WO2014161359A1 - 一种分布式基站的组网方法及装置、计算机可读存储介质 - Google Patents

一种分布式基站的组网方法及装置、计算机可读存储介质 Download PDF

Info

Publication number
WO2014161359A1
WO2014161359A1 PCT/CN2013/090373 CN2013090373W WO2014161359A1 WO 2014161359 A1 WO2014161359 A1 WO 2014161359A1 CN 2013090373 W CN2013090373 W CN 2013090373W WO 2014161359 A1 WO2014161359 A1 WO 2014161359A1
Authority
WO
WIPO (PCT)
Prior art keywords
bbu
rru
reference source
bbus
network
Prior art date
Application number
PCT/CN2013/090373
Other languages
English (en)
French (fr)
Inventor
田波亮
冯永利
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP13881324.1A priority Critical patent/EP3038429A4/en
Priority to JP2016535305A priority patent/JP6181875B2/ja
Publication of WO2014161359A1 publication Critical patent/WO2014161359A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present invention relates to a networking technology, and in particular, to a networking method and apparatus for a distributed base station, and a computer readable storage medium. Background technique
  • a distributed base station divides a conventional repeater into a baseband processing unit (BBU) and a radio remote unit (RRU).
  • the BBU is responsible for completing the baseband processing part of the wireless signal;
  • the RRU is responsible for completing the variable frequency modulation and signal amplification of the baseband signal;
  • the BBU and the RRU are directly connected by using the optical fiber, and are performed through a common public radio interface (CPRI, optical interface) Communication.
  • CPRI public radio interface
  • one BBU corresponds to at least one RRU, and each RRU has only one BBU directly connected thereto.
  • the RRU receives the baseband signal from the BBU corresponding to the RRU through the CPRI optical interface, and performs shaping filtering, peak clipping, digital predistortion, etc. on the baseband signal, and then frequency-converts to the intermediate frequency, and then to the radio frequency.
  • the RRU transmits the received terminal signal to a series of processes such as frequency selective amplification, and then transmits the same to the BBU corresponding to the RRU through the CPRI optical interface.
  • each RRU needs to transmit the baseband signal to the BBU corresponding to the RRU point-to-point connection.
  • the erection distance between the RRU and its corresponding BBU is not long, roughly between 200 meters and 40 kilometers, but it consumes a lot of fiber cost and labor cost.
  • the fiber required for the cascading, ring networking, and chain networking of the BBU and the RRU will be longer, and the material cost, construction cost, and maintenance cost will be higher.
  • the embodiments of the present invention provide a networking method and device for a distributed base station, and a computer readable storage medium, which can improve networking flexibility, improve baseband resource processing efficiency, and transmission rate. cut costs.
  • the embodiment of the invention provides a networking method for a distributed base station, which is a radio remote unit
  • the RRU and the baseband processing unit BBU each add at least one Ethernet interface, and configure an Internet Protocol IP address of the Ethernet network for the RRU and the BBU; and the RRU and the BBU are connected through at least one Ethernet interface.
  • the method further includes:
  • the baseband signal is transmitted between the BBU and the RRU based on the configured IP address and the added Ethernet interface.
  • the method further includes:
  • the remaining BBUs communicate with the core network through the BBU as the reference source.
  • the method includes:
  • the RRU When the BBU is connected to the RRU in a networked manner, the RRU is configured to perform baseband signal transmission with any BBU that accesses the Ethernet network; and/or, the BBU and the access are configured. Any RRU of the Ethernet network performs baseband signal transmission;
  • the selected one of the RRUs and the selected one of the BBUs are configured to perform baseband signal transmission;
  • the selected one BBU and the selected at least two RRUs are configured to perform baseband signal transmission;
  • At least two RRUs are configured to perform chained baseband signal transmission with the selected one of the BBUs;
  • the BBU is connected to the RRU in a ring network manner, at least two RRUs are configured to perform a ring-connected baseband signal transmission with the selected one of the BBUs, and at least two RRUs are arranged in a ring-connected manner.
  • a BBU with the fewest hops performs baseband signal transmission with the selected one of the BBUs.
  • the baseband signal is transmitted between the BBU and the RRU based on the configured IP address and the added Ethernet interface, including:
  • the BBU receives a signal from the core network, performs baseband processing on the signal, and sends the processed baseband signal to the RRU having the specified IP address through the Ethernet interface, and the RRU passes
  • the own Ethernet interface receives the baseband signal, and performs shaping filtering, peak clipping, digital pre-distortion processing on the received baseband signal, and then frequency-converts to an intermediate frequency, and then converts the intermediate frequency to the radio frequency, and the power-amplified radio frequency Signal is sent to the antenna;
  • the RRU receives a signal from the terminal, performs frequency-selective amplification processing, transforms to an intermediate frequency, converts the intermediate frequency to a baseband, and transmits the baseband signal to the BBU having the specified IP address through the Ethernet interface.
  • the BBU receives the baseband signal through its own Ethernet interface, performs baseband processing on the received signal, and sends the signal to the core network.
  • the method includes:
  • the BBU configured as the reference source is configured to be cascaded with any of the remaining BBUs that access the Ethernet network. And any of the remaining BBUs communicate with the core network by using the BBU as a reference source;
  • the BBU configured as a reference source When the BBU as the reference source and the remaining BBUs are cascaded in a point-to-point manner, the BBU configured as a reference source is configured to be cascaded with the selected one of the remaining BBUs, and the selected one is configured.
  • the remaining BBUs communicate with the core network through the BBU as the reference source;
  • the BBU configured as a reference source When the BBU as the reference source and the remaining BBUs are cascaded in a star manner, the BBU configured as a reference source is configured to be cascaded with the selected at least two of the remaining BBUs, and the selection is performed. At least two of the remaining BBUs communicate with the core network through the BBU as a reference source;
  • the BBU as the reference source and the remaining BBUs are cascaded in a ring manner, at least two of the remaining BBUs are arranged in a ring series with the BBU as a reference source, and at least two of the ring series are configured.
  • the BBUs having the largest BBU hop count as the reference source and the BBUs having the least BBU hop count as the reference source communicate with the core network through the BBU as the reference source.
  • the embodiment of the present invention further provides a networking device for a distributed base station, where the distributed base station includes a radio remote unit RRU and a baseband processing unit BBU; the device includes: an add-on unit, a configuration unit, an access unit, and Transmission unit; wherein
  • the add-on unit is configured to add at least one Ethernet interface to each of the RRU and the BBU;
  • the configuration unit is configured to configure an internet protocol IP address of the Ethernet network for the RRU and the BBU;
  • the access unit is configured to enable the RRU and the BBU to access an Ethernet network through at least one Ethernet interface
  • the transmission unit is configured to transmit a baseband signal between the BBU and the RRU based on a respective configured IP address and an added Ethernet interface.
  • the device further includes: a selected unit and a communication unit;
  • the selected unit is configured to select a BBU as a reference source for communication between the BBU and the core network;
  • the communication unit is configured to communicate with the core network by using the BBU as the reference source with the BBU as the reference source as a reference.
  • the configuration unit is further configured to:
  • the configuration unit configures the RRU to perform baseband signal transmission with any BBU that accesses the Ethernet network; and/or, the configuration The unit configuration BBU performs baseband signal transmission with any RRU accessing the Ethernet network;
  • the configuration unit configures a selected one of the RRUs and the selected one of the BBUs to perform baseband signal transmission;
  • the configuration unit configures a selected BBU to perform baseband signal transmission with the selected at least two RRUs;
  • the configuration unit configures at least two RRUs to perform chained baseband signal transmission with a selected one of the BBUs;
  • the configuration unit configures at least two RRUs to perform a ring-connected baseband signal transmission with a selected one of the BBUs, and configures at least two RRUs in the ring-connected series to select the ring.
  • One RBU with the largest number of BBU hops and one BBU with the least number of hops from the selected BBU perform baseband signal transmission with the selected one BBU, respectively.
  • the configuration unit is further configured to:
  • the configuration unit configures the BBU as a reference source and any of the remaining BBUs that access the Ethernet network.
  • the communication unit causes the any of the remaining BBUs to communicate with the core network through the BBU as a reference source;
  • the configuration unit configures the BBU as the reference source to be cascaded with the selected one of the remaining BBUs, where the communication is performed.
  • the unit causes the selected one of the remaining BBUs to communicate with the core network through the BBU as a reference source;
  • the configuration unit configures the BBU as the reference source to perform clock cascading with the selected at least two of the remaining BBUs.
  • the communication unit causes the selected at least two of the remaining BBUs to communicate with the core network through the BBU as a reference source;
  • the configuration unit configures a cascade connection of at least two of the remaining BBUs and the BBU as a reference source in a chain series
  • the communication unit causes the at least two of the remaining BBUs to communicate with the core network through the BBU as a reference source;
  • the configuration unit configures at least two of the remaining BBUs to be connected in series with the BBU as the reference source, the communication unit And a BBU having the largest BBU hop count as the reference source and a BBU having the lowest hop count as the reference source are respectively passed through the reference source as the reference source.
  • the BBU communicates with the core network.
