WO2015098426A1 - 太陽電池及びその製造方法 - Google Patents

太陽電池及びその製造方法 Download PDF

Info

Publication number
WO2015098426A1
WO2015098426A1 PCT/JP2014/081450 JP2014081450W WO2015098426A1 WO 2015098426 A1 WO2015098426 A1 WO 2015098426A1 JP 2014081450 W JP2014081450 W JP 2014081450W WO 2015098426 A1 WO2015098426 A1 WO 2015098426A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
type
semiconductor substrate
single crystal
photogenerated carriers
Prior art date
Application number
PCT/JP2014/081450
Other languages
English (en)
French (fr)
Inventor
久保 征治
斉藤 忠
Original Assignee
久保 征治
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 久保 征治 filed Critical 久保 征治
Priority to KR1020167019284A priority Critical patent/KR20160102470A/ko
Priority to CN201480071076.1A priority patent/CN105981178A/zh
Priority to US15/107,887 priority patent/US20160315210A1/en
Priority to AU2014371598A priority patent/AU2014371598A1/en
Priority to EP14874932.8A priority patent/EP3089222A4/en
Publication of WO2015098426A1 publication Critical patent/WO2015098426A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0684Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells double emitter cells, e.g. bifacial solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photoelectric conversion device and a solar cell including the photoelectric conversion device, and more particularly to a solar cell using a crystalline semiconductor such as single crystal silicon and / or polycrystalline silicon and a method for manufacturing the solar cell.
  • a crystalline semiconductor such as single crystal silicon and / or polycrystalline silicon
  • Patent Document 1 discloses a technique for providing a solar cell with excellent carrier extraction efficiency and improved characteristics.
  • this solar cell minority carriers are extracted from both sides of the crystalline semiconductor layer out of photogenerated carriers generated in the crystalline semiconductor layer upon incidence of light.
  • the solar cell is a solar cell including a first semiconductor layer having another conductivity type on the light incident surface side of a crystal semiconductor layer having one conductivity type, and the light transmission of the crystal semiconductor layer is performed.
  • a second semiconductor layer having another conductivity type is provided on the surface side.
  • an object of the present invention is to provide a solar cell in which circumstances that hinder the improvement of photoelectric conversion efficiency are reduced.
  • the solar cell of the present invention is A first conductivity type semiconductor substrate; A first semiconductor layer of a second conductivity type that is formed on the light transmission surface of the semiconductor substrate and collects photogenerated carriers based on medium-long wavelength solar radiation; A photogenerated carrier that is formed on the light incident surface of the semiconductor substrate and collects photogenerated carriers based on short-wavelength sunlight and does not reach the first semiconductor layer among the photogenerated carriers based on the medium-long wavelength sunlight. And a second semiconductor layer of a second conductivity type for collecting The impurity concentration of the second semiconductor layer is approximately one digit greater than the impurity concentration of the first semiconductor layer.
  • the impurity concentration of the second semiconductor layer is approximately one digit or more larger than the impurity concentration of the first semiconductor layer, the built-in potential between the semiconductor substrate and the first semiconductor layer, A difference of about 60 mV or more can be made between the built-in potential and the second semiconductor layer. As a result, almost 90% or more of the photogenerated carriers can be extracted from the first semiconductor layer.
  • the first semiconductor layer is formed so as to be in contact with the entire surface, since a decrease in open circuit voltage on the light transmission surface of the semiconductor substrate can be prevented.
  • the manufacturing process can be simplified, and thus there is an advantage that the manufacturing cost can be reduced.
  • the semiconductor substrate has the first semiconductor layer and the second semiconductor layer except for a formation portion of a first conductivity type semiconductor layer connected to an electrode for extracting an electrical signal based on carriers collected in the first semiconductor layer. It is good to be covered with a semiconductor layer. Even on the side surface of the semiconductor substrate, photogenerated carriers that do not reach the first semiconductor layer can be collected, so that recombination of the photogenerated carriers can be further prevented.
  • the value of the current output from the first semiconductor layer may be larger than the value of the current output from the second semiconductor layer.
  • the method for producing the solar cell of the present invention comprises: Forming a second conductivity type first semiconductor layer that collects carriers generated based on medium-long wavelength solar rays on a light transmission surface of the first conductivity type semiconductor substrate; First, a carrier that collects carriers generated on the light incident surface of the semiconductor substrate based on short-wavelength sunlight and collects carriers that do not reach the first semiconductor layer among the carriers generated based on the medium-long wavelength sunlight.
  • Forming a second conductivity type second semiconductor layer Increasing the impurity concentration of the second semiconductor layer by approximately one digit or more compared to the impurity concentration of the first semiconductor layer; including.
  • the second semiconductor layer is formed on the semiconductor substrate, photogenerated carriers that do not reach the first semiconductor layer can be collected in the second semiconductor layer. Recombination can be prevented.
  • FIG. 3 is a cross-sectional view taken along a broken line A in FIGS. 1 and 2. It is a manufacturing-process figure of the photovoltaic cell 100 shown in FIG. It is typical sectional drawing of the photovoltaic cell 100 of Embodiment 2 of this invention.
  • FIG. 1 is a schematic perspective view seen from the light incident surface side of a solar battery cell 100 constituting the solar battery of Embodiment 1 of the present invention.
  • the solar cell 100 includes a single crystal N-type semiconductor substrate 101, a bus bar wiring 170, a light incident surface main bus bar 174, and side electrodes 173, which will be described below.
  • the solar cell 100 may have a length in the X direction and the Y direction of about 150 mm to 160 mm and a thickness of about 150 ⁇ m to 200 ⁇ m.
  • the single crystal N-type semiconductor substrate 101 has a specific resistance of, for example, 0.1 ⁇ ⁇ cm to 1 ⁇ ⁇ cm, a thickness of, for example, 150 ⁇ m to 200 ⁇ m, and an impurity concentration of 10 17 cm ⁇ 3 to 6 ⁇ 10 6. 16 cm ⁇ 3 .
  • a polycrystalline N-type semiconductor substrate may be used in place of the single-crystal N-type semiconductor substrate 101, and the single-crystal or polycrystalline P-type is obtained by reversing the conductivity type of the semiconductor described below.
  • a semiconductor substrate may be used.
  • the thickness of the single crystal N-type semiconductor substrate 101 is relatively thin, and this also contributes to preventing recombination of photogenerated carriers, so that the photoelectric conversion efficiency can be improved. it can.
  • the bus bar wiring 170 is a wiring formed on the light incident surface of the single crystal N-type semiconductor substrate 101 along the Y direction.
  • a total of 12 bus bar wirings 170 are schematically shown, but in actuality, about 1000 wirings are formed.
  • the number of bus bar wirings 170 may be larger or smaller than this.
  • the bus bar wiring 170 has an electrode length of about 75 mm, an electrode width of about 3 ⁇ m, and a thickness of about 3 ⁇ m. In the case of this condition, the aperture ratio of the solar battery cell 100 is about 99%.
  • a material having a specific resistance of about 2.5 ⁇ 10 ⁇ 6 ⁇ ⁇ cm to 3.0 ⁇ 10 ⁇ 6 ⁇ ⁇ cm may be selected.
  • a pitch 175 between the bus bar wirings 170 can be about 300 ⁇ m.
  • the light incident surface main bus bar 174 is formed along the X direction, and each bus bar wiring 170 is connected thereto.
  • the size of the light incident surface main bus bar 174 may be, for example, a width of about 150 mm, a length of about 20 ⁇ m, and a thickness of about 3 ⁇ m.
  • the side electrode 173 is formed on the side surface of the single crystal N-type semiconductor substrate 101 and is connected to the light incident surface main bus bar 174 and a second electrode 172 (FIG. 2) described later.
  • the size of the side electrode 173 is, for example, that the length in the X direction is about 150 mm, the length in the Z direction (not shown) orthogonal to the X direction and the Y direction is about 150 ⁇ m to 200 ⁇ m, and the thickness is about 3 ⁇ m. Can be adopted.
  • the wiring resistance of the light incident surface main bus bar 174 is negligible compared to the bus bar wiring 170.
  • the resistance value of the entrance surface main bus bar 174 is about 250 m ⁇ .
  • FIG. 2 is a schematic perspective view seen from the light transmitting surface side which is the back surface side of FIG. 2 shows a first electrode 171 and a second electrode 172 described below in addition to the portion shown in FIG.
  • the first electrode 171 is connected to an N + type semiconductor layer 143 (FIG. 3), which will be described later, and takes out an electrical signal based on the photogenerated carriers generated by the solar rays 130 through the N + type semiconductor layer 143. Electrode.
  • the first electrode 171 includes, for example, a shaft portion whose central portion extends in the Y direction and a plurality of comb-like portions that integrally extend in the X direction orthogonal to the shaft portion.
  • the material of the first electrode 171 is not limited to this, but can be made of, for example, aluminum, and the thickness thereof may be about 10 ⁇ m.
  • the second electrode 172 is connected to a P-type first semiconductor layer 102A (FIG. 3), which will be described later, and takes out an electrical signal based on the photogenerated carriers generated by the solar rays 130 through the P-type first semiconductor layer 102A. Electrode.
  • the second electrode 172 is formed around the first electrode 171 with a predetermined inter-electrode gap of, for example, 10 ⁇ m.
  • the second electrode 172 is not limited to this, but can be made of, for example, aluminum, and the thickness thereof can be about 10 ⁇ m.
  • FIG. 3 is a cross-sectional view taken along the broken line A in FIGS. 1 and 2. 3 includes, in addition to the portion shown in FIG. 1 or FIG. 2, a P-type first semiconductor layer 102A, a P-type second semiconductor layer 102B, an N + -type semiconductor layer 143, and an anti-reflection described below. A film 31 and an oxide film 32 are shown.
  • the P-type first semiconductor layer 102 ⁇ / b > A is formed in a region excluding the N + -type semiconductor layer 143 on the light transmission surface of the single crystal N-type semiconductor substrate 101.
  • the P-type first semiconductor layer 102 ⁇ / b> A together with the single crystal N-type semiconductor substrate 101, generates photogenerated carriers mainly based on medium-long wavelength light rays among the solar rays 130.
  • the P-type first semiconductor layer 102A may have a sheet resistance of, for example, 10 ⁇ / ⁇ to 200 ⁇ / ⁇ , and an impurity concentration of, for example, 10 20 cm ⁇ 3 to 10 18 cm ⁇ 3 .
  • the P-type first semiconductor layer 102 ⁇ / b> A may be formed by a manufacturing process described later, but instead, a groove is formed in the single-crystal N-type semiconductor substrate 101 or the single-crystal N-type semiconductor substrate 101 is formed.
  • a solar cell semiconductor substrate having a thickness substantially equal to 200 ⁇ m is prepared, and is divided into X and Y directions as appropriate to form a microcell structure, and a wall-like groove is formed on the side surface between the microcells. You may form with the 2nd electrode 172 in the said groove
