WO2015022819A1 - Non-slip glove - Google Patents

Non-slip glove Download PDF

Info

Publication number
WO2015022819A1
WO2015022819A1 PCT/JP2014/067845 JP2014067845W WO2015022819A1 WO 2015022819 A1 WO2015022819 A1 WO 2015022819A1 JP 2014067845 W JP2014067845 W JP 2014067845W WO 2015022819 A1 WO2015022819 A1 WO 2015022819A1
Authority
WO
WIPO (PCT)
Prior art keywords
glove
slip
porous layer
shape
convex
Prior art date
Application number
PCT/JP2014/067845
Other languages
French (fr)
Japanese (ja)
Inventor
豊成 米光
真子 豊國
Original Assignee
ショーワグローブ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ショーワグローブ株式会社 filed Critical ショーワグローブ株式会社
Priority to JP2015531746A priority Critical patent/JP6305408B2/en
Priority to CN201480045065.6A priority patent/CN105473016B/en
Publication of WO2015022819A1 publication Critical patent/WO2015022819A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/015Protective gloves
    • A41D19/01547Protective gloves with grip improving means
    • A41D19/01558Protective gloves with grip improving means using a layer of grip improving material

Definitions

  • the present invention relates to non-slip gloves.
  • non-slip-treated glove a non-slip glove in which a sheet material made of rubber or resin is attached to at least the palm side of a fibrous glove is known.
  • non-slip gloves are known in which an uneven shape is formed on the surface of a rubber sheet heat-sealed to a fibrous glove.
  • an anti-slip glove in which the anti-slip effect is further improved by containing air bubbles in NBR or natural rubber coated with a fibrous glove (for example, JP-A-2006-169676).
  • the layer formed of NBR or natural rubber is low in moisture permeability and hygroscopicity, when such anti-slip gloves are worn for a long time, the hand may become stuffy or sticky due to sweat. When the hands are steamed, the wearer's own hands may be roughened, and hygiene problems such as proliferation of bacteria due to sweat may occur.
  • the present invention has been made in view of these problems, and an object thereof is to provide a non-slip glove excellent in moisture permeability and flexibility.
  • the invention made to solve the above problems comprises a non-slip glove comprising a fibrous glove body covering the hand of the wearer and a porous layer impregnated and laminated in at least the palm region on the outer surface side of the glove body.
  • the porous layer is made of a resin composition containing polyurethane as a main component, and the outer surface of the palm region is formed with a concavo-convex shape by pressing.
  • the non-slip gloves are made of a resin composition containing polyurethane as a main component, the porous layer to be impregnated and laminated in the palm region is excellent in moisture permeability and can prevent the hands of the wearer from being steamed. Moreover, since the uneven
  • the non-slip glove exhibits excellent flexibility while having sufficient moisture permeability. be able to.
  • the non-slip glove can exhibit excellent moisture permeability and flexibility by setting the ratio of the average thickness of the recess to the average thickness of the protrusion within the above range.
  • the average moisture permeability of the porous layer in the palm region of the non-slip glove is preferably 6000 g / m 2 ⁇ 24 h or more.
  • the moisture permeability of the non-slip glove can be further enhanced, and the hand of the wearer can be used even when the non-slip glove is used for a long time Steaming can be effectively suppressed.
  • the porous layer is preferably formed by immersing the glove body in a solution containing polyurethane and an organic solvent, and then replacing the organic solvent with water.
  • the porous layer can be easily and reliably formed on the glove body.
  • the plan view shape of the convex portion in the concavo-convex shape is a substantially hexagonal shape, and the plurality of convex portions are disposed in a honeycomb shape.
  • the palm region of the non-slip glove can be uniformly flexible, and the non-slip glove can Design will be improved.
  • a plan view shape of the convex portion of the non-slip glove is a regular hexagon, and a straight line connecting two opposing apexes of the regular hexagon and a straight line connecting the center of the skirt and the center of the middle finger of the glove body.
  • a minimum angle 0 degree or more and 30 degrees or less are preferable.
  • the porous layer is formed in the nail region and the finger crotch region of the glove main body, and the porous layer does not have an uneven shape on the outer surface in the nail region and the finger crotch region.
  • the strength in the nail region and the finger crotch region of the non-slip glove is the strength of the other region having the asperity shape on the outer surface of the porous layer. Can be enhanced. That is, this configuration can increase the strength of the claw area and the finger crotch area of the non-slip glove.
  • the “palm area” means an area from the wrist to the fingertip (including the finger), which is a surface that is the inside when the object to be grasped is gripped.
  • “nail region” means a region corresponding to the position of the nail at the tip of each finger when the wearer wears non-slip gloves, and "finger crotch region” means each adjacent finger Means the area between the roots of
  • “protrusion occupancy rate in the concavo-convex shape of the outer surface of the porous layer” means that the concavo-convex shape is formed with respect to the plan view area of the area where the concavo-convex shape is formed in the area where the porous layer is formed.
  • average thickness of convex portion means an average distance from the innermost surface of the non-slip glove to the surface of the convex portion
  • average thickness of the concave portion refers to the innermost surface of the non-slip glove to the concave portion Means the average distance to the surface of
  • the “planned hexagonal shape” in the plan view means a shape whose outer shape approximates a hexagonal shape, and a groove serving as a recess is formed in the inside, or connected to an adjacent hexagonal portion It shall also include the shape.
  • an angle formed by a straight line connecting two opposing vertices of a regular hexagon and a straight line connecting the center of the foot and the center of the middle finger of the glove body is directed toward the tip of the middle finger of the straight line connecting the center of the foot and the center of the middle finger.
  • the inclination to the thumb side is positive
  • the inclination to the little finger side is negative with reference to the direction
  • the "minimum angle” is the hem of the glove body among the three straight lines connecting the two opposite apexes of a regular hexagon.
  • the angle between the center of the part and the straight line connecting the center of the middle finger means the smallest.
  • hem center means the position in plan view of the end of the foot when the non-slip glove is left standing with the palm up on the plane.
  • hexagon shape means the structure which arrange
  • the present invention can provide a non-slip glove excellent in moisture permeability and flexibility.
  • the non-slip glove includes a fibrous glove body 1 covering the wearer's hand as shown in FIG. 1 and a porous layer 2 impregnated and laminated in at least a palm region on the outer surface side of the glove body 1.
  • the porous layer 2 is made of a resin composition containing polyurethane as a main component, and a concavo-convex shape (convex 3 and concave 4) is formed on the outer surface of the palm region by pressing.
  • the glove body 1 is formed by knitting a yarn made of fibers in a glove shape.
  • the glove body 1 covers a body portion formed in a bag shape so as to cover the wearer's hand body, an extension portion extended from the body portion so as to cover the wearer's fingers, and a wearer's wrist. And a tubular skirt extending in a direction opposite to the extending portion.
  • the extension portion is a first finger portion covering the first finger (thumb), the second finger (indexing finger), the third finger (middle finger), the fourth finger (ring finger) and the fifth finger (little finger) of the wearer, It has a second finger, a third finger, a fourth finger and a fifth finger.
  • the first to fifth fingers are formed in a tubular shape in which the fingertips are closed.
  • the skirt has an opening through which the wearer can insert a hand, and is formed in a cylindrical shape gradually enlarged toward the opening.
  • FIG. 2 shows a schematic partial cross-sectional view of the non-slip glove.
  • reference numeral 12 denotes a cross section of the fiber bundle of the above-mentioned yarn which knits the above-mentioned glove body 1.
  • the glove body 1 has a gap between the inside and the outside of the fiber bundle 12, and when the resin material mainly composed of polyurethane infiltrates into the gap, the porous layer 2 composed of the resin material is a glove body The palm region of 1 is impregnated, and the porous layer 2 is firmly fixed to the glove body 1. Further, as shown in FIG. 2 in order to prevent the hand and fingers from sliding inside the glove, the porous layer 2 is impregnated to the inner surface side of the glove body 1 over the entire thickness direction of the glove body 1 Is preferred.
  • the fibers constituting the glove body 1 are not particularly limited, and natural fibers such as cotton and hemp, polyamide fibers (nylon of DuPont Co., Ltd.), polyester fibers, rayon fibers, acrylic fibers, aramid fibers, high strength polyethylene fibers , Synthetic fibers such as polyurethane fiber, polyparaphenylene terephthalamide fiber (Kevlar (registered trademark) of DuPont Co., Ltd.), ultra-high strength polyethylene fiber (Dyneema (registered trademark) of Toyobo Co., Ltd.), metal fibers such as stainless steel, Inorganic fibers such as glass fibers may be mentioned. These fibers may be used alone or in combination of two or more.
  • the glove body 1 is formed by knitting a yarn made of the above fibers, but it is formed by cutting out a nonwoven fabric using the above fibers and a woven fabric using a yarn made of the above fibers in the form of gloves and sewing You may use gloves. Above all, gloves knitted with a seamless knitting machine are preferable without seams.
  • the average thickness of the said glove body 1 As an upper limit of the average thickness of the said glove body 1, 1 mm is preferable and 0.8 mm is more preferable.
  • the lower limit of the average thickness of the glove body 1 is preferably 0.1 mm, and more preferably 0.2 mm.
  • the average thickness of the glove body 1 exceeds the above-mentioned upper limit, the thickness of the non-slip glove is increased, whereby the flexibility is reduced and the workability at the time of wearing may be deteriorated.
  • the average thickness of the glove body 1 is less than the above lower limit, the strength of the glove itself may be lacking, and the durability may be reduced.
  • the average thickness of the said glove main body 1 is arbitrary in the area
  • the constant pressure thickness measuring device for example, "PG-15" of Tekloc Inc.
  • the glove body 1 may be subjected to various treatments using, for example, a softener, a water and oil repellent agent, an antimicrobial agent, etc. Further, an ultraviolet absorber or the like may be applied or impregnated to provide an ultraviolet ray preventing function. May be given. Moreover, you may knead
  • the porous layer 2 is composed of a resin composition containing polyurethane as a main component, and is impregnated and laminated in a partial region on the palm side and the back side of the glove body 1. As shown in FIG. 1, the porous layer 2 is impregnated and laminated over the entire palm region on the palm side, and the outer surface of the region excluding the nail region 5 and the finger crotch region 6 is formed with an uneven shape by pressing. It is done. The porous layer 2 of the nail region 5 and the finger crotch region 6 is not pressed and has a flat surface. On the other hand, on the back side of the hand of the glove body 1, as shown in FIG.
  • the porous layer 2 is impregnated and laminated only in the region of the tip of each finger, and is laminated on the back side of the hand.
  • the layer 2 is not pressed and has a flat surface.
  • the porous layer 2 laminated on the back side of the hand may be subjected to press processing.
  • the uneven shape is formed by arranging a plurality of regular hexagonal convex portions 3 in a honeycomb shape in a plan view. That is, as shown to FIG. 5A, the convex part 3 of the same regular hexagon shape by planar view is arrange
  • the convex part 3 is arrange
  • the occupancy ratio of the projections 3 in the region where the concavo-convex shape of the porous layer 2 is formed (the concavo-convex shape with respect to the plan view area of the region where the concavo-convex shape is formed in the region where the porous layer 2 is formed)
  • region in which is formed 80% is preferable and 78% is more preferable.
  • 30% is preferable and 50% is more preferable.
  • the occupancy of the convex portion 3 exceeds the upper limit, the non-slip glove may be easily worn.
  • the total plan view area of the convex portion 3 refers to the area of the convex portion 3 including the start-up portion from the concave portion 4 in the cross section of the non-slip glove in plan view as shown in FIG. It is set as the planar view area
  • region 8 of a recessed part is an area
  • average thickness t1 (average distance from the innermost surface of a non-slip glove to the surface of convex part 3) of the said convex part 3) of the said convex part 3
  • 1.2 mm is preferable and 1 mm is more preferable.
  • a lower limit of average thickness t1 of the said convex part 3 0.5 mm is preferable and 0.7 mm is more preferable.
  • the average thickness t1 of the convex portion 3 exceeds the upper limit, the convex portion 3 may be easily detached.
  • average thickness t1 of the said convex part 3 is less than the said minimum, there exists a possibility that grip power may not be obtained enough.
  • the average thickness t1 of the convex portion 3 is determined by observing the cross section of the palm region of the non-slip glove using a scanning electron microscope (for example, "JSM-6060A" of JEOL Ltd.).
  • the distance from the innermost surface to the surface of the convex portion 3 is an average value of values obtained by measuring five arbitrary points.
  • the unevenness difference h (the average thickness t1 of the convex portion 3 and the average thickness of the concave portion 4 when the average distance from the innermost surface of the non-slip glove to the surface of the concave portion 4 is the average thickness t2 of the concave portion 4)
  • a maximum of difference with thickness t2 0.7 mm is preferred and 0.6 mm is more preferred.
  • 0.2 mm is preferred and 0.3 mm is more preferred.
  • the average thickness t2 of the recess 4 is determined by observing the cross section of the palm region of the non-slip glove using a scanning electron microscope (for example, "JSM-6060A" of JEOL Ltd.). It is the average value of the value obtained by measuring arbitrary five places about the distance from an inner surface to the surface of the recessed part 4.
  • an upper limit of ratio (t2 / t1) of average thickness t2 of the said recessed part 4 with respect to average thickness t1 of the said convex part 3 75% is preferable and 60% is more preferable.
  • the lower limit of the ratio of the average thickness t2 of the concave portion 4 to the average thickness t1 of the convex portion 3 is preferably 30%, and more preferably 40%.
  • the ratio of the average thickness t2 of the concave portion 4 to the average thickness t1 of the convex portion 3 exceeds the upper limit, the softness of the non-slip glove may be reduced.
  • the ratio of the average thickness t2 of the concave portion 4 to the average thickness t1 of the convex portion 3 is less than the lower limit, the non-slip glove may be easily worn.
  • the lower limit of the average moisture permeability of the porous layer 2 preferably from 6000 g / m 2 ⁇ 24h, more preferably 8000g / m 2 ⁇ 24h. If the average moisture permeability of the porous layer 2 is less than the above lower limit, when the glove is worn for a long time, the hand may be steamed or sticky due to sweat.
  • corrugated shape arrange
  • a straight line connecting opposing apexes of the regular hexagon of the convex portion 3 (hereinafter referred to as a honeycomb pattern direction 11), and a straight line connecting a center of the foot of the glove body 1 and a center of the middle finger (hereinafter referred to as a middle finger direction 10)
  • the lower limit of the minimum angle ⁇ is preferably 0 °.
  • 30 degrees is preferable and 25 degrees is more preferable.
  • the angle between the honeycomb pattern direction 11 and the middle finger direction 10 is the direction toward the thumb side (the right side in FIG. 5A and the side indicated by the arrow A) with reference to the direction toward the tip of the middle finger in the middle finger direction 10.
  • the slope is positive, and the slope toward the little finger side (to the left in FIG. 5A and in the opposite direction to the arrow A) is negative. If the minimum angle ⁇ exceeds the upper limit, the difference in angle between the groove-like direction formed by the recess 14 and the direction in which the finger is easily bent may be large, and the flexibility of the non-slip glove may be reduced.
  • the length of the diagonal which ties the vertex which the regular hexagon of the said convex part 3 opposes 7 mm is preferable and 5 mm is more preferable.
  • 1 mm is preferable and 2 mm is more preferable.
  • the length of the diagonal line exceeds the upper limit, the flexibility of the non-slip glove may be reduced.
  • the convex part 3 may become easy to detach
  • the porous layer 2 is also formed on the nail region 5 and the finger crotch region 6 of the glove body 1, in the nail region 5 and the finger crotch region 6, an uneven shape is formed on the outer surface of the porous layer 2.
  • the outer surface of the porous layer 2 laminated on the nail region 5 and the finger crotch region 6 is a flat surface without unevenness.
  • the softness of the non-slip glove formed portion is improved, but the strength is reduced.
  • the porous layer 2 is formed in the nail region 5 and the finger crotch region 6, and the unevenness region is not formed in these regions, whereby the nail region 5 and the finger crotch region are formed.
  • the strength of 6 is improved.
  • the above-mentioned porous layer 2 is made of polyvinyl chloride, natural rubber, isoprene, chloroprene, acrylic acid ester, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer (NBR), butyl rubber, polybutadiene, in addition to polyurethane as the main component.
  • a rubber, silicone rubber, or a copolymer having 10% by mass or less of a carboxyl-modified group or the like may be contained.
  • you may add a foaming agent and a foam stabilizer.
  • alkyl monoamide disulfosuccinate, potassium oleate, castor oil potassium, sodium dodecylbenzene sulfonate and the like can be used.
  • foam stabilizer ammonium stearate, a peptide, sodium alkyldipropionate and the like can be used.
  • alkyl means lauryl, octyl and stearyl.
  • the non-slip gloves can be manufactured by various methods, an example of which is shown below.
  • a glove body 1 in which yarns made of fibers are knitted in a glove shape is prepared, and a body obtained by covering the glove body 1 on an immersion processing hand mold is dipped in a solution containing polyurethane and dimethylformamide (DMF). Thereafter, polyurethane is deposited by replacing DMF with water to form a porous layer 2 impregnated and laminated on the glove body 1.
  • DMF dimethylformamide
  • MEK methyl ethyl ketone
  • the glove body 1 is covered with a flat mold, and the concavo-convex plate is placed on the palm area and pressed to form a concavo-convex shape on the outer surface of the glove.
  • this pressing is not performed on the portions of the nail region 5 and the finger crotch region 6, or a slight pressing is performed such that the thickness of the porous layer 2 laminated on these portions does not change.
  • the average thickness of the claw area 5 and the finger crotch area 6 of the non-slip glove after pressing becomes substantially equal to the average thickness of the convex portion 3.
  • it is preferable to heat and press such as heating and pressing an uneven board. By pressing while heating, an uneven shape is easily formed on the outer surface of the glove.
  • the strength is improved by heating the claw area 5 and the finger crotch area 6 which are not pressed by the uneven plate.
  • solid content concentration of polyurethane in the above-mentioned solution 14 mass% is preferred and 13 mass% is still more preferred. Moreover, as a minimum of solid content concentration of polyurethane in the above-mentioned solution, 10 mass% is preferred, and 11 mass% is more preferred. If the solid content concentration of the polyurethane exceeds the above upper limit, the softness of the non-slip glove may be impaired. In addition, when the solid content concentration of the polyurethane is less than the above lower limit, the strength of the film by the porous layer 2 may be impaired, and the durability of the non-slip glove may be reduced.
  • the softness of the non-slip gloves is improved by forming the uneven shape on the outer surface of the porous layer 2 so that the softness is improved even if the solid content in the solution is increased. Is flexible enough.
  • the non-slip glove having the above-mentioned configuration is made of the resin composition containing polyurethane as a main component, the porous layer 2 impregnated and laminated in the palm region is excellent in moisture permeability and the hand of the wearer is steamed. Can be suppressed.
  • corrugated shape by press processing is formed in the outer surface of a palm area
  • the non-slip gloves are formed easily and reliably because the porous layer is formed by immersing the organic solvent in water after immersing the glove body in a solution containing polyurethane and the organic solvent.
  • a porous layer can be formed on the glove body.
  • corrugated shape of the said anti-slip glove is a regular hexagon and several convex parts are arrange
  • the porous layer is formed in the nail region and the finger crotch region of the glove main body, and in the nail region and the finger crotch region, the porous layer has no uneven shape on the outer surface, It has high strength in the area of the nail area and the finger crotch area of the non-slip glove.
  • the present invention can be practiced in variously modified and / or improved modes other than the above modes.
  • the porous layer 2 in the configuration shown in FIG. 2, is impregnated up to the surface (inner surface) of the glove body 1 opposite to the uneven side, ie, the entire thickness direction of the glove body 1
  • the degree of impregnation into the inside of the glove body 1 may be changed.
  • the porous layer 2 may be impregnated up to near the center in the thickness direction inside the glove body 1.
  • it is preferable to impregnate the whole in the thickness direction because the hand does not slip in the glove.
  • corrugated shape of the said embodiment was made into the shape of a regular hexagon by planar view, it is set as the hexagonal shape which is not a regular hexagon, and arrange
  • the outer shape of one convex portion 13 is indicated by a thick broken line.
  • the convex portion 13 shown in FIG. 4 thus has a substantially hexagonal outer shape, in which two grooves forming the concave portion 14 are formed, and the adjacent convex portions 13 are connected to each other.
  • corrugated shapes may be given not only the whole palm area
  • the porous layer 2 is impregnated and laminated
  • the porous layer may be impregnated and laminated also in the area
  • the strength of the non-slip gloves can be improved by forming the porous layer also in the area on the back side of the hand.
  • Example 1 A solution was prepared by diluting polyurethane (polyurethane "MP-182" from DIC Corporation) with DMF to a resin solid content of 12% by mass. A hand with an immersion hand covered with a nylon glove (280d (311dtex)) covered with a 13G glove knitting machine (“N-SFG” from Shima Seiki Co., Ltd.) Immersed in the solution and pulled up. The porous polyurethane was then formed by replacing DMF and water in a water bath at 25 ° C. for 2 hours.
  • polyurethane polyurethane "MP-182" from DIC Corporation
  • N-SFG 13G glove knitting machine
  • a concavo-convex plate used for the press in order to form a concavo-convex with a convex part occupancy 25% on the outer surface on the palm side of the glove a concave part occupancy 25%, a concave depth 0.5 mm, a regular hexagonal concave
  • An uneven plate with a diameter of 2.6 mm (a diagonal length connecting opposite apexes of a regular hexagon) was used. Thereafter, the glove was placed in an oven at 100 ° C. and dried for 40 minutes to obtain a non-slip glove on which porous polyurethane having an uneven shape is laminated on the palm side.
  • the unevenness difference h generated by the press may be smaller than the depth of the depressions of the press plate. This is because the pressed portion exerts a force to return to its original thickness. In the glove of Example 1, the unevenness difference h was 0.45 mm.
  • the porous layer contains water, the formability of the press is improved. Therefore, as described above, the glove after making the polyurethane porous is only lightly dewatered without being dried. It is preferable to carry out the following pressing process.
  • the average thickness (average distance from the innermost surface of the non-slip glove to the outer surface of the porous layer) of the glove where the porous layer was laminated immediately before pressing was 0.85 mm.
  • the uneven board used for press processing pressed the uneven board to a glove so that the thickness (t2) of the recessed part of the porous layer of a non-slip glove might be 0.4 mm at the time of press processing.
  • Examples 2 to 11 When press working, using a concavo-convex plate having a recess occupancy rate, a recess depth or a recess diameter different from that in Example 1, the protrusion occupancy rate, the unevenness difference or the diameter of the protrusion of the non-slip glove of Example 1 Those modified as shown in Table 2 were prepared as non-slip gloves of Examples 2 to 7 and Examples 9 to 11. Moreover, what was obtained using the solution which diluted polyurethane with DMF to 10 mass% of resin as a solution which dips a knitted glove was prepared as a non-slip glove of Example 8. FIG.
  • Comparative Example 4 Compound 1 of thermoplastic resin shown in Table 1 containing NBR latex as a main component is diluted with water to 38% by mass of total solid content, stirred by a household automatic hand mixer to foam, and bubble content to 100% by volume It was adjusted. The bubble content was confirmed by specific gravity measurement.
  • each component of Compound 1 is calculated based on 100 parts by mass of the NBR rubber content in the NBR latex.
  • the same nylon knitting gloves as in Example 1 are put on an immersion hand mold and immersed in a 10 mass% calcium nitrate methanol solution which is a coagulation liquid, and then only the palm side is immersed in the foamed compound, 75 After heat setting for 10 minutes, the gloves were removed from the dipper mold.
  • the glove is washed to remove excess surfactant, and lightly dewatered, then the glove is put on a flat shape, and a corrugated plate heated to 140 ° C. is pressed on the palm side for 3 seconds at 1 kgf / cm 2.
  • the outer surface of the palm side of the glove was pressed into a concavo-convex pattern.
  • the same concavo-convex plate as in Example 4 (concave portion occupancy 75%, concave depth 0.5 mm, regular hexagonal concave diameter 2.6 mm) was used.
  • the glove was placed in an oven at 100 ° C. and dried for 40 minutes to obtain a non-slip glove on which a foam layer of NBR having a concavo-convex shape on the palm side is laminated.
  • This non-slip glove was used as the non-slip glove of Comparative Example 4.
  • Abrasion mass is less than 2.0 mg
  • ⁇ Finger crotch wear strength test> The finger crotch abrasion strength test was implemented about each glove created by the said Example and comparative example according to European Standard EN388. As test equipment, James H. Heal & Co. Ltd. 'Nu-Martindale' was used. A test piece cut into a size covering the contact surface of ⁇ 12 mm from the finger crotch of each glove was attached to a dedicated fixture (weight 433 g), and a water resistant abrasive paper (“DCCS” manufactured by Sanyo Science Co., Ltd.) installed The test piece was worn by rubbing and measured the number of times until the test piece penetrated. The number of times of measurement was evaluated in four stages based on the following evaluation criteria.
  • DCCS water resistant abrasive paper
  • the diameter of the convex portion indicates the length of a diagonal connecting the opposing vertices of the regular hexagon of the convex portion in plan view
  • the “concave / convex ratio” refers to the average thickness of the convex portion.
  • the ratio (t2 / t1) of the average thickness of the recessed part 4 is shown.
  • the gloves of Examples 1 to 11 are excellent in flexibility, moisture permeability, finger wear strength and finger crotch wear strength, and are composed of a resin composition containing polyurethane as a main component.
  • a resin composition containing polyurethane as a main component.
  • the glove of the comparative example 2 which is not press-processed is excellent in moisture permeability, finger part abrasion strength, and finger crotch abrasion strength, the softness is inferior. This is because the outer surface of the polyurethane porous layer is hard to bend because it has a shape without unevenness.
  • Example 4 when Example 4, Example 6 and Example 7 are compared, it can be seen that the flexibility and the moisture permeability are improved as the unevenness difference is somewhat large.
  • Example 4 and Example 8 As for the solid content concentration of polyurethane in the DMF solution in Table 2, when Example 4 and Example 8 are compared, when the amount of solid content decreases, excellent properties of flexibility and moisture permeability are maintained. , Finger wear strength and finger crotch wear strength decrease. This is considered to be due to the decrease in the strength of the polyurethane due to the decrease in the density of the polyurethane in the porous layer.
  • Example 8 has better finger crotch wear strength than Comparative Example 3. This is considered to be that although the finger crotch region of the glove of Example 8 is not pressed, the finger crotch abrasion strength is improved by being heated by receiving the heat of the uneven plate heated at the time of pressing.
  • the moisture permeability, the finger wear strength, and the finger crotch wear strength are different depending on the difference in the diameter of the convex portions. Although there is no difference between them, it can be seen that the flexibility decreases as the diameter of the projections increases. It is considered that this is because as the diameter of the convex portion becomes larger, the groove-like concave portion which becomes the starting point of bending decreases.
  • FIG. 6A The electron micrograph (100 times) which shows the cross section of the palm side of the non-slip glove which formed the NBR foaming layer of the comparative example 4 is shown to FIG. 6A. Moreover, the electron micrograph (100 times) which shows the cross section of the convex part of the anti-slip glove of Example 4 is shown in FIG. 6B, and the electron micrograph (100 times) which shows the cross section of the recessed part of the anti-slip glove of Example 4. It is shown in FIG. 6C.
  • the pore diameter of the cells is large and the cell walls (intervals of cells) are thick. This is considered to be because each cell was formed independently by stirring with a hand mixer to mechanically foam NBR. Further, it can be seen that the NBR is not impregnated up to the inner surface side of the glove body (base fabric).
  • the hole diameter of a cell is various in size, and there are many fine cells in the surface side.
  • the cell extends entirely to the inner surface side of the glove body (base fabric), and the cell wall is thinner compared to FIG. 6A.
  • the gloves of Examples 1 to 11 can exhibit higher moisture permeability as compared with the glove of Comparative Example 4.
  • the graph of FIG. 7 shows the relationship between the convex portion occupancy rate and the moisture permeability.
  • the measurement result of the Example and comparative example from which only the recessed part occupancy rate of the press board used in the case of press processing differs is shown.
  • the moisture permeability in Examples 1 to 5 and Comparative Examples 1 and 2 is shown.
  • the moisture permeability improves as the convex portion occupancy rate increases.
  • the convex portion occupancy rate is about 80%, a non-slip glove having a very high moisture permeability similar to the glove of Comparative Example 2 which is not pressed can be obtained.
  • the convex portion occupancy rate is 50%, a non-slip glove having high moisture permeability comparable to the glove of Comparative Example 2 can be obtained.
  • the convex portion occupancy rate is 30% or more, high moisture permeability of 6000 g / m 2 ⁇ 24 h or more can be expressed, and a non-slip glove having sufficient moisture permeability can be obtained.
  • Example 4 changing the angle by which the concavo-convex plate used at the time of press processing is pressed against the flat-typed woven glove, the regular hexagons of convex portions formed in a honeycomb shape on the outer surface of the glove face each other
  • Non-slip gloves are made with different angles between the straight line connecting the two apexes (honeycomb pattern direction 11) and the straight line connecting the skirt center of the glove body and the center of the middle finger (middle finger direction 10). The flexibility of the gloves was confirmed.
  • non-slip gloves are prepared in which the angle (honeycomb pattern angle) ⁇ between the honeycomb pattern direction 11 and the middle finger direction 10 is 0 °, 30 ° and 45 °, A sensory evaluation was performed on the flexibility of the fingers of each glove. Note that the inclination toward the thumb side (the right side in FIG. 5A and the side indicated by the arrow A) with respect to the direction toward the tip of the middle finger in the middle finger direction 10 is positive. The evaluation method was the same as in the flexibility test. The results are shown in Table 3.
  • the non-slip gloves according to the present invention which are excellent in moisture permeability and flexibility, are worn by workers in, for example, a factory, worn by workers when carrying work, worn by drivers when driving, etc. It can be used for various purposes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Gloves (AREA)

Abstract

The present invention provides a non-slip glove which exhibits excellent moisture permeability and softness. This non-slip glove is provided with a fiber-made glove body (1) which covers a wearer's hand and a porous layer (2) which is impregnated into and laminated on the outer side of the glove body (1) at least in the palm region, wherein the porous layer (2) is made from a polyurethane-based resin composition, and has a protrusion/ recess pattern formed by pressing on the outer surface in the palm region. It is preferable that the protrusion occupancy of the protrusion/recess pattern on the outer surface of the porous layer (2) is 30 to 80%. Further, it is preferable that the ratio of the average thickness of the recess portions (4,14) to that of the protrusion portions (3,13) is 30 to 75%. It is also preferable that the average moisture transmission rate of the porous layer (2) in the palm region is 6000g/m2·24h or more.

