY平面上方的结构是由套叠的球面(球心在Y轴上,此处Y轴垂直于纸面向里)组成,以固定角度射来的散射线所分布的圆锥面的顶点位于虚拟球体的同一条直径上(Y轴),这样圆锥面与球面的交线为球面上的圆弧。通过套叠的结构,多道细缝525就限定了散射线的准确入射方向了,放置在球面准直器520下方的XOY平面上的平板准直器在Y轴上开有一段直线缝隙。这进一步确定了,仅在Y轴上汇聚的散射射线可以通过并照射在探测器相应部位。
本发明实施例中提出的散射准直器由两部分组成,共同确定了只有在分布在一定顶角的圆锥面上的散射线才可射入探测器。采用漏斗状几何结构,将探测器放置在光线汇聚之后的部分,也就是漏斗状的下部(见图3),在理论上可以使用较为准确的散射准直器设计,降低***的角度误差,如果放置在光线汇聚之前,则无法通过细缝准直器限定散射线了,在采用二维探测器的时候可能会带来X轴方向的“串道”,使得误差变大。
图6示出了根据本发明一个实施例的检查设备的侧视图。本发明实施例的设备基于相干X射线散射技术,作为***物检测的后级检测装置,前级可与CT检测***串联使用,并从CT检测装置处获得可疑物质在被检查物体630中的定位信息。图6描述了整个***各个部分的相对位置,光机610垂直于纸面放置在最上端,被检查物体630在传送带660的带动下水平向右方匀速运动,散射射线经过传送带下方的散射准直器640投射到探测器650上。整个过程中,通过PC或者其他处理***控制分布式光机的出束,以及对应部位 探测器的信息记录与处理,探测器650与光机610无需机械运动,传送带660也无需停止,这样提高了整个***检测的效率。
图7示出了根据本发明另一实施例的检查设备的侧视图,与图6结构的区别是,该***在照射平面两边不同的散射角度处分别设置了一组散射准直器740和探测器751、752。光机710垂直于纸面放置在最上端,被检查物体730在传送带760的带动下水平向右方匀速运动,散射射线经过传送带下方的散射准直器740投射到探测器751和752上。这样可以同时测量两个固定角度下的散射射线信息。这样设计的考虑是根据公式(1),X射线能量E一般分布在20~100keV,晶格常数在10-10m量级,因此典型的散射角度很小,所以上述公式可以近似为:
Figure PCTCN2015073558-appb-000006
其中n取1。根据公式(2),可以发现,在对某确定物体进行相干散射测量的时候,θ角度越大,对应得到的能谱峰位就会向左(即减小)偏移,即:特征峰对应的X射线能量变小;当θ变小时,谱峰将向右偏移。对于探测器而言,对高能部分的能量分辨率较高,但是此时对应较小的角度θ,因此对应的***角度分辨率
Figure PCTCN2015073558-appb-000007
将变差。根据***设计与实验,相干X射线散射***对于角度分辨率更敏感,因此,在较小角度下测量时,整体分辨率会下降,得到的谱线质量会变差。但是考虑以下情况:在物品箱中,在散射线路径上存在强的X射线吸收物质的时候,或者物体较厚,此时多色的X射线低能部分将受到较强的吸收,谱线将受到射线硬化的影响。在这种情况下,在较大θ角度下测量将受到硬化影响较大。因此对于不同的物品箱情况,不同角度下给出的结构有一定差别,会存在较适合的角度。因此图7设计了两 个角度同时测量的结构,θ1<θ2(如:θ1≈3°,θ2≈5°)。因此可以根据前级CT***得到的物质密度与位置信息判断何种角度下更适合测量,或者联合两个角度下的谱线,同样可以提高信噪比,提高判断的准确度,降低误判率。
