WO2014103735A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2014103735A1
WO2014103735A1 PCT/JP2013/083310 JP2013083310W WO2014103735A1 WO 2014103735 A1 WO2014103735 A1 WO 2014103735A1 JP 2013083310 W JP2013083310 W JP 2013083310W WO 2014103735 A1 WO2014103735 A1 WO 2014103735A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
circuit
resistor
semiconductor device
resistance value
Prior art date
Application number
PCT/JP2013/083310
Other languages
French (fr)
Japanese (ja)
Inventor
謙治 浅木
研一 越後谷
鉄也 新井
Original Assignee
ピーエスフォー ルクスコ エスエイアールエル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ピーエスフォー ルクスコ エスエイアールエル filed Critical ピーエスフォー ルクスコ エスエイアールエル
Publication of WO2014103735A1 publication Critical patent/WO2014103735A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1051Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
    • G11C7/1057Data output buffers, e.g. comprising level conversion circuits, circuits for adapting load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018557Coupling arrangements; Impedance matching circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018585Coupling arrangements; Interface arrangements using field effect transistors only programmable

Definitions

  • the present invention relates to a semiconductor device, and more particularly to a semiconductor device including an input / output circuit capable of adjusting the impedance of an output buffer.
  • a calibration circuit for adjusting the impedance of the output buffer may be provided in order to adjust the impedance of the output terminal (see Patent Document 1).
  • the output buffer has a pull-up output unit and a pull-down output unit, and these impedances are controlled based on the pull-up impedance code and the pull-down impedance code generated by the calibration circuit, respectively.
  • the calibration circuit has a replica buffer with substantially the same configuration as the output buffer of the input / output circuit.
  • the impedance of the replica buffer is adjusted by comparing the voltage of the calibration terminal with the reference voltage with an external resistor connected to the calibration terminal. Then, the adjustment contents of the replica buffer are reflected in the output buffer.
  • the impedance of the replica buffer and the output buffer is adjusted according to the external resistance connected to the calibration terminal.
  • the impedance of the adjusted output buffer may slightly deviate from the desired impedance due to this difference. They came up with the idea. It is more desirable to adjust the impedance of the output buffer after correcting such adjustment deviation based on the wiring structure.
  • a semiconductor device includes a data terminal, a calibration terminal, an output buffer, a first resistor connected to the output buffer at one end, the data terminal, and the first resistor.
  • a third wiring connecting the end and the comparison circuit, and a resistance value of the third resistance portion is larger than a resistance value of the first wiring and a resistance value of the second wiring. It is characterized by.
  • a semiconductor device includes an output buffer and a calibration circuit.
  • the calibration circuit includes a replica circuit and a comparator, adjusts the impedance of the replica circuit based on the output of the comparator, and reflects the adjustment result in the output buffer. Furthermore, the calibration circuit includes a second damping resistor and a correction resistor connected in series between the replica circuit and one input terminal of the comparator.
  • the impedance of the output buffer in the semiconductor device can be set more suitably.
  • FIG. 1 is a block diagram illustrating an overall configuration of a semiconductor device according to an embodiment of the present invention. It is a block diagram which shows the structure of an input / output circuit. It is a circuit diagram of a unit buffer. It is a circuit diagram of a calibration circuit. It is a circuit diagram of a pull-up circuit. It is a circuit diagram of a pull-down circuit. It is a circuit diagram which shows the connection relationship of a data terminal and an output circuit when the wiring resistance of the wiring which passes an electrostatic protection part is considered. It is a schematic diagram which shows the layout between a data terminal and an output circuit. It is the figure which showed typically the multilayer wiring structure which the semiconductor device by embodiment contains. It is a circuit diagram which shows the structure of the adjustment buffer in the conventional calibration circuit.
  • FIG. 3 is a circuit diagram (first configuration example) illustrating a connection relationship among a pull-up circuit, a correction resistor, an electrostatic protection unit, a comparator, and a calibration terminal in the calibration circuit of the present embodiment. It is a schematic diagram which shows the layout between the calibration terminal in the 1st structural example, a pull-up circuit, and a comparator.
  • FIG. 6 is a circuit diagram (second configuration example) showing a connection relationship among a pull-up circuit, a correction resistor, an electrostatic protection unit, a comparator, and a calibration terminal in the calibration circuit of the present embodiment. It is a schematic diagram which shows the layout between the data terminal and output circuit in a 2nd structural example.
  • FIG. 10 is a circuit diagram (third configuration example) illustrating a connection relationship among a pull-up circuit, a correction resistor, an electrostatic protection unit, a comparator, and a calibration terminal in the calibration circuit of the present embodiment.
  • FIG. 1 is a block diagram showing an overall configuration of a semiconductor device 10 according to a preferred embodiment of the present invention.
  • the semiconductor device 10 is a DRAM integrated on a single semiconductor chip, and is mounted on the external substrate 2.
  • the external substrate 2 is a wiring substrate such as a mother board and is provided with an external resistor Re.
  • One end of the external resistor Re is electrically connected to the calibration terminal ZQ of the semiconductor device 10. Details of the calibration circuit 100 will be described later.
  • the external resistor Re has a resistance value of 240 ⁇ , and the ground potential VSS is supplied to the other end of the external resistor Re.
  • the semiconductor device 10 has a memory cell array 11.
  • the memory cell array 11 includes a plurality of word lines WL and a plurality of bit lines BL, and memory cells MC are arranged at intersections thereof.
  • the word line WL is selected by the row decoder 12, and the bit line BL is selected by the column decoder 13.
  • a clock terminal 23 As external terminals of the semiconductor device 10, a clock terminal 23, a command address terminal 21, a chip select terminal 22, a data terminal 24, power supply terminals 25 and 26, and a calibration terminal ZQ are provided.
  • the clock terminal 23 is a terminal to which external clock signals CK and / CK are input.
  • a signal having “/” at the head of a signal name means an inverted signal of the corresponding signal or a low active signal. Therefore, external clock signal / CK is an inverted signal of external clock signal CK.
  • the external clock signals CK and / CK are both supplied to the clock input circuit 36.
  • the external clock signals CK and / CK supplied to the clock input circuit 36 are supplied to the clock generation circuit 54.
  • Clock generation circuit 54 generates internal clock signal ICLK based on external clock signals CK and / CK.
  • the internal clock signal ICLK is supplied to circuit blocks such as the address latch circuit 32, the command decode circuit 34, the calibration circuit 100, and the latch circuit 15, and defines the operation timing of these circuit blocks.
  • the command address signal CA is input to the command address terminal 21.
  • the command address signal constitutes a command signal CMD and an address signal ADD.
  • a chip select signal / CS is input to the chip select terminal 22.
  • These signals are supplied to a command address (CA) input circuit 31.
  • the address signal ADD is supplied to the address latch circuit 32, and the command signal CMD is supplied to the command decode circuit 34.
  • the address latch circuit 32 latches the address signal ADD in synchronization with the internal clock ICLK. Of the latched address signal ADD, the row address is supplied to the row decoder 12 and the column address is supplied to the column decoder 13. If the mode register set is entered, the address signal ADD is supplied to the mode register 14 as a mode setting signal.
  • the mode register 14 is set with a parameter indicating the operation mode of the semiconductor device 10.
  • FIG. 1 shows the drive capability setting signal DS among the parameters of the operation mode indicated by the mode register. Although details will be described later, the drive capability setting signal DS designates one or more unit buffers to be activated at the time of data output among the plurality of unit buffers in the input / output circuit 16.
  • the command decode circuit 34 generates various internal commands by holding, decoding and counting the command signal CMD in synchronization with the internal clock ICLK.
  • the internal commands include an active signal IACT, a column signal ICOL, a mode register set signal MRS, a calibration signal ZQCOM, and the like.
  • the active signal IACT is activated when the command signal CMD indicates row access (active command).
  • the address signal ADD latched by the address latch circuit 32 is supplied to the row decoder 12 as a row address. As a result, the word line WL specified by the row address is selected.
  • the column signal ICOL is activated when the command signal CMD indicates column access.
  • column access means read access when the command signal is a read command, and write access when the command signal is a write command.