  • the P-type second semiconductor layer 102B is formed so as to cover the light incident surface and the side surface of the single crystal N-type semiconductor substrate 101. Note that, from the viewpoint of preventing recombination of photogenerated carriers, the P-type second semiconductor layer 102B is required to be formed so as to cover even the side surface of the single crystal N-type semiconductor substrate 101 having a small area. However, according to the manufacturing process described later, the side surfaces are also integrally covered.
  • the P-type second semiconductor layer 102 ⁇ / b> B together with the single crystal N-type semiconductor substrate 101, generates photogenerated carriers mainly by short-wavelength sunlight among the sunlight 130.
  • the P-type second semiconductor layer 102B has a sheet resistance of, for example, 100 ⁇ / ⁇ , an impurity concentration of, for example, 10 20 cm ⁇ 3 to 10 18 cm ⁇ 3 , and a thickness of, for example, a wavelength ⁇ of 0 in the solar radiation 100.
  • the conditions may be such that photogenerated carriers can be generated on the basis of solar rays of .45 ⁇ m or less, and further 0.3 ⁇ m or less.
  • the condition that the wavelength ⁇ is 0.45 ⁇ m or less is that the number of photons that generate photogenerated carriers in the entire solar beam 130 is approximately 5% to 10% of the total number of photons.
  • the condition of 3 ⁇ m or less is synonymous with the fact that the number of photons that generate photogenerated carriers in the entire solar ray 130 is approximately 0% of the total number of photons.
  • the P-type second semiconductor layer 102B or the P-type is formed on the surface of the single crystal N-type semiconductor substrate 101, except for the formation location of the N + -type semiconductor layer 143 corresponding to the first electrode 171.
  • the first semiconductor layer 102A is formed over the entire surface.
  • the built-in potential of the PN junction on the light incident surface side of the single crystal N-type semiconductor substrate 101 and the P-type second semiconductor layer 102B is expressed as the light generated by the single-crystal N-type semiconductor substrate 101 and the P-type first semiconductor layer 102A. This is the same as the built-in potential of the PN junction on the transmission surface side.
  • Each built-in potential may be adjusted by adjusting the impurity concentration of the P-type second semiconductor layer 102B and the P-type first semiconductor layer 102A with respect to the single crystal N-type semiconductor substrate 101. Specifically, since the built-in potential is proportional to the acceptor concentrations of the P-type second semiconductor layer 102B and the P-type first semiconductor layer 102A, these concentrations may be the same.
  • the N + type semiconductor layer 143 is a semiconductor layer that is provided on the light transmission side and that extracts an electric signal connected to the first electrode 171.
  • the impurity concentration of the N + type semiconductor layer 143 may be, for example, 3 ⁇ 10 20 cm ⁇ 3 to 3 ⁇ 10 18 cm ⁇ 3 .
  • FIG. 3 shows a stripe shape as the shape of the P-type first semiconductor layer 102A and the N + -type semiconductor layer 143, but instead of this, a grid shape or one of them is a dot shape.
  • the area ratio of the N + type semiconductor layer 143 to the P type first semiconductor layer 102A may be reduced to, for example, about 10%.
  • the antireflection film 31 is on the light incident surface side of the P-type second semiconductor layer 102 ⁇ / b> B and is formed between the bus bar wires 170.
  • the antireflection film 31 is not limited to this, but a nitride film (SiN) or the like can be used.
  • the shape of the antireflection film 31 is simplified, but actually, for example, a texture structure having an inverted pyramid shape is used.
  • the oxide film 32 is a passivation film provided on the light transmission surface side in order to suppress a recombination current on the light transmission surface.
  • FIG. 4 is a manufacturing process diagram of the solar battery cell 100 shown in FIG.
  • anisotropic etching is performed by immersing at least the light incident surface of the single crystal N-type semiconductor substrate 101 in an alkaline solution (for example, KOH solution).
  • an inverted pyramid-shaped texture structure (not shown) is formed on at least the light incident surface of the single crystal N-type semiconductor substrate 101 under the condition that the base is about 30 ⁇ m and the height is about 20 ⁇ m, for example (step S1). ).
  • step S2 phosphorus glass is applied to the back surface of the single crystal N-type semiconductor substrate 101 to form a phosphorus glass layer 231. Then, other portions are removed in such a manner that a necessary portion of the phosphor glass is left by photolithography (step S2).
  • the single crystal N-type semiconductor substrate 101 is heat-treated at a temperature of about 900 ° C., for example, in a boron atmosphere.
  • the heat treatment time may be set such that the amount of boron deposited on the single crystal N-type semiconductor substrate 101 is, for example, about 10 20 cm ⁇ 3 .
  • boron diffuses into the single crystal N-type semiconductor substrate 101 in such a manner that the sheet resistance becomes 100 ⁇ / ⁇ when the diffusion depth is about 0.1 ⁇ m.
  • a P-type semiconductor layer 102 region to be the P-type first semiconductor layer 102A and the P-type second semiconductor layer 102B is formed in the single-crystal N-type semiconductor substrate 101, and the single-crystal N-type semiconductor substrate 101
  • the entire surface is covered with a boron glass layer 232.
  • the boron glass layer 232 is not shown in a laminated state on the surface of the phosphorus glass layer 231, but actually, the boron glass layer 232 is slightly on the surface of the phosphorus glass layer 231. Becomes a laminated state.
  • phosphorus in the phosphorus glass layer 231 applied in step S3 diffuses into the single crystal N type semiconductor substrate 101, and an N + type semiconductor layer 143 is formed in the single crystal N type semiconductor substrate 101 ( Step S3).
  • the single crystal N-type semiconductor substrate 101 is heat-treated at a temperature of about 950 ° C., for example, in an oxidizing atmosphere.
  • the heat treatment time may be sufficient to replace the boron glass layer 232 with the oxide film 32 (step S4).
  • the antireflection film 31 is formed by, for example, a low temperature CVD method ( Step S5).
  • the bus bar wiring 170 is formed on the light incident surface side of the single crystal N-type semiconductor substrate 101, and the first electrode 171 and the second electrode 172 are formed on the light transmission surface side of the single crystal N-type semiconductor substrate 101, respectively. Therefore, openings 251 are formed at the corresponding positions of the antireflection film 31 on the light incident surface side of the single crystal N-type semiconductor substrate 101 and the corresponding positions of the oxide film 32 and the phosphorous glass layer 231 on the light transmission surface side, respectively. (Step S6).
  • liquid phase aluminum is deposited on the surface of the antireflection film 31 on the light incident surface side of the single crystal N-type semiconductor substrate 101 and the surface of the oxide film 32 and the phosphor glass layer 231 on the light transmission surface side.
  • heat treatment is performed at a temperature of about 800 ° C.
  • aluminum is sputtered or vapor-deposited so that the light incident surface has a thickness of about 3 ⁇ m and the light transmission surface has a thickness of about 10 ⁇ m, and then exposed using a photolithography method or the like. This exposure is preferably double-sided exposure of the light incident surface and the light transmission surface.
  • the aluminum except for the portions to become the bus bar wiring 17, the first electrode 171 and the second electrode 172 is removed by wet etching using a required chemical or dry etching chemical etching.
  • the bus bar wiring 170, the first electrode 171 and the second electrode 172 may be formed using a paste method instead of the above method (step S7).
  • the side electrode 173 is formed by spraying aluminum toward the side surfaces.
  • the light incident surface main bus bar 174 can also be formed integrally, and further, the connection between the light incident surface main bus bar 174 and each bus bar wiring 170 and the connection between the side electrode 173 and the second electrode 172. Is also possible.
  • a metal paste such as an aluminum paste may be employed, metal vapor deposition (including sputtering) may be employed, or a plating method may be employed. May be.
  • an electric signal can be taken out from the bus bar wiring 170 and the light incident surface main bus bar 174 connected thereto.
  • the sunlight rays 130 incident on the solar battery cell 100 the sunlight rays having a wavelength ⁇ of 0.45 ⁇ m or more, that is, the medium-long wavelength sunlight rays, are emitted from the single crystal N-type semiconductor substrate 101 and P.
  • the PN junction of the light transmission surface with the first semiconductor layer 102A photogenerated carriers based on the sunlight are generated.
  • the holes generated by the incidence of the sunlight 130 on the solar battery cell 100 only need to reach one of the depletion layers formed in the vicinity of each of the PN junctions. It's short. For this reason, in this embodiment, as described above, the thickness of the single crystal N-type semiconductor substrate 101 can be relatively reduced. If the hole diffusion length is short, the recombination of photogenerated carriers can be reduced, so that the photoelectric conversion efficiency of the solar battery cell 100 is improved.
  • the fact that the recombination of the photogenerated carriers can be reduced means that the electric signal based on the photogenerated carriers before the recombination can be taken out from the light incident surface main bus bar 174. Since it can add to the output of the whole photovoltaic cell 100, it leads to the improvement of the photoelectric conversion efficiency of the whole photovoltaic cell 100.
  • the photoelectric conversion efficiency of the solar battery cell 100 of the present embodiment will be simulated from the viewpoint of voltage drop (IR drop).
  • the current related to the PN junction on the light incident surface side between the single crystal N-type semiconductor substrate 101 and the P-type second semiconductor layer 102B is 200 mA
  • the single-crystal N-type semiconductor substrate 101 and the P-type first semiconductor layer 102A Assume that there is 12 A of current related to the PN junction on the transmission surface side.
  • the IR drop in the single crystal N-type semiconductor substrate 101 is about 66 mV ( ⁇ 5.4 m ⁇ ⁇ 12.2 A).
  • the electric current based on the short wavelength light among the solar rays 130 incident on the solar battery cell 100 is a single crystal N type.
  • the total voltage drop received when passing through the PN junction on the light incident surface side of the semiconductor substrate 101 and the P-type second semiconductor layer 102B, the bus bar wiring 170, the light incident surface main bus bar 174, and the side electrode 173 is about 126 mV ( ⁇ 66 mV + 57.4 mV).
  • the solar battery cell 100 of the present embodiment forms an electric signal based on a medium-long wavelength solar beam by forming the P-type first semiconductor layer 102A, and also the P-type second semiconductor layer 102B.
  • the solar battery cell 100 of the present embodiment forms an electric signal based on a medium-long wavelength solar beam by forming the P-type first semiconductor layer 102A, and also the P-type second semiconductor layer 102B.
  • the opening ratio of the photovoltaic cell 100 is changed by changing the size into about 10 ⁇ m in width, about 10 ⁇ m in thickness, about 75 mm in length, and changing the number to 3,000. If it is changed to about 90% and other conditions are the same as above, the photoelectric conversion efficiency will be improved to about 46.2%.
  • FIG. 5 is a schematic cross-sectional view of the solar battery cell 100 according to Embodiment 2 of the present invention, and corresponds to FIG.
  • the solar battery cell 100 shown in FIG. 5 is of a type in which the bus bar wiring 170, the light incident surface main bus bar 174, and the side electrode 173 shown in FIG. 3 are not provided.
  • the same parts as those shown in FIG. 1 are not provided.
  • the sheet resistance value of the P-type second semiconductor layer 102B is between the P-type second semiconductor layer 102B and the single crystal N-type semiconductor substrate 101. This defines the upper limit value of the electrical signal generated at the PN junction on the light incident surface side.