图8示出了根据本发明又一实施例的检查设备的侧视图。该模式允许***同时在四个角度下测量X散射射线能谱图,得到四个谱图,可以联合起来(得到四个角度的角度-能力联合分布),提高待处理数据的信噪比。与图6结构的区别是,该***在照射平面两边不同的散射角度处分别设置了两组散射准直器840和探测器851、852、853、854。光机810垂直于纸面放置在最上端,被检查物体830在传送带860的带动下水平向右方匀速运动,散射射线经过传送带下方的散射准直器840投射到探测器851和852以及探测器853和854上。这样可以同时测量两个固定角度下的散射射线信息。如图8所示,在照射平面的同一侧将两组散射线在准直器上的照射范围分开,防止相互干扰。两个角度下的射线分别照射在两个柱面探测器上。得到四组能谱曲线之后,首先可以选定效果最好的一组来进行判定,或者对于不同角度下的,将四条曲线联合起来,可以提高曲线的信噪比。
图9与图10示出了更加高效的结构示意图,主要的目的是减小整个***设备的尺寸。针对圆弧或者直线段光源分布范围过大,***整体尺寸过大的缺点进行了改进。
图9所示为U型(或倒U型)式设计,该设计的特点是***左右对称,对于被检测的立方体物体(矩形的截面)来讲,照射射线并没有区别。对于图9的模式,倒U型分布式光源910和光源准直器930设置在分布式光源模拟圆轨道半径/检测区最外圈半径960和检测区内圈半径970之间的检测 区域中。U型式的设计使得分布式光源垂直于传送带运输方向的尺寸减小,光源几乎是贴着矩形的检测区域,另外这种设计使得检测区内圈半径大大减小成为可能,同时也减少了整个***的高度。
在该实施例中,由于光源是分布式的,每间隔一定的角度布置一个光源点,因此存在采样间隔的问题。为了保持角度分辨率,每个光源点射出的射线的张角Δγ要足够小,如图9所示。由于每条射线的张角所引起的角度分辨率的变化分析如下,假设经过光源准直器后,每条射线的张角Δγ≈0.4°,那么射线1的边缘射线1-1与射线2相交与A点,它们在A点均可与物体发生散射沿着相同的轨迹进入探测器,而这时它们的散射角度就会产生差别。当散射准直器限定散射角为3°时,由于Δγ引起的角度误差约为
Figure PCTCN2015073558-appb-000008
此处没有考虑实际散射准直器引起的角度误差。假设散射准直器能够准确的限定射入探测器的角度,将散射准直器限定的角度改为2.91°,那么由于Δγ引起的误差,实际射入探测器的散射线可能的散射角范围是:2.91°~3.09°,平均角度仍为3°,而最大误差
Figure PCTCN2015073558-appb-000009
而在保证了角度分辨率的情况下射线便无法覆盖整个物体截面。为了避免或降低因非全覆盖式的测量导致的漏检率,需要保证两条射线之间的间隔足够小,这个间隔要根据实际检测的目标对象尺寸范围而定,本实施例提出在检测区域最外圈圆弧上,相邻两条射线的间距不得超过12mm,就图9以及上面的参数,取每0.6°布置一个光源点,共需227个光源点。那么射线之间最大的间隔为Δx=10.79mm。由于射线是汇聚的,且实际的检测区域为矩形,在最外圈圆弧的内侧,所以在检测区域内,这个标准是可以满足要求的。
另外,如图3所示,探测器记录的区域为检测平面内部分圆环区域的信 息,而实际的监测区域仅仅为内接于该圆环区域的一个矩形。因此在上面所述的柱面探测器上,将有一部分区域是没有有用信息的如图11所示中的区域I、II、III、IV,有意义区域仅为矩形区域经过漏斗型锥面投射到柱面探测器上的一部分,如图11所示中的区域V(对称式结构情况)。
图10为L型设计模式,该***设计是非对称形式的,但是基本原理和测量方式是一致的。对于图10的模式,倒L型分布式光源1010和光源准直器1030设置在分布式光源模拟圆轨道半径/检测区最外圈半径1060和检测区内圈半径1070之间的检测区域中。此实施例中探测器将在物体的右下侧,呈现出非对称的形式,矩形区域散射线在探测器上的分布如图11中框内区域1120所示(L型结构)。