  • the address signal ADD latched by the address latch circuit 32 is supplied to the column decoder 13 as a column address. As a result, the bit line BL specified by the column address is selected.
  • the mode register set signal MRS is activated when the command signal CMD indicates a mode register set command. Therefore, when the mode register set command is input, the semiconductor device 10 is entered into the mode register set. When the mode signal is input from the command address terminal 21 in synchronization therewith, the set value of the mode register 14 can be rewritten.
  • the calibration signal ZQCOM is activated when the command signal CMD indicates a calibration command.
  • the calibration command is issued not only when the semiconductor device 10 is initialized but also periodically during normal operation.
  • the calibration signal ZQCOM activates the calibration circuit 100.
  • the calibration circuit 100 performs a calibration operation in synchronization with the internal clock ICLK, and thereby adjusts the impedance of the output circuit 101 included in the input / output circuit 16. Details of the calibration circuit 100 and the output circuit 101 will be described later.
  • the power supply terminals 25 are supplied with power supply potentials VDD and VSS.
  • the power supply potentials VDD and VSS are supplied to the internal power supply generation circuit 39 via the power supply terminal 25.
  • the internal power supply generation circuit 39 generates various internal potentials VPP, VOD, VARY, and VPERI based on the power supply potentials VDD and VSS.
  • Internal potential VPP is mainly used in row decoder 12, internal potentials VOD and VARY are used in sense amplifiers in memory cell array 11, and internal potential VPERI is used in many other circuit blocks.
  • Power supply potentials VDDQ and VSSQ are supplied to the power supply terminal 26.
  • the power supply potentials VDDQ and VSSQ are supplied to the input / output circuit 16 and used as operation power for the output circuit 101 included in the input / output circuit 16.
  • the power supply potential VDDQ is the same as the power supply potential VDD
  • the power supply potential VSSQ is the same as the power supply potential VSS.
  • the power supply noise generated by the operation of the output circuit 101 is not propagated to other circuits. The route is separated. However, in the present invention, it is not essential to perform such power supply path separation.
  • FIG. 2 is a block diagram showing the configuration of the input / output circuit 16.
  • the input / output circuit 16 includes an output circuit 101, an input buffer 170, pre-stage circuits 141, 142, and 143, and an output control circuit 150.
  • the input / output circuit 16 further includes an electrostatic protection unit 160. Details of the electrostatic protection unit 160 will be described later.
  • the output circuit 101 includes three output units 110, 120, and 130. However, the number of output units of the present invention is not limited to three.
  • the output unit 110 includes four unit buffers (output buffers) 111 to 114 and damping resistors R11 and R12 connected in parallel with each other at 60 ⁇ , and the output unit 120 includes two unit buffers (output buffers) 121 and 122.
  • the output unit 130 includes one unit buffer (output buffer) 131 and a 120 ⁇ (r1) damping resistor R14 (first resistance unit, first damping resistor).
  • the damping resistors R11 to R14 for example, a high resistance wiring such as a diffusion layer, tungsten (W), or titanium nitride (TiN) can be used.
  • each of the unit buffers 111 to 114, 121, 122, and 131 can adjust the impedance (first impedance).
  • the impedance of each of the unit buffers 111 to 114, 121, 122, 131 is adjusted to 120 ⁇ .
  • the calibration operation can be simplified by collectively adjusting the impedances of a plurality of unit buffers with one calibration circuit.
  • each output unit 110 is adjusted to drive the data terminal 24 at 60 ⁇
  • the output unit 120 is adjusted to drive the data terminal 24 at 120 ⁇
  • the output unit 130 is adjusted to the data terminal 24. Is adjusted to drive at 240 ⁇ . That is, each output unit is designed to have an impedance substantially equal to a value obtained by dividing the resistance value of the external resistor Re by the number of unit buffers included in the output unit after adjusting the impedance of each unit buffer.
  • Each of the unit buffers 111 to 114, 121, 122, 131 is activated when the output unit 110, 120, 130 including the unit buffer is activated during the read operation, and the data terminal 24 is set to the high level. Drive to either low level.
  • Pre-stage circuits 141 to 143 are provided in front of the output units 110 to 130, respectively.
  • the pre-stage circuits 141 to 143 specify whether or not to activate the corresponding output unit, and adjust the impedance of the unit buffer included in the corresponding output unit.
  • activation signals 151P to 153P and activation signals 151N to 153N are supplied from the output control circuit 150 to the pre-stage circuits 141 to 143, and an impedance adjustment code DRZQ is supplied from the calibration circuit 100 in common. Is done.
  • the pre-stage circuits 141 to 143 indicate the corresponding output units according to the impedance adjustment code DRZQ. It designates which of a plurality of output transistors (described later) included in each of the unit buffers 111 to 114, 121, 122, 131 to be turned on. On / off of these output transistors is designated by activation signals 141P to 143P and activation signals 141N to 143N.
  • the output control circuit 150 designates the output units 110 to 130 to be activated among the plurality of output units 110 to 130, and designates the output logic level of the unit buffer to be activated.
  • the designation of the output unit to be activated is based on the drive capability setting signal DS supplied from the mode register 14.
  • the output control circuit 150 selects the output unit to be activated based on the drive capability setting signal DS, thereby changing the number of unit buffers for driving the data terminals.
  • the impedance (output impedance) of the output terminal changes.
  • the unit buffers 111 to 114, 121, 122, 131 are connected in parallel between the output control circuit 150 and the data terminal 24.
  • the output impedance decreases.
  • the output impedance increases.
  • FIG. 3 is a circuit diagram of the unit buffer 131.
  • the unit buffer 131 includes a plurality (five in this embodiment) of P-channel MOS transistors (output transistors, first transistors) connected in parallel between the power supply line (power supply potential VDDQ) and the node B.
  • the node B is connected to the data terminal 24 via the damping resistor R14 and the electrostatic protection unit 160.
  • a part composed of P channel MOS transistors 211 to 215 constitutes a pull-up circuit 18, and a part composed of N channel MOS transistors 221 to 225 constitutes a pull-down circuit 19.
  • Five activation signals 143P1 to 143P5 constituting the activation signal 143P are supplied to the gates of the output transistors 211 to 215, and five activation signals constituting the activation signal 143N are supplied to the gates of the output transistors 221 to 225.
  • Signals 143N1 to 143N5 are supplied.
  • the ten MOS transistors included in the unit buffer 131 are individually turned on / off by the ten activation signals 143P1 to 143P5 and the activation signals 143N1 to 143N5.
  • the pull-up circuit 18 and the pull-down circuit 19 are each designed to have a predetermined impedance (120 ⁇ in the embodiment) when conducting.
  • a predetermined impedance 120 ⁇ in the embodiment
  • the on-resistance of the output transistor varies depending on the manufacturing conditions and varies depending on the environmental temperature and the power supply voltage during operation. Therefore, a desired impedance is not always obtained. For this reason, in order to set the actual impedance to the target value, it is necessary to adjust the number of output transistors to be turned on. For this purpose, a parallel circuit including a plurality of output transistors is used.
  • the W / L ratio (gate width / gate length ratio) of the plurality of output transistors constituting the pull-up circuit 18 and the pull-down circuit 19 may be different from each other. It is particularly preferable to weight the power of 2. That is, when the W / L ratio of the output transistor 211 is “1WLp”, the W / L ratios of the output transistors 212 to 215 can be set to “2WLp”, “4WLp”, “8WLp”, and “16WLp”, respectively. Particularly preferred.
  • the W / L ratio of the output transistor 221 is “1WLn”
  • the W / L ratios of the output transistors 222 to 225 are set to “2WLn”, “4WLn”, “8WLn”, and “16WLn”, respectively. Is particularly preferred.
  • the other unit buffers 111 to 114, 121, and 122 are substantially the same as the unit buffer 131 shown in FIG. 3 except that the activation signals 141P and 142P and the operation signals 141N and 142N corresponding thereto are input. It has a circuit configuration.
  • FIG. 4 is a circuit diagram of the calibration circuit 100.
  • the calibration circuit 100 includes pull-up circuits (replica circuits) 310 and 320, a pull-down circuit 330, a counter 340 that controls operations of the pull-up circuits 310 and 320, and an operation of the pull-down circuit 330.