  • the upper limit value should be as large as possible.
  • the sheet resistance value of the P-type second semiconductor layer 102B is 1 ⁇ / ⁇ or more.
  • An electrical signal generated at the PN junction on the light incident surface side between the second semiconductor layer 102B and the single crystal N type semiconductor substrate 101 is a light transmission surface between the P type first semiconductor layer 102A and the single crystal N type semiconductor substrate 101. It is always smaller (including zero) than the electrical signal generated at the side PN junction.
  • the electrical signal beyond that is P-type first. It is obtained by a PN junction on the light transmission surface side of the semiconductor layer 102A and the single crystal N-type semiconductor substrate 101. Specifically, in the case of the solar battery manufactured under the above and the following conditions, the total generation 99.9% or more of the current can be obtained from the PN junction on the light transmission surface side between the P-type first semiconductor layer 102A and the single crystal N-type semiconductor substrate 101.
  • the P-type second semiconductor layer 102B can be formed by, for example, an ion implantation method.
  • boron is selected as an impurity, and the diffusion depth thereof is the same as that of the first embodiment, for example, about 0.1 ⁇ m. be able to.
  • the P-type second semiconductor layer 102B and the P-type first semiconductor layer 102A covering the side surface of the single crystal N-type semiconductor substrate 101 can be formed by, for example, a diffusion method from a liquid phase.
  • a diffusion method from a liquid phase aluminum or a multilayer structure of aluminum and boron is selected as an impurity, and each diffusion depth can be set to 0.5 ⁇ m, for example.
  • the P-type first semiconductor layer 102A and the single-crystal N-type semiconductor substrate 101 can collect the photogenerated carriers based on the majority of photons in the solar spectrum by the PN junction on the light transmission surface side of the P-type first semiconductor layer 102A.
  • the manufacturing methods, impurity concentrations, and diffusion depths of the two semiconductor layers 102B and the P-type first semiconductor layer 102A are not limited to those described above.
  • doping from a solid or liquid impurity source or a gas gas impurity source is employed instead of the ion implantation method, or both the P-type second semiconductor layer 102B and the P-type first semiconductor layer 102A are made of only boron. Is selected as an impurity, and each diffusion depth can be set to 0.2 ⁇ m, for example.
  • the P-type second semiconductor layer 102B that covers the side surface of the single crystal N-type semiconductor substrate 101 in the P-type second semiconductor layer 102B. There are also advantages to keep.
  • the solar cell 100 of the present embodiment is not provided with the bus bar wiring 170, the light incident surface main bus bar 174, and the side surface electrode 173, and thus the P-type second semiconductor layer.
  • the current based on the carrier that has reached 102B must be taken out of the solar battery cell 100.
  • a measure such as connecting the P-type second semiconductor layer 102B to a plus power source can be considered. If the P-type semiconductor layer 102B is provided, this functions as a path that flows through the P-type second semiconductor layer 102B, so that there is an advantage that a positive power supply connection or the like is not necessary.
  • the built-in potential of the PN junction on the light incident surface side between the single crystal N-type semiconductor substrate 101 and the P-type second semiconductor layer 102B is expressed by the single crystal N-type semiconductor substrate 101 and the P-type first semiconductor. It is set higher than the built-in potential of the PN junction on the light transmission surface side with the layer 102A.
  • a concentration gradient in which the ion concentration of the semiconductor substrate 101 is increased from the central portion of the single crystal N-type semiconductor substrate 101 toward the bonding direction may be provided.
  • phosphorus or antimony is deposited prior to the treatment in the boron atmosphere, so that the concentration is higher than that of the single crystal N-type semiconductor substrate 101 (for example, N layers of 10 17 cm ⁇ 3 to 10 18 cm ⁇ 3 ) can be formed inside the boron layer in the single crystal N-type semiconductor substrate 101.
  • the measure of providing a concentration gradient can also be employed when both built-in potentials are made similar in the solar cell 100 of the first embodiment.
  • the acceptor concentration of the P-type second semiconductor layer 102B is increased by about two digits compared to the acceptor concentration of the P-type first semiconductor layer 102A, a difference of about 120 mV occurs in the built-in potential.
  • the acceptor concentration of the P-type second semiconductor layer 102B is, for example, 10 20 cm ⁇ 3
  • the acceptor concentration of the P-type first semiconductor layer 102A is, for example, 10 18 cm ⁇ 3
  • the donor of the single crystal N-type semiconductor substrate 101 For example, the concentration may be 10 16 cm ⁇ 3 .
  • the impurity concentration in this specification refers to an average concentration in a semiconductor layer containing impurities.
  • the acceptor concentration of the P-type second semiconductor layer 102B is smaller than the acceptor concentration of the P-type first semiconductor layer 102A, the minority carrier electrons generated in the single crystal N-type semiconductor substrate 101 are opposite to each other.
  • the light flows from the PN junction on the light incident surface having a low barrier over the barrier, and if both the acceptor concentrations are equal, the light moves toward the PN junction corresponding to the wavelength of the optical spectrum. .
  • the solar cell 100 of this embodiment has a simpler structure than that of the first embodiment, the manufacturing cost is reduced, but the open voltage of the PN junction on the light transmission surface is reduced to the embodiment. A value equivalent to that of 1 can be used. As a result, the photoelectric conversion efficiency of the solar battery cell 100 of this embodiment is about 37.8%.
  • the single crystal N-type semiconductor substrate 101 shown in step S1 has a specific resistance of, for example, 1 ⁇ ⁇ cm to 10 ⁇ ⁇ cm, and an impurity concentration of 5 ⁇ 10 15 cm ⁇ 3 to 5 ⁇ 10 14 cm ⁇ 3 . .
  • step S2 an oxide film is first formed on the entire surface of the single crystal N-type semiconductor substrate 101 by, for example, a heat treatment method. Thereafter, only the oxide film on the back surface of the single crystal N-type semiconductor substrate 101 is removed. Then, for example, phosphor glass is first applied to the back surface of the single crystal N-type semiconductor substrate 101 to form a phosphor glass layer 231. Further, in order to inject boron in addition to the purpose of injecting phosphorus into the back surface of the single crystal N-type semiconductor substrate 101, for example, a boron glass layer is formed so as to overlap with the phosphorus glass layer 231 by a coating method.
  • the heat treatment time performed in step S3 may be set such that the impurity concentration of boron in the single crystal N-type semiconductor substrate 101 is, for example, about 10 18 cm ⁇ 3 and the thickness is about 0.5 ⁇ m.
  • the sheet resistance is diffused in such a manner that the sheet resistance becomes 100 ⁇ / ⁇ .
  • a region to be the P-type first semiconductor layer 102 ⁇ / b> A is formed in the single crystal N-type semiconductor substrate 101.
  • the deposition amount of phosphorus from the phosphorus glass layer 231 is, for example, 3 ⁇ 10 19 cm ⁇ 3 to 10 18 cm ⁇ 3 , the diffusion depth (thickness) is almost the same as that of the P-type first semiconductor layer 102A.
  • N + -type semiconductor layer 143 having the above structure is formed.
  • a gas phase, a liquid phase diffusion method, an ion implantation method, and a coating diffusion method from boron bromide BBr3 can be used in addition to the above-described examples.
  • the boron glass layer 232 is not formed in the implementation stage of step S3.
  • step S4 the oxide film on the light incident surface and the side surface of the semiconductor substrate 101 is removed from the oxide film formed in step S2. Then, the single crystal N-type semiconductor substrate 101 is heat-treated at a temperature of about 950 ° C., for example, by vaporizing boron bromide and in an oxygen atmosphere. The heat treatment time is set so that the second P-type semiconductor layer is formed with a thickness of about 0.1 ⁇ m and an impurity concentration of 10 19 cm ⁇ 3 . At this time, the boron glass layer 232 is also formed on the light incident surface and the side surface of the semiconductor substrate 101.
  • step S5 after removing the boron glass layer 232 on the light incident surface side of the single crystal N-type semiconductor substrate 101 or without removing the boron glass layer 232, the antireflection film 31 is formed by, for example, a low temperature CVD method. Will form.
  • step S6 the corresponding position of the antireflection film 31 on the light incident surface side of the single crystal N-type semiconductor substrate 101, and the response when the phosphor glass layer 231 and the boron glass layer 232 on the light transmission surface side are not removed.
  • An opening 251 is formed at each position.
  • step S7 for example, aluminum is deposited on the surface of the antireflection film 31 on the light incident surface side of the single crystal N-type semiconductor substrate 101 and the surfaces of the phosphor glass layer 231 and the boron glass layer on the light transmission surface side. Then, in order to diffuse aluminum into each opening 251, for example, heat treatment is performed at a temperature of about 400 ° C. Thereafter, aluminum is formed with a thickness of about 3 ⁇ m on the light incident surface and a thickness of about 10 ⁇ m on the light incident surface by sputtering or vapor deposition, and then exposed using a photolithography method or the like. This exposure is preferably double-sided exposure of the light incident surface and the light transmission surface. Thereafter, the aluminum except for the portions to become the bus bar wiring 170, the first electrode 171 and the second electrode 172 is removed by wet etching or dry etching chemical etching using a required chemical.
  • the built-in potential of the PN junction on the light incident surface side of the single crystal N-type semiconductor substrate 101 and the P-type second semiconductor layer 102B is changed to the single crystal N-type semiconductor substrate.
  • the built-in potential of the PN junction on the light transmission surface side by the 101 and the P-type first semiconductor layer 102A can be increased by about 60 mV.
  • the impurity concentration of the semiconductor layer 102B is, for example, 10 20 cm ⁇ 3 to 10 19 cm ⁇ 3
  • the impurity concentration of the P-type first semiconductor layer 102A is, for example, 10 19 cm ⁇ 3 to 10 18 cm ⁇ 3 , a single crystal N-type semiconductor substrate
  • the impurity concentration of 101 is, for example, 5 ⁇ 10 15 cm ⁇ 3 to 5 ⁇ 10 14 cm ⁇ 3
  • the sheet resistance of the P-type first semiconductor layer 102A is, for example, 20 ⁇ / ⁇ to 200 ⁇ / ⁇ .
  • the thickness is, for example, 0.5 ⁇ m.
  • the impurity concentration of the P-type second semiconductor layer 102B is, for example, 10 20 cm ⁇ 3 to 10 19 cm ⁇ 3
  • the impurity concentration of the P-type first semiconductor layer 102A is, for example, 10 18 cm -3 ⁇ 10 17 cm -3
  • the impurity concentration of the single crystal N type semiconductor substrate 101 for example, 5 ⁇ 10 15 cm -3 ⁇ 5 ⁇ 10 14 cm -3
  • a single crystal N type semiconductor substrate 101 Almost 99% of the generated carriers flow from the PN junction of the light transmission surface having a low barrier over the barrier.
  • the photoelectric conversion efficiency of the solar battery cell 100 under this condition is about 36.7%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】電変換効率の向上を阻害する事情を低減させた太陽電池を提供することを課題とする。 【解決手段】第一導電型の半導体基板101と、半導体基板101の光透過面に形成されていて中長波長の太陽光線に基づく光生成キャリアを収集する第二導電型の第一半導体層102Aと、半導体基板101の光入射面に形成されていて短波長の太陽光線に基づく光生成キャリアを収集するとともに前記中長波長の太陽光線に基づく光生成キャリアのうち第一半導体層102Aに到達しない光生成キャリアを収集する第二導電型の第二半導体層102Bとを備える。