Description

滑止手袋Anti-slip gloves
 本発明は、滑止手袋に関する。 The present invention relates to non-slip gloves.
 滑止加工が施された手袋としては、繊維製手袋の少なくとも掌側にゴム又は樹脂製のシート材を貼り付けた滑止手袋が知られている。このような滑止手袋の滑止効果を向上させるために、繊維製手袋に熱融着したゴムシートの表面に凹凸形状を形成させた滑止手袋が知られている。また、繊維製手袋を被覆したNBRや天然ゴムに気泡を含有させることにより、さらに滑止効果を向上させた滑止手袋が知られている(例えば、特開2006-169676号公報)。 As a non-slip-treated glove, a non-slip glove in which a sheet material made of rubber or resin is attached to at least the palm side of a fibrous glove is known. In order to improve the non-slip effect of such non-slip gloves, non-slip gloves are known in which an uneven shape is formed on the surface of a rubber sheet heat-sealed to a fibrous glove. There is also known an anti-slip glove in which the anti-slip effect is further improved by containing air bubbles in NBR or natural rubber coated with a fibrous glove (for example, JP-A-2006-169676).
 ところが、NBRや天然ゴムで形成された層は透湿性や吸湿性が低いため、このような滑止手袋を長時間装着していると、汗によって手が蒸れたりべたついたりする。手が蒸れると、着用者自身の手の荒れを引き起こしたり、汗により雑菌が繁殖するなどの衛生上の問題が生じるおそれがある。 However, since the layer formed of NBR or natural rubber is low in moisture permeability and hygroscopicity, when such anti-slip gloves are worn for a long time, the hand may become stuffy or sticky due to sweat. When the hands are steamed, the wearer's own hands may be roughened, and hygiene problems such as proliferation of bacteria due to sweat may occur.
特開2006-169676号公報Japanese Patent Application Publication No. 2006-169676
 本発明は、これらの不都合に鑑みてなされたものであり、透湿性及び柔軟性に優れた滑止手袋の提供を目的とする。 The present invention has been made in view of these problems, and an object thereof is to provide a non-slip glove excellent in moisture permeability and flexibility.
 上記課題を解決するためになされた発明は、着用者の手を覆う繊維製の手袋本体と、この手袋本体の外面側の少なくとも掌領域に含浸及び積層される多孔質層とを備える滑止手袋であって、上記多孔質層がポリウレタンを主成分とする樹脂組成物から構成され、掌領域の外面にプレス加工による凹凸形状が形成されていることを特徴とする。 The invention made to solve the above problems comprises a non-slip glove comprising a fibrous glove body covering the hand of the wearer and a porous layer impregnated and laminated in at least the palm region on the outer surface side of the glove body. The porous layer is made of a resin composition containing polyurethane as a main component, and the outer surface of the palm region is formed with a concavo-convex shape by pressing.
 当該滑止手袋は、掌領域に含浸及び積層する多孔質層をポリウレタンを主成分とする樹脂組成物により構成しているので、透湿性に優れ、着用者の手が蒸れることを抑制できる。また、当該滑止手袋は、掌領域の外面にプレス加工による凹凸形状が形成されていることにより、その凹凸形状の凹部が溝となって曲がりやすく、良好な柔軟性を発揮する。 Since the non-slip gloves are made of a resin composition containing polyurethane as a main component, the porous layer to be impregnated and laminated in the palm region is excellent in moisture permeability and can prevent the hands of the wearer from being steamed. Moreover, since the uneven | corrugated shape by press processing is formed in the outer surface of a palm area | region, the said anti-slip glove becomes a groove | channel, it easily bends the recessed part of the uneven | corrugated shape, and exhibits favorable softness | flexibility.
 当該滑止手袋の上記多孔質層外面の凹凸形状における凸部占有率としては、30%以上80%以下が好ましい。このように多孔質層外面の凹凸形状が形成された領域における凸部占有率を上記範囲内とすることで、当該滑止手袋は、十分な透湿性を有しながら優れた柔軟性を発揮することができる。 As a convex part occupation rate in the uneven | corrugated shape of the said porous layer outer surface of the said anti-slip glove, 30% or more and 80% or less are preferable. Thus, by making the convex portion occupancy ratio in the region in which the concavo-convex shape of the outer surface of the porous layer is formed within the above range, the non-slip glove exhibits excellent flexibility while having sufficient moisture permeability. be able to.
 当該滑止手袋の上記凹凸形状の凸部の平均厚さに対する凹部の平均厚さの比としては、30%以上75%以下が好ましい。このように上記凸部の平均厚さに対する上記凹部の平均厚さの比を上記範囲内とすることで、当該滑止手袋は、優れた透湿性及び柔軟性を発揮することができる。 As a ratio of the average thickness of the recessed part with respect to the average thickness of the convex part of the said uneven | corrugated shape of the said anti-slip glove, 30% or more and 75% or less are preferable. Thus, the non-slip glove can exhibit excellent moisture permeability and flexibility by setting the ratio of the average thickness of the recess to the average thickness of the protrusion within the above range.
 当該滑止手袋の上記掌領域における多孔質層の平均透湿度としては、6000g/m・24h以上が好ましい。このように多孔質層の平均透湿度を上記下限値以上とすることで、当該滑止手袋の透湿性をより高めることができ、当該滑止手袋を長時間使用した場合でも着用者の手が蒸れることを効果的に抑制できる。 The average moisture permeability of the porous layer in the palm region of the non-slip glove is preferably 6000 g / m 2 · 24 h or more. By setting the average moisture permeability of the porous layer to the lower limit value or more as described above, the moisture permeability of the non-slip glove can be further enhanced, and the hand of the wearer can be used even when the non-slip glove is used for a long time Steaming can be effectively suppressed.
 当該滑止手袋は、上記多孔質層が、ポリウレタンと有機溶媒とを含む溶液に上記手袋本体を浸漬後、有機溶媒を水と置換することで形成されていることが好ましい。上記方法により、容易かつ確実に上記手袋本体に多孔質層を形成することができる。 In the non-slip gloves, the porous layer is preferably formed by immersing the glove body in a solution containing polyurethane and an organic solvent, and then replacing the organic solvent with water. By the above method, the porous layer can be easily and reliably formed on the glove body.
 当該滑止手袋は、上記凹凸形状における凸部の平面視形状が略六角形であり、複数の凸部がハニカム状に配設されていることが好ましい。このように、略六角形状の複数の凸部をハニカム状に配設することにより、当該滑止手袋の掌領域に一様に曲げやすい柔軟性を持たせることができ、また当該滑止手袋の意匠性が向上する。 In the non-slip glove, it is preferable that the plan view shape of the convex portion in the concavo-convex shape is a substantially hexagonal shape, and the plurality of convex portions are disposed in a honeycomb shape. As such, by arranging the plurality of substantially hexagonal convex portions in a honeycomb shape, the palm region of the non-slip glove can be uniformly flexible, and the non-slip glove can Design will be improved.
 当該滑止手袋の上記凸部の平面視形状が正六角形であることが好ましく、この正六角形の対向する2つの頂点を結ぶ直線と上記手袋本体の裾部中心及び中指中心を結ぶ直線との成す最小角度としては、0度以上30度以下が好ましい。上記凸部の平面視形状を正六角形とし、上記凸部のハニカム状に配設される向きを上記範囲内とすることで、当該滑止手袋の指部がより曲げやすくなる。また、当該滑止手袋の意匠性もより優れたものとなる。 It is preferable that a plan view shape of the convex portion of the non-slip glove is a regular hexagon, and a straight line connecting two opposing apexes of the regular hexagon and a straight line connecting the center of the skirt and the center of the middle finger of the glove body. As a minimum angle, 0 degree or more and 30 degrees or less are preferable. By making the planar view shape of the said convex part into a regular hexagon, and making the direction arrange | positioned by the honeycomb shape of the said convex part into the said range, the finger part of the said non-slip glove becomes easier to bend. In addition, the design of the non-slip gloves is also more excellent.
 当該滑止手袋は、上記手袋本体の爪領域及び指股領域に上記多孔質層が形成され、この爪領域及び指股領域において多孔質層が外面に凹凸形状を有さないことが好ましい。爪領域及び指股領域において外面に凹凸形状を形成しないことにより、当該滑止手袋の爪領域及び指股領域における強度を、多孔質層の外面に凹凸形状を有している他の領域の強度よりも高めることができる。すなわちこの構成により、当該滑止手袋の爪領域及び指股領域の部分の強度を高めることができる。 In the non-slip glove, it is preferable that the porous layer is formed in the nail region and the finger crotch region of the glove main body, and the porous layer does not have an uneven shape on the outer surface in the nail region and the finger crotch region. By not forming the asperity shape on the outer surface in the nail region and the finger crotch region, the strength in the nail region and the finger crotch region of the non-slip glove is the strength of the other region having the asperity shape on the outer surface of the porous layer. Can be enhanced. That is, this configuration can increase the strength of the claw area and the finger crotch area of the non-slip glove.
 なお、上記「掌領域」とは、被把持物を握った際に内側となる面であって手首から指先までの領域(指を含む)を意味する。また、「爪領域」とは、着用者が滑止手袋を着用した際に、各指の先端部分の爪の位置に対応する領域を意味し、「指股領域」とは、隣接する各指の付け根の間の領域を意味する。また、「多孔質層外面の凹凸形状における凸部占有率」とは、多孔質層が形成されている領域のうち凹凸形状が形成されている領域の平面視面積に対する、その凹凸形状が形成されている領域内の全ての凸部の合計平面視面積の割合である。また、「凸部の平均厚さ」とは、滑止手袋の最内面から凸部の表面までの平均距離を意味し、「凹部の平均厚さ」とは、滑止手袋の最内面から凹部の表面までの平均距離を意味する。また、平面視形状が「略六角形」とは、外形が六角形に近似した形状を意味し、内部に凹部となる溝が形成されていたり、隣接する六角形部分と連結しているような形状も含むものとする。また、「正六角形の対向する2つの頂点を結ぶ直線と上記手袋本体の裾部中心及び中指中心を結ぶ直線との成す角度」とは、裾部中心及び中指中心を結ぶ直線の中指先端に向かう向きを基準として親指側への傾斜を正、小指側への傾斜を負とし、「最小角度」とは、正六角形の対向する2つの頂点を結ぶ3本の直線のうち、上記手袋本体の裾部中心及び中指中心を結ぶ直線との成す角度が最小のものを意味する。ここで「裾部中心」とは、平面上に掌を上側にして滑止手袋を静置した際の、裾部の端部の平面視中央の位置を意味する。また、「ハニカム状」とは、同一の六角形状を同一の向きに等間隔で配置した構成を意味する。 The “palm area” means an area from the wrist to the fingertip (including the finger), which is a surface that is the inside when the object to be grasped is gripped. Also, "nail region" means a region corresponding to the position of the nail at the tip of each finger when the wearer wears non-slip gloves, and "finger crotch region" means each adjacent finger Means the area between the roots of In addition, “protrusion occupancy rate in the concavo-convex shape of the outer surface of the porous layer” means that the concavo-convex shape is formed with respect to the plan view area of the area where the concavo-convex shape is formed in the area where the porous layer is formed. The ratio of the total plan view area of all the projections in the area where Also, "average thickness of convex portion" means an average distance from the innermost surface of the non-slip glove to the surface of the convex portion, and "average thickness of the concave portion" refers to the innermost surface of the non-slip glove to the concave portion Means the average distance to the surface of In addition, the “planned hexagonal shape” in the plan view means a shape whose outer shape approximates a hexagonal shape, and a groove serving as a recess is formed in the inside, or connected to an adjacent hexagonal portion It shall also include the shape. In addition, “an angle formed by a straight line connecting two opposing vertices of a regular hexagon and a straight line connecting the center of the foot and the center of the middle finger of the glove body” is directed toward the tip of the middle finger of the straight line connecting the center of the foot and the center of the middle finger The inclination to the thumb side is positive, the inclination to the little finger side is negative with reference to the direction, and the "minimum angle" is the hem of the glove body among the three straight lines connecting the two opposite apexes of a regular hexagon. The angle between the center of the part and the straight line connecting the center of the middle finger means the smallest. Here, the “hem center” means the position in plan view of the end of the foot when the non-slip glove is left standing with the palm up on the plane. Moreover, "honeycomb shape" means the structure which arrange | positioned the same hexagonal shape at equal intervals by the same direction.
 以上説明したように、本発明は、透湿性及び柔軟性に優れた滑止手袋を提供することができる。 As described above, the present invention can provide a non-slip glove excellent in moisture permeability and flexibility.
本発明の一実施形態に係る滑止手袋を掌側から見た模式的平面図である。It is the typical top view which looked at the non-slip glove concerning one embodiment of the present invention from the palm side. 図1の滑止手袋の凹凸形状部の模式的部分断面図である。It is a typical fragmentary sectional view of the uneven | corrugated shaped part of the non-slip glove of FIG. 図1の滑止手袋を手の甲側から見た模式的平面図である。It is a schematic plan view which looked at the non-slip glove of FIG. 1 from the back side of the hand. 本発明の他の実施形態に係る滑止手袋の掌領域の一部拡大模式的平面図である。It is a partially expanded schematic plan view of a palm region of a non-slip glove according to another embodiment of the present invention. 多孔質層のハニカムパターンの向きを説明する図であり、ハニカムパターンの向きが中指方向と平行に配置されたときの模式的平面図である。It is a figure explaining the direction of the honeycomb pattern of a porous layer, and is a typical top view when the direction of a honeycomb pattern is arranged in parallel with the middle finger direction. 多孔質層のハニカムパターンの向きを説明する図であり、ハニカムパターンの向きと中指方向との成す角度が30°に配置されたときの模式的平面図である。It is a figure explaining the direction of the honeycomb pattern of a porous layer, and is a typical top view when the angle of the direction of a honeycomb pattern, and the middle finger direction to comprise is arranged at 30 degrees. 多孔質層のハニカムパターンの向きを説明する図であり、ハニカムパターンの向きと中指方向との成す角度が45°に配置されたときの模式的平面図である。It is a figure explaining the direction of the honeycomb pattern of a porous layer, and is a typical top view when the angle which the direction of a honeycomb pattern and the direction of the middle finger comprise is arranged at 45 degrees. 比較例4のNBR発泡層を形成した滑止手袋の掌側の断面を示す電子顕微鏡写真(100倍)であり、写真上部が手袋の外面側である。It is an electron micrograph (100 times) which shows the cross section of the palm side of the anti-slip glove which formed the NBR foam layer of the comparative example 4 and a photograph upper part is the outer surface side of a glove. 実施例4の滑止手袋の凸部の断面を示す電子顕微鏡写真(100倍)であり、写真上部が手袋の外面側である。It is an electron micrograph (100 times) which shows the cross section of the convex part of the non-slip glove of Example 4 and a photograph upper part is the outer surface side of a glove. 実施例4の滑止手袋の凹部の断面を示す電子顕微鏡写真(100倍)であり、写真上部が手袋の外面側である。It is an electron micrograph (100 times) which shows the cross section of the recessed part of the anti-slip glove of Example 4 and a photograph upper part is the outer surface side of a glove. 実施例の多孔質層における、凸部占有率と透湿度との関係を示すグラフである。It is a graph which shows the relationship of the convex part occupancy and moisture permeability in the porous layer of an Example.