  • the calibration circuit 100 includes a damping resistor R21 (second resistor unit, second damping resistor) and a correction resistor 311 (third resistor) connected in series between the pull-up circuit 310 and the calibration terminal ZQ. Resistance portion, correction resistor) and electrostatic protection portion 312. Furthermore, the calibration circuit 100 includes a damping resistor R22 and a correction resistor 321 connected between the pull-up circuit 320 and the node A, and a damping resistor R23 and a correction connected between the pull-down circuit 330 and the node A. And a resistor 331. Node A is connected to one input terminal of comparator 370. Details of the correction resistor 311 and the electrostatic protection unit 312 will be described later.
  • FIG. 5 is a circuit diagram of the pull-up circuit 310.
  • the pull-up circuit 310 has substantially the same circuit configuration as the pull-up circuit 18 included in the unit buffers 111 to 114, 121, 122, 131. Specifically, the pull-up circuit 310 includes five P-channel MOS transistors 411 to 415 connected in parallel between the power supply line (power supply potential VDD) and the damping resistor R21.
  • adjustment buffer 50 second buffer
  • the transistors 411 to 415 included in the pull-up circuit 310 correspond to the output transistors 211 to 215 shown in FIG. 3, and have the same impedance. Therefore, similarly to the W / L ratios of the transistors 211 to 215, the W / L ratios of the transistors 411 to 415 are set to “1WLp”, “2WLp”, “4WLp”, “8WLp”, and “16WLp”, respectively. However, as long as the impedance is substantially the same, the transistors 411 to 415 included in the pull-up circuit 310 and the output transistors 211 to 215 shown in FIG. 3 do not have to have the same transistor size. You may use.
  • Impedance codes DRZQP1 to DRZQP5 are supplied from the counter 340 to the gates of the transistors 411 to 415, whereby the pull-up circuit 310 is controlled. Impedance codes DRZQP1 to DRZQP5 correspond to activation signals 141P1 to 141P5, respectively.
  • the pull-up circuit 320 also has the same circuit configuration as the pull-up circuit 310 shown in FIG. Impedance codes DRZQP1 to DRZQP5 are also supplied to the gates of the five transistors included in the pull-up circuit 320 side.
  • FIG. 6 is a circuit diagram of the pull-down circuit 330.
  • the pull-down circuit 330 has substantially the same circuit configuration as the pull-down circuit 19 included in the unit buffers 111 to 114, 121, 122, and 131.
  • the pull-down circuit 330 includes five N-channel MOS transistors 421 to 425 connected in parallel between the power supply line (power supply potential VSS) and the node A.
  • Transistors 421 to 425 included in the pull-down circuit 330 correspond to the transistors 221 to 225 shown in FIG. 3 and have the same impedance. This is the same as the pull-up circuit 310.
  • the damping resistor R21 corresponds to the damping resistor R14 of the output unit 130 shown in FIG. 2, and its resistance value is set to 120 ⁇ . This is because, in the present embodiment, the calibration circuit 100 is configured to correspond to the output unit composed of one unit buffer, that is, the output unit 130 of FIG.
  • the damping resistor R22 and the correction resistor 321 are resistors corresponding to the damping resistor R21 and the correction resistor 311, respectively.
  • the node C viewed from the pull-up circuit 310 and the node A viewed from the pull-up circuit 320 have substantially the same relationship.
  • the damping resistor R22 has substantially the same resistance value (120 ⁇ ) as the damping resistor R21
  • the correction resistor 321 has substantially the same resistance value (described later) as the correction resistor 311.
  • the damping resistor R23 and the correction resistor 331 are resistors corresponding to the damping resistor R22 and the correction resistor 321, respectively.
  • the pull-up circuit 320 viewed from the node A and the pull-down circuit 330 viewed from the node A have substantially the same relationship, and the pull-down circuit 330 can be adjusted more accurately.
  • the damping resistor R23 has substantially the same resistance value (120 ⁇ ) as the damping resistor R22
  • the correction resistor 331 has substantially the same resistance value as the correction resistor 321.
  • Impedance codes DRZQN1 to DRZQN5 are supplied from the counter 350 to the gates of the transistors 421 to 425, whereby the pull-down circuit 330 is controlled. Impedance codes DRZQN1 to DRZQN5 correspond to activation signals 161N1 to 161N5, respectively.
  • the pull-up circuits 310 and 320 all have substantially the same circuit configuration as the pull-up circuit 18 included in the unit buffers 111 to 114, 121, 122, and 131.
  • the pull-down circuit 19 included in the unit buffers 111 to 114, 121, 122, 131 has substantially the same circuit configuration.
  • the pull-up circuit 320 and the pull-down circuit 330 constitute a “replica buffer” having a circuit configuration substantially the same as that of the unit buffer 111.
  • “substantially the same” means that the transistors included in the replica buffer are regarded as the same even if they are shrunk.
  • the contact A that is the output terminal of the replica buffer is connected to the non-inverting input terminal (+) of the comparator 370.
  • the calibration control circuit 390 generates the operation signal ACT1 of the counter 340 and the operation signal ACT2 of the counter 350 in response to the calibration signal ZQCOM and the internal clock ICLK.
  • the comparator 360 compares the potential of the node C with the reference voltage ZQVREF, and outputs a comparison result signal COMP1 that takes either the high level or the low level based on the comparison result.
  • the comparator 370 compares the potential of the node A with the reference voltage ZQVREF, and outputs a comparison result signal COMP2 that takes either the high level or the low level based on the comparison result.
  • the counter 340 counts up or down its own count value according to the logic level of the output signal COMP1 of the comparator 360 in synchronization with the operation control signal ACT1.
  • the count value of the counter 340 is used as the impedance code DRZQP.
  • the counter 350 counts up or counts down its own count value in accordance with the logic level of the output signal COMP2 of the comparator 370 in synchronization with the operation control signal ACT2.
  • the count value of the counter 350 is used as the impedance code DRZQN.
  • the calibration circuit 100 sets the impedance of the pull-up circuit 310 and the impedance of the pull-down circuit 330 to 120 ⁇ so that the combined impedance of the pull-up circuit 310 and the damping resistor R21 matches the impedance of the external resistor Re. adjust. Then, using this adjustment result, the impedances of the pull-up circuit 18 and the pull-down circuit 19 of each unit buffer of the input / output circuit 16 are set to 120 ⁇ .
  • the conventional calibration circuit does not consider the influence of the wiring resistance of the wiring that passes through the electrostatic protection unit 160 of the input / output circuit 16 or the wiring that passes through the electrostatic protection unit 312 of the calibration circuit 100.
  • the impedance of each unit buffer after the calibration operation may be deviated from a desired value.
  • the correction resistor 311 is disposed between the damping resistor R21 and the node C of the calibration circuit 100.
  • FIG. 7 is a circuit diagram showing the connection relationship between the data terminal 24 and the output circuit 101 when the wiring resistance of the wiring passing through the electrostatic protection unit 160 is taken into consideration.
  • FIG. 7 is a diagram focusing on the connection between the output unit 130 and the data terminal 24.
  • An external terminal such as the data terminal 24 may be provided with an ESD (Electro-Static Discharge) element ESD1 (first ESD element) to protect the semiconductor circuit from electrostatic discharge.
  • ESD element is composed of, for example, a diode-connected MOS transistor. In order to protect the internal circuit from electrostatic discharge, it is necessary to quickly release the static electricity applied to the external terminal to the power line (VSS power line in FIG. 7). For this reason, a large MOS transistor is used for the ESD element.
  • FIG. 8 is a schematic diagram showing a layout between the data terminal 24 and the output circuit 101.
  • FIG. 9 is a diagram schematically showing a multilayer wiring structure included in the semiconductor device 10 of the present embodiment.
  • the diffusion layer DL and the gate wiring layer GL are formed on the surface of the substrate SS, and the first wiring layer L1 is sequentially disposed above the diffusion layer DL and the gate wiring layer GL.
  • the second wiring layer L2, the third wiring layer L3, and the fourth wiring layer L4 are stacked.
