WO2014171541A1 - 有機電界発光素子用の複素環化合物及びその用途 - Google Patents

有機電界発光素子用の複素環化合物及びその用途 Download PDF

Info

Publication number
WO2014171541A1
WO2014171541A1 PCT/JP2014/061069 JP2014061069W WO2014171541A1 WO 2014171541 A1 WO2014171541 A1 WO 2014171541A1 JP 2014061069 W JP2014061069 W JP 2014061069W WO 2014171541 A1 WO2014171541 A1 WO 2014171541A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
benzo
mmol
compound
triazine
Prior art date
Application number
PCT/JP2014/061069
Other languages
English (en)
French (fr)
Inventor
祐児 岡
信道 新井
佑一 宮下
忠寛 肆矢
華奈 藤田
内田 直樹
桂甫 野村
田中 剛
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to KR1020157025394A priority Critical patent/KR102149568B1/ko
Priority to US14/783,110 priority patent/US9780310B2/en
Priority to CN201480021129.9A priority patent/CN105340100B/zh
Publication of WO2014171541A1 publication Critical patent/WO2014171541A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/22Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing two or more pyridine rings directly linked together, e.g. bipyridyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/26Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers

Definitions

  • the present invention relates to a novel heterocyclic compound for an organic electroluminescence device excellent in long life and its use.
  • An organic electroluminescent element has a basic structure in which a light-emitting layer containing a light-emitting material is sandwiched between a hole transport layer and an electron transport layer, and an anode and a cathode are attached to the outside of the light-emitting layer.
  • This element utilizes light emission (fluorescence or phosphorescence) accompanying exciton deactivation caused by recombination of holes and electrons, and is applied to displays and the like.
  • the hole transport layer is divided into a hole transport layer and a hole injection layer, the light emitting layer is divided into an electron blocking layer, a light emitting layer and a hole blocking layer, and the electron transport layer is divided into an electron transport layer and an electron injection layer. May be configured.
  • the present invention has been made in view of the above-described background art, and the object thereof is a novel heterocyclic compound for an organic electroluminescent device having particularly excellent long life, and an organic electroluminescent device using the heterocyclic compound. Is to provide.
  • the inventors of the present invention in a nitrogen-containing heteroaromatic group in a known electron transport material for an organic electroluminescence device, the carbon atom adjacent to the nitrogen atom is Electrons are likely to be insufficient due to differences in electronegativity, and there is a tendency for electrons to localize, and it was considered that one of the factors affecting the lifetime is to decompose from the localized locations when the element is driven. Therefore, further investigation was performed based on the idea that the lifetime of the compound is extended by delocalizing the localized orbitals, and that the lifetime of the organic electroluminescent device is extended.
  • an alkyl group is selected from the group consisting of an alkyl group, an alkoxyl group, a halogen group, an amino group, a phosphil group, a silyl group, a thiol group, and an acyl group on at least one carbon atom adjacent to the nitrogen atom.
  • the present inventors use a novel cyclic azine compound represented by the following general formula (1), general formula (2), or general formula (2 ′) for an electron transport layer or an electron injection layer.
  • general formula (1) general formula (2)
  • general formula (2 ′) general formula (2)
  • electron transport layer or an electron injection layer an electron transport layer or an electron injection layer.
  • the present inventors have found that the conventional organic electroluminescence device is remarkably excellent in long-life characteristics as compared with a device using a conventionally known electron transporting material.
  • each of the substituents B independently represents an azabenzene group, a diazabenzene group, or an azanaphthalene group having an alkyl group having 1 to 12 carbon atoms on at least one of the carbon atoms adjacent to the nitrogen atom.
  • the substituent C ′ is a diarylpyrimidine group or a diaryltriazine group (the aryl groups in the diarylpyrimidine group and the diaryltriazine group are each independently substituted with an alkyl group having 1 to 4 carbon atoms. 12 aromatic hydrocarbon groups).
  • Ar 1 is an aromatic hydrocarbon group having 6 to 20 carbon atoms that may be substituted with an alkyl group having 1 to 4 carbon atoms, or 4 carbon atoms that may be substituted with an alkyl group having 1 to 4 carbon atoms.
  • Each X independently represents a phenylene group or an azabenzenediyl group which may be substituted with an alkyl group having 1 to 4 carbon atoms.
  • p and q each independently represent 0, 1, or 2.
  • Ar 2 represents an optionally substituted aromatic hydrocarbon group having 6 to 12 carbon atoms.
  • Each r independently represents 0, 1 or 2.
  • n 2 represents 1, 2 or 3.
  • n 3 represents 2 or 3.
  • Substituent C ′′ has the following formula (C ′′ -56), (C ′′ -57), (C ′′ -66), (C ′′ -68), or (C ′′ -81). To express. )
  • R 2 independently represents an alkyl group having 1 to 4 carbon atoms.
  • an organic electroluminescent device that is superior in long-life characteristics as compared to conventional devices. Furthermore, an organic electroluminescent device excellent in luminous efficiency characteristics and driving voltage characteristics in addition to long life characteristics, and a novel cyclic azine compound contained in the electron transport layer and the electron injection layer of the organic electroluminescent element are provided. Is done.
  • the organic electroluminescent element material of the present invention contains a cyclic azine compound represented by the following general formula (1), general formula (2), or general formula (2 ′).
  • a cyclic azine compound represented by the following general formula (1), general formula (2), or general formula (2 ′).
  • Substituent B, Substituent C ′, Ar 1 , X, p, q, Substituent C ′′, Ar 2 , r, n 2 , and n 3 are as defined above.
  • the azabenzene group represented by the substituent B is not particularly limited, and examples thereof include a 2-pyridyl group, a 3-pyridyl group, and a 4-pyridyl group. In view of long point, 2-pyridyl group or 3-pyridyl group is preferable.
  • the diazabenzene group represented by the substituent B is not particularly limited, and examples thereof include 2-pyrimidyl group, 4-pyrimidyl group, 5-pyrimidyl group, 2-pyrazyl group, 3-pyridazine group, and 4-pyridazine. 2-pyrimidyl group is preferable from the viewpoint of long lifetime of the organic electroluminescence device.
  • the azanaphthalene group represented by the substituent B is not particularly limited, and examples thereof include a 2-quinolyl group, a 3-quinolyl group, a 4-quinolyl group, a 5-quinolyl group, a 6-quinolyl group, and a 7-quinolyl group.
  • a quinolyl group, an 8-quinolyl group, a 1-isoquinolyl group, a 3-isoquinolyl group, a 4-isoquinolyl group, a 5-isoquinolyl group, a 6-isoquinolyl group, a 7-isoquinolyl group, an 8-isoquinolyl group, and the like can be given.
  • the diazanaphthalene group represented by the substituent B is not particularly limited, and examples thereof include 1,5-naphthyridin-2-yl group, 1,5-naphthyridin-3-yl group, 1,5- Naphthyridin-4-yl group, 1,6-naphthyridin-2-yl group, 1,6-naphthyridin-3-yl group, 1,6-naphthyridin-2-yl group, 1,6-naphthyridin-3-yl group 1,6-naphthyridin-4-yl group, 1,6-naphthyridin-5-yl group, 1,6-naphthyridin-7-yl group, 1,6-naphthyridin-8-yl group, 1,7-naphthyridine -2-yl group, 1,7-naphthyridin-3-yl group, 1,7-naphthyridin-4-
  • the azaanthracene group represented by the substituent B is not particularly limited, and examples thereof include a 2-benzo [g] quinolyl group, a 3-benzo [g] quinolyl group, a 4-benzo [g] quinolyl group, 5-benzo [g] quinolyl group, 6-benzo [g] quinolyl group, 7-benzo [g] quinolyl group, 8-benzo [g] quinolyl group, 9-benzo [g] quinolyl group, 10-benzo [g ] Quinolyl group, 1-benzo [g] isoquinolyl group, 3-benzo [g] isoquinolyl group, 4-benzo [g] isoquinolyl group, 5-benzo [g] isoquinolyl group, 6-benzo [g] isoquinolyl group, 7 -Benzo [g] isoquinolyl group, 8-benzo [g] isoquinolyl group, 9-benzo [g] isoquinolyl group, 10-benzo [
  • the diazaanthracene group represented by the substituent B is not particularly limited, and examples thereof include a 3-benzo [g] cinnolyl group, a 4-benzo [g] cinnolyl group, and a 5-benzo [g] cinnolyl group.
  • the azaphenanthrene group represented by the substituent B is not particularly limited, and examples thereof include a 3-benzo [h] quinolyl group, a 4-benzo [h] quinolyl group, a 5-benzo [h] quinolyl group, 6-benzo [h] quinolyl group, 7-benzo [h] quinolyl group, 8-benzo [h] quinolyl group, 9-benzo [h] quinolyl group, 10-benzo [h] quinolyl group, 1-benzo [h ] Isoquinolyl group, 3-benzo [h] isoquinolyl group, 4-benzo [h] isoquinolyl group, 5-benzo [h] isoquinolyl group, 6-benzo [h] isoquinolyl group, 7-benzo [h] isoquinolyl group, 8 -Benzo [h] isoquinolyl group, 9-benzo [h] isoquinolyl group, 10-benzo [h] isoquinolyl group, 1-benzo
  • the diazaphenanthrene group represented by the substituent B is not particularly limited, and examples thereof include a 1,10-phenanthrolin-2-yl group, a 1,10-phenanthroline-3-yl group, and a 1,10- Phenanthroline-4-yl group, 1,10-phenanthroline-5-yl group, 1,10-phenanthroline-6-yl group, 1,10-phenanthroline-7-yl group, 1,10-phenanthroline-8-yl group 1,10-phenanthroline-9-yl group, 1,7-phenanthroline-2-yl group, 1,7-phenanthroline-3-yl group, 1,7-phenanthroline-4-yl group, 1,7-phenanthroline -5-yl group, 1,7-phenanthroline-6-yl group, 1,7-phenanthroline-7-yl group, 1,7-phenanthroline-8- Group, 1,7-phenanthroline-9-yl group, 1,7-phenanthroline-10-yl group, 1,8-
  • the azapentadiene group represented by the substituent B is not particularly limited, and examples thereof include a 1-pyrrole group, a 2-pyrrole group, and a 3-pyrrole group.
  • the oxaazapentadiene group represented by the substituent B is not particularly limited, and examples thereof include a 2-oxazole group, a 4-oxazole group, a 5-oxazole group, a 4-isoxazole group, and a 5-isoxazole group. Etc.
  • the thiaazapentadiene group represented by the substituent B is not particularly limited, and examples thereof include a 2-thiazole group, a 4-thiazole group, a 5-thiazole group, a 4-isothiazole group, and a 5-isothiazole group. Etc.
  • the diazapentadiene group represented by the substituent B is not particularly limited, and examples thereof include 2-imidazole group, 3-imidazole group, 4-imidazole group, 5-imidazole group, 2-pyrazole group, 3 -Pyrazole group, 4-pyrazole group, 5-pyrazole group and the like can be mentioned.
  • the oxadiazapentadiene group represented by the substituent B is not particularly limited, and examples thereof include a 4-oxadiazole group.
  • the thiodiazapentadiene group represented by the substituent B is not particularly limited, and examples thereof include a 4-thiadiazole group.
  • the azaindene group represented by the substituent B is not particularly limited, and examples thereof include 1-indole group, 3-indole group, 4-indole group, 5-indole group, 6-indole group, and 7-indole. Groups and the like.
  • the oxaazaindene group represented by the substituent B is not particularly limited, and examples thereof include a 4-benzoxazole group, a 5-benzoxazole group, a 6-benzoxazole group, a 7-benzoxazole group, a 4-benzoxazole group, Examples thereof include a benzisoxazole group, a 5-benzisoxazole group, a 6-benzisoxazole group, and a 7-benzisoxazole group.
  • the thioazaindene group represented by the substituent B is not particularly limited, and examples thereof include a 4-benzothiazole group, a 5-benzothiazole group, a 6-benzothiazole group, a 7-benzothiazole group, and a 4-benzoiso group.
  • a thiazole group, a 5-benzoisothiazole group, a 6-benzisothiazole group, a 7-benzisothiazole group, and the like can be given.
  • Examples of the diazaindene group represented by the substituent B include a 3-benzimidazole group, a 4-benzimidazole group, a 5-benzimidazole group, a 6-benzimidazole group, and a 7-benzimidazole group.
  • the substituent present on at least one of the carbon atoms adjacent to the nitrogen atom is not particularly limited, and examples thereof include an alkyl group (for example, an alkyl group having 1 to 12 carbon atoms). , Alkoxyl groups (eg methoxy group, ethoxy group, tert-butoxy group etc.), halogen groups (eg fluorine, chlorine, bromine, iodine), amino groups (eg amino group, dimethylamino group, diphenylamino group, ditolylamino) Group, bisbiphenylamino group, etc.), phosphyl group (eg, methyl phosphil group, dimethyl phosphil group, trimethyl phosphil group, triphenyl phosphil group, etc.), silyl group, thiol group, or acyl group (eg, methanoyl) Group, ethanoyl group, propanoyl group, cyclohexanoyl
  • the alkyl group is preferably an alkyl group having 1 to 12 carbon atoms, and is not particularly limited.
  • the alkyl group is preferably a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group in terms of particularly good performance of the organic electroluminescence device.
  • a methyl group is more preferable.
  • an azabenzene group a diazabenzene group, an azanaphthalene group having a methyl group on at least one of the carbons adjacent to the nitrogen atom independently from the point that the lifetime of the organic electroluminescence device is long.
  • the organic electroluminescence device has a long lifetime, and each of them is independently a pyridyl group, a pyrimidyl group, a pyridazyl group having a methyl group on at least one of the carbons adjacent to the nitrogen atom, Pyrazyl group, quinolyl group, isoquinolyl group, quinazolyl group, quinoxalyl group, naphthyridyl group, benzoquinolyl group, benzoisoquinolyl group, phenanthridyl group, phenanthroyl group, benzocinnolyl group, benzoquinazolyl group, benzonaphthylidyl group, pyrrole group, oxazole It is more preferably a group, isoxazole group, thiazole group, isothiazole group, imidazole group, pyrazole group, oxadiazole group, thiadiazole group, ind
  • each of the organic electroluminescent element has a long lifetime, and each of them is independently a pyridyl group, a pyrimidyl group, a pyrazyl group having a methyl group on at least one of the carbons adjacent to the nitrogen atom,
  • the organic electroluminescence device has a long lifetime, and each of them is independently an azabenzene group, a diazabenzene group, or an azanaphthalene having a methyl group on at least one of the carbons adjacent to the nitrogen atom. More preferably, it is a group.
  • Substituents B are each independently 6-methylpyridin-2-yl group, 6-methylpyridin-3-yl group, 2-methylpyridin-3- An yl group, a 4,6-dimethylpyrimidin-2-yl group, a 2-methylquinolin-8-yl group, a 3-methylisoquinolin-1-yl group, or a 2,3-dimethylquinoxalin-6-yl group Is more preferable.
  • substituent B is not specifically limited, and examples thereof include the following heteroaryl groups.
  • the substituent B is preferably a heteroaryl group shown below from the viewpoint that the lifetime of the organic electroluminescent element is long.
  • the substituent B is preferably a heteroaryl group shown below from the viewpoint of easy synthesis.
  • Compound A has a long lifetime of the organic electroluminescent device, and in addition to at least one substituent B, at least one triarylpyrimidine group and triaryltriazine group (aryl group in triarylpyrimidine group and triaryltriazine group).
  • substituent B at least one triarylpyrimidine group and triaryltriazine group (aryl group in triarylpyrimidine group and triaryltriazine group).
  • substituent C an aromatic hydrocarbon group having 6 to 12 carbon atoms which may be substituted with an alkyl group having 1 to 4 carbon atoms
  • the triarylpyrimidine group represented by the substituent C is not particularly limited, and examples thereof include the following substituents.
  • the triarylpyrimidine group shown below is preferable in that the lifetime of the organic electroluminescent element is long.
  • the triaryltriazine group shown below is preferable in that the performance of the organic electroluminescent element is good.
  • the organic electroluminescent element material of the present invention is represented by the following general formula (1), (2), (2 ′), (3), or (3 ′) in that the lifetime of the organic electroluminescent element is excellent. It is preferable that it is represented.
  • the substituents B are each independently an azabenzene group, a diazabenzene group, an azanaphthalene group, a diazanaphthalene group, an azaanthracene group, a diaza having a methyl group on at least one of the carbon atoms adjacent to the nitrogen atom.
  • Anthracene group azaphenanthrene group, diazaphenanthrene group, azapentadiene group, diazapentadiene group, oxaazapentadiene group, thiaazapentadiene group, oxadiazapentadiene group, thiodiazapentadiene group, azaindene group, oxaazaindene group Represents a thioazaindene group or a diazaindene group.
  • the substituent C ′ is a diarylpyrimidine group or a diaryltriazine group (the aryl groups in the diarylpyrimidine group and the diaryltriazine group may each independently be substituted with an alkyl group having 1 to 4 carbon atoms.
  • Ar 1 is an aromatic hydrocarbon group having 6 to 20 carbon atoms that may be substituted with an alkyl group having 1 to 4 carbon atoms, or 4 carbon atoms that may be substituted with an alkyl group having 1 to 4 carbon atoms. Represents 14 to 14 nitrogen-containing heterocyclic groups.
  • Each X independently represents a phenylene group, an azabenzenediyl group, or a diazabenzenediyl group which may be substituted with an alkyl group having 1 to 4 carbon atoms.
  • p and q each independently represent 0, 1, or 2.
  • the substituent C ′′ represents a trivalent pyrimidine group or a triazine group.
  • Ar 2 each independently represents an optionally substituted aromatic hydrocarbon group having 6 to 12 carbon atoms.
  • Each r independently represents 0, 1, or 2.
  • n 2 represents 1, 2 or 3.
  • n 3 represents 2 or 3.
  • the substituent D represents a trivalent aromatic hydrocarbon group having 6 to 12 carbon atoms.
  • Ar 3 represents a nitrogen-containing heterocyclic group having 3 to 14 carbon atoms which may be substituted with an alkyl group having 1 to 4 carbon atoms.
  • Cz represents a carbazolyl group which may be substituted with a pyridyl group.
  • organic electroluminescent element material of the present invention is represented by the following general formula (1), general formula (2), or general formula (2 ′) in that the lifetime of the organic electroluminescent element is excellent. More preferred.
  • Substituent B, substituent C ′, Ar 1 , X, p, q, substituent C ′′, Ar 2 , r, n 2 , and n 3 are as defined above.
  • the diarylpyrimidine group represented by the substituent C ′ is not particularly limited, and examples thereof include the following diarylpyrimidine groups.
  • R 1 represents each independently an alkyl group having 1 to 4 carbon atoms.
  • the diarylpyrimidine group shown below is preferable in that the performance of the organic electroluminescent element is good.
  • R 1 represents each independently an alkyl group having 1 to 4 carbon atoms.
  • diaryl pyrimidine group shown below is more preferable at the point which is easy to synthesize
  • the diaryltriazine group represented by the substituent C ′ is not particularly limited, and examples thereof include the following diaryltriazine groups.
  • R 1 represents each independently an alkyl group having 1 to 4 carbon atoms.
  • the diaryltriazine group shown below is preferable in that the performance of the organic electroluminescent element is good.
  • R 1 represents each independently an alkyl group having 1 to 4 carbon atoms.
  • diaryltriazine group shown below is more preferable in terms of easy synthesis.
  • R 1 represents each independently an alkyl group having 1 to 4 carbon atoms.
  • the substituent C ′ includes the following (C′-1), (C′-3), (C′-6), (C′-16), (C′-46), (C′-48). Or (C′-61).
  • R 1 in the formula represents a methyl group.
  • the substituent C ′′ represents a trivalent pyrimidine group or a triazine group.
  • the trivalent pyrimidine group represented by the substituent C ′′ is not particularly limited, and examples thereof include the following substituents. (R 2 independently represents an alkyl group having 1 to 4 carbon atoms.)
  • the trivalent pyrimidine group shown below is preferable in that the performance of the organic electroluminescent element is good.
  • R 2 independently represents an alkyl group having 1 to 4 carbon atoms.
  • R 2 independently represents an alkyl group having 1 to 4 carbon atoms.
  • the trivalent triazine group shown below is preferable in that the performance of the organic electroluminescent element is good.
  • R 2 independently represents an alkyl group having 1 to 4 carbon atoms.
  • R 2 independently represents an alkyl group having 1 to 4 carbon atoms.
  • R 2 is preferably a methyl group.
  • the aromatic hydrocarbon group having 6 to 20 carbon atoms which may be substituted with an alkyl group having 1 to 4 carbon atoms represented by Ar 1 is not particularly limited, but examples thereof include the substituents shown below. Can be mentioned. (R 3 each independently represents an alkyl group having 1 to 4 carbon atoms.)
  • R 3 each independently represents an alkyl group having 1 to 4 carbon atoms.
  • R 3 each independently represents an alkyl group having 1 to 4 carbon atoms.
  • the nitrogen-containing heterocyclic group having 4 to 14 carbon atoms which may be substituted with an alkyl group having 1 to 4 carbon atoms represented by Ar 1 is not particularly limited.
  • a heterocyclic group can be mentioned.
  • R 3 each independently represents an alkyl group having 1 to 4 carbon atoms.
  • the nitrogen-containing heterocyclic group shown below is preferable in that the performance of the organic electroluminescent element is good.
  • R 3 each independently represents an alkyl group having 1 to 4 carbon atoms.
  • R 3 each independently represents an alkyl group having 1 to 4 carbon atoms.
  • the phenylene group which may be substituted with an alkyl group having 1 to 4 carbon atoms represented by X is not particularly limited, and examples thereof include the following phenylene groups. (R 4 each independently represents an alkyl group having 1 to 4 carbon atoms.)
  • R 4 each independently represents an alkyl group having 1 to 4 carbon atoms.
  • aromatic hydrocarbon group shown below is more preferable from the viewpoint of easy synthesis.
  • the azabenzene group which may be substituted with an alkyl group having 1 to 4 carbon atoms represented by X is not particularly limited, and examples thereof include the following azabenzene groups.
  • the diazabenzene group which may be substituted with an alkyl group having 1 to 4 carbon atoms represented by X is not particularly limited, and examples thereof include the following diazabenzene groups.
  • X is preferably independently a phenylene group or a pyridylene group from the viewpoint of good performance of the organic electroluminescent device.
  • P and q representing the number of X are each independently an integer of 0, 1, or 2.
  • P and q indicate that p or q substituents X are linked.
  • p and q are each preferably 0 or 1 independently from the viewpoint of good performance of the organic electroluminescent device.
  • the hydrocarbon group having 6 to 12 carbon atoms represented by Ar 2 is not particularly limited, and examples thereof include the following hydrocarbon groups.
  • R representing the number of X is an integer of 0, 1, or 2.
  • the trivalent aromatic hydrocarbon group having 6 to 12 carbon atoms represented by the substituent (D) is not particularly limited, and examples thereof include the following aromatic hydrocarbon groups.
  • aromatic hydrocarbon groups shown below are preferred in that the performance of the organic electroluminescent device is good.
  • the nitrogen-containing heterocyclic group having 3 to 14 carbon atoms which may be substituted with an alkyl group having 1 to 4 carbon atoms represented by Ar 3 is not particularly limited.
  • a heterocyclic group can be mentioned.
  • R 3 each independently represents an alkyl group having 1 to 4 carbon atoms.
  • the nitrogen-containing heterocyclic group shown below is preferable in that the performance of the organic electroluminescent element is good.
  • R 3 each independently represents an alkyl group having 1 to 4 carbon atoms.
  • R 3 each independently represents an alkyl group having 1 to 4 carbon atoms.
  • Cz represents a carbazolyl group which may be substituted with a pyridyl group.
  • cyclic compounds represented by the following formulas (E-1) to (E-548) Examples include azine compounds.
  • “—” bonded to a nitrogen-containing heterocycle or carbocycle represents that a methyl group is bonded.
  • the compound A represented by the general formula (1), the general formula (2), or the general formula (2 ′) is a compound represented by the following formula (A-1) from the viewpoint of good performance of the organic electroluminescence device. ) To (A-23), (A-27) to (A-34), (A-37) to (A-39), or (A-41) to (A-44) are preferred. .
  • compound A (specifically, a compound represented by general formula (1), general formula (2), general formula (2 ′), general formula (3), general formula (3 ′)) A method will be described.
  • the compound represented by the general formula (1), the general formula (2), or the general formula (2 ′) can be produced by any one of the following reaction formulas (1) to (10).
  • Ar 1 , Ar 2 , Ar 3 , B, C ′, C ′′, D, Cz, X, p, q, r, n 2 , and n 3 are the above-mentioned Ar 1 , Ar 2 , Ar 3 , B, C ′, C ′′, D, Cz, X, p, q, r, n 2 , and n 3 represent the same definition.
  • W represents a leaving group and is not particularly limited, and examples thereof include a chlorine atom, a bromine atom, a triflate, or an iodine atom. Among these, a bromine atom or a chlorine atom is preferable in that the reaction yield is good.
  • V represents a boronic acid compound or a metal-containing group and is not particularly limited.
  • B (OR 5 ) 2 is not particularly limited.
  • B (OR 5 ) 2 in the case where two R 5 are combined to form a ring containing an oxygen atom and a boron atom include the following substituents. Of these substituents, (II) or (VII) is preferable from the viewpoint of good reaction selectivity, and (II) is more preferable from the viewpoint of good reaction yield.
  • Examples of B (OR 6 ) 3 include the substituents shown below.
  • Si The (R 7) 3 but are not particularly limited to, for example, SiMe 3, SiPh 3, SiMePh 2, SiCl 3, SiF 3, Si (OMe) 3, Si (OEt) 3, Si (OMe) 2 OH and the like.
  • the compound (A) of the present invention is synthesized by performing a coupling reaction as described in each reaction formula in the presence of a palladium catalyst and a base. I can do it.
  • the palladium catalyst that can be used in the reactions of the reaction formulas (1) to (10) is not particularly limited, and examples thereof include salts of palladium chloride, palladium acetate, palladium trifluoroacetate, palladium nitrate, and the like. Can do.
  • ⁇ -allyl palladium chloride dimer palladium acetylacetonate, bis (dibenzylideneacetone) palladium, tris (dibenzylideneacetone) dipalladium, dichlorobis (triphenylphosphine) palladium, tetrakis (triphenylphosphine) palladium, tri (tert -Butyl) phosphine palladium, dichloro (1,1'-bis (diphenylphosphino) ferrocene) palladium and the like.
  • a palladium complex having a tertiary phosphine as a ligand such as dichlorobis (triphenylphosphine) palladium, tetrakis (triphenylphosphine) palladium, tri (tert-butyl) phosphinepalladium is preferable in terms of a good yield.
  • a tertiary phosphine such as dichlorobis (triphenylphosphine) palladium, tetrakis (triphenylphosphine) palladium, tri (tert-butyl) phosphinepalladium is preferable in terms of a good yield.
  • tetrakis (triphenylphosphine) palladium or tri (tert-butyl) phosphinepalladium is more preferable.
  • the palladium complex which has said tertiary phosphine as a ligand can also add a tertiary phosphine to a palladium salt or a complex compound, and can also prepare it in a reaction system.
  • the tertiary phosphine is not particularly limited.
  • triphenylphosphine trimethylphosphine, tributylphosphine, tri (tert-butyl) phosphine, tricyclohexylphosphine, tert-butyldiphenylphosphine, 9,9-dimethyl.
  • the addition amount of the tertiary phosphine should be 0.1 to 10 times mol per mol of the palladium salt or complex compound (in terms of palladium atom). In terms of good yield, it is more preferably 0.3 to 5 moles.
  • the base that can be used is not particularly limited.
  • sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate, acetic acid Examples include potassium, sodium acetate, potassium phosphate, sodium phosphate, sodium fluoride, potassium fluoride, cesium fluoride and the like. Among these, potassium carbonate, potassium phosphate, or sodium hydroxide is preferable in terms of a good yield.
  • Reactions (1) to (10) are preferably carried out in a solvent.
  • the solvent include, but are not limited to, water, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, toluene, benzene, diethyl ether, 1,4-dioxane, ethanol, butanol, xylene, and the like. You may use it combining suitably. Among these, tetrahydrofuran, 1,4-dioxane, or a toluene-butanol mixed solvent is preferable in terms of a good yield.
  • Compound (1) is, for example, Hiroshi Yamanaka, “New edition of heterocyclic compounds basic edition”, Kodansha, 2004, Hiroshi Yamanaka, “New edition of heterocyclic compounds,” Kodansha, 2004, The Journal of Organic Chemistry, 1951, 16, 461-465, Macromolecules, 2001, 6, 477-480, Science and Technology Research Laboratories, 81, 441, 1986, etc. it can.
  • the substituent C ′ in the compound (1) represents the same definition as the substituent C ′ described above.
  • the compound (1) is not particularly limited, and examples thereof include (1-1) to (1-12) shown below.
  • R 1 each independently represents an alkyl group having 1 to 4 carbon atoms.
  • V and W are as defined above.
  • Compound (2), or compound (3) can be prepared according to, for example, The Journal of Organic Chemistry, 2001, 66, 4333-4339, or Chem. Rev. 95, 2457-2483, 1995, and the method disclosed in 1995.
  • the substituents B, X, and p in the compound (2) represent the same definition as the substituents B, X, and p described above.
  • the compound (2) is not particularly limited, and examples thereof include (2-1) to (2-69) shown below.
  • V and W represent the same definition as above.
  • Ar 1 , X, and q in the compound (3) represent the same definition as Ar 1 , X, and q described above.
  • the compound (3) is not particularly limited, and examples thereof include (3-1) to (3-84) shown below.
  • R 3 independently represents an alkyl group having 1 to 4 carbon atoms. V and W are as defined above.
  • the compound (1) and the compound (2) are reacted first to form a reaction intermediate, and then the compound (3) is reacted to obtain a compound represented by the general formula (1). May be synthesized. In this case, the resulting reaction intermediate may be isolated.
  • the compound represented by the general formula (1) is synthesized by reacting the product obtained by reacting the reaction intermediate with the boronic acid compound or the metal-containing group described above with the compound (6). You can also
  • the compound (1) and the compound (3) are reacted first to form a reaction intermediate, and then the compound (2) is reacted to obtain a compound represented by the general formula (1). May be synthesized. In this case, the resulting reaction intermediate may be isolated.
  • the compound represented by the general formula (1) is synthesized by reacting the compound (5) with a product obtained by reacting the reaction intermediate with the boronic acid compound or the metal-containing group. You can also
  • the amount of the palladium catalyst used in the reaction formula (1) is not particularly limited as long as it is a so-called catalyst amount, but is 0.1 to 0.01 with respect to 1 mol of the compound (1) in terms of a good yield. It is preferably a double mole (in terms of palladium atom).
  • the compound (2) is 0.2 by 1 mol of the compound (1). It is preferable that the amount is ⁇ 5 times mole and the compound (3) is 0.2 ⁇ 5 times mole.
  • the amount of the base to be used is not particularly limited, but is preferably 0.5 to 10-fold mol with respect to 1 mol of compound (1), and more preferably 1 to 5-fold mol in terms of good yield.
  • the compound (4) is not particularly limited, and examples thereof include (4-1) to (4-12) shown below.
  • R 1 each independently represents an alkyl group having 1 to 4 carbon atoms.
  • V and W are as defined above.
  • Compound (5), or compound (6) can be obtained, for example, from The Journal of Organic Chemistry, 2001, 66, 4333-4339, or Chem. Rev. 95, 2457-2483, 1995, and the like.
  • the substituents B, X, and p in the compound (5) have the same definition as the substituents B, X, and p described above.
  • the compound (5) is not particularly limited, and examples thereof include (5-1) to (5-69) shown below. (V and W represent the same definition as above.)
  • Ar 1 , X, and q in the compound (6) represent the same definitions as Ar 1 , X, and q described above.
  • the compound (6) is not particularly limited, and examples thereof include (6-1) to (6-84) shown below.
  • R 3 independently represents an alkyl group having 1 to 4 carbon atoms. V and W are as defined above.
  • reaction formula (2) the compound (4) and the compound (5) are reacted first to form a reaction intermediate, and then the compound (6) is reacted to obtain a compound represented by the general formula (1). May be synthesized. In this case, the resulting reaction intermediate may be isolated.
  • the compound (4) and the compound (6) are reacted first to form a reaction intermediate, and then the compound (5) is reacted to obtain a compound represented by the general formula (1). May be synthesized. In this case, the resulting reaction intermediate may be isolated.
  • the amount of the palladium catalyst used in the reaction formula (2) is not particularly limited as long as it is a so-called catalyst amount, but is 0.1 to 0.01 with respect to 1 mol of the compound (4) in terms of good yield. It is preferably a double mole (in terms of palladium atom). Although there is no restriction
  • the amount of the base used is not particularly limited, but is preferably 0.5 to 10 moles per mole of Compound (4), and more preferably 1 to 5 moles in terms of good yield.
  • R 2 independently represents an alkyl group having 1 to 4 carbon atoms. V and W are as defined above.
  • Compound (2 ′) can be produced in the same manner as Compound (2) described above.
  • the substituents B, X, and r in the compound (2 ′) have the same definition as the substituents B, X, and r described above. Although it does not specifically limit as a compound (2 '), For example, the compound similar to the compound (2) mentioned above can be mentioned.
  • the amount of the palladium catalyst used in the reaction formula (3) is not particularly limited as long as it is a so-called catalyst amount, but is 0.1 to 0.01 with respect to 1 mol of the compound (7) in terms of good yield. It is preferably a double mole (in terms of palladium atom).
  • the molar ratio of the compound (7) and the compound (2 ′) used in the reaction formula (3) is not particularly limited, but the compound (2 ′) is 0.2 to 5 times the mole of the compound (7). Mole is preferred.
  • the amount of the base used is not particularly limited, but is preferably 0.5 to 10 moles per mole of Compound (7), and more preferably 1 to 5 moles in terms of good yield.
  • each R 2 independently represents an alkyl group having 1 to 4 carbon atoms.
  • V and W are as defined above.
  • Compound (5 ′) can be produced in the same manner as Compound (5) described above.
  • the substituent B, X, or r in the compound (5 ′) represents the same definition as the substituent B, X, or r described above. Although it does not specifically limit as a compound (5 '), For example, the compound similar to the compound (5) mentioned above can be mentioned.
  • the amount of the palladium catalyst used in the reaction formula (4) is not particularly limited as long as it is a so-called catalyst amount, but is 0.1 to 0.01 with respect to 1 mol of the compound (8) in terms of a good yield. It is preferably a double mole (in terms of palladium atom).
  • the molar ratio of the compound (8) and the compound (5 ′) used in the reaction formula (4) is not particularly limited, but the compound (5 ′) is 0.2 to 5 times the mole of the compound (8). Mole is preferred.
  • the amount of the base to be used is not particularly limited, but is preferably 0.5 to 10 times mol and more preferably 1 to 5 times mol for 1 mol of the compound (8).
  • the compound (9) is not particularly limited, and examples thereof include (9-1) to (9-12) shown below.
  • R 2 independently represents an alkyl group having 1 to 4 carbon atoms. V and W are as defined above.
  • the amount of the palladium catalyst used in the reaction formula (5) is not particularly limited as long as it is a so-called catalyst amount, but is 0.1 to 0.01 with respect to 1 mol of the compound (9) in terms of good yield. It is preferably a double mole (in terms of palladium atom).
  • the molar ratio of the compound (9) and the compound (2 ′) used in the reaction formula (5) is not particularly limited, but the compound (2 ′) is 0.2 to 5 times the mole of the compound (9). Mole is preferred.
  • the amount of the base used is not particularly limited, but is preferably 0.5 to 10 moles per mole of Compound (9), and more preferably 1 to 5 moles in terms of good yield.
  • Compound (10) can be produced in the same manner as compound (4) described above.
  • the substituent C ′′ and Ar 2 represent the same definitions as the substituent C ′′ and Ar 2 described above.
  • the compound (10) is not particularly limited, and examples thereof include (10-1) to (10-12) shown below.
  • R 2 independently represents an alkyl group having 1 to 4 carbon atoms. V and W are as defined above.
  • the amount of the palladium catalyst used in the reaction formula (6) is not particularly limited as long as it is a so-called catalyst amount. It is preferably a double mole (in terms of palladium atom).
  • the molar ratio of the compound (10) and the compound (5 ′) used in the reaction formula (6) is not particularly limited, but the compound (5 ′) is 0.2 to 5 times the mole of the compound (10) Mole is preferred.
  • the amount of the base to be used is not particularly limited, but is preferably 0.5 to 10-fold mol with respect to 1 mol of compound (10), and more preferably 1 to 5-fold mol in terms of a good yield.
  • Compound (11) can be produced by the following reaction formula (11).
  • the substituents B, C ′, D, and Cz in the compound (17) represent the same definitions as the substituents B, C ′, D, and Cz described above.
  • W represents a leaving group and is not particularly limited, and examples thereof include a chlorine atom, a bromine atom, a triflate, or an iodine atom. Among these, a bromine atom or a chlorine atom is preferable in that the reaction yield is good.
  • Compound (17) can be produced in the same manner as Compound (1) described above.
  • catalysts that can be used in the reaction of the reaction formula (11) are palladium catalyst, nickel catalyst, iron catalyst, copper catalyst, ruthenium catalyst, platinum catalyst, rhodium catalyst, iridium catalyst, osmium catalyst, cobalt catalyst, etc. Can do. Especially, a copper catalyst is preferable at a point with a good yield.
  • metal catalysts include metals, supported metals, metal chloride salts, bromide salts, iodide salts, nitrates, sulfates, carbonates, oxalates, acetates, oxide salts, and other metal salts, or olefins.
  • a complex compound such as a complex, a phosphine complex, an amine complex, an ammine complex, or an acetylacetonato complex can be used. Furthermore, these metals, metal salts or complex compounds and tertiary phosphine ligands can be used in combination.
  • copper oxide (I), copper oxide (II), copper iodide (I), copper iodide ( II), copper bromide (I), copper bromide (II), copper chloride (I), copper (II) chloride, copper acetate (I), copper acetate (II), copper sulfate (II), copper cyanide (I), copper (II) cyanide, and the like can be mentioned.
  • copper (I) oxide is preferable because of its good yield.
  • a diamine ligand may be added.
  • the diamine ligand that can be used in the reaction of the reaction formula (11) is not particularly limited, and examples thereof include 1,10-phenanthroline and trans-1,2-cyclohexanediamine. Of these, 1,10-phenanthroline is preferred because of its good yield.
  • a phase transfer catalyst represented by 18-crown-6-ether may be added.
  • the base that can be used is not particularly limited.
  • potassium carbonate is preferred because of its good yield.
  • the reaction of reaction formula (11) is preferably carried out in a solvent.
  • the solvent include, but are not limited to, water, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, toluene, benzene, diethyl ether, 1,4-dioxane, ethanol, butanol, xylene, and the like. You may use it combining suitably. Of these, xylene is preferred because of its good yield.
  • the amount of the catalyst used in the reaction formula (11) is not particularly limited as long as it is a so-called catalyst amount, but is 0.1 to 0.01 times the mole of the compound (17) in terms of a good yield. It is preferably a mole (in terms of metal atom).
  • the amount of the diamine ligand to be used is preferably 0.01 to 10 times mol for 1 mol of the compound (17), and 0.02 to 2 times mol for a good yield. Is more preferable.
  • the amount of the phase transfer catalyst to be used is preferably 0.1 to 10 times mol for 1 mol of compound (17), and 0.2 to 2 times mol for a good yield. Is more preferable.
  • the compound (18) is 0.2 to 5 times mol per mol of the compound (17).
  • the amount of the base to be used is not particularly limited, but is preferably 0.5 to 10-fold mol with respect to 1 mol of Compound (17), and more preferably 1 to 5-fold mol in terms of good yield.
  • the compound (11) is not particularly limited, and examples thereof include (11-1) to (11-24) shown below.
  • R 1 each independently represents an alkyl group having 1 to 4 carbon atoms.
  • V and W are as defined above.
  • Compound (12) can be produced in the same manner as Compound (3) described above.
  • Ar 3 , X, and p in the compound (12) represent the same definition as Ar 3 , X, and p described above.
  • the compound (12) is not particularly limited, and examples thereof include (12-1) to (12-579) shown below.
  • R 3 independently represents an alkyl group having 1 to 4 carbon atoms. V and W are as defined above.
  • the amount of the palladium catalyst used in the reaction formula (7) is not particularly limited as long as it is a so-called catalyst amount, but is 0.1 to 0.01 with respect to 1 mol of the compound (11) in terms of a good yield. It is preferably a double mole (in terms of palladium atom).
  • the amount of the base used is not particularly limited, but is preferably 0.5 to 10 moles per mole of Compound (11), and more preferably 1 to 5 moles in terms of good yield.
  • the compound (13) is not particularly limited, and examples thereof include (13-1) to (13-16) shown below.
  • R 1 each independently represents an alkyl group having 1 to 4 carbon atoms.
  • V and W are as defined above.
  • the amount of the palladium catalyst used in the reaction formula (8) is not particularly limited as long as it is a so-called catalyst amount, but is 0.1 to 0.01 with respect to 1 mol of the compound (13) in terms of a good yield. It is preferably a double mole (in terms of palladium atom).
  • the molar ratio of the compound (13) and the compound (2) used in the reaction formula (8) is not particularly limited, but the compound (2) is 0.2 to 5 times mol per mol of the compound (13).
  • the amount of the base to be used is not particularly limited, but is preferably 0.5 to 10-fold mol based on 1 mol of Compound (13), and more preferably 1 to 5-fold mol from the viewpoint of good yield.
  • Compound (14) can be produced in the same manner as Compound (4) and Compound (11) described above.
  • the substituents B, C ′, D, and Cz in the compound (14) represent the same definition as the substituents B, C ′, D, and Cz described above.
  • the compound (14) is not particularly limited, and examples thereof include (14-1) to (14-24) shown below.
  • R 1 each independently represents an alkyl group having 1 to 4 carbon atoms.
  • V and W are as defined above.
  • Compound (15) can be produced in the same manner as Compound (6) described above.
  • Ar 3 , X, and p in the compound (15) represent the same definition as Ar 3 , X, and p described above.
  • the compound (15) is not particularly limited, and examples thereof include (15-1) to (15-24) shown below.
  • R 3 independently represents an alkyl group having 1 to 4 carbon atoms. V and W are as defined above.
  • the amount of the palladium catalyst used in the reaction formula (9) is not particularly limited as long as it is a so-called catalyst amount, but is 0.1 to 0.01 with respect to 1 mol of the compound (14) in terms of good yield. It is preferably a double mole (in terms of palladium atom).
  • the amount of the base to be used is not particularly limited, but is preferably 0.5 to 10-fold mol based on 1 mol of Compound (14), and more preferably 1 to 5-fold mol from the viewpoint of good yield.
  • Compound (16) can be produced in the same manner as Compound (14) described above.
  • the substituents C ′, D, and Cz in the compound (16) represent the same definitions as the substituents C ′, D, and Cz described above.
  • the compound (16) is not particularly limited, and examples thereof include (16-1) to (16-16) shown below.
  • R 1 each independently represents an alkyl group having 1 to 4 carbon atoms.
  • V and W are as defined above.
  • the amount of the palladium catalyst used in the reaction formula (10) is not particularly limited as long as it is a so-called catalyst amount, but is 0.1 to 0.01 with respect to 1 mol of the compound (16) in terms of good yield. It is preferably a double mole (in terms of palladium atom).
  • the amount of the base to be used is not particularly limited, but is preferably 0.5 to 10-fold mol based on 1 mol of Compound (16), and more preferably 1 to 5-fold mol from the viewpoint of good yield.
  • the compound represented by general formula (1), general formula (2), or general formula (2 ′) is suitably used as a material for an organic electroluminescent element. Furthermore, the compound represented by the general formula (1), the general formula (2), or the general formula (2 ′) is preferably used as an electron transport material or an electron injection material for an organic electroluminescence device.
  • a vacuum evaporation method is used.
  • Film formation by the vacuum evaporation method can be performed by using a general-purpose vacuum evaporation apparatus.
  • the vacuum degree of the vacuum chamber when forming a film by the vacuum evaporation method is such that the production tact time for producing the organic electroluminescent element is short and the production cost is superior, so that commonly used diffusion pumps, turbo molecular pumps, cryogenic pumps are used.
  • the deposition rate is preferably 0.005 to 10 nm / second, more preferably 0.01 to 1 nm / second, depending on the thickness of the film to be formed.
  • a thin film for an organic electroluminescent element comprising the compound A can be produced by a solution coating method.
  • compound A is dissolved in an organic solvent such as chloroform, dichloromethane, 1,2-dichloroethane, chlorobenzene, toluene, ethyl acetate, tetrahydrofuran, etc., and spin coating, ink jet, casting, dip using a general-purpose apparatus. It is also possible to form a film by the method.
  • the basic structure of the organic electroluminescent element that can obtain the effects of the present invention includes a substrate, an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode.
  • the anode and cathode of the organic electroluminescent element are connected to a power source through an electrical conductor.
  • the organic electroluminescent device operates by applying a potential between the anode and the cathode. Holes are injected into the organic electroluminescent device from the anode, and electrons are injected into the organic electroluminescent device at the cathode.
  • the organic electroluminescent element is typically placed on a substrate, and the anode or cathode can be in contact with the substrate.
  • the electrode in contact with the substrate is called the lower electrode for convenience.
  • the lower electrode is an anode, but the organic electroluminescent element of the present invention is not limited to such a form.
  • the substrate may be light transmissive or opaque depending on the intended emission direction.
  • the light transmission property can be confirmed by electroluminescence emission through the substrate.
  • transparent glass or plastic is used as the substrate in such a case.
  • the substrate may be a composite structure including multiple material layers. When the electroluminescent emission is confirmed through the anode, the anode is formed by passing or substantially passing through the emission.
  • a common transparent anode (anode) material used in the present invention is indium-tin oxide (ITO), indium-zinc oxide (IZO), or tin oxide.
  • ITO indium-tin oxide
  • IZO indium-zinc oxide
  • tin oxide other metal oxides such as aluminum or indium doped tin oxide, magnesium-indium oxide, or nickel-tungsten oxide can also be used.
  • metal nitrides such as gallium nitride, metal selenides such as zinc selenide, or metal sulfides such as zinc sulfide can be used as the anode.
  • the anode can be modified with plasma deposited fluorocarbon. If electroluminescence emission is confirmed only through the cathode, the transmission properties of the anode are not critical and any conductive material that is transparent, opaque or reflective can be used. Examples of conductors for this application include gold, iridium, molybdenum, palladium, platinum, and the like.
  • a hole injection layer can be provided between the anode and the hole transport layer. The hole injection material serves to improve the subsequent film-forming properties of the organic layer and to facilitate injection of holes into the hole transport layer.
  • Examples of materials suitable for use in the hole injection layer include porphyrin compounds, plasma-deposited fluorocarbon polymers, amines having aromatic rings such as biphenyl groups, carbazole groups, such as m-MTDATA (4,4 ′ , 4 ′′ -tris [(3-methylphenyl) phenylamino] triphenylamine), 2T-NATA (4,4 ′, 4 ′′ -tris [(N-naphthalen-2-yl) -N-phenylamino ] Triphenylamine), triphenylamine, tolylamine, tolyldiphenylamine, N, N′-diphenyl-N, N′-bis (3-methylphenyl) -1,1′-biphenyl-4,4′-diamine, N, N, N′N′-tetrakis (4-methylphenyl) -1,1′-biphenyl-4,4′-diamine, MeO-TPD N, N, N′N
  • the hole transport layer of the organic electroluminescence device preferably contains one or more hole transport compounds such as aromatic tertiary amines.
  • An aromatic tertiary amine means a compound containing one or more trivalent nitrogen atoms, and these trivalent nitrogen atoms are bonded only to carbon atoms, and one of these carbon atoms One or more form an aromatic ring.
  • the aromatic tertiary amine may be an arylamine, monoarylamine, diarylamine, triarylamine, or a polymeric arylamine.
  • hole transport material an aromatic tertiary amine having one or more amino groups can be used.
  • polymer hole transport materials such as poly (N-vinylcarbazole) (PVK), polythiophene, polypyrrole, polyaniline, and the like can also be used.
  • NPD N, N′-bis (naphthalen-1-yl) -N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine
  • ⁇ -NPD N, N′-di
  • TPBi 1,3,5-tris (1-phenyl-1H-benzimidazol-2-yl) ) Benzene
  • TPD N, N′-bis (3-methylphenyl) -N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine
  • a layer containing (HAT-CN) may be provided.
  • the light emitting layer of the organic electroluminescent element contains a phosphorescent material or a fluorescent material, and emits light as a result of recombination of electron / hole pairs in this region.
  • the emissive layer may consist of a single material that includes both small molecules and polymers, but more commonly consists of a host material doped with a guest compound, where the emission occurs primarily from the dopant, Can have a color.
  • Examples of the host material for the light emitting layer include compounds having a biphenyl group, a fluorenyl group, a triphenylsilyl group, a carbazole group, a pyrenyl group, or an anthranyl group.
  • DPVBi 4,4′-bis (2,2-diphenylvinyl) -1,1′-biphenyl
  • BCzVBi 4,4′-bis (9-ethyl-3-carbazovinylene) 1,1′-biphenyl
  • TBADN (2-tert-butyl-9,10-di (2-naphthyl) anthracene
  • ADN (9,10-di (2-naphthyl) anthracene
  • CBP 4,4′-bis (carbazole-9) -Yl) biphenyl
  • CDBP 4,4′-bis (carbazol-9-yl) -2,2′-dimethylbiphenyl
  • the host material in the light-emitting layer may be an electron transport material as defined below, a hole transport material as defined above, another material that supports (supports) hole-electron recombination, or a combination of these materials.
  • fluorescent dopants include anthracene, tetracene, xanthene, perylene, rubrene, coumarin, rhodamine, quinacridone, dicyanomethylenepyran compound, thiopyran compound, polymethine compound, pyrylium or thiapyrylium compound, fluorene derivative, perifuranthene derivative, indenoperylene derivative, Examples thereof include bis (azinyl) amine boron compounds, bis (azinyl) methane compounds, and carbostyryl compounds.
  • an organometallic complex of a transition metal such as iridium, platinum, palladium, or osmium can be given.
  • dopants examples include Alq 3 (tris (8-hydroxyquinoline) aluminum)), DPAVBi (4,4′-bis [4- (di-para-tolylamino) styryl] biphenyl), perylene, Ir (PPy) 3 ( Examples include tris (2-phenylpyridine) iridium (III), FlrPic (bis (3,5-difluoro-2- (2-pyridyl) phenyl- (2-carboxypyridyl) iridium (III)), and the like.
  • the thin film forming material used for forming the electron transport layer of the organic electroluminescence device of the present invention is the cyclic azine compound of the present invention.
  • the electron transport layer may contain other electron transport materials.
  • other electron transporting materials include alkali metal complexes, alkaline earth metal complexes, and earth metal complexes.
  • alkali metal complex, alkaline earth metal complex, or earth metal complex include 8-hydroxyquinolinate lithium (Liq), bis (8-hydroxyquinolinato) zinc, and bis (8-hydroxyquinolinate).
  • a hole blocking layer may be provided between the light emitting layer and the electron transport layer for the purpose of improving carrier balance.
  • Desirable compounds for the hole element layer include BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), Bphen (4,7-diphenyl-1,10-phenanthroline), BAlq (bis (2 -Methyl-8-quinolinolato) -4- (phenylphenolato) aluminum), bis (10-hydroxybenzo [h] quinolinato) beryllium) and the like.
  • an electron injection layer may be provided for the purpose of improving electron injection properties and improving device characteristics (for example, light emission efficiency, constant voltage driving, or high durability).
  • Preferred compounds for the electron injection layer include fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, fluorenylidenemethane, anthraquinodimethane, anthrone, etc. Is mentioned.
  • metal complexes alkali metal oxides, alkaline earth oxides, rare earth oxides, alkali metal halides, alkaline earth halides, rare earth halides, SiO x , AlO x , SiN x , SiON, AlON, GeO X, LiO X, LiON, TiO X, TiON, TaO X, TaON, TaN X, various oxides of C, etc.
  • nitrides, and inorganic compounds such as oxynitrides can be used.
  • the cathode used in the present invention can be formed from any conductive material.
  • Desirable cathode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al2O3) mixture, indium, lithium / Examples thereof include aluminum mixtures and rare earth metals.
  • the mixture was heated to reflux for 16 hours. After allowing to cool, the reaction solution was heated as it was at 70 ° C. for 0.5 hour and filtered while hot. Low-boiling components were distilled off from the obtained filtrate under reduced pressure, water (100 mL) was added, and the precipitated solid was separated by filtration and washed with water, methanol, and hexane in this order.
  • the mixture was heated to reflux for 24 hours. After allowing to cool, water (80 mL) was added, and the precipitated solid was separated by filtration and washed with water, methanol and hexane in this order. Chloroform was added to the obtained solid, and the mixture was heated and stirred at 70 ° C. for 0.5 hour.
  • the mixture was heated to reflux for 21 hours. After allowing to cool, water (45 mL) was added, and the precipitated solid was separated by filtration and washed with water, methanol and hexane in this order. Chloroform was added to the obtained solid, and the mixture was heated and stirred at 70 ° C. for 0.5 hour.
  • 6- (biphenyl-4-yl) -2,4-di ⁇ 4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl ⁇ under an argon stream -1,3,5-triazine (1.91 g, 3.0 mmol), 2-chloro-4,6-dimethylpyrimidine (1.03 g, 7.2 mmol), tetrakis (triphenylphosphine) palladium (69.4 mg, 0.060 mmol) and tripotassium phosphate (3.06 g, 14.4 mmol) were weighed and suspended in 1,4-dioxane (20 mL) and water (14.4 mL).
  • the mixture became cloudy and heated and stirred at 60 ° C. for 14 hours, and then further heated to reflux at 100 ° C. for 5 hours. After allowing to cool, the precipitate was removed by filtration using filter paper, and the organic layer was concentrated. Further purification was performed by column chromatography (developing solvent: chloroform).
  • the obtained crude product is purified by column chromatography (developing solvent: chloroform: hexane), whereby the target product 4,6-diphenyl-2- [4 ′-(6-methoxypyridin-2-yl)- A white solid (yield: 1.05 g, yield: 64%) of 5- (9-phenanthryl) biphenyl-3-yl] -1,3,5-triazine was obtained.
  • Element Example-1 As the substrate, a glass substrate with an ITO transparent electrode on which a 2 mm wide indium-tin oxide (ITO) film (thickness 110 nm) was patterned in a stripe shape was used. The substrate was cleaned with isopropyl alcohol and then surface treated by ozone ultraviolet cleaning. Each layer was vacuum-deposited on the cleaned substrate by a vacuum deposition method, to produce an organic electroluminescent element (light-emitting area 4 mm 2 ) shown in FIG. 1 (schematic diagram of layer structure in cross-sectional direction). First, the glass substrate was introduced into a vacuum evaporation tank, and the pressure was reduced to 1.0 ⁇ 10 ⁇ 4 Pa.
  • ITO indium-tin oxide
  • an ITO transparent electrode moon glass substrate anode layer 1 1, a hole injection layer 2, a charge generation layer 3, a hole transport layer 4, a light emitting layer 5, an electron transport layer 6,
  • the electron injection layer 7 and the electron injection layer 7 were sequentially formed by a resistance heating method, and then the cathode layer 8 was formed.
  • sublimation-purified HIL was vacuum-deposited with a film thickness of 45 nm (deposition rate: 0.15 nm / second).
  • charge generation layer 3 sublimation-purified HAT was vacuum-deposited with a film thickness of 5 nm (deposition rate: 0.025 nm / sec).
  • hole transport layer 4 HTL was vacuum-deposited with a film thickness of 30 nm (deposition rate: 0.15 nm / second).
  • EML-1 and EML-2 were vacuum-deposited at a ratio of 95: 5 (weight ratio) to a thickness of 20 nm (deposition rate: 0.18 nm / second).
  • a two-layer structure was formed by vapor deposition (deposition rate: 0.2 nm / second).
  • Each film thickness was measured with a stylus type film thickness meter (DEKTAK). Furthermore, this element was sealed in a glove box in a nitrogen atmosphere having an oxygen and moisture concentration of 1 ppm or less.
  • a glass sealing cap and the above-described film-forming substrate epoxy type ultraviolet curable resin manufactured by Nagase ChemteX Corporation were used.
  • Reference example-2 In the electron transport layer 6 of the device example-1, 2- [4,4 ′′ -bis (4,6-dimethylpyrimidin-2-yl) -1,1 ′: 3 ′, 1 ′′ -terphenyl- 5'-yl] -4,6-diphenyl-1,3,5-triazine (A-1), except that ETL-3 was used, and an organic electroluminescent device was produced in the same manner as in Device Example 1. Was made. A direct current was applied to the produced organic electroluminescence device, and the light emission characteristics were evaluated using a luminance meter of LUMINANCE METER (BM-9) manufactured by TOPCON.
  • BM-9 luminance meter
  • Element Example-2 The film thicknesses of the hole injection layer 2, the hole transport layer 4, the light emitting layer 5, and the electron injection layer 7 of the device example-1 were 40 nm, 25 nm, 25 nm, and 0.5 nm, respectively. Further, in the electron transport layer 6, 2- [4,4 ′′ -bis (4,6-dimethylpyrimidin-2-yl) -1,1 ′: 3 ′, 1 ′′ -terphenyl-5′-yl 2- [4,4 ′′ -bis (6-methylpyridine-2-) synthesized in Synthesis Example-9 instead of -4,6-diphenyl-1,3,5-triazine (A-1) Yl) -1,1 ′; 3 ′, 1 ′′ -terphenyl-5′-yl] -4,6-diphenyl-1,3,5-triazine (A-9) An organic electroluminescent device was produced by the same method as -1.
  • Reference example-4 In the electron transport layer 6 of the device example-2, 2- [4,4 ′′ -bis (6-methylpyridin-2-yl) -1,1 ′; 3 ′, 1 ′′ -terphenyl-5′- IL] -4,6-diphenyl-1,3,5-triazine (A-9), except that ETL-4 was used to produce an organic electroluminescent device in the same manner as in Device Example-2 .
  • a direct current was applied to the produced organic electroluminescence device, and the light emission characteristics were evaluated using a luminance meter of LUMINANCE METER (BM-9) manufactured by TOPCON.
  • Element Example 4 In the hole injection layer 2, the hole transport layer 4, the electron transport layer 6 and the electron injection layer 7 of the device example-1, the film thicknesses were 20 nm, 25 nm, 45 nm and 1.0 nm, respectively. Further, in the light emitting layer 5, EML-3 and EML-2 were vacuum-deposited at a film thickness of 35 nm at a ratio of 97: 3 (weight ratio) (deposition rate: 0.18 nm / second). In the electron transport layer 6, 4,6-diphenyl-2- [4- (6-methylpyridin-2-yl) -3 ′-(9-phenanthryl) -1,1 synthesized in Synthesis Example-12 was used. '-Biphenyl-5'-yl] -1,3,5-triazine (A-12) was vacuum-deposited with a film thickness of 45 nm (deposition rate of 0.25 nm / sec).
  • Element Example-5 In the hole injection layer 2, the hole transport layer 4, the light emitting layer 5, and the electron injection layer 7 of the device example-1, the film thicknesses were set to 65 nm, 10 nm, 25 nm, and 0.5 nm, respectively.
  • the electron transport layer 6 4,6-diphenyl-2- [3- (6-methylpyridin-3-yl) -5- (9-phenanthryl) phenyl] -1, synthesized in Synthesis Example-28, An organic electroluminescent device was produced in the same manner as in Device Example 1 except that 3,5-triazine (A-28) was used.
  • the luminance decay time during continuous lighting when the initial luminance was driven at 800 cd / m 2 was measured.
  • the time when the luminance (cd / m 2 ) was reduced by 30% was defined as the element lifetime (h) and is shown below.
  • Element Example-15 The EML-1 and EML-2 of the device example-1 were set to a ratio of 93: 7 (weight ratio), and in the electron transport layer 6, 2- [4,4 ′′ -bis (4,6-dimethylpyrimidine-2] -Yl) -1,1 ′: 3 ′, 1 ′′ -terphenyl-5′-yl] -4,6-diphenyl-1,3,5-triazine (A-1) instead of synthetic examples 2,4-bis [4- (4,6-dimethylpyrimidin-2-yl) -1,1 ′ synthesized in 19-19: 3 ′, 1 ′′ -terphenyl-5′-yl] -6-phenyl- An organic electroluminescent device was produced in the same manner as in Device Example 1 except that 1,3,5-triazine (A-19) was used.
  • a direct current was applied to the produced organic electroluminescence device, and the light emission characteristics were evaluated using a luminance meter of LUMINANCE METER (BM-9) manufactured by TOPCON.
  • V voltage
  • cd / A current efficiency
  • the luminance decay time during continuous lighting when the initial luminance was driven at 800 cd / m 2 was measured.
  • the time when the luminance (cd / m 2 ) is reduced by 10% is shown as the element lifetime as follows. From Table 7, it was found that the organic electroluminescent element of the present invention was superior in life characteristics as compared with the reference example.
  • the organic electroluminescent device having an electron transport layer or an electron injection layer containing the cyclic azine compound of the present invention can be driven for a long time as compared with existing materials, has excellent luminous efficiency, and has a phosphorescent material.
  • Application to various organic electroluminescent elements used is possible. In particular, in addition to applications such as flat panel displays, it can be used for lighting or the like that requires low power consumption.
  • the specification, claims, drawings and abstract of Japanese Patent Application No. 2013-087142 filed on April 18, 2013 and Japanese Patent Application No. 2013-13381 filed on June 26, 2013. The entire contents of this document are hereby incorporated by reference as the disclosure of the specification of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