  • the embodiment of the present invention further provides a computer readable storage medium, where the storage medium includes a set of instructions, and the instructions are used to execute the networking method of the distributed base station.
  • the networking method and device for the distributed base station provided by the embodiment of the present invention add at least one Ethernet interface to the RRU and the BBU, and configure an Internet Protocol IP address of the Ethernet network for the RRU and the BBU; And the BBU accesses the Ethernet network through the respective at least one Ethernet interface; the BBU and the RRU transmit a baseband signal based on the configured IP address and the added Ethernet interface.
  • the technical solution of the embodiment of the present invention improves the processing efficiency of the BBU baseband resource, reduces the probability that the base station cannot communicate normally, and reduces the probability The cost and so on.
  • FIG. 1 is a schematic flowchart of a networking method of a distributed base station according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a network networking manner between a BBU and an RRU according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a BBU according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a star networking manner between a BBU and an RRU according to an embodiment of the present invention
  • FIG. 5 is a chain diagram between a BBU and an RRU according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a ring networking manner between a BBU and an RRU according to an embodiment of the present invention
  • FIG. 1 is a schematic flowchart of a networking method of a distributed base station according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a network networking manner between a BBU and an RRU according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of
  • FIG. 7 is a schematic diagram of a network cascading mode between a BBU and a BBU according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a star cascading manner between a master BBU and a slave BBU according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a chain cascading manner between a master BBU and a slave BBU according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of an annular cascading manner between a primary BBU and a secondary BBU according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a network device of a distributed base station according to an embodiment of the present invention. detailed description
  • the RRU and its corresponding BBU are in the CPRI optical network link, and the baseband signal is transmitted through the CPRI optical interface.
  • the baseband signal is transmitted through the CPRI optical interface.
  • the baseband processing of the uplink and downlink data must occur on the BBU corresponding to the current RRU.
  • the baseband processing resource allocation of the BBU is Limited, resulting in low efficiency of baseband signal processing;
  • the baseband processing of the uplink and downlink data must occur on the BBU corresponding to the current RRU, and the current RRU has only one BBU corresponding to it.
  • the current RRU will also not work properly, which in turn affects normal communication;
  • the baseband signal is transmitted between the RRU and its corresponding BBU through the CPRI optical interface.
  • the maximum rate of the CPRI protocol used is 9.8304 Gbps. Due to the trend of BBU and RRU development, the rate needs to be improved.
  • the RRU can only be physically connected to the corresponding BBU. After the physical connection is determined, the RRU is not easy to change, and the networking mode between the RRU and the corresponding BBU is not flexible enough.
  • the RRU and the BBU can only be connected point-to-point.
  • the fiber required for the point-to-point networking, network networking, and star networking of the BBU and the RRU will be longer.
  • the material cost, construction cost, and maintenance cost will be more. high.
  • the networking mode can be flexibly implemented in a peer-to-peer network, a star network, a chain network, a ring network, or a network network.
  • the BBU and the BBU can be implemented.
  • a one-to-many relationship between RRUs can also achieve a many-to-many relationship between BBUs and RRUs. This can alleviate the limited allocation of BBU baseband resources, reduce the probability that distributed base stations cannot communicate properly, and reduce production and Maintenance costs, etc.
  • the embodiment of the invention describes a networking method for a distributed base station, as shown in FIG. Methods include:
  • Step 11 Add at least one Ethernet interface to each of the RRU and the BBU.
  • the Ethernet interface may be specifically an Ethernet optical interface.
  • Step 12 Configure an IP address of the Ethernet network for the RRU and the BBU;
  • Step 13 The RRU and the BBU are connected to the Ethernet network through at least one Ethernet interface;
  • Step 14 The baseband signal is transmitted between the BBU and the RRU based on the configured IP address and the added Ethernet interface.
  • the method further includes: selecting a BBU as a reference source for communication between the BBU and the core network; wherein, the core network includes: Evolved Packet Core (EPC) 0, using the BBU as a reference source as a reference, and the remaining BBUs
  • EPC Evolved Packet Core
  • the BBU as the reference source may be referred to as a primary BBU; the remaining BBUs may be referred to as a secondary BBU; that is, the secondary BBU communicates with the core network through the primary BBU;
  • the master BBU receives the signal from the EPC network and transmits the received signal to the slave BBU;
  • the master BBU receives the signal from the slave BBU and transmits the received signal to the core network.
  • the specific implementation process of the communication between the master and the slave BBUs is a prior art, and details are not described herein again.
  • the process of transmitting the baseband signal of the BBU with the Ethernet interface and the RRU with the Ethernet interface is introduced in the following scheme.
  • the IP addresses configured for the BBU and the RRU with the Ethernet interface can be manually configured and automatically configured.
  • the manual configuration is performed by the network maintenance personnel to manually input an IP address to the BBU and the RRU of the base station when the base station starts to open; the automatic configuration is implemented by using application software of the base station background management system.
  • the IEEE 802.3 protocol is a common protocol for Ethernet communication technology and supports Ethernet rates such as 10Mbps, 100Mbps, lGbps, 10Gbps, 40Gbps, and 100Gbps.
  • IEEE 802.3 a MAC address and an IP address are assigned to each Ethernet terminal such as a BBU and an RRU to which an Ethernet interface is added, and the MAC address and the IP address are used for identification and communication.
  • FIG. 2 is a schematic diagram of a network connection mode between a BBU and an RRU according to an embodiment of the present invention; as shown in FIG. 2, in the embodiment of the present invention, a BBU and an access are configured through extension of a communication interface between a BBU and an RRU.
  • Any one of the RRUs of the Ethernet network performs baseband signal transmission; and/or, configures the RRU to transmit baseband signals with any one of the BBUs that access the Ethernet network; and configures communication between the BBU and the EPC, or other core network;
  • the primary BBU can communicate with the secondary BBU with the specified IP address.
  • Each BBU with an Ethernet interface can be interconnected with the EPC network through optical fiber or twisted pair cable, or connected to other core networks through optical fiber or twisted pair. It can be connected to the Ethernet through an IP address and an Ethernet interface.
  • Other BBUs transmit baseband signals, and can also transmit baseband signals through an IP address and any RRU with an Ethernet interface.
  • FIG. 3 is a schematic diagram of a point-to-point networking mode between a BBU and an RRU according to an embodiment of the present invention. As shown in FIG. 3, in a peer-to-peer networking mode, a selected one RRU and a selected one BBU are configured for baseband signal transmission. .
  • FIG. 4 is a schematic diagram of a star networking manner between a BBU and an RRU according to an embodiment of the present invention. As shown in FIG. 4, in the star networking mode, a selected one BBU and at least two selected RRUs are configured.
  • the baseband signal is transmitted for baseband signal transmission; that is, each BBU with an Ethernet interface can be interconnected by an IP address with at least two RRUs with an Ethernet interface, and the baseband signal is transmitted.
  • FIG. 5 is a schematic diagram of a chain networking manner between a BBU and an RRU according to an embodiment of the present invention. As shown in FIG. 5, in the chain networking mode, at least two RRUs and a selected one BBU are chained. Baseband signal transmission in series; RRU1 ⁇ RRU4 are chained in series, baseband signal passes The chain transmission of RRU1-RRU4 is ultimately transmitted by RRU1 to the selected BBU.
  • FIG. 6 is a schematic diagram of a ring network configuration between a BBU and an RRU according to an embodiment of the present invention. As shown in FIG. 6, in the ring network mode, at least two RRUs and a selected BBU are connected in a ring-connected baseband.
  • RRU1 ⁇ RRU4 are ring-connected, RRU4 is the RRU with the largest number of hops from the selected BBU, RRU1 is the RRU with the least number of hops from the selected BBU; RRU1 and RRU4 can be baseband with the selected BBU respectively.
  • the advantage of the ring networking mode is that RRU2 can pass RRU3 and RRU4 when a certain node such as RRU2 is disconnected or fails through the transmission link between RRU1 and the selected BBU.
  • the transmission of the baseband signal with the selected BBU ensures the effectiveness of the baseband signal transmission link.
  • the configuration relationship between the RRU and the BBU can be implemented by the base station management background.
  • the transmission process of the baseband signal between the BBU with the Ethernet interface and the RRU with the Ethernet interface added is further explained.
  • the baseband signal transmission process in other networking modes is similar to the following process.
  • the BBU1 of the base station 1 having the IP address B is interconnected with the RRU1 of the base station 1 having the IP address A.
  • the BBU1 of the base station 1 performs baseband processing on the signal from the EPC network or other core network according to the IEEE 802.3 protocol, and sends the processed baseband signal to the IP address through the Ethernet interface.
  • RRU1 receives the baseband signal through its own Ethernet interface, and performs a series of processing such as shaping filtering, peak clipping, digital pre-distortion, etc. on the received baseband signal, and then frequency-converted to an intermediate frequency, and then converted by an intermediate frequency.
  • a series of processing such as shaping filtering, peak clipping, digital pre-distortion, etc.