  • the first wiring layer is a wiring layer containing tungsten
  • the second to fourth wiring layers are wiring layers containing aluminum or copper, respectively.
  • Each layer is insulated from each other by interlayer insulating layers IL1 to IL4.
  • the upper surface of the uppermost fourth wiring layer L4 is covered with a protective interlayer insulating layer IL5.
  • a thin gate insulating film GI is formed between the gate wiring layer GL and the surface of the substrate SS.
  • the diffusion layer DL, the gate wiring layer GL, and the first wiring layer L1 are connected to each other only at a necessary place by a through-hole electrode TH0 that penetrates the interlayer insulating layer IL1.
  • the first wiring layer L1 and the second wiring layer L2 are connected to each other only where necessary by a through-hole electrode TH1 that penetrates the interlayer insulating layer IL2.
  • the second wiring layer L2 and the third wiring layer L3 are connected to each other only at a necessary place by a through-hole electrode TH2 penetrating the interlayer insulating layer IL3.
  • the third wiring layer L3 and the fourth wiring layer L4 are connected to each other only at a necessary place by a through-hole electrode TH3 penetrating the interlayer insulating layer IL4.
  • the ESD element ESD1 includes a diffusion layer DL formed as a source / drain in a substrate SS such as silicon and a gate electrode G formed on the substrate SS.
  • One of the source and drain of the ESD element 1 is connected to the data wiring DQL1 via the through-hole electrodes TH0 and TH1 and the first wiring layer L1 (not shown in FIG. 8).
  • the other of the source and drain of the ESD element ESD1 is connected to a power line (not shown) (VSS potential).
  • the data pad DQP is connected to the data wiring DQL1 through the through-hole electrodes TH3 and TH2 and the third wiring layer L3 (not shown in FIG. 8).
  • each of the data line DQL1 and the damping resistors R11 to R14 is connected to each other through the through-hole electrode TH1.
  • the other ends of the damping resistors R11 to R14 and the data wiring DQL2 are connected to each other through the corresponding through-hole electrode TH1.
  • the data line DQL1 includes a slit-like portion to be connected to the corresponding diffusion layer DL of the ESD element ESD1.
  • the data wiring DQL1 has a wiring resistance of about 1 ⁇ .
  • rm represents the impedance of the pull-up circuit 18
  • r1 represents the resistance value of the damping resistor R14.
  • rdESD indicates the resistance value of the data wiring DQL1, and specifically indicates the resistance value from the data terminal 24 to one end of the damping resistor R14. That is, in FIG. 8, rdESD indicates the resistance value from the data pad DQP to the through-hole electrode TH1 that connects one end of the damping resistor R14 and the data wiring DQL1.
  • FIG. 10 is a circuit diagram showing the configuration of the adjustment buffer 50 ′ in the conventional calibration circuit (no correction resistor).
  • the adjustment buffer 50 ′ corresponds to the adjustment buffer 50 shown in FIG.
  • the ESD element ESD2 second ESD element
  • the calibration wiring ZQL1 resistance value rzESD
  • re indicates the resistance value of the external resistor Re.
  • R1 represents the resistance value of the damping resistor R21, and this value is set to be equal to the damping resistor R14 of the output unit 130.
  • the impedance at which the unit buffer of the output unit 130 drives the data terminal 24 becomes re + rdEDS + rzEDS. That is, there is a possibility that the impedance at which the unit buffer of the output unit 130 drives the data terminal 24 deviates from the impedance of the external resistor Re. Similar problems occur in other unit buffers.
  • FIG. 11 is a circuit diagram (first configuration example) showing a connection relationship between the pull-up circuit 310 to which the correction resistor 311 is added and the calibration terminal ZQ in the present embodiment.
  • a correction resistor 311 is added between the damping resistor R21 and the connection point C. The correction resistor 311 cancels the influence of the wiring resistance of the data wiring DQL1 shown in FIGS. 7 and 8 and the wiring resistance of the calibration wiring ZQL1 shown in FIGS.
  • FIG. 12 is a schematic diagram showing a layout between the calibration terminal ZQ, the pull-up circuit 310, and the comparator 360 in the circuit diagram shown in FIG.
  • an ESD element formed with a MOS transistor structure.
  • ESD2 calibration wiring ZQL1 (second wiring), ZQL2 (third wiring) formed as the second wiring layer L2, correction resistor 311 and damping resistance R21 formed as the first wiring layer L1 And including.
  • the ESD element ESD2 includes a diffusion layer DL formed as a source / drain in a substrate SS such as silicon and a gate electrode G formed on the substrate SS.
  • One of the source and drain of the ESD element ESD2 is connected to the calibration wiring ZQL1 via the through-hole electrodes TH0 and TH1 and the first wiring layer L1 (not shown in FIG. 12).
  • the other of the source and drain of the ESD element ESD1 is connected to a power line (not shown) (VSS potential).
  • the calibration pad ZQP is connected to the calibration wiring ZQL1 through the through-hole electrodes TH3 and TH2 and the third wiring layer L3 (not shown in FIG. 12).
  • the calibration wiring ZQL1 includes a slit-like portion to be connected to the corresponding diffusion layer DL of the ESD element ESD2. For this reason, in the present embodiment, the calibration wiring ZQL1 has a wiring resistance of about 1 ⁇ .
  • a branch point where the calibration wiring ZQL1 branches to the calibration wiring ZQL2 toward the comparator 360 and the correction resistor 311 toward the pull-up circuit 310 corresponds to the node C in FIG.
  • the correction resistor 311 is connected to one end of the damping resistor R21 through the through-hole electrode TH1 at one end.
  • the resistance value rzESD of the wiring resistance of the calibration wiring ZQL1 shown in FIG. 11 corresponds to the resistance value from the calibration pad ZQP to the node C.
  • the resistance value rc of the correction resistor 311 is calculated by the following method.
  • rc rzESD + rdESD, but even if rc is a value in the vicinity thereof, a certain correction effect is obtained, and it is desirable that rc is less than 1.5 times rzESD + rdESD.
  • FIG. 13 is a circuit diagram (second configuration example) of the pull-up circuit 310 (adjustment buffer 50) to which a correction resistor is added in the present embodiment.
  • the data wiring DQL1 and the calibration wiring ZQL1 are both formed as the second wiring layer L2.
  • the data wiring DQL1 ′ and the calibration wiring ZQL1 are formed in different wiring layers.
  • FIG. 14 is a schematic diagram showing a layout between the data terminal 24 and the output circuit 101 in the second configuration example
  • FIG. 15 shows a calibration terminal ZQ, a pull-up circuit 310, and the like in the second configuration example.
  • 3 is a schematic diagram showing a layout with a comparator 360.
  • FIG. In FIGS. 14 and 15, the same components as those in FIGS. 8 and 12 are denoted by the same reference numerals, and redundant description is omitted.
  • the data wiring DQL1 ′ is formed as the third wiring layer L3.
  • the calibration wiring ZQL1 is formed as the second wiring layer L2 as in the first configuration example.
  • the correction resistor 311 ′ is formed as a series resistance of the two correction resistors 3111 and 3112.
  • the correction resistor 3112 first resistance component
  • the correction resistor 3111 second resistance component
  • the correction resistor 3111 is formed as the same wiring layer as the calibration wiring ZQL1, ie, the second wiring layer L2, and has the same resistance value (rc′2) as the calibration wiring ZQL1.
  • FIG. 16 is a circuit diagram showing a connection relationship between the data terminal 24 and the output circuit 101 when the power source parasitic resistance and the bonding resistance are taken into consideration.
  • the source of the MOS transistor is a power source parasitic resistance (resistance value rsd) of the power source line PSDL
  • the outside of the external terminal is a bonding resistance (resistance value of the package bonding wire BWD). rud) exists.
  • FIG. 17 is a circuit diagram (third configuration example) showing a connection relationship between the pull-up circuit 310 to which the correction resistor is added and the calibration terminal ZQ in the present embodiment.
  • the correction resistor 3113 of the third configuration example takes into account the power supply parasitic resistance of the power supply line PSDL and the bonding resistance of the bonding wire BWZ.