图10的设计相对于图9而言,所需的探测器尺寸相当,均远小于平行束模式,由于采用分布式光源,采样点最大间隔(射线之间的最大间隔)均可以做到小于12mm。由于R2的增加,由Δγ引起的角度误差增大,设Δγ=0.4°,散射准直器限定的散射角度为2.85°,散射线的平均散射角为3°,那么角度误差约为
Figure PCTCN2015073558-appb-000010
相对U型设计要略差一些,故对光源准直器的要求更高,可能需要减小Δγ的大小,但Δγ也不宜过小,否则会显著降低计数率。从形态上,L型减少了U型的一条臂,图9的非对称设计所需的光源点更少。无论是U型分布还是L型分布,这两种方式的设计均能减小整个***的尺寸。
本发明的实施例提出了采用二维的圆柱面探测器,使得***在基本保持优点的基础上,拥有了三维定位能力。相比平行束的方法需要的探测器面积更小。同时,在该设计的另一种***结构中,还可以同时测量两个不同角度 下的散射射线的能量分布曲线。因此可以根据具体的情况使用或者联合两个角度下得到的信息,提高***的物质分辨能力。
本公开的其他实施例公开了一个采用倒扇形束分布式光源的相干X射线散射***,利用具有能量分辨能力的探测器,在固定角度下测量散射X射线的能量分布,获得物质晶格常数,从而分辨物质的种类。
分布式光源分布在圆弧上或者直线上,在光源准直器的限制下,射线沿着径向通过物体汇聚于坐标系原点。通过光源处理***,接收来自前级CT对可疑物质的定位信息,可以有目的的控制对应位置的几个光源点出束,照射对应部分,进行针对性的检测。
探测器为柱面结构,配合着精确设计的准直器。检测平面上不同位置处的散射射线将照射在探测器的不同位置,通过数据获取***,接收前级的CT对可疑物质的定位信息,可以有目的的获取其中某些位置探测单元的信号。
整个***的准直器分为两部分:光源准直器与散射线准直器(又:探测器准直器)。光源准直器的目的是,限定不同位置处光源点放射出的射线的方向,使得透过准直器的射线形成倒扇形束的状态,穿透检测区域汇聚于坐标系原点。散射线准直器控制射入探测器面的散射射线的角度,仅允许固定角度θ且处于某圆锥面上的散射线通过并被探测器记录。
在整个检测过程中,物体在传送带的带动下连续地通过检测区域。X光源与探测器都不需要运动。当获得了可疑物质的散射射线能谱曲线之后,根据峰位Ei与其他固定参数,可计算出晶格常数di,并将曲线与***数据中各种物质的谱线对照、识别,最终判断物质的种类,决定该物质是否为***物。
在一些实施例中,结合倒扇束设计方案和分布式光源设计,光源具有汇 聚的趋势,相比平行束模式,探测器面积大大减少,在一些实施例中,检查设备中探测器的尺寸仅为平行束模式所需探测器面积的15%左右,降低了***的成本。
此外,在一些实施例中采用特殊设计的探测器准直器和二维探测器,使得本发明在检测物品箱的过程中无需探测器和光源的运动,降低了***的机械复杂度,提高了***的检测速度、稳定性和精度。同时本发明检测手段可以同时测量多个ROI,相比原本倒扇束模式,更多了三维定位能力,可以对物品箱中任何一个部位的物品进行单独的检测。
在其他实施例中,采用了U型和L型的光源分布方式,减少了整个***的尺寸。
因此,上述本公开的说明书和实施方式仅仅以示例性的方式对本公开实施例的检查设备、方法和***进行了说明,并不用于限定本公开的范围。对于公开的实施例进行变化和修改都是可能的,其他可行的选择性实施例和对实施例中元件的等同变化可以被本技术领域的普通技术人员所了解。本公开所公开的实施例的其他变化和修改并不超出本公开的精神和保护范围。