  • the RRU1 of the base station 1 receives the signal from the terminal, performs processing after frequency selective amplification, and then transforms to the intermediate frequency, and then converts the intermediate frequency to the baseband, and sends the baseband signal to the IP address through the Ethernet interface.
  • BBU1 of B the BBU1 receives the baseband signal through its own Ethernet interface, and performs further baseband processing on the received baseband signal according to the IEEE 802.3 protocol, or sends it to the EPC network or to the core network of other networks.
  • the current RRU may be directly connected to the BBU corresponding to the BBU.
  • the networking modes of the direct connection include: network networking, point-to-point networking, star networking, chain networking, and ring networking.
  • the primary BBU and the secondary BBU may be cascaded, and the cascading manner includes: a network cascading, a point-to-point cascading, a star cascading, a chain cascading, a ring cascading, and the like.
  • FIG. 7 is a network cascading manner between a primary BBU and a secondary BBU according to an embodiment of the present invention.
  • the primary BBU can be cascaded from the BBU by using any one of the IP addresses and the access to the Ethernet network.
  • the BBU communicates with the EPC network through the primary BBU.
  • FIG. 8 is a point-to-point cascading manner between a primary BBU and a secondary BBU according to an embodiment of the present invention, where the primary BBU is configured to be cascaded with a selected one of the secondary BBUs, and the selected one secondary BBU passes the primary BBU. Communicate with the EPC network.
  • FIG. 9 is a star-cascading manner between a primary BBU and a secondary BBU according to an embodiment of the present invention.
  • the primary BBU is configured to be cascaded with at least two selected secondary BBUs, and the selected at least two secondary BBUs are connected.
  • the master BBU communicates with the core network.
  • 10 is a chain cascading manner between a master BBU and a slave BBU according to an embodiment of the present invention, and configuring at least two cascades of the slave BBUs and the master BBUs as reference sources in a chained manner; the master BBU, The BBU1 to the BBU4 are chained in series, and each BBU baseband signal is chain-transferred, and finally sent to the core network EPC by the primary BBU as the reference source.
  • FIG. 11 is a schematic diagram of an annular cascading mode between a primary BBU and a secondary BBU according to an embodiment of the present invention. At least two of the remaining BBUs are ring-connected in series with the BBU as the reference source, and at least two slave hops from the BBU and the least hop from the primary BBU are configured.
  • the BBU communicates with the core network through the primary BBU. From BBU1 to BBU4, the slave BBU is connected in series.
  • the BBU4 is the slave BBU with the highest number of hops from the BBU, and the BBU1 is the megabyte.
  • the BBU has the least megabytes of ⁇ 3; one slave BBU; BBU2, BBU3 and BBU4. From BBU1 to the main BBU, the communication with the core network is realized.
  • the embodiment of the present invention further describes a networking device for a distributed base station, where the distributed base station includes an RRU and a BBU.
  • the device includes: an adding unit 21 , the access unit 22, the configuration unit 23, the transmission unit 24, the communication unit 25, and the selected unit 26;
  • the add-on unit 21 is configured to add at least one Ethernet interface to the RRU and the BBU.
  • the Ethernet interface may be specifically an Ethernet optical interface.
  • the configuration unit 22 is configured to configure an Internet Protocol IP address of the Ethernet network for the RRU and the BBU;
  • the access unit 23 is configured to enable the RRU and the BBU to access an Ethernet network through at least one Ethernet interface
  • the transmission unit 24 is configured to transmit a baseband signal between the BBU and the RRU based on the configured IP address and the added Ethernet interface.
  • the selecting unit 26 is configured to select a BBU as a reference source for communication with the core network between the BBUs;
  • the communication unit 25 is configured to communicate with the core network by using the BBU as a reference source with the BBU as a reference source as a reference.
  • the BBU as the reference source is called the primary BBU; the remaining BBU is called from the BBUo
  • the BBU can be completed by software control of the configuration unit 23 by the base station background system. And the configuration of the RRU's IP address, you can also manually configure the IP address to configure the BBU and RRU IP address.
  • the add-on unit 21, the access unit 22, the configuration unit 23, the transmission unit 24, the communication unit 25, and the selected unit 26 may each be a central processing unit (CPU) or a digital signal processor. (DSP, Digital Signal Processing), or Field-Programmable Gate Array (FPGA), etc.; the CPU, DSP, and FPGA are all built into a distributed base station.
  • CPU central processing unit
  • DSP Digital Signal Processing
  • FPGA Field-Programmable Gate Array
  • the networking of the BBU and the RRU provided in the embodiment of the present invention is as shown in FIG. 2 to FIG. 6 , and includes: a network networking, a point-to-point networking, a star networking, a chain networking, and a ring networking.
  • the configuration unit 23 configures the RRU to perform baseband signal transmission with any BBU that accesses the Ethernet network; and/or The configuration unit 23 configures the BBU to perform baseband signal transmission with any RRU accessing the Ethernet network; and configures the BBU to communicate with the EPC network or the core network of other networks; between the BBU and the RRU When the network is deployed in a point-to-point networking manner, the configuration unit 23 configures the selected one RRU and the selected one BBU to perform baseband signal transmission;
  • the configuration unit 23 configures the selected one BBU and the selected at least two RRUs to perform baseband signal transmission;
  • the configuration unit 23 configures at least two RRUs to perform chain-series baseband signal transmission with a selected one of the BBUs;
  • the configuration unit 23 configures at least two RRUs to transmit a baseband signal in a ring series with a selected one of the BBUs, and configure at least two RRUs in the ring series.
  • the selected one RRU with the largest number of BBU hops and the one RRU with the least number of hops from the selected one of the BBUs perform baseband signal transmission with the selected one of the BBUs.
  • the cascading mode between the primary BBU and the secondary BBU provided in the embodiment of the present invention is as shown in the figure. 7 to Figure 11, including: network cascading, point-to-point cascading, star cascading, chain cascading, ring cascading, etc.
  • the configuration unit 23 configures the primary BBU to be cascaded with any secondary BBU that accesses the Ethernet network;
  • the communication unit 25 makes the connection Said that the slave BBU communicates with the EPC network through the primary BBU;
  • the configuration unit 23 configures the primary BBU to be cascaded with the selected one from the BBU;
  • the communication unit 25 causes the selected one to be from the BBU Communicating with the EPC network through the primary BBU;
  • the configuration unit 23 configures the primary BBU to be cascaded with the selected at least two secondary BBUs; the communication unit 25 causes the selection At least two slave BBUs communicate with the EPC network through the primary BBU;
  • the configuration unit 23 configures at least two cascades from the BBU to the primary BBU in a chain connection; the communication unit 25 makes the At least two slave BBUs communicate with the EPC network through the primary BBU;
  • the configuration unit 23 configures at least two slave BBUs to be in series with the main BBU, and the communication unit causes at least two of the rings to be connected in series
  • One slave BBU with the largest number of hops from the BBU in the BBU and the least hop from the primary BBU communicates with the EPC network through the primary BBU.
  • the embodiment of the invention further provides a computer readable storage medium, the storage medium comprising a set of instructions, wherein the instructions are used to execute the networking method of the distributed base station.
  • the machine readable storage medium is configured to add at least one Ethernet interface to each of the radio remote unit RRU and the baseband processing unit BBU, and configure an internet protocol IP address of the Ethernet network for the RRU and the BBU;
  • the BBUs each access the Ethernet network through the respective at least one Ethernet interface;
  • the BBU and the RRU transmit a baseband signal based on the configured IP address and the added Ethernet interface;
  • the master BBU communicates with the core network EPC.
  • the BBU and the RRU may have a one-to-many correspondence, and may also be a many-to-many relationship. Therefore, when the baseband processing of the uplink and downlink data in the prior art must occur compared to the only BBU corresponding to the current RRU, when the baseband processing resources of the current BBU interconnected by the RRU are insufficient, the RRU can be compared with other The BBUs are interconnected, so that other BBUs perform baseband processing on the signals of the RRUs. In addition, the RRUs are simultaneously interconnected with multiple BBUs, and the uplink and downlink data of the RRUs are simultaneously processed by multiple BBUs. The technical solution can improve the baseband processing efficiency of the BBU.
  • the current RRU can be interconnected with multiple BBUs.
  • the current RRU can complete normal communication by interconnecting with other BBUs, thereby reducing communication failure. The probability.
  • the IEEE 802.3 Ethernet protocol supports a rate of 10 Mbps to 100 Gbps, which is almost 10 times higher than the maximum rate of the CPRI protocol (9.8304 Gbps).
  • the technical party of the embodiment of the present invention can configure a point-to-point networking, a star network, a network networking, a chain networking, In the ring networking mode, you can also switch between different networking modes to improve the flexibility of networking between the RRU and the BBU.
  • the BBU and the RRU of the embodiment of the present invention are interconnected by using an IEEE 802.3 Ethernet protocol, so that the BBU and the RRU are only compared with the cable that the existing RRU must be erected to the BBU. It is necessary to set up its own cable to the Ethernet network, which saves the cost required for networking.
  • the present invention can take the form of a hardware embodiment, a software embodiment, or a combination of software and hardware aspects.
  • the invention can take the form of a computer program product embodied on one or more computer usable storage media (including but not limited to disk storage and optical storage, etc.) in which computer usable program code is embodied.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Communication Control (AREA)