寿命特性に優れる有機電界発光素子用の新規な環状アジン化合物を提供する(置換基Bは、各々独立して、窒素原子に隣接する炭素のうち少なくとも一つの炭素上に炭素数1~12のアルキル基を有するアザベンゼン基、ジアザベンゼン基、又はアザナフタレン基を表す)。

Description

有機電界発光素子用の複素環化合物及びその用途
 本発明は、長寿命性に優れた有機電界発光素子用の新規な複素環化合物及びその用途に関するものである。
 有機電界発光素子は、発光材料を含有する発光層を正孔輸送層と電子輸送層で挟み、さらにその外側に陽極と陰極を取付けたものを基本的な構成とし、発光層に注入された正孔及び電子の再結合により生ずる励起子失活に伴う光の放出(蛍光又は燐光)を利用する素子であり、ディスプレー等へ応用されている。なお、正孔輸送層は正孔輸送層と正孔注入層に、発光層は、電子ブロック層と発光層と正孔ブロック層に、電子輸送層は電子輸送層と電子注入層に分割して構成される場合もある。
 最近の有機電界発光素子は徐々に改良されているものの、依然として、発光効率特性、駆動電圧特性、長寿命特性の改善が求められている。
 電子輸送材料としては、各種のトリアジン化合物、及びピリミジン化合物が用いられた有機電界発光素子が知られている(例えば、特許文献1、2、3、4を参照)が、当該素子についても更なる長寿命化の改善が求められていた。
日本特開2007-314503 日本特開2008-280330 日本特開2010-155826 日本特開2011-063584
 本発明は上記の背景技術に鑑みてなされたものであり、その目的は、特に長寿命性に優れる有機電界発光素子用の新規な複素環化合物、及び該複素環化合物を使用する有機電界発光素子を提供することである。
 本発明者らは、先の課題を解決すべく鋭意検討を重ねた結果、公知である有機電界発光素子用の電子輸送材料中の含窒素ヘテロ芳香族基において、窒素原子に隣接する炭素原子は電気陰性度の違いから電子不足となりやすく電子が局在化する傾向があり、素子駆動時に局在化した箇所から分解することが、寿命に影響する要因の一つであると考えた。そこで、局在化した軌道を非局在化することによって化合物の長寿命化、ひいては有機電界発光素子が長寿命化するとの着想に基づき、更なる検討を行った。
 その結果、窒素原子に隣接する炭素原子のうち少なくとも1つの炭素原子上に、アルキル基、アルコキシル基、ハロゲン基、アミノ基、ホスフィル基、シリル基、チオール基、及びアシル基からなる群より選ばれる置換基を有するアザベンゼン基、ジアザベンゼン基、トリアジン基、アザナフタレン基、ジアザナフタレン基、トリアザナフタレン基、テトラアザナフタレン基、ペンタアザナフタレン基、アザアントラセン基、ジアザアントラセン基、トリアザアントラセン基、テトラアザアントラセン基、ペンタアザアントラセン基、ヘキサアザアントラセン基、ヘプタアザアントラセン基、アザフェナントレン基、ジアザフェナントレン基、トリアザフェナントレン基、テトラアザフェナントレン基、ペンタアザフェナントレン基、ヘキサアザフェナントレン基、ヘプタアザフェナントレン基、アザペンタジエン基、ジアザペンタジエン基、オキサアザペンタジエン基、チアアザペンタジエン基、オキサジアザペンタジエン基、チオジアザペンタジエン基、アザインデン基、オキサアザインデン基、チオアザインデン基、ジアザインデン基、及びカルボリン基からなる群より選ばれる置換基(「置換基B」という)を少なくとも一つ有する化合物Aを電子輸送層又は電子注入層に用いた有機電界発光素子が、従来公知の電子輸送性材料を用いた素子に比べて、長寿命特性に顕著に優れることを見出した。
 より詳しくは、本発明者らは、下記一般式(1)、一般式(2)、又は一般式(2’)で表される新規な環状アジン化合物を、電子輸送層又は電子注入層に用いた有機電界発光素子が、従来公知の電子輸送性材料を用いた素子に比べて、長寿命特性に顕著に優れることを見出し、本発明を完成するに至った。
Figure JPOXMLDOC01-appb-C000006
 上記式中、置換基Bは、各々独立して、窒素原子に隣接する炭素のうち少なくとも一つの炭素上に炭素数1~12のアルキル基を有するアザベンゼン基、ジアザベンゼン基、又はアザナフタレン基を表す。
 置換基C’は、ジアリールピリミジン基又はジアリールトリアジン基(当該ジアリールピリミジン基及びジアリールトリアジン基におけるアリール基は、各々独立して炭素数1~4のアルキル基で置換されていても良い炭素数6~12の芳香族炭化水素基である)を表わす。
 Arは、炭素数1~4のアルキル基で置換されていても良い炭素数6~20の芳香族炭化水素基、又は炭素数1~4のアルキル基で置換されていても良い炭素数4~14の含窒素複素環基を表す。
 Xは、各々独立して、炭素数1~4のアルキル基で置換されていても良いフェニレン基、又はアザベンゼンジイル基を表す。p、及びqは、各々独立して、0、1、又は2を表す。
 Arは、置換されていても良い炭素数6~12の芳香族炭化水素基を表す。rは、各々独立して、0、1又は2を表す。nは1、2又は3を表す。nは2又は3を表す。
 置換基C’’は、下記式(C’’-56)、(C’’-57)、(C’’-66)、(C’’-68)、又は(C’’-81)を表す。)
Figure JPOXMLDOC01-appb-C000007
(Rは、各々独立して、炭素数1~4のアルキル基を表す。)
 本発明によれば、従来の素子に比べて長寿命特性に優れる有機電界発光素子が提供される。さらに、長寿命特性に加え、発光効率特性、及び駆動電圧特性に優れる有機電界発光素子、並びに該有機電界発光素子が有する電子輸送層及び電子注入層中に含有される新規な環状アジン化合物が提供される。
本発明の素子実施例で作製される単層素子の構成を示す模式図である。
 本発明の有機電界発光素子用材料は、下記一般式(1)、一般式(2)、又は一般式(2’)で表される環状アジン化合物を含有する。
Figure JPOXMLDOC01-appb-C000008