 以下、適宜図面を参照しつつ本発明の実施の形態を詳説する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 本実施形態の滑止手袋は、図1に示すように着用者の手を覆う繊維製の手袋本体1と、この手袋本体1の外面側の少なくとも掌領域に含浸及び積層される多孔質層2とを備え、この多孔質層2が、ポリウレタンを主成分とする樹脂組成物から構成され、掌領域の外面にプレス加工による凹凸形状(凸部3及び凹部4)が形成されている。 The non-slip glove according to the present embodiment includes a fibrous glove body 1 covering the wearer's hand as shown in FIG. 1 and a porous layer 2 impregnated and laminated in at least a palm region on the outer surface side of the glove body 1. The porous layer 2 is made of a resin composition containing polyurethane as a main component, and a concavo-convex shape (convex 3 and concave 4) is formed on the outer surface of the palm region by pressing.
<手袋本体>
 手袋本体1は、繊維からなる糸を手袋状に編成したものである。この手袋本体1は、着用者の手本体を覆うよう袋状に形成された本体部と、着用者の指を覆うよう上記本体部から延設された延設部と、着用者の手首を覆うよう本体部から延設部とは反対方向に延設された筒状の裾部とを有する。上記延設部は着用者の第一指(親指)、第二指(人差指)、第三指(中指)、第四指(薬指)及び第五指(小指)をそれぞれ覆う第一指部、第二指部、第三指部、第四指部及び第五指部を有している。この第一指部から第五指部は、指先部が閉塞された筒状に形成されている。また、上記裾部は、着用者が手を挿入可能な開口部を有し、この開口側にかけて漸次拡径した筒状に形成されている。
<Glove body>
The glove body 1 is formed by knitting a yarn made of fibers in a glove shape. The glove body 1 covers a body portion formed in a bag shape so as to cover the wearer's hand body, an extension portion extended from the body portion so as to cover the wearer's fingers, and a wearer's wrist. And a tubular skirt extending in a direction opposite to the extending portion. The extension portion is a first finger portion covering the first finger (thumb), the second finger (indexing finger), the third finger (middle finger), the fourth finger (ring finger) and the fifth finger (little finger) of the wearer, It has a second finger, a third finger, a fourth finger and a fifth finger. The first to fifth fingers are formed in a tubular shape in which the fingertips are closed. Further, the skirt has an opening through which the wearer can insert a hand, and is formed in a cylindrical shape gradually enlarged toward the opening.
 図2に、当該滑止手袋の模式的部分断面図を示す。図2では、符号12が上記手袋本体1を編成する上記糸の繊維束の断面を示している。上記手袋本体1は、繊維束12の内外に隙間を有しており、この隙間にポリウレタンを主成分とする樹脂材料が浸入することにより、この樹脂材料で構成される多孔質層2が手袋本体1の掌領域に含浸され、多孔質層2が手袋本体1に強固に固着している。また手袋の内側で手や指の滑りを防止するために図2に示すように、多孔質層2は、手袋本体1の内面側まで手袋本体1の厚み方向の全体に亘って含浸していることが好ましい。 FIG. 2 shows a schematic partial cross-sectional view of the non-slip glove. In FIG. 2, reference numeral 12 denotes a cross section of the fiber bundle of the above-mentioned yarn which knits the above-mentioned glove body 1. The glove body 1 has a gap between the inside and the outside of the fiber bundle 12, and when the resin material mainly composed of polyurethane infiltrates into the gap, the porous layer 2 composed of the resin material is a glove body The palm region of 1 is impregnated, and the porous layer 2 is firmly fixed to the glove body 1. Further, as shown in FIG. 2 in order to prevent the hand and fingers from sliding inside the glove, the porous layer 2 is impregnated to the inner surface side of the glove body 1 over the entire thickness direction of the glove body 1 Is preferred.
 上記手袋本体1を構成する繊維としては、特に限定されず、綿、麻等の天然繊維、ポリアミド繊維(デュポン株式会社のナイロン)、ポリエステル繊維、レーヨン繊維、アクリル繊維、アラミド繊維、高強力ポリエチレン繊維、ポリウレタン繊維、ポリパラフェニレンテレフタルアミド繊維(デュポン株式会社のケブラー(登録商標))、超高強度ポリエチレン繊維(東洋紡績株式会社のダイニーマ(登録商標))等の合成繊維、ステンレスなどの金属繊維、グラスファイバーなどの無機繊維が挙げられる。これらの繊維は単独で用いても良いし、2種以上を混合して用いても良い。例えばステンレス繊維はナイロン等でカバーリングした複合糸として使用することができる。上記手袋本体1は、上記繊維からなる糸を編成して形成されているが、上記繊維を用いた不織布や上記繊維からなる糸を用いた織布を手袋の形に切り抜き、縫製して形成した手袋を用いても良い。なかでも、シームレス編機で編成された手袋が、縫い目がなく好ましい。 The fibers constituting the glove body 1 are not particularly limited, and natural fibers such as cotton and hemp, polyamide fibers (nylon of DuPont Co., Ltd.), polyester fibers, rayon fibers, acrylic fibers, aramid fibers, high strength polyethylene fibers , Synthetic fibers such as polyurethane fiber, polyparaphenylene terephthalamide fiber (Kevlar (registered trademark) of DuPont Co., Ltd.), ultra-high strength polyethylene fiber (Dyneema (registered trademark) of Toyobo Co., Ltd.), metal fibers such as stainless steel, Inorganic fibers such as glass fibers may be mentioned. These fibers may be used alone or in combination of two or more. For example, stainless steel fibers can be used as composite yarns covered with nylon or the like. The glove body 1 is formed by knitting a yarn made of the above fibers, but it is formed by cutting out a nonwoven fabric using the above fibers and a woven fabric using a yarn made of the above fibers in the form of gloves and sewing You may use gloves. Above all, gloves knitted with a seamless knitting machine are preferable without seams.
 上記手袋本体1の平均厚みの上限としては、1mmが好ましく、0.8mmがより好ましい。一方、上記手袋本体1の平均厚みの下限としては、0.1mmが好ましく、0.2mmがより好ましい。手袋本体1の平均厚みが上記上限を超える場合、当該滑止手袋の厚みが大きくなることで柔軟性が低下して、着用時における作業性が低下するおそれがある。逆に、手袋本体1の平均厚みが上記下限未満の場合、手袋自体の強度に欠け、耐久性が低下するおそれがある。なお、上記手袋本体1の平均厚みは、JIS L1086/L1096準拠の定圧厚さ測定器(例えば株式会社テクロックの「PG-15」)を用いて、多孔質層2が形成されていない領域の任意の5箇所を測定して得た値の平均値である。 As an upper limit of the average thickness of the said glove body 1, 1 mm is preferable and 0.8 mm is more preferable. On the other hand, the lower limit of the average thickness of the glove body 1 is preferably 0.1 mm, and more preferably 0.2 mm. When the average thickness of the glove body 1 exceeds the above-mentioned upper limit, the thickness of the non-slip glove is increased, whereby the flexibility is reduced and the workability at the time of wearing may be deteriorated. Conversely, if the average thickness of the glove body 1 is less than the above lower limit, the strength of the glove itself may be lacking, and the durability may be reduced. In addition, the average thickness of the said glove main body 1 is arbitrary in the area | region in which the porous layer 2 is not formed using the constant pressure thickness measuring device (for example, "PG-15" of Tekloc Inc.) based on JISL1086 / L1096. It is an average value of the value obtained by measuring 5 places of.
 なお、上記手袋本体1は、例えば柔軟剤、撥水撥油剤、抗菌剤等を用いて各種処理が行われていても良く、また、紫外線吸収剤等を塗布又は含浸等させて、紫外線防止機能が付与されていても良い。また、繊維そのものにこのような機能を示す薬剤を練り込んでも良い。 The glove body 1 may be subjected to various treatments using, for example, a softener, a water and oil repellent agent, an antimicrobial agent, etc. Further, an ultraviolet absorber or the like may be applied or impregnated to provide an ultraviolet ray preventing function. May be given. Moreover, you may knead | mix the chemical | medical agent which shows such a function in fiber itself.
<多孔質層>
 上記多孔質層2は、ポリウレタンを主成分とする樹脂組成物から構成されており、上記手袋本体1の掌側及び手の甲側の一部の領域に含浸及び積層されている。図1に示すように、掌側の掌領域全体に亘って多孔質層2が含浸及び積層されており、爪領域5及び指股領域6を除く領域の外面にはプレス加工による凹凸形状が形成されている。爪領域5及び指股領域6の多孔質層2は、プレス加工がされておらず平坦面を有している。一方、上記手袋本体1の手の甲側には、図3に示すように、各指部の先端部の領域にのみ多孔質層2が含浸及び積層されており、手の甲側に積層されている多孔質層2は、プレス加工がされておらず平坦面を有している。しかし、プレス加工時に手の甲側を押し付ける必要があることから、手の甲側に積層されている多孔質層2がプレス加工を施されていても良い。
<Porous layer>
The porous layer 2 is composed of a resin composition containing polyurethane as a main component, and is impregnated and laminated in a partial region on the palm side and the back side of the glove body 1. As shown in FIG. 1, the porous layer 2 is impregnated and laminated over the entire palm region on the palm side, and the outer surface of the region excluding the nail region 5 and the finger crotch region 6 is formed with an uneven shape by pressing. It is done. The porous layer 2 of the nail region 5 and the finger crotch region 6 is not pressed and has a flat surface. On the other hand, on the back side of the hand of the glove body 1, as shown in FIG. 3, the porous layer 2 is impregnated and laminated only in the region of the tip of each finger, and is laminated on the back side of the hand. The layer 2 is not pressed and has a flat surface. However, since it is necessary to press the back side of the hand at the time of press processing, the porous layer 2 laminated on the back side of the hand may be subjected to press processing.
 上記凹凸形状は、平面視で正六角形状の複数の凸部3がハニカム状に配設されて形成されている。すなわち、図5Aに示すように、平面視で同一の正六角形状の凸部3が、同じ向きに等間隔で配置されている。そして、複数の凸部3の間の部分が、多孔質層2の凹部4を形成している。なお、凸部3は、図1に示すように、一部(爪領域5及び指股領域6等)を除いて手袋本体1の掌領域の全体に亘ってハニカム状に配設されている。 The uneven shape is formed by arranging a plurality of regular hexagonal convex portions 3 in a honeycomb shape in a plan view. That is, as shown to FIG. 5A, the convex part 3 of the same regular hexagon shape by planar view is arrange | positioned at equal intervals by the same direction. And, a portion between the plurality of convex portions 3 forms the concave portion 4 of the porous layer 2. In addition, as shown in FIG. 1, the convex part 3 is arrange | positioned in honeycomb form over the whole palm area | region of the glove main body 1 except one part (a nail | claw area | region 5 and finger crotch area 6 grade | etc.,).
 多孔質層2の凹凸形状が形成されている領域における凸部3の占有率(多孔質層2が形成されている領域のうち凹凸形状が形成されている領域の平面視面積に対する、その凹凸形状が形成されている領域内の全ての凸部3の合計平面視面積の割合)の上限としては、80%が好ましく、78%がより好ましい。また、凸部3の占有率の下限としては、30%が好ましく、50%がより好ましい。上記凸部3の占有率が上記上限を超える場合、当該滑止手袋が摩耗しやすくなるおそれがある。一方、上記凸部3の占有率を上記下限以上とすることにより、当該滑止手袋に優れた透湿性を発揮させることができる。つまり、上記凸部3の占有率が上記下限未満になると、滑止手袋が十分な透湿性を得られないおそれがある。なお、凸部3の合計平面視面積とは、図2に示すように、平面視において、当該滑止手袋の断面における凹部4からの立ち上がり始めの部分を含めた凸部3の領域を凸部の平面視領域7とし、凹凸形状が形成されている領域におけるこれらの平面視領域7の面積を合計したものである。なお、凹部の平面視領域8は、平面視において、凹部4からの立ち上がり始めの部分を除いた凹部4の領域である。 The occupancy ratio of the projections 3 in the region where the concavo-convex shape of the porous layer 2 is formed (the concavo-convex shape with respect to the plan view area of the region where the concavo-convex shape is formed in the region where the porous layer 2 is formed) As an upper limit of the ratio of the total planar view area of all the convex parts 3 in the area | region in which is formed, 80% is preferable and 78% is more preferable. Moreover, as a minimum of the occupancy of the convex part 3, 30% is preferable and 50% is more preferable. When the occupancy of the convex portion 3 exceeds the upper limit, the non-slip glove may be easily worn. On the other hand, when the occupancy rate of the convex portion 3 is equal to or more than the lower limit, it is possible to exhibit excellent moisture permeability of the non-slip glove. That is, when the occupancy of the convex portion 3 is less than the lower limit, there is a possibility that the non-slip glove can not obtain sufficient moisture permeability. The total plan view area of the convex portion 3 refers to the area of the convex portion 3 including the start-up portion from the concave portion 4 in the cross section of the non-slip glove in plan view as shown in FIG. It is set as the planar view area | region 7, and the area of these planar view area | regions 7 in the area | region in which uneven | corrugated shape is formed is totaled. In addition, the planar view area | region 8 of a recessed part is an area | region of the recessed part 4 except the part which starts rising from the recessed part 4 in planar view.
 また、上記凸部3の平均厚さt1(滑止手袋の最内面から凸部3の表面までの平均距離)の上限としては、1.2mmが好ましく、1mmがより好ましい。一方、上記凸部3の平均厚さt1の下限としては、0.5mmが好ましく、0.7mmがより好ましい。上記凸部3の平均厚さt1が上記上限を超える場合、凸部3が脱離しやすくなるおそれがある。逆に、上記凸部3の平均厚さt1が上記下限未満の場合、グリップ力が十分に得られないおそれがある。なお、上記凸部3の平均厚さt1は、走査型電子顕微鏡(例えば、日本電子株式会社の「JSM-6060A」)を用いて滑止手袋の掌領域の断面を観察し、滑止手袋の最内面から凸部3の表面までの距離について任意の5箇所を測定して得た値の平均値である。 Moreover, as an upper limit of average thickness t1 (average distance from the innermost surface of a non-slip glove to the surface of convex part 3) of the said convex part 3, 1.2 mm is preferable and 1 mm is more preferable. On the other hand, as a lower limit of average thickness t1 of the said convex part 3, 0.5 mm is preferable and 0.7 mm is more preferable. When the average thickness t1 of the convex portion 3 exceeds the upper limit, the convex portion 3 may be easily detached. On the contrary, when average thickness t1 of the said convex part 3 is less than the said minimum, there exists a possibility that grip power may not be obtained enough. The average thickness t1 of the convex portion 3 is determined by observing the cross section of the palm region of the non-slip glove using a scanning electron microscope (for example, "JSM-6060A" of JEOL Ltd.). The distance from the innermost surface to the surface of the convex portion 3 is an average value of values obtained by measuring five arbitrary points.
 また、上記凹凸形状の凹凸差h(滑止手袋の最内面から凹部4の表面までの平均距離を凹部4の平均厚さt2としたときの凸部3の平均厚さt1と凹部4の平均厚さt2との差)の上限としては、0.7mmが好ましく、0.6mmがより好ましい。一方、上記凹凸差hの下限としては、0.2mmが好ましく、0.3mmがより好ましい。上記凹凸差hが上記上限を超える場合、凸部3が脱離しやすくなるおそれがあり、さらに透湿性も劣るおそれがある。逆に、上記凹凸差hが上記下限未満の場合、柔軟性及びグリップ力が十分に得られないおそれがある。なお、上記凹部4の平均厚さt2は、走査型電子顕微鏡(例えば、日本電子株式会社の「JSM-6060A」)を用いて滑止手袋の掌領域の断面を観察し、滑止手袋の最内面から凹部4の表面までの距離について任意の5箇所を測定して得た値の平均値である。 The unevenness difference h (the average thickness t1 of the convex portion 3 and the average thickness of the concave portion 4 when the average distance from the innermost surface of the non-slip glove to the surface of the concave portion 4 is the average thickness t2 of the concave portion 4) As a maximum of difference with thickness t2, 0.7 mm is preferred and 0.6 mm is more preferred. On the other hand, as a minimum of the above-mentioned concavo-convex difference h, 0.2 mm is preferred and 0.3 mm is more preferred. When the unevenness difference h exceeds the upper limit, the projections 3 may be easily detached, and the moisture permeability may also be deteriorated. On the other hand, when the unevenness difference h is less than the lower limit, the flexibility and the grip may not be sufficiently obtained. The average thickness t2 of the recess 4 is determined by observing the cross section of the palm region of the non-slip glove using a scanning electron microscope (for example, "JSM-6060A" of JEOL Ltd.). It is the average value of the value obtained by measuring arbitrary five places about the distance from an inner surface to the surface of the recessed part 4. FIG.