Abstract

本发明公开了一种分布式基站的组网方法,包括:为射频拉远单元RRU和基带处理单元BBU各增设至少一个以太网接口,并为所述RRU和所述BBU配置以太网网络的网际协议IP地址;所述RRU和所述BBU均通过各自的至少一个以太网接口接入以太网网络;所述BBU与所述RRU之间基于各自所配置的IP地址及所增设的以太网接口而传输基带信号。同时,本发明还公开了一种分布式基站的组网装置及计算机可读存储介质。

Description

一种分布式基站的组网方法及装置、 计算机可读存储介质 技术领域
本发明涉及组网技术, 具体涉及一种分布式基站的组网方法及装置、 计算机可读存储介质。 背景技术
分布式基站,是将传统的直放站划分为:基带处理单元( BBU, Base Band Unit )及射频拉远单元(RRU, Radio Remote Unit )。 其中, BBU负责完成 无线信号的基带处理部分; RRU负责完成基带信号的变频调制和信号放大; BBU与 RRU使用光纤进行直连,并通过通用公共无线接口( CPRI, Common Public Radio Interface )光接口进行通信。
在 CPRI光链路网络中,一个 BBU对应于至少一个 RRU,每一个 RRU 都有唯——个 BBU与之相直连。 RRU的上行链路中 , RRU通过 CPRI光接 口接收来自于该 RRU对应的 BBU的基带信号, 并对该基带信号进行成形 滤波、 削峰、 数字预失真等处理后变频到中频, 再到射频, 之后发射; RRU 的下行链路中, RRU将接收到的终端信号进行选频放大等一系列处理后, 再通过 CPRI光接口传给该 RRU所对应的唯——个 BBU。 由此可见, 每个 RRU均需将基带信号传输至该 RRU点对点连接时所对应的 BBU。 在点对 点的组网方式中, RRU与其所对应的 BBU之间的架设距离并不长, 大致在 200 米〜 40 千米之间, 但却耗费了不少的光纤成本、 人工成本; 可见, 在 BBU与 RRU进行级联组网、 环形组网、 链式组网时所需的光纤将会更长, 材料成本、 施工成本和维护成本等将会更高。 发明内容
为解决现有存在的技术问题, 本发明实施例提供一种分布式基站的组 网方法及装置、 计算机可读存储介质, 能够提高组网灵活性、 提高基带资 源处理效率及传输速率, 同时可节省成本。
为达到上述目的, 本发明实施例的技术方案是这样实现的:
本发明实施例提供了一种分布式基站的组网方法, 为射频拉远单元
RRU和基带处理单元 BBU各增设至少一个以太网接口, 并为所述 RRU和 所述 BBU配置以太网网络的网际协议 IP地址; 所述 RRU和所述 BBU均 通过各自的至少一个以太网接口接入以太网网络; 所述方法还包括:
所述 BBU与所述 RRU之间基于各自所配置的 IP地址及所增设的以太 网接口而传输基带信号。
上述方案中, 所述方法还包括:
选定一个 BBU作为 BBU与核心网通信的基准源;
以作为基准源的 BBU为基准, 其余 BBU通过所述作为基准源的 BBU 与所述核心网进行通信。
上述方案中, 所述方法包括:
在所述 BBU与所述 RRU之间以网式组网方式组网时,配置 RRU与接 入所述以太网网络的任一 BBU进行基带信号传输; 和 /或, 配置 BBU与接 入所述以太网网络的任一 RRU进行基带信号传输;
在所述 BBU与所述 RRU之间以点对点组网方式组网时, 配置选定的 一个 RRU与选定的一个 BBU进行基带信号传输;
在所述 BBU与所述 RRU之间以星形组网方式组网时, 配置选定的一 个 BBU与选定的至少两个 RRU进行基带信号传输;
在所述 BBU与所述 RRU之间以链式组网方式组网时, 配置至少两个 RRU与选定的一个 BBU进行链式串联的基带信号传输; 在所述 BBU与所述 RRU之间以环形组网方式组网时, 配置至少两个 RRU与选定的一个 BBU进行环形串联的基带信号传输,且配置环形串联的 至少两个 RRU中距所述选定的一个 BBU跳数最多的一个 RRU、 距所述选 定的一个 BBU
跳数最少的一个 BBU分别与所述选定的一个 BBU进行基带信号传输。
上述方案中, 所述 BBU与所述 RRU之间基于各自所配置的 IP地址及 所增设的以太网接口而传输基带信号, 包括:
在下行链路, 所述 BBU接收来自于核心网网络的信号, 对所述信号进 行基带处理, 通过以太网接口将处理后的基带信号发送至具有指定 IP地址 的所述 RRU,所述 RRU通过自身的以太网接口接收所述基带信号,并对接 收到的所述基带信号进行成形滤波、 削峰、 数字预失真处理后变频到中频, 再由中频变换到射频, 并将功率放大后的射频信号发送至天线;
在上行链路, 所述 RRU接收来自终端的信号, 经选频放大处理后变换 到中频, 再由中频变换到基带, 并通过所述以太网接口, 将基带信号发送 至具有指定 IP地址的 BBU, 所述 BBU通过自身的以太网接口接收基带信 号, 对接收到的信号做基带处理后, 发送至核心网。
上述方案中, 所述方法包括:
在所述作为基准源的 BBU与所述其余 BBU之间以网式方式级联时, 配置所述作为基准源的 BBU与接入所述以太网网络的任一所述其余 BBU 进行级联, 所述任一所述其余 BBU通过所述作为基准源的 BBU与所述核 心网进行通信;
在所述作为基准源的 BBU与所述其余 BBU之间以点对点方式级联时, 配置所述作为基准源的 BBU与选定的一个所述其余 BBU进行级联, 所述 选定的一个所述其余 BBU通过所述作为基准源的 BBU与所述核心网进行 通信; 在所述作为基准源的 BBU与所述其余 BBU之间以星形方式级联时, 配置所述作为基准源的 BBU与选定的至少两个所述其余 BBU进行级联, 所述选定的至少两个所述其余 BBU通过所述作为基准源的 BBU与所述核 心网进行通信;
在所述作为基准源的 BBU与所述其余 BBU之间以链式方式级联时, 配置至少两个所述其余 BBU与所述作为基准源的 BBU进行链式串联的级 联, 所述至少两个所述其余 BBU通过所述作为基准源的 BBU与核心网进 行通信;
在所述作为基准源的 BBU与所述其余 BBU之间以环形方式级联时, 配置至少两个所述其余 BBU与所述作为基准源的 BBU进行环形串联, 且 配置环形串联的至少两个所述其余 BBU中距所述作为基准源的 BBU跳数 最多的一个 BBU、 距所述作为基准源的 BBU跳数最少的一个 BBU分别通 过所述作为基准源的 BBU与核心网进行通信。
本发明实施例还提供了一种分布式基站的组网装置, 所述分布式基站 包括有射频拉远单元 RRU和基带处理单元 BBU;所述装置包括:增设单元、 配置单元、 接入单元及传输单元; 其中,
所述增设单元, 配置为为所述 RRU和所述 BBU各增设至少一个以太 网接口;
所述配置单元, 配置为为所述 RRU和所述 BBU配置以太网网络的网 际协议 IP地址;
所述接入单元, 配置为使所述 RRU和所述 BBU均通过各自的至少一 个以太网接口接入以太网网络;
所述传输单元, 配置为使所述 BBU与所述 RRU之间基于各自所配置 的 IP地址及所增设的以太网接口传输基带信号。
上述方案中, 所述装置还包括: 选定单元及通信单元; 其中, 所述选定单元, 配置为选定一个 BBU作为 BBU与核心网通信的基准 源;
所述通信单元, 配置为以作为基准源的 BBU为基准, 使其余 BBU通 过所述作为基准源的 BBU与所述核心网进行通信。
上述方案中, 所述配置单元还配置为:
在所述 BBU与所述 RRU之间以网式组网方式组网时, 所述配置单元 配置 RRU与接入所述以太网网络的任一 BBU进行基带信号传输; 和 /或, 所述配置单元配置 BBU与接入所述以太网网络的任一 RRU进行基带信号 传输;
在所述 BBU与所述 RRU之间以点对点组网方式组网时, 所述配置单 元配置选定的一个 RRU与选定的一个 BBU进行基带信号传输;
在所述 BBU与所述 RRU之间以星形组网方式组网时, 所述配置单元 配置选定的一个 BBU与选定的至少两个 RRU进行基带信号传输;
在所述 BBU与所述 RRU之间以链式组网方式组网时, 所述配置单元 配置至少两个 RRU与选定的一个 BBU进行链式串联的基带信号传输; 在所述 BBU与所述 RRU之间以环形组网方式组网时, 所述配置单元 配置至少两个 RRU与选定的一个 BBU进行环形串联的基带信号传输, 且 配置环形串联的至少两个 RRU中距所述选定的一个 BBU跳数最多的一个 RRU、 距所述选定的一个 BBU跳数最少的一个 BBU分别与所述选定的一 个 BBU进行基带信号传输。
上述方案中, 所述配置单元还配置为:
在所述作为基准源的 BBU与所述其余 BBU之间以网式方式级联时, 所述配置单元配置所述作为基准源的 BBU与接入所述以太网网络的任一所 述其余 BBU进行级联, 所述通信单元使所述任一所述其余 BBU通过所述 作为基准源的 BBU与所述核心网进行通信; 在所述作为基准源的 BBU与所述其余 BBU之间以点对点方式级联时, 所述配置单元配置所述作为基准源的 BBU与选定的一个所述其余 BBU进 行级联, 所述通信单元使所述选定的一个所述其余 BBU通过所述作为基准 源的 BBU与所述核心网进行通信;
在所述作为基准源的 BBU与所述其余 BBU之间以星形方式级联时, 所述配置单元配置所述作为基准源的 BBU 与选定的至少两个所述其余 BBU进行时钟级联,所述通信单元使所述选定的至少两个所述其余 BBU通 过所述作为基准源的 BBU与所述核心网进行通信;
在所述作为基准源的 BBU与所述其余 BBU之间以链式方式级联时, 所述配置单元配置至少两个所述其余 BBU与所述作为基准源的 BBU进行 链式串联的级联, 所述通信单元使所述至少两个所述其余 BBU通过所述作 为基准源的 BBU与核心网进行通信;
在所述作为基准源的 BBU与所述其余 BBU之间以环形方式级联时, 所述配置单元配置至少两个所述其余 BBU与所述作为基准源的 BBU进行 环形串联, 所述通信单元使所述环形串联的至少两个所述其余 BBU中距所 述作为基准源的 BBU跳数最多的一个 BBU、距所述作为基准源的跳数最少 的一个 BBU分别通过所述作为基准源的 BBU与核心网进行通信。
本发明实施例还提供了一种计算机可读存储介质, 所述存储介质包括 一组指令, 所述指令用于执行前述的分布式基站的组网方法。
本发明实施例提供的分布式基站的组网方法及装置, 为 RRU和 BBU 各增设至少一个以太网接口, 并为所述 RRU和所述 BBU配置以太网网络 的网际协议 IP地址; 所述 RRU和所述 BBU均通过各自的至少一个以太网 接口接入以太网网络; 所述 BBU与所述 RRU之间基于各自所配置的 IP地 址及所增设的以太网接口而传输基带信号。 利用本发明实施例的技术方案, 提高了 BBU基带资源的处理效率、 减少了基站无法正常通信的概率、 降低 了成本等。 附图说明