  • the power supply line PSZL of the pull-up circuit 310 also has a power supply parasitic resistance (resistance value rsr) and a bonding resistance (resistance value ur) due to the connection of the external resistance Re.
  • the resistance value rc2 of the correction resistor 3113 considering not only the resistances of the wirings DQL1 and ZQL1 but also the power source parasitic resistance and bonding resistance is calculated by the following method.
  • rsr + rm + r1 + rc2 rzESD + rur + (rsd + rm + r1 + rdESD + rud).
  • the semiconductor device 10 has been described above based on the embodiment.
  • a correction resistor into the adjustment buffer 50, the influence of the wiring resistance of the data wiring and the calibration wiring, the power source parasitic resistance, and the bonding resistance can be offset, and more accurate calibration can be performed.
  • Which of the wiring resistance, power supply parasitic resistance, and bonding resistance of the data wiring and calibration wiring is taken into consideration is arbitrary. For example, when the bonding resistance is sufficiently smaller than the wiring resistance and power supply parasitic resistance of the data wiring and calibration wiring, only the influence of the wiring resistance of the data wiring and calibration wiring and the power supply parasitic resistance may be considered.
  • the linearity in the IV characteristic of the adjustment buffer 50 increases.
  • the influence of the IV characteristics (non-linearity) of the transistor group included in the pull-up circuit 310 on the adjustment buffer 50 is reduced.
  • the correction resistance is about 1 ⁇ , and at most about 5 ⁇ . If the correction resistance is 5 ⁇ or less, it has been confirmed that the influence of the correction resistance on the IV characteristics of the adjustment buffer 50 hardly occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Dram (AREA)

Abstract

[Problem] To more precisely adjust impedance of an output terminal. [Solution] Impedance of an output buffer (unit buffer) included in an I/O circuit is adjusted on the basis of impedance of a pull-up circuit (replica circuit) included in a calibration circuit. In the calibration circuit, a pull-up circuit (310), a damping resistor (R21), a correction resistor (311), an electrostatic protection unit (312), and an external resistor (Re) are connected in series. The potential at the connection of the correction resistor (311) with the electrostatic protection unit (312) is compared with a reference potential by a comparator (360). The resistance value of the correction resistor (311) is determined on the basis of line resistances of lines which are respectively connected to a data terminal and a calibration terminal (ZQ).

Description

半導体装置Semiconductor device
 本発明は半導体装置に関し、特に、出力バッファのインピーダンスを調整可能な入出力回路を備えた半導体装置に関する。 The present invention relates to a semiconductor device, and more particularly to a semiconductor device including an input / output circuit capable of adjusting the impedance of an output buffer.
 DRAM(Dynamic Random Access Memory)などの半導体装置においては、出力端子のインピーダンスを調整するために、出力バッファのインピーダンスを調整するキャリブレーション回路が設けられていることがある(特許文献1参照)。出力バッファはプルアップ出力部とプルダウン出力部を有しており、これらのインピーダンスは、キャリブレーション回路によって生成されるプルアップインピーダンスコードおよびプルダウンインピーダンスコードに基づいてそれぞれ制御される。 In a semiconductor device such as a DRAM (Dynamic Random Access Memory), a calibration circuit for adjusting the impedance of the output buffer may be provided in order to adjust the impedance of the output terminal (see Patent Document 1). The output buffer has a pull-up output unit and a pull-down output unit, and these impedances are controlled based on the pull-up impedance code and the pull-down impedance code generated by the calibration circuit, respectively.
特開2000-183717号公報JP 2000-183717 A
 キャリブレーション回路は、入出力回路の出力バッファと実質同一構成のレプリカバッファを有する。まず、キャリブレーション端子に外部抵抗を接続した状態でキャリブレーション端子の電圧と基準電圧を比較し、レプリカバッファのインピーダンスを調整する。そして、レプリカバッファの調整内容を出力バッファに反映させる。 The calibration circuit has a replica buffer with substantially the same configuration as the output buffer of the input / output circuit. First, the impedance of the replica buffer is adjusted by comparing the voltage of the calibration terminal with the reference voltage with an external resistor connected to the calibration terminal. Then, the adjustment contents of the replica buffer are reflected in the output buffer.
 このようなキャリブレーション回路では、キャリブレーション端子に接続された外部抵抗に応じてレプリカバッファと出力バッファのインピーダンスを調整する。 In such a calibration circuit, the impedance of the replica buffer and the output buffer is adjusted according to the external resistance connected to the calibration terminal.
 しかし、キャリブレーション回路と入出力回路は、一部の配線構造が異なるため、この相違に起因して、調整後の出力バッファのインピーダンスが所望のインピーダンスから若干ずれてしまう恐れがあることに本発明者らは想到した。このような配線構造に基づく調整ずれを補正した上で出力バッファのインピーダンスを調整することがより望ましい。 However, since the calibration circuit and the input / output circuit are partially different in wiring structure, the impedance of the adjusted output buffer may slightly deviate from the desired impedance due to this difference. They came up with the idea. It is more desirable to adjust the impedance of the output buffer after correcting such adjustment deviation based on the wiring structure.
 本発明の一側面による半導体装置は、データ端子及びキャリブレーション端子と、出力バッファと、前記出力バッファに一端で接続された第1の抵抗部と、前記データ端子と前記第1の抵抗部の他端とを接続する第1の配線と、前記出力バッファと実質的に等しいインピーダンスを有するレプリカ回路と、比較回路と、前記レプリカ回路に一端で接続された第2の抵抗部と、前記第2の抵抗部の他端に一端で接続された第3の抵抗部と、前記第3の抵抗部の他端と前記キャリブレーション端子とを接続する第2の配線と、前記第3の抵抗部の他端と前記比較回路とを接続する第3の配線と、を備え、前記第3の抵抗部の抵抗値は、前記第1の配線の抵抗値及び前記第2の配線の抵抗値よりも大きいことを特徴とする。 A semiconductor device according to an aspect of the present invention includes a data terminal, a calibration terminal, an output buffer, a first resistor connected to the output buffer at one end, the data terminal, and the first resistor. A first wiring connecting the ends, a replica circuit having substantially the same impedance as the output buffer, a comparison circuit, a second resistor connected to the replica circuit at one end, and the second A third resistor connected at one end to the other end of the resistor, a second wiring connecting the other end of the third resistor and the calibration terminal, and the other of the third resistor A third wiring connecting the end and the comparison circuit, and a resistance value of the third resistance portion is larger than a resistance value of the first wiring and a resistance value of the second wiring. It is characterized by.
 本発明の他の一側面による半導体装置は、出力バッファと、キャリブレーション回路とを備える。前記キャリブレーション回路は、レプリカ回路とコンパレータを含み、前記コンパレータの出力に基づいて前記レプリカ回路のインピーダンスを調整してその調整結果を前記出力バッファに反映させる。更に、前記キャリブレーション回路が、前記レプリカ回路と前記コンパレータの一方の入力端子との間に直列に接続された第2ダンピング抵抗および補正抵抗を含むことを特徴とする。 A semiconductor device according to another aspect of the present invention includes an output buffer and a calibration circuit. The calibration circuit includes a replica circuit and a comparator, adjusts the impedance of the replica circuit based on the output of the comparator, and reflects the adjustment result in the output buffer. Furthermore, the calibration circuit includes a second damping resistor and a correction resistor connected in series between the replica circuit and one input terminal of the comparator.
 本発明によれば、半導体装置における出力バッファのインピーダンスをより好適に設定できる。 According to the present invention, the impedance of the output buffer in the semiconductor device can be set more suitably.