 また、上記凸部3の平均厚さt1に対する上記凹部4の平均厚さt2の比(t2/t1)の上限としては、75%が好ましく、60%がより好ましい。また、上記凸部3の平均厚さt1に対する上記凹部4の平均厚さt2の比の下限としては、30%が好ましく、40%がより好ましい。上記凸部3の平均厚さt1に対する上記凹部4の平均厚さt2の比が上記上限を超える場合、滑止手袋の柔軟性が低下するおそれがある。また、上記凸部3の平均厚さt1に対する上記凹部4の平均厚さt2の比が上記下限未満であると、滑止手袋が摩耗しやすくなるおそれがある。 Moreover, as an upper limit of ratio (t2 / t1) of average thickness t2 of the said recessed part 4 with respect to average thickness t1 of the said convex part 3, 75% is preferable and 60% is more preferable. The lower limit of the ratio of the average thickness t2 of the concave portion 4 to the average thickness t1 of the convex portion 3 is preferably 30%, and more preferably 40%. When the ratio of the average thickness t2 of the concave portion 4 to the average thickness t1 of the convex portion 3 exceeds the upper limit, the softness of the non-slip glove may be reduced. In addition, when the ratio of the average thickness t2 of the concave portion 4 to the average thickness t1 of the convex portion 3 is less than the lower limit, the non-slip glove may be easily worn.
 また、上記多孔質層2の平均透湿度の下限としては、6000g/m・24hが好ましく、8000g/m・24hがさらに好ましい。上記多孔質層2の平均透湿度が上記下限未満であると、その手袋を長時間装着していると、汗によって手が蒸れたりべたついたりするおそれがある。 The lower limit of the average moisture permeability of the porous layer 2, preferably from 6000 g / m 2 · 24h, more preferably 8000g / m 2 · 24h. If the average moisture permeability of the porous layer 2 is less than the above lower limit, when the glove is worn for a long time, the hand may be steamed or sticky due to sweat.
 上記凹凸形状は、図5A、図5B及び図5Cに示すように、平面視で同一の正六角形の凸部3を同じ向きに等間隔で配置して形成することが好ましい。さらに、凸部3の正六角形の対向する頂点を結ぶ直線(以下、ハニカムパターン方向11と呼ぶ)と、手袋本体1の裾部中心と中指中心を結ぶ直線(以下、中指方向10と呼ぶ)との成す最小角度θの下限としては、0°が好ましい。また、上記最小角度θの上限としては、30°が好ましく、25°がさらに好ましい。ここで、ハニカムパターン方向11と中指方向10との成す角度とは、中指方向10の中指先端に向かう向きを基準として親指側(図5Aに向かって右側であり、矢印Aで示す側)への傾斜を正とし、小指側(図5Aに向かって左側であり、矢印Aと反対の向き)への傾斜を負とするものとする。上記最小角度θが上記上限を超えると、凹部14によって形成される溝状の向きと指を曲げやすくする向きとの角度差が大きくなり、当該滑止手袋の柔軟性が低下するおそれがある。また、上記最小角度θが上記下限未満になった場合も、凹部14によって形成される溝状の向きと指を曲げやすくする向きとの角度差が大きくなり、当該滑止手袋の柔軟性が低下するおそれがある。 As shown in FIG. 5A, FIG. 5B and FIG. 5C, it is preferable to form the uneven | corrugated shape arrange | positioning the convex part 3 of the same regular hexagon by the same direction at equal intervals by planar view, as shown to FIG. Furthermore, a straight line connecting opposing apexes of the regular hexagon of the convex portion 3 (hereinafter referred to as a honeycomb pattern direction 11), and a straight line connecting a center of the foot of the glove body 1 and a center of the middle finger (hereinafter referred to as a middle finger direction 10) The lower limit of the minimum angle θ is preferably 0 °. Moreover, as an upper limit of the said minimum angle (theta), 30 degrees is preferable and 25 degrees is more preferable. Here, the angle between the honeycomb pattern direction 11 and the middle finger direction 10 is the direction toward the thumb side (the right side in FIG. 5A and the side indicated by the arrow A) with reference to the direction toward the tip of the middle finger in the middle finger direction 10. The slope is positive, and the slope toward the little finger side (to the left in FIG. 5A and in the opposite direction to the arrow A) is negative. If the minimum angle θ exceeds the upper limit, the difference in angle between the groove-like direction formed by the recess 14 and the direction in which the finger is easily bent may be large, and the flexibility of the non-slip glove may be reduced. Also, even when the minimum angle θ is less than the lower limit, the difference in the angle between the groove-like direction formed by the recess 14 and the direction in which the finger is easy to bend is large, and the softness of the non-slip glove is reduced. There is a risk of
 また、上記凸部3の正六角形の対向する頂点を結ぶ対角線の長さの上限としては、7mmが好ましく、5mmがさらに好ましい。また、正六角形の対向する頂点を結ぶ対角線の長さの下限としては、1mmが好ましく、2mmがさらに好ましい。上記対角線の長さが上記上限を超えると、当該滑止手袋の柔軟性が低下するおそれがある。また、上記対角線の長さが上記下限未満であると、凸部3が脱離しやすくなるおそれがある。 Moreover, as an upper limit of the length of the diagonal which ties the vertex which the regular hexagon of the said convex part 3 opposes, 7 mm is preferable and 5 mm is more preferable. Moreover, as a minimum of the length of the diagonal which ties the vertex which the regular hexagon opposes, 1 mm is preferable and 2 mm is more preferable. When the length of the diagonal line exceeds the upper limit, the flexibility of the non-slip glove may be reduced. Moreover, there exists a possibility that the convex part 3 may become easy to detach | desorb as the length of the said diagonal is less than the said minimum.
 上記多孔質層2は、上記手袋本体1の爪領域5及び指股領域6にも形成されているが、この爪領域5及び指股領域6では多孔質層2の外面に凹凸形状は形成されていない。すなわち、爪領域5及び指股領域6に積層されている多孔質層2の外面は凹凸の無い平坦面である。 Although the porous layer 2 is also formed on the nail region 5 and the finger crotch region 6 of the glove body 1, in the nail region 5 and the finger crotch region 6, an uneven shape is formed on the outer surface of the porous layer 2. Not. That is, the outer surface of the porous layer 2 laminated on the nail region 5 and the finger crotch region 6 is a flat surface without unevenness.
 一般に、滑止手袋の凹凸形状を形成した部分の柔軟性は向上するが、強度は低下する。これに対し、当該滑止手袋では、爪領域5及び指股領域6に多孔質層2を形成し、これらの領域には凹凸形状を形成しないようにすることで、爪領域5及び指股領域6の強度を向上させている。 Generally, the softness of the non-slip glove formed portion is improved, but the strength is reduced. On the other hand, in the non-slip glove, the porous layer 2 is formed in the nail region 5 and the finger crotch region 6, and the unevenness region is not formed in these regions, whereby the nail region 5 and the finger crotch region are formed. The strength of 6 is improved.
 上記多孔質層2は、主成分とするポリウレタン以外に、ポリ塩化ビニル、天然ゴム、イソプレン、クロロプレン、アクリル酸エステル、スチレン-ブタジエン共重合体、アクリロニトリル-ブタジエン共重合体(NBR)、ブチルゴム、ポリブタジエンゴム、シリコーンゴム、あるいは10質量%以下のカルボキシル変性基等をもつ共重合体などが含まれていてもよい。また、周知の架橋剤、加硫促進剤、老化防止剤、増粘剤等を添加するとともに、起泡剤、整泡剤を添加してもよい。起泡剤としては、スルホコハク酸アルキルモノアミドジナトリウム、オレイン酸カリ、ひまし油カリ、ドデシルベンゼンスルホン酸ソーダなどを利用できる。整泡剤としては、ステアリン酸アンモニウム、ペプチド、アルキルジプロピオン酸ソーダ等を利用できる。ここでアルキルは、ラウリル、オクチル、ステアリルを意味する。 The above-mentioned porous layer 2 is made of polyvinyl chloride, natural rubber, isoprene, chloroprene, acrylic acid ester, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer (NBR), butyl rubber, polybutadiene, in addition to polyurethane as the main component. A rubber, silicone rubber, or a copolymer having 10% by mass or less of a carboxyl-modified group or the like may be contained. Moreover, while adding a well-known crosslinking agent, a vulcanization accelerator, an anti-aging agent, a thickener, etc., you may add a foaming agent and a foam stabilizer. As a foaming agent, alkyl monoamide disulfosuccinate, potassium oleate, castor oil potassium, sodium dodecylbenzene sulfonate and the like can be used. As a foam stabilizer, ammonium stearate, a peptide, sodium alkyldipropionate and the like can be used. Here, alkyl means lauryl, octyl and stearyl.
<滑止手袋の製造方法>
 当該滑止手袋は種々の方法によって製造可能であるが、その一例を以下に示す。
<Method of manufacturing anti-slip gloves>
The non-slip gloves can be manufactured by various methods, an example of which is shown below.
 繊維からなる糸を手袋状に編成した手袋本体1を準備し、浸漬加工用手型に手袋本体1を被せたものを、ポリウレタンとジメチルホルムアミド(DMF)とを含む溶液に浸漬する。その後、DMFを水と置換することでポリウレタンを析出させ、手袋本体1に含浸及び積層させた多孔質層2を形成する。なお、DMFにメチルエチルケトン(MEK)等の既知の有機溶媒を混合して使用してもよい。 A glove body 1 in which yarns made of fibers are knitted in a glove shape is prepared, and a body obtained by covering the glove body 1 on an immersion processing hand mold is dipped in a solution containing polyurethane and dimethylformamide (DMF). Thereafter, polyurethane is deposited by replacing DMF with water to form a porous layer 2 impregnated and laminated on the glove body 1. In addition, you may mix and use DMF and known organic solvents, such as methyl ethyl ketone (MEK).
 次に、その手袋本体1を平型に被せ、凹凸板を掌領域の上に設置し、プレスすることにより手袋の外面に凹凸形状を形成する。このとき、爪領域5及び指股領域6の部分には、このプレスを行わないか、これらの部分に積層された多孔質層2の厚さが変化しない程度のわずかなプレスを行う。その結果、プレス後の当該滑止手袋の爪領域5及び指股領域6における平均厚さは、凸部3の平均厚さと略等しくなる。なお、ここで手袋をプレスする際は、凹凸板を加熱してプレスする等、加熱しながらプレスすることが好ましい。加熱しながらプレスすることにより、手袋の外面に凹凸形状が形成されやすくなる。また、プレスを行わない爪領域5及び指股領域6は、凹凸板によって加熱されることにより強度が向上する。 Next, the glove body 1 is covered with a flat mold, and the concavo-convex plate is placed on the palm area and pressed to form a concavo-convex shape on the outer surface of the glove. At this time, this pressing is not performed on the portions of the nail region 5 and the finger crotch region 6, or a slight pressing is performed such that the thickness of the porous layer 2 laminated on these portions does not change. As a result, the average thickness of the claw area 5 and the finger crotch area 6 of the non-slip glove after pressing becomes substantially equal to the average thickness of the convex portion 3. In addition, when pressing a glove here, it is preferable to heat and press, such as heating and pressing an uneven board. By pressing while heating, an uneven shape is easily formed on the outer surface of the glove. Moreover, the strength is improved by heating the claw area 5 and the finger crotch area 6 which are not pressed by the uneven plate.
 上記溶液中のポリウレタンの固形分濃度の上限としては、14質量%が好ましく、13質量%がさらに好ましい。また、上記溶液中のポリウレタンの固形分濃度の下限としては、10質量%が好ましく、11質量%がさらに好ましい。ポリウレタンの固形分濃度が上記上限を超えると、当該滑止手袋の柔軟性が損なわれるおそれがある。また、ポリウレタンの固形分濃度が上記下限未満であると、上記多孔質層2による被膜の強度が損なわれ、当該滑止手袋の耐久性が低下するおそれがある。 As a maximum of solid content concentration of polyurethane in the above-mentioned solution, 14 mass% is preferred and 13 mass% is still more preferred. Moreover, as a minimum of solid content concentration of polyurethane in the above-mentioned solution, 10 mass% is preferred, and 11 mass% is more preferred. If the solid content concentration of the polyurethane exceeds the above upper limit, the softness of the non-slip glove may be impaired. In addition, when the solid content concentration of the polyurethane is less than the above lower limit, the strength of the film by the porous layer 2 may be impaired, and the durability of the non-slip glove may be reduced.
 一般に、上記溶液中の固形分を多くすると、手袋本体1に含浸及び積層される樹脂の密度が高くなり、樹脂被膜の強度が向上するが、手袋が固くなり柔軟性が損なわれる。しかし、当該滑止手袋は、上記多孔質層2の外面に凹凸形状が形成されていることにより柔軟性が向上しているので、上記溶液中の固形分を多くしても当該滑止手袋には十分な柔軟性が確保される。 Generally, when the solid content in the solution is increased, the density of the resin impregnated and laminated in the glove body 1 is increased, and the strength of the resin film is improved, but the glove is hardened and the flexibility is impaired. However, the softness of the non-slip gloves is improved by forming the uneven shape on the outer surface of the porous layer 2 so that the softness is improved even if the solid content in the solution is increased. Is flexible enough.
<利点>
 上記構成からなる当該滑止手袋は、掌領域に含浸及び積層する多孔質層2をポリウレタンを主成分とする樹脂組成物により構成しているので、透湿性に優れ、着用者の手が蒸れることを抑制できる。また、当該滑止手袋は、掌領域の外面にプレス加工による凹凸形状が形成されていることにより、その凹凸形状の凹部が溝となって曲がりやすく、良好な柔軟性を発揮する。
<Advantage>
Since the non-slip glove having the above-mentioned configuration is made of the resin composition containing polyurethane as a main component, the porous layer 2 impregnated and laminated in the palm region is excellent in moisture permeability and the hand of the wearer is steamed. Can be suppressed. Moreover, since the uneven | corrugated shape by press processing is formed in the outer surface of a palm area | region, the said anti-slip glove becomes a groove | channel, it easily bends the recessed part of the uneven | corrugated shape, and exhibits favorable softness | flexibility.
 また、当該滑止手袋は、上記多孔質層が、ポリウレタンと有機溶媒とを含む溶液に上記手袋本体を浸漬後、有機溶媒を水と置換することで形成されているので、容易かつ確実に上記手袋本体に多孔質層を形成することができる。 In addition, the non-slip gloves are formed easily and reliably because the porous layer is formed by immersing the organic solvent in water after immersing the glove body in a solution containing polyurethane and the organic solvent. A porous layer can be formed on the glove body.
 また、当該滑止手袋の上記凹凸形状における凸部の平面視形状が正六角形であり、複数の凸部がハニカム状に配設されているので、当該滑止手袋の掌領域に一様に曲げやすい柔軟性を持たせることができ、また当該滑止手袋の意匠性が向上している。 Moreover, since the planar view shape of the convex part in the said uneven | corrugated shape of the said anti-slip glove is a regular hexagon and several convex parts are arrange | positioned by honeycomb shape, it bends uniformly in the palm area | region of the said anti-slip glove. It is possible to have easy flexibility, and the design of the non-slip gloves is improved.
 また、当該滑止手袋は、上記手袋本体の爪領域及び指股領域に上記多孔質層が形成され、この爪領域及び指股領域において多孔質層が外面に凹凸形状を有さないことにより、当該滑止手袋の爪領域及び指股領域の部分で高い強度を有する。 Further, in the non-slip glove, the porous layer is formed in the nail region and the finger crotch region of the glove main body, and in the nail region and the finger crotch region, the porous layer has no uneven shape on the outer surface, It has high strength in the area of the nail area and the finger crotch area of the non-slip glove.
[その他の実施形態]
 なお、本発明は上記態様の他、種々の変更、改良を施した態様で実施することができる。上記実施形態において、図2に示す構成では、多孔質層2が凹凸側と反対側の手袋本体1の面(内面)まで、すなわち、手袋本体1の厚み方向の全体に亘って含浸しているが、この手袋本体1内部へ含浸させる程度を変えてもよい。例えば、多孔質層2が手袋本体1内部の厚み方向の中央付近まで含浸させてもよい。なお、厚み方向の全体に亘って含浸したほうが、手袋の中で手が滑らないため好ましい。
Other Embodiments
The present invention can be practiced in variously modified and / or improved modes other than the above modes. In the above embodiment, in the configuration shown in FIG. 2, the porous layer 2 is impregnated up to the surface (inner surface) of the glove body 1 opposite to the uneven side, ie, the entire thickness direction of the glove body 1 However, the degree of impregnation into the inside of the glove body 1 may be changed. For example, the porous layer 2 may be impregnated up to near the center in the thickness direction inside the glove body 1. In addition, it is preferable to impregnate the whole in the thickness direction because the hand does not slip in the glove.