图 1为本发明实施例的分布式基站的组网方法的流程示意图; 图 2为本发明实施例的 BBU与 RRU之间的网式组网方式的示意图; 图 3为本发明实施例的 BBU与 RRU之间的点对点组网方式的示意图; 图 4为本发明实施例的 BBU与 RRU之间的星形组网方式的示意图; 图 5为本发明实施例的 BBU与 RRU之间的链式组网方式的示意图; 图 6为本发明实施例的 BBU与 RRU之间的环形组网方式的示意图; 图 7本发明实施例的 BBU与 BBU之间的网式级联方式的示意图; 图 8为本发明实施例的主 BBU与从 BBU之间的点对点级联方式的示 意图;
图 9为本发明实施例的主 BBU与从 BBU之间的星形级联方式的示意 图;
图 10为本发明实施例的主 BBU与从 BBU之间的链式级联方式的示意 图;
图 11为本发明实施例的主 BBU与从 BBU之间的环形级联方式的示意 图;
图 12为本发明实施例的分布式基站的组网装置的组成结构示意图。 具体实施方式
RRU与其所对应的唯——个 BBU在 CPRI光网络链路中 , 通过 CPRI 光接口进行基带信号的传输; 在基带信号的传输过程中, 存在有以下几个 问题:
1、 对上下行数据的基带处理必须发生与当前 RRU所对应的 BBU上, 当该 BBU点对点连接的 RRU的数量较多时,该 BBU的基带处理资源分配 受限, 导致基带信号处理效率低;
2、 对上下行数据的基带处理必须发生与当前 RRU所对应的 BBU上, 且当前 RRU只有唯——个 BBU与之对应, 当该 BBU、 或是该 BBU上的 基带处理单元发生故障时, 当前 RRU也将无法正常工作, 进而影响了正常 通信;
3、 RRU与其所对应的 BBU之间通过 CPRI光接口进行基带信号的传 输, 使用的 CPRI协议的最高速率为 9.8304Gbps, 鉴于 BBU与 RRU发展 的趋势, 该速率急需提升;
4、 RRU只能与之相对应的 BBU进行物理直连, 该物理连接关系确定 后, 不易进行更改, 进而使得 RRU与对应的 BBU之间的组网模式不够灵 活;
5、 RRU与 BBU只能点对点互联, 在 BBU与 RRU进行点对点组网、 网式组网、 星型组网时所需的光纤将会更长, 材料成本、 施工成本和维护 成本等将会更高。
本发明实施例中: 在保留 RRU和 BBU各自的 CPRI光接口的基础上, 分别为 RRU和 BBU上增设至少一个以太网接口,增设有以太网接口的 BBU 利用以太网的媒体接入控制地址(MAC, Media Access Control) )及网际协 议(IP, Internet Protocol )地址与增设有以太网接口的 RRU进行通信; 增 设有以太网接口的从 BBU通过增设有以太网接口的主 BBU与核心网进行 通信。 利用本发明实施例的技术方案, 组网方式灵活可实现点对点组网、 星型组网、 链式组网、 环形组网、 网式组网等; 针对不同的组网模式, 可 实现 BBU与 RRU之间一对多的关系, 也可实现 BBU与 RRU之间多对多 的关系, 如此, 便可緩解 BBU基带资源分配的有限性、 减少了分布式基站 无法正常通信的概率、 降低生产与维护成本等。
本发明实施例记载了一种分布式基站的组网方法, 如图 1 所示, 所述 方法包括:
步驟 11 : 为 RRU和 BBU各增设至少一个以太网接口;
这里, 所述以太网接口可以具体为以太网光接口。
步驟 12: 为所述 RRU和所述 BBU配置以太网网络的 IP地址; 步驟 13: 所述 RRU和所述 BBU均通过各自的至少一个以太网接口接 入以太网网络;
步驟 14:所述 BBU与所述 RRU之间基于各自所配置的 IP地址及所增 设的以太网接口而传输基带信号。
所述方法还包括: 选定一个 BBU作为 BBU与核心网通信基准源; 其 中, 所述核心网包括: 演进分组核心网 (EPC, Evolved Packet Core )0 以作 为基准源的 BBU为基准,其余 BBU通过所述作为基准源的 BBU与所述核 心网进行通信。
其中, 可将所述作为基准源的 BBU称之为主 BBU; 将所述其余 BBU 称之为从 BBU; 即所述从 BBU通过所述主 BBU与所述核心网进行通信; 具体的,所述主 BBU接收来自 EPC网络的信号,并将所接收的信号传输至 所述从 BBU; 所述主 BBU接收来自从 BBU的信号, 并将接收到的信号传 输至所述核心网。其中,主从 BBU之间的通信的具体实现过程为现有技术, 这里不再赘述。
其中, 增设有以太网接口的 BBU与增设有以太网接口的 RRU的传输 基带信号的过程在后续方案中介绍。
本发明实施例中, 对增设有以太网接口的 BBU及 RRU配置的 IP地址 可以通过手动配置与自动配置两种方式。 其中, 所述手动配置是在基站初 始开站时 , 由网络维护人员手动输入 IP地址到所述基站的 BBU和 RRU; 所述自动配置是通过基站后台管理***的应用软件而实现的。
电气和电子工程师十办会 ( IEEE, Institute of Electrical and Electronics Engineers ) 制定的 IEEE 802.3 协议是以太网通信技术的公用协议, 支持 10Mbps, 100Mbps, lGbps、 10Gbps、 40Gbps、 lOOGbps等以太网速率。 在 IEEE 802.3中, 对各以太网终端如增设有以太网接口的 BBU、 RRU均分配 有 MAC地址和 IP地址,并利用所述 MAC地址与 IP地址进行识别和通信。
图 2为本发明实施例的 BBU与 RRU之间的网式组网方式的示意图; 如图 2所示, 在本发明实施例中, 通过 BBU与 RRU的通信接口的扩展, 配置 BBU与接入以太网网络的任意一个 RRU进行基带信号的传输;和 /或, 配置 RRU与接入以太网网络的任意一个 BBU进行基带信号的传输; 以及 配置 BBU与 EPC、 或其他核心网之间进行通信; 主 BBU可与具有指定 IP 地址的从 BBU进行通信。 每个增设有以太网接口的 BBU可以通过光纤或 双绞线与 EPC网络互联、 或通过光纤或双绞线与其他核心网互联, 可以通 过 IP地址与增设有以太网接口的接入以太网的其他 BBU进行基带信号的 传输、 也可以通过 IP地址与增设有以太网接口的任意一个 RRU进行基带 信号的传输。
图 3为本发明实施例的 BBU与 RRU之间的点对点组网方式的示意图, 如图 3 所示, 在点对点组网方式中, 配置选定的一个 RRU与选定的一个 BBU进行基带信号传输。
图 4为本发明实施例的 BBU与 RRU之间的星形组网方式的示意图, 如图 4所示, 在星形组网方式中, 配置选定的一个 BBU与选定的至少两个 RRU传输基带信号进行基带信号的传输; 也就是说, 每个增设有以太网接 口的 BBU可以通过 IP地址与至少两个增设有以太网接口的 RRU实现互连, 并传输基带信号。
图 5为本发明实施例的 BBU与 RRU之间的链式组网方式的示意图, 如图 5所示, 在链式组网方式中, 配置至少两个 RRU与选定的一个 BBU 进行链式串联的基带信号传输; RRU1~RRU4 为链式串联, 基带信号经过 RRU1-RRU4的链式传输, 最终由 RRU1传输至所选定的 BBU。 图 6为本发明实施例的 BBU与 RRU之间的环形组网方式的示意图, 如图 6所示, 在环形组网方式中, 配置至少两个 RRU与选定的一个 BBU 进行环形串联的基带信号传输, 且配置环形串联的至少两个 RRU中距所述 选定的一个 BBU跳数最多的一个 RRU、 所述选定的一个 BBU跳数最少的 一个 BBU分别与所述选定的一个 BBU进行基带信号传输。 RRU1~RRU4 为环形串联, RRU4为距所选定的 BBU跳数最多的一个 RRU, RRU1为距 所选定的 BBU跳数最少的一个 RRU; RRU1、 RRU4可分别与所选定的 BBU 进行基带信号传输; 同时, RRU2、 RRU3均可通过 RRU1与所选定的 BBU 进行基带信号传输; RRU2、 RRU3也均可通过 RRU4与所选定的 BBU进 行基带信号传输。 与链式组网方式相比, 环形组网方式的优势在于, 在某 一个节点如 RRU2经 RRU1到所选定的 BBU之间的传输链路断链或者发生 故障时, RRU2可以通过 RRU3、 RRU4与所选定的 BBU之间进行基带信 号的传输, 保证了基带信号传输链路的有效性。
在上述对图 2〜图 6的不同组网方式介绍, 对 RRU与 BBU之间的配置 关系可由基站管理后台来实现。 现以图 2 的网式组网为例, 对增设有以太 网接口的 BBU与增设有以太网接口的 RRU之间的基带信号的传输过程做 进一步说明。 其他组网方式下的基带信号传输过程与以下过程类似。
在图 2所示的网式组网方式中,基站 1的 IP地址为 B的 BBU1与基站 1的 IP地址为 A的 RRU1进行互联。
具体的, 在下行链路上: 基站 1的 BBU1依据 IEEE 802.3协议, 对来 自于 EPC网络或其他核心网的信号进行基带处理, 并通过以太网接口将处 理后的基带信号发送至 IP地址为 A的 RRU1 , 所述 RRU1通过自身的以太 网接口接收所述基带信号, 并对接收到的所述基带信号进行成形滤波、 削 峰、 数字预失真等一系列处理后变频到中频, 再由中频变换到射频, 并将 功率放大后的射频信号发送至天线。
在上行链路上: 基站 1的 RRU1接收来自终端的信号, 经选频放大等 处理后变换到中频, 再由中频变换到基带, 并通过所述以太网接口, 将基 带信号发送至 IP地址为 B的 BBU1 , 所述 BBU1通过自身的以太网接口接 收基带信号, 并依据 IEEE 802.3协议对接收到的基带信号做进一步的基带 处理后, 或发送至 EPC网络、 或发送至其他网络的核心网。
此外, 本发明实施例中, 也可以将当前 RRU与其所对应的 BBU使用 光纤进行直连。 直连时的组网方式也包括: 网式组网、 点对点组网、 星形 组网、 链式组网、 环形组网等方式。
在本发明实施例中, 主 BBU与从 BBU可以进行级联, 所述级联方式 包括: 网式级联、 点对点级联、 星形级联、 链式级联、 环形级联等方式。
图 7本发明实施例的主 BBU与从 BBU之间的网式级联方式, 配置所 述主 BBU可通过 IP地址与接入于以太网网络的任意一个从 BBU进行级联, 所述任意一个从 BBU通过所述主 BBU与 EPC网络进行通信。
图 8为本发明实施例的主 BBU与从 BBU之间的点对点级联方式, 配 置所述主 BBU与选定的一个从 BBU进行级联,所述选定的一个从 BBU通 过所述主 BBU与 EPC网络进行通信。