本発明の実施形態による半導体装置の全体構成を示すブロック図である。1 is a block diagram illustrating an overall configuration of a semiconductor device according to an embodiment of the present invention. 入出力回路の構成を示すブロック図である。It is a block diagram which shows the structure of an input / output circuit. 単位バッファの回路図である。It is a circuit diagram of a unit buffer. キャリブレーション回路の回路図である。It is a circuit diagram of a calibration circuit. プルアップ回路の回路図である。It is a circuit diagram of a pull-up circuit. プルダウン回路の回路図である。It is a circuit diagram of a pull-down circuit. 静電気保護部を通過する配線の配線抵抗を考慮したときのデータ端子と出力回路との接続関係を示す回路図である。It is a circuit diagram which shows the connection relationship of a data terminal and an output circuit when the wiring resistance of the wiring which passes an electrostatic protection part is considered. データ端子と出力回路との間のレイアウトを示す模式図である。It is a schematic diagram which shows the layout between a data terminal and an output circuit. 実施形態による半導体装置が含む多層配線構造を模式的に示した図である。It is the figure which showed typically the multilayer wiring structure which the semiconductor device by embodiment contains. 従来のキャリブレーション回路における調整バッファの構成を示す回路図である。It is a circuit diagram which shows the structure of the adjustment buffer in the conventional calibration circuit. 本実施形態のキャリブレーション回路における、プルアップ回路、補正抵抗、静電気保護部、コンパレータおよびキャリブレーション端子の接続関係を示す回路図(第1構成例)である。FIG. 3 is a circuit diagram (first configuration example) illustrating a connection relationship among a pull-up circuit, a correction resistor, an electrostatic protection unit, a comparator, and a calibration terminal in the calibration circuit of the present embodiment. 第1構成例におけるキャリブレーション端子とプルアップ回路及びコンパレータ間のレイアウトを示す模式図である。It is a schematic diagram which shows the layout between the calibration terminal in the 1st structural example, a pull-up circuit, and a comparator. 本実施形態のキャリブレーション回路における、プルアップ回路、補正抵抗、静電気保護部、コンパレータおよびキャリブレーション端子の接続関係を示す回路図(第2構成例)である。FIG. 6 is a circuit diagram (second configuration example) showing a connection relationship among a pull-up circuit, a correction resistor, an electrostatic protection unit, a comparator, and a calibration terminal in the calibration circuit of the present embodiment. 第2構成例におけるデータ端子と出力回路との間のレイアウトを示す模式図である。It is a schematic diagram which shows the layout between the data terminal and output circuit in a 2nd structural example. 第2構成例におけるキャリブレーション端子とプルアップ回路及びコンパレータ間のレイアウトを示す模式図である。It is a schematic diagram which shows the layout between the calibration terminal in the 2nd structural example, a pull-up circuit, and a comparator. 電源寄生抵抗およびボンディング抵抗を考慮したときのデータ端子と出力回路との接続関係を示す回路図である。It is a circuit diagram which shows the connection relation of the data terminal and output circuit when power supply parasitic resistance and bonding resistance are considered. 本実施形態のキャリブレーション回路における、プルアップ回路、補正抵抗、静電気保護部、コンパレータおよびキャリブレーション端子の接続関係を示す回路図(第3構成例)である。FIG. 10 is a circuit diagram (third configuration example) illustrating a connection relationship among a pull-up circuit, a correction resistor, an electrostatic protection unit, a comparator, and a calibration terminal in the calibration circuit of the present embodiment.
 以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 図1は、本発明の好ましい実施形態による半導体装置10の全体構成を示すブロック図である。 FIG. 1 is a block diagram showing an overall configuration of a semiconductor device 10 according to a preferred embodiment of the present invention.
 本実施形態による半導体装置10は単一の半導体チップに集積されたDRAMであり、外部基板2に実装されている。外部基板2は、マザーボード等の配線基板であり、外部抵抗Reが設けられている。外部抵抗Reの一端は半導体装置10のキャリブレーション端子ZQに電気的に接続される。キャリブレーション回路100の詳細については後述する。本実施形態においては、外部抵抗Reは240Ωの抵抗値を有し、また、外部抵抗Reの他端には接地電位VSSが供給される。 The semiconductor device 10 according to the present embodiment is a DRAM integrated on a single semiconductor chip, and is mounted on the external substrate 2. The external substrate 2 is a wiring substrate such as a mother board and is provided with an external resistor Re. One end of the external resistor Re is electrically connected to the calibration terminal ZQ of the semiconductor device 10. Details of the calibration circuit 100 will be described later. In the present embodiment, the external resistor Re has a resistance value of 240Ω, and the ground potential VSS is supplied to the other end of the external resistor Re.
 半導体装置10はメモリセルアレイ11を有する。メモリセルアレイ11は、複数のワード線WLと複数のビット線BLを備え、これらの交点にメモリセルMCが配置される。ワード線WLはロウデコーダ12により選択され、ビット線BLはカラムデコーダ13により選択される。また、半導体装置10の外部端子としてクロック端子23、コマンドアドレス端子21、チップセレクト端子22、データ端子24、電源端子25,26およびキャリブレーション端子ZQが設けられる。 The semiconductor device 10 has a memory cell array 11. The memory cell array 11 includes a plurality of word lines WL and a plurality of bit lines BL, and memory cells MC are arranged at intersections thereof. The word line WL is selected by the row decoder 12, and the bit line BL is selected by the column decoder 13. As external terminals of the semiconductor device 10, a clock terminal 23, a command address terminal 21, a chip select terminal 22, a data terminal 24, power supply terminals 25 and 26, and a calibration terminal ZQ are provided.
 クロック端子23は、外部クロック信号CK,/CKが入力される端子である。本明細書において、信号名の先頭に「/」が付されている信号は、対応する信号の反転信号又はローアクティブな信号であることを意味する。したがって、外部クロック信号/CKは、外部クロック信号CKの反転信号である。外部クロック信号CK,/CKは、いずれもクロック入力回路36に供給される。クロック入力回路36に供給された外部クロック信号CK,/CKは、クロック発生回路54に供給される。クロック発生回路54は、外部クロック信号CK,/CKに基づいて内部クロック信号ICLKを生成する。内部クロック信号ICLKは、アドレスラッチ回路32、コマンドデコード回路34、キャリブレーション回路100及びラッチ回路15などの回路ブロックに供給され、これら回路ブロックの動作タイミングを規定する。 The clock terminal 23 is a terminal to which external clock signals CK and / CK are input. In this specification, a signal having “/” at the head of a signal name means an inverted signal of the corresponding signal or a low active signal. Therefore, external clock signal / CK is an inverted signal of external clock signal CK. The external clock signals CK and / CK are both supplied to the clock input circuit 36. The external clock signals CK and / CK supplied to the clock input circuit 36 are supplied to the clock generation circuit 54. Clock generation circuit 54 generates internal clock signal ICLK based on external clock signals CK and / CK. The internal clock signal ICLK is supplied to circuit blocks such as the address latch circuit 32, the command decode circuit 34, the calibration circuit 100, and the latch circuit 15, and defines the operation timing of these circuit blocks.
 コマンドアドレス端子21には、コマンドアドレス信号CAが入力される。コマンドアドレス信号は、コマンド信号CMD及びアドレス信号ADDを構成する。チップセレクト端子22には、チップセレクト信号/CSが入力される。これらの信号はコマンドアドレス(CA)入力回路31に供給される。コマンドアドレス入力回路に供給されたこれらの信号のうち、アドレス信号ADDはアドレスラッチ回路32に供給され、コマンド信号CMDは、コマンドデコード回路34に供給される。 The command address signal CA is input to the command address terminal 21. The command address signal constitutes a command signal CMD and an address signal ADD. A chip select signal / CS is input to the chip select terminal 22. These signals are supplied to a command address (CA) input circuit 31. Of these signals supplied to the command address input circuit, the address signal ADD is supplied to the address latch circuit 32, and the command signal CMD is supplied to the command decode circuit 34.
 アドレスラッチ回路32は、内部クロックICLKに同期してアドレス信号ADDをラッチする。ラッチされたアドレス信号ADDのうち、ロウアドレスはロウデコーダ12に供給され、カラムアドレスはカラムデコーダ13に供給される。また、モードレジスタセットにエントリしている場合には、アドレス信号ADDはモード設定信号としてモードレジスタ14に供給される。モードレジスタ14は、半導体装置10の動作モードを示すパラメータを設定される。図1には、モードレジスタが示す動作モードのパラメータのうち、駆動能力設定信号DSが示されている。詳細は後述するが、駆動能力設定信号DSは、入出力回路16内の複数の単位バッファのうち、データ出力時に活性化させる1以上の単位バッファを指定する。 The address latch circuit 32 latches the address signal ADD in synchronization with the internal clock ICLK. Of the latched address signal ADD, the row address is supplied to the row decoder 12 and the column address is supplied to the column decoder 13. If the mode register set is entered, the address signal ADD is supplied to the mode register 14 as a mode setting signal. The mode register 14 is set with a parameter indicating the operation mode of the semiconductor device 10. FIG. 1 shows the drive capability setting signal DS among the parameters of the operation mode indicated by the mode register. Although details will be described later, the drive capability setting signal DS designates one or more unit buffers to be activated at the time of data output among the plurality of unit buffers in the input / output circuit 16.