 また、上記実施形態の凹凸形状を構成している凸部3は、平面視で正六角形の形状としたが、正六角形ではない六角形状とし、その複数の凸部を歪んだハニカム状に配設する構成としてもよい。さらに、凸部3の平面視による形状を、六角形状に限らず、楕円形状や六角形以外の多角形状として、同一方向に複数等間隔に配置してもよい。また、凸部の一部が連結した形状として構成してもよい。また、略六角形状として、図4に示す凸部13を有してもよい。図4では、一つの凸部13の外形を太い破線で示している。図4に示す凸部13は、このように略六角形の外形を有し、その内部に凹部14を構成する2つの溝が形成されており、隣接する凸部13が互いに連結している。また、これらの凹凸形状は、掌領域全体に限らず、任意の部分に施しても良く、さらに、一種類の凹凸形状に限らず、複数の凹凸形状を組み合わせてもよい。このように凸部を形成及び配置することによっても柔軟性が得られる。 Moreover, although the convex part 3 which comprises the uneven | corrugated shape of the said embodiment was made into the shape of a regular hexagon by planar view, it is set as the hexagonal shape which is not a regular hexagon, and arrange | positions the some convex part in the honeycomb shape distorted. It may be configured to Furthermore, the shape of the convex portion 3 in a plan view is not limited to a hexagonal shape, and may be arranged at equal intervals in the same direction as an elliptical shape or a polygonal shape other than a hexagonal shape. Moreover, you may comprise as a shape which one part of the convex part connected. Moreover, you may have the convex part 13 shown in FIG. 4 as a substantially hexagonal shape. In FIG. 4, the outer shape of one convex portion 13 is indicated by a thick broken line. The convex portion 13 shown in FIG. 4 thus has a substantially hexagonal outer shape, in which two grooves forming the concave portion 14 are formed, and the adjacent convex portions 13 are connected to each other. Moreover, these uneven | corrugated shapes may be given not only the whole palm area | region but arbitrary parts, and also you may combine not only one uneven | corrugated shape but several uneven | corrugated shapes. Flexibility is also obtained by forming and arranging the projections in this manner.
 また上記実施形態において、多孔質層2は、手袋本体1の掌領域に含浸及び積層されているが、手袋本体1の手の甲側の領域にも多孔質層が含浸及び積層されていてもよい。手の甲側の領域にも多孔質層を形成することにより、滑止手袋の強度を向上させることができる。 Moreover, in the said embodiment, although the porous layer 2 is impregnated and laminated | stacked on the palm area | region of the glove main body 1, the porous layer may be impregnated and laminated also in the area | region of the back side of the hand of the glove main body 1. The strength of the non-slip gloves can be improved by forming the porous layer also in the area on the back side of the hand.
 以下、実施例及び比較例を挙げて本発明をさらに詳細に説明するが、当該発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples and comparative examples, but the present invention is not limited to the following examples.
[実施例1]
 ポリウレタン(DIC株式会社のポリウレタン「MP-182」)をDMFで樹脂固形分12質量%に希釈した溶液を用意した。浸漬用手型にナイロン糸(280d(311dtex))を13G手袋編み機(株式会社島精機製作所の「N-SFG」)で編んだ編み手袋(厚み0.7mm)を被せたものを掌側のみ上記溶液に浸漬し、引き上げた。次いで水温25℃の水槽中で2時間、DMFと水を置換することにより多孔質ポリウレタンを形成させた。水槽から浸漬用手型を引き上げた後、浸漬用手型から手袋を抜き、その手袋を軽く脱水した後に平型に被せて、140℃に加熱した凹凸板を掌側に1kgf/cmで3秒間プレスし、手袋の掌側の外面を凹凸模様にプレス加工した。ここで、手袋の掌側の外面に凸部占有率25%の凹凸を形成するために、プレスに用いる凹凸板としては、凹部占有率25%、凹部深度0.5mm、正六角形状の凹部の直径(正六角形の対向する頂点を結ぶ対角線の長さ)2.6mmの凹凸板を用いた。その後、手袋を100℃のオーブンに入れて40分間乾燥させ、掌側に凹凸形状を有する多孔質ポリウレタンが積層された滑止手袋を得た。
Example 1
A solution was prepared by diluting polyurethane (polyurethane "MP-182" from DIC Corporation) with DMF to a resin solid content of 12% by mass. A hand with an immersion hand covered with a nylon glove (280d (311dtex)) covered with a 13G glove knitting machine (“N-SFG” from Shima Seiki Co., Ltd.) Immersed in the solution and pulled up. The porous polyurethane was then formed by replacing DMF and water in a water bath at 25 ° C. for 2 hours. After raising the hand mold for immersion from the water tank, remove the glove from the hand mold for immersion, lightly dehydrate the glove, cover it on a flat mold, and heat the uneven plate heated at 140 ° C to 1 kgf / cm 2 on the palm side. It pressed for 2 seconds and pressed the outer surface of the palm side of the glove in an uneven pattern. Here, as a concavo-convex plate used for the press in order to form a concavo-convex with a convex part occupancy 25% on the outer surface on the palm side of the glove, a concave part occupancy 25%, a concave depth 0.5 mm, a regular hexagonal concave An uneven plate with a diameter of 2.6 mm (a diagonal length connecting opposite apexes of a regular hexagon) was used. Thereafter, the glove was placed in an oven at 100 ° C. and dried for 40 minutes to obtain a non-slip glove on which porous polyurethane having an uneven shape is laminated on the palm side.
 なお、プレスによって生じる凹凸差hは、プレス板の凹部深度よりも小さくなることがある。これはプレスされた部分に元の厚みに戻ろうとする力が働くためである。実施例1の手袋では、凹凸差hは0.45mmとなった。 The unevenness difference h generated by the press may be smaller than the depth of the depressions of the press plate. This is because the pressed portion exerts a force to return to its original thickness. In the glove of Example 1, the unevenness difference h was 0.45 mm.
 プレス加工する際、多孔質層に水分が含まれているとプレスの成形性が向上するので、上述のように、ポリウレタンを多孔質化させた後の手袋は乾燥させずに軽く脱水するだけで、次のプレス加工の工程を行うのが好ましい。 At the time of pressing, if the porous layer contains water, the formability of the press is improved. Therefore, as described above, the glove after making the polyurethane porous is only lightly dewatered without being dried. It is preferable to carry out the following pressing process.
 なお、プレス加工をする直前の多孔質層が積層されている部分の手袋の平均厚み(滑止手袋の最内面から多孔質層の外面までの平均距離)は、0.85mmであった。また、プレス加工に用いた凹凸板は、プレス加工する際には、滑止手袋の多孔質層の凹部の厚み(t2)が0.4mmになるように、凹凸板を手袋に押し当てた。 In addition, the average thickness (average distance from the innermost surface of the non-slip glove to the outer surface of the porous layer) of the glove where the porous layer was laminated immediately before pressing was 0.85 mm. Moreover, the uneven board used for press processing pressed the uneven board to a glove so that the thickness (t2) of the recessed part of the porous layer of a non-slip glove might be 0.4 mm at the time of press processing.
[実施例2~実施例11]
 プレス加工する際に、凹部占有率、凹部深度又は凹部の直径が実施例1とは異なる凹凸板を用いて、実施例1の滑止手袋の凸部占有率、凹凸差又は凸部の直径を表2のように変更したものを実施例2~実施例7、実施例9~実施例11の滑止手袋として用意した。また、編み手袋を浸漬する溶液として、ポリウレタンをDMFで樹脂固形分10質量%に希釈した溶液を用いて得たものを、実施例8の滑止手袋として用意した。
[Examples 2 to 11]
When press working, using a concavo-convex plate having a recess occupancy rate, a recess depth or a recess diameter different from that in Example 1, the protrusion occupancy rate, the unevenness difference or the diameter of the protrusion of the non-slip glove of Example 1 Those modified as shown in Table 2 were prepared as non-slip gloves of Examples 2 to 7 and Examples 9 to 11. Moreover, what was obtained using the solution which diluted polyurethane with DMF to 10 mass% of resin as a solution which dips a knitted glove was prepared as a non-slip glove of Example 8. FIG.
[比較例1~比較例3]
 また、実施例1の滑止手袋を、表2のように凹凸形状を有しない構成に変更したものを比較例1~比較例3の滑止手袋として用意した。比較例1の滑止手袋は、プレス面が平面形状のプレス板を用いたものであり、比較例2及び比較例3の滑止手袋は、プレス加工を行わなかったものである。
[Comparative Example 1 to Comparative Example 3]
Further, as the non-slip gloves of Example 1 were changed to a configuration having no uneven shape as shown in Table 2, the non-slip gloves of Comparative Examples 1 to 3 were prepared. The non-slip glove of Comparative Example 1 uses a press plate having a flat-shaped press surface, and the non-slip gloves of Comparative Example 2 and Comparative Example 3 are not subjected to pressing.
[比較例4]
 NBRラテックスを主成分とする表1に示す熱可塑性樹脂のコンパウンド1を水で総固形分38質量%に希釈し、家庭用自動ハンドミキサーで攪拌して発泡させて、気泡含有量100体積%に調整した。気泡含有量は比重測定にて確認した。なお、表1においてコンパウンド1の各成分は、NBRラテックス中のNBRゴム分を100質量部として計算したものである。次に、実施例1と同じナイロン製編み手袋を浸漬用手型に被せ、凝固液である10質量%の硝酸カルシウムメタノール溶液に浸漬してから、上記発泡したコンパウンドに掌側のみ浸漬し、75℃10分間の熱セットの後に浸漬用手型から手袋を抜いた。その手袋を余分な界面活性剤を除去する為に洗浄し、軽く脱水した後、その手袋を平型に被せて、140℃に加熱した凹凸板を掌側に1kgf/cmで3秒間プレスし、手袋の掌側の外面を凹凸模様にプレス加工した。ここで、プレスの際には、実施例4と同じ凹凸板(凹部占有率75%、凹部深度0.5mm、正六角形状の凹部の直径2.6mm)を用いた。その後、手袋を100℃のオーブンに入れて40分間乾燥させ、掌側に凹凸形状を有するNBRの発泡層が積層された滑止手袋を得た。この滑止手袋を、比較例4の滑止手袋とした。
Comparative Example 4
Compound 1 of thermoplastic resin shown in Table 1 containing NBR latex as a main component is diluted with water to 38% by mass of total solid content, stirred by a household automatic hand mixer to foam, and bubble content to 100% by volume It was adjusted. The bubble content was confirmed by specific gravity measurement. In Table 1, each component of Compound 1 is calculated based on 100 parts by mass of the NBR rubber content in the NBR latex. Next, the same nylon knitting gloves as in Example 1 are put on an immersion hand mold and immersed in a 10 mass% calcium nitrate methanol solution which is a coagulation liquid, and then only the palm side is immersed in the foamed compound, 75 After heat setting for 10 minutes, the gloves were removed from the dipper mold. The glove is washed to remove excess surfactant, and lightly dewatered, then the glove is put on a flat shape, and a corrugated plate heated to 140 ° C. is pressed on the palm side for 3 seconds at 1 kgf / cm 2. The outer surface of the palm side of the glove was pressed into a concavo-convex pattern. Here, at the time of pressing, the same concavo-convex plate as in Example 4 (concave portion occupancy 75%, concave depth 0.5 mm, regular hexagonal concave diameter 2.6 mm) was used. Thereafter, the glove was placed in an oven at 100 ° C. and dried for 40 minutes to obtain a non-slip glove on which a foam layer of NBR having a concavo-convex shape on the palm side is laminated. This non-slip glove was used as the non-slip glove of Comparative Example 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<柔軟性試験>
 上記実施例及び比較例で作成した各手袋の柔軟性について官能評価を行った。具体的には、被験者10名が上記実施例及び比較例で作成した各手袋を着用し、下記の評価基準に基づいて柔軟性について5段階の評価をした。結果を表2に示す。
<Flexibility test>
The sensory evaluation was performed about the softness | flexibility of each glove created by the said Example and comparative example. Specifically, 10 subjects wore each glove created in the above-mentioned example and comparative example, and evaluated five steps about flexibility based on the following evaluation criteria. The results are shown in Table 2.
(柔軟性の評価基準)
A :柔軟性が有り、掌領域の屈曲が極めて良好
B :柔軟性が有り、掌領域の屈曲が良好
C :柔軟性が有り、掌領域の屈曲がやや良好である
D :柔軟性が無く、掌領域の屈曲に支障はない
E :柔軟性が無く、掌領域の屈曲が困難
(Evaluation criteria for flexibility)
A: flexible, bending of palm region very good B: flexible, bending of palm region good C: flexible, bending of palm region slightly good D: no flexibility, There is no problem in bending of palm area E: There is no flexibility, and bending of palm area is difficult
<透湿性試験>
 上記実施例及び比較例で作成した各手袋の掌領域中央から採取した試験片を用いて、それぞれの透湿度をJIS L 1099 A-1法に準拠して測定した。測定した透湿度について、下記の評価基準に基づいて4段階の評価をした。この結果を表2に示す。
<Ventilation test>
Using the test pieces collected from the center of the palm region of each glove prepared in the above Examples and Comparative Examples, the moisture permeability of each was measured according to JIS L 1099 A-1. The measured moisture permeability was evaluated in four steps based on the following evaluation criteria. The results are shown in Table 2.
(透湿性の評価基準)
A :透湿度が、8000g/m・24h以上
B :透湿度が、7000g/m・24h以上8000g/m・24h未満
C :透湿度が、6000g/m・24h以上7000g/m・24h未満
D :透湿度が、6000g/m・24h未満
(Evaluation standard of permeability)
A: moisture permeability, 8000g / m 2 · 24h or more B: moisture permeability, 7000g / m 2 · 24h or more 8000g / m 2 · 24h under C: moisture permeability, 6000g / m 2 · 24h or more 7000 g / m 2 · Less than 24 h D: Moisture permeability is less than 6000 g / m 2 · 24 h
<指部摩耗強度試験>
 上記実施例及び比較例で作成した各手袋の指部摩耗強度試験を、学振式摩耗堅牢度試験機(株式会社大栄科学精器製作所の学振型摩擦試験機「RT-200」)にて実施した。親指、人差指、中指の樹脂積層部から研磨面(2cm×2cm)に貼付できる大きさに切り取られた試験片(2cm×5cm)を摩擦子(重さ500g)に貼付し、耐水研磨紙(三共理科学株式会社の「DCCS-1500」)をステンレス台に貼付して、試験片と耐水ペーパーが接するように摩擦子を下ろす。そして、ステンレス台を前後運動させることで試験片に摩耗を生じさせる。ステンレス台が1往復することで1回カウントし、50回カウントした時の樹脂の摩耗質量を測定した。各手袋について、親指、人差指、中指から採取した試験片ごとに測定し、それらの平均値をその手袋の測定値とした。なお、これらの試験片に爪領域は含まれていない。測定した摩耗質量について、下記の評価基準に基づいて4段階の評価をした。この結果を表2に示す。
<Finger wear strength test>
The finger wear strength test of each glove prepared in the above examples and comparative examples is carried out using a Gakushin type wear fastness tester (Gakushin type friction tester "RT-200" manufactured by Daiei Kagaku Seiki Seisakusho Co., Ltd.) Carried out. A test piece (2 cm x 5 cm) cut into a size that can be stuck to the polished surface (2 cm x 2 cm) from the resin-laminated portion of the thumb, index finger and middle finger is affixed to a friction pad (500 g weight) Apply “DCCS-1500” of Science and Technology Co., Ltd. on a stainless steel table, and lower the friction element so that the test piece and the water resistant paper are in contact. And, by moving the stainless steel table back and forth, the test piece is abraded. The stainless steel stand was counted once by one reciprocation, and the abrasion mass of the resin was measured when counted 50 times. Each glove was measured for each test piece collected from the thumb, index finger, and middle finger, and the average value thereof was taken as the measurement value of the glove. In addition, the nail | claw area | region is not included in these test pieces. The measured wear mass was evaluated in four stages based on the following evaluation criteria. The results are shown in Table 2.
(指部摩耗強度の評価基準)
A :摩耗質量が、2.0mg未満
B :摩耗質量が、2.0mg以上3.5mg未満
C :摩耗質量が、3.5mg以上5.0mg未満
D :摩耗質量が、5.0mg以上
(Evaluation criteria for finger wear strength)
A: Abrasion mass is less than 2.0 mg B: Abrasion mass is 2.0 mg or more and less than 3.5 mg C: Abrasion mass is 3.5 mg or more and less than 5.0 mg D: Abrasion mass is 5.0 mg or more
<指股摩耗強度試験>
 上記実施例及び比較例で作成した各手袋について、欧州規格EN388に準拠して指股摩耗強度試験を実施した。試験機には、James H.Heal&Co.Ltd.の「Nu-Martindale」を用いた。各手袋の指股部からφ12mmの接触面を覆う大きさに切り取った試験片を専用固定冶具(重さ433g)に装着し、試験機に設置した耐水研磨紙(三共理科学株式会社の「DCCS-800」)とすり合わせて摩耗させ、試験片が貫通するまでの回数を測定した。測定した回数について、下記の評価基準に基づいて4段階の評価をした。この試験では、各資料について最大1000回の上記摩擦試験を行った。この結果を表2に示す。表2において「1000<」と示しているものは、摩耗回数1000回で試験片が貫通しなかったことを示している。
<Finger crotch wear strength test>