图 9为本发明实施例的主 BBU和从 BBU之间的星形级联方式, 配置 主 BBU与选定的至少两个从 BBU进行级联, 所述选定的至少两个从 BBU 通过所述主 BBU与所述核心网进行通信。
图 10为本发明实施例的主 BBU和从 BBU之间的链式级联方式, 配置 至少两个所述从 BBU与所述作为基准源的主 BBU进行链式串联的级联; 主 BBU、从 BBU1〜从 BBU4为链式串联,各 BBU基带信号经过链式传输, 最终由所述作为基准源的主 BBU送给核心网 EPC。
图 11为本发明实施例的主 BBU和从 BBU之间的环形级联方式, 配置 至少两个所述其余 BBU与所述作为基准源的 BBU进行环形串联, 且配置 环形串联的至少两个从 BBU 中距主 BBU跳数最多的一个从 BBU、 距主 BBU跳数最少的一个从 BBU分别通过主 BBU 与核心网进行通信。 从 BBU1〜从 BBU4为环形串联的从 BBU, 从 BBU4为距主 BBU跳数最多的 一个从 BBU, 从 BBU1为 巨主 BBU 3兆数最少^;一个从 BBU; 从 BBU2、 从 BBU3通过从 BBU4、 从 BBU1再到主 BBU, 实现与核心网进行通信。
基于上述分布式基站的组网方法, 本发明实施例还记载了一种分布式 基站的组网装置, 分布式基站包括有 RRU和 BBU; 如图 12所示, 所述装 置包括: 增设单元 21、 接入单元 22、 配置单元 23、 传输单元 24、 通信单 元 25及选定单元 26; 其中,
所述增设单元 21 , 配置为为所述 RRU和所述 BBU各增设至少一个以 太网接口; 所述以太网接口可以具体为以太网光接口;
所述配置单元 22 , 配置为为所述 RRU和所述 BBU配置以太网网络的 网际协议 IP地址;
所述接入单元 23 , 配置为使所述 RRU和所述 BBU均通过各自的至少 一个以太网接口接入以太网网络;
所述传输单元 24, 配置为使所述 BBU与所述 RRU之间基于各自所配 置的 IP地址及所增设的以太网接口传输基带信号。
所述选定单元 26, 配置为选定一个 BBU作为 BBU之间的与核心网通 信的基准源;
所述通信单元 25 , 配置为以作为基准源的 BBU为基准, 使其余 BBU 通过作为基准源的 BBU与所述核心网进行通信。
这里, 将作为基准源的 BBU称之为主 BBU; 将所述其余 BBU称之为 从 BBUo
其中, 可通过基站后台***对所述配置单元 23软件操控来完成 BBU 及 RRU的 IP地址的配置、 也可以通过手动输入 IP地址来实现对 BBU及 RRU的 IP地址的配置。
在实际应用中, 所述增设单元 21、 接入单元 22、 配置单元 23、 传输单 元 24、通信单元 25、选定单元 26均可由中央处理器( CPU, Central Processing Unit ) 、 或数字信号处理器 ( DSP, Digital Signal Processing ) 、 或现场可编 程门阵列 (FPGA, Field-Programmable Gate Array)等来实现; 所述 CPU、 DSP及 FPGA均内置为分布式基站中。
本发明实施例中提供的 BBU与 RRU的组网方式如图 2〜图 6所示, 包 括: 网式组网、 点对点组网、 星形组网、 链式组网、 环形组网等方式。
具体的, 在所述 BBU与所述 RRU之间以网式组网方式组网时, 所述 配置单元 23配置 RRU与接入所述以太网网络的任一 BBU进行基带信号传 输; 和 /或, 所述配置单元 23配置 BBU与接入所述以太网网络的任一 RRU 进行基带信号传输;配置 BBU与 EPC网络、或其他网络的核心网进行通信; 在所述 BBU与所述 RRU之间以点对点组网方式组网时, 所述配置单 元 23配置选定的一个 RRU与选定的一个 BBU进行基带信号传输;
在所述 BBU与所述 RRU之间以星形组网方式组网时, 所述配置单元 23配置选定的一个 BBU与选定的至少两个 RRU进行基带信号传输;
在所述 BBU与所述 RRU之间以链式组网方式组网时, 所述配置单元 23配置至少两个 RRU与选定的一个 BBU进行链式串联的基带信号传输; 在所述 BBU与所述 RRU之间以环形组网方式组网时, 所述配置单元 23配置至少两个 RRU与选定的一个 BBU进行环形串联的基带信号传输, 且配置环形串联的至少两个 RRU中距所述选定的一个 BBU跳数最多的一 个 RRU、 距所述选定的一个 BBU跳数最少的一个 RRU分别与所述选定的 一个 BBU进行基带信号传输。
同时, 本发明实施例中提供的主 BBU与从 BBU之间的级联方式如图 7〜图 11所示, 包括: 网式级联、 点对点级联、 星形级联、 链式级联、 环形 级联等方式。
在所述主 BBU与从 BBU之间以网式方式级联时, 所述配置单元 23配 置主 BBU与接入所述以太网网络的任一从 BBU进行级联; 所述通信单元 25使得所述任一从 BBU通过所述主 BBU与 EPC网络进行通信;
在所述主 BBU与从 BBU之间以点对点方式级联时, 所述配置单元 23 配置主 BBU与选定的一个从 BBU进行级联; 所述通信单元 25使得所述选 定的一个从 BBU通过所述主 BBU与 EPC网络进行通信;
在所述主 BBU与从 BBU之间以星形方式级联时, 所述配置单元 23配 置所述主 BBU与选定的至少两个从 BBU进行级联; 所述通信单元 25使得 所述选定的至少两个从 BBU通过所述主 BBU与 EPC网络进行通信;
在所述主 BBU与从 BBU之间以链式方式级联时, 所述配置单元 23配 置至少两个从 BBU与所述主 BBU进行链式串联的级联; 所述通信单元 25 使得所述至少两个从 BBU通过所述主 BBU与 EPC网络进行通信;
在所述主 BBU与从 BBU之间以环形方式级联时, 所述配置单元 23配 置至少两个从 BBU与所述主 BBU进行环形串联, 且所述通信单元使得所 述环形串联的至少两个从 BBU中距所述主 BBU跳数最多的一个从 BBU、 距所述主 BBU跳数最少的一个从 BBU分别通过所述主 BBU与 EPC网络 进行通信。
本发明实施例的装置中, BBU与 RRU之间进行的基带传输过程、 主
BBU与从 BBU之间的基带传输过程请参见前述方法中的描述,这里不再赘 述。
本发明实施例还提供了一种计算机可读存储介质, 该存储介质包括一 组指令, 所述指令用于执行上述分布式基站的组网方法。
综上所述, 本发明实施例提供的分布式基站的组网方法、 装置、 计算 机可读存储介质, 为射频拉远单元 RRU和基带处理单元 BBU各增设至少 一个以太网接口, 并为所述 RRU和所述 BBU配置以太网网络的网际协议 IP地址; 所述 RRU和所述 BBU均通过各自的至少一个以太网接口接入以 太网网络; 所述 BBU与所述 RRU之间基于各自所配置的 IP地址及所增设 的以太网接口而传输基带信号;所述从 BBU经过所述主 BBU与核心网 EPC 进行通信。 利用本发明实施例的技术方案, 可带来以下五个有益效果: 第一,不同的组网方式中, BBU与 RRU之间可以为 1对多的对应关系, 还可以为多对多的关系; 如此, 与现有技术中对上下行数据的基带处理必 须发生与当前 RRU所对应的唯——个 BBU上相比, RRU所互联的当前 BBU的基带处理资源不足时,该 RRU可与其他 BBU进行互联,使其他 BBU 对该 RRU的信号进行基带处理; 此外, RRU同时与多个 BBU进行网式互 联, RRU的上下行数据同时由多个 BBU进行处理; 可见, 利用本发明实施 例的技术方案, 可提高 BBU的基带处理效率。
第二, 当前 RRU可以与多个 BBU相互互联, 如此, 在当前 BBU、 或 当前 BBU上的基带处理单元发生故障时, 当前 RRU可以通过互联于其他 BBU来完成正常通信, 进而减少了无法正常通信的概率。
第三, IEEE 802.3以太网协议支持 10Mbps~100Gbps的速率, 速率大, 几乎是 CPRI协议最高速率(9.8304Gbps ) 的 10倍以上。
第四, 本发明实施例的技术方除了支持 CPRI光网络链路的 RRU与 和 BBU物理连接确定情况下, 均可配置点对点组网、星型组网、 网式组网、 链式组网、 环形组网等方式, 也可进行不同组网方式之间的切换, 提高了 RRU与 BBU之间的组网方式的灵活性。
第五 , 本发明实施例的 BBU与 RRU通过 IEEE 802.3以太网协议进行 互联, 如此, 与现有 RRU必须架设到 BBU的线缆相比, BBU和 RRU只 需架设自身到以太网网络的线缆, 节省了组网时所需的成本等。 本领域内的技术人员应明白, 本发明的实施例可提供为方法、 ***、 或计算机程序产品。 因此, 本发明可采用硬件实施例、 软件实施例、 或结 合软件和硬件方面的实施例的形式。 而且, 本发明可采用在一个或多个其 中包含有计算机可用程序代码的计算机可用存储介质 (包括但不限于磁盘 存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(***)、 和计算机程序 产品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程 图和 /或方框图中的每一流程和 /或方框、以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现 在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功 能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理 设备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存 储器中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个 流程或多个流程和 /或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备 上, 使得在计算机或其他可编程设备上执行一系列操作步驟以产生计算机 实现的处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现 在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功 能的步驟。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。 凡按照本发明原理所作的修改, 都应当理解为落入本发明的保护
81
ε.εο6θ/ειοζΝ3/ΐ3<ι 6S£in/noz OAV