Description

太陽電池及びその製造方法
 本発明は、光電変換装置、それを備えた太陽電池に関し、特に、単結晶シリコン及びもしくは多結晶シリコン等の結晶系半導体を用いた、太陽電池及びその製造方法に関する。
 従来、特許文献1には、キャリアの取出し効率に優れ、特性の向上した太陽電池を提供するための技術が開示されている。この太陽電池は、光の入射により結晶系半導体層内で生成される光生成キャリアのうち、少数キャリアの取出しを前記結晶系半導体層の両側から行うものである。換言すると、この太陽電池は、一導電型を有する結晶系半導体層の光入射面側に他導電型を有する第一の半導体層を備えた太陽電池であって、前記結晶系半導体層の光透過面側に他導電型を有する第二の半導体層を備えている。
公開平11-224954号公報
 しかし、太陽電池の性能向上のためには、光生成キャリア及び注入キャリアの再結合を低減させることが必要であるが、特許文献1に開示されている太陽電池は、この種の対応がなされていない。このため、特許文献1に開示されている太陽電池の性能向上には限界があった。
 そればかりか、特許文献1に開示されている太陽電池は、それを構成する半導体基板が相対的に厚いため、少数キャリアの大半は第一の半導体層又は第二の半導体層に到達できない。このため、結果的には、光生成キャリアが再結合することになり、第一の半導体層又は第二の半導体層から取り出せる電流は僅かであった。また、再結合電流の増加は、開放電圧の低下を招くという問題もある。
 そこで、本発明は、光電変換効率の向上を阻害する事情を低減させた太陽電池を提供することを課題とする。
 上記課題を解決するために、本発明の太陽電池は、
 第一導電型の半導体基板と、
 前記半導体基板の光透過面に形成されていて中長波長の太陽光線に基づく光生成キャリアを収集する第二導電型の第一半導体層と、
 前記半導体基板の光入射面に形成されていて短波長の太陽光線に基づく光生成キャリアを収集するとともに前記中長波長の太陽光線に基づく光生成キャリアのうち第一半導体層に到達しない光生成キャリアを収集する第二導電型の第二半導体層とを備え、
 前記第二半導体層の不純物濃度が前記第一半導体層の不純物濃度に比してほぼ1ケタ以上大きい。
 本発明によれば、第二半導体層の不純物濃度が前記第一半導体層の不純物濃度に比してほぼ1ケタ以上大きいので、半導体基板と第一半導体層とのビルトイン・ポテンシャルと、半導体基板と第二半導体層とのビルトイン・ポテンシャルとの間に、約60mV以上の差をつけることができる。この結果、光生成キャリアのほぼ90%以上を第一半導体層から取り出すことができる。
 なお、前記半導体基板の光透過面では、前記第一半導体層で収集された光生成キャリアに基づく電気信号を取り出すための電極に接続される第一導電型の半導体層の形成箇所を除き、前記第一半導体層が全面的に接する態様で形成されていると、半導体基板の光透過面における開放電圧の低下を防止できるので好ましい。
 また、前記第一半導体層と前記第二半導体層とを、同一工程によって製造されていると、製造工程を簡易なものとすることができるので、製造コストを低廉化できるという利点もある。
 さらに、前記半導体基板は、前記第一半導体層で収集されたキャリアに基づく電気信号を取り出す電極に接続される第一導電型の半導体層の形成箇所を除き、前記第一半導体層と前記第二半導体層とによって覆われているとよい。半導体基板の側面においても、少なからず、第一半導体層に到達しない光生成キャリアを収集することが可能となるので、光生成キャリアの再結合を更に防止することができる。
 また、前記第一半導体層から出力される電流の値が、前記第二半導体層から出力される電流の値よりも大きくしてもよい。
 また、本発明の太陽電池の製造方法は、
 第一導電型の半導体基板の光透過面に中長波長の太陽光線に基づいて発生するキャリアを収集する第二導電型の第一半導体層を形成するステップと、
 前記半導体基板の光入射面に短波長の太陽光線に基づいて発生するキャリアを収集するとともに前記中長波長の太陽光線に基づいて発生するキャリアのうち第一半導体層に到達しないキャリアを収集する第二導電型の第二半導体層を形成するステップと、
 前記第二半導体層の不純物濃度を前記第一半導体層の不純物濃度に比してほぼ1ケタ以上大きくするステップと、
 を含む。
 本発明によれば、半導体基板に第二半導体層を形成していることから、第一半導体層に到達しない光生成キャリアを、第二半導体層において収集することが可能となるので、光生成キャリアの再結合を防止することができる。
本発明の実施形態1の太陽電池を構成する太陽電池セル100の光入射面側から見た模式的な斜視図である。 図1の裏面側である光透過面側から見た模式的な斜視図である。 図1及び図2の破線Aに沿った断面図である。 図3に示す太陽電池セル100の製造工程図である。 本発明の実施形態2の太陽電池セル100の模式的な断面図である。
 31 反射防止膜
 32 酸化膜
 100 太陽電池セル
 101 単結晶N型半導体基板
 102A P型第一半導体層
 102B P型第二半導体層
 143 N型半導体層
 170 バスバー配線
 171 第一の電極
 172 第二の電極
 173 側面電極
 174 光入射面メイン・バスバー
発明の実施の形態
 以下、本発明の実施形態について、図面を参照して説明する。
 (実施形態1)
 図1は、本発明の実施形態1の太陽電池を構成する太陽電池セル100の光入射面側から見た模式的な斜視図である。図1に示すように、太陽電池セル100は、以下説明する、単結晶N型半導体基板101と、バスバー配線170と、光入射面メイン・バスバー174と、側面電極173とを備えている。
 なお、図1には、太陽光線130と、バスバー配線170間のピッチ175とを付記している。一例としては、太陽電池セル100は、X方向、Y方向の長さともに150mm~160mm程度、厚さは150μm~200μm程度とすればよい。
 単結晶N型半導体基板101は、その比抵抗が例えば0.1Ω・cm~1Ω・cmであり、その厚さが例えば150μm~200μmであり、その不純物濃度が1017cm-3~6×1016cm-3である。もっとも、単結晶N型半導体基板101に代えて、多結晶のN型半導体基板を用いてもよく、以後、説明する半導体の導電型を逆型にすることで、単結晶又は多結晶のP型半導体基板を用いてもよい。本実施形態では、単結晶N型半導体基板101の厚さを相対的に薄くしており、これも、光生成キャリアの再結合を防止することに寄与するため、光電変換効率の向上させることができる。
 バスバー配線170は、Y方向に沿って、単結晶N型半導体基板101の光入射面に形成されている配線である。ここでは、例えば、合計12本のバスバー配線170を模式的に示しているが、実際には、約1000本の配線が形成されている。もっとも、バスバー配線170の数は、これよりも多くてもよいし、少なくてもよい。
 バスバー配線170は、一例を示すと、電極長を約75mm、電極幅を約3μm、厚さを約3μmとしている。この条件の場合、太陽電池セル100の開口率は、約99%である。また、バスバー配線170は、比抵抗が2.5×10-6Ω・cm~3.0×10-6Ω・cm程度の材料を選択するとよい。
 このような材料としては、例えば、アルミニウム、銀又は銅を用いることができる。これらの材料は、例えばこれらをペースト状にして用いてもよいし、単独で用いるだけでなく混合させて用いてもよい。バスバー配線170間のピッチ175は、300μm程度とすることができる。
 光入射面メイン・バスバー174は、X方向に沿って形成されていて、各バスバー配線170が接続されている。光入射面メイン・バスバー174のサイズは、例えば、幅が約150mm、長さが約20μm、厚さが約3μmのものとすることができる。
 側面電極173は、単結晶N型半導体基板101の側面に形成されていて、光入射面メイン・バスバー174及び後述する第二の電極172(図2)に接続されている。側面電極173のサイズは、例えば、X方向の長さが約150mm、X方向及びY方向に直交するZ方向(図示せず)の長さが約150μm~200μm、厚さが約3μmのものを採用することができる。
 なお、側面電極173の材料としてアルミニウムを用いた場合には、バスバー配線170に比して、光入射面メイン・バス・バー174の配線抵抗は無視できるので、上記のサイズの場合には、光入射面メイン・バスバー174の抵抗値は約250mΩとなる。
 図2は、図1の裏面側である光透過面側から見た模式的な斜視図である。図2には、図1に示した部分のほかに、以下説明する、第一の電極171と、第二の電極172とを示している。
 第一の電極171は、後述するN型半導体層143(図3)に接続されていて、N型半導体層143を通じて、太陽光線130によって生成された光生成キャリアに基づく電気信号を取り出すための電極である。第一の電極171は、例えば、中央部分がY方向に延びる軸部分と、当該軸部分に対して直交するX方向に一体的に延びる複数の櫛歯状部分とによって構成されている。