The finger crotch abrasion strength test was implemented about each glove created by the said Example and comparative example according to European Standard EN388. As test equipment, James H. Heal & Co. Ltd. 'Nu-Martindale' was used. A test piece cut into a size covering the contact surface of φ12 mm from the finger crotch of each glove was attached to a dedicated fixture (weight 433 g), and a water resistant abrasive paper (“DCCS” manufactured by Sanyo Science Co., Ltd.) installed The test piece was worn by rubbing and measured the number of times until the test piece penetrated. The number of times of measurement was evaluated in four stages based on the following evaluation criteria. In this test, each material was subjected to the above-mentioned friction test up to 1000 times. The results are shown in Table 2. The thing shown as "1000 <" in Table 2 has shown that the test piece did not penetrate by the frequency | count of abrasion 1000 times.
(指股摩耗強度の評価基準)
A :摩擦回数が、1000回以上
B :摩擦回数が、600回以上999回以下
C :摩擦回数が、400回以上599回以下
D :摩擦回数が、399回以下
(Evaluation criteria for finger crotch wear strength)
A: The number of frictions is 1,000 or more B: The number of frictions is 600 to 999 times C: The number of frictions is 400 to 599 times D: The number of frictions is 399 or less
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、表2において「凸部の直径」とは、平面視による凸部の正六角形の対向する頂点を結ぶ対角線の長さを示し、「凹凸の比」とは、凸部の平均厚さに対する凹部4の平均厚さの比(t2/t1)を示している。 In Table 2, "the diameter of the convex portion" indicates the length of a diagonal connecting the opposing vertices of the regular hexagon of the convex portion in plan view, and the "concave / convex ratio" refers to the average thickness of the convex portion. The ratio (t2 / t1) of the average thickness of the recessed part 4 is shown.
 表2の結果より、実施例1~実施例11の手袋は、柔軟性、透湿性、指部摩耗強度及び指股摩耗強度に優れており、ポリウレタンを主成分とする樹脂組成物から構成される多孔質層を掌領域に含浸及び積層し、その外面にプレス加工による凹凸形状を形成する構成とすることにより、透湿性及び柔軟性に優れるとともに耐久性にも優れた滑止手袋を得られることがわかる。特に、実施例3及び実施例4の手袋は、凸部占有率が大きいことにより、非常に優れた透湿性が得られることがわかる。 From the results of Table 2, the gloves of Examples 1 to 11 are excellent in flexibility, moisture permeability, finger wear strength and finger crotch wear strength, and are composed of a resin composition containing polyurethane as a main component. By impregnating and laminating the porous layer in the palm region and forming a concavo-convex shape by pressing on the outer surface thereof, it is possible to obtain a non-slip glove excellent in moisture permeability and flexibility as well as in durability. I understand. In particular, it can be seen that the gloves of Example 3 and Example 4 can obtain very excellent moisture permeability due to the large convex portion occupancy rate.
 掌領域全体を一様にプレスした比較例1の手袋では、柔軟性及び透湿性が劣っていることがわかる。これは、プレスにより多孔質層のセルが消滅したためと考えられる。ポリウレタン層のすべてを凹凸をつけずにプレス加工すると、ポリウレタン層の樹脂密度が均一に高くなるため、耐摩耗性が向上しやすくなるが透湿性が悪くなると考えられる。 In the glove of Comparative Example 1 in which the entire palm region is uniformly pressed, it can be seen that the flexibility and the moisture permeability are inferior. This is considered to be because the cells of the porous layer disappeared by the press. If all of the polyurethane layer is pressed without being uneven, the resin density of the polyurethane layer becomes uniformly high, so that the abrasion resistance is likely to be improved but the moisture permeability is considered to be deteriorated.
 また、プレス加工をしていない比較例2の手袋は、透湿性、指部摩耗強度及び指股摩耗強度において優れているが、柔軟性が劣っている。これはポリウレタン多孔質層の外面が凹凸の無い形状であることにより曲がりにくいからである。 Moreover, although the glove of the comparative example 2 which is not press-processed is excellent in moisture permeability, finger part abrasion strength, and finger crotch abrasion strength, the softness is inferior. This is because the outer surface of the polyurethane porous layer is hard to bend because it has a shape without unevenness.
 表2において凹凸差についてみると、実施例4、実施例6及び実施例7を比較すると、凹凸差がある程度大きい方が、柔軟性及び透湿性が向上することがわかる。 Looking at the unevenness difference in Table 2, when Example 4, Example 6 and Example 7 are compared, it can be seen that the flexibility and the moisture permeability are improved as the unevenness difference is somewhat large.
 表2においてDMF溶液中のポリウレタンの固形分濃度についてみると、実施例4と実施例8とを比較して、固形分量が少なくなると、柔軟性及び透湿性については優れた特性が維持されるものの、指部摩耗強度及び指股摩耗強度が低下する。これは、多孔質層におけるポリウレタンの密度が低下したことにより強度が低下したと考えられる。 As for the solid content concentration of polyurethane in the DMF solution in Table 2, when Example 4 and Example 8 are compared, when the amount of solid content decreases, excellent properties of flexibility and moisture permeability are maintained. , Finger wear strength and finger crotch wear strength decrease. This is considered to be due to the decrease in the strength of the polyurethane due to the decrease in the density of the polyurethane in the porous layer.
 また、DMF溶液中のポリウレタンの固形分濃度が等しい実施例8と比較例3とを比較すると、実施例8の方が比較例3よりも指股摩耗強度が優れている。これは、実施例8の手袋の指股領域はプレスされていないが、プレス時に加熱した凹凸板の熱を受けて加熱されたことにより指股摩耗強度が向上したと考えられる。 Further, when Example 8 and Comparative Example 3 in which the solid content concentration of the polyurethane in the DMF solution is equal are compared, Example 8 has better finger crotch wear strength than Comparative Example 3. This is considered to be that although the finger crotch region of the glove of Example 8 is not pressed, the finger crotch abrasion strength is improved by being heated by receiving the heat of the uneven plate heated at the time of pressing.
 表2において凸部の直径についてみると、実施例4、実施例9、実施例10及び実施例11を比較すると、凸部の直径の違いにより、透湿性、指部摩耗強度及び指股摩耗強度に差はみられないものの、凸部の直径が大きくなるにつれて柔軟性が低下することがわかる。これは、凸部の直径が大きくなるにつれて、屈曲するときの起点となる溝状の凹部が少なくなるためと考えられる。 As for the diameters of the convex portions in Table 2, when comparing Example 4, Example 9, Example 10, and Example 11, the moisture permeability, the finger wear strength, and the finger crotch wear strength are different depending on the difference in the diameter of the convex portions. Although there is no difference between them, it can be seen that the flexibility decreases as the diameter of the projections increases. It is considered that this is because as the diameter of the convex portion becomes larger, the groove-like concave portion which becomes the starting point of bending decreases.
 また表2の結果より、実施例1~実施例5の手袋は、NBR発泡層が積層された比較例4の手袋に比べて、透湿性に優れるとともに耐久性にも優れることがわかる。 Further, from the results of Table 2, it is understood that the gloves of Examples 1 to 5 are superior in moisture permeability and also superior in durability as compared with the glove of Comparative Example 4 in which the NBR foam layer is laminated.
 比較例4のNBR発泡層を形成した滑止手袋の掌側の断面を示す電子顕微鏡写真(100倍)を図6Aに示す。また、実施例4の滑止手袋の凸部の断面を示す電子顕微鏡写真(100倍)を図6Bに示し、実施例4の滑止手袋の凹部の断面を示す電子顕微鏡写真(100倍)を図6Cに示す。 The electron micrograph (100 times) which shows the cross section of the palm side of the non-slip glove which formed the NBR foaming layer of the comparative example 4 is shown to FIG. 6A. Moreover, the electron micrograph (100 times) which shows the cross section of the convex part of the anti-slip glove of Example 4 is shown in FIG. 6B, and the electron micrograph (100 times) which shows the cross section of the recessed part of the anti-slip glove of Example 4. It is shown in FIG. 6C.
 図6Aに示すように、比較例4のNBRの発泡層が積層された手袋では、気泡(セル)の孔径が大きく、セル壁(セルの間隔)が厚いことがわかる。これは、ハンドミキサーで攪拌して機械的にNBRを発泡させたことにより、各セルが独立して形成されたためと考えられる。また、NBRは、手袋本体(基布)の内面側までは含浸していないことがわかる。 As shown in FIG. 6A, it can be seen that, in the glove in which the foam layer of NBR of Comparative Example 4 is laminated, the pore diameter of the cells (cells) is large and the cell walls (intervals of cells) are thick. This is considered to be because each cell was formed independently by stirring with a hand mixer to mechanically foam NBR. Further, it can be seen that the NBR is not impregnated up to the inner surface side of the glove body (base fabric).
 一方、図6Bに示すように、実施例4の手袋の凸部では、セルの孔径が大小さまざまであり、表面側に微細セルが多い。また、セルが手袋本体(基布)の内面側まで全体的に広がっており、図6Aに比べてセル壁が薄いことがわかる。これにより、実施例1~実施例11の手袋は、比較例4の手袋に比べて高い透湿性を発現できると考えられる。 On the other hand, as shown to FIG. 6B, in the convex part of the glove of Example 4, the hole diameter of a cell is various in size, and there are many fine cells in the surface side. In addition, it can be seen that the cell extends entirely to the inner surface side of the glove body (base fabric), and the cell wall is thinner compared to FIG. 6A. Thus, it is considered that the gloves of Examples 1 to 11 can exhibit higher moisture permeability as compared with the glove of Comparative Example 4.
 また、図6Cに示すように、実施例4の手袋の凹部では、孔径の大きいセルが無く、図6Bに示す凸部の場合に比べてセル壁が厚いことがわかる。これは、プレス加工時のプレスによりセルが消滅したためと考えられる。従って、凹部における透湿性は凸部における透湿性よりも低くなるので、多孔質層における凸部の領域の割合(面積比)が、滑止手袋の透湿性に大きく影響すると考えられる。 Moreover, as shown to FIG. 6C, in the recessed part of the glove of Example 4, there is no cell with a big hole diameter and it turns out that a cell wall is thick compared with the case of the convex part shown to FIG. 6B. This is considered to be because the cell disappeared by the press at the time of press working. Therefore, since the moisture permeability in the recess is lower than the moisture permeability in the protrusion, the ratio (area ratio) of the area of the protrusion in the porous layer is considered to greatly affect the moisture permeability of the non-slip glove.
 図7のグラフに、凸部占有率と透湿度の関係を示す。図7では、プレス加工の際に用いるプレス板の凹部占有率のみが異なる実施例及び比較例の測定結果を示している。具体的には、実施例1~実施例5、比較例1及び比較例2における透湿度を示している。 The graph of FIG. 7 shows the relationship between the convex portion occupancy rate and the moisture permeability. In FIG. 7, the measurement result of the Example and comparative example from which only the recessed part occupancy rate of the press board used in the case of press processing differs is shown. Specifically, the moisture permeability in Examples 1 to 5 and Comparative Examples 1 and 2 is shown.
 図7より、凸部占有率が増加するに従って透湿度が向上することがわかる。凸部占有率を80%程度とすると、プレス加工をしていない比較例2の手袋と同程度の非常に高い透湿度を有する滑止手袋とすることができる。また、凸部占有率を50%とすると、比較例2の手袋に劣らない高い透湿度を有する滑止手袋とすることができる。また、凸部占有率を30%以上とすれば、6000g/m・24h以上の高い透湿度を発現させることができ、十分な透湿度を有する滑止手袋とすることができる。 It can be seen from FIG. 7 that the moisture permeability improves as the convex portion occupancy rate increases. When the convex portion occupancy rate is about 80%, a non-slip glove having a very high moisture permeability similar to the glove of Comparative Example 2 which is not pressed can be obtained. In addition, when the convex portion occupancy rate is 50%, a non-slip glove having high moisture permeability comparable to the glove of Comparative Example 2 can be obtained. In addition, when the convex portion occupancy rate is 30% or more, high moisture permeability of 6000 g / m 2 · 24 h or more can be expressed, and a non-slip glove having sufficient moisture permeability can be obtained.
<ハニカムパターンの形成角度の検討>
 次に、実施例4において、プレス加工時に用いた凹凸板を平型に被せた編み手袋に押し当てる角度を変えて、手袋の外面にハニカム状に形成される凸部の正六角形の対向する2つの頂点を結ぶ直線(ハニカムパターン方向11)と、手袋本体の裾部中心及び中指中心を結ぶ直線(中指方向10)との成す角度が異なる滑止手袋を作成して、曲げ試験により各滑止手袋の柔軟性を確認した。
<Consideration of formation angle of honeycomb pattern>
Next, in Example 4, changing the angle by which the concavo-convex plate used at the time of press processing is pressed against the flat-typed woven glove, the regular hexagons of convex portions formed in a honeycomb shape on the outer surface of the glove face each other Non-slip gloves are made with different angles between the straight line connecting the two apexes (honeycomb pattern direction 11) and the straight line connecting the skirt center of the glove body and the center of the middle finger (middle finger direction 10). The flexibility of the gloves was confirmed.
 図5A、図5B及び図5Cに示すように、ハニカムパターン方向11と中指方向10との成す角度(ハニカムパターン角度)θを、0°、30°及び45°とした滑止手袋を作成し、各手袋の指部における柔軟性について官能評価を実施した。なお、中指方向10の中指先端に向かう向きを基準として親指側(図5Aに向かって右側であり、矢印Aで示す側)への傾斜を正とした。なお、評価方法は柔軟性試験と同様とした。この結果を表3に示す。 As shown in FIG. 5A, FIG. 5B and FIG. 5C, non-slip gloves are prepared in which the angle (honeycomb pattern angle) θ between the honeycomb pattern direction 11 and the middle finger direction 10 is 0 °, 30 ° and 45 °, A sensory evaluation was performed on the flexibility of the fingers of each glove. Note that the inclination toward the thumb side (the right side in FIG. 5A and the side indicated by the arrow A) with respect to the direction toward the tip of the middle finger in the middle finger direction 10 is positive. The evaluation method was the same as in the flexibility test. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3より、ハニカムパターン角度θが0°のとき、すなわちハニカムパターン方向11が中指方向10と平行のときに柔軟性に優れ、このハニカムパターン角度θが30°を超えると柔軟性が低下することがわかる。ハニカムパターン方向11が30°以下の範囲であれば、滑止手袋の指部分について十分な柔軟性が得られることがわかる。 According to Table 3, when the honeycomb pattern angle θ is 0 °, that is, when the honeycomb pattern direction 11 is parallel to the middle finger direction 10, the flexibility is excellent, and when the honeycomb pattern angle θ exceeds 30 °, the flexibility decreases. I understand. When the honeycomb pattern direction 11 is in the range of 30 ° or less, it is understood that sufficient flexibility can be obtained for the finger portion of the non-slip glove.
 以上のように、透湿性及び柔軟性に優れた本発明の滑止手袋は、例えば工場等において作業者が着用したり、運搬作業に際して作業者が着用したり、ドライブに際してドライバーが着用する等、種々の目的で用いることができる。 As described above, the non-slip gloves according to the present invention, which are excellent in moisture permeability and flexibility, are worn by workers in, for example, a factory, worn by workers when carrying work, worn by drivers when driving, etc. It can be used for various purposes.
 1 手袋本体
 2 多孔質層
 3、13 凸部
 4、14 凹部
 5 爪領域
 6 指股領域
 7 凸部の平面視領域
 8 凹部の平面視領域
 10 中指方向
 11 ハニカムパターン方向
 12 手袋本体の繊維束(糸)
DESCRIPTION OF SYMBOLS 1 glove body 2 porous layer 3, 13 convex portion 4, 14 concave portion 5 claw region 6 finger crotch region 7 planar view region of convex portion 8 planar view region of concave portion 10 middle finger direction 11 honeycomb pattern direction 12 fiber bundle of glove main body ( yarn)