Claims

权利要求书
1、 一种分布式基站的组网方法, 为射频拉远单元 RRU和基带处理单 元 BBU各增设至少一个以太网接口,并为所述 RRU和所述 BBU配置以太 网网络的网际协议 IP地址; 所述 RRU和所述 BBU均通过各自的至少一个 以太网接口接入以太网网络; 所述方法还包括:
所述 BBU与所述 RRU之间基于各自所配置的 IP地址及所增设的以太 网接口而传输基带信号。
2、 根据权利要求 1所述的分布式基站的组网方法, 其中, 所述方法还 包括:
选定一个 BBU作为 BBU与核心网通信的基准源;
以作为基准源的 BBU为基准, 其余 BBU通过所述作为基准源的 BBU 与所述核心网进行通信。
3、 根据权利要求 1所述的分布式基站的组网方法, 其中, 所述方法包 括:
在所述 BBU与所述 RRU之间以网式组网方式组网时,配置 RRU与接 入所述以太网网络的任一 BBU进行基带信号传输; 和 /或, 配置 BBU与接 入所述以太网网络的任一 RRU进行基带信号传输;
在所述 BBU与所述 RRU之间以点对点组网方式组网时, 配置选定的 一个 RRU与选定的一个 BBU进行基带信号传输;
在所述 BBU与所述 RRU之间以星形组网方式组网时, 配置选定的一 个 BBU与选定的至少两个 RRU进行基带信号传输;
在所述 BBU与所述 RRU之间以链式组网方式组网时, 配置至少两个 RRU与选定的一个 BBU进行链式串联的基带信号传输;
在所述 BBU与所述 RRU之间以环形组网方式组网时, 配置至少两个 RRU与选定的一个 BBU进行环形串联的基带信号传输,且配置环形串联的 至少两个 RRU中距所述选定的一个 BBU跳数最多的一个 RRU、 距所述选 定的一个 BBU跳数最少的一个 BBU分别与所述选定的一个 BBU进行基带 信号传输。
4、 根据权利要求 3 所述的分布式基站的组网方法, 其中, 所述 BBU 与所述 RRU之间基于各自所配置的 IP地址及所增设的以太网接口而传输 基带信号, 包括:
在下行链路, 所述 BBU接收来自于核心网网络的信号, 对所述信号进 行基带处理, 通过以太网接口将处理后的基带信号发送至具有指定 IP地址 的所述 RRU,所述 RRU通过自身的以太网接口接收所述基带信号,并对接 收到的所述基带信号进行成形滤波、 削峰、 数字预失真处理后变频到中频, 再由中频变换到射频, 并将功率放大后的射频信号发送至天线;
在上行链路, 所述 RRU接收来自终端的信号, 经选频放大处理后变换 到中频, 再由中频变换到基带, 并通过所述以太网接口, 将基带信号发送 至具有指定 IP地址的 BBU, 所述 BBU通过自身的以太网接口接收基带信 号, 对接收到的信号做基带处理后, 发送至核心网。
5、 根据权利要求 2所述的分布式基站的组网方法, 其中, 所述方法包 括:
在所述作为基准源的 BBU与所述其余 BBU之间以网式方式级联时, 配置所述作为基准源的 BBU与接入所述以太网网络的任一所述其余 BBU 进行级联, 所述任一所述其余 BBU通过所述作为基准源的 BBU与所述核 心网进行通信;
在所述作为基准源的 BBU与所述其余 BBU之间以点对点方式级联时, 配置所述作为基准源的 BBU与选定的一个所述其余 BBU进行级联, 所述 选定的一个所述其余 BBU通过所述作为基准源的 BBU与所述核心网进行 通信;
在所述作为基准源的 BBU与所述其余 BBU之间以星形方式级联时, 配置所述作为基准源的 BBU与选定的至少两个所述其余 BBU进行级联, 所述选定的至少两个所述其余 BBU通过所述作为基准源的 BBU与所述核 心网进行通信;
在所述作为基准源的 BBU与所述其余 BBU之间以链式方式级联时, 配置至少两个所述其余 BBU与所述作为基准源的 BBU进行链式串联的级 联, 所述至少两个所述其余 BBU通过所述作为基准源的 BBU与核心网进 行通信;
在所述作为基准源的 BBU与所述其余 BBU之间以环形方式级联时, 配置至少两个所述其余 BBU与所述作为基准源的 BBU进行环形串联, 且 配置环形串联的至少两个所述其余 BBU中距所述作为基准源的 BBU跳数 最多的一个 BBU、 距所述作为基准源的 BBU跳数最少的一个 BBU分别通 过所述作为基准源的 BBU与核心网进行通信。
6、 一种分布式基站的组网装置, 所述分布式基站包括有射频拉远单元 RRU和基带处理单元 BBU; 所述装置包括: 增设单元、 配置单元、 接入单 元及传输单元; 其中,
所述增设单元, 配置为为所述 RRU和所述 BBU各增设至少一个以太 网接口;
所述配置单元, 配置为为所述 RRU和所述 BBU配置以太网网络的网 际协议 IP地址;
所述接入单元, 配置为使所述 RRU和所述 BBU均通过各自的至少一 个以太网接口接入以太网网络;
所述传输单元, 配置为使所述 BBU与所述 RRU之间基于各自所配置 的 IP地址及所增设的以太网接口传输基带信号。
7、 根据权利要求 6所述的分布式基站的组网装置, 其中, 所述装置还 包括: 选定单元及通信单元; 其中,
所述选定单元, 配置为选定一个 BBU作为 BBU与核心网通信的基准 源;
所述通信单元, 配置为以作为基准源的 BBU为基准, 使其余 BBU通 过所述作为基准源的 BBU与所述核心网进行通信。
8、 根据权利要求 6或 7所述的分布式基站的组网装置, 其中, 所述配 置单元还配置为:
在所述 BBU与所述 RRU之间以网式组网方式组网时, 所述配置单元 配置 RRU与接入所述以太网网络的任一 BBU进行基带信号传输; 和 /或, 所述配置单元配置 BBU与接入所述以太网网络的任一 RRU进行基带信号 传输;
在所述 BBU与所述 RRU之间以点对点组网方式组网时, 所述配置单 元配置选定的一个 RRU与选定的一个 BBU进行基带信号传输;
在所述 BBU与所述 RRU之间以星形组网方式组网时, 所述配置单元 配置选定的一个 BBU与选定的至少两个 RRU进行基带信号传输;
在所述 BBU与所述 RRU之间以链式组网方式组网时, 所述配置单元 配置至少两个 RRU与选定的一个 BBU进行链式串联的基带信号传输; 在所述 BBU与所述 RRU之间以环形组网方式组网时, 所述配置单元 配置至少两个 RRU与选定的一个 BBU进行环形串联的基带信号传输, 且 配置环形串联的至少两个 RRU中距所述选定的一个 BBU跳数最多的一个 RRU、 距所述选定的一个 BBU跳数最少的一个 BBU分别与所述选定的一 个 BBU进行基带信号传输。
9、 根据权利要求 7所述的分布式基站的组网装置, 其中, 所述配置单 元还配置为: 在所述作为基准源的 BBU与所述其余 BBU之间以网式方式级联时, 所述配置单元配置所述作为基准源的 BBU与接入所述以太网网络的任一所 述其余 BBU进行级联, 所述通信单元使所述任一所述其余 BBU通过所述 作为基准源的 BBU与所述核心网进行通信;
在所述作为基准源的 BBU与所述其余 BBU之间以点对点方式级联时, 所述配置单元配置所述作为基准源的 BBU与选定的一个所述其余 BBU进 行级联, 所述通信单元使所述选定的一个所述其余 BBU通过所述作为基准 源的 BBU与所述核心网进行通信;
在所述作为基准源的 BBU与所述其余 BBU之间以星形方式级联时, 所述配置单元配置所述作为基准源的 BBU 与选定的至少两个所述其余 BBU进行时钟级联,所述通信单元使所述选定的至少两个所述其余 BBU通 过所述作为基准源的 BBU与所述核心网进行通信;
在所述作为基准源的 BBU与所述其余 BBU之间以链式方式级联时, 所述配置单元配置至少两个所述其余 BBU与所述作为基准源的 BBU进行 链式串联的级联, 所述通信单元使所述至少两个所述其余 BBU通过所述作 为基准源的 BBU与核心网进行通信;
在所述作为基准源的 BBU与所述其余 BBU之间以环形方式级联时, 所述配置单元配置至少两个所述其余 BBU与所述作为基准源的 BBU进行 环形串联, 所述通信单元使所述环形串联的至少两个所述其余 BBU中距所 述作为基准源的 BBU跳数最多的一个 BBU、距所述作为基准源的跳数最少 的一个 BBU分别通过所述作为基准源的 BBU与核心网进行通信。
10、 一种计算机可读存储介质, 其特征在于, 所述存储介质包括一组 指令, 所述指令用于执行权利要求 1至 5任一项所述的分布式基站的组网 方法。
PCT/CN2013/090373 2013-08-22 2013-12-24 一种分布式基站的组网方法及装置、计算机可读存储介质 WO2014161359A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13881324.1A EP3038429A4 (en) 2013-08-22 2013-12-24 METHOD AND APPARATUS FOR DISTRIBUTED BASE STATION NETWORKING, AND COMPUTER-READABLE STORAGE MEDIUM
JP2016535305A JP6181875B2 (ja) 2013-08-22 2013-12-24 分散型基地局のネットワーキング方法及び装置、並びにコンピュータ可読記憶媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310370805.0A CN104427512A (zh) 2013-08-22 2013-08-22 一种分布式基站的组网方法及装置
CN201310370805.0 2013-08-22