 また、第一の電極171の材料は、これに限定されるものではないが、例えば、アルミニウムから構成することができ、その厚さは10μm程度とすればよい。
 第二の電極172は、後述するP型第一半導体層102A(図3)に接続されていて、P型第一半導体層102Aを通じて太陽光線130によって生成された光生成キャリアに基づく電気信号を取り出すための電極である。
 第二の電極172は、第一の電極171の周辺を、例えば10μmといった所定の電極間ギャップをもって形成されている。第二の電極172は、これに限定されるものではないが、例えば、アルミニウムから構成することができ、その厚さは10μm程度とすることができる。
 図3は、図1及び図2の破線Aに沿った断面図である。図3には、図1又は図2に示した部分のほかに、以下説明する、P型第一半導体層102Aと、P型第二半導体層102Bと、N型半導体層143と、反射防止膜31と、酸化膜32とを示している。
 P型第一半導体層102Aは、単結晶N型半導体基板101の光透過面のうち、N型半導体層143を除く領域に形成されている。P型第一半導体層102Aは、単結晶N型半導体基板101とともに、太陽光線130のうち主として中長波長の光線に基づいて光生成キャリアを生成させるものである。P型第一半導体層102Aは、そのシート抵抗が例えば10Ω/□~200Ω/□、その不純物濃度が例えば1020cm-3~1018cm-3のものとすればよい。
 P型第一半導体層102Aは、後述の製造工程によって形成してもよいが、これに代えて、単結晶N型半導体基板101に溝を形成して、或いは、単結晶N型半導体基板101の厚さ200μmとほぼ等しい厚さの太陽電池セルの半導体基板を用意して、それをX,Y方向に適宜区切ってマイクロセル構造とし、マイクロセル間の側面に壁状の溝を形成して、当該溝に第二の電極172とともに形成してもよい。係る場合には、第二の電極172の面積を大きくできるので、太陽電池セル100の光電変換特性を更に改善できる。
 P型第二半導体層102Bは、単結晶N型半導体基板101の光入射面及び側面を覆う態様で形成されている。なお、P型第二半導体層102Bは、光生成キャリアの再結合防止の観点からすれば、僅かな面積でしかない単結晶N型半導体基板101の側面までをも覆う態様で形成することは必須ではないが、後述する製造工程によれば側面も一体的に覆うように製造することになる。
 P型第二半導体層102Bは、単結晶N型半導体基板101とともに、太陽光線130のうち主として短波長の太陽光線により光生成キャリアを生成させるものである。P型第二半導体層102Bは、そのシート抵抗は例えば100Ω/□、その不純物濃度は例えば1020cm-3~1018cm-3、その厚さは太陽光線100のうち、例えば波長λが0.45μm以下、更には0.3μm以下の太陽光線に基づいて光生成キャリアを生成できる条件とすればよい。
 なお、波長λが0.45μm以下という条件は、太陽光線130の全体のうち光生成キャリアを生成させる光子の数が全体の光子数のほぼ5%~10%となること、波長λが0.3μm以下という条件は、太陽光線130の全体のうち光生成キャリアを生成させる光子の数が全体の光子数のほぼ0%となることと、それぞれ同義である。
 ここで、本実施形態では、単結晶N型半導体基板101の表面につき、第一の電極171に対応するN型半導体層143の形成箇所を除いて、P型第二半導体層102B又はP型第一半導体層102Aを全面的に形成している。
 そして、単結晶N型半導体基板101とP型第二半導体層102Bとによる光入射面側のPN接合のビルトイン・ポテンシャルを、単結晶N型半導体基板101とP型第一半導体層102Aとによる光透過面側のPN接合のビルトイン・ポテンシャルと同様としている。
 各ビルトイン・ポテンシャルは、単結晶N型半導体基板101に対するP型第二半導体層102B及びP型第一半導体層102Aの不純物濃度を調整すればよい。具体的には、ビルトイン・ポテンシャルは、P型第二半導体層102B及びP型第一半導体層102Aのアクセプタ濃度に比例するので、これらの濃度を同様とすればよい。
 N型半導体層143は、光透過側に設けられていて、第一の電極171に接続されている電気信号を取り出すための半導体層である。N型半導体層143の不純物濃度は、例えば3×1020cm-3~3×1018cm-3とすればよい。なお、図3には、P型第一半導体層102A及びN型半導体層143の形状としてストライプ状のものを示しているが、これに代えて、グリッド状又はそれらのうち片方をドット状としてP型第一半導体層102Aに対するN型半導体層143面積比率を例えば10%程度に小さくしてもよい。
 反射防止膜31は、P型第二半導体層102Bの光入射面側であって、バスバー配線170間に形成されている。反射防止膜31は、これに限定されるものではないが、窒化膜(SiN)等を用いることができる。なお、ここでは、反射防止膜31の形状を簡略化しているが、実際には、例えば、逆ピラミッド型をしたテクスチャ構造としている。
 酸化膜32は、既知のように、光透過面での再結合電流を抑制するために、光透過面側に設けられたパッシベーション膜である。
 図4は、図3に示す太陽電池セル100の製造工程図である。まず、単結晶N型半導体基板101のダメージを除去するために、例えば弗酸を用いて単結晶N型半導体基板101の両面を約10μmエッチングする。つぎに、単結晶N型半導体基板101の少なくとも光入射面に対して、アルカリ性溶液(例えば、KOH液)に浸せるなどして異方性エッチングを行う。こうして、単結晶N型半導体基板101の少なくとも光入射面に、例えば、底辺が約30μm、高さが約20μmとなる条件で、逆ピラミッド形状のテクスチャ構造(図示せず)を形成する(ステップS1)。
 その後、後工程によって単結晶N型半導体基板101の裏面にリン注入を行うために、単結晶N型半導体基板101の裏面に例えばリンガラスを塗布して、リンガラス層231を形成する。それから、ホトリソグラフィでリンガラスの必要部分を残す態様で他の部分を除去する(ステップS2)。
 つづいて、単結晶N型半導体基板101を、例えばボロン雰囲気下において、約900℃の温度下で熱処理を行う。熱処理時間は、単結晶N型半導体基板101へのボロンのデポジション量が例えば約1020cm-3となる条件とすればよい。この結果、ボロンが単結晶N型半導体基板101内に、拡散深さが約0.1μmの場合にシート抵抗が100Ω/□となる態様で拡散する。これにより、単結晶N型半導体基板101内にはP型第一半導体層102A及びP型第二半導体層102BとなるP型半導体層102領域が形成され、かつ、単結晶N型半導体基板101の表面は全面的にボロンガラス層232で覆われる。なお、図3では、説明の都合上、リンガラス層231表面にボロンガラス層232が積層状態となるように図示していないが、実際には、リンガラス層231表面に僅かにボロンガラス層232が積層状態となる。また、この熱処理によって、ステップS3において塗布したリンガラス層231のリンが単結晶N型半導体基板101内に拡散し、単結晶N型半導体基板101内にN型半導体層143が形成される(ステップS3)。
 つぎに、単結晶N型半導体基板101を、例えば酸化雰囲気下において、約950℃の温度下で熱処理を行う。熱処理時間は、ボロンガラス層232が酸化膜32に置換されるのに十分な時間とすればよい(ステップS4)。
 それから、単結晶N型半導体基板101の光入射面側の酸化膜32を除去してから、又は、当該酸化膜32を除去することなく、反射防止膜31を、例えば低温CVD法によって形成する(ステップS5)。
 つづいて、単結晶N型半導体基板101の光入射面側にバスバー配線170を、単結晶N型半導体基板101の光透過面側に第一の電極171及び第二の電極172を、それぞれ形成するために、単結晶N型半導体基板101の光入射面側の反射防止膜31の対応位置と、光透過面側の酸化膜32及びリンガラス層231の対応位置とに、それぞれ開口部251を形成する(ステップS6)。
 その後、単結晶N型半導体基板101の光入射面側の反射防止膜31の表面と、光透過面側の酸化膜32及びリンガラス層231の表面とに、例えば液相のアルミニウムを被着させてから、各開口部251にもアルミニウムを拡散させるために、例えば、約800℃の温度で熱処理を行う。その後、アルミニウムをスパッタ若しくは蒸着法で光入射面には約3μmの厚さ、光透過面は約10μmの厚さとした後に、ホトリソグラフィ法等を用いて露光する。この露光は、光入射面と光透過面との両面露光が好ましい。その後、バスバー配線17、第一の電極171及び第二の電極172となる部分を除くアルミニウムを、所要の薬品を用いたウエット・エッチング若しくはドライ・エッチング化学エッチングなどによって除去する。もっとも、バスバー配線170、第一の電極171及び第二の電極172は、上記手法に代えてペースト法を用いて形成してもよい(ステップS7)。