(置換基B、置換基C’、Ar、X、p、q、置換基C’’、Ar、r、n、及びnは、前記の定義と同じである。)
 置換基Bで表されるアザベンゼン基としては、特に限定するものではないが、例えば、2-ピリジル基、3-ピリジル基、又は4-ピリジル基等を挙げることができ、有機電界発光素子寿命が長い点で、2-ピリジル基、又は3-ピリジル基が好ましい。
 置換基Bで表されるジアザベンゼン基としては、特に限定するものではないが、例えば、2-ピリミジル基、4-ピリミジル基、5-ピリミジル基、2-ピラジル基、3-ピリダジン基、4-ピリダジン基等を挙げることができ、有機電界発光素子寿命が長い点で、2-ピリミジル基が好ましい。
 置換基Bで表されるアザナフタレン基としては、特に限定するものではないが、例えば、2-キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、5-イソキノリル基、6-イソキノリル基、7-イソキノリル基、8-イソキノリル基等を挙げることができる。
 置換基Bで表されるジアザナフタレン基としては、特に限定するものではないが、例えば、1,5-ナフチリジン-2-イル基、1,5-ナフチリジン-3-イル基、1,5-ナフチリジン-4-イル基、1,6-ナフチリジン-2-イル基、1,6-ナフチリジン-3-イル基、1,6-ナフチリジン-2-イル基、1,6-ナフチリジン-3-イル基、1,6-ナフチリジン-4-イル基、1,6-ナフチリジン-5-イル基、1,6-ナフチリジン-7-イル基、1,6-ナフチリジン-8-イル基、1,7-ナフチリジン-2-イル基、1,7-ナフチリジン-3-イル基、1,7-ナフチリジン-4-イル基、1,7-ナフチリジン-5-イル基、1,7-ナフチリジン-6-イル基、1,7-ナフチリジン-8-イル基、1,8-ナフチリジン-2-イル基、1,8-ナフチリジン-3-イル基、1,8-ナフチリジン-4-イル基、2,6-ナフチリジン-1-イル基、2,6-ナフチリジン-3-イル基、2,6-ナフチリジン-4-イル基、2,7-ナフチリジン-1-イル基、2,7-ナフチリジン-3-イル基、2,7-ナフチリジン-4-イル基、1-フタラジル基、5-フタラジル基、6-フタラジル基、2-キノキサル基、5-キノキサル基、6-キノキサル基、2-キナゾリル基、4-キナゾリル基、5-キナゾリル基、6-キナゾリル基、7-キナゾリル基、8-キナゾリル基、3-シンノリル基、4-シンノリル基、5-シンノリル基、6-シンノリル基、7-シンノリル基、8-シンノリル基を挙げることができる。
 置換基Bで表されるアザアントラセン基としては、特に限定するものではないが、例えば、2-ベンゾ〔g〕キノリル基、3-ベンゾ〔g〕キノリル基、4-ベンゾ〔g〕キノリル基、5-ベンゾ〔g〕キノリル基、6-ベンゾ〔g〕キノリル基、7-ベンゾ〔g〕キノリル基、8-ベンゾ〔g〕キノリル基、9-ベンゾ〔g〕キノリル基、10-ベンゾ〔g〕キノリル基、1-ベンゾ〔g〕イソキノリル基、3-ベンゾ〔g〕イソキノリル基、4-ベンゾ〔g〕イソキノリル基、5-ベンゾ〔g〕イソキノリル基、6-ベンゾ〔g〕イソキノリル基、7-ベンゾ〔g〕イソキノリル基、8-ベンゾ〔g〕イソキノリル基、9-ベンゾ〔g〕イソキノリル基、10-ベンゾ〔g〕イソキノリル基等を挙げることができる。
 置換基Bで表されるジアザアントラセン基としては、特に限定するものではないが、例えば、3-ベンゾ〔g〕シンノリル基、4-ベンゾ〔g〕シンノリル基、5-ベンゾ〔g〕シンノリル基、6-ベンゾ〔g〕シンノリル基、7-ベンゾ〔g〕シンノリル基、8-ベンゾ〔g〕シンノリル基、9-ベンゾ〔g〕シンノリル基、10-ベンゾ〔g〕シンノリル基、2-ベンゾ〔g〕キナゾリル基、4-ベンゾ〔g〕キナゾリル基、5-ベンゾ〔g〕キナゾリル基、6-ベンゾ〔g〕キナゾリル基、7-ベンゾ〔g〕キナゾリル基、8-ベンゾ〔g〕キナゾリル基、9-ベンゾ〔g〕キナゾリル基、10-ベンゾ〔g〕キナゾリル基、2-ベンゾ〔g〕キノキサリル基、3-ベンゾ〔g〕キノキサリル基、5-ベンゾ〔g〕キノキサリル基、6-ベンゾ〔g〕キノキサリル基、7-ベンゾ〔g〕キノキサリル基、8-ベンゾ〔g〕キノキサリル基、9-ベンゾ〔g〕キノキサリル基、10-ベンゾ〔g〕キノキサリル基、1-ベンゾ〔g〕フタラジル基、4-ベンゾ〔g〕フタラジル基、5-ベンゾ〔g〕フタラジル基、6-ベンゾ〔g〕フタラジル基、7-ベンゾ〔g〕フタラジル基、8-ベンゾ〔g〕フタラジル基、9-ベンゾ〔g〕フタラジル基、10-ベンゾ〔g〕フタラジル基、1,5-ベンゾ〔g〕ナフチリジン-2-イル基、1,5-ベンゾ〔g〕ナフチリジン-3-イル基、1,5-ベンゾ〔g〕ナフチリジン-4-イル基、1,5-ベンゾ〔g〕ナフチリジン-6-イル基、1,5-ベンゾ〔g〕ナフチリジン-7-イル基、1,5-ベンゾ〔g〕ナフチリジン-8-イル基、1,5-ベンゾ〔g〕ナフチリジン-9-イル基、1,5-ベンゾ〔g〕ナフチリジン-10-イル基、1,2-ベンゾ〔g〕ナフチリジン-3-イル基、1,2-ベンゾ〔g〕ナフチリジン-4-イル基、1,2-ベンゾ〔g〕ナフチリジン-5-イル基、1,2-ベンゾ〔g〕ナフチリジン-6-イル基、1,2-ベンゾ〔g〕ナフチリジン-7-イル基、1,2-ベンゾ〔g〕ナフチリジン-8-イル基、1,2-ベンゾ〔g〕ナフチリジン-9-イル基、2,5-ベンゾ〔g〕ナフチリジン-1-イル基、2,5-ベンゾ〔g〕ナフチリジン-3-イル基、2,5-ベンゾ〔g〕ナフチリジン-4-イル基、2,5-ベンゾ〔g〕ナフチリジン-6-イル基、2,5-ベンゾ〔g〕ナフチリジン-7-イル基、2,5-ベンゾ〔g〕ナフチリジン-8-イル基、2,5-ベンゾ〔g〕ナフチリジン-9-イル基、2,5-ベンゾ〔g〕ナフチリジン-10-イル基、2,10-ベンゾ〔g〕ナフチリジン-1-イル基、2,10-ベンゾ〔g〕ナフチリジン-3-イル基、2,10-ベンゾ〔g〕ナフチリジン-4-イル基、2,10-ベンゾ〔g〕ナフチリジン-5-イル基、2,10-ベンゾ〔g〕ナフチリジン-6-イル基、2,10-ベンゾ〔g〕ナフチリジン-7-イル基、2,10-ベンゾ〔g〕ナフチリジン-8-イル基、2,10-ベンゾ〔g〕ナフチリジン-9-イル基、9-ピリジノ〔7,8,g〕キノリン-2―イル基、9-ピリジノ〔7,8,g〕キノリン-3―イル基、9-ピリジノ〔7,8,g〕キノリン-4―イル基、9-ピリジノ〔7,8,g〕キノリン-5―イル基、9-ピリジノ〔7,8,g〕キノリン-10―イル基、6-ピリジノ〔7,8,g〕キノリン-2―イル基、6-ピリジノ〔7,8,g〕キノリン-3―イル基、6-ピリジノ〔7,8,g〕キノリン-4―イル基、6-ピリジノ〔7,8,g〕キノリン-5―イル基、7-ピリジノ〔7,8,g〕キノリン-2―イル基、7-ピリジノ〔7,8,g〕キノリン-3―イル基、7-ピリジノ〔7,8,g〕キノリン-4―イル基、7-ピリジノ〔7,8,g〕キノリン-5―イル基、7-ピリジノ〔7,8,g〕キノリン-6―イル基、7-ピリジノ〔7,8,g〕キノリン-8―イル基、7-ピリジノ〔7,8,g〕キノリン-9―イル基、7-ピリジノ〔7,8,g〕キノリン-10―イル基、8-ピリジノ〔7,8,g〕キノリン-2―イル基、7-ピリジノ〔7,8,g〕キノリン-3―イル基、7-ピリジノ〔7,8,g〕キノリン-4―イル基、7-ピリジノ〔7,8,g〕キノリン-5―イル基、7-ピリジノ〔7,8,g〕キノリン-6―イル基、7-ピリジノ〔7,8,g〕キノリン-8―イル基、7-ピリジノ〔7,8,g〕キノリン-9―イル基、7-ピリジノ〔7,8,g〕キノリン-10―イル基、8-ピリジノ〔7,8,g〕キノリン-2―イル基、8-ピリジノ〔7,8,g〕キノリン-3―イル基、8-ピリジノ〔7,8,g〕キノリン-4―イル基、8-ピリジノ〔7,8,g〕キノリン-5―イル基、8-ピリジノ〔7,8,h〕キノリン-6―イル基、8-ピリジノ〔7,8,g〕キノリン-7―イル基、8-ピリジノ〔7,8,g〕キノリン-9―イル基、8-ピリジノ〔7,8,g〕キノリン-10―イル基、8-ピリジノ〔7,8,g〕イソキノリン-1―イル基、8-ピリジノ〔7,8,g〕イソキノリン-3―イル基、8-ピリジノ〔7,8,g〕イソキノリン-4―イル基、8-ピリジノ〔7,8,f〕イソキノリン-5―イル基、8-ピリジノ〔7,8,g〕イソキノリン-10―イル基、7-ピリジノ〔7,8,g〕イソキノリン-1―イル基、7-ピリジノ〔7,8,g〕イソキノリン-3―イル基、7-ピリジノ〔7,8,g〕イソキノリン-4―イル基、7-ピリジノ〔7,8,g〕イソキノリン-5―イル基等を挙げることができる。
 置換基Bで表されるアザフェナントレン基としては、特に限定するものではないが、例えば、3-ベンゾ〔h〕キノリル基、4-ベンゾ〔h〕キノリル基、5-ベンゾ〔h〕キノリル基、6-ベンゾ〔h〕キノリル基、7-ベンゾ〔h〕キノリル基、8-ベンゾ〔h〕キノリル基、9-ベンゾ〔h〕キノリル基、10-ベンゾ〔h〕キノリル基、1-ベンゾ〔h〕イソキノリル基、3-ベンゾ〔h〕イソキノリル基、4-ベンゾ〔h〕イソキノリル基、5-ベンゾ〔h〕イソキノリル基、6-ベンゾ〔h〕イソキノリル基、7-ベンゾ〔h〕イソキノリル基、8-ベンゾ〔h〕イソキノリル基、9-ベンゾ〔h〕イソキノリル基、10-ベンゾ〔h〕イソキノリル基、1-ベンゾ〔f〕イソキノリル基、2-ベンゾ〔f〕イソキノリル基、4-ベンゾ〔f〕イソキノリル基、5-ベンゾ〔f〕イソキノリル基、6-ベンゾ〔f〕イソキノリル基、7-ベンゾ〔f〕イソキノリル基、8-ベンゾ〔f〕イソキノリル基、9-ベンゾ〔f〕イソキノリル基、10-ベンゾ〔f〕イソキノリル基、1-ベンゾ〔f〕キノリル基、2-ベンゾ〔f〕キノリル基、3-ベンゾ〔f〕キノリル基、5-ベンゾ〔f〕キノリル基、6-ベンゾ〔f〕キノリル基、7-ベンゾ〔f〕キノリル基、8-ベンゾ〔f〕キノリル基、9-ベンゾ〔f〕キノリル基、10-ベンゾ〔f〕キノリル基、1-フェナントリジル基、2-フェナントリジル基、3-フェナントリジル基、4-フェナントリジル基、6-フェナントリジル基、7-フェナントリジル基、8-フェナントリジル基、9-フェナントリジル基、10-フェナントリジル基等を挙げることができる。
 置換基Bで表されるジアザフェナントレン基としては、特に限定するものではないが、例えば、1,10-フェナントロリン-2-イル基、1,10-フェナントロリン-3-イル基、1,10-フェナントロリン-4-イル基、1,10-フェナントロリン-5-イル基、1,10-フェナントロリン-6-イル基、1,10-フェナントロリン-7-イル基、1,10-フェナントロリン-8-イル基、1,10-フェナントロリン-9-イル基、1,7-フェナントロリン-2-イル基、1,7-フェナントロリン-3-イル基、1,7-フェナントロリン-4-イル基、1,7-フェナントロリン-5-イル基、1,7-フェナントロリン-6-イル基、1,7-フェナントロリン-7-イル基、1,7-フェナントロリン-8-イル基、1,7-フェナントロリン-9-イル基、1,7-フェナントロリン-10-イル基、1,8-フェナントロリン-2-イル基、1,8-フェナントロリン-3-イル基、1,8-フェナントロリン-4-イル基、1,8-フェナントロリン-5-イル基、1,8-フェナントロリン-6-イル基、1,8-フェナントロリン-7-イル基、1,8-フェナントロリン-9-イル基、1,8-フェナントロリン-10-イル基、1,6-フェナントロリン-2-イル基、1,6-フェナントロリン-3-イル基、1,6-フェナントロリン-4-イル基、1,6-フェナントロリン-5-イル基、1,6-フェナントロリン-7-イル基、1,6-フェナントロリン-8-イル基、1,6-フェナントロリン-9-イル基、1,6-フェナントロリン-10-イル基、2,7-フェナントロリン-1-イル基、2,7-フェナントロリン-3-イル基、2,7-フェナントロリン-4-イル基、2,7-フェナントロリン-5-イル基、2,7-フェナントロリン-6-イル基、2,7-フェナントロリン-8-イル基、2,7-フェナントロリン-9-イル基、2,7-フェナントロリン-10-イル基、2,8-フェナントロリン-1-イル基、2,8-フェナントロリン-3-イル基、2,8-フェナントロリン-4-イル基、2,8-フェナントロリン-5-イル基、2,8-フェナントロリン-6-イル基、2,8-フェナントロリン-7-イル基、2,8-フェナントロリン-9-イル基、2,8-フェナントロリン-10-イル基、2,9-フェナントロリン-1-イル基、2,9-フェナントロリン-3-イル基、2,9-フェナントロリン-4-イル基、2,9-フェナントロリン-5-イル基、2,9-フェナントロリン-6-イル基、2,9-フェナントロリン-7-イル基、2,9-フェナントロリン-8-イル基、2,9-フェナントロリン-10-イル基、3,7-フェナントロリン-1-イル基、3,7-フェナントロリン-2-イル基、3,7-フェナントロリン-4-イル基、3,7-フェナントロリン-5-イル基、3,7-フェナントロリン-6-イル基、3,7-フェナントロリン-8-イル基、3,7-フェナントロリン-9-イル基、3,7-フェナントロリン-10-イル基、3,8-フェナントロリン-1-イル基、3,8-フェナントロリン-2-イル基、3,8-フェナントロリン-4-イル基、3,8-フェナントロリン-5-イル基、3,8-フェナントロリン-6-イル基、3,8-フェナントロリン-7-イル基、3,8-フェナントロリン-9-イル基、3,8-フェナントロリン-10-イル基、4,7-フェナントロリン-1-イル基、4,7-フェナントロリン-2-イル基、4,7-フェナントロリン-3-イル基、4,7-フェナントロリン-5-イル基、4,7-フェナントロリン-6-イル基、4,7-フェナントロリン-8-イル基、4,7-フェナントロリン-9-イル基、4,7-フェナントロリン-10-イル基、3-ベンゾ〔h〕シンノリル基、4-ベンゾ〔h〕シンノリル基、5-ベンゾ〔h〕シンノリル基、6-ベンゾ〔h〕シンノリル基、7-ベンゾ〔h〕シンノリル基、8-ベンゾ〔h〕シンノリル基、9-ベンゾ〔h〕シンノリル基、10-ベンゾ〔h〕シンノリル基、2-ベンゾ〔h〕キナゾリル基、4-ベンゾ〔h〕キナゾリル基、5-ベンゾ〔h〕キナゾリル基、6-ベンゾ〔h〕キナゾリル基、7-ベンゾ〔h〕キナゾリル基、8-ベンゾ〔h〕キナゾリル基、9-ベンゾ〔h〕キナゾリル基、10-ベンゾ〔h〕キナゾリル基、2-ベンゾ〔h〕キノキサリル基、3-ベンゾ〔h〕キノキサリル基、5-ベンゾ〔h〕キノキサリル基、6-ベンゾ〔h〕キノキサリル基、7-ベンゾ〔h〕キノキサリル基、8-ベンゾ〔h〕キノキサリル基、9-ベンゾ〔h〕キノキサリル基、10-ベンゾ〔h〕キノキサリル基、1-ベンゾ〔g〕シンノリル基、4-ベンゾ〔g〕シンノリル基、5-ベンゾ〔g〕シンノリル基、6-ベンゾ〔g〕シンノリル基、7-ベンゾ〔g〕シンノリル基、8-ベンゾ〔g〕シンノリル基、9-ベンゾ〔g〕シンノリル基、10-ベンゾ〔g〕シンノリル基、1-ベンゾ〔g〕キナゾリル基、3-ベンゾ〔g〕キナゾリル基、5-ベンゾ〔g〕キナゾリル基、6-ベンゾ〔g〕キナゾリル基、7-ベンゾ〔g〕キナゾリル基、8-ベンゾ〔g〕キナゾリル基、9-ベンゾ〔g〕キナゾリル基、10-ベンゾ〔g〕キナゾリル基、1-ベンゾ〔f〕シンノリル基、2-ベンゾ〔f〕シンノリル基、5-ベンゾ〔f〕シンノリル基、6-ベンゾ〔f〕シンノリル基、7-ベンゾ〔f〕シンノリル基、8-ベンゾ〔f〕シンノリル基、9-ベンゾ〔f〕シンノリル基、10-ベンゾ〔f〕シンノリル基、1,5-ベンゾ〔h〕ナフチリジン-2-イル基、1,5-ベンゾ〔h〕ナフチリジン-3-イル基、1,5-ベンゾ〔h〕ナフチリジン-4-イル基、1,5-ベンゾ〔h〕ナフチリジン-6-イル基、1,5-ベンゾ〔h〕ナフチリジン-7-イル基、1,5-ベンゾ〔h〕ナフチリジン-8-イル基、1,5-ベンゾ〔h〕ナフチリジン-9-イル基、1,5-ベンゾ〔h〕ナフチリジン-10-イル基、1,6-ベンゾ〔h〕ナフチリジン-2-イル基、1,6-ベンゾ〔h〕ナフチリジン-3-イル基、1,6-ベンゾ〔h〕ナフチリジン-4-イル基、1,6-ベンゾ〔h〕ナフチリジン-5-イル基、1,6-ベンゾ〔h〕ナフチリジン-7-イル基、1,6-ベンゾ〔h〕ナフチリジン-8-イル基、1,6-ベンゾ〔h〕ナフチリジン-9-イル基、1,6-ベンゾ〔h〕ナフチリジン-10-イル基、2,5-ベンゾ〔h〕ナフチリジン-1-イル基、2,5-ベンゾ〔h〕ナフチリジン-3-イル基、2,5-ベンゾ〔h〕ナフチリジン-4-イル基、2,5-ベンゾ〔h〕ナフチリジン-6-イル基、2,5-ベンゾ〔h〕ナフチリジン-7-イル基、2,5-ベンゾ〔h〕ナフチリジン-8-イル基、2,5-ベンゾ〔h〕ナフチリジン-9-イル基、2,5-ベンゾ〔h〕ナフチリジン-10-イル基、2,6-ベンゾ〔h〕ナフチリジン-1-イル基、2,6-ベンゾ〔h〕ナフチリジン-3-イル基、2,6-ベンゾ〔h〕ナフチリジン-4-イル基、2,6-ベンゾ〔h〕ナフチリジン-5-イル基、2,6-ベンゾ〔h〕ナフチリジン-7-イル基、2,6-ベンゾ〔h〕ナフチリジン-8-イル基、2,6-ベンゾ〔h〕ナフチリジン-9-イル基、2,6-ベンゾ〔h〕ナフチリジン-10-イル基、3,5-ベンゾ〔h〕ナフチリジン-1-イル基、3,5-ベンゾ〔h〕ナフチリジン-2-イル基、3,5-ベンゾ〔h〕ナフチリジン-4-イル基、3,5-ベンゾ〔h〕ナフチリジン-6-イル基、3,5-ベンゾ〔h〕ナフチリジン-7-イル基、3,5-ベンゾ〔h〕ナフチリジン-8-イル基、3,5-ベンゾ〔h〕ナフチリジン-9-イル基、3,5-ベンゾ〔h〕ナフチリジン-10-イル基、3,6-ベンゾ〔h〕ナフチリジン-1-イル基、3,6-ベンゾ〔h〕ナフチリジン-2-イル基、3,6-ベンゾ〔h〕ナフチリジン-4-イル基、3,6-ベンゾ〔h〕ナフチリジン-5-イル基、3,6-ベンゾ〔h〕ナフチリジン-7-イル基、3,6-ベンゾ〔h〕ナフチリジン-8-イル基、3,6-ベンゾ〔h〕ナフチリジン-9-イル基、3,6-ベンゾ〔h〕ナフチリジン-10-イル基、4,5-ベンゾ〔h〕ナフチリジン-1-イル基、4,5-ベンゾ〔h〕ナフチリジン-2-イル基、4,5-ベンゾ〔h〕ナフチリジン-3-イル基、4,5-ベンゾ〔h〕ナフチリジン-6-イル基、4,5-ベンゾ〔h〕ナフチリジン-7-イル基、4,5-ベンゾ〔h〕ナフチリジン-8-イル基、4,5-ベンゾ〔h〕ナフチリジン-9-イル基、4,5-ベンゾ〔h〕ナフチリジン-10-イル基、4,6-ベンゾ〔h〕ナフチリジン-1-イル基、4,6-ベンゾ〔h〕ナフチリジン-2-イル基、1,6-ベンゾ〔h〕ナフチリジン-3-イル基、4,6-ベンゾ〔h〕ナフチリジン-5-イル基、4,6-ベンゾ〔h〕ナフチリジン-7-イル基、4,6-ベンゾ〔h〕ナフチリジン-8-イル基、4,6-ベンゾ〔h〕ナフチリジン-9-イル基、4,6-ベンゾ〔h〕ナフチリジン-10-イル基等を挙げることができる。
 置換基Bで表されるアザペンタジエン基としては、特に限定するものではないが、例えば、1-ピロール基、2-ピロール基、3-ピロール基等を挙げることができる。
 置換基Bで表されるオキサアザペンタジエン基としては、特に限定するものではないが、例えば、2-オキサゾール基、4-オキサゾール基、5-オキサゾール基、4-イソオキサゾール基、5-イソオキサゾール基等を挙げることができる。
 置換基Bで表されるチアアザペンタジエン基としては、特に限定するものではないが、例えば、2-チアゾール基、4-チアゾール基、5-チアゾール基、4-イソチアゾール基、5-イソチアゾール基等を挙げることができる。
 置換基Bで表されるジアザペンタジエン基としては、特に限定するものではないが、例えば、2-イミダゾール基、3-イミダゾール基、4-イミダゾール基、5-イミダゾール基、2-ピラゾール基、3-ピラゾール基、4-ピラゾール基、5-ピラゾール基等を挙げることができる。
 置換基Bで表されるオキサジアザペンタジエン基としては、特に限定するものではないが、例えば、4-オキサジアゾール基等を挙げることができる。
 置換基Bで表されるチオジアザペンタジエン基としては、特に限定するものではないが、例えば、4-チアジアゾール基等を挙げることができる。
 置換基Bで表されるアザインデン基としては、特に限定するものではないが、例えば、1-インドール基、3-インドール基、4-インドール基、5-インドール基、6-インドール基、7-インドール基等を挙げることができる。
 置換基Bで表されるオキサアザインデン基としては、特に限定するものではないが、例えば、4-ベンゾオキサゾール基、5-ベンゾオキサゾール基、6-ベンゾオキサゾール基、7-ベンゾオキサゾール基、4-ベンゾイソオキサゾール基、5-ベンゾイソオキサゾール基、6-ベンゾイソオキサゾール基、7-ベンゾイソオキサゾール基等を挙げることができる。
 置換基Bで表されるチオアザインデン基としては、特に限定するものではないが、例えば、4-ベンゾチアゾール基、5-ベンゾチアゾール基、6-ベンゾチアゾール基、7-ベンゾチアゾール基、4-ベンゾイソチアゾール基、5-ベンゾイソチアゾール基、6-ベンゾイソチアゾール基、7-ベンゾイソチアゾール基等を挙げることができる。
 置換基Bで表されるジアザインデン基としては、3-ベンゾイミダゾール基、4-ベンゾイミダゾール基、5-ベンゾイミダゾール基、6-ベンゾイミダゾール基、7-ベンゾイミダゾール基等を挙げることができる。
 置換基Bにおいて、窒素原子に隣接する炭素のうち少なくとも一つの炭素上に存在する置換基としては、特に限定するものではないが、例えば、アルキル基(例えば、炭素数1~12のアルキル基)、アルコキシル基(例えば、メトキシ基、エトキシ基、tert-ブトキシ基等)、ハロゲン基(例えば、フッ素、塩素、臭素、ヨウ素)、アミノ基(例えば、アミノ基、ジメチルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、ビスビフェニルアミノ基等)、ホスフィル基(例えば、メチルホスフィル基、ジメチルホスフィル基、トリメチルホスフィル基、トリフェニルホスフィル基等)、シリル基、チオール基、又はアシル基(例えば、メタノイル基、エタノイル基、プロパノイル基、シクロへキサノイル基、ベンゾイル基、ピリジノイル基等)等を挙げることができ、特に有機電界発光素子寿命が長い点で、アルキル基が好ましい。
 当該アルキル基としては、炭素数1~12のアルキル基が好ましく、特に限定するものではないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、1-メチル-1-ブチル基、2-メチルブチル基、3-メチルブチル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基、n-ヘキシル基、1-メチルペンチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、1,2,2-トリメチルプロピル基、1,1-ジメチルブチル基、1,1,2-トリメチルプロピル基、2-メチルペンチル基、2,3-ジメチルブチル基、2,2-ジメチルブチル基、3-メチルペンチル基、3,3-ジメチルブチル基、1-エチルブチル基、1-エチル-2-メチルプロピル基、1-エチル-1-メチルプロピル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デキル基、n-ウンデキル基、n-ドデキル基、シクロペンチル基、シクロへキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデキル基、シクロウンデキル基、シクロドデキル基等を挙げることができる。当該アルキル基については、特に有機電界発光素子の性能が良い点で、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、又はtert-ブチル基が好ましく、合成が容易な点で、メチル基がより好ましい。
 すなわち、置換基Bとしては、有機電界発光素子寿命が長い点で、各々独立して、窒素原子に隣接する炭素のうち少なくとも一つの炭素上にメチル基を有するアザベンゼン基、ジアザベンゼン基、アザナフタレン基、ジアザナフタレン基、アザアントラセン基、ジアザアントラセン基、アザフェナントレン基、ジアザフェナントレン基、アザペンタジエン基、ジアザペンタジエン基、オキサアザペンタジエン基、チアアザペンタジエン基、オキサジアザペンタジエン基、チオジアザペンタジエン基、アザインデン基、オキサアザインデン基、チオアザインデン基、及びジアザインデン基からなる群より選ばれる置換基であることが好ましい。
 また、置換基Bとしては、有機電界発光素子寿命が長い点で、各々独立して、窒素原子に隣接する炭素のうち少なくとも一つの炭素上にメチル基を有するピリジル基、ピリミジル基、ピリダジル基、ピラジル基、キノリル基、イソキノリル基、キナゾリル基、キノキサリル基、ナフチリジル基、ベンゾキノリル基、ベンゾイソキノリル基、フェナントリジル基、フェナントロリル基、ベンゾシンノリル基、ベンゾキナゾリル基、ベンゾナフチリジル基、ピロール基、オキサゾール基、イソオキサゾール基、チアゾール基、イソチアゾール基、イミダゾール基、ピラゾール基、オキサジアゾール基、チアジアゾール基、インドール基、ベンゾオキサゾール基、ベンゾチアゾール基、又はベンゾイミダゾール基であることがさらに好ましい。
 さらに、置換基Bとしては、有機電界発光素子寿命が長い点で、各々独立して、窒素原子に隣接する炭素のうち少なくとも一つの炭素上にメチル基を有するピリジル基、ピリミジル基、ピラジル基、キノリル基、イソキノリル基、キナゾリル基、キノキサリル基、フェナントリジル基、フェナントロリル基、ピロール基、オキサゾール基、チアゾール基、イミダゾール基、ピラゾール基、チアジアゾール基、インドール基、又はベンゾイミダゾール基であることがさらに好ましい。
 また、置換基Bとしては、有機電界発光素子寿命が長い点で、各々独立して、窒素原子に隣接する炭素のうち少なくとも一つの炭素上にメチル基を有するアザベンゼン基、ジアザベンゼン基、又はアザナフタレン基であることがさらに好ましい。
 また、置換基Bとしては、有機電界発光素子寿命が長い点で、各々独立して、6-メチルピリジン-2-イル基、6-メチルピリジン-3-イル基、2-メチルピリジン-3-イル基、4,6-ジメチルピリミジン-2-イル基、2-メチルキノリン-8-イル基、3-メチルイソキノリン-1-イル基、又は2,3-ジメチルキノキサリン-6-イル基であることが一層好ましい。
 また、置換基Bとしては、より具体的には、特に限定するものではないが、例えば、以下に示すヘテロアリール基を挙げることができる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 このうち、有機電界発光素子の寿命が長い点で、置換基Bは、以下に示すヘテロアリール基が好ましい。
Figure JPOXMLDOC01-appb-C000011
 さらに合成がしやすい点で、置換基Bは、以下に示すヘテロアリール基が好ましい。
Figure JPOXMLDOC01-appb-C000012
 化合物Aは、有機電界発光素子の寿命が長い点で、少なくとも一つの置換基Bに加えて、少なくとも一つのトリアリールピリミジン基及びトリアリールトリアジン基(トリアリールピリミジン基及びトリアリールトリアジン基におけるアリール基は、各々独立して炭素数1~4のアルキル基で置換されていても良い炭素数6~12の芳香族炭化水素基である)からなる群より選ばれる置換基(以下、「置換基C」という)を有する化合物であることが好ましい。
 置換基Cで表されるトリアリールピリミジン基としては、特に限定するものではないが、例えば、以下に示す置換基等を挙げることができる。
Figure JPOXMLDOC01-appb-C000013
 このうち、有機電界発光素子の寿命が長い点で、以下に示すトリアリールピリミジン基が好ましい。
Figure JPOXMLDOC01-appb-C000014
 置換基Cで表されるトリアリールトリアジン基としては、特に限定するものではないが、例えば、以下に示す置換基等を挙げることができる。
Figure JPOXMLDOC01-appb-C000015
 これらのうち、有機電界発光素子の性能が良い点で、以下に示すトリアリールトリアジン基が好ましい。
Figure JPOXMLDOC01-appb-C000016
 すなわち、有機電界発光素子の寿命に優れる点で、本発明の有機電界発光素子用材料は、下記一般式(1)、(2)、(2’)、(3)、又は(3’)で表されるものであることが好ましい。
Figure JPOXMLDOC01-appb-C000017
 上記置換基Bは、各々独立して、窒素原子に隣接する炭素のうち少なくとも一つの炭素上にメチル基を有するアザベンゼン基、ジアザベンゼン基、アザナフタレン基、ジアザナフタレン基、アザアントラセン基、ジアザアントラセン基、アザフェナントレン基、ジアザフェナントレン基、アザペンタジエン基、ジアザペンタジエン基、オキサアザペンタジエン基、チアアザペンタジエン基、オキサジアザペンタジエン基、チオジアザペンタジエン基、アザインデン基、オキサアザインデン基、チオアザインデン基、又はジアザインデン基を表す。
 置換基C’は、ジアリールピリミジン基又はジアリールトリアジン基(ジアリールピリミジン基及びジアリールトリアジン基におけるアリール基は、各々独立して炭素数1~4のアルキル基で置換されていても良い炭素数6~12の芳香族炭化水素基である)を表わす。
 Arは、炭素数1~4のアルキル基で置換されていても良い炭素数6~20の芳香族炭化水素基、又は炭素数1~4のアルキル基で置換されていても良い炭素数4~14の含窒素複素環基を表す。
 Xは、各々独立して、炭素数1~4のアルキル基で置換されていても良いフェニレン基、アザベンゼンジイル基、又はジアザベンゼンジイル基を表す。
 p、及びqは、各々独立して、0、1、又は2を表す。
 置換基C’’は、3価のピリミジン基、又はトリアジン基を表す。
 Arは、各々独立して、置換されていても良い炭素数6~12の芳香族炭化水素基を表す。
 rは、各々独立して、0、1、又は2を表す。nは、1、2、又は3を表す。
 nは、2、又は3を表す。
 置換基Dは、3価の炭素数6~12の芳香族炭化水素基を表す。
 Arは、炭素数1~4のアルキル基で置換されていても良い炭素数3~14の含窒素複素環基を表す。
 Czは、ピリジル基で置換されていても良いカルバゾリル基を表す。)
 また、有機電界発光素子の寿命に優れる点で、本発明の有機電界発光素子用材料は、下記一般式(1)、一般式(2)、又は一般式(2’)で表されるものがより好ましい。
Figure JPOXMLDOC01-appb-C000018
 置換基B、置換基C’、Ar、X、p、q、置換基C’’、Ar、r、n、及びnは、前記の定義と同じである。
 置換基C’で表されるジアリールピリミジン基としては、特に限定するものではないが、例えば、以下に示すジアリールピリミジン基等を挙げることができる。
Figure JPOXMLDOC01-appb-C000019

(Rは、各々独立して、炭素数1~4のアルキル基を表す。)
 これらのうち、有機電界発光素子の性能が良い点で、以下に示すジアリールピリミジン基が好ましい。
Figure JPOXMLDOC01-appb-C000020
(Rは、各々独立して、炭素数1~4のアルキル基を表す。)
 さらに、合成が容易な点で、以下に示すジアリールピリミジン基がより好ましい。
Figure JPOXMLDOC01-appb-C000021
 置換基C’で表されるジアリールトリアジン基としては、特に限定するものではないが、例えば、以下に示すジアリールトリアジン基等を挙げることができる。
Figure JPOXMLDOC01-appb-C000022