Claims (14)

  1. 一种检查设备,包括:
    分布式射线源,包括多个源点,产生射线;
    光源准直器,设置在分布式射线源的射线出束端,将所述分布式射线源产生的射线沿着扇形的径线汇聚,形成倒扇形射线束;
    散射准直器,配置为仅允许射线与被检查物体的相互作用产生的具有一个或多个特定散射角的散射射线通过;
    至少一个探测器,设置在所述散射准直器的下游,每个探测器包括多个探测单元,所述多个探测单元具备能量分辨能力并且基本上设置在柱面上,以接收通过所述散射准直器的散射射线;以及
    处理装置,基于所述探测器输出的信号计算被检查物体的散射射线能谱信息。
  2. 如权利要求1所述的检查设备,其中所述处理装置还基于所述散射射线能谱信息中包含的峰位信息计算晶格常数,将计算的晶格常数与预定值进行比较来判断该被检查物体中是否包含***物或者危险品。
  3. 如权利要求1所述的检查设备,还包括控制装置,根据输入的被检查物品中的感兴趣区域的位置信息控制所述分布式射线源中的特定源点产生射线,对所述感兴趣区域进行检查。
  4. 如权利要求1所述的检查设备,其中所述分布式光源的多个源点按照如下方式分布:圆弧、直线、U型、倒U型、L型或者倒L型。
  5. 如权利要求1所述的检查设备,其中所述散射准直器包括底面和底面上的多个嵌套的柱面,所述多个嵌套的柱面上相隔预定的距离开有圆形缝隙, 并且所述底面上沿着柱面的轴向方向开有缝隙。
  6. 如权利要求1所述的检查设备,其中所述散射准直器包括底面和在底面上的多个嵌套的球面,所述多个嵌套的球面上相隔预定的距离开有圆形缝隙,并且所述底面上沿着底面的径线开有缝隙。
  7. 如权利要求1所述的检查设备,其中所述散射准直器由对射线吸收材料制成。
  8. 如权利要求1所述的检查设备,其中所述散射准直器具体为用射线吸收物质制作成多个列平行的共轴圆锥面。
  9. 如权利要求1所述的检查设备,其中所述散射准直器具体为多个平行的薄片。
  10. 如权利要求1所述的检查设备,所述探测器具体为CZT探测器或者HPGe探测器。
  11. 一种检查***,包括:
    承载机构,承载被检查物体直线运动;
    第一扫描级,包括透射成像装置或者CT成像装置,对被检查物体进行透射检查或者CT检查;
    处理装置,接收第一扫描级产生的信号,并且基于该信号确定被检查物体中的至少一个感兴趣区域,
    第二扫描级,沿着物体运动方向与所述第一扫描级间隔预定的距离设置,所述第二扫描级包括:
    分布式射线源,包括多个源点,产生射线;
    光源准直器,设置在分布式射线源的射线出束端,将所述分布式射 线源产生的射线沿着扇形的径线汇聚,形成倒扇形射线束;
    散射准直器,配置为仅允许散射射线与被检查物体的相互作用产生的具有一个或多个特定散射角的散射射线通过;
    探测器,设置在所述散射准直器的下游,包括多个探测单元,所述多个探测单元具备能量分辨能力,设置在柱面上并接收通过所述散射准直器的散射射线;
    其中,所述处理装置指示所述第二扫描级针对所述至少一个感兴趣区域进行检查,并且基于所述探测器输出的信号计算被检查物体的散射射线能谱信息。
  12. 一种检查方法,包括:
    通过包括多个源点的分布式射线源产生射线;
    将所述分布式射线源产生的射线沿着扇形的径线汇聚,形成倒扇形射线束;
    通过设置在探测器前端的散射准直器对射线进行准直,使得仅允许射线与被检查物体的相互作用产生的具有一个或多个特定散射角的散射射线通过;
    由具备能量分辨能力并设置在柱面上的探测器接收通过所述散射准直器的散射射线;以及
    基于所述探测器输出的信号计算被检查物体的散射射线能谱信息。
  13. 如权利要求12所述的检查方法,还包括步骤:
    基于所述散射射线能谱信息中包含的峰位信息计算晶格常数,将计算的晶格常数与预定值进行比较来判断该被检查物体中是否包含***物或者危险 品。
  14. 如权利要求12所述的检查方法,还包括步骤:
    根据输入的被检查物品中的感兴趣区域的位置信息控制所述分布式射线源中的特定源点产生射线,对所述感兴趣区域进行检查。
PCT/CN2015/073558 2014-03-04 2015-03-03 检查设备、方法和*** WO2015131802A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
ES15759349T ES2871025T3 (es) 2014-03-04 2015-03-03 Dispositivo, método y sistema de inspección
EP15759349.2A EP3115773B1 (en) 2014-03-04 2015-03-03 Inspection device, method and system
RU2016137612A RU2636810C1 (ru) 2014-03-04 2015-03-03 Устройства обследования, способы обследования и системы обследования
AU2015226613A AU2015226613A1 (en) 2014-03-04 2015-03-03 Inspection devices, inspection methods and inspection systems
KR1020167026749A KR101862692B1 (ko) 2014-03-04 2015-03-03 검사 설비, 검사 방법 및 검사 시스템
JP2016558258A JP6306738B2 (ja) 2014-03-04 2015-03-03 検査デバイス、方法およびシステム
US15/122,659 US10408966B2 (en) 2014-03-04 2015-03-03 Inspection devices, inspection methods and inspection systems
BR112016016805-4A BR112016016805B1 (pt) 2014-03-04 2015-03-03 dispositivos de inspeção, métodos de inspeção e sistemas de inspeção
AU2017265073A AU2017265073B2 (en) 2014-03-04 2017-11-22 Inspection devices, inspection methods and inspection systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410075765.1A CN104897703B (zh) 2014-03-04 2014-03-04 检查设备、方法和***
CN201410075765.1 2014-03-04