 それから、こうして製造した太陽電池セル100の中間生成物を複数用意し、それらを重ね合わせる。そして、それらの側面に向けてアルミニウムを溶射することなどにより、側面電極173を形成する。
 なお、太陽電池セル100の中間生成物を、側面電極173の形成面が段状となるようにややずらして重ね合わせ、さらに、それらをチルト回転させれば、側面電極173のみならず、これと一体的に光入射面メイン・バスバー174も形成することができ、さらには、光入射面メイン・バスバー174と各バスバー配線170との接続、及び、側面電極173と第二の電極172との接続も可能となる。
 もっとも、側面電極173等の形成には、既知のように、アルミニウムペーストのような金属ペーストを採用してもよいし、金属蒸着(スパッタを含む)を採用してもよいし、メッキ法を採用してもよい。以上の工程により、図1に示す太陽電池セルが複数枚完成する。
 つづいて、本実施形態の太陽電池セル100の動作について説明する。太陽電池セル100に、太陽光線130が入射されると、太陽光線100のうち波長λが0.45μm以下の紫外光線領域以下の太陽光線、つまり、短波長の太陽光線が、単結晶N型半導体基板101とP型第二半導体層102Bとの光入射面のPN接合に到達すると、当該太陽光線に基づく光生成キャリアが生成される。
 これによって生じた正孔は、単結晶N型半導体基板101とP型第二半導体層102Bとの光照射面のPN接合付近に形成される空乏層に向けてドリフトし、当該空乏層に到達すれば、バスバー配線170及びこれに接続されている光入射面メイン・バスバー174から電気信号を取り出すことができる。
 一方、太陽電池セル100に入射された太陽光線130のうち波長λが0.45μmを超える可視光領域以上の太陽光線、つまり、中長波長の太陽光線が、単結晶N型半導体基板101とP型第一半導体層102Aとの光透過面のPN接合に到達すると、当該太陽光線に基づく光生成キャリアが生成される。
 これによって生じた正孔は、主として、単結晶N型半導体基板101とP型第一半導体層102Aとの光透過面のPN接合付近に形成される空乏層に向けてドリフトし、当該空乏層に到達すれば、第二の電極172から電気信号を取り出すことができる。
 換言すると、太陽電池セル100に太陽光線130が入射されることで生じた正孔は、上記各PN接合付近に形成される空乏層のいずれかに到達すればよいから、正孔の拡散長は短くて済む。このため、本実施形態では、既述のように、単結晶N型半導体基板101の厚さを相対的に薄くすることができる。そして、正孔の拡散長が短いとなれば、光生成キャリアの再結合を低減できるので、太陽電池セル100の光電変換効率が向上する。
 また、光生成キャリアの再結合を低減することができるということは、その再結合前の光生成キャリアに基づく電気信号を光入射面メイン・バスバー174から取り出せていることになるので、この電気信号も、太陽電池セル100全体の出力に加算できるので、太陽電池セル100全体の光電変換効率の向上につながる。
 つぎに、簡単に、本実施形態の太陽電池セル100の光電変換効率を、電圧降下(IR降下)の観点からシミュレーションしてみる。まず、単結晶N型半導体基板101とP型第二半導体層102Bとの光入射面側のPN接合に係る電流が200mAで、単結晶N型半導体基板101とP型第一半導体層102Aとの透過面側のPN接合に係る電流が12Aあると仮定する。この場合、単結晶N型半導体基板101におけるIR降下は、約66mV(≒5.4mΩ×12.2A)となる。
 つづいて、P型第二半導体層102Bの抵抗値は、既述の条件の場合には約37mΩであるから、P型第二半導体層102BでのIR降下は7.4mV(=37.0mΩ×200mA)となる。同様に、バスバー配線170の抵抗値は、既述の条件の場合には約250mΩであるから、光入射面メイン・バスバー174でのIR降下は50mV(=250mΩ×200mA)となる。
 そして、側面電極173の抵抗値が小さいので、これらでの電圧降下は無視できるくらい小さいため、太陽電池セル100に入射した太陽光線130のうち、短波長の光線に基づく電流が、単結晶N型半導体基板101とP型第二半導体層102Bとの光入射面側のPN接合、バスバー配線170、光入射面メイン・バスバー174、及び、側面電極173を通る際に受ける電圧降下の総計は、約126mV(≒66mV+57.4mV)となる。
 同様に、光透過面側の電圧降下について見てみると、P型第一半導体層102AにおけるIR降下は、約65mV(≒5.4mΩ×12A)となる。したがって、太陽電池セル100に入射した太陽光線130のうち、中長波長の光線に基づく電流が単結晶N型半導体基板101とP型第一半導体層102Aとの光透過面側のPN接合、及び、第二の電極172を通る際に受ける電圧降下の総計は、約131mV(=66mV+65mV)となる。
 この場合、光入射面側及び光透過面側の各PN接合での開放電圧をいずれも750mVと仮定すると、太陽電池セル100の動作状態での両PN接合の電圧は、それぞれ、624mV(=750mV-126mV)及び619mV(=750mV-131mV)となる。
 この時の両PN接合でのパワーは、それぞれ0.12W(≒624mV×200mA)及び7.43W(≒619mV×12A)であり、これらの合計は7.55W(=0.12W+7.43W)となる。これを1平方メートルあたりのパワーに換算すると378Wとなるので、光電変換効率は、約37.8%ということになる。
 以上のシミュレーションによれば、本実施形態の太陽電池セル100は、P型第一半導体層102Aを形成することにより中長波長の太陽光線に基づく電気信号を、また、P型第二半導体層102Bを形成することにより、P型第一半導体層102Aに到達しない光生成キャリアを収集することが可能となるので、光生成キャリアの再結合を防止することができる。
 なお、バスバー配線170につき、そのサイズを、幅約10μm、厚さ約10μm、長さ約75mmと変更し、かつ、本数を3,000本に変更することで太陽電池セル100の、開口率を約90%に変更し、その他の条件は上記と同じとした場合、その光電変換効率は、約46.2%にまで向上することになる。
 (実施形態2)
 図5は、本発明の実施形態2の太陽電池セル100の模式的な断面図であり、図3に対応するものである。図5に示す太陽電池セル100は、図3に示したバスバー配線170、光入射面メイン・バスバー174及び側面電極173が設けられていないタイプのものである。なお、図5において、図3に示した部分と同様の部分には、同一符号を付している。
 図5に示す太陽電池セル100は、バスバー配線170等を設けていないため、P型第二半導体層102Bのシート抵抗値が、P型第二半導体層102Bと単結晶N型半導体基板101との光入射面側のPN接合で生成される電気信号の上限値を規定することになる。
 この上限値はできるだけ大きい値がよいが、P型第二半導体層102Bは半導体で構成されるために、P型第二半導体層102Bのシート抵抗値は1Ω/□以上の値とすると、P型第二半導体層102Bと単結晶N型半導体基板101との光入射面側のPN接合で生成される電気信号は、P型第一半導体層102Aと単結晶N型半導体基板101との光透過面側のPN接合で生成される電気信号よりも常に小さい(ゼロを含む)。
 そして、P型第二半導体層102Bと単結晶N型半導体基板101との光入射面側のPN接合で生成される電気信号には上限があるから、それ以上の電気信号は、P型第一半導体層102Aと単結晶N型半導体基板101との光透過面側のPN接合で得られることになり、具体的には、上記及び下記諸条件で製造した太陽電池セルの場合には、総生成電流の99.9%以上をP型第一半導体層102Aと単結晶N型半導体基板101との光透過面側のPN接合から取得することができる。
 本実施形態では、P型第二半導体層102Bを、例えば、イオン打ち込み法によって形成することができる。単結晶N型半導体基板101の光入射面に形成されるP型第二半導体層102Bについては、ボロンを不純物として選択し、その拡散深さは実施形態1と同様で例えば約0.1μmとすることができる。
 また、単結晶N型半導体基板101の側面を覆うP型第二半導体層102B及びP型第一半導体層102Aは、例えば、液相からの拡散法によって形成することができる。これらについては、アルミニウムもしくはアルミニウムとボロンの複層構造を不純物として選択し、各拡散深さは例えば0.5μmとすることができる。
 もっとも、P型第一半導体層102Aと単結晶N型半導体基板101との光透過面側のPN接合によって太陽光スペクトラムの過半の光子に基づく光生成キャリアを収集できる条件であれば、P型第二半導体層102B及びP型第一半導体層102Aの双方の製法、各不純物濃度及び各拡散深さは、上記のものに限定されるものではない。