(Rは、各々独立して、炭素数1~4のアルキル基を表す。)
 これらのうち、有機電界発光素子の性能が良い点で、以下に示す
ジアリールトリアジン基が好ましい。
Figure JPOXMLDOC01-appb-C000023
(Rは、各々独立して、炭素数1~4のアルキル基を表す。)
 さらに、合成が容易な点で、以下に示すジアリールトリアジン基がより好ましい。
Figure JPOXMLDOC01-appb-C000024
(Rは、各々独立して、炭素数1~4のアルキル基を表す。)
 すなわち、置換基C’は、下記(C’-1)、(C’-3)、(C’-6)、(C’-16)、(C’-46)、(C’-48)、又は(C’-61)であることが好ましい。
Figure JPOXMLDOC01-appb-C000025

(式中のRは、メチル基を表す。)
 置換基C’’は、3価のピリミジン基、又はトリアジン基を表す。
 置換基C’’で表される3価のピリミジン基としては、特に限定するものではないが、例えば、以下に示す置換基等を挙げることができる。
Figure JPOXMLDOC01-appb-C000026

(Rは、各々独立して、炭素数1~4のアルキル基を表す。)
 これらのうち、有機電界発光素子の性能が良い点で、以下に示す3価のピリミジン基が好ましい。
Figure JPOXMLDOC01-appb-C000027
(Rは、各々独立して、炭素数1~4のアルキル基を表す。)
 置換基C’’で表される3価のトリアジン基としては、特に限定するものではないが、以下に示す置換基等を挙げることができる。
Figure JPOXMLDOC01-appb-C000028

(Rは、各々独立して、炭素数1~4のアルキル基を表す。)
 これらのうち、有機電界発光素子の性能が良い点で、以下に示す3価のトリアジン基が好ましい。
Figure JPOXMLDOC01-appb-C000029
(Rは、各々独立して、炭素数1~4のアルキル基を表す。)
 さらに合成が容易な点で、以下に示す3価のトリアジン基が特に好ましい。
Figure JPOXMLDOC01-appb-C000030
(Rは、各々独立して、炭素数1~4のアルキル基を表す。)
 さらに、Rはメチル基であることが好ましい。
 Arで表される炭素数1~4のアルキル基で置換されていても良い炭素数6~20の芳香族炭化水素基としては、特に限定するものではないが、例えば、以下に示す置換基を挙げることができる。
Figure JPOXMLDOC01-appb-C000031
(Rは、各々独立して、炭素数1~4のアルキル基を表す。)
 これらのうち、有機電界発光素子の性能が良い点で、以下に示す置換基が好ましい。
Figure JPOXMLDOC01-appb-C000032
(Rは、各々独立して、炭素数1~4のアルキル基を表す。)
 さらに、合成がしやすい点から、以下に示す置換基がより好ましい。
Figure JPOXMLDOC01-appb-C000033
(Rは、各々独立して、炭素数1~4のアルキル基を表す。)
 Arで表される炭素数1~4のアルキル基で置換されていても良い炭素数4~14の含窒素複素環基としては、特に限定するものではないが、例えば、以下に示す含窒素複素環基を挙げることができる。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036

(Rは、各々独立して、炭素数1~4のアルキル基を表す。)
 これらのうち、有機電界発光素子の性能が良い点で、以下に示す含窒素複素環基が好ましい。
Figure JPOXMLDOC01-appb-C000037
(Rは、各々独立して、炭素数1~4のアルキル基を表す。)
 さらに合成がしやすい点から、以下に示す含窒素複素環基がより好ましい。
Figure JPOXMLDOC01-appb-C000038
(Rは、各々独立して、炭素数1~4のアルキル基を表す。)
 Xで表される炭素数1~4のアルキル基で置換されていても良いフェニレン基としては、特に限定するものではないが、例えば、以下に示すフェニレン基を挙げることができる。
Figure JPOXMLDOC01-appb-C000039
(Rは、各々独立して、炭素数1~4のアルキル基を表す。)
 これらのうち、有機電界発光素子の性能が良い点で、以下に示す芳香族炭化水素基が好ましい。
Figure JPOXMLDOC01-appb-C000040
(Rは、各々独立して、炭素数1~4のアルキル基を表す。)
 さらに合成がしやすい点から、以下に示す芳香族炭化水素基がより好ましい。
Figure JPOXMLDOC01-appb-C000041
 Xで表される炭素数1~4のアルキル基で置換されていても良いアザベンゼン基としては、特に限定するものではないが、以下に示すアザベンゼン基を挙げることができる。
Figure JPOXMLDOC01-appb-C000042
 Xで表される炭素数1~4のアルキル基で置換されていても良いジアザベンゼン基としては、特に限定するものではないが、例えば、以下に示すジアザベンゼン基を挙げることができる。
Figure JPOXMLDOC01-appb-C000043
 すなわち、Xは、有機電界発光素子の性能が良い点で、各々独立して、フェニレン基又はピリジレン基であることが好ましい。
 Xの数を表すp及びqは、各々独立して、0、1、又は2の整数である。なお、p、qは、置換基Xがp個又はq個連結することを示す。
 p及びqは、有機電界発光素子の性能が良い点で、各々独立して、0又は1であることが好ましい。
 Arで表される炭素数6~12の炭化水素基としては、特に限定するものではないが、例えば、以下に示す炭化水素基を挙げることができる。
Figure JPOXMLDOC01-appb-C000044
 これらのうち、有機電界発光素子の性能が良い点で、以下に示す炭化水素基が好ましい。
Figure JPOXMLDOC01-appb-C000045
 Xの数を表すrは、0、1、又は2の整数である。
 置換基(D)で表される3価の炭素数6~12の芳香族炭化水素基としては、特に限定するものではないが、例えば、以下に示す芳香族炭化水素基を挙げることができる。
Figure JPOXMLDOC01-appb-C000046
 これらのうち、有機電界発光素子の性能が良い点で、以下に示す芳香族炭化水素基が好ましい。
Figure JPOXMLDOC01-appb-C000047
 Arで表される炭素数1~4のアルキル基で置換されていても良い炭素数3~14の含窒素複素環基としては、特に限定するものではないが、例えば、以下に示す含窒素複素環基を挙げることができる。
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050

(Rは、各々独立して、炭素数1~4のアルキル基を表す。)
 これらのうち、有機電界発光素子の性能が良い点で、以下に示す含窒素複素環基が好ましい。
Figure JPOXMLDOC01-appb-C000051

(Rは、各々独立して、炭素数1~4のアルキル基を表す。)
 さらに合成がしやすい点から、以下に示す含窒素複素環基がより好ましい。
Figure JPOXMLDOC01-appb-C000052
(Rは、各々独立して、炭素数1~4のアルキル基を表す。)
 Czは、ピリジル基で置換されていても良いカルバゾリル基を表す。
 本発明の化合物、及び本発明と同等の効果を奏する化合物としては、特に限定するものではないが、例えば下記式で表される化合物(E-1)~(E-548)で表される環状アジン化合物等が挙げられる。
 以下に例示の化合物において、含窒素複素環又は炭素環に結合している「-」は、メチル基が結合していることを表す。
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
 一般式(1)、一般式(2)、又は一般式(2’)で表される化合物Aとしては、有機電界発光素子の性能が良い点で、下記式で表される化合物(A-1)~(A-23)、(A-27)~(A-34)、(A-37)~(A-39)、又は(A-41)~(A-44)の環状アジン化合物が好ましい。
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118

Figure JPOXMLDOC01-appb-C000119
 上記の化合物Aにおいて、特に限定するものではないが、下記式(A-19~(A-34)が好ましい例として挙げることができる。
Figure JPOXMLDOC01-appb-C000120
 これらのうち、下記式(A-1)~(A-26)をより好ましい例として挙げることができる。
Figure JPOXMLDOC01-appb-C000121
 次に、化合物A(具体的には、一般式(1)、一般式(2)、一般式(2’)、一般式(3)、一般式(3’)で表される化合物)の製造方法について説明する。
 一般式(1)、一般式(2)、又は一般式(2’)で表される化合物は、次の反応式(1)~(10)のいずれかの方法により製造することができる。
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123

(Ar、Ar、Ar、B、C’、C’’、D、Cz、X、p、q、r、n、及びnは、前述したAr、Ar、Ar、B、C’、C’’、D、Cz、X、p、q、r、n、及びnと同じ定義を表す。)
 反応式(1)~(10)中、Wは、脱離基を表し、特に限定するものではないが、例えば、塩素原子、臭素原子、トリフラート又はヨウ素原子が挙げられる。このうち、反応収率がよい点で、臭素原子又は塩素原子が好ましい。
 反応式(1)~(10)中、Vは、ボロン酸化合物、又は金属含有基を表し、特に限定するものではないが、例えば、Li、Na、MgCl、MgBr、MgI、CuCl、CuBr、CuI、AlCl、AlBr、Al(Me)、Al(Et)、Al(Bu)、Sn(Me)、Sn(Bu)、SnF、ZnCl、ZnBr、BFK、B(OR、B(OR、Si(R等を挙げることができる。
 B(ORとしては、特に限定するものではないが、例えば、B(OH)、B(OMe)、B(OPr)、B(OBu)、B(OPh)等を挙げることができる。又、2つのRが一体となって酸素原子及びホウ素原子を含んで環を形成した場合のB(ORの例としては、以下に示す置換基を挙げることができる。
Figure JPOXMLDOC01-appb-C000124
 これらの置換基のうち、反応の選択性がよい点で(II)、又は(VII)が好ましく、反応収率が良い点で、(II)がより好ましい。
 B(ORとしては、以下に示す置換基を挙げることができる。
Figure JPOXMLDOC01-appb-C000125
 Si(Rとしては、特に限定するものではないが、例えば、SiMe、SiPh、SiMePh、SiCl、SiF、Si(OMe)、Si(OEt)、Si(OMe)OH等を挙げることができる。
 反応式(1)~(10)に示すように、本発明の化合物(A)は、パラジウム触媒及び塩基の存在下で、それぞれの反応式に記載したようにカップリング反応を行うことで合成することが出来る。
 反応式(1)~(10)の反応に用いることのできるパラジウム触媒としては、特に限定するものではないが、例えば、塩化パラジウム、酢酸パラジウム、トリフルオロ酢酸パラジウム、硝酸パラジウム等の塩を挙げることができる。さらに、π-アリルパラジウムクロリドダイマー、パラジウムアセチルアセトナト、ビス(ジベンジリデンアセトン)パラジウム、トリス(ジベンジリデンアセトン)ジパラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、テトラキス(トリフェニルホスフィン)パラジウム、トリ(tert-ブチル)ホスフィンパラジウム、ジクロロ(1,1’-ビス(ジフェニルホスフィノ)フェロセン)パラジウム等を挙げることができる。中でも、ジクロロビス(トリフェニルホスフィン)パラジウム、テトラキス(トリフェニルホスフィン)パラジウム、トリ(tert-ブチル)ホスフィンパラジウム等の第三級ホスフィンを配位子として有するパラジウム錯体は、収率がよい点で好ましく、入手容易である点で、テトラキス(トリフェニルホスフィン)パラジウム、又はトリ(tert-ブチル)ホスフィンパラジウムがさらに好ましい。なお、上記の第三級ホスフィンを配位子として有するパラジウム錯体は、パラジウム塩又は錯化合物に第三級ホスフィンを添加し、反応系中で調製することもできる。
 第三級ホスフィンとしては、特に限定するものではないが、例えば、トリフェニルホスフィン、トリメチルホスフィン、トリブチルホスフィン、トリ(tert-ブチル)ホスフィン、トリシクロヘキシルホスフィン、tert-ブチルジフェニルホスフィン、9,9-ジメチル-4,5-ビス(ジフェニルホスフィノ)キサンテン、2-(ジフェニルホスフィノ)-2’-(N,N-ジメチルアミノ)ビフェニル、2-(ジ-tert-ブチルホスフィノ)ビフェニル、2-(ジシクロヘキシルホスフィノ)ビフェニル、ビス(ジフェニルホスフィノ)メタン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,1’-ビス(ジフェニルホスフィノ)フェロセン、トリ(2-フリル)ホスフィン、トリ(o-トリル)ホスフィン、トリス(2,5-キシリル)ホスフィン、(±)-2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル等を例示することができる。このうち、入手容易であり、収率がよい点で、(tert-ブチル)ホスフィン又は2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニルが好ましい。
 パラジウム塩又は錯化合物に第三級ホスフィンを添加する場合、第三級ホスフィンの添加量は、パラジウム塩又は錯化合物の1モル(パラジウム原子換算)に対して0.1~10倍モルであることが好ましく、収率がよい点で0.3~5倍モルであることがさらに好ましい。
 反応式(1)~(10)において、用いることのできる塩基としては、特に限定するものではないが、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸カリウム、酢酸ナトリウム、リン酸カリウム、リン酸ナトリウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム等を例示することができる。このうち、収率がよい点で、炭酸カリウム、リン酸カリウム、又は水酸化ナトリウムが好ましい。
 反応式(1)~(10)の反応は、溶媒中で実施することが好ましい。溶媒としては、特に制限はないが、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、テトラヒドロフラン、トルエン、ベンゼン、ジエチルエーテル、1,4-ジオキサン、エタノール、ブタノール、キシレン等を例示することができ、これらを適宜組み合わせて用いてもよい。このうち、収率がよい点で、テトラヒドロフラン、1,4-ジオキサン、又はトルエン-ブタノール混合溶媒が好ましい。
 以下、反応式(1)について説明する。
 化合物(1)は、例えば、山中宏著、「新編 ヘテロ環化合物 基礎編」,講談社,2004年、山中宏著、「新編 ヘテロ環化合物 応用編」,講談社,2004年、The Journal of Organic Chemistry,1951年,16巻,461-465、Macromolecules,2001年,6巻,477-480、科学技術研究所報告、81巻、441、1986年に開示されている方法、等を用いて製造することができる。
 化合物(1)中の置換基C’は、前述した置換基C’と同じ定義を表す。
 化合物(1)として、特に限定するものではないが、例えば、以下に示す(1-1)~(1-12)等を挙げることができる。
Figure JPOXMLDOC01-appb-C000126
(Rは、各々独立して、炭素数1~4のアルキル基を表す。V及びWは前記と同じ定義を表す。)
 化合物(2)、又は化合物(3)は、例えば、The Journal of Organic Chemistry,2001,66,4333-4339、又はChem.Rev.,95巻,2457-2483,1995年に開示されている方法を用いて製造することができる。
 化合物(2)中の置換基B、X、及びpは、前述した置換基B、X、及びpと同じ定義を表す。
 化合物(2)として、特に限定するものではないが、例えば、以下に示す(2-1)~(2-69)等を挙げることができる。
Figure JPOXMLDOC01-appb-C000127

(V及びWは前記と同じ定義を表す。)
 化合物(3)中のAr、X、及びqは、前述したAr、X、及びqと同じ定義を表す。
 化合物(3)として、特に限定するものではないが、例えば、以下に示す(3-1)~(3-84)等を挙げることができる。
Figure JPOXMLDOC01-appb-C000128

(Rは、各々独立して、炭素数1~4のアルキル基を表す。V及びWは前記と同じ定義を表す。)
 反応式(1)では、化合物(1)と化合物(2)を先に反応させ、反応中間体を生成させた後に、化合物(3)を反応させて、一般式(1)で表される化合物を合成しても良い。この際、生じる反応中間体は、単離しても良い。また、前記反応中間体と前述したボロン酸化合物、又は金属含有基を反応させて得られた生成物に、化合物(6)を反応させることで、一般式(1)で表される化合物を合成することもできる。
 反応式(1)では、化合物(1)と化合物(3)を先に反応させ、反応中間体を生成させた後に、化合物(2)を反応させて、一般式(1)で表される化合物を合成しても良い。この際、生じる反応中間体は、単離しても良い。また、前記反応中間体と前述したボロン酸化合物、又は金属含有基を反応させて得られた生成物に、化合物(5)を反応させることで、一般式(1)で表される化合物を合成することもできる。 反応式(1)で用いるパラジウム触媒の量は、いわゆる触媒量であれば特に制限はないが、収率がよい点で、化合物(1)の1モルに対して、0.1~0.01倍モル(パラジウム原子換算)であることが好ましい。
 反応式(1)で用いる化合物(1)と化合物(2)と化合物(3)のモル比に特に制限はないが、化合物(1)の1モルに対して、化合物(2)が0.2~5倍モル、化合物(3)が0.2~5倍モルであることが好ましい。
 塩基の使用量としては、特に制限はないが、化合物(1)の1モルに対して、0.5~10倍モルが好ましく、収率がよい点で1~5倍モルがさらに好ましい。
 以下、反応式(2)について説明する。
 化合物(4)は、例えば、山中宏著、「新編 ヘテロ環化合物 基礎編」,講談社,2004年、山中宏著、「新編 ヘテロ環化合物 応用編」,講談社,2004年、又はChem.Rev.,95巻,2457-2483,1995年に開示されている方法等を用いて製造することができる。
 化合物(4)中の置換基C’は、前述した置換基C’と同じ定義を表す。
 化合物(4)として、特に限定するものではないが、例えば、以下に示す(4-1)~(4-12)等を挙げることができる。
Figure JPOXMLDOC01-appb-C000129
(Rは、各々独立して、炭素数1~4のアルキル基を表す。V及びWは前記と同じ定義を表す。)
 化合物(5)、又は化合物(6)は、例えば、The Journal of Organic Chemistry,2001,66,4333-4339、又はChem.Rev.,95巻,2457-2483,1995年に開示されている方法等を用いて製造することができる。
 化合物(5)中の置換基B、X、及びpは、前述した置換基B、X、及びpと同じ定義を表す。
 化合物(5)として、特に限定するものではないが、例えば、以下に示す(5-1)~(5-69)等を挙げることができる。
Figure JPOXMLDOC01-appb-C000130

(V及びWは前記と同じ定義を表す。)
 化合物(6)中のAr、X、及びqは、前述したAr、X、及びqと同じ定義を表す。
 化合物(6)として、特に限定するものではないが、例えば、以下に示す(6-1)~(6-84)等を挙げることができる。
Figure JPOXMLDOC01-appb-C000131

(Rは、各々独立して、炭素数1~4のアルキル基を表す。V及びWは前記と同じ定義を表す。)
 反応式(2)では、化合物(4)と化合物(5)を先に反応させ、反応中間体を生成させた後に、化合物(6)を反応させて、一般式(1)で表される化合物を合成しても良い。この際、生じる反応中間体は、単離しても良い。
 反応式(2)では、化合物(4)と化合物(6)を先に反応させ、反応中間体を生成させた後に、化合物(5)を反応させて、一般式(1)で表される化合物を合成しても良い。この際、生じる反応中間体は、単離しても良い。
 反応式(2)で用いるパラジウム触媒の量は、いわゆる触媒量であれば特に制限はないが、収率がよい点で、化合物(4)の1モルに対して、0.1~0.01倍モル(パラジウム原子換算)であることが好ましい。
反応式(2)で用いる化合物(4)と化合物(5)と化合物(6)のモル比に特に制限はないが、化合物(4)の1モルに対して、化合物(5)が0.2~5倍モル、化合物(6)が0.2~5倍モルであることが好ましい。
 塩基の使用量としては、特に制限はないが、化合物(4)の1モルに対して、0.5~10倍モルが好ましく、収率がよい点で1~5倍モルがさらに好ましい。
 以下、反応式(3)について説明する。
 化合物(7)は、前述した化合物(1)と同様の方法で製造することができる。
 化合物(7)中の、置換基C’’は、前述した置換基C’’と同じ定義を表す。
 化合物(7)として、特に限定するものではないが、例えば、以下に示す(7-1)~(7-26)等を挙げることができる。
Figure JPOXMLDOC01-appb-C000132

(Rは、各々独立して、炭素数1~4のアルキル基を表す。V及びWは前記と同じ定義を表す。)
 化合物(2’)は、前述した化合物(2)と同様の方法で製造することができる。
 化合物(2’)中の置換基B、X、及びrは、前述した置換基B、X、及びrと同じ定義を表す。
 化合物(2’)として、特に限定するものではないが、例えば、前述した化合物(2)と同様の化合物を挙げることができる。
 反応式(3)で用いるパラジウム触媒の量は、いわゆる触媒量であれば特に制限はないが、収率がよい点で、化合物(7)の1モルに対して、0.1~0.01倍モル(パラジウム原子換算)であることが好ましい。
 反応式(3)で用いる化合物(7)と化合物(2’)のモル比に特に制限はないが、化合物(7)の1モルに対して、化合物(2’)が0.2~5倍モルが好ましい。
 塩基の使用量としては、特に制限はないが、化合物(7)の1モルに対して、0.5~10倍モルが好ましく、収率がよい点で1~5倍モルがさらに好ましい。
 以下、反応式(4)について説明する。
 化合物(8)は、前述した化合物(4)と同様の方法で製造することができる。
 化合物(8)中の、置換基C’’は、前述した置換基C’’と同じ定義を表す。
 化合物(8)として、特に限定するものではないが、例えば、以下に示す(8-1)~(8-26)等を挙げることができる。
Figure JPOXMLDOC01-appb-C000133

(式中のRは、各々独立して、炭素数1~4のアルキル基を表す。V及びWは前記と同じ定義を表す。)
 化合物(5’)は、前述した化合物(5)と同様の方法で製造することができる。
 化合物(5’)中の置換基B、X、又はrは、前述した置換基B、X、又はrと同じ定義を表す。
 化合物(5’)として、特に限定するものではないが、例えば、前述した化合物(5)と同様の化合物を挙げることができる。
 反応式(4)で用いるパラジウム触媒の量は、いわゆる触媒量であれば特に制限はないが、収率がよい点で、化合物(8)の1モルに対して、0.1~0.01倍モル(パラジウム原子換算)であることが好ましい。
 反応式(4)で用いる化合物(8)と化合物(5’)のモル比に特に制限はないが、化合物(8)の1モルに対して、化合物(5’)が0.2~5倍モルであることが好ましい。
 塩基の使用量としては、特に制限はないが、化合物(8)の1モルに対して、0.5~10倍モルが好ましく、収率がよい点で1~5倍モルがさらに好ましい。
 以下、反応式(5)について説明する。
 化合物(9)は、前述した化合物(1)と同様の方法で製造することができる。
 化合物(9)中の、置換基C’’、及びArは、前述した置換基C’’、及びArと同じ定義を表す。
 化合物(9)として、特に限定するものではないが、例えば、以下に示す(9-1)~(9-12)等を挙げることができる。
Figure JPOXMLDOC01-appb-C000134
(Rは、各々独立して、炭素数1~4のアルキル基を表す。V及びWは前記と同じ定義を表す。)
 反応式(5)で用いるパラジウム触媒の量は、いわゆる触媒量であれば特に制限はないが、収率がよい点で、化合物(9)の1モルに対して、0.1~0.01倍モル(パラジウム原子換算)であることが好ましい。
 反応式(5)で用いる化合物(9)と化合物(2’)のモル比に特に制限はないが、化合物(9)の1モルに対して、化合物(2’)が0.2~5倍モルであることが好ましい。
 塩基の使用量としては、特に制限はないが、化合物(9)の1モルに対して、0.5~10倍モルが好ましく、収率がよい点で1~5倍モルがさらに好ましい。
 以下、反応式(6)について説明する。
 化合物(10)は、前述した化合物(4)と同様の方法で製造することができる。
 化合物(10)中の、置換基C’’、及びArは、前述した置換基C’’、及びArと同じ定義を表す。
 化合物(10)として、特に限定するものではないが、例えば、以下に示す(10-1)~(10-12)等を挙げることができる。
Figure JPOXMLDOC01-appb-C000135

(Rは、各々独立して、炭素数1~4のアルキル基を表す。V及びWは前記と同じ定義を表す。)
 反応式(6)で用いるパラジウム触媒の量は、いわゆる触媒量であれば特に制限はないが、収率がよい点で、化合物(10)の1モルに対して、0.1~0.01倍モル(パラジウム原子換算)であることが好ましい。
 反応式(6)で用いる化合物(10)と化合物(5’)のモル比に特に制限はないが、化合物(10)の1モルに対して、化合物(5’)が0.2~5倍モルであることが好ましい。
 塩基の使用量としては、特に制限はないが、化合物(10)の1モルに対して、0.5~10倍モルが好ましく、収率がよい点で1~5倍モルがさらに好ましい。
 以下、反応式(7)について説明する。
 化合物(11)中の、置換基B、C’、D、及びCzは、前述した置換基B、C’、D、及びCzと同じ定義を表す。
 化合物(11)は、以下に示す反応式(11)で製造することができる。
Figure JPOXMLDOC01-appb-C000136
 化合物(17)中の、置換基B、C’、D、及びCzは、前述した置換基B、C’、D、及びCzと同じ定義を表す。
 Wは、脱離基を表し、特に限定するものではないが、例えば、塩素原子、臭素原子、トリフラート又はヨウ素原子が挙げられる。このうち、反応収率がよい点で、臭素原子又は塩素原子が好ましい。
 化合物(17)は、前述した化合物(1)と同様の方法で製造することができる。
 反応式(11)の反応に用いることのできる触媒としては、パラジウム触媒、ニッケル触媒、鉄触媒、銅触媒、ルテニウム触媒、白金触媒、ロジウム触媒、イリジウム触媒、オスミウム触媒、コバルト触媒等を列挙することができる。中でも、銅触媒は収率がよい点で好ましい。これらの金属触媒としては、金属、担持金属、金属の塩化物塩、臭化物塩、ヨウ化物塩、硝酸塩、硫酸塩、炭酸塩、シュウ酸塩、酢酸塩、酸化物塩等の金属塩、又はオレフィン錯体、ホスフィン錯体、アミン錯体、アンミン錯体、アセチルアセトナト錯体等の錯化合物を用いることができる。さらに、これらの金属、金属塩又は錯化合物と、三級ホスフィン配位子を組合わせて用いることもできる。
 反応式(11)の反応に用いることのできる銅触媒としては、特に限定するものではないが、例えば、酸化銅(I)、酸化銅(II)、ヨウ化銅(I)、ヨウ化銅(II)、臭化銅(I)、臭化銅(II)、塩化銅(I)、塩化銅(II)、酢酸銅(I)、酢酸銅(II)、硫酸銅(II)、シアン化銅(I)、シアン化銅(II)等を挙げることができ、中でも、酸化銅(I)は収率がよい点で好ましい。
 反応式(11)の反応において、ジアミン配位子を加えても良い。
 反応式(11)の反応に用いることのできるジアミン配位子としては、特に限定するものではないが、例えば、1,10-フェナントロリン、trans-1,2-シクロヘキサンジアミン等を挙げることができ、中でも、1,10-フェナントロリンは収率がよい点で好ましい。
 反応式(11)の反応において、18-クラウン-6-エーテルに代表される相間移動触媒を添加してもよい。
 反応式(11)において、用いることのできる塩基としては、特に限定するものではないが、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸カリウム、酢酸ナトリウム、リン酸カリウム、リン酸ナトリウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム等を例示することができる。このうち、収率がよい点で、炭酸カリウムが好ましい。
 反応式(11)の反応は、溶媒中で実施することが好ましい。溶媒としては、特に制限はないが、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、テトラヒドロフラン、トルエン、ベンゼン、ジエチルエーテル、1,4-ジオキサン、エタノール、ブタノール、キシレン等を例示することができ、これらを適宜組み合わせて用いてもよい。このうち、収率がよい点で、キシレンが好ましい。
 反応式(11)で用いる触媒の量は、いわゆる触媒量であれば特に制限はないが、収率がよい点で、化合物(17)の1モルに対して、0.1~0.01倍モル(金属原子換算)であることが好ましい。
 ジアミン配位子の使用量は、化合物(17)の1モルに対して、0.01~10倍モルであることが好ましく、収率がよい点で、0.02~2倍モルであることがさらに好ましい。
 相間移動触媒の使用量としては、化合物(17)の1モルに対して、0.1~10倍モルであることが好ましく、収率がよい点で、0.2~2倍モルであることがさらに好ましい。
 反応式(11)で用いる化合物(17)と化合物(18)のモル比に特に制限はないが、化合物(17)の1モルに対して、化合物(18)が0.2~5倍モルであることが好ましい。
 塩基の使用量としては、特に制限はないが、化合物(17)の1モルに対して、0.5~10倍モルが好ましく、収率がよい点で1~5倍モルがさらに好ましい。
 化合物(11)として、特に限定するものではないが、例えば、以下に示す(11-1)~(11-24)等を挙げることができる。
Figure JPOXMLDOC01-appb-C000137

(Rは、各々独立して、炭素数1~4のアルキル基を表す。V及びWは前記と同じ定義を表す。)
 化合物(12)は、前述した化合物(3)と同様の方法で製造することができる。
 化合物(12)中の、Ar、X、及びpは、前述したAr、X、及びpと同じ定義を表す。
 化合物(12)として、特に限定するものではないが、例えば、以下に示す(12-1)~(12-579等を挙げることができる。
Figure JPOXMLDOC01-appb-C000138

(Rは、各々独立して、炭素数1~4のアルキル基を表す。V及びWは前記と同じ定義を表す。)
 反応式(7)で用いるパラジウム触媒の量は、いわゆる触媒量であれば特に制限はないが、収率がよい点で、化合物(11)の1モルに対して、0.1~0.01倍モル(パラジウム原子換算)であることが好ましい。
 反応式(7)で用いる化合物(11)と化合物(12)のモル比に特に制限はないが、化合物(11)の1モルに対して、化合物(12)が0.2~5倍モルであることが好ましい。
 塩基の使用量としては、特に制限はないが、化合物(11)の1モルに対して、0.5~10倍モルが好ましく、収率がよい点で1~5倍モルがさらに好ましい。
 以下、反応式(8)について説明する。
 化合物(13)は、前述した化合物(11)と同様の方法で製造することができる。
 化合物(13)中の、置換基C’、D、及びCzは、前述した置換基C’、D、及びCzと同じ定義を表す。
 化合物(13)として、特に限定するものではないが、例えば、以下に示す(13-1)~(13-16)等を挙げることができる。
Figure JPOXMLDOC01-appb-C000139
(Rは、各々独立して、炭素数1~4のアルキル基を表す。V及びWは前記と同じ定義を表す。)
 反応式(8)で用いるパラジウム触媒の量は、いわゆる触媒量であれば特に制限はないが、収率がよい点で、化合物(13)の1モルに対して、0.1~0.01倍モル(パラジウム原子換算)であることが好ましい。
 反応式(8)で用いる化合物(13)と化合物(2)のモル比に特に制限はないが、化合物(13)の1モルに対して、化合物(2)が0.2~5倍モルであることが好ましい。
 塩基の使用量としては、特に制限はないが、化合物(13)の1モルに対して、0.5~10倍モルが好ましく、収率がよい点で1~5倍モルがさらに好ましい。
 以下、反応式(9)について説明する。
 化合物(14)は、前述した化合物(4)及び化合物(11)と同様の方法で製造することができる。
 化合物(14)中の、置換基B、C’、D、及びCzは、前述した置換基B、C’、D、及びCzと同じ定義を表す。
 化合物(14)として、特に限定するものではないが、例えば、以下に示す(14-1)~(14-24)等を挙げることができる。
Figure JPOXMLDOC01-appb-C000140

(Rは、各々独立して、炭素数1~4のアルキル基を表す。V及びWは前記と同じ定義を表す。)
 化合物(15)は、前述した化合物(6)と同様の方法で製造することができる。
 化合物(15)中の、Ar、X、及びpは、前述したAr、X、及びpと同じ定義を表す。
 化合物(15)として、特に限定するものではないが、例えば、以下に示す(15-1)~(15-24)等を挙げることができる。
Figure JPOXMLDOC01-appb-C000141

(Rは、各々独立して、炭素数1~4のアルキル基を表す。V及びWは前記と同じ定義を表す。)
 反応式(9)で用いるパラジウム触媒の量は、いわゆる触媒量であれば特に制限はないが、収率がよい点で、化合物(14)の1モルに対して、0.1~0.01倍モル(パラジウム原子換算)であることが好ましい。
 反応式(9)で用いる化合物(14)と化合物(15)のモル比に特に制限はないが、化合物(14)の1モルに対して、化合物(15)が0.2~5倍モルであることが好ましい。
 塩基の使用量としては、特に制限はないが、化合物(14)の1モルに対して、0.5~10倍モルが好ましく、収率がよい点で1~5倍モルがさらに好ましい。
 以下、反応式(10)について説明する。
 化合物(16)は、前述した化合物(14)と同様の方法で製造することができる。
 化合物(16)中の、置換基C’、D、及びCzは、前述した置換基C’、D、及びCzと同じ定義を表す。
 化合物(16)として、特に限定するものではないが、例えば、以下に示す(16-1)~(16-16)等を挙げることができる。
Figure JPOXMLDOC01-appb-C000142