Publications (1)

Publication Number Publication Date
WO2014161359A1 true WO2014161359A1 (zh) 2014-10-09

Family

ID=51657540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090373 WO2014161359A1 (zh) 2013-08-22 2013-12-24 一种分布式基站的组网方法及装置、计算机可读存储介质

Country Status (4)

Country Link
EP (1) EP3038429A4 (zh)
JP (1) JP6181875B2 (zh)
CN (1) CN104427512A (zh)
WO (1) WO2014161359A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559210A (zh) * 2015-09-29 2017-04-05 中兴通讯股份有限公司 一种数据中转方法、装置及通信***
CN112867133A (zh) * 2020-12-31 2021-05-28 京信网络***股份有限公司 时延调整量的获取方法和分布式基站

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107888713B (zh) * 2016-09-30 2021-10-01 中兴通讯股份有限公司 一种动态分配mac地址的方法、装置以及接入设备
US10743190B2 (en) 2017-02-27 2020-08-11 Mavenir Networks, Inc. System and method for network stranded remote radio installation
JP6557294B2 (ja) * 2017-07-10 2019-08-07 ソフトバンク株式会社 移動通信システム及びデータ処理装置
CN115021818B (zh) * 2022-04-22 2024-05-07 三维通信股份有限公司 基于分布式基站的以太网组网***及组网方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1845621A (zh) * 2006-02-22 2006-10-11 华为技术有限公司 连接主基站与射频拉远单元的接口装置
CN101232652A (zh) * 2007-01-22 2008-07-30 中兴通讯股份有限公司 一种基于数字中频传输的基站拉远***
CN102186265A (zh) * 2011-05-04 2011-09-14 京信通信***(中国)有限公司 分布式基站及其组网方法
CN202160286U (zh) * 2011-05-04 2012-03-07 京信通信***(中国)有限公司 分布式基站

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7129778B2 (en) * 2003-07-23 2006-10-31 Northrop Grumman Corporation Digital cross cancellation system
CN100493009C (zh) * 2003-10-29 2009-05-27 华为技术有限公司 防范网际协议以太网中假冒主机的方法
EP1810534B1 (en) * 2004-10-12 2015-06-17 Telefonaktiebolaget LM Ericsson (publ) Communication between a radio equipment control node and multiple remote radio equipment nodes
CN100426897C (zh) * 2005-01-12 2008-10-15 华为技术有限公司 分体式基站***及其组网方法和基带单元
CN101771900B (zh) * 2008-12-26 2012-12-19 中兴通讯股份有限公司 一种eNB的光交换装置及方法
EP2443908B1 (en) * 2009-06-19 2018-07-04 China Academy of Telecommunications Technology Remote radio data transmission over ethernet
KR101674209B1 (ko) * 2010-01-27 2016-11-08 삼성전자주식회사 디지털 장치와 rf 장치간에 이더넷 데이터를 송수신하는 방법 및 그 장치
JP2011171961A (ja) * 2010-02-18 2011-09-01 Nec Corp 移動体通信システムおよび無線装置制御装置の冗長化方法
KR101829517B1 (ko) * 2010-09-14 2018-02-14 달리 시스템즈 씨오. 엘티디. 원격으로 재구성가능한 분산 안테나 시스템 및 방법
EP2781116B1 (en) * 2011-11-14 2019-10-23 Alcatel Lucent Baseband signal processing cluster

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1845621A (zh) * 2006-02-22 2006-10-11 华为技术有限公司 连接主基站与射频拉远单元的接口装置
CN101232652A (zh) * 2007-01-22 2008-07-30 中兴通讯股份有限公司 一种基于数字中频传输的基站拉远***
CN102186265A (zh) * 2011-05-04 2011-09-14 京信通信***(中国)有限公司 分布式基站及其组网方法
CN202160286U (zh) * 2011-05-04 2012-03-07 京信通信***(中国)有限公司 分布式基站

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559210A (zh) * 2015-09-29 2017-04-05 中兴通讯股份有限公司 一种数据中转方法、装置及通信***
CN112867133A (zh) * 2020-12-31 2021-05-28 京信网络***股份有限公司 时延调整量的获取方法和分布式基站

Also Published As

Publication number Publication date
JP2016535957A (ja) 2016-11-17
EP3038429A1 (en) 2016-06-29
JP6181875B2 (ja) 2017-08-16
EP3038429A4 (en) 2016-07-20
CN104427512A (zh) 2015-03-18

Similar Documents

Publication Publication Date Title
US11743695B2 (en) Distributed multi-band wireless networking system
WO2014161359A1 (zh) 一种分布式基站的组网方法及装置、计算机可读存储介质
TWI771552B (zh) Bwp的跳頻配置方法及網路設備、終端
CN105392181B (zh) 一种智能设备的联网方法、装置及***
WO2022062323A1 (zh) 射频拉远单元及rru与bbu组网***
WO2010133152A1 (zh) 远端射频单元发现及拓扑结构建立***及方法
CN105392185B (zh) 一种智能设备的联网方法、装置及***
WO2015151423A1 (ja) 無線通信方法
WO2009065268A1 (fr) Unité en bande de base, unité radio fréquence et système bs distribué de protocole srio
CN104320345A (zh) Sdn网络中拓扑信息收集的方法及装置
JP2019509677A5 (zh)
CN105636022B (zh) 一种基于rssi的低功耗无源无线节点组网的方法
CN102238594B (zh) 管理分布式基站的方法和装置
CN106658368A (zh) 一种蓝牙组网方法和***
WO2018210114A1 (zh) 一种wifi网络及其组网方法和数据传输方法
CN111787431B (zh) 一种双模组网通讯技术集抄***及其实现方法
CN103686757A (zh) 多业务数字分布式接入***及其监控方法
KR101659481B1 (ko) 공유 매체 브릿징
CN204968114U (zh) 双模网络协调器、双模路由器和双模mesh组网***
WO2015058413A1 (zh) 一种数据配置方法及网络管理服务器
CN107396390B (zh) 一种通信方法、装置及***
CN103780326B (zh) 一种多节点语音数据的传输方法
CN105897305A (zh) 一种高可靠性联网控制的智能插座
CN104852982A (zh) 一种基于Keep-alive帧的WIA-PA网络手持设备与现场设备的直连方法
CN105519184A (zh) 能力协商的方法、无线设备控制器和无线设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016535305

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013881324

Country of ref document: EP