Publications (1)

Publication Number Publication Date
WO2015131802A1 true WO2015131802A1 (zh) 2015-09-11

Family

ID=54030502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073558 WO2015131802A1 (zh) 2014-03-04 2015-03-03 检查设备、方法和***

Country Status (11)

Country Link
US (1) US10408966B2 (zh)
EP (1) EP3115773B1 (zh)
JP (1) JP6306738B2 (zh)
KR (1) KR101862692B1 (zh)
CN (1) CN104897703B (zh)
AU (2) AU2015226613A1 (zh)
BR (1) BR112016016805B1 (zh)
ES (1) ES2871025T3 (zh)
HK (1) HK1211703A1 (zh)
RU (1) RU2636810C1 (zh)
WO (1) WO2015131802A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112433258A (zh) * 2019-08-09 2021-03-02 同方威视技术股份有限公司 检查***

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106896121B (zh) 2015-12-18 2019-07-05 清华大学 检测***和方法
CN108414546A (zh) * 2018-05-10 2018-08-17 同方威视技术股份有限公司 透射检查设备和检查方法
DE102019208888A1 (de) * 2019-06-19 2020-12-24 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren zur Herstellung eines Streustrahlkollimators, Streustrahlkollimator und Röntgengerät mit Streustrahlkollimator
CN110428478B (zh) * 2019-07-15 2021-09-24 清华大学 交替光源扇束x射线ct采样方法及装置
CN115105110A (zh) * 2021-10-15 2022-09-27 清华大学 用于射线检查的成像***和方法
CN115931930A (zh) * 2022-12-30 2023-04-07 清华大学 检查设备、检查方法和检查***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1146890A (zh) * 1995-03-30 1997-04-09 西门子公司 用于电子束x线断层成相的固定隔板准直器
US20080084967A1 (en) * 2006-10-10 2008-04-10 Rigaku Corporation X-ray optical system
US20110188632A1 (en) * 2010-02-03 2011-08-04 Geoffrey Harding Multiple plane multi-inverse fan-beam detection systems and method for using the same
CN103153190A (zh) * 2010-10-13 2013-06-12 皇家飞利浦电子股份有限公司 多模态紧凑型膛成像***
CN103330570A (zh) * 2013-04-27 2013-10-02 中国人民解放军北京军区总医院 X射线准直器、x射线准直***及移动ct扫描仪
CN103385732A (zh) * 2013-07-25 2013-11-13 中国科学院苏州生物医学工程技术研究所 一种静态ct扫描仪