 コマンドデコード回路34は、内部クロックICLKに同期して、コマンド信号CMDの保持、デコード及びカウントなどを行うことによって、各種内部コマンドを生成する。内部コマンドとしては、アクティブ信号IACT、カラム信号ICOL、モードレジスタセット信号MRS、キャリブレーション信号ZQCOMなどがある。 The command decode circuit 34 generates various internal commands by holding, decoding and counting the command signal CMD in synchronization with the internal clock ICLK. The internal commands include an active signal IACT, a column signal ICOL, a mode register set signal MRS, a calibration signal ZQCOM, and the like.
 アクティブ信号IACTは、コマンド信号CMDがロウアクセス(アクティブコマンド)を示している場合に活性化される。アクティブ信号IACTが活性化すると、アドレスラッチ回路32にラッチされたアドレス信号ADDがロウアドレスとしてロウデコーダ12に供給される。これにより、ロウアドレスにより指定されるワード線WLが選択される。 The active signal IACT is activated when the command signal CMD indicates row access (active command). When the active signal IACT is activated, the address signal ADD latched by the address latch circuit 32 is supplied to the row decoder 12 as a row address. As a result, the word line WL specified by the row address is selected.
 カラム信号ICOLは、コマンド信号CMDがカラムアクセスを示している場合に活性化される。ここで、カラムアクセスとは、コマンド信号がリードコマンドの場合リードアクセスを、コマンド信号がライトコマンドの場合ライトアクセスをそれぞれ意味する。内部カラム信号ICOLが活性化すると、アドレスラッチ回路32にラッチされたアドレス信号ADDがカラムアドレスとしてカラムデコーダ13に供給される。これにより、カラムアドレスにより指定されるビット線BLが選択される。 The column signal ICOL is activated when the command signal CMD indicates column access. Here, column access means read access when the command signal is a read command, and write access when the command signal is a write command. When the internal column signal ICOL is activated, the address signal ADD latched by the address latch circuit 32 is supplied to the column decoder 13 as a column address. As a result, the bit line BL specified by the column address is selected.
 したがって、アクティブコマンド及びリードコマンドをこの順に入力するとともに、これらに同期してロウアドレス及びカラムアドレスを入力すれば、これらロウアドレス及びカラムアドレスによって指定されるメモリセルMCからリードデータが読み出される。リードデータDQは、ラッチ回路15及び入出力回路16を介して、データ端子24から出力される。一方、アクティブコマンドおよびライトコマンドをこの順に入力するとともに、これらに同期してロウアドレスおよびカラムアドレスを入力し、その後、データ端子24にライトデータDQを入力すれば、ライトデータDQは入出力回路16とラッチ回路15を介してメモリセルアレイ11に供給され、ロウアドレス及びカラムアドレスによって指定されるメモリセルMCに書き込まれる。ラッチ回路15は、内部クロック信号ICLKに同期してメモリセルアレイ11と入出力回路16との間のデータ転送を実行する。 Therefore, when an active command and a read command are input in this order, and a row address and a column address are input in synchronization therewith, read data is read from the memory cell MC specified by the row address and the column address. The read data DQ is output from the data terminal 24 via the latch circuit 15 and the input / output circuit 16. On the other hand, when an active command and a write command are input in this order, a row address and a column address are input in synchronization therewith, and then write data DQ is input to the data terminal 24, the write data DQ is input to the input / output circuit 16 Are supplied to the memory cell array 11 via the latch circuit 15 and written in the memory cells MC specified by the row address and the column address. The latch circuit 15 executes data transfer between the memory cell array 11 and the input / output circuit 16 in synchronization with the internal clock signal ICLK.
 モードレジスタセット信号MRSは、コマンド信号CMDがモードレジスタセットコマンドを示している場合に活性化される。したがって、モードレジスタセットコマンドを入力すると半導体装置10はモードレジスタセットにエントリされ、これに同期してコマンドアドレス端子21からモード信号を入力すれば、モードレジスタ14の設定値を書き換えることができる。 The mode register set signal MRS is activated when the command signal CMD indicates a mode register set command. Therefore, when the mode register set command is input, the semiconductor device 10 is entered into the mode register set. When the mode signal is input from the command address terminal 21 in synchronization therewith, the set value of the mode register 14 can be rewritten.
 キャリブレーション信号ZQCOMは、コマンド信号CMDがキャリブレーションコマンドを示している場合に活性化される。キャリブレーションコマンドは、半導体装置10の初期化時に発行される他、通常動作時においても定期的に発行される。キャリブレーション信号ZQCOMは、キャリブレーション回路100を活性化させる。キャリブレーション回路100は、キャリブレーション信号ZQCOMに応答し、内部クロックICLKに同期してキャリブレーション動作を実行し、これにより入出力回路16に含まれる出力回路101のインピーダンスを調整する。キャリブレーション回路100及び出力回路101の詳細については後述する。 The calibration signal ZQCOM is activated when the command signal CMD indicates a calibration command. The calibration command is issued not only when the semiconductor device 10 is initialized but also periodically during normal operation. The calibration signal ZQCOM activates the calibration circuit 100. In response to the calibration signal ZQCOM, the calibration circuit 100 performs a calibration operation in synchronization with the internal clock ICLK, and thereby adjusts the impedance of the output circuit 101 included in the input / output circuit 16. Details of the calibration circuit 100 and the output circuit 101 will be described later.
 電源端子25には、電源電位VDD,VSSが供給される。電源電位VDD,VSSは電源端子25を介して内部電源発生回路39に供給される。内部電源発生回路39は、電源電位VDD,VSSに基づいて各種の内部電位VPP,VOD,VARY,VPERIを発生させる。内部電位VPPは主にロウデコーダ12において使用され、内部電位VOD,VARYはメモリセルアレイ11内のセンスアンプにおいて使用され、内部電位VPERIは他の多くの回路ブロックにおいて使用される。 The power supply terminals 25 are supplied with power supply potentials VDD and VSS. The power supply potentials VDD and VSS are supplied to the internal power supply generation circuit 39 via the power supply terminal 25. The internal power supply generation circuit 39 generates various internal potentials VPP, VOD, VARY, and VPERI based on the power supply potentials VDD and VSS. Internal potential VPP is mainly used in row decoder 12, internal potentials VOD and VARY are used in sense amplifiers in memory cell array 11, and internal potential VPERI is used in many other circuit blocks.
 電源端子26には、電源電位VDDQ,VSSQが供給される。電源電位VDDQ,VSSQは入出力回路16に供給され、入出力回路16に含まれる出力回路101の動作電源として使用される。電源電位VDDQの電位は電源電位VDDと同じであり、電源電位VSSQの電位は電源電位VSSと同じであるが、出力回路101の動作にともなって発生する電源ノイズが他の回路に伝搬しないよう電源経路が分離されている。ただし、本発明においてこのような電源経路の分離を行うことは必須でない。 Power supply potentials VDDQ and VSSQ are supplied to the power supply terminal 26. The power supply potentials VDDQ and VSSQ are supplied to the input / output circuit 16 and used as operation power for the output circuit 101 included in the input / output circuit 16. The power supply potential VDDQ is the same as the power supply potential VDD, and the power supply potential VSSQ is the same as the power supply potential VSS. However, the power supply noise generated by the operation of the output circuit 101 is not propagated to other circuits. The route is separated. However, in the present invention, it is not essential to perform such power supply path separation.
 図2は、入出力回路16の構成を示すブロック図である。 FIG. 2 is a block diagram showing the configuration of the input / output circuit 16.