(Rは、各々独立して、炭素数1~4のアルキル基を表す。V及びWは前記と同じ定義を表す。)
 反応式(10)で用いるパラジウム触媒の量は、いわゆる触媒量であれば特に制限はないが、収率がよい点で、化合物(16)の1モルに対して、0.1~0.01倍モル(パラジウム原子換算)であることが好ましい。
 反応式(10)で用いる化合物(16)と化合物(5)のモル比に特に制限はないが、化合物(16)の1モルに対して、化合物(5)が0.2~5倍モルであることが好ましい。
 塩基の使用量としては、特に制限はないが、化合物(16)の1モルに対して、0.5~10倍モルが好ましく、収率がよい点で1~5倍モルがさらに好ましい。
 一般式(1)、一般式(2)、又は一般式(2’)で表される化合物は、有機電界発光素子用材料として好適に用いられるものである。
 さらに、一般式(1)、一般式(2)、又は一般式(2’)で表される化合物は、有機電界発光素子用の電子輸送材料又は電子注入材料として好適に用いられるものである。
 一般式(1)、一般式(2)、又は一般式(2’)で表される化合物を含有する有機電界発光素子用薄膜の製造方法に特に限定はないが、好ましい例としては真空蒸着法による成膜を挙げることができる。真空蒸着法による成膜は、汎用の真空蒸着装置を用いることにより行うことができる。
真空蒸着法で膜を形成する際の真空槽の真空度は、有機電界発光素子作製の製造タクトタイムが短く製造コストが優位である点で、一般的に用いられる拡散ポンプ、ターボ分子ポンプ、クライオポンプ等により到達し得る1×10-2~1×10-6Pa程度が好ましく、より好ましくは1×10-3~10-6Paである。又、蒸着速度は形成する膜の厚さによるが0.005~10nm/秒が好ましく、より好ましくは0.01~1nm/秒である。
 また、溶液塗布法によっても化合物Aから成る有機電界発光素子用の薄膜を製造することが出来る。例えば、化合物Aを、クロロホルム、ジクロロメタン、1,2-ジクロロエタン、クロロベンゼン、トルエン、酢酸エチル、テトラヒドロフラン等の有機溶媒に溶解し、汎用の装置を用いたスピンコート法、インクジェット法、キャスト法、ディップ法等による成膜も可能である。
 本発明の効果が得られる有機電界発光素子の基本的な構造としては、基板、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、及び陰極を含む。
 有機電界発光素子の陽極及び陰極は、電気的な導体を介して電源に接続されている。陽極と陰極との間に電位を加えることにより、有機電界発光素子は作動する。
 正孔は陽極から有機電界発光素子内に注入され、電子は陰極で有機電界発光素子内に注入される。
 有機電界発光素子は典型的には基板に被せられ、陽極又は陰極は基板と接触することができる。基板と接触する電極は便宜上、下側電極と呼ばれる。一般的には、下側電極は陽極であるが、本発明の有機電界発光素子においては、そのような形態に限定されるものではない。
 基板は、意図される発光方向に応じて、光透過性又は不透明であってもよい。光透過特性は、基板を通してエレクトロルミネッセンス発光により確認できる。一般的には、透明ガラス又はプラスチックがこのような場合に基板として採用される。基板は、多重の材料層を含む複合構造であってもよい。
 エレクトロルミネッセンス発光を、陽極を通して確認する場合、陽極は当該発光を通すか又は実質的に通すもので形成される。
 本発明において使用される一般的な透明アノード(陽極)材料は、インジウム-錫酸化物(ITO)、インジウム-亜鉛酸化物(IZO)、又は酸化錫である。しかし、その他の金属酸化物、例えばアルミニウム又はインジウム・ドープ型酸化錫、マグネシウム-インジウム酸化物、又はニッケル-タングステン酸化物も使用可能である。これらの酸化物に加えて、金属窒化物である、例えば窒化ガリウム、金属セレン化物である、例えばセレン化亜鉛、又は金属硫化物である、例えば硫化亜鉛を陽極として使用することができる。
 陽極は、プラズマ蒸着されたフルオロカーボンで改質することができる。陰極を通してだけエレクトロルミネッセンス発光が確認される場合、陽極の透過特性は重要ではなく、透明、不透明又は反射性の任意の導電性材料を使用することができる。この用途のための導体の一例としては、金、イリジウム、モリブデン、パラジウム、白金等が挙げられる。
 陽極と正孔輸送層との間には、正孔注入層を設けることができる。正孔注入材料は、後に続く、有機層の膜形成特性を改善し、正孔輸送層内に正孔を注入するのを容易にするのに役立つ。
 正孔注入層内で使用するのに適した材料の一例としては、ポルフィリン化合物、プラズマ蒸着型フルオロカーボン・ポリマー、ビフェニル基、カルバゾール基等芳香環を有するアミン、例えば、m-MTDATA(4,4’,4’’-トリス[(3-メチルフェニル)フェニルアミノ]トリフェニルアミン)、2T-NATA(4,4’,4’’-トリス[(N-ナフタレン-2-イル)-N-フェニルアミノ]トリフェニルアミン)、トリフェニルアミン、トリトリルアミン、トリルジフェニルアミン、N,N’-ジフェニル-N,N’-ビス(3-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン、N,N,N’N’-テトラキス(4-メチルフェニル)-1,1’-ビフェニル-4,4’-ジアミン、MeO-TPD(N,N,N’N’-テトラキス(4-メトキシフェニル)-1,1’-ビフェニル-4,4’-ジアミン)、N,N’-ジフェニル-N,N’-ジナフチル-1,1’-ビフェニル-4,4’-ジアミン、N,N’-ビス(メチルフェニル)-N,N’-ビス(4-ノルマルブチルフェニル)フェナントレン-9,10-ジアミン、又はN,N’-ジフェニル-N,N’-ビス(9-フェニルカルバゾール-3-イル)-1,1’-ビフェニル-4,4’-ジアミン等が挙げられる。
 有機電界発光素子の正孔輸送層は、1種以上の正孔輸送化合物、例えば芳香族第三アミンを含有することが好ましい。芳香族第三アミンとは、1つ以上の三価の窒素原子を含有する化合物であることを意味し、この三価の窒素原子は炭素原子だけに結合しており、これらの炭素原子の1つ以上は芳香族環を形成している。具体的には、芳香族第三アミンは、アリールアミン、モノアリールアミン、ジアリールアミン、トリアリールアミン、又は高分子アリールアミンであってよい。
 正孔輸送材料としては、1つ以上のアミノ基を有する芳香族第三アミンを使用することができる。さらに、高分子正孔輸送材料である、例えば、ポリ(N-ビニルカルバゾール)(PVK)、ポリチオフェン、ポリピロール、ポリアニリン等も使用することができる。例えば、NPD(N,N’-ビス(ナフタレン-1-イル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン)、α-NPD(N,N’-ジ(1-ナフチル)-N,N’-ジフェニル-1,1’-ビフェニル-4,4’ -ジアミン)、TPBi(1,3,5-トリス(1-フェニル-1H-ベンズイミダゾール-2-イル)ベンゼン)、又はTPD(N,N’-ビス(3-メチルフェニル) -N,N’-ジフェニル-1,1’-ビフェニル-4,4’-ジアミン)等が挙げられる。
 正孔注入層と正孔輸送層の間に、電荷発生層としてジピラジノ[2,3-f:2’,3’-h]キノキサリン-2,3,6,7,10,11-ヘキサカルボニトリル(HAT-CN)を含む層を設けてもよい。
 有機電界発光素子の発光層は、燐光材料又は蛍光材料を含み、この領域で電子・正孔対が再結合された結果として発光を生ずる。
 発光層は、低分子及びポリマー双方を含む単一材料から成っていてもよいが、より一般的には、ゲスト化合物でドーピングされたホスト材料から成っており、発光は主としてドーパントから生じ、任意の色を有することができる。
 発光層のホスト材料としては、例えば、ビフェニル基、フルオレニル基、トリフェニルシリル基、カルバゾール基、ピレニル基、又はアントラニル基を有する化合物が挙げられる。例えば、DPVBi(4,4’-ビス(2,2-ジフェニルビニル)-1,1’-ビフェニル)、BCzVBi(4,4’-ビス(9-エチル-3-カルバゾビニレン)1,1’-ビフェニル)、TBADN(2-ターシャルブチル-9,10-ジ(2-ナフチル)アントラセン)、ADN(9,10-ジ(2-ナフチル)アントラセン)、CBP(4,4’-ビス(カルバゾール-9-イル)ビフェニル)、CDBP(4,4’-ビス(カルバゾール-9-イル)-2,2’-ジメチルビフェニル)、又は9,10-ビス(ビフェニル)アントラセン等が挙げられる。
 発光層内のホスト材料としては、下記に定義する電子輸送材料、上記に定義する正孔輸送材料、正孔・電子再結合を助ける(サポート)別の材料、又はこれら材料の組み合わせであってもよい。
 蛍光ドーパントの一例としては、アントラセン、テトラセン、キサンテン、ペリレン、ルブレン、クマリン、ローダミン、キナクリドン、ジシアノメチレンピラン化合物、チオピラン化合物、ポリメチン化合物、ピリリウム又はチアピリリウム化合物、フルオレン誘導体、ペリフランテン誘導体、インデノペリレン誘導体、ビス(アジニル)アミンホウ素化合物、ビス(アジニル)メタン化合物、カルボスチリル化合物等が挙げられる。
 燐光ドーパントの一例としては、イリジウム、白金、パラジウム、オスミウム等の遷移金属の有機金属錯体が挙げられる。
 ドーパントの一例として、Alq(トリス(8-ヒドロキシキノリン)アルミニウム))、DPAVBi(4,4’-ビス[4-(ジ-パラ-トリルアミノ)スチリル] ビフェニル)、ペリレン、Ir(PPy)(トリス(2-フェニルピリジン)イリジウム(III)、又はFlrPic(ビス(3,5-ジフルオロ-2-(2-ピリジル)フェニル-(2-カルボキシピリジル)イリジウム(III)等が挙げられる。
 本発明の有機電界発光素子の電子輸送層を形成するのに使用する薄膜形成材料は、本発明の環状アジン化合物である。なお、電子輸送層には、他の電子輸送性材料を含んでいても良い。他の電子輸送性材料としては、アルカリ金属錯体、アルカリ土類金属錯体、土類金属錯体等が挙げられる。アルカリ金属錯体、アルカリ土類金属錯体、又は土類金属錯体としては、例えば、8-ヒドロキシキノリナートリチウム(Liq)、ビス(8-ヒドロキシキノリナート)亜鉛、ビス(8-ヒドロキシキノリナート)銅、ビス(8-ヒドロキシキノリナート)マンガン、トリス(8-ヒドロキシキノリナート)アルミニウム、トリス(2-メチル-8-ヒドロキシキノリナート)アルミニウム、トリス(8-ヒドロキシキノリナート)ガリウム、ビス(10-ヒドロキシベンゾ[h]キノリナート)ベリリウム、ビス(10-ヒドロキシベンゾ[h]キノリナート)亜鉛、ビス(2-メチル-8-キノリナート)クロロガリウム、ビス(2-メチル-8-キノリナート)(o-クレゾラート)ガリウム、ビス(2-メチル-8-キノリナート)-1-ナフトラートアルミニウム、ビス(2-メチル-8-キノリナート)-2-ナフトラートガリウム等が挙げられる。
 発光層と電子輸送層との間に、キャリアバランスを改善させる目的で、正孔阻止層を設けてもよい。正孔素子層として望ましい化合物は、BCP(2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン)、Bphen(4,7-ジフェニル-1,10-フェナントロリン)、BAlq(ビス(2-メチル-8-キノリノラート)-4-(フェニルフェノラート)アルミニウム)、又はビス(10-ヒドロキシベンゾ[h]キノリナート)ベリリウム)等が挙げられる。
 本発明の有機電界発光素子においては、電子注入性を向上させ、素子特性(例えば、発光効率、定電圧駆動、又は高耐久性)を向上させる目的で、電子注入層を設けてもよい。
 電子注入層として望ましい化合物としては、フルオレノン、アントラキノジメタン、ジフェノキノン、チオピランジオキシド、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、ペリレンテトラカルボン酸、フレオレニリデンメタン、アントラキノジメタン、アントロン等が挙げられる。また、上記に記した金属錯体やアルカリ金属酸化物、アルカリ土類酸化物、希土類酸化物、アルカリ金属ハロゲン化物、アルカリ土類ハロゲン化物、希土類ハロゲン化物、SiOX 、AlOX 、SiNX 、SiON、AlON、GeOX 、LiOX 、LiON、TiOX 、TiON、TaOX 、TaON、TaNX 、Cなどの各種酸化物、窒化物、及び酸化窒化物のような無機化合物等も使用できる。
 発光が陽極を通してのみ確認される場合、本発明において使用される陰極は、任意の導電性材料から形成することができる。望ましい陰極材料としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
 以下、合成例、実施例、試験例、及び比較例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
 合成例-1
Figure JPOXMLDOC01-appb-C000143
 アルゴン気流下、2-ブロモ-6-メチルピリジン(30.2g,0.18mol)、4-クロロフェニルボロン酸(21.1g,0.13mol)、及びテトラキス(トリフェニルホスフィン)パラジウム(3.12g,2.7mmol)を1,4-ジオキサン(340mL)に懸濁させ、70℃に昇温した。これに1.0M-炭酸カリウム水溶液(405mL)をゆっくりと滴下した後、90℃まで昇温し、18時間撹拌した。放冷後、クロロホルムで分液し、有機層を濃縮し、得られた粗生成物をシリカゲルクロマトグラフィー(展開溶媒 クロロホルム:ヘキサン=1:1(体積比、以下同じである))で精製し、目的物の2-(4-クロロフェニル)-6-メチルピリジンの黄色結晶(収量27.0g,収率99%)を得た。
H-NMR(CDCl):δ.2.62(s,3H),7.11(d,J=7.5Hz,1H),7.41-7.44(m,2H),7.49(d,J=7.7Hz,1H),7.64(t,J=7.7Hz,1H),7.93(d,J=8.7Hz,2H)
合成例-2
Figure JPOXMLDOC01-appb-C000144
 アルゴン気流下、2-(4-クロロフェニル)-6-メチルピリジン(27.0g,0.13mol)、4,4,4’,4’,5,5,5’,5’-オクタメチル-2,2’ -ビ-1,3,2-ジオキサボロラン(51.4g,0.20mol)、トリス(ジベンジリデンアセトン)ジパラジウム(1.23g,1.3mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(1.29g,2.7mmol)、及び酢酸カリウム(26.5g,0.27mol)を1,4-ジオキサン(520mL)に懸濁させ、100℃に昇温した。18時間撹拌した後、放冷した。クロロホルムで分液し、有機層を濃縮し、得られた粗生成物をシリカゲルクロマトグラフィー(展開溶媒 クロロホルム:ヘキサン=1:1)で精製し、目的物の6-メチル-2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]ピリジンの黄白色結晶(収量25.8g,収率66%)を得た。
H-NMR(CDCl):δ.1.37(s,12H),2.64(s,3H),7.11(d,J=7.5Hz,1H),7.55(d,J=7.8Hz,1H),7.64(t,J=7.8Hz,1H),7.89(d,J=8.3Hz,2H),7.99(d,J=8.3Hz,2H)
 合成例-3
Figure JPOXMLDOC01-appb-C000145
 アルゴン気流下、2-クロロ-4,6-ジメチルピリミジン(3.00g,21mmol)、4-クロロフェニルボロン酸(2.74g,18mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム(404mg,0.35mmol)を1,4-ジオキサン(31mL)に懸濁させ、70℃に昇温した。これに3.0M-炭酸カリウム水溶液(12.8mL)をゆっくりと滴下した後、100℃まで昇温し、18時間撹拌した。放冷後、クロロホルムで分液し、有機層を濃縮し、得られた粗生成物をシリカゲルクロマトグラフィー(展開溶媒 クロロホルム:ヘキサン=1:1)で精製し、目的物の2-(4-クロロフェニル)-4,6-ジメチルピリミジンの黄色結晶(収量3.31g,収率86%)を得た。
H-NMR(CDCl):δ.2.53(s,6H),6.93(s,1H),7.42(d,J=8.8Hz,2H),8.39(d,J=8.8Hz,2H).
 合成例-4
Figure JPOXMLDOC01-appb-C000146
 アルゴン気流下、2-(4-クロロフェニル)-4,6-ジメチルピリミジン(3.31g,15.1mmol)、4,4,4’,4’,5,5,5’,5’-オクタメチル-2,2’ -ビ-1,3,2-ジオキサボロラン(4.23g,17mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(138mg,0.15mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(144mg,0.30mmol)、及び酢酸カリウム(2.96g,30.mmol)を1,4-ジオキサン(76mL)に懸濁させ、100℃に昇温した。18時間撹拌した後、放冷した。クロロホルムで分液し、有機層を濃縮し、得られた粗生成物をシリカゲルクロマトグラフィー(展開溶媒 クロロホルム:ヘキサン=3:2)で精製し、目的物の4,6-ジメチル-2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]ピリミジンの黄白色結晶(収量4.23g,収率90%)を得た。 
H-NMR(CDCl):δ.1.37(s,12H),2.54(s,6H),6.93(s,1H),7.90(d,J=8.3Hz,2H),8.43(d,J=8.35Hz,2H).
 合成例-5
Figure JPOXMLDOC01-appb-C000147
 アルゴン気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニル-1,3,5-トリアジン(70.0g,0.166mol)、9-フェナントレンボロン酸(38.6g,0.174mol)、及びテトラキス(トリフェニルホスフィン)パラジウム(3.83g,3.31mmol)を量り取り、4.0Mー水酸化ナトリウム水溶液(124mL,0.497mol)及びテトラヒドロフラン(1.0L)に懸濁した。この混合物を24時間加熱還流した。放冷後、水(550mL)を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。再結晶(トルエン)することで、反応中間体である2-[3-クロロ-5-(9-フェナントリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンの白色固体(収量78.9g、収率92%)を得た。
 次いで、アルゴン気流下、2-[3-クロロ-5-(9-フェナントリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(5.20g,10.0mmol)、4,4,4’,4’,5,5,5’,5’-オクタメチル-2,2’-ビ-1,3,2-ジオキサボロラン(3.81g,15.0mmol)、酢酸パラジウム(22.5mg,0.10mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(95.4mg,0.20mmol)、及び酢酸カリウム(2.95g,30mmol)を、1,4-ジオキサン(200mL)に懸濁し、100℃で4時間撹拌した。放冷後、濾紙を用いた濾過により沈殿物を除去した。さらにクロロホルムで分液し、有機層を濃縮して粗固体を得た。この粗固体にヘキサンを添加して氷温まで冷却した後、固体を濾別し、減圧化で乾燥することで中間体である4,6-ジフェニル-2-[5-(9-フェナントリル)-3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジンの白色固体(収量6.07g,収率99%)を得た。
 合成実施例-1
Figure JPOXMLDOC01-appb-C000148
 アルゴン気流下、2-(3,5-ジブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン(935mg,2.0mmol)、4,6-ジメチル-2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]ピリミジン(1.49g,4.8mmol)、及びジクロロビス(トリフェニルホスフィン)パラジウム(56.2mg,80.μmol)を量り取り、1.0M-リン酸三カリウム水溶液(9.6mL,9.6mmol)及び1,4-ジオキサン(100mL)に懸濁した。この混合物を23時間加熱還流した。放冷後、低沸点成分を減圧留去した。ヘキサンを加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。得られた粗生成物に、アルミナ(1.5g)とクロロホルム(50mL)を加えて、0.5時間60℃に加熱撹拌した。この懸濁液を熱時濾過し、濾液を減圧濃縮し、得られた固体を再結晶(トルエン)することで目的の2-[4,4’’-ビス(4,6-ジメチルピリミジン-2-イル)-1,1’:3’,1’’-テルフェニル-5’-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物 A-1)の白色固体(収量1.07g,収率66%)を得た。
H-NMR(CDCl)δ(ppm):2.59(s,12H),6.97(s,2H),7.57-7.69(m,6H),7.94(brd,J=8.5Hz,4H),8.18(brs,1H),8.63(brd,J=8.5Hz,4H),8.57(brd,J=7.7Hz,4H),9.07(brs,2H).
 合成実施例-2
Figure JPOXMLDOC01-appb-C000149
 アルゴン気流下、2-(3,5-ジブロモフェニル)-4,6-ジ(4-tert-ブチルフェニル)-1,3,5-トリアジン(1.50g,3.0mmol)、4,6-ジメチル-2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]ピリミジン(2.26g,7.3mmol)、酢酸パラジウム(20.4mg,91μmol)、及び1.0Mのtert-ブチルホスフィン(0.270mL,0.27mmol)をテトラヒドロフラン(15mL)に懸濁し、70℃に加熱した。これに4.0M-水酸化ナトリウム水溶液(5.7mL)をゆっくりと滴下した後、75℃に昇温し、4時間撹拌した。放冷後、白色固体を濾別した。得られた粗生成物を再結晶(トルエン)で精製し、目的物の2-[4,4’’-ビス(4,6-ジメチルピリミジン-2-イル)-1,1’;3’,1”-テルフェニル-5’-イル]-4,6-ジ(4-tert-ブチルフェニル)-1,3,5-トリアジン(化合物 A-2)の白色固体(収量1.80g,収率84%)を得た。
H-NMR(CDCl)δ(ppm):2.50(s,6H),2.59(s,12H),6.97(S,2H),7.39(d,J=8.1Hz,4H),7.93(d,J=8.5Hz,4H),8.16(t,J=1.8Hz,1H),8.63(d,J=8.5Hz,4H),8.69(d,J=8.1Hz,4H),9.06(d,J=1.8Hz,2H).
 合成実施例-3
Figure JPOXMLDOC01-appb-C000150
 アルゴン気流下、4,6-ビス(3-ビフェニリル)-2-(3,5-ジブロモフェニル)-1,3,5-トリアジン(1.00g,1.6mmol)、4,6-ジメチル-2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]ピリミジン(1.25g,4.0mmol)、酢酸パラジウム(10.9mg,49μmol)、及び1.0Mのtert-ブチルホスフィン(0.150mL,0.15mmol)をテトラヒドロフラン(8mL)に懸濁し、70℃に加熱した。これに4.0M-水酸化ナトリウム水溶液(3.0mL)をゆっくりと滴下した後、80℃に昇温し、4時間撹拌した。放冷後、白色固体をろ別した。得られた粗生成物を再結晶(トルエン)で精製し、目的物の4,6-ビス(3-ビフェニリル)-2-[4,4’’-ジ(4,6-ジメチルピリミジン-2-イル)-1,1’;3’,1’’-テルフェニル-5’-イル]-1,3,5-トリアジン(化合物 A-3)の白色固体(収量1.23g,収率93%)を得た。
H-NMR(CDCl)δ(ppm):2.59(s ,12H),6.97(s,2H),7.42(t,J=7.3Hz,2H),7.53(t,J=7.3Hz,4H),7.69Hz(t,J=7.8Hz,2H),7.77(d,J=7.1Hz,4H),7.87(d,J=7.8Hz,2H),7.94(d,J=8.6Hz,4H),8.19(s,1H),8.62(d,J=8.6Hz,4H),8.80(d,J=7.8Hz,2H),9.05(s,2H),9.08(s,1H),9.08(s,1H)
 合成実施例-4
Figure JPOXMLDOC01-appb-C000151
 アルゴン気流下、2-[3,5-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(1.68g,3.0mmol)、4,6-ジメチル-2-クロロピリミジン(1.03g,7.2mmol)、テトラキス(トリフェニルホスフィン)パラジウム(69.4mg,60.μmol)、及びリン酸三カリウム(3.06g,14.4mmol)を量り取り、1,4-ジオキサン(40mL)及び水(14.4mL)に懸濁した。この混合物を16時間加熱、還流した。放冷後、低沸点成分を減圧留去した。水を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。得られた組生成物に、トルエン100mLを加えて、0.5時間125℃に加熱撹拌した。この懸濁液を熱時濾過し、得られた固体を再結晶(トルエン)することで目的の2-{3,5-ビス[2-(4,6-ジメチルピリミジル)フェニル]}-4,6-ジフェニル-1,3,5-トリアジン(化合物 A-4)の白色固体(収量1.28g,収率81%)を得た。
H-NMR(CDCl)δ(ppm):2.65(s,12H),7.03(s,2H),7.56-7.66(m,6H),8.85-8.91(m,4H),9.68(brs,1H),9.87(brs,2H).
 合成実施例-5
Figure JPOXMLDOC01-appb-C000152
 アルゴン気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニル-1,3,5-トリアジン(3.17g,7.5mmol)、フェニルボロン酸(1.01g,8.25mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム(173.4mg,0.15mmol)を量り取り、4.0M-水酸化ナトリウム水溶液(5.7mL,23mmol)、テトラヒドロフラン(47mL)に懸濁した。この混合物を20時間加熱還流した。放冷後、低沸点成分を減圧留去した。水(30mL)を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄し、真空乾燥することで、反応中間体である、2-(5-クロロビフェニル-3-イル)-4,6-ジフェニル-1,3,5-トリアジンの黄白色固体(収量2.85g,収率90%)を得た。
 次いで、アルゴン気流下、2-(5-クロロビフェニル-3-イル)-4,6-ジフェニル-1,3,5-トリアジン(2.73g,6.5mmol)、4,6-ジメチル-2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]ピリミジン(2.42g,7.8mmol)、酢酸パラジウム(58.4mg,0.26mmol)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(247.9mg)を量り取り、1.0M-リン酸カリウム水溶液(13.0mL,13.0mmol)及び1,4-ジオキサン(130mL)に懸濁した。この混合液を17時間加熱還流した。放冷後、低沸点成分を減圧留去した。水(100mL)を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。さらにカラムクロマトグラフィー(展開溶媒 クロロホルム:ヘキサン)で精製し、2-{4-[2-(4,6-ジメチルピリミジル)]-1,1’:3’,1’’-テルフェニル-5’-イル}-4,6-ジフェニル-1,3,5-トリアジン(化合物 A-5)の乳白色粉末(収量3.59g,収率97%)を得た。
H-NMR(CDCl)δ(ppm):2.59(s,6H),6.97(s,1H),7.43-7.45(m,1H),7.53-7.68(m,8H),7.83(brd,J=8.5Hz,2H),7.92(brd,J=8.5Hz,2H),8.11(brs,1H),8.62(brd,J=8.5Hz,2H),8.78-8.84(m,4H),8.99(brs,1H),9.05(brs,1H).
 合成実施例-6
Figure JPOXMLDOC01-appb-C000153
 アルゴン気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニル-1,3,5-トリアジン(5.07g,12mmol)、3,5-ジメチルフェニルボロン酸(1.98g,13mmol)、テトラキス(トリフェニルホスフィン)パラジウム(277.4mg,0.24mmol)、及び水酸化ナトリウム(1.44g,36mmol)を量り取り、テトラヒドロフラン(72mL)及び水(9mL)に懸濁した。この混合物を23時間加熱還流した。放冷後、低沸点成分を減圧留去した。水(100mL)を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄し、真空乾燥することで、2-(5-クロロ-3’,5’-ジメチルビフェニル-3-イル)-4,6-ジフェニル-1,3,5-トリアジンの白色固体(収量5.34g,収率99%)を得た。
 次いで、アルゴン気流下、2-(5-クロロ-3’,5’-ジメチルビフェニル-3-イル)-4,6-ジフェニル-1,3,5-トリアジン(1.35g,3.0mmol)、4,6-ジメチル-2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]ピリミジン(1.12g,3.6mmol)、酢酸パラジウム(27.0mg,0.12mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(115mg,0.24mmol)、及びリン酸三カリウム(1.28g,6.0mmol)を量り取り、1,4-ジオキサン(60mL)又は水(6mL)に懸濁した。この混合物を16時間加熱還流した。放冷後、反応液をそのまま0.5時間70℃に加熱し、熱時濾過した。得られた濾液から低沸点成分を減圧留去し、水(100mL)を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。さらにカラムクロマトグラフィー(展開溶媒 クロロホルム:ヘキサン)で精製し、さらに再結晶(トルエン)で精製することで、2,4-ジフェニル-6-{3,5-ジメチル-4”-[2-(4,6-ジメチルピリミジル)]-1,1’:3’,1”-テルフェニル-5’-イル}-1,3,5-トリアジン(化合物 A-6)の白色粉末(収量0.96g,収率54%)を得た。
H-NMR(CDCl)δ(ppm):2.47(s,6H),2.60(s,6H),6.98(s,1H),7.11(brs,1H),7.41(brs,2H),7.56-7.67(m,6H),7.92(brd,J=8.4Hz,2H),8.07(brs,1H),8.63(brd,J=8.4Hz,2H),8.78-8.85(m,4H),8.94(brs,1H),9.03(brs,1H).
 合成実施例-7
Figure JPOXMLDOC01-appb-C000154
 アルゴン気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニル-1,3,5-トリアジン(8.46g,20.mmol)、4-ビフェニルボロン酸(4.36g,22mmol)、テトラキス(トリフェニルホスフィン)パラジウム(462mg,0.40mmol)、及び水酸化ナトリウム(2.40g,60.mmol)を量り取り、テトラヒドロフラン(100mL)及び水(15mL)に懸濁した。この混合物を16時間加熱還流した。放冷後、水(150mL)を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。さらに再結晶(トルエン)で精製することで2-(5-クロロ-1,1’:4’:1”-テルフェニル-3-イル)-4,6-ジフェニル-1,3,5-トリアジンの白色固体(収量9.48g、収率96%)を得た。
 次いで、アルゴン気流下、2-(5-クロロ-1,1’:4’:1”-テルフェニル-3-イル)-4,6-ジフェニル-1,3,5-トリアジン(1.49g,3.0mmol)、4,6-ジメチル-2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]ピリミジン(1.17g,3.8mmol)、酢酸パラジウム(27.0mg,0.12mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(115mg,0.24mmol)、及びリン酸三カリウム(1.28g,6.0mmol)を量り取り、1,4-ジオキサン(60mL)及び水(6mL)に懸濁した。この混合物を21時間加熱還流した。放冷後、水(100mL)を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。さらに再結晶(トルエン)で精製することで、2-{4-[2-(4,6-ジメチルピリミジル)]-1,1’:3’,1”:4”,1”’-クアテルフェニル-5’-イル}-4,6-ジフェニル-1,3,5-トリアジン(化合物 A-7)の白色粉末(収量1.25g,収率65%)を得た。
H-NMR(CDCl)δ(ppm):2.59(s,6H),6.97(s,1H),7.37-7.43(m,1H),7.47-7.53(m,2H),7.58-7.67(m,6H),7.71(brd,J=8.5Hz,2H),7.80(brd,J=8.5Hz,2H)7.89-7.96(m,4H),8.16(brs,1H),8.63(brd,J=8.5Hz,2H),8.80-8.85(m,4H),9.05(brs,1H),9.07(brs,1H).
 合成実施例-8
Figure JPOXMLDOC01-appb-C000155
 アルゴン気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニル-1,3,5-トリアジン(8.46g,20.mmol)、4-(2-ピリジル)フェニルボロン酸(4.38g,22mmol)、テトラキス(トリフェニルホスフィン)パラジウム(462.3mg,0.40mmol)、及び水酸化ナトリウム(2.40g,60.mmol)を量り取り、テトラヒドロフラン(100mL)及び水(15mL)に懸濁した。この混合物を16時間加熱還流した。放冷後、水(150mL)を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。さらに再結晶(トルエン)で精製することで2-[5-クロロ-4’-(2-ピリジル)ジメチルビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジンの白色固体(収量9.30g、収率94%)を得た。
 次いで、アルゴン気流下、2-[5-クロロ-4’-(2-ピリジル)ジメチルビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(1.49g,3.0mmol)、4,6-ジメチル-2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]ピリミジン(1.17g,3.8mmol)、酢酸パラジウム(27.0mg,0.12mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(115mg,0.24mmol)、及びリン酸三カリウム(1.28g,6.0mmol)を量り取り、1,4-ジオキサン(60mL)及び水(6mL)に懸濁した。この混合物を21時間加熱還流した。放冷後、水(100mL)を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。さらにカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール)で精製することで、4,6-ジフェニル-2-{4-(2-ピリジル)-4”-[2-(4,6-ジメチルピリミジル)]-1,1’:3’,1”-テルフェニル-5’-イル}-1,3,5-トリアジン(化合物 A-8)の白色粉末(収量1.13g,収率59%)を得た。
H-NMR(CDCl)δ(ppm):2.59(s,6H),6.97(s,1H),7.24-7.32(m,1H),7.57-7.68(m,6H),7.77-7.89(m,2H),7.90-7.98(m,4H),8.17(brs,1H)8.21(brd,J=8.5Hz,2H),8.63(brd,J=8.5Hz,2H),8.74-8.78(m,1H),8.80-8.86(m,4H),9.06(brs,1H),9.08(brs,1H).
 合成実施例-9
Figure JPOXMLDOC01-appb-C000156
 アルゴン気流下、2-(3,5-ジブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン(1.00g,2.05mmol)、2-メチル-6-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]ピリジン(1.45g,4.93mmol)、酢酸パラジウム(23.0mg,0.10mmol)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(97.7mg,0.205mmol)を、1,4-ジオキサン(30mL)に懸濁し、60℃に加熱した。これに1.0M-リン酸三カリウム水溶液(9.8mL)をゆっくりと滴下した後、80℃に昇温し、6時間撹拌した。放冷後、白色固体を濾別した。得られた粗生成物を再結晶(トルエン)で精製し、目的物の2-[4,4’’-ビス(6-メチルピリジン-2-イル)-1,1’;3’,1”-テルフェニル-5’-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物 A-9)の白色固体(収量861mg,収率79%)を得た。
H-NMR(CDCl)δ(ppm):2.68(s,6H),7.12(d,J=7.5Hz,2H),7.59-7.71(m,10H),7.92(t,J=8.3Hz,4H),8.15(t,J=1.9Hz,1H),8.19(d,J=8.6Hz,4H),8.82(dd,J=1.9,6.0Hz,4H),9.05(d,J=1.9Hz,2H).
 合成実施例-10
Figure JPOXMLDOC01-appb-C000157
 アルゴン気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニル-1,3,5-トリアジン(70.0g,0.17mol)、9-フェナントレンボロン酸(38.6g,0.17mol)、及びテトラキス(トリフェニルホスフィン)パラジウム(3.83g,3.3mmol)を量り取り、4.0M-水酸化ナトリウム水溶液(124mL,0.50mol)及びテトラヒドロフラン(1.03L)に懸濁した。この混合物を24時間加熱還流した。放冷後、水(550mL)を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。再結晶(トルエン)することで、反応中間体である2-[3-クロロ-5-(9-フェナントリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンの白色固体(収量78.9g,収率92%)を得た。
 次いで、アルゴン気流下、2-[3-クロロ-5-(9-フェナントリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(1.04g,2.0mmol)、4,6-ジメチル-2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]ピリミジン(745mg,2.4mmol)、酢酸パラジウム(18.0mg,80.μmol)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(76.3mg,0.16mmol)を量り取り、1.0M-リン酸三カリウム水溶液(4.00mL,4.0mmol)及び1,4-ジオキサン(100mL)に懸濁した。この混合物を17時間加熱還流した。放冷後、低沸点成分を減圧留去した。メタノールと水を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。さらに再結晶(トルエン)で精製することで目的の4,6-ジフェニル-2-{5-(9-フェナントリル)-4’-[2-(4,6-ジメチルピリミジル)]ビフェニル-3-イル}-1,3,5-トリアジン(化合物 A-10)の白色固体(収量949mg,収率71%)を得た。
 H-NMR(CDCl)δ(ppm):2.57(s,6H),6.96(s,1H),7.50-7.78(m,10H),7.90(s,1H),7.95(brd,J=8.5Hz,2H),7.97-8.06(m,2H),8.09(brs,1H),8.61(brd,J=8.5Hz,2H),8.76-8.82(m,5H),8.85(brd,J=8.2Hz,1H),8.94(brs,1H),9.19(brs,1H).
 合成実施例-11
Figure JPOXMLDOC01-appb-C000158
 アルゴン気流下、2-(3-ブロモ-5-クロロベンゼン-1-イル)-4,6-ジフェニル-1,3,5-トリアジン(9.78g,23mmol)、9-アントラセンボロン酸(5.13g,23mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム(267mg,0.23mmol)を、トルエン(780mL)及びエタノール(98mL)の混合溶液に懸濁し、85℃に加熱した。これに1.0M-炭酸カリウム水溶液(69.3mL,69.3mmol)をゆっくりと滴下した後、20時間撹拌した。放冷後、ジクロロメタンで抽出した後に、有機層を濃縮した。得られた粗体を再結晶(トルエン)することで、反応中間体である2-[3-クロロ-5-(9-アントラセニル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンの白色固体(収量9.52g、収率77%)を得た。
 次いで、アルゴン気流下、2-[3-クロロ-5-(9-アントラセニル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(300.mg,0.58mmol)、4,6-ジメチル-2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]ピリミジン(232mg,0.749mmol)、酢酸パラジウム(4.31mg,19.2μmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(18.3mg,38.4μmol)、及び炭酸カリウム(0.207g,1.50mmol)を、テトラヒドロフラン(3.00mL)及び水(1.00mL)の混合溶液に懸濁し、65℃で24時間撹拌した。放冷後、メタノールと水を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。さらに再結晶(トルエン)で精製することで目的の2-[5-(9-アントラセニル)-4’-(4,6-ジメチルピリミジン-2-イル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物 A-11)の白色固体(収量375mg,収率98%)を得た。
H-NMR(CDCl)δ(ppm):2.60(s,6H),6.94(s,1H),7.50-7.62(m,10H),7.94(d,J=8.5Hz,2H),7.99(s,1H),8.12(d,J=8.5Hz,2H),8.16(d,J=8.5Hz,4H),8.60(s,1H),8.76(d,J=8.0Hz,4H),8.84(s,1H),9.27(s,1H).
 合成実施例-12
Figure JPOXMLDOC01-appb-C000159
 アルゴン気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニル-1,3,5-トリアジン(70.0g,0.166mol)、9-フェナントレンボロン酸(38.6g,0.174mol)、及びテトラキス(トリフェニルホスフィン)パラジウム(3.83g,3.31mmol)を量り取り、4.0M-水酸化ナトリウム水溶液(124mL,0.497mol)及びテトラヒドロフラン(1.0L)に懸濁した。この混合物を24時間加熱還流した。放冷後、水(550mL)を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。再結晶(トルエン)することで、反応中間体である2-[3-クロロ-5-(9-フェナントリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンの白色固体(収量78.9g、収率92%)を得た。
 次いで、アルゴン気流下、2-[3-クロロ-5-(9-フェナントリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(300.mg,0.58mmol)、2-メチル-6-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]ピリジン(221mg,0.75mmol)、酢酸パラジウム(3.89mg,17μmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(16.5mg,35μmol)、及びリン酸三カリウム(0.320mg,1.51mmol)を量り取り、1,4-ジオキサン(29mL)及び水(8mL)に懸濁し、100℃で24時間撹拌した。放冷後、メタノールと水を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。さらに再結晶(トルエン)で精製することで目的の4,6-ジフェニル-2-[4-(6-メチルピリジン-2-イル)-3’-(9-フェナントリル)-1,1’-ビフェニル-5’-イル]-1,3,5-トリアジン(化合物 A-12)の白色固体(収量290mg,収率77%)を得た。
H-NMR(CDCl)δ(ppm):2.62(s,3H),7.20(d,J=7.5Hz,1H),7.50-7.78(m,12H),7.95(brd,J=8.5Hz,2H),7.90-8.10(m,4H),8.09(brs,1H),8.61(brd,J=8.5Hz,2H),8.76-8.82(m,4H),8.85(brd,J=8.2Hz,1H),8.88(brs,1H),9.14(brs,1H).
 合成実施例-13
Figure JPOXMLDOC01-appb-C000160
 アルゴン気流下、2-(3-ブロモ-5-クロロベンゼン-1-イル)-4,6-ジフェニル-1,3,5-トリアジン(9.78g,23.1mmol)、9-アントラセンボロン酸(5.13g,23.1mol)、及びテトラキス(トリフェニルホスフィン)パラジウム(0.267mg,0.23mmol)を、トルエン(780mL)及びエタノール(98mL)の混合溶液に懸濁し、85℃に加熱した。これに1.0M-炭酸カリウム水溶液(69.3mL,69.3mmol)をゆっくりと滴下した後、20時間撹拌した。放冷後、ジクロロメタンで抽出した後に、有機層を濃縮した。得られた粗体を再結晶(トルエン)することで、反応中間体である2-[3-クロロ-5-(9-アントラセニル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンの白色固体(収量9.52g、収率77%)を得た。
 次いで、アルゴン気流下、2-[3-クロロ-5-(9-アントラセニル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(300.mg,0.576mmol)、2-メチル-6-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]ピリジン(221mg,0.749mmol)、酢酸パラジウム(4.31mg,19.2μmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(18.3mg,38.4μmol)、及び炭酸カリウム(0.207g,1.50mmol)を、テトラヒドロフラン(3.0mL)及び水(1.0mL)の混合溶液に懸濁し、65℃で24時間撹拌した。放冷後、メタノールと水を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。さらに再結晶(トルエン)で精製することで目的の4,6-ジフェニル-2-[5-(9-アントラセニル)-4’-(6-メチルピリジン-2-イル)ビフェニル-3-イル]-1,3,5-トリアジン(化合物 A-13)の白色固体(収量371mg,収率99%)を得た。
H-NMR(CDCl)δ(ppm):2.66(s,3H),7.12(d,J=7.4Hz,1H),7.40(dd,J=6.5,8.8Hz,2H),7.50-7.62(m,10H),7.83(d,J=8.0Hz,2H),7.94(d,J=8.5Hz,2H),7.99(s,1H),8.12(d,J=8.5Hz,2H),8.16(d,J=8.5Hz,2H),8.60(s,1H),8.76(d,J=8.0Hz,4H),8.84(s,1H),9.27(s,1H).
 合成実施例-14
Figure JPOXMLDOC01-appb-C000161
 アルゴン気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニルピリミジン(1.69g,4.0mmol)、4,6-ジメチル-2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-ピリミジン(2.98g,9.6mmol)、酢酸パラジウム(18.0mg,80μmol)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(76.3mg,0.16mmol)を量り取り、1.0M-リン酸三カリウム水溶液(16mL,16mmol)、1,4-ジオキサン(40mL)に懸濁した。この混合物を24時間加熱還流した。放冷後、水(80mL)を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。得られた固体にクロロホルムを加えて、0.5時間70℃で加熱撹拌した。熱時濾過し、得られた濾液から低点成分を減圧留去し、さらに再結晶(トルエン)で精製することで目的の2-{4,4’’-ビス[2-(4,6-ジメチルピリミジル)]-1,1’:3’,1’’-テルフェニル-5’-イル}-4,6-ジフェニルピリミジン(化合物 A-14)の白色固体(収量2.26g,収率84%)を得た。
H-NMR(CDCl)δ(ppm):2.58(s,12H),6.96(s,2H),7.53-7.65(m,6H),7.93(brd,J=8.5Hz,4H),8.09(brs,1H),8.10(s,1H),8.31-8.37(m,4H),8.61(brd,J=8.5Hz,4H),9.04(brs,2H).
 合成実施例-15
Figure JPOXMLDOC01-appb-C000162
 アルゴン気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニルピリミジン(4.22g,10mmol)、9-アントラセンボロン酸(2.44g,11mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム(231mg,0.2mmol)を量り取り、4.0M-水酸化ナトリウム水溶液(7.5mL,30mmol)及びテトラヒドロフラン(75mL)に懸濁した。この混合物を21.5時間加熱還流した。放冷後、低沸点成分を減圧留去した。水(40mL)を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。得られた固体をトルエンに加えて、0.5時間120℃で加熱撹拌した。熱時濾過し、得られた濾液から低沸点成分を減圧留去し、さらに再結晶(トルエン)で精製することで反応中間体である2-[3-クロロ-5-(9-アントラセニル)フェニル]-4,6-ジフェニルピリミジンの白色固体(収量4.16g,収率80%)を得た。
 次いで、アルゴン気流下、2-[3-クロロ-5-(9-アントラセニル)フェニル]-4,6-ジフェニルピリミジン(1.56g,3.0mmol)、4,6-ジメチル-2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-ピリミジン(1.12g,3.6mmol)、酢酸パラジウム(13.5mg,0.060mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(57.2mg,0.12mmol)、及びリン酸三カリウム(1.28g,6.0mmol)を量り取り、1,4-ジオキサン(40mL)及び水(6mL)に懸濁した。この混合物を21時間加熱還流した。放冷後、水(45mL)を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。得られた固体にクロロホルムを加えて、0.5時間70℃で加熱撹拌した。その後、熱時濾過し、得られた濾液から低沸点成分を減圧留去し、さらに再結晶(トルエン)で精製することで目的の2-{5-(9-アントラセニル)-4’-[2-(4,6-ジメチルピリミジル)]ビフェニル-3-イル}-4,6-ジフェニルピリミジン(化合物 A-15)の黄色固体(収量1.27g,収率64%)を得た。
H-NMR(CDCl)δ(ppm):2.59(s,6H),6.97(s,1H),7.36-7.43(m,2H),7.46-7.56(m,8H),7.87(brd,J=8.5Hz,2H),7.91(brs,1H),7.96(brd,J=8.5Hz,2H),8.08(s,1H),8.11(brd,J=8.5Hz,2H),8.24-8.31(m,4H),8.57-8.64(m,3H),8.81(brs,1H),9.24(brs,1H).
 合成実施例-16
Figure JPOXMLDOC01-appb-C000163
 アルゴン気流下、2-(3,5-ジブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン(1.56g,3.33mmol)、2,6-ジメチル-4-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]ピリジン(3.09g,10.0mmol)、及びジクロロビス(トリフェニルホスフィン)パラジウム(93.5mg,0.133mmol)を1,4-ジオキサン(100mL)に懸濁し、110℃に加熱した。これに1.0M-リン酸三カリウム水溶液(20mL)をゆっくりと滴下した後、15時間撹拌した。放冷後、白色固体を濾別した。得られた粗生成物を再結晶(トルエン)で精製し、目的物の2-[4,4’’-ビス(2,6-ジメチルピリジン-4-イル)-1,1’;3’,1”-テルフェニル-5’-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物 A-16)の白色固体(収量1.78g,収率80%)を得た。
H-NMR(CDCl)δ(ppm):2.67(s,12H),7.32(brs,4H),7.57-7.69(m,6H),7.83(d,J=8.1Hz,4H),7.93(d,J=8.1Hz,4H),8.12(brs,1H),8.82(brd,J=7.4Hz,4H),9.05(brs,2H).
 合成実施例-17
Figure JPOXMLDOC01-appb-C000164
 アルゴン気流下、2-(3,5-ジブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン(800mg,1.64mmol)、2-メチル-5-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]ピリジン(1.11g,3.78mmol)、酢酸パラジウム(18.4g,0.0820mmol)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(78.0mg,0.164mmol)を1,4-ジオキサン(16mL)に懸濁し、60℃に加熱した。これに1.0M-リン酸三カリウム水溶液(7.87mL)をゆっくりと滴下した後、80℃に昇温し、4時間撹拌した。放冷後、白色固体を濾別した。得られた粗生成物を再結晶(クロロホルム)で精製し、目的物の2-[4,4’’-ビス(6-メチルピリジン-3-イル)-1,1’;3’,1’’-テルフェニル-5’-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物 A-17)の白色固体(収量566mg,収率54%)を得た。
H-NMR(CDCl)δ(ppm):2.65(s,6H),7.29(d,J=8.28Hz,2H),7.58-7.64(m,6H),7.77(d,J=8.53Hz,4H),7.93-7.89(m,6H),8.11(t,J=1.9Hz,1H),8.85-8.80(m,6H),9.04(d,J=1.9Hz,2H).
 合成実施例-18
Figure JPOXMLDOC01-appb-C000165
 アルゴン気流下、2-クロロ-4,6-ジフェニル-1,3,5-トリアジン(268mg、1.0mmol)、4,6-ジメチル-2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボラン-2-イル)フェニル]ピリミジン(372mg、1.2mmol)、テトラキス(トリフェニルホスフィン)パラジウム(23mg、0.02mmol)、及び炭酸カリウム(415mg、3.0mmol)を1,4-ジオキサン(10mL)に懸濁し、水(1mL)を加えた。100℃に昇温した後、21時間攪拌した。室温まで冷却後、水を加えて析出した固体を濾別した。得られた粗生成物をトルエンで再結晶し、目的物の2-[4-(4,6-ジメチルピリミジン-2-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(化合物 A-18)の灰色固体(収量324mg,収率78%)を得た。
H-NMR(CDCl)δ(ppm):2.60(s,6H),7.00(s,1H),7.59-7.65(m,6H),8.65(d,J=8.5Hz,2H),8.81(d,J=7.5Hz,4H),8.88(d,J=8.0Hz,2H).
 合成実施例-19
Figure JPOXMLDOC01-appb-C000166
 アルゴン気流下、2,4-ビス(5-ブロモビフェニル-3-イル)-6-フェニル-1,3,5-トリアジン(619mg、1.0mmol)、4,6-ジメチル-2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボラン-2-イル)フェニル]ピリミジン(677mg、2.4mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム(23mg、20.μmol)をテトラヒドロフラン(10mL)に懸濁し、4.0N-水酸化ナトリウム水溶液(1.5mL、6.0mmol)を加えた。70℃に昇温した後、22時間攪拌した。室温まで冷却後、水を加えて析出した固体を濾別した。得られた粗生成物をトルエンで再結晶し、目的物の2,4-ビス[4-(4,6-ジメチルピリミジン-2-イル)-1,1’:3’,1”-テルフェニル-5’-イル]-6-フェニル-1,3,5-トリアジン(化合物 A-19)の灰色固体(収量763mg,収率92%)を得た。
H-NMR(CDCl)δ(ppm):2.59(s,12H),6.98(s,2H),7.46(t,J=7.5Hz,2H)7.57(t,J=7.8Hz,4H),7.60-7.68(m,3H),8.84(d,J=6.5Hz,4H),7.93(d,J=8.5Hz,4H),8.13(s,2H),8.62(d,J=8.0Hz,4H),8.85(d,J=6.0Hz,2H),9.03(s,2H),9.06(s,2H).
 合成実施例-20
Figure JPOXMLDOC01-appb-C000167
 アルゴン気流下、2,4-ビス(3-ブロモフェニル)-6-フェニル-1,3,5-トリアジン(1.40g、3.0mmol)、4,6-ジメチル-2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボラン-2-イル)フェニル]ピリミジン(2.23g、7.2mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム(69mg、0.06mmol)をテトラヒドロフラン(30mL)に懸濁し、4.0N-水酸化ナトリウム水溶液(4.5mL、18mmol)を加えた。70℃に昇温した後、22時間攪拌した。室温まで冷却後、水を加えて析出した固体を濾別した。得られた粗生成物をo-キシレンで再結晶し、目的物の2,4-ビス[4’-(4,6-ジメチルピリミジン-2-イル)ビフェニル-3-イル]-6-フェニル-1,3,5-トリアジン(化合物 A-20)の灰色結晶(収量1.54g,収率76%)を得た。
H-NMR(CDCl)δ(ppm):2.58(s,12H),6.70(s,2H),7.65-7.60(m,3H),7.70(t,J=7.8Hz,2H),7.88(d,J=9.0Hz,4H),7.93(d,J=8.5Hz,2H),8.60(d,J=8.5Hz,4H),8.84-8.80(m,4H),9.09(s,2H).
 合成実施例-21
Figure JPOXMLDOC01-appb-C000168
 アルゴン気流下、2-(4-ブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン(1.50g、3.86mmol)、4,6-ジメチル-2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボラン-2-イル)フェニル]ピリミジン(1.44g、4.64mmol)、酢酸パラジウム(26.0mg、0.116mmol)、及び1.0Mのtert-ブチルホスフィン(0.350mL,0.350mmol)をテトラヒドロフラン(39mL)に懸濁し、70℃に加熱した。これに4.0M-水酸化ナトリウム水溶液(7.20mL)をゆっくりと滴下した後、75℃に昇温し、5時間撹拌した。放冷後、白色固体を濾別した。得られた粗生成物を再結晶(トルエン)で精製し、目的物の2-[4’-(4,6-ジメチルピリミジン-2-イル)ビフェニル-4-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物 A-21)の白色固体(収量1.05g,収率55%)を得た。
H-NMR(CDCl)δ(ppm):2.57(s,6H),6.96(s,1H),7.58-7.64(m,6H),7.83(d,J=8.6Hz,2H),7.89(d,J=8.6Hz,2H),8.60(d,J=8.4Hz,2H)8.81(d,J=8.4Hz,4H),8.91(d,J=8.6Hz,2H).
 合成実施例-22
Figure JPOXMLDOC01-appb-C000169
 アルゴン気流下、2-(3-ブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン(2.09g、5.4mmol)、4,6-ジメチル-2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボラン-2-イル)フェニル]ピリミジン(2.00g、6.5mmol)、酢酸パラジウム(36.3mg、0.16mmol)、及び1.0Mのtert-ブチルホスフィン(0.480mL,0.48mmol)をテトラヒドロフラン(50mL)に懸濁し、70℃に加熱した。これに4.0M-水酸化ナトリウム水溶液(10mL)をゆっくりと滴下した後、75℃に昇温し、2時間撹拌した。放冷後、白色固体を濾別した。得られた粗生成物を再結晶(トルエン)で精製し、目的物の2-[4’-(4,6-ジメチルピリミジン-2-イル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物 A-22)の白色固体(収量1.22g,収率46%)を得た。
H-NMR(CDCl)δ(ppm):2.57(s,6H),6.98(s,1H),7.58-7.64(m,6H),7.68(t,J=7.8Hz,1H),7.85(d,J=9.0Hz,2H),7.93(d,J=8.5Hz,2H),8.60(d,J=8.5Hz,2H),8.80-8.84(m,4H),9.09(s,1H).
 合成実施例-23
Figure JPOXMLDOC01-appb-C000170
 アルゴン気流下、2,4-ジクロロ-6-フェニル-1,3,5-トリアジン(0.800g、3.5mmol)、4,6-ジメチル-2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボラン-2-イル)フェニル]ピリミジン(2.60g、8.4mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0.122g、0.11mmol)、及びリン酸三カリウム(3.46g、16mmol)を、N,N-ジメチルホルムアルデヒド(18mL)に懸濁した。100℃に昇温した後、14時間攪拌した。室温まで冷却後、水を加えて析出し、固体を濾別した。得られた粗生成物をトルエンで再結晶し、目的物の2,4-ビス[4-(4,6-ジメチルピリミジン-2-イル)フェニル]-6-フェニル-1,3,5-トリアジン(化合物 A-23)の灰色固体(収量800mg,収率43%)を得た。
H-NMR(CDCl)δ(ppm):2.59(s,12H),6.97(s,2H),7.60-7.78(m,3H),8.67(d,J=8.0Hz,4H),8.81(d,J=7.5Hz,2H),8.90(d,J=8.0Hz,4H).
 合成参考例-1
Figure JPOXMLDOC01-appb-C000171
 アルゴン気流下、2-(3-ブロモ-5-クロロベンゼン-1-イル)-4,6-ジフェニル-1,3,5-トリアジン(30.0g,71mmol)、3-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)]カルバゾール(18.3g,75mmol)、及びジクロロビス(トリフェニルホスフィン)パラジウム(0.996g,1.4mmol)を1,4-ジオキサン(710mL)に懸濁し、100℃に加熱した。これに3.0M-炭酸カリウム水溶液(49.7mL,0.15mol)をゆっくりと滴下した後、24時間撹拌した。放冷後、析出した固体を水、メタノール、ヘキサンの順番で洗浄し、3-[3-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-フェニル]カルバゾール(収量36.1g、収率99%)を得た。
 次いで、アルゴン気流下、3-[3-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]カルバゾール(4.07g)、2-ブロモ-6-メチルピリジン(2.06g)、酸化銅(I)(57mg)、1,10-フェナントロリン(144mg)、18-クラウン-6-エーテル(423mg)、及び炭酸カリウム(2.21g)をキシレン(80mL)に懸濁し、20時間加熱還流した。反応混合物を放冷後、水及びメタノールを加えた。析出した固体を水、メタノール、ヘキサンの順番で洗浄し、3-[1-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-フェニル-3-イル]-9-(6-メチルピリジン-2-イル)カルバゾールの黄色粉末(収量4.24g,収率88%)を得た。
H-NMR(CDCl)δ(ppm):2.75(s,3H),7.24(d,J=7.1Hz,1H),7.39(t,J=7.2Hz,1H),7.50-7.54(m,2H),7.60-7.68(m,6H),7.83(d,J=8.6Hz,1H),7.87-7.91(m,2H),7.97(s,1H),8.01(d,J=8.6Hz,1H),8.25(d,J=7.6Hz,1H),8.45(s,1H),8.75(s,1H),8.82-8.84(m,4H),9.00(s,1H).
 次いで、アルゴン気流下、3-[1-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-フェニル-3-イル]-9-(6-メチルピリジン-2-イル)カルバゾール(1.80g)、4-(2-ピリジル)フェニルボロン酸(717mg)、酢酸パラジウム(13.5mg)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(86mg)を、トルエン(40mL)及び1-ブタノール(3.0mL)の混合溶媒に懸濁し、3M-炭酸カリウム水溶液(2.4mL)を添加し、6.5時間加熱還流した。反応混合物を放冷後、水及びメタノールを加えた。析出した固体を水、メタノール、ヘキサンの順番で洗浄し、目的の9-(6-メチルピリジン-2-イル)-3-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-4’-(2-ピリジル)ビフェニル-3-イル]カルバゾール(化合物 A-24)の灰色粉末(収量2.00g,収率93%)を得た。
H-NMR(CDCl)δ(ppm):2.75(s,3H),7.23(d,J=7.5Hz,1H),7.31-7.34(m,1H),7.39(t,J=7.4Hz,1H),7.51(dd,J=8.3,7.2Hz,1H),7.84(d,J=7.8Hz,1H),7.60-7.68(m,6H),7.84-7.94(m,5H),8.01(d,J=8.4Hz,2H),8.04(d,J=8.6Hz,1H),8.24(d,J=8.5Hz,2H),8.27(d,J=8.4Hz,2H),8.53(s,1H),8.79(d,J=4.7Hz,1H),8.85(d,J=7.9Hz,4H),9.07(s,1H),9.12(s,1H).
 合成参考例-2
Figure JPOXMLDOC01-appb-C000172
 アルゴン気流下、2-(3-ブロモ-5-クロロベンゼン-1-イル)-4,6-ジフェニル-1,3,5-トリアジン(30.0g,71mmol)、3-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)]カルバゾール(18.3g,75mmol)、及びジクロロビス(トリフェニルホスフィン)パラジウム(0.996g,1.4mmol)を1,4-ジオキサン(710mL)に懸濁し、100℃に加熱した。これに3.0M-炭酸カリウム水溶液(49.7mL,0.15mol)をゆっくりと滴下した後、24時間撹拌した。放冷後、析出した固体を水、メタノール、ヘキサンの順番で洗浄し、3-[3-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-フェニル]カルバゾール(収量36.1g,収率99%)を得た。
 次いで、アルゴン気流下、3-[3-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]カルバゾール(4.07g)、2-ブロモ-6-メチルピリジン(2.06g)、酸化銅(I)(57mg)、1,10-フェナントロリン(144mg)、18-クラウン-6-エーテル(423mg)、及び炭酸カリウム(2.21g)をキシレン(80mL)に懸濁し、20時間加熱還流した。反応混合物を放冷後、水及びメタノールを加えた。析出した固体を水、メタノール、ヘキサンの順番で洗浄し、3-[1-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-フェニル-3-イル]-9-(6-メチルピリジン-2-イル)カルバゾールの黄色粉末(収量4.24g,収率88%)を得た。
 次いで、アルゴン気流下、3-[1-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-フェニル-3-イル]-9-(6-メチルピリジン-2-イル)カルバゾール(1.80g)、2-メチル-6-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]ピリジン(1.15g)、酢酸パラジウム(13.5mg)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(86mg)を、トルエン(60mL)及び1-ブタノール(3.0mL)の混合溶媒に懸濁し、3M-炭酸カリウム水溶液(2.6mL)を添加し、23時間加熱還流した。反応混合物を放冷後、水及びメタノールを加えた。析出した固体を水、メタノール、ヘキサンの順番で洗浄し、目的の9-(6-メチルピリジン-2-イル)-3-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-4’-(6-メチルピリジン-2-イル)ビフェニル-3-イル]カルバゾール(化合物 A-25)の灰色粉末(収量1.63g,収率74%)を得た。
H-NMR(CDCl)δ(ppm):2.74(s,3H),2.76(s,3H),7.19(d,J=7.4Hz,1H),7.24(d,J=7.6Hz,1H),7.39(t,J=7.4Hz,1H),7.51(t,J=7.7Hz,1H),7.53(D,J=8.0Hz,1H),7.61-7.68(m,7H),7.75(t,J=7.6Hz,1H),7.88(d,J=7.7Hz,1H),7.91-7.94(m,2H),8.00(d,J=8.4Hz,2H),8.04(d,J=8.5Hz,1H),8.23-8.25(m,3H),8,27(d,J=7.4Hz,1H),8.54(s,1H),8.85-8.88(m,4H),9.06(s,1H),9.12(s,1H).
 合成参考例-3
Figure JPOXMLDOC01-appb-C000173
 アルゴン気流下、2-(3-ブロモ-5-クロロベンゼン-1-イル)-4,6-ジフェニル-1,3,5-トリアジン(30.0g,71mmol)、3-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)]カルバゾール(18.3g,75mmol)、及びジクロロビス(トリフェニルホスフィン)パラジウム(0.996g,1.4mmol)を1,4-ジオキサン(710mL)に懸濁し、100℃に加熱した。これに3.0M-炭酸カリウム水溶液(49.7mL,0.15mol)をゆっくりと滴下した後、24時間撹拌した。析出した固体を水、メタノール、ヘキサンの順番で洗浄し、3-[3-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-フェニル]カルバゾール(収量36.1g,収率99%)を得た。
 次いで、アルゴン気流下、3-[3-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]カルバゾール(2.00g)、2-ブロモピリジン(745mg)、酸化銅(56.23mg)、1,10-フェナントロリン(70.82mg)、18-クラウン-6-エーテル(207.76mg)、及び炭酸カリウム(1358mg)をキシレン(20mL)に懸濁し、16時間加熱還流した。反応混合物を放冷後、水を加えた。析出した固体を水、メタノール、ヘキサンの順番で洗浄し、3-[1-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-フェニル-3-イル]-9-(2-ピリジル)カルバゾールの黄色粉末(収量2110mg,収率92%)を得た。
H-NMR(CDCl):δ7.33-7.39(m,2H),7.48(t,J=7.2Hz,1H),7.56-7.64(m,6H),7.69(d,J=8.0Hz,1H),7.80(d,J=8.0Hz,1H),7.86(d,J=7.6Hz,1H),7.92(s,1H),7.95-8.00(m,2H),8.22(d,J=7.6Hz,1H),8.41(s,1H),8.71(s,1H),8.78-8.80(m,5H),8.97(s,1H).
 次いで、アルゴン気流下、3-[1-クロロ-5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-フェニル-3-イル]-9-(2-ピリジル)カルバゾール(1.76g)、2-メチル-6-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]ピリジン(1.15g)、酢酸パラジウム(13.5mg)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(86mg)を、トルエン(60mL)及び1-ブタノール(3.0mL)の混合溶媒に懸濁し、3M-炭酸カリウム水溶液(2.6mL)を添加し、16時間加熱還流した。反応混合物を放冷後、水及びメタノールを加えた。析出した固体を水、メタノール、ヘキサンの順番で洗浄し、目的の9-(2-ピリジル)-3-[5-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-4’-(6-メチルピリジン-2-イル)ビフェニル-3-イル]カルバゾール(化合物 A-26)の灰色粉末(収量1.84g,収率85%)を得た。
H-NMR(CDCl)δ(ppm):2.72(s,3H),7.17(d,J=7.4Hz,1H),7.38(t,J=5.0Hz,1H),7.40(t,J=7.4Hz,1H),7.52(t,J=7.2Hz,1H),7.61-7.68(m,7H),7.72(d,J=7.6Hz,1H),7.75(d,J=7.6Hz,1H),7.92-7.94(m,2H),7.99(d,J=8.3Hz,2H),8.01(t,J=8.1Hz,1H),8.05(d,J=8.5Hz,1H),8.22(d,J=8.3Hz,2H),8.24(s,1H),8.28(d,J=7.6Hz,1H),8.54(s,1H),8.81(d,J=5.0Hz,1H),8.85(d,7.8Hz,4H),9.07(s,1H),9.11(s,1H).
 合成実施例-27
Figure JPOXMLDOC01-appb-C000174