Claims (8)

  1.  着用者の手を覆う繊維製の手袋本体と、
     この手袋本体の外面側の少なくとも掌領域に含浸及び積層される多孔質層と
     を備える滑止手袋であって、
     上記多孔質層が、ポリウレタンを主成分とする樹脂組成物から構成され、掌領域の外面にプレス加工による凹凸形状が形成されていることを特徴とする滑止手袋。
    A textile glove body covering the wearer's hand,
    A non-woven glove comprising: a porous layer impregnated and laminated on at least a palm region on the outer surface side of the glove body,
    The non-slip glove according to the present invention, wherein the porous layer is made of a resin composition containing polyurethane as a main component, and an uneven shape is formed on the outer surface of the palm region by pressing.
  2.  上記多孔質層外面の凹凸形状における凸部占有率が30%以上80%以下である請求項1に記載の滑止手袋。 The non-slip glove according to claim 1, wherein a convex portion occupancy rate in the uneven shape of the outer surface of the porous layer is 30% or more and 80% or less.
  3.  上記凹凸形状の凸部の平均厚さに対する凹部の平均厚さの比が30%以上75%以下である請求項1又は請求項2に記載の滑止手袋。 The non-slip glove according to claim 1 or 2, wherein a ratio of an average thickness of the concave portion to an average thickness of the convex portion having the concavo-convex shape is 30% or more and 75% or less.
  4.  上記掌領域における多孔質層の平均透湿度が6000g/m・24h以上である請求項1、請求項2又は請求項3に記載の滑止手袋。 The non-woven glove according to claim 1, 2 or 3, wherein the average moisture permeability of the porous layer in the palm region is 6000 g / m 2 · 24 h or more.
  5.  上記多孔質層が、ポリウレタンと有機溶媒とを含む溶液に上記手袋本体を浸漬後、有機溶媒を水と置換することで形成されている請求項1から請求項4のいずれか1項に記載の滑止手袋。 The said porous layer is formed by substituting the organic solvent with water, after immersing the said glove body in the solution containing a polyurethane and an organic solvent, The any one of Claim 1 to 4 Non-slip gloves.
  6.  上記凹凸形状における凸部の平面視形状が略六角形であり、複数の凸部がハニカム状に配設されている請求項1から請求項5のいずれか1項に記載の滑止手袋。 The non-slip glove according to any one of claims 1 to 5, wherein the plan view shape of the convex portion in the concavo-convex shape is a substantially hexagonal shape, and the plurality of convex portions are arranged in a honeycomb shape.
  7.  上記凸部の平面視形状が正六角形であり、この正六角形の対向する2つの頂点を結ぶ直線と上記手袋本体の裾部中心及び中指中心を結ぶ直線との成す最小角度が0度以上30度以下である請求項6に記載の滑止手袋。 The plan view shape of the convex portion is a regular hexagon, and the minimum angle formed by a straight line connecting two opposing apexes of the regular hexagon and a straight line connecting the center of the foot of the glove body and the center of the middle finger is 0 degrees to 30 degrees. The non-slip glove according to claim 6, which is the following.
  8.  上記手袋本体の爪領域及び指股領域に上記多孔質層が形成され、この爪領域及び指股領域において多孔質層が外面に凹凸形状を有さない請求項1から請求項7のいずれか1項に記載の滑止手袋。 The porous layer is formed on the nail area and the finger crotch area of the glove body, and the porous layer does not have an uneven shape on the outer surface in the nail area and the finger crotch area. Non-slip gloves according to the paragraph.
PCT/JP2014/067845 2013-08-12 2014-07-03 Non-slip glove WO2015022819A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015531746A JP6305408B2 (en) 2013-08-12 2014-07-03 Non-slip gloves
CN201480045065.6A CN105473016B (en) 2013-08-12 2014-07-03 Slip-proof glove