 したがって、例えば、イオン打ち込み法に代えて固体、液体の不純物源又は気体ガスの不純物源からのドーピングを採用したり、P型第二半導体層102B及びP型第一半導体層102Aの双方をボロンのみを不純物として選択して、各拡散深さは例えば0.2μmとしたりといった対応も可能である。
 なお、実施形態1同様に、P型第二半導体層102Bのうち単結晶N型半導体基板101の側面を覆うP型第二半導体層102Bを形成することは必須ではないが、これを形成しておく利点も存在する。
 具体的には、本実施形態の太陽電池セル100は、実施形態1と異なり、バスバー配線170、光入射面メイン・バスバー174及び側面電極173が設けられていないことから、P型第二半導体層102Bに到達したキャリアに基づく電流を、太陽電池セル100の外部に取り出さなければならず、このためには、別途、P型第二半導体層102Bをプラス電源接続するなどの対策が考えられるが、P型半導体層102Bを設けていれば、これがP型第二半導体層102Bに流れる経路として機能するから、プラス電源接続などが不要となるという利点が存在する。
 さらに、本実施形態では、単結晶N型半導体基板101とP型第二半導体層102Bとによる光入射面側のPN接合のビルトイン・ポテンシャルを、単結晶N型半導体基板101とP型第一半導体層102Aとによる光透過面側のPN接合のビルトイン・ポテンシャルよりも高くする。或いは、単結晶N型半導体基板101の中央部から接合方向に向けて、半導体基板101のイオン濃度を高くするといった濃度勾配を設けてもよい。このためには、実施形態1で説明した製造方法に対して、ボロン雰囲気下での処理に先だって、リン又はアンチモンをデポジションすることで、単結晶N型半導体基板101よりも高濃度(例えば、1017cm-3~1018cm-3)のN層を単結晶N型半導体基板101内のボロン層の内側に形成できる。もっとも、濃度勾配を設けるという対応は、実施形態1の太陽電池セル100において両ビルトイン・ポテンシャルを同様にする際にも採用することができる。
 例えば、P型第二半導体層102Bのアクセプタ濃度を、P型第一半導体層102Aのアクセプタ濃度に比して2ケタほど大きくすると、ビルトイン・ポテンシャルには、約120mVの差が生じる。具体的には、P型第二半導体層102Bのアクセプタ濃度を例えば1020cm-3、P型第一半導体層102Aのアクセプタ濃度を例えば1018cm-3、単結晶N型半導体基板101のドナー濃度を例えば1016cm-3とすればよい。このような設定とすれば、単結晶N型半導体基板101で生じた少数キャリアの電子は、障壁の低い光透過面のPN接合から障壁を超えて流れるようにことになる。なお、本明細書における不純物濃度は、不純物が含有される半導体層における平均的な濃度のことをいう。
 付言すると、P型第二半導体層102Bのアクセプタ濃度を、P型第一半導体層102Aのアクセプタ濃度に比して小さくすれば、単結晶N型半導体基板101で生じた少数キャリアの電子は、反対に、障壁の低い光入射面のPN接合から障壁を超えて流れるようにことになるし、両アクセプタ濃度を等しくすれば、その光スペクトラムの波長に対応したPN接合に向かって移動することになる。
 本実施形態の太陽電池セル100は、実施形態1のものに比して、簡易な構造とすることで製造コストを安価にしたにも拘わらず、光透過面のPN接合の開放電圧を実施形態1のものと同等の値とすることができる。その結果、本実施形態の太陽電池セル100の光電変換効率は、約37.8%ということになる。
 (実施形態3)
 本実施形態では、既述の実施形態1,2に対する変形例について、図4に基づいて説明する。
 ステップS1に示す単結晶N型半導体基板101は、その比抵抗を例えば1Ω・cm~10Ω・cmとし、かつ、その不純物濃度を5×1015cm-3~5×1014cm-3としている。
 ステップS2では、まず、単結晶N型半導体基板101の全面に酸化膜を、例えば、熱処理法で形成する。その後、該単結晶N型半導体基板101の裏面部分の酸化膜だけを除去する。そして、単結晶N型半導体基板101の裏面に例えばリンガラスを最初に塗布してリンガラス層231を形成する。また、単結晶N型半導体基板101の裏面にリンを注入する目的に加えてボロンも注入するため、例えば、塗布法でリンガラス層231に重畳させてボロンガラス層を形成する。
 ステップS3で行う熱処理時間は、単結晶N型半導体基板101へのボロンの不純物濃度が、例えば、約1018cm-3、厚さが約0.5μmとなる条件とすればよい。この場合には、シート抵抗が100Ω/□となる態様で拡散する。これにより、単結晶N型半導体基板101内にはP型第一半導体層102Aとなる領域が形成される。この熱処理では同時にリンガラス層231からはリンのデポジション量が、例えば、3×1019cm-3~1018cm-3であればP型第一半導体層102Aとほぼ同じ拡散深さ(厚さ)を持つN型半導体層143が形成される。
 なお、P型第二半導体層102Bの形成には、既述の例示の他に、例えば、臭化ボロンBBr3からの気相、液相拡散法、イオン打ち込み法、塗布拡散法を用いることができる。また、本変形例による製造工程では、ステップS3の実施段階では、ボロンガラス層232は形成されない。
 ステップS4では、ステップS2で形成した酸化膜のうち光入射面と半導体基板101の側面の酸化膜を除去する。それから、単結晶N型半導体基板101を、例えば、臭化ボロンを気化させて且つ酸素雰囲気下において、約950℃の温度下で熱処理を行う。第二P型半導体層が約0.1μmの厚さで且その不純物濃度が1019cm-3で形成されるように熱処理時間が設定される。この時間に、半導体基板101の光入射面と側面とにも、ボロンガラス層232が形成される。
 ステップS5では、単結晶N型半導体基板101の光入射面側のボロンガラス層232を除去してから、又は、ボロンガラス層232を除去することなく、反射防止膜31を、例えば低温CVD法によって形成することになる。
 ステップS6では、単結晶N型半導体基板101の光入射面側の反射防止膜31の対応位置と、光透過面側のリンガラス層231及びボロンガラス層232を除去しなかった場合にはその対応位置とに、それぞれ開口部251を形成する。
 ステップS7では、単結晶N型半導体基板101の光入射面側の反射防止膜31の表面と、光透過面側のリンガラス層231及びボロンガラス層の表面とに、例えば、アルミニウムを被着させてから、各開口部251にもアルミニウムを拡散させるために、例えば、約400℃の温度で熱処理を行う。その後、アルミニウムをスパッタ若しくは蒸着法で光入射面には約3μmの厚さ、光透過面は約10μmの厚さで成膜した後に、ホトリソグラフィ法等を用いて露光する。この露光は、光入射面と光透過面との両面露光が好ましい。その後、バスバー配線170、第一の電極171及び第二の電極172となる部分を除くアルミニウムを、所要の薬品を用いたウエット・エッチング若しくはドライ・エッチング化学エッチングなどによって除去する。
 以上のような条件で太陽電池セル100を製造すると、単結晶N型半導体基板101とP型第二半導体層102Bとによる光入射面側のPN接合のビルトイン・ポテンシャルを、単結晶N型半導体基板101とP型第一半導体層102Aとによる光透過面側のPN接合のビルトイン・ポテンシャルよりも60mVほど高くすることができる。
 これは、P型第二半導体層102Bの不純物濃度を、P型第一半導体層102Aの不純物濃度に比してほぼ1ケタ以上大きくすることと同義であり、具体的には、P型第二半導体層102Bの不純物濃度は例えば1020cm-3~1019cm-3、P型第一半導体層102Aの不純物濃度は例えば1019cm-3~1018cm-3、単結晶N型半導体基板101の不純物濃度は例えば5×1015cm-3~5×1014cm-3となる。P型第一半導体層102Aは、そのシート抵抗が例えば20Ω/□~200Ω/□である。その厚さは、例えば、0.5μmとなる。
 このような設定とすれば、単結晶N型半導体基板101で生成キャリアの90%は、障壁の低い光透過面のPN接合から障壁を超えて流れることになる。係る場合に、実施形態1で説明した要領で、太陽電池セル100の光電変換効率を算出してみると、44.9%にまで向上することになる。
 また、実施形態2で説明した各層の条件につき、P型第二半導体層102Bの不純物濃度を例えば1020cm-3~1019cm-3、P型第一半導体層102Aの不純物濃度を例えば1018cm-3~1017cm-3、単結晶N型半導体基板101の不純物濃度を例えば5×1015cm-3~5×1014cm-3とすれば、単結晶N型半導体基板101で生成キャリアのほぼ99%は、障壁の低い光透過面のPN接合から障壁を超えて流れることになる。
 係る条件とした太陽電池セル100の場合には、総生成電流のほぼ99%をP型第一半導体層102Aと単結晶N型半導体基板101との光透過面側のPN接合から取得することができる。また、この条件の太陽電池セル100の光電変換効率は、約36.7%になる。
 