 4,6-ジフェニル-2-[5-(9-フェナントリル)-3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジン(1.84g,3.0mmol)、2-クロロ-4,6-ジメチルピリミジン(513mg,3.6mmol)、テトラキス(トリフェニルホスフィン)パラジウム(34.7mg,0.030mmol)、及びリン酸三カリウム(1.53g,7.2mmol)を量り取り、1,4-ジオキサン(20mL)及び水(7.2mL)に懸濁した。この混合物を23時間加熱還流した。放冷後、水(50mL)を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。さらに再結晶(トルエン)で精製することで、2-[3-{2-(4,6-ジメチルピリミジル)}-5-(9-フェナントリル)フェニル}]-4,6-ジフェニル-1,3,5-トリアジン(化合物 A-27)の白色固体(収量1.40g,収率79%)を得た。
H-NMR(CDCl)δ(ppm):2.60(s,6H),7.02(s,1H),7.51-7.76(m,10H),7.90(s,1H),7.95-8.01(m,2H),8.76-8.86(m,6H),8.87(brs,1H),9.02(brs,1H),9.89(brs,1H).
 合成実施例-28
Figure JPOXMLDOC01-appb-C000175
 アルゴン気流下、4,6-ジフェニル-2-[5-(9-フェナントリル)-3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジン(2.00g,3.3mmol)、5-ブロモ-2-メチルピリジン(0.675g,3.9mmol)、酢酸パラジウム(22.0mg,98μmol)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(93.5mg,0.20mmol)を、1,4-ジオキサン(33mL)に懸濁し、2.0M-炭酸カリウム水溶液(3.3mL)を滴下し、80℃で24時間撹拌した。放冷後、メタノールと水を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。さらに再結晶(トルエン)で精製することで、目的の4,6-ジフェニル-2-[3-(6-メチルピリジン-3-イル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(化合物 A-28)の白色固体(収量1.78g,収率94%)を得た。
H-NMR(CDCl)δ(ppm):2.67(s,3H),7.52-7.61(m,8H),7.69-7.75(m,3H),7.88(s,1H),7.97-8.00(m,3H),8.76-8.81(m,6H),8.85(d,J=8.3Hz,1H),8.96(t,J=1.7Hz,1H),9.00(d,J=2.2Hz,1H),9.11(t,J=1.7Hz,1H).
 合成実施例-29
Figure JPOXMLDOC01-appb-C000176

 アルゴン気流下、4,6-ジフェニル-2-[5-(9-フェナントリル)-3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジン(2.00g,3.3mmol)、2-ブロモ-6-メチルピリジン(0.450mL,3.9mmol)、酢酸パラジウム(22.0mg,98μmol)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(93.5mg,0.20mmol)を、1,4-ジオキサン(33mL)に懸濁し、2.0M-炭酸カリウム水溶液(3.3mL)を滴下し、90℃で4時間撹拌した。放冷後、メタノールと水を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。カラムクロマトグラフィー(展開溶媒 クロロホルム:ヘキサン)で精製することで、目的の4,6-ジフェニル-2-[3-(6-メチルピリジン-2-イル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(化合物 A-29)の白色固体(収量1.13g,収率60%)を得た。
H-NMR(CDCl)δ(ppm):2.68(s,3H),7.19(d,J=7.5Hz,1H),7.52-7.79(m,12H),7.90(s,1H),7.98(d,J=8.2Hz,1H),8.00(d,J=8.2Hz,1H),8.47(t,J=1.8Hz,1H),8.78-8.81(m,5H),8.84(d,J=8.0Hz,1H),8.98(d,J=1.6Hz,1H),9.43(t,J=1.8Hz,1H).
 合成実施例-30
Figure JPOXMLDOC01-appb-C000177

 アルゴン気流下、6-(ビフェニル-4-イル)-2,4-ジ(4-ブロモフェニル)-1,3,5-トリアジン(5.43g、10.0mmol)、4,4,4’,4’,5,5,5’,5’-オクタメチル-2,2’-ビ-1,3,2-ジオキサボロラン(6.10g,24.0mmol)、ジクロロビストリフェニルホスフィンパラジウム(211mg,0.30mmol)、及び酢酸カリウム(4.72g、48mmol)をテトラヒドロフラン(150mL)に懸濁し、75℃で5時間加熱還流した。放冷後、濾紙を用いた濾過により沈殿物を除去した。さらにクロロホルムで分液し、有機層を濃縮した。さらにカラムクロマトグラフィー(展開溶媒 クロロホルム)で精製した。得られた固体にヘキサンを添加して氷温まで冷却した後、固体を濾別し、減圧化で乾燥することで中間体である6-(ビフェニル-4-イル)-2,4-ジ{4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル}-1,3,5-トリアジンの乳白色粉末(収量3.82g,収率60%)を得た。
 次いで、アルゴン気流下、6-(ビフェニル-4-イル)-2,4-ジ{4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル}-1,3,5-トリアジン(1.91g,3.0mmol)、2-クロロ-4,6-ジメチルピリミジン(1.03g,7.2mmol)、テトラキス(トリフェニルホスフィン)パラジウム(69.4mg,0.060mmol)、及びリン酸三カリウム(3.06g,14.4mmol)量り取り、1,4-ジオキサン(20mL)及び水(14.4mL)に懸濁した。この混合物を23時間加熱還流した。放冷後、水(50mL)を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。さらに再結晶(トルエン)の精製を2回行った後、さらにカラムクロマトグラフィー(展開溶媒 クロロホルム)で精製することで、6-(ビフェニル-4-イル)-2,4-ビス{4-(4,6-ジメチルピリミジル)フェニル}-1,3,5-トリアジン(化合物 A-30)の白色固体(収量0.98g,収率55%)を得た。
H-NMR(CDCl)δ(ppm):2.60(s,12H),7.02(s,2H),7.42(brdd,J=7.3,7.3Hz,1H),7.52(brdd,J=7.3,7.3Hz,2H),7.74(brd,J=8.5Hz,2H),7.85(brd,J=8.5Hz,2H),8.68(brd,J=8.5Hz,4H),8.86-8,93(m,6H).
 合成実施例-31
Figure JPOXMLDOC01-appb-C000178