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013167796 2013-08-12
JP2013-167796 2013-08-12

Publications (1)

Publication Number Publication Date
WO2015022819A1 true WO2015022819A1 (en) 2015-02-19

Family

ID=52468209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067845 WO2015022819A1 (en) 2013-08-12 2014-07-03 Non-slip glove

Country Status (3)

Country Link
JP (1) JP6305408B2 (en)
CN (1) CN105473016B (en)
WO (1) WO2015022819A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020056132A (en) * 2018-10-03 2020-04-09 勝星産業株式会社 Glove and manufacturing method of the same
EP3906798A1 (en) * 2020-05-06 2021-11-10 Top Glove International Sdn. Bhd. Embossments for thin film articles

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108308764A (en) * 2018-04-24 2018-07-24 重庆大学 A kind of production method of gloves and the gloves for artificial grind away
CN108749168B (en) * 2018-06-08 2020-08-18 广东省良展有机硅科技有限公司 High-humidity friction silicon rubber and preparation method thereof
JP6435435B1 (en) * 2018-06-18 2018-12-05 ショーワグローブ株式会社 Work gloves
CN108773820B (en) * 2018-08-14 2019-06-04 北京大医未然生物科技有限公司 One kind fast and safely opening fingerstall
JP6564924B1 (en) * 2018-12-05 2019-08-21 ショーワグローブ株式会社 gloves
CN111358093A (en) * 2020-03-04 2020-07-03 无锡中博天际核生化应急装备科技有限公司 Medical waste treatment protective gloves and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158406A (en) * 1992-11-24 1994-06-07 Asahi Chem Ind Co Ltd Gloves for working
JP2006169676A (en) * 2004-12-17 2006-06-29 Showa Co Glove
WO2008029703A1 (en) * 2006-09-04 2008-03-13 Showa Glove Co. Glove
JP2008214794A (en) * 2007-03-01 2008-09-18 Toray Coatex Co Ltd Glove insert having three-dimensional shape, and method for producing the same
US20090139008A1 (en) * 2007-11-09 2009-06-04 Under Armour, Inc. Golf Glove
JP2013104134A (en) * 2011-11-10 2013-05-30 Showa Glove Kk Glove, and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7378043B2 (en) * 2005-01-12 2008-05-27 Ansell Healthcare Products Llc Latex gloves and articles with geometrically defined surface texture providing enhanced grip and method for in-line processing thereof
JP5773594B2 (en) * 2009-08-19 2015-09-02 ショーワグローブ株式会社 gloves

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158406A (en) * 1992-11-24 1994-06-07 Asahi Chem Ind Co Ltd Gloves for working
JP2006169676A (en) * 2004-12-17 2006-06-29 Showa Co Glove
WO2008029703A1 (en) * 2006-09-04 2008-03-13 Showa Glove Co. Glove
JP2008214794A (en) * 2007-03-01 2008-09-18 Toray Coatex Co Ltd Glove insert having three-dimensional shape, and method for producing the same
US20090139008A1 (en) * 2007-11-09 2009-06-04 Under Armour, Inc. Golf Glove
JP2013104134A (en) * 2011-11-10 2013-05-30 Showa Glove Kk Glove, and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020056132A (en) * 2018-10-03 2020-04-09 勝星産業株式会社 Glove and manufacturing method of the same
EP3906798A1 (en) * 2020-05-06 2021-11-10 Top Glove International Sdn. Bhd. Embossments for thin film articles

Also Published As

Publication number Publication date
JP6305408B2 (en) 2018-04-04
CN105473016A (en) 2016-04-06
JPWO2015022819A1 (en) 2017-03-02
CN105473016B (en) 2018-06-12

Similar Documents

Publication Publication Date Title
WO2015022819A1 (en) Non-slip glove
DK3175727T3 (en) SUPPORT GLOVE AND METHOD OF MANUFACTURING THE SUPPORT GLOVE
US9622526B2 (en) Glove, and method for producing the same
US10349690B2 (en) Supported glove having grip features
US20160192721A1 (en) Glove
WO2011158696A1 (en) Work glove
US9622524B2 (en) Breathable coated and perforated gloves
CN107846997B (en) Glove with reinforcement and impact features
EP2612566A1 (en) Glove
US20150374052A1 (en) Glove having durable ultra-thin polymeric coating
NZ570146A (en) Lightweight thin flexible polymer coated glove and a method therefor
US12035768B2 (en) Thin coated supported glove
US20130180028A1 (en) Glove
CN105848507B (en) Slip-proof glove
US20220243367A1 (en) Thin high cut seamless glove
WO2016189936A1 (en) Base material for glove, and glove
JP2008248439A (en) Working glove and method for producing the same
JP2022176103A (en) Anti-slip gloves
EP2752123B1 (en) Covering in order to increase the sensitivity to touch
KR20230025610A (en) Glove for finger area cutting prevention
TWM323212U (en) Improved structure of strengthened working glove

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480045065.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836631

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015531746

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14836631

Country of ref document: EP

Kind code of ref document: A1