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1191796A1 (ru) * 1983-12-27 1985-11-15 Киевский Ордена Ленина Государственный Университет Им.Т.Г.Шевченко Малоугловой рентгеновский дифрактометр
US5263075A (en) * 1992-01-13 1993-11-16 Ion Track Instruments, Inc. High angular resolution x-ray collimator
GB2297835A (en) * 1995-02-08 1996-08-14 Secr Defence Three dimensional detection of contraband using x rays
RU2119659C1 (ru) * 1997-01-24 1998-09-27 Закрытое акционерное общество "Кванта Инвест" Устройство для малоугловой топографии (варианты)
JP2000235007A (ja) * 1999-02-15 2000-08-29 Hitachi Engineering & Services Co Ltd X線ctスキャナ装置およびx線貨物検査方法
DE19954664B4 (de) * 1999-11-13 2006-06-08 Smiths Heimann Gmbh Vorrichtung zur Bestimmung von kristallinen und polykristallinen Materialien eines Gegenstandes
ATE250761T1 (de) * 2001-03-14 2003-10-15 Yxlon Int X Ray Gmbh Anordnung zum messen des impulsübertragungsspektrums von in einem untersuchungsbereich für behältnisse elastisch gestreuten röntgenquanten
TW583463B (en) 2002-11-07 2004-04-11 Toppoly Optoelectronics Corp Transflective liquid crystal display
EP1609004A2 (en) 2003-04-02 2005-12-28 Reveal Imaging Technologies, Inc. System and method for detection of explosives in baggage
US7092485B2 (en) * 2003-05-27 2006-08-15 Control Screening, Llc X-ray inspection system for detecting explosives and other contraband
US7590215B2 (en) * 2004-06-07 2009-09-15 Koninklijke Philips Electronics N.V. Coherent-scatter computer tomograph
US7697664B2 (en) * 2006-05-15 2010-04-13 Morpho Detection, Inc. Systems and methods for determining an atomic number of a substance
US7742563B2 (en) * 2008-09-10 2010-06-22 Morpho Detection, Inc. X-ray source and detector configuration for a non-translational x-ray diffraction system
NL2009049C2 (en) * 2012-06-21 2013-12-24 Entech Scient B V Method and device for identifying unknown substances in an object.
CN203929678U (zh) * 2014-03-04 2014-11-05 清华大学 检查设备和***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1146890A (zh) * 1995-03-30 1997-04-09 西门子公司 用于电子束x线断层成相的固定隔板准直器
US20080084967A1 (en) * 2006-10-10 2008-04-10 Rigaku Corporation X-ray optical system
US20110188632A1 (en) * 2010-02-03 2011-08-04 Geoffrey Harding Multiple plane multi-inverse fan-beam detection systems and method for using the same
CN103153190A (zh) * 2010-10-13 2013-06-12 皇家飞利浦电子股份有限公司 多模态紧凑型膛成像***
CN103330570A (zh) * 2013-04-27 2013-10-02 中国人民解放军北京军区总医院 X射线准直器、x射线准直***及移动ct扫描仪
CN103385732A (zh) * 2013-07-25 2013-11-13 中国科学院苏州生物医学工程技术研究所 一种静态ct扫描仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3115773A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112433258A (zh) * 2019-08-09 2021-03-02 同方威视技术股份有限公司 检查***

Also Published As

Publication number Publication date
EP3115773A1 (en) 2017-01-11
AU2017265073A1 (en) 2017-12-14
RU2636810C1 (ru) 2017-11-28
JP2016540999A (ja) 2016-12-28
BR112016016805B1 (pt) 2020-10-20
US10408966B2 (en) 2019-09-10
US20170075026A1 (en) 2017-03-16
KR101862692B1 (ko) 2018-05-31
KR20160128365A (ko) 2016-11-07
CN104897703B (zh) 2018-09-28
EP3115773A4 (en) 2017-10-18
HK1211703A1 (zh) 2016-05-27
AU2017265073B2 (en) 2019-04-18
CN104897703A (zh) 2015-09-09
EP3115773B1 (en) 2021-03-03
AU2015226613A1 (en) 2016-07-28
ES2871025T3 (es) 2021-10-28
BR112016016805A2 (zh) 2018-06-05
JP6306738B2 (ja) 2018-04-04

Similar Documents

Publication Publication Date Title
WO2015131802A1 (zh) 检查设备、方法和***
CN103364839B (zh) 基于光栅剪切成像的安检设备及方法
US7590220B1 (en) X-ray inspection and detection system and method
EP2817661B1 (en) X-ray imager with sparse detector array
CA2987815C (en) Multi-modality detection system and method
AU2015281626A1 (en) Detector device, dual energy CT system and detection method using same
JP7011052B2 (ja) 物品安全検査のためのスキャンによるイメージングシステム及びそのイメージング方法
US7813477B2 (en) X-ray diffraction device, object imaging system, and method for operating a security system
JP2018523117A (ja) セキュリティ検査機器及び放射線検出方法
EP3182175B1 (en) X-ray diffraction detection system and method
CN203929678U (zh) 检查设备和***
US20120177182A1 (en) Object imaging system and x-ray diffraction imaging device for a security system
CN106062540A (zh) 依赖于角度的x射线衍射成像***及其操作方法
CN113939732B (zh) 具有减少视差效应的x射线测量装置
US20180238818A1 (en) Inspection apparatus, inspection system and inspection method
Cozzini et al. Modeling scattering for security applications: a multiple beam x-ray diffraction imaging system
US8068582B2 (en) Methods and systems for the directing and energy filtering of X-rays for non-intrusive inspection
US20110064197A1 (en) X-ray diffraction devices and method for assembling an object imaging system
RU2470287C1 (ru) Система неразрушающего контроля изделий

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15759349

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016558258

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015226613

Country of ref document: AU

Date of ref document: 20150303

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016016805

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 15122659

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015759349

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015759349

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167026749

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016137612

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112016016805

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016016805

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160720