 アルゴン気流下、4,6-ビス(ビフェニル-4-イル)-2-(4-ブロモフェニル)-1,3,5-トリアジン(1.08g、2.0mmol)、4,6-ジメチル-2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]ピリミジン(745mg,2.4mmol)、ジクロロビストリフェニルホスフィンパラジウム(28.1mg,0.040mmol)、及びリン酸三カリウム(1.02g、4.8mmol)を、1,4-ジオキサン(20mL)及び水(4.8mL)に懸濁した。この混合物を23時間加熱還流した。放冷後、水(20mL)を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。さらに再結晶(トルエン)の精製を行った後、さらにカラムクロマトグラフィー(展開溶媒 クロロホルム)で精製することで、4,6-ビス(ビフェニル-4-イル)-2-{4’-(4,6-ジメチルピリミジル)ビフェニル-4-イル}-1,3,5-トリアジン(化合物 A-31)の白色固体(収量620mg,収率48%)を得た。
H-NMR(CDCl)δ(ppm):2.58(s,6H),6.96(s,1H),7.42(brdd,J=7.4,7.4Hz,2H),7.48-7.55(m,4H),7.69-7.76(m,4H),7.80-7.86(m,6H),7.89(brd,J=8.6Hz,2H),8.58(brd,J=8.6Hz,2H),8.85-8,91(m,6H).
 合成実施例-32
Figure JPOXMLDOC01-appb-C000179

 アルゴン気流下、4,6-ビス(ビフェニル-4-イル)-2-(4-ブロモフェニル)-1,3,5-トリアジン(2.70g、5.0mmol)、4,4,4’,4’,5,5,5’,5’-オクタメチル-2,2’-ビ-1,3,2-ジオキサボロラン(1.91g,7.5mmol)、酢酸パラジウム(11.3mg,0.050mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(47.8mg,0.10mmol)、及び酢酸カリウム(1.48g、15mmol)を1,4-ジオキサン(100mL)に懸濁し、60℃で14時間加熱撹拌した後に、さらに100℃で5時間加熱還流した。放冷後、濾紙を用いた濾過により沈殿物を除去し、有機層を濃縮した。さらにカラムクロマトグラフィー(展開溶媒 クロロホルム)で精製した。得られた固体にヘキサンを添加して氷温まで冷却した後、固体を濾別し、減圧下で乾燥することで、中間体である2,4-ジ(ビフェニル-4-イル)-6-{4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル}-1,3,5-トリアジンの乳白色粉末(収量2.60g,収率89%)を得た。
 次いで、アルゴン気流下、2,4-ジ(ビフェニル-4-イル)-6-{4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル}-1,3,5-トリアジン(1.47g,2.5mmol)、2-クロロ-4,6-ジメチルピリミジン(428mg,3.0mmol)、テトラキス(トリフェニルホスフィン)パラジウム(28.9mg,0.025mmol)、及びリン酸三カリウム(1.28g,6.0mmol)を量り取り、1,4-ジオキサン(25mL)及び水(6.0mL)に懸濁した。この混合物を25.5時間加熱還流した。放冷後、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。さらに再結晶(トルエン)の精製を3回行うことで2,4-ジ(ビフェニル-4-イル)-6-{4-(4,6-ジメチルピリミジル)フェニル}-1,3,5-トリアジン(化合物 A-32)の白色固体(収量1.04g,収率74%)を得た。
H-NMR(CDCl)δ(ppm):2.60(s,6H),7.00(s,1H),7.42(brdd,J=7.4,7.4Hz,2H),7.52(brdd,J=7.4,7.4Hz,4H),7.70-7.76(m,4H),7.83(brd,J=8.6Hz,4H),8.67(brd,J=8.6Hz,2H),8.85-8,94(m,6H).
 合成実施例-33
Figure JPOXMLDOC01-appb-C000180

 アルゴン気流下、アルゴン気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニル-1,3,5-トリアジン(4.23g,10mmol)、4,6-ジメチル-2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]ピリミジン(3.41g,11mmol)、テトラキス(トリフェニルホスフィン)パラジウム(231mg,0.20mmol)、及び水酸化ナトリウム(1.21g,30mmol)を量り取り、テトラヒドロフラン(60mL)及び水(7.5mL)に懸濁した。この混合物を21.5時間加熱還流した。放冷後、溶媒を減圧流去し、水(100mL)を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。再結晶(トルエン)することで、合成中間体である2-{5-クロロ-4’-[2-(4,6-ジメチルピリミジル)]ビフェニル-3-イル}-4,6-ジフェニル-1,3,5-トリアジンの白色固体(収量4.49g,収率85%)を得た。
H-NMR(CDCl)δ(ppm):2.58(s,6H),6.98(s,1H),7.57-7.67(m,6H),7.84(brd,J=8.6Hz,2H),7.88(brs,1H),8.61(brd,J=8.6Hz,2H),8.74(brs,1H),8.77-8.82(m,4H),8.95(brs,1H).
 次いで、アルゴン気流下、2-{5-クロロ-4’-[2-(4,6-ジメチルピリミジル)]ビフェニル-3-イル}-4,6-ジフェニル-1,3,5-トリアジン(2.63g,5.0mmol)、4,4,4’,4’,5,5,5’,5’-オクタメチル-2,2’-ビ-1,3,2-ジオキサボロラン(1.91g,7.5mmol)、酢酸パラジウム(11.3mg,0.050mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(47.7mg,0.10mmol)、及び酢酸カリウム(1.48g,15mmol)を、1,4-ジオキサン(100mL)に懸濁し、100℃で4時間撹拌した。放冷後、濾紙を用いた濾過により沈殿物を除去した。さらにクロロホルムで分液し、有機層を濃縮して粗固体を得た。この粗固体にヘキサンを添加して氷温まで冷却した後、固体を濾別し、減圧化で乾燥することで、中間体である2-{5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-4’-[2-(4,6-ジメチルピリミジル)]ビフェニル-3-イル}-4,6-ジフェニル-1,3,5-トリアジンの白色固体(収量2.99g,収率97%)を得た。
H-NMR(CDCl)δ(ppm):1.45(s,12H),2.58(s,6H),6.96(s,1H),7.56-7.67(m,6H),7.90(brd,J=8.5Hz,2H),8.34-8.37(m,1H),8.59(brd,J=8.5Hz,2H),8.79-8.85(m,4H),9.13-9.18(m,2H).
 次いで、2-{5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-4’-[2-(4,6-ジメチルピリミジル)]ビフェニル-3-イル}-4,6-ジフェニル-1,3,5-トリアジン(1.85g,3.0mmol)、2-クロロ-4,6-ジメチルピリミジン(513mg,3.6mmol)、テトラキス(トリフェニルホスフィン)パラジウム(34.7mg,0.030mmol)、及びリン酸三カリウム(1.53g,7.2mmol)を量り取り、1,4-ジオキサン(20mL)及び水(7.2mL)に懸濁した。この混合物を23時間加熱還流した。放冷後、水(50mL)を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。さらに再結晶(トルエン)で3回精製することで2-{5,4’-ジ[2-(4,6-ジメチルピリミジル)]ビフェニル-3-イル}-4,6-ジフェニル-1,3,5-トリアジン(化合物 A-33)の白色固体(収量1.39g,収率78%)を得た。
H-NMR(CDCl)δ(ppm):2.59(s,6H),2.65(s,6H),6.97(s,1H)7.03(s,1H),7.56-7.68(m,6H),7.98(brd,J=8.6Hz,2H),8.63(brd,J=8.6Hz,2H),8.82-8.88(m,4H),9.00(brs,1H),9.17(brs,1H),9.78(brs,1H).
 合成実施例-34
Figure JPOXMLDOC01-appb-C000181

 アルゴン気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニル-1,3,5-トリアジン(70.0g,0.166mol)、9-フェナントレンボロン酸(38.6g,0.174mol)、及びテトラキス(トリフェニルホスフィン)パラジウム(3.83g,3.31mmol)を量り取り、4.0Mー水酸化ナトリウム水溶液(124mL,0.497mol)及びテトラヒドロフラン(1.0L)に懸濁した。この混合物を24時間加熱還流した。放冷後、水(550mL)を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。再結晶(トルエン)することで、反応中間体である2-[3-クロロ-5-(9-フェナントリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンの白色固体(収量78.9g、収率92%)を得た。
 次いで、アルゴン気流下、2-[3-クロロ-5-(9-フェナントリル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(3.64g,7.0mmol)、6-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-2,3-ジメチルキノキサリン(2.39g,8.4mmol)、酢酸パラジウム(31.5mg,0.14mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(133.5mg,0.28mmol)、及びリン酸三カリウム(3.57g,16.8mmol)を量り取り、水(16.8mL)及び1,4-ジオキサン(100mL)に懸濁した。この混合物を16.5時間加熱還流した。放冷後、水(70mL)を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。さらに再結晶(トルエン)で精製することで目的の4,6-ジフェニル-2-{3-[2-(2,3-ジメチルキノキサリン-6-イル)-5-(9-フェナントリル)]フェニル}-1,3,5-トリアジンの白色固体(収量3.96g、収率88%)を得た。
HーNMR(CDCl)δ(ppm):2.77-2.81(m,6H),7.53-7.77(m,10H),7.90(s,1H),7.99(brd,J=8.0Hz,1H),8.05(brd,J=8.0Hz,1H),8.11-8.21(m,3H),8.47(brs,1H),8.76-8.83(m,5H),8.86(brd,J=8.0Hz,1H),9.00(brs,1H),9.25(brs,1H).
 合成参考例-4
Figure JPOXMLDOC01-appb-C000182

 アルゴン気流下、4,6-ジフェニル-2-[5-(9-フェナントリル)-3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジン(0.300g,0.49mmol)、2-ブロモ-6-メトキシピリミジン(0.111g,0.59mmol)、テトラキス(トリフェニルホスフィン)パラジウム(17.3mg,0.015mmol)、及び炭酸カリウム(0.207g,1.5mmol)を量り取り、テトラヒドロフラン(7.5mL)及び水(1.5mL)に懸濁した。この混合物を2時間加熱還流した。放冷後、水を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。さらに再結晶(トルエン)で精製することで4,6-ジフェニル-2-[3-(6-メトキシピリジン-2-イル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(化合物 A-35)の白色固体(収量0.261g,収率90%)を得た。
H-NMR(CDCl)δ(ppm):δ.4.13(s,3H),6.79(d,J=8.7Hz,1H)、7.54-7.83(m,12H)、7.87(s,1H)、7.94(d,J=8.7Hz,1H)、8.06-8.13(m,1H)、8.25(dd,J=1.8,4.9Hz,1H)、8.79-8.82(m,4H)、8.79(d,J=8.7Hz,1H)、8.82(d,J=8.7Hz,1H)、9.38(t,J=1.8Hz,1H)、9.56(t,J=1.8Hz,1H).
 合成参考例-5
Figure JPOXMLDOC01-appb-C000183

 アルゴン気流下、4,6-ジフェニル-2-[5-(9-フェナントリル)-3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジン(1.50g,2.5mmol)、6-(4-クロロフェニル)-2-メトキシピリジン(0.659g,3.0mmol)、酢酸パラジウム(1.12mg,5.0μmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(4.76mg,10.μmol)、及び炭酸カリウム(1.04g,7.5mmol)を量り取り、テトラヒドロフラン(35mL)と水(7mL)を滴下し、懸濁液を得た。懸濁液を70℃で4時間加熱した。放冷後に水を加え、析出した固体を、濾紙を用いて濾別し、水、メタノール、ヘキサンの順番で洗浄した。得られた粗生成物をカラムクロマトグラフィー(展開溶媒 クロロホルム:ヘキサン)で精製することで、目的物である4,6-ジフェニル-2-[4’-(6-メトキシピリジン-2-イル)-5-(9-フェナントリル)ビフェニル-3-イル]-1,3,5-トリアジンの白色固体(収量1.05g、収率64%)を得た。
H-NMR(CDCl)δ(ppm):δ.4.03(s,3H)、6.74(d,J=8.6Hz,1H)、7.57-7.65(m,7H)、7.68-7.78(m,4H)、7.92(s,1H)、7.96(d,J=8.1Hz,2H)、8.00-8.07(m,4H)、8.11(t,J=1.7Hz,1H)、8.81-8.89(m,7H)、8.97(t,J=1.7Hz,1H)、9.20(t,J=1.7Hz,1H).
 合成実施例-37
Figure JPOXMLDOC01-appb-C000184

 アルゴン気流下、4,6-ジフェニル-2-[5-(9-フェナントリル)-3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジン(1.35g,2.2mmol)、3-ブロモ-2-メチルピリジン(0.30mL,2.7mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム(76.7mg,0.066mmol)を量り取り、テトラヒドロフラン(22mL)に懸濁した。この混合物に2.0M-炭酸カリウム水溶液(3.3mL,6.6mmol)を滴下した後に、70℃で13時間加熱した。放冷後、水を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。さらに再結晶(トルエン)で精製することで、2-[3-{3-(2-メチルピリジル)-5-(9-フェナントリル)フェニル}]-4,6-ジフェニル-1,3,5-トリアジン(化合物 A-37)の白色固体(収量1.24g,収率97%)を得た。
H-NMR(CDCl)δ(ppm):δ.2.72(s,3H),7.30(dd,J=4.6,7.4Hz,1H)、7.52-7.63(m,7H)、7.65-7.79(m,5H)、7.87(s,1H)、7.98(d,J=8.0Hz,1H)、8.00(d,J=8.3Hz,1H)、8.60(dd,J=1.8,4.9Hz,1H)、8.76(m,4H)、8.79(d,J=7.3Hz,1H)、8.85(d,J=8.2Hz,1H)、8.85(t,J=1.6Hz,1H)、8.97(t,J=1.6Hz,1H)
 合成実施例-38
Figure JPOXMLDOC01-appb-C000185

 アルゴン気流下、4,6-ジフェニル-2-[5-(9-フェナントリル)-3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジン(1.15g,1.9mmol)、8-ブロモ-2-メチルキノリン(0.500g,2.3mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム(65.2mg,0.056mmol)を量り取り、テトラヒドロフラン(19mL)に懸濁した。この混合物に2.0M-炭酸カリウム水溶液(2.8mL,5.6mmol)を滴下した後に、75℃で3時間加熱した。放冷後、メタノールを加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。さらに再結晶(トルエン)で精製することで、4,6-ジフェニル-2-[3-(2-メチルキノリン-8-イル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(化合物 A-38)の白色固体(収量0.700g,収率60%)を得た。
H-NMR(CDCl)δ(ppm):δ.2.79(s,3H),7.35(d,J=8.4Hz,1H)、 7.50-7.67(m,9H)、7.69-7.75(m,2H)、7.86(dd,J=1.4,8.1Hz,1H)、7.95(s,1H)、7.98(dd,J=1.6,5.1Hz,1H)、8.00(dd,J=1.4,4.4Hz,1H)、8.13(d,J=8.5Hz,1H)、8.27(t,J=1.7Hz,1H)、8.35(dd,J=1.0,8.3Hz,1H)、8.76-8.80(m,5H)、8.85(d,J=8.0Hz,1H)、8.99(t,J=1.7Hz,1H)、9.28(t,J=1.7Hz,1H).
 合成実施例-39
Figure JPOXMLDOC01-appb-C000186

 アルゴン気流下、2-(3-ブロモ-5-クロロフェニル)-4,6-ジフェニル-1,3,5-トリアジン(2.00g,4.6mmol)、(7,7-ジメチル-7H-ベンゾ[c]フルオレン-5-イル)ボロン酸(1.59g,5.5mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム(0.159g,0.14mmol)を量り取り、テトラヒドロフラン(23mL)に懸濁した。この混合物に2.0M-炭酸カリウム水溶液(6.9mL,14mmol)を滴下した後に、70℃で4時間加熱した。放冷後、メタノールを加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。さらに再結晶(トルエン)で精製することで、2-[3-クロロ-5-(7,7-ジメチル-7H-ベンゾ[c]フルオレン-5-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンの白色固体(収量2.12g,収率79%)を得た。
 続いて、アルゴン気流下、2-[3-クロロ-5-(7,7-ジメチル-7H-ベンゾ[c]フルオレン-5-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(2.00g、3.5mmol)、4,4,4’,4’,5,5,5’,5’-オクタメチル-2,2’-ビ-1,3,2-ジオキサボロラン(1.13g,4.4mmol)、酢酸パラジウム(23.0mg,0.10mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(97.6mg,0.21mmol)、及び酢酸カリウム(1.00g、10.mmol)を1,4-ジオキサン(17mL)に懸濁し、85℃で10時間加熱撹拌した。放冷後、濾紙を用いた濾過により沈殿物を除去し、有機層を濃縮した。さらにカラムクロマトグラフィー(展開溶媒 クロロホルム)で精製することで、中間体である2- [3-(7,7-ジメチル-7H-ベンゾ[c]フルオレン-5-イル)-5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル] -4,6-ジフェニル-1,3,5-トリアジンの白色粉末(収量2.60g,収率85%)を得た。
 続いてアルゴン気流下、2- [3-(7,7-ジメチル-7H-ベンゾ[c]フルオレン-5-イル)-5-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル] -4,6-ジフェニル-1,3,5-トリアジン(1.50g,2.2mmol)、5-ブロモ-2-メチルピリジン(0.457g,2.7mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム(76.7mg,66μmol)を量り取り、テトラヒドロフラン(22mL)に懸濁した。この混合物に2.0M-炭酸カリウム水溶液(3.3mL,6.6mmol)を滴下した後に、70℃で13時間加熱した。放冷後、水を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。さらに再結晶(トルエン)で精製することで、2-[3-(7,7-ジメチル-7H-ベンゾ[c]フルオレン-5-イル)-5-(6-メチルピリジン-3-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(化合物 A-39)の黄白色固体(収量0.893g,収率63%)を得た。
H-NMR(CDCl)δ(ppm):δ. 1.62(s,6H)、2.67(s,3H)、7.33(d,J=8.0Hz,1H)、7.42(t,J=7.5Hz,1H)、7.48-7.63(m,9H)、7.71(t,J=7.7Hz,1H)、7.72(s,1H)、7.98(t,J=1.8Hz,1H)、8.01(dd,J=2.5,8.0Hz,1H)、8.07(d,J=7.6Hz,1H)、8.42(d,J=7.8Hz,1H)、8.78(brd,J=6.8Hz,4H)、8.91(d,J=8.8Hz,1H)、8.95(t,J=1.8Hz,1H)、9.02(d,J=2.0Hz,1H)、9.10(t,J=1.8Hz,1H).
 合成参考例-6
Figure JPOXMLDOC01-appb-C000187

 アルゴン気流下、4,6-ジフェニル-2-[5-(9-フェナントリル)-3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジン(3.24g,5.3mmol)、6-(4-クロロフェニル)-2-(メチルチオ)ピリジン(1.50g,6.4mmol)、酢酸パラジウム(23.8mg,0.106mmol)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(0.101g,0.21mmol)を量り取り、1,4-ジオキサン(53mL)と2.0M-炭酸カリウム水溶液(8mL)を滴下し、懸濁液を得た。懸濁液を100℃で4時間加熱した。放冷後、水を加えた後で分液を行い、有機層を濃縮した。得られた粗生成物をカラムクロマトグラフィー(展開溶媒 クロロホルム:ヘキサン)で精製することで、目的物である4,6-ジフェニル-2-{4’-[(6-メチルチオ)ピリジン-2-イル]-5-(9-フェナントリル)ビフェニル-3-イル}-1,3,5-トリアジンの白色固体(収量1.50g、収率41%)を得た。
H-NMR(CDCl)δ(ppm):δ.2.13(s,3H)、7.54-7.78(m,8H)、7.92-8.12(m,10H)、8.23(d,J=8.5Hz,2H)、8.80-8.83(m,7H)、8.99(t,J=1.7Hz,1H)、9.20(t,J=1.7Hz,1H).
 合成実施例-41
Figure JPOXMLDOC01-appb-C000188

 アルゴン気流下、4,6-ジフェニル-2-[5-(9-フェナントリル)-3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジン(1.17g,1.9mmol)、2-(5-クロロピリジン-2-イル)-6-メチルピリジン(0.471g,2.3mmol)、酢酸パラジウム(8.53mg,38μmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(36.2mg,76μmol),及び炭酸カリウム(0.788g,5.7mmol)を量り取り、テトラヒドロフラン(25mL)と水(5mL)を滴下し、懸濁液を得た。懸濁液を70℃で4時間加熱した。放冷後、水を加え、析出した固体を濾別し、水、メタノール、ヘキサンの順番で洗浄した。さらに再結晶(トルエン)で精製することで、目的物である4,6-ジフェニル-2-[4-{6’-メチル(1,1’-ビピリジン-5-イル)}-5-(9-フェナントリル)フェニル-3-イル]-1,3,5-トリアジンの白色固体(収量0.740g、収率59%)を得た。
H-NMR(CDCl)δ(ppm):δ.2.79(s,3H)、7.54-7.66(m,8H)、7.69-7.79(m,6H)、7.92(s,1H)、8.01(d,J=7.6Hz,2H)、8.11(t,J=1.8Hz,1H)、8.80-8.84(m,6H)、8.89(d,J=8.3Hz,1H)、9.06(brs,1H)、9.22(t,J=1.8Hz,1H)、9.26(t,J=1.8Hz,1H).
 合成実施例-42
Figure JPOXMLDOC01-appb-C000189

 アルゴン気流下、4,6-ジフェニル-2-[5-(9-フェナントリル)-3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジン(3.24g,5.3mmol)、1-(4-クロロフェニル)-3-メチルイソキノリン(1.50g,6.4mmol)、酢酸パラジウム(23.8mg,0.106mmol)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(0.101g,0.21mmol)を量り取り、1,4-ジオキサン(53mL)と2.0M-炭酸カリウム水溶液(8mL)を滴下し、懸濁液を得た。懸濁液を100℃で4時間加熱した。放冷後、水を加えた後で分液を行い、有機層を濃縮した。得られた粗生成物をカラムクロマトグラフィー(展開溶媒 クロロホルム:ヘキサン)で精製することで、目的物である4,6-ジフェニル-2-{4’-[3-メチルピリジン-2-イル]-5-(9-フェナントリル)ビフェニル-3-イル}-1,3,5-トリアジンの白色固体(収量1.50g、収率41%)を得た。
H-NMR(CDCl)δ(ppm):δ.2.83(s,3H)、δ.7.53-7.62(m,7H),7.64-7.75(m,5H),7.86-7.92(m,4H),7.96-8.02(m,3H),8.05(d,J=8.5Hz,1H),8.10(t,J=1.8Hz,1H),8.23(d,J=8.5Hz,1H),8.65(d,J=5.7Hz,1H),8.76-8.80(m,5H),8.84(d,J=8.3Hz,1H),8.95(s,1H),9.20(s,1H).
 合成実施例-43
Figure JPOXMLDOC01-appb-C000190

 アルゴン気流下、2,4-ジフェニル-6-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボラン-2-イル)フェニル]-1,3,5-トリアジン(0.500g、1.1mmol)、8-クロロ-2-メチルキノリン(0.245g、1.4mmol)、酢酸パラジウム(7.74mg、35μmol)、及び2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(32.8mg,69μmol)を1,4-ジオキサン(11mL)に懸濁し、70℃に加熱した。これに2.0M-リン酸三カリウム水溶液(1.7mL)をゆっくりと滴下した後、70℃に昇温し、1.5時間撹拌した。放冷後、白色固体を濾別した。得られた粗生成物を再結晶(トルエン)で精製し、目的物の2-[4’-(4,6-ジメチルピリミジン-2-イル)ビフェニル-4-イル]-4,6-ジフェニル-1,3,5-トリアジン(化合物 A-43)の白色固体(収量0.450g,収率87%)を得た。
H-NMR(CDCl)δ(ppm):δ.2.72(s,3H)、7.33(d,J=8.4Hz,1H)、7.56-7.65(m,7H)、7.82(d,J=7.6Hz,2H)、8.01(d,J=8.2Hz,2H)、8.11(d,J=8.4Hz,1H)、8.83(dd,J=1.5,7.7Hz,4H)、8.90(d,J=8.6Hz,2H)
 合成実施例-44
Figure JPOXMLDOC01-appb-C000191

 アルゴン気流下、2-ブロモフェニル-4,6-ジフェニル-1,3,5-トリアジン(1.50g、3.9mmol)、1-(4-クロロフェニル)-3-メチルイソキノリン(1.53g、4.6mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム(0.134g、0.12mmol)をテトラヒドロフラン(39mL)に懸濁した。これに2.0M-炭酸カリウム水溶液(5.8mL)をゆっくりと滴下した後、70℃に昇温し、2時間撹拌した。放冷後、水を加えた後で分液を行い、有機層を濃縮した。得られた粗生成物をカラムクロマトグラフィー(展開溶媒 クロロホルム:ヘキサン)で精製することで、目的物である4,6-ジフェニル-2-[4’-(3-メチルイソキノリン-1-イル)ビフェニル-3-イル]-1,3,5-トリアジン(化合物 A-44)の白色固体(収量1.18g,収率58%)を得た。
H-NMR(CDCl)δ(ppm):2.58(s,3H),7.68-7.82(m,9H),7.68(t,J=7.8Hz,1H),7.85(d,J=9.0Hz,2H),7.87(d,J=8.3Hz,2H),8.50(d,J=8.3Hz,2H),8.80-8.84(m,6H),9.19(s,1H).
 以下に素子作製例を示すが、本発明はこれらに限定されない。用いた化合物の構造式と略称を以下に示す
Figure JPOXMLDOC01-appb-C000192
Figure JPOXMLDOC01-appb-C000193
 素子実施例-1
 基板には、2mm幅の酸化インジウム-スズ(ITO)膜(膜厚110nm)がストライプ状にパターンされたITO透明電極付きガラス基板を用いた。この基板をイソプロピルアルコールで洗浄した後、オゾン紫外線洗浄にて表面処理を行った。洗浄後の基板に、真空蒸着法で各層の真空蒸着を行い、図1(断面方向における層構成の模式図)に示す有機電界発光素子(発光面積4mm)を作製した。
 まず、真空蒸着槽内に前記ガラス基板を導入し、1.0×10-4Paまで減圧した。
 その後、当該ガラス基板上に有機化合物層として、ITO透明電極月ガラス基板(陽極層)1、正孔注入層2、電荷発生層3、正孔輸送層4、発光層5、電子輸送層6、及び電子注入層7をいずれも抵抗加熱方式により順次成膜し、その後陰極層8を成膜した。
 正孔注入層2としては、昇華精製したHILを45nmの膜厚で真空蒸着(蒸着速度0.15nm/秒)した。
 電荷発生層3としては、昇華精製したHATを5nmの膜厚で真空蒸着(蒸着速度0.025nm/秒)した。
 正孔輸送層4としては、HTLを30nmの膜厚で真空蒸着(蒸着速度0.15nm/秒)した。
 発光層5としては、EML-1とEML-2を95:5(重量比)の割合で20nmの膜厚で真空蒸着(蒸着速度0.18nm/秒)した。
 電子輸送層6としては、合成実施例-1で合成した2-[4,4’’-ビス(4,6-ジメチルピリミジン-2-イル)-1,1’:3’,1’’-テルフェニル-5’-イル]-4,6-ジフェニル-1,3,5-トリアジン(A-1)を30nmの膜厚で真空蒸着(蒸着速度0.15nm/秒)した。
 電子注入層7としては、昇華精製したLiqを0.45nmの膜厚で真空蒸着(蒸着速度0.005nm/秒)した。
 最後に、ITOストライプと直行するようにメタルマスクを配し、陰極層8を成膜した。
陰極層8は、銀マグネシウム(重量比、銀/マグネシウム=1/10)を80nmの膜厚で真空蒸着(蒸着速度0.5nm/秒)し、さらにその次に銀を20nmの膜厚で真空蒸着(蒸着速度0.2nm/秒)することで、2層構造とした。
 それぞれの膜厚は、触針式膜厚測定計(DEKTAK)で測定した。さらに、この素子を酸素及び水分濃度1ppm以下の窒素雰囲気のグローブボックス内で封止した。封止は、ガラス製の封止キャップと前記成膜基板エポキシ型紫外線硬化樹脂(ナガセケムテックス社製)を用いた。
 参考例-1
 素子実施例-1の電子輸送層6において、2-[4,4’’-ビス(4,6-ジメチルピリミジン-2-イル)-1,1’:3’,1’’-テルフェニル-5’-イル]-4,6-ジフェニル-1,3,5-トリアジン(A-1)に代えて、ETL-1を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
 参考例-2
 素子実施例-1の電子輸送層6において、2-[4,4’’-ビス(4,6-ジメチルピリミジン-2-イル)-1,1’:3’,1’’-テルフェニル-5’-イル]-4,6-ジフェニル-1,3,5-トリアジン(A-1)に代えて、ETL-3を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
 作製した有機電界発光素子に直流電流を印加し、TOPCON社製のLUMINANCE METER(BM-9)の輝度計を用いて発光特性を評価した。発光特性として、電流密度10mA/cmを流した時の電圧(V)、及び電流効率(cd/A)を測定し、連続点灯時の輝度半減時間を測定した。また、初期輝度を800cd/mで駆動したときの連続点灯時の輝度減衰時間を測定した。輝度(cd/m)が30%減じた時の時間を素子寿命(h)として、以下に示した。
Figure JPOXMLDOC01-appb-T000194

 表1より、本発明の有機電界発光素子は、参考例に比べて、初期特性が同等で、寿命特性に優れることが分かった。
 素子実施例-2
 素子実施例-1の正孔注入層2、正孔輸送層4、発光層5、及び電子注入層7において、膜厚をそれぞれ、40nm、25nm、25nm、及び0.5nmにした。また、電子輸送層6において、2-[4,4’’-ビス(4,6-ジメチルピリミジン-2-イル)-1,1’:3’,1’’-テルフェニル-5’-イル]-4,6-ジフェニル-1,3,5-トリアジン(A-1)に代えて、合成実施例-9で合成した2-[4,4’’-ビス(6-メチルピリジン-2-イル)-1,1’;3’,1”-テルフェニル-5’-イル]-4,6-ジフェニル-1,3,5-トリアジン(A-9)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
 参考例-3
 素子実施例-2の電子輸送層6において、2-[4,4’’-ビス(6-メチルピリジン-2-イル)-1,1’;3’,1”-テルフェニル-5’-イル]-4,6-ジフェニル-1,3,5-トリアジン(A-9)に代えて、ETL-1を用いた以外は、素子実施例-2と同じ方法で有機電界発光素子を作製した。
 参考例-4
 素子実施例-2の電子輸送層6において、2-[4,4’’-ビス(6-メチルピリジン-2-イル)-1,1’;3’,1”-テルフェニル-5’-イル]-4,6-ジフェニル-1,3,5-トリアジン(A-9)に代えて、ETL-4を用いた以外は、素子実施例-2と同じ方法で有機電界発光素子を作製した。
 作製した有機電界発光素子に直流電流を印加し、TOPCON社製のLUMINANCE METER(BM-9)の輝度計を用いて発光特性を評価した。発光特性として、電流密度10mA/cmを流した時の電圧(V)、及び電流効率(cd/A)を測定し、連続点灯時の輝度半減時間を測定した。また、初期輝度を1200cd/mで駆動したときの連続点灯時の輝度減衰時間を測定した。輝度(cd/m)が50%減じた時の時間を素子寿命(h)として、以下に示した。
Figure JPOXMLDOC01-appb-T000195

 表2より、本発明の有機電界発光素子は、参考例に比べて、初期特性が同等で、寿命特性に優れることが分かった。
 素子実施例-3
 素子実施例-2の電子輸送層6において、2-[4,4’’-ビス(6-メチルピリジン-2-イル)-1,1’;3’,1”-テルフェニル-5’-イル]-4,6-ジフェニル-1,3,5-トリアジン(A-9)に代えて、合成実施例-10で合成した4,6-ジフェニル-2-{5-(9-フェナントリル)-4’-[2-(4,6-ジメチルピリミジル)]ビフェニル-3-イル}-1,3,5-トリアジン(A-10)を用いた以外は、素子実施例-2と同じ方法で有機電界発光素子を作製した。
 参考例-5
 素子実施例-3の電子輸送層6において、4,6-ジフェニル-2-{5-(9-フェナントリル)-4’-[2-(4,6-ジメチルピリミジル)]ビフェニル-3-イル}-1,3,5-トリアジン(A-10)に代えて、ETL-2を用いた以外は、素子実施例-3と同じ方法で有機電界発光素子を作製した。
 作製した有機電界発光素子に直流電流を印加し、TOPCON社製のLUMINANCE METER(BM-9)の輝度計を用いて発光特性を評価した。発光特性として、電流密度10mA/cmを流した時の電圧(V)、及び電流効率(cd/A)を測定し、連続点灯時の輝度半減時間を測定した。また、初期輝度を800cd/mで駆動したときの連続点灯時の輝度減衰時間を測定した。輝度(cd/m)が30%減じた時の時間を素子寿命として、以下に示した。
Figure JPOXMLDOC01-appb-T000196

 表3より、本発明の有機電界発光素子は、参考例に比べて、同等の初期特性で、寿命特性に優れることが分かった。
 素子実施例-4
素子実施例-1の正孔注入層2、正孔輸送層4、電子輸送層6、及び電子注入層7において、膜厚をそれぞれ、20nm、25nm、45nm、及び1.0nmにした。
また、発光層5においてEML-3とEML-2を97:3(重量比)の割合で35nmの膜厚で真空蒸着(蒸着速度0.18nm/秒)した。
 また、電子輸送層6において、合成実施例-12で合成した4,6-ジフェニル-2-[4-(6-メチルピリジン-2-イル)-3’-(9-フェナントリル)-1,1’-ビフェニル-5’-イル]-1,3,5-トリアジン(A-12)を45nmの膜厚で真空蒸着(蒸着速度0.25nm/秒)した。
 参考例-6
 素子実施例-4の電子輸送層6において、4,6-ジフェニル-2-[4-(6-メチルピリジン-2-イル)-3’-(9-フェナントリル)-1,1’-ビフェニル-5’-イル]-1,3,5-トリアジン(A-12)に代えて、ETL-2を用いた以外は、素子実施例-4と同じ方法で有機電界発光素子を作製した。
 作製した有機電界発光素子に直流電流を印加し、TOPCON社製のLUMINANCE METER(BM-9)の輝度計を用いて発光特性を評価した。発光特性として、電流密度10mA/cmを流した時の電圧(V)、及び電流効率(cd/A)を測定し、連続点灯時の輝度半減時間を測定した。また、初期輝度を1200cd/mで駆動したときの連続点灯時の輝度減衰時間を測定した。輝度(cd/m)が50%減じた時の時間を素子寿命(h)として、以下に示した。
Figure JPOXMLDOC01-appb-T000197