Claims (6)

  1.  第一導電型の半導体基板と、
     前記半導体基板の光透過面に形成されていて中長波長の太陽光線に基づく光生成キャリアを収集する第二導電型の第一半導体層と、
     前記半導体基板の光入射面に形成されていて短波長の太陽光線に基づく光生成キャリアを収集するとともに前記中長波長の太陽光線に基づく光生成キャリアのうち第一半導体層に到達しない光生成キャリアを収集する第二導電型の第二半導体層と、
     を備え、
     前記第二半導体層の不純物濃度が前記第一半導体層の不純物濃度に比してほぼ1ケタ以上大きい太陽電池。
  2.  前記半導体基板の光透過面では、前記第一半導体層で収集された光生成キャリアに基づく電気信号を取り出すための電極に接続される第一導電型の半導体層の形成箇所を除き、前記第一半導体層が全面的に接する態様で形成されている、請求項1記載の太陽電池。
  3.  前記第二半導体層から出力される電流と前記第一半導体層から出力される電流とを加算して出力する、請求項1記載の太陽電池。
  4.  前記半導体基板は、前記第一半導体層で収集された光生成キャリアに基づく電気信号を取り出す電極に接続される第一導電型の半導体層の形成箇所を除き、前記第一半導体層と前記第二半導体層とによって覆われている、請求項1記載の太陽電池。
  5.  前記第一半導体層から出力される電流の値が、前記第二半導体層から出力される電流の値よりも大きい、請求項1記載の太陽電池。
  6.  第一導電型の光透過面に中長波長の太陽光線に基づく光生成キャリアを収集する第二導電型の第一半導体層を形成するステップと、
     前記半導体基板の光入射面に短波長の太陽光線に基づく光生成キャリアを収集するとともに前記中長波長の太陽光線に基づく光生成キャリアのうち第一半導体層に到達しない光生成キャリアを収集する第二導電型の第二半導体層を形成するステップと、
     前記第二半導体層の不純物濃度を前記第一半導体層の不純物濃度に比してほぼ1ケタ以上大きくするステップと、
     を含む太陽電池の製造方法。
     
PCT/JP2014/081450 2013-12-24 2014-11-27 太陽電池及びその製造方法 WO2015098426A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167019284A KR20160102470A (ko) 2013-12-24 2014-11-27 태양 전지 및 그 제조 방법
CN201480071076.1A CN105981178A (zh) 2013-12-24 2014-11-27 太阳能电池及其制造方法
US15/107,887 US20160315210A1 (en) 2013-12-24 2014-11-27 Solar cell and method for manufacturing same
AU2014371598A AU2014371598A1 (en) 2013-12-24 2014-11-27 Solar cell and method for manufacturing same
EP14874932.8A EP3089222A4 (en) 2013-12-24 2014-11-27 Solar cell and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013265749A JP5667280B2 (ja) 2013-05-24 2013-12-24 太陽電池及びその製造方法
JP2013-265749 2013-12-24

Publications (1)

Publication Number Publication Date
WO2015098426A1 true WO2015098426A1 (ja) 2015-07-02

Family

ID=53478732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081450 WO2015098426A1 (ja) 2013-12-24 2014-11-27 太陽電池及びその製造方法

Country Status (7)

Country Link
US (1) US20160315210A1 (ja)
EP (1) EP3089222A4 (ja)
JP (1) JP5667280B2 (ja)
KR (1) KR20160102470A (ja)
CN (1) CN105981178A (ja)
AU (1) AU2014371598A1 (ja)
WO (1) WO2015098426A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107564974A (zh) * 2016-06-30 2018-01-09 比亚迪股份有限公司 电池片、电池片矩阵、太阳能电池及电池片的制备方法
CN107564973A (zh) * 2016-06-30 2018-01-09 比亚迪股份有限公司 电池片、电池片矩阵、太阳能电池及电池片的制备方法
CN107579122A (zh) * 2016-06-30 2018-01-12 比亚迪股份有限公司 电池片、电池片矩阵、太阳能电池及电池片的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138959A (ja) * 2014-01-24 2015-07-30 三菱電機株式会社 光起電力装置および光起電力装置の製造方法
US11804560B2 (en) 2016-06-13 2023-10-31 Shin-Etsu Chemical Co., Ltd. Solar cell and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297429A (ja) * 1994-04-28 1995-11-10 Sharp Corp 太陽電池セルとその製造方法
JPH08204214A (ja) * 1995-01-26 1996-08-09 Toyota Motor Corp 太陽電池
JPH11224954A (ja) 1998-02-04 1999-08-17 Sanyo Electric Co Ltd 太陽電池、太陽電池モジュール、太陽電池モジュールの設置方法及び太陽電池の製造方法
JP2005005352A (ja) * 2003-06-10 2005-01-06 Hitachi Ltd 太陽電池およびその製造方法
JP2013069760A (ja) * 2011-09-21 2013-04-18 Shin Etsu Chem Co Ltd 太陽電池および太陽電池の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4244549B2 (ja) * 2001-11-13 2009-03-25 トヨタ自動車株式会社 光電変換素子及びその製造方法
KR101002282B1 (ko) * 2008-12-15 2010-12-20 엘지전자 주식회사 태양 전지 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297429A (ja) * 1994-04-28 1995-11-10 Sharp Corp 太陽電池セルとその製造方法
JPH08204214A (ja) * 1995-01-26 1996-08-09 Toyota Motor Corp 太陽電池
JPH11224954A (ja) 1998-02-04 1999-08-17 Sanyo Electric Co Ltd 太陽電池、太陽電池モジュール、太陽電池モジュールの設置方法及び太陽電池の製造方法
JP2005005352A (ja) * 2003-06-10 2005-01-06 Hitachi Ltd 太陽電池およびその製造方法
JP2013069760A (ja) * 2011-09-21 2013-04-18 Shin Etsu Chem Co Ltd 太陽電池および太陽電池の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3089222A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107564974A (zh) * 2016-06-30 2018-01-09 比亚迪股份有限公司 电池片、电池片矩阵、太阳能电池及电池片的制备方法
CN107564973A (zh) * 2016-06-30 2018-01-09 比亚迪股份有限公司 电池片、电池片矩阵、太阳能电池及电池片的制备方法
CN107579122A (zh) * 2016-06-30 2018-01-12 比亚迪股份有限公司 电池片、电池片矩阵、太阳能电池及电池片的制备方法
CN107564973B (zh) * 2016-06-30 2020-07-10 比亚迪股份有限公司 电池片、电池片矩阵、太阳能电池及电池片的制备方法

Also Published As

Publication number Publication date
AU2014371598A1 (en) 2016-07-07
JP5667280B2 (ja) 2015-02-12
EP3089222A4 (en) 2017-05-31
US20160315210A1 (en) 2016-10-27
EP3089222A1 (en) 2016-11-02
JP2015005718A (ja) 2015-01-08
CN105981178A (zh) 2016-09-28
KR20160102470A (ko) 2016-08-30

Similar Documents

Publication Publication Date Title
US11056598B2 (en) Solar cell
JP5848421B2 (ja) 太陽電池及びその製造方法
KR100984700B1 (ko) 태양 전지 및 그 제조 방법
KR101387718B1 (ko) 태양 전지 및 이의 제조 방법
KR101889775B1 (ko) 태양 전지 및 이의 제조 방법
KR20100107258A (ko) 태양전지 및 그 제조방법
KR20120084104A (ko) 태양전지
EP2538447B1 (en) Solar cell and method for manufacturing the same
WO2015098426A1 (ja) 太陽電池及びその製造方法
KR101630526B1 (ko) 태양 전지
KR20180067782A (ko) 후면접합 실리콘 태양전지 및 이를 제조하는 방법
KR20170143074A (ko) 양면 수광형 실리콘 태양전지 및 그 제조 방법
KR101238988B1 (ko) 후면전극형 태양전지 및 그 제조방법
KR20110003787A (ko) 태양 전지 및 그 제조 방법
KR20180127597A (ko) 후면접합 실리콘 태양전지 및 이를 제조하는 방법
KR20110071374A (ko) 후면전계형 이종접합 태양전지 및 그 제조방법
KR102126851B1 (ko) 태양 전지 및 이의 제조 방법
KR101176133B1 (ko) 얼라인 마크를 포함하는 스크린 마스크, 태양전지 및 태양전지 제조방법
KR20180064265A (ko) 태양 전지 제조 방법 및 태양 전지
KR101839564B1 (ko) 태양 전지의 제조 방법
KR102120120B1 (ko) 태양 전지 및 이의 제조 방법
TWI483409B (zh) 太陽能電池及其製作方法
KR101588456B1 (ko) 태양 전지 및 그 제조 방법
KR20140020372A (ko) 선택적 에미터를 갖는 태양전지 및 이의 제조 방법
KR20130089052A (ko) 후면전극형 태양전지 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874932

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15107887

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014874932

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014874932

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014371598

Country of ref document: AU

Date of ref document: 20141127

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167019284

Country of ref document: KR

Kind code of ref document: A