 表4より、本発明の有機電界発光素子は、参考例に比べて、寿命特性に優れることが分かった。
 素子実施例-5
 素子実施例-1の正孔注入層2、正孔輸送層4、発光層5、及び電子注入層7において、膜厚をそれぞれ、65nm、10nm、25nm、及び0.5nmにした。また、電子輸送層6において、合成実施例-28で合成した4,6-ジフェニル-2-[3-(6-メチルピリジン-3-イル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(A-28)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
 素子実施例-6
 素子実施例-5の電子輸送層6において、4,6-ジフェニル-2-[3-(6-メチルピリジン-3-イル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(A-28)に代えて、合成実施例-29で合成した4,6-ジフェニル-2-[3-(6-メチルピリジン-2-イル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(A-29)を用いた以外は、素子実施例-5と同じ方法で有機電界発光素子を作製した。
 素子実施例-7
 素子実施例-5の電子輸送層6において、4,6-ジフェニル-2-[3-(6-メチルピリジン-3-イル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(A-28)に代えて、合成実施例-27で合成した2-{3-[2-(4,6-ジメチルピリミジル)}-5-(9-フェナントリル)フェニル]}-4,6-ジフェニル-1,3,5-トリアジン(A-27)を用いた以外は、素子実施例-5と同じ方法で有機電界発光素子を作製した。
 素子実施例-8
 素子実施例-5の電子輸送層6において、4,6-ジフェニル-2-[3-(6-メチルピリジン-3-イル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(A-28)に代えて、合成実施例-31で合成した4,6-ビス(ビフェニル-4-イル)-2-[4’-(4,6-ジメチルピリミジル)ビフェニル-4-イル]-1,3,5-トリアジン(A-31)を用いた以外は、素子実施例-5と同じ方法で有機電界発光素子を作製した。
 素子実施例-9
 素子実施例-5の電子輸送層6において、4,6-ジフェニル-2-[3-(6-メチルピリジン-3-イル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(A-28)に代えて、合成実施例-32で合成した2,4-ジ(ビフェニル-4-イル)-6-[4-(4,6-ジメチルピリミジル)フェニル]-1,3,5-トリアジン(A-32)を用いた以外は、素子実施例-5と同じ方法で有機電界発光素子を作製した。
 素子実施例-10
 素子実施例-5の電子輸送層6において、4,6-ジフェニル-2-[3-(6-メチルピリジン-3-イル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(A-28)に代えて、合成実施例-5で合成した2-{4-[2-(4,6-ジメチルピリミジル)]-1,1’:3’,1’’-テルフェニル-5’-イル}-4,6-ジフェニル-1,3,5-トリアジン(A-5)を用いた以外は、素子実施例-5と同じ方法で有機電界発光素子を作製した。
 素子実施例-11
 素子実施例-5の電子輸送層6において、4,6-ジフェニル-2-[3-(6-メチルピリジン-3-イル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(A-28)に代えて、合成実施例-22で合成した2-[4’-(4,6-ジメチルピリミジン-2-イル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(A-22)を用いた以外は、素子実施例-5と同じ方法で有機電界発光素子を作製した。
 素子実施例-12
 素子実施例-5の電子輸送層6において、4,6-ジフェニル-2-[3-(6-メチルピリジン-3-イル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(A-28)に代えて、合成実施例-18で合成した2-[4-(4,6-ジメチルピリミジン-2-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(A-18)を用いた以外は、素子実施例-5と同じ方法で有機電界発光素子を作製した。
 素子実施例-13
 素子実施例-5の電子輸送層6において、4,6-ジフェニル-2-[3-(6-メチルピリジン-3-イル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(A-28)に代えて、合成実施例-5で合成した2-{4-[2-(4,6-ジメチルピリミジル)]-1,1’:3’,1’’-テルフェニル-5’-イル}-4,6-ジフェニル-1,3,5-トリアジン(A-5)を用いた以外は、素子実施例-5と同じ方法で有機電界発光素子を作製した。
 素子実施例-14
 素子実施例-5の電子輸送層6において、4,6-ジフェニル-2-[3-(6-メチルピリジン-3-イル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(A-28)に代えて、合成実施例-10で合成した4,6-ジフェニル-2-{5-(9-フェナントリル)-4’-[2-(4,6-ジメチルピリミジル)]ビフェニル-3-イル}-1,3,5-トリアジン(A-10)を用いた以外は、素子実施例-5と同じ方法で有機電界発光素子を作製した。
 参考例-7
 素子実施例-5の電子輸送層6において、4,6-ジフェニル-2-[3-(6-メチルピリジン-3-イル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(A-28)に代えて、ETL-5を用いた以外は、素子実施例-5と同じ方法で有機電界発光素子を作製した。
 参考例-8
 素子実施例-5の電子輸送層6において、4,6-ジフェニル-2-[3-(6-メチルピリジン-3-イル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(A-28)に代えて、ETL-6を用いた以外は、素子実施例-5と同じ方法で有機電界発光素子を作製した。
 参考例-9
 素子実施例-5の電子輸送層6において、4,6-ジフェニル-2-[3-(6-メチルピリジン-3-イル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(A-28)に代えて、ETL-2を用いた以外は、素子実施例-5と同じ方法で有機電界発光素子を作製した。
 作製した有機電界発光素子に直流電流を印加し、TOPCON社製のLUMINANCE METER(BM-9)の輝度計を用いて発光特性を評価した。発光特性として、電流密度10mA/cmを流した時の電圧(V)、及び電流効率(cd/A)を測定し、連続点灯時の輝度半減時間を測定した。また、初期輝度を800cd/mで駆動したときの連続点灯時の輝度減衰時間を測定した。輝度(cd/m)が30%減じた時の時間を素子寿命(h)として、以下に示した。
Figure JPOXMLDOC01-appb-T000198

 表5より、本発明の有機電界発光素子は、参考例に比べて、初期特性が同等で、寿命特性に優れることが分かった。
 素子実施例-15
 素子実施例-1のEML-1とEML-2を93:7(重量比)の割合にし、電子輸送層6において、2-[4,4’’-ビス(4,6-ジメチルピリミジン-2-イル)-1,1’:3’,1’’-テルフェニル-5’-イル]-4,6-ジフェニル-1,3,5-トリアジン(A-1)に代えて、合成実施例-19で合成した2,4-ビス[4-(4,6-ジメチルピリミジン-2-イル)-1,1’:3’,1”-テルフェニル-5’-イル]-6-フェニル-1,3,5-トリアジン(A-19)を用いた以外は、素子実施例-1と同じ方法で有機電界発光素子を作製した。
 素子実施例-16
 素子実施例-15の電子輸送層6において、2,4-ビス[4-(4,6-ジメチルピリミジン-2-イル)-1,1’:3’,1”-テルフェニル-5’-イル]-6-フェニル-1,3,5-トリアジン(A-19)に代えて、合成実施例-11で合成した2-[5-(9-アントラセニル)-4’-(4,6-ジメチルピリミジン-2-イル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(A-11)を用いた以外は、素子実施例-15と同じ方法で有機電界発光素子を作製した。
 参考例-10
 素子実施例-15の電子輸送層6において、2,4-ビス[4-(4,6-ジメチルピリミジン-2-イル)-1,1’:3’,1”-テルフェニル-5’-イル]-6-フェニル-1,3,5-トリアジン(A-19)に代えて、ETL-7を用いた以外は、素子実施例-15と同じ方法で有機電界発光素子を作製した。
 参考例-11
 素子実施例-15の電子輸送層6において、2-[5-(9-アントラセニル)-4’-(4,6-ジメチルピリミジン-2-イル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(A-19)に代えて、ETL-8を用いた以外は、素子実施例-15と同じ方法で有機電界発光素子を作製した。
 作製した有機電界発光素子に直流電流を印加し、TOPCON社製のLUMINANCE METER(BM-9)の輝度計を用いて発光特性を評価した。発光特性として、電流密度10mA/cmを流した時の電圧(V)、及び電流効率(cd/A)を測定し、連続点灯時の輝度半減時間を測定した。また、初期輝度を800cd/mで駆動したときの連続点灯時の輝度減衰時間を測定した。輝度(cd/m)が30%減じた時の時間を素子寿命として、以下に示した。
Figure JPOXMLDOC01-appb-T000199

 表6より、本発明の有機電界発光素子は、参考例に比べて、初期特性が同等で、寿命特性に優れることが分かった。
 素子実施例-17
 素子実施例-15の電子輸送層6において、2,4-ビス[4-(4,6-ジメチルピリミジン-2-イル)-1,1’:3’,1”-テルフェニル-5’-イル]-6-フェニル-1,3,5-トリアジン(A-19)に代えて、合成実施例-37で合成した2-{3-[3-(2-メチルピリジル)-5-(9-フェナントリル)フェニル]}-4,6-ジフェニル-1,3,5-トリアジン(A-37)を用いた以外は、素子実施例-15と同じ方法で有機電界発光素子を作製した。
 素子実施例-18
 素子実施例-17の電子輸送層6において、2-{3-[3-(2-メチルピリジル)-5-(9-フェナントリル)フェニル]}-4,6-ジフェニル-1,3,5-トリアジン(A-37)に代えて、合成実施例-12で合成した4,6-ジフェニル-2-[4-(6-メチルピリジン-2-イル)-3’-(9-フェナントリル)-1,1’-ビフェニル-5’-イル]-1,3,5-トリアジン(A-12)を用いた以外は、素子実施例-17と同じ方法で有機電界発光素子を作製した。
 素子実施例-19
 素子実施例-17の電子輸送層6において、2-{3-[3-(2-メチルピリジル)-5-(9-フェナントリル)フェニル]}-4,6-ジフェニル-1,3,5-トリアジン(A-37)に代えて、合成実施例-38で合成した4,6-ジフェニル-2-[3-(2-メチルキノリン-8-イル)-5-(9-フェナントリル)フェニル]-1,3,5-トリアジン(A-38)を用いた以外は、素子実施例-17と同じ方法で有機電界発光素子を作製した。
 参考例-12
 素子実施例-17の電子輸送層6において、2-{3-[3-(2-メチルピリジル)-5-(9-フェナントリル)フェニル]}-4,6-ジフェニル-1,3,5-トリアジン(A-37)に代えて、ETL-5を用いた以外は、素子実施例-17と同じ方法で有機電界発光素子を作製した。
 参考例-13
 素子実施例-17の電子輸送層6において、2-{3-[3-(2-メチルピリジル)-5-(9-フェナントリル)フェニル]}-4,6-ジフェニル-1,3,5-トリアジン(A-37)に代えて、ETL-2を用いた以外は、素子実施例-17と同じ方法で有機電界発光素子を作製した。
 参考例-14
 素子実施例-17の電子輸送層6において、2-{3-[3-(2-メチルピリジル)-5-(9-フェナントリル)フェニル]}-4,6-ジフェニル-1,3,5-トリアジン(A-37)に代えて、ETL-9を用いた以外は、素子実施例-17と同じ方法で有機電界発光素子を作製した。
 参考例-16
 素子実施例-17の電子輸送層6において、2-{3-[3-(2-メチルピリジル)-5-(9-フェナントリル)フェニル]}-4,6-ジフェニル-1,3,5-トリアジン(A-37)に代えて、合成参考例-5で合成した4,6-ジフェニル-2-[4’-(6-メトキシピリジン-2-イル)-5-(9-フェナントリル)ビフェニル-3-イル]-1,3,5-トリアジン(A-36)を用いた以外は、素子実施例-17と同じ方法で有機電界発光素子を作製した。
 参考例-17
 素子実施例-17の電子輸送層6において、2-{3-[3-(2-メチルピリジル)-5-(9-フェナントリル)フェニル]}-4,6-ジフェニル-1,3,5-トリアジン(A-37)に代えて、合成参考例-6で合成した4,6-ジフェニル-2-{4’-[(6-メチルチオ)ピリジン-2-イル]-5-(9-フェナントリル)ビフェニル-3-イル}-1,3,5-トリアジン(A-40)を用いた以外は、素子実施例-17と同じ方法で有機電界発光素子を作製した。
 作製した有機電界発光素子に直流電流を印加し、TOPCON社製のLUMINANCE METER(BM-9)の輝度計を用いて発光特性を評価した。発光特性として、電流密度10mA/cmを流した時の電圧(V)、及び電流効率(cd/A)を測定し、連続点灯時の輝度半減時間を測定した。また、初期輝度を800cd/mで駆動したときの連続点灯時の輝度減衰時間を測定した。輝度(cd/m)が10%減じた時の時間を素子寿命として、以下に示した。
Figure JPOXMLDOC01-appb-T000200

 表7より、本発明の有機電界発光素子は、参考例に比べて、寿命特性に優れることが分かった。
 素子実施例-20
 素子実施例-15の電子輸送層6において、2,4-ビス[4-(4,6-ジメチルピリミジン-2-イル)-1,1’:3’,1”-テルフェニル-5’-イル]-6-フェニル-1,3,5-トリアジン(A-19)に代えて、合成実施例-41で合成した4,6-ジフェニル-2-{4-[6’-メチル(1,1’-ビピリジン-5-イル)]-5-(9-フェナントリル)フェニル-3-イル}-1,3,5-トリアジン(A-41)を用いた以外は、素子実施例-15と同じ方法で有機電界発光素子を作製した。
 参考例-15
 素子実施例-20の電子輸送層6において、4,6-ジフェニル-2-[4-(6-メチルピリジン-2-イル)-3’-(9-フェナントリル)-1,1’-ビフェニル-5’-イル]-1,3,5-トリアジン(A-41)に代えて、ETL-2を用いた以外は、素子実施例-20と同じ方法で有機電界発光素子を作製した。
 作製した有機電界発光素子に直流電流を印加し、TOPCON社製のLUMINANCE METER(BM-9)の輝度計を用いて発光特性を評価した。発光特性として、電流密度10mA/cmを流した時の電圧(V)、及び電流効率(cd/A)を測定し、連続点灯時の輝度半減時間を測定した。また、初期輝度を800cd/mで駆動したときの連続点灯時の輝度減衰時間を測定した。輝度(cd/m)が25%減じた時の時間を素子寿命として、以下に示した。
Figure JPOXMLDOC01-appb-T000201

 表8より、本発明の有機電界発光素子は、参考例に比べて、寿命特性に優れることが分かった。
 本発明の環状アジン化合物を含有する電子輸送層又は電子注入層を有する有機電界発光素子は、既存材料に比較して長時間の駆動が可能であり、また発光効率にも優れ、燐光発光材料を用いた様々な有機電界発光素子への適用が可能である。特に、フラットパネルディスプレイなどの用途以外にも、低消費電力が求められる照明等への利用が可能である。
 なお、2013年4月18日に出願された日本特許出願2013-087142号、及び2013年6月26日に出願された日本特許出願2013-133811号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 1.ITO透明電極付きガラス基板
 2.正孔注入層
 3.電荷発生層
 4.正孔輸送層
 5.発光層
 6.電子輸送層
 7.電子注入層
 8.陰極層

Claims (10)

  1.  下記一般式(1)、一般式(2)、又は一般式(2’)で表されることを特徴とする環状アジン化合物。
    Figure JPOXMLDOC01-appb-C000001

    (置換基Bは、各々独立して、窒素原子に隣接する炭素のうち少なくとも一つの炭素上に炭素数1~12のアルキル基を有するアザベンゼン基、ジアザベンゼン基、又はアザナフタレン基を表す。
     置換基C’は、ジアリールピリミジン基又はジアリールトリアジン基(ジアリールピリミジン基及びジアリールトリアジン基におけるアリール基は、各々独立して炭素数1~4のアルキル基で置換されていても良い炭素数6~12の芳香族炭化水素基である)を表わす。
     Arは、炭素数1~4のアルキル基で置換されていても良い炭素数6~20の芳香族炭化水素基、又は炭素数1~4のアルキル基で置換されていても良い炭素数4~14の含窒素複素環基を表す。
     Xは、各々独立して、炭素数1~4のアルキル基で置換されていても良いフェニレン基、又はアザベンゼンジイル基を表す。
     p、及びqは、各々独立して、0、1、又は2を表す。
     Arは、置換されていても良い炭素数6~12の芳香族炭化水素基を表す。
     rは、各々独立して、0、1、又は2を表す。
     nは、1、2、又は3を表す。
     nは、2、又は3を表す。
     置換基C’’は、下記式(C’’-56)、(C’’-57)、(C’’-66)、(C’’-68)、又は(C’’-81)を表わす。)
    Figure JPOXMLDOC01-appb-C000002
    (Rは、各々独立して、炭素数1~4のアルキル基を表す。)
  2.  置換基Bが、窒素原子に隣接する炭素のうち少なくとも一つの炭素上にメチル基を有するアザベンゼン基、ジアザベンゼン基、又はアザナフタレン基である、請求項1に記載の環状アジン化合物。
  3.  置換基Bが、6-メチルピリジン-2-イル基、6-メチルピリジン-3-イル基、2-メチルピリジン-3-イル基、4,6-ジメチルピリミジン-2-イル基、2-メチルキノリン-8-イル基、3-メチルイソキノリン-1-イル基、又は2,3-ジメチルキノキサリン-6-イル基である、請求項1又は2に記載の環状アジン化合物。
  4.  p、及びqは、各々独立して、0又は1である、請求項1~3のいずれか一項に記載の環状アジン化合物。
  5.  置換基C’が、下記(C’-1)、(C’-3)、(C’-6)、(C’-16)、(C’-46)、(C’-48)、又は(C’-61)である、請求項1~4のいずれか一項に記載の環状アジン化合物。
    Figure JPOXMLDOC01-appb-C000003

    (Rは、メチル基を表す。)
  6.  Xは、各々独立して、フェニレン基又はピリジレン基である、請求項1~5のいずれか一項に記載の環状アジン化合物。
  7.  Rが、メチル基である、請求項1~6のいずれか一項に記載の環状アジン化合物。
  8.  下記式で表される化合物(A-1)~(A-23)、(A-27)~(A-34)、(A-37)~(A-39)、又は(A-41)~(A-44)のいずれかである、請求項1~7のいずれか一項に記載の環状アジン化合物。
    Figure JPOXMLDOC01-appb-C000004

    Figure JPOXMLDOC01-appb-C000005
  9.  請求項1に記載の環状アジン化合物を含んでなる有機電界発光素子材料。
  10.  請求項1に記載の環状アジン化合物を含有する電子輸送層材料又は電子注入層材料。
PCT/JP2014/061069 2013-04-18 2014-04-18 有機電界発光素子用の複素環化合物及びその用途 WO2014171541A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157025394A KR102149568B1 (ko) 2013-04-18 2014-04-18 유기 전계발광 소자용의 복소환 화합물 및 그 용도
US14/783,110 US9780310B2 (en) 2013-04-18 2014-04-18 Heterocyclic compound for organic electroluminescent device and its application
CN201480021129.9A CN105340100B (zh) 2013-04-18 2014-04-18 有机电致发光元件用杂环化合物及其用途

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-087142 2013-04-18
JP2013087142 2013-04-18
JP2013-133811 2013-06-26
JP2013133811 2013-06-26

Publications (1)

Publication Number Publication Date
WO2014171541A1 true WO2014171541A1 (ja) 2014-10-23

Family

ID=51731475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061069 WO2014171541A1 (ja) 2013-04-18 2014-04-18 有機電界発光素子用の複素環化合物及びその用途

Country Status (6)

Country Link
US (1) US9780310B2 (ja)
JP (1) JP6326930B2 (ja)
KR (1) KR102149568B1 (ja)
CN (1) CN105340100B (ja)
TW (1) TWI642662B (ja)
WO (1) WO2014171541A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015156102A1 (ja) * 2014-04-07 2015-10-15 東ソー株式会社 環状アジン化合物、その製造方法、及びそれを含む有機電界発光素子用材料
KR20160090262A (ko) * 2015-01-21 2016-07-29 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2016024745A3 (ko) * 2014-08-12 2016-09-01 삼성에스디아이 주식회사 화합물, 이를 포함하는 유기 광전자 소자 및 표시장치
WO2016105141A3 (ko) * 2014-12-24 2016-10-06 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
EP3147961A1 (en) 2015-09-28 2017-03-29 Novaled GmbH Organic electroluminescent device
EP3182478A1 (en) 2015-12-18 2017-06-21 Novaled GmbH Electron injection layer for an organic light-emitting diode (oled)
CN106935715A (zh) * 2015-12-29 2017-07-07 三星显示有限公司 有机发光装置
EP3208861A1 (en) 2016-02-19 2017-08-23 Novaled GmbH Electron transport layer comprising a matrix compound mixture for an organic light-emitting diode (oled)
CN107108504A (zh) * 2014-12-24 2017-08-29 株式会社斗山 有机化合物及包含其的有机电致发光元件
EP3232490A1 (en) 2016-04-12 2017-10-18 Novaled GmbH Organic light emitting diode comprising an organic semiconductor layer
EP3252837A1 (en) 2016-05-30 2017-12-06 Novaled GmbH Organic light emitting diode comprising an organic semiconductor layer
EP3252841A1 (en) 2016-05-30 2017-12-06 Novaled GmbH Organic light emitting diode comprising an organic semiconductor layer
EP3291319A1 (en) 2016-08-30 2018-03-07 Novaled GmbH Method for preparing an organic semiconductor layer
US10784447B2 (en) 2015-04-24 2020-09-22 Samsung Sdi Co., Ltd. Organic compound, composition, and organic optoelectronic diode
US11177441B2 (en) 2014-01-24 2021-11-16 Samsung Sdi Co., Ltd. Organic compound, composition, organic optoelectronic device, and display device
US11189800B2 (en) 2017-07-10 2021-11-30 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising the same
JP7450432B2 (ja) 2020-03-30 2024-03-15 東ソー株式会社 トリアジン化合物

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102399010B1 (ko) * 2015-06-18 2022-05-17 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
JP6969118B2 (ja) * 2016-03-29 2021-11-24 東ソー株式会社 トリアジン化合物及びそれを含有する有機電界発光素子
JP6902859B2 (ja) * 2016-12-08 2021-07-14 東ソー株式会社 易溶性アジン化合物とその製造方法、及びそれを用いた有機電界発光素子
JP2018174279A (ja) * 2017-03-31 2018-11-08 国立大学法人九州大学 有機半導体レーザー素子
CN107513054A (zh) * 2017-09-29 2017-12-26 江苏三月光电科技有限公司 一种以三嗪和喹喔啉为核心的有机化合物及其在oled上的应用
KR102405134B1 (ko) * 2017-10-31 2022-06-08 삼성디스플레이 주식회사 함질소 화합물 및 이를 포함하는 유기 전계 발광 소자
KR102209936B1 (ko) * 2018-03-22 2021-02-01 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
EP3766875A1 (en) * 2019-07-15 2021-01-20 Novaled GmbH Compound and an organic semiconducting layer, an organic electronic device, a display device and a lighting device comprising the same
CN113461671B (zh) * 2020-03-31 2023-03-10 常州强力昱镭光电材料有限公司 含有三嗪基团的喹喔啉类化合物、喹喔啉类组合物、电子传输材料及电致发光器件
CN112028879B (zh) * 2020-09-29 2023-07-21 烟台京师材料基因组工程研究院 一种电子传输材料、有机电致发光器件和显示装置
CN115340531B (zh) * 2021-05-12 2024-02-13 江苏三月科技股份有限公司 一种含三嗪和嘧啶结构的化合物及其在有机电致发光器件上的应用
CN116462665B (zh) * 2023-06-19 2023-10-10 季华实验室 一种有机发光材料、有机电致发光器件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022334A (ja) * 2002-06-17 2004-01-22 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び表示装置
JP2007314503A (ja) * 2005-08-26 2007-12-06 Tosoh Corp 1,3,5−トリアジン誘導体、その製造方法、およびこれを構成成分とする有機電界発光素子
WO2008129912A1 (ja) * 2007-04-12 2008-10-30 Tosoh Corporation フェニル基置換1,3,5-トリアジン化合物、その製造方法、およびこれを構成成分とする有機電界発光素子
WO2010038854A1 (ja) * 2008-10-03 2010-04-08 東ソー株式会社 1,3,5-トリアジン誘導体、その製造方法、及びこれを構成成分とする有機電界発光素子
WO2012087960A1 (en) * 2010-12-20 2012-06-28 E. I. Du Pont De Nemours And Company Triazine derivatives for electronic applications
WO2012091026A1 (ja) * 2010-12-27 2012-07-05 東ソー株式会社 1,3,5-トリアジン化合物とその製造方法、及びそれらを構成成分とする有機電界発光素子
WO2013191177A1 (ja) * 2012-06-18 2013-12-27 東ソー株式会社 環状アジン化合物、その製造方法、及びそれを含有する有機電界発光素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7994316B2 (en) 2005-08-26 2011-08-09 Tosoh Corporation 1,3,5-triazine derivative, production method thereof and organic electroluminescence device comprising this as a composing component
JP5281304B2 (ja) * 2008-03-14 2013-09-04 東ソー株式会社 りん光性の有機電界発光素子
TWI475011B (zh) 2008-12-01 2015-03-01 Tosoh Corp 1,3,5-三氮雜苯衍生物及其製造方法、和以其為構成成分之有機電致發光元件
JP5812583B2 (ja) 2009-08-21 2015-11-17 東ソー株式会社 トリアジン誘導体、その製造方法、及びそれを構成成分とする有機電界発光素子
US9120773B2 (en) 2009-08-21 2015-09-01 Tosoh Corporation Cyclic azine derivatives, processes for producing these, and organic electroluminescent element containing these as component
JP2012046428A (ja) * 2010-08-24 2012-03-08 Tosoh Corp 1,3,5−トリアジン化合物誘導体とその製造方法、及びそれらを構成成分とする有機薄膜素子
JP2012254976A (ja) * 2011-05-17 2012-12-27 Tosoh Corp 電荷輸送層添加剤およびそれを用いた有機薄膜電子デバイス
WO2013069762A1 (ja) * 2011-11-11 2013-05-16 東ソー株式会社 含窒素縮環芳香族基を有する環状アジン化合物とその製造方法、及びそれを構成成分とする有機電界発光素子
US9365554B2 (en) * 2012-04-11 2016-06-14 Aviragen Therapeutics, Inc. Viral polymerase inhibitors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022334A (ja) * 2002-06-17 2004-01-22 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び表示装置
JP2007314503A (ja) * 2005-08-26 2007-12-06 Tosoh Corp 1,3,5−トリアジン誘導体、その製造方法、およびこれを構成成分とする有機電界発光素子
WO2008129912A1 (ja) * 2007-04-12 2008-10-30 Tosoh Corporation フェニル基置換1,3,5-トリアジン化合物、その製造方法、およびこれを構成成分とする有機電界発光素子
WO2010038854A1 (ja) * 2008-10-03 2010-04-08 東ソー株式会社 1,3,5-トリアジン誘導体、その製造方法、及びこれを構成成分とする有機電界発光素子
WO2012087960A1 (en) * 2010-12-20 2012-06-28 E. I. Du Pont De Nemours And Company Triazine derivatives for electronic applications
WO2012091026A1 (ja) * 2010-12-27 2012-07-05 東ソー株式会社 1,3,5-トリアジン化合物とその製造方法、及びそれらを構成成分とする有機電界発光素子
WO2013191177A1 (ja) * 2012-06-18 2013-12-27 東ソー株式会社 環状アジン化合物、その製造方法、及びそれを含有する有機電界発光素子

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11177441B2 (en) 2014-01-24 2021-11-16 Samsung Sdi Co., Ltd. Organic compound, composition, organic optoelectronic device, and display device
WO2015156102A1 (ja) * 2014-04-07 2015-10-15 東ソー株式会社 環状アジン化合物、その製造方法、及びそれを含む有機電界発光素子用材料
WO2016024745A3 (ko) * 2014-08-12 2016-09-01 삼성에스디아이 주식회사 화합물, 이를 포함하는 유기 광전자 소자 및 표시장치
CN107108504A (zh) * 2014-12-24 2017-08-29 株式会社斗山 有机化合物及包含其的有机电致发光元件
CN111689916A (zh) * 2014-12-24 2020-09-22 斗山索如始株式会社 化合物及包含其的有机电致发光元件
WO2016105141A3 (ko) * 2014-12-24 2016-10-06 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
US11997924B2 (en) 2014-12-24 2024-05-28 Solus Advanced Materials Co., Ltd. Organic compound and organic electroluminescent element comprising same
CN107108504B (zh) * 2014-12-24 2020-12-18 斗山索如始株式会社 有机化合物及包含其的有机电致发光元件
US11832514B2 (en) 2014-12-24 2023-11-28 Solus Advanced Materials Co., Ltd. Organic compound and organic electroluminescent element comprising same
JP2018507174A (ja) * 2014-12-24 2018-03-15 ドゥーサン コーポレイション 有機化合物及びこれを含む有機電界発光素子
US10916709B2 (en) 2014-12-24 2021-02-09 Doosan Solus Co., Ltd. Organic compound and organic electroluminescent element comprising same
EP3753928A1 (en) * 2014-12-24 2020-12-23 Doosan Solus Co., Ltd. Triazine compound and organic electroluminescent element comprising same
KR101867661B1 (ko) * 2015-01-21 2018-06-15 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR20160090262A (ko) * 2015-01-21 2016-07-29 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
US10784447B2 (en) 2015-04-24 2020-09-22 Samsung Sdi Co., Ltd. Organic compound, composition, and organic optoelectronic diode
EP3147961A1 (en) 2015-09-28 2017-03-29 Novaled GmbH Organic electroluminescent device
EP3182478A1 (en) 2015-12-18 2017-06-21 Novaled GmbH Electron injection layer for an organic light-emitting diode (oled)
CN112670425A (zh) * 2015-12-29 2021-04-16 三星显示有限公司 有机发光装置
CN106935715A (zh) * 2015-12-29 2017-07-07 三星显示有限公司 有机发光装置
EP3208861A1 (en) 2016-02-19 2017-08-23 Novaled GmbH Electron transport layer comprising a matrix compound mixture for an organic light-emitting diode (oled)
WO2017140780A1 (en) 2016-02-19 2017-08-24 Novaled Gmbh Electron transport layer comprising a matrix compound mixture for an organic light-emitting diode (oled)
WO2017178392A1 (en) 2016-04-12 2017-10-19 Novaled Gmbh Organic light emitting diode comprising an organic semiconductor layer
EP3232490A1 (en) 2016-04-12 2017-10-18 Novaled GmbH Organic light emitting diode comprising an organic semiconductor layer
EP3252841A1 (en) 2016-05-30 2017-12-06 Novaled GmbH Organic light emitting diode comprising an organic semiconductor layer
EP3252837A1 (en) 2016-05-30 2017-12-06 Novaled GmbH Organic light emitting diode comprising an organic semiconductor layer
WO2018041864A1 (en) 2016-08-30 2018-03-08 Novaled Gmbh Method for preparing an organic semiconductor layer and an organic electronic device
EP3291319A1 (en) 2016-08-30 2018-03-07 Novaled GmbH Method for preparing an organic semiconductor layer
US11189800B2 (en) 2017-07-10 2021-11-30 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising the same
JP7450432B2 (ja) 2020-03-30 2024-03-15 東ソー株式会社 トリアジン化合物

Also Published As

Publication number Publication date
US20160056388A1 (en) 2016-02-25
KR102149568B1 (ko) 2020-08-28
JP6326930B2 (ja) 2018-05-23
KR20150143441A (ko) 2015-12-23
US9780310B2 (en) 2017-10-03
JP2015027986A (ja) 2015-02-12
TWI642662B (zh) 2018-12-01
CN105340100A (zh) 2016-02-17
TW201504225A (zh) 2015-02-01
CN105340100B (zh) 2018-01-30

Similar Documents

Publication Publication Date Title
JP6326930B2 (ja) 有機電界発光素子用複素環化合物及びその用途
JP6822508B2 (ja) ベンゾチエノピリミジン化合物、その製造方法、及びそれを含有する有機電界発光素子
CN111699191B (zh) 杂环化合物及包含其的有机发光器件
JP6421474B2 (ja) 環状アジン化合物、その製造方法、及びそれを用いた有機電界発光素子
KR102164767B1 (ko) 유기화합물을 포함하는 캡핑층 및 이를 포함한 유기전계발광소자
KR102225715B1 (ko) 아다만틸기를 가진 환상 아진 화합물, 제조 방법, 및 상기 화합물을 구성 성분으로서 함유하는 유기 전계발광소자
TWI555736B (zh) 新穎之苯并***衍生物及使用該衍生物之有機電致發光元件
WO2013191177A1 (ja) 環状アジン化合物、その製造方法、及びそれを含有する有機電界発光素子
WO2011021689A1 (ja) 環状アジン誘導体とそれらの製造方法、ならびにそれらを構成成分とする有機電界発光素子
EP3428163A1 (en) Polycyclic compound and organic light emitting element comprising same
CN112739693A (zh) 新型化合物及包含其的有机发光器件
CN107652295B (zh) 吲哚并咔唑系化合物及包含其的有机发光元件
KR102556378B1 (ko) 축합고리 화합물
KR20160117492A (ko) 트라이아진 화합물 및 그의 제조 방법
KR102235480B1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR20200091778A (ko) 화합물 및 이를 포함하는 유기 발광 소자
CN111448184B (zh) 化合物及包含其的有机电子器件
KR102168068B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021079915A1 (ja) ピリジル基を有するトリアジン化合物およびピリジン化合物
JP2021102601A (ja) ピリジン化合物
CN110198933B (zh) 新型杂环化合物及利用其的有机发光元件
CN112789275A (zh) 新型化合物及包含其的有机发光器件
CN111683935A (zh) 杂环化合物及包含其的有机发光器件
KR102251402B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
KR102233985B1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480021129.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14785205

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157025394

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14783110

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14785205

Country of ref document: EP

Kind code of ref document: A1