 図2に示すように、入出力回路16は、出力回路101、入力バッファ170、前段回路141,142,143、出力制御回路150を備える。入出力回路16は、更に、静電気保護部160を備える。静電気保護部160についての詳細は後述する。 As shown in FIG. 2, the input / output circuit 16 includes an output circuit 101, an input buffer 170, pre-stage circuits 141, 142, and 143, and an output control circuit 150. The input / output circuit 16 further includes an electrostatic protection unit 160. Details of the electrostatic protection unit 160 will be described later.
 出力回路101は、出力ユニット110、120、130の3つの出力ユニットを含む。ただし、本発明の出力ユニットの個数は、3つに限定されるものではない。 The output circuit 101 includes three output units 110, 120, and 130. However, the number of output units of the present invention is not limited to three.
 出力ユニット110は、4つの単位バッファ(出力バッファ)111~114とそれぞれ60Ωで互いに並列に接続されたダンピング抵抗R11、R12とを、出力ユニット120は、2つの単位バッファ(出力バッファ)121,122と60Ωのダンピング抵抗R13とを、出力ユニット130は、1つの単位バッファ(出力バッファ)131と120Ω(r1)のダンピング抵抗R14(第1の抵抗部、第1ダンピング抵抗)とを、それぞれ含む。ここで、ダンピング抵抗R11~R14としては、例えば拡散層、タングステン(W)、窒化チタン(TiN)などの高抵抗配線を用いることができる。ただし、本発明の出力ユニット中の単位バッファの個数及びダンピング抵抗の個数並びに抵抗値は、図2に示す構成に限定されるものではない。単位バッファ111~114、121、122、131のそれぞれは、インピーダンス(第1のインピーダンス)を調整可能である。本実施形態においては、単位バッファ111~114、121、122、131それぞれのインピーダンスが120Ωに調整される。このような構成とすることで、1つのキャリブレーション回路で複数の単位バッファのインピーダンスを一括して調整し、キャリブレーション動作を簡略化できる。 The output unit 110 includes four unit buffers (output buffers) 111 to 114 and damping resistors R11 and R12 connected in parallel with each other at 60Ω, and the output unit 120 includes two unit buffers (output buffers) 121 and 122. The output unit 130 includes one unit buffer (output buffer) 131 and a 120Ω (r1) damping resistor R14 (first resistance unit, first damping resistor). Here, as the damping resistors R11 to R14, for example, a high resistance wiring such as a diffusion layer, tungsten (W), or titanium nitride (TiN) can be used. However, the number of unit buffers, the number of damping resistors, and the resistance value in the output unit of the present invention are not limited to the configuration shown in FIG. Each of the unit buffers 111 to 114, 121, 122, and 131 can adjust the impedance (first impedance). In the present embodiment, the impedance of each of the unit buffers 111 to 114, 121, 122, 131 is adjusted to 120Ω. With such a configuration, the calibration operation can be simplified by collectively adjusting the impedances of a plurality of unit buffers with one calibration circuit.
 また、出力ユニット毎に見ると、出力ユニット110はデータ端子24を60Ωで駆動するように調整され、出力ユニット120はデータ端子24を120Ωで駆動するように調整され、出力ユニット130はデータ端子24を240Ωで駆動するように調整される。即ち、各出力ユニットは、各単位バッファのインピーダンスの調整後に、外部抵抗Reの抵抗値を自身が含む単位バッファの数で除した値に実質的に等しいインピーダンスとなるように設計されている。 Further, when viewed for each output unit, the output unit 110 is adjusted to drive the data terminal 24 at 60Ω, the output unit 120 is adjusted to drive the data terminal 24 at 120Ω, and the output unit 130 is adjusted to the data terminal 24. Is adjusted to drive at 240Ω. That is, each output unit is designed to have an impedance substantially equal to a value obtained by dividing the resistance value of the external resistor Re by the number of unit buffers included in the output unit after adjusting the impedance of each unit buffer.
 また、各単位バッファ111~114、121、122、131は、リード動作時において、自身が含まれる出力ユニット110,120,130が活性化されるときに活性化され、データ端子24をハイレベルまたはローレベルのいずれかに駆動する。 Each of the unit buffers 111 to 114, 121, 122, 131 is activated when the output unit 110, 120, 130 including the unit buffer is activated during the read operation, and the data terminal 24 is set to the high level. Drive to either low level.
 出力ユニット110~130の前段には、それぞれ前段回路141~143が設けられている。前段回路141~143は、対応する出力ユニットを活性化させるか否かを指定し、対応する出力ユニットに含まれる単位バッファのインピーダンスを調整する。図2に示すように、前段回路141~143には、出力制御回路150から活性化信号151P~153Pと活性化信号151N~153Nが供給され、キャリブレーション回路100からインピーダンス調整コードDRZQが共通に供給される。つまり、前段回路141~143は、活性化信号151P~153Pまたは活性化信号151N~153Nによって、対応する出力ユニットの活性化を指示されると、インピーダンス調整コードDRZQに応じて、対応する出力ユニットの中の単位バッファ111~114、121、122、131のそれぞれに含まれる複数の出力トランジスタ(後述)のいずれをオンさせるかを指定する。これら出力トランジスタのオン/オフは、活性化信号141P~143P及び活性化信号141N~143Nによって指定される。 Pre-stage circuits 141 to 143 are provided in front of the output units 110 to 130, respectively. The pre-stage circuits 141 to 143 specify whether or not to activate the corresponding output unit, and adjust the impedance of the unit buffer included in the corresponding output unit. As shown in FIG. 2, activation signals 151P to 153P and activation signals 151N to 153N are supplied from the output control circuit 150 to the pre-stage circuits 141 to 143, and an impedance adjustment code DRZQ is supplied from the calibration circuit 100 in common. Is done. That is, when the activation circuits 151P to 153P or the activation signals 151N to 153N are instructed to activate the corresponding output units, the pre-stage circuits 141 to 143 indicate the corresponding output units according to the impedance adjustment code DRZQ. It designates which of a plurality of output transistors (described later) included in each of the unit buffers 111 to 114, 121, 122, 131 to be turned on. On / off of these output transistors is designated by activation signals 141P to 143P and activation signals 141N to 143N.
 出力制御回路150は、複数の出力ユニット110~130のうち活性化させる出力ユニット110~130を指定するとともに、活性化させる単位バッファの出力論理レベルを指定する。活性化させる出力ユニットの指定は、モードレジスタ14から供給される駆動能力設定信号DSに基づく。 The output control circuit 150 designates the output units 110 to 130 to be activated among the plurality of output units 110 to 130, and designates the output logic level of the unit buffer to be activated. The designation of the output unit to be activated is based on the drive capability setting signal DS supplied from the mode register 14.
 このように、出力制御回路150が、駆動能力設定信号DSに基づいて、活性化対象の出力ユニットを選択することで、データ端子を駆動する単位バッファの数を変化させる。活性化される単位バッファの数が変化すると、出力端子のインピーダンス(出力インピーダンス)が変化する。図2に示すように、本実施形態では、単位バッファ111~114、121、122、131が出力制御回路150とデータ端子24との間に並列接続されているため、活性化される単位バッファの数が増えると出力インピーダンスは減少し、逆に、活性化される単位バッファの数が減ると出力インピーダンスは増加する。 As described above, the output control circuit 150 selects the output unit to be activated based on the drive capability setting signal DS, thereby changing the number of unit buffers for driving the data terminals. When the number of unit buffers to be activated changes, the impedance (output impedance) of the output terminal changes. As shown in FIG. 2, in this embodiment, the unit buffers 111 to 114, 121, 122, 131 are connected in parallel between the output control circuit 150 and the data terminal 24. When the number increases, the output impedance decreases. Conversely, when the number of activated unit buffers decreases, the output impedance increases.
 図3は、単位バッファ131の回路図である。 FIG. 3 is a circuit diagram of the unit buffer 131.
 図3に示すように、単位バッファ131は、電源線(電源電位VDDQ)とノードBとの間に並列接続された複数(本実施形態では5つ)のPチャンネルMOSトランジスタ(出力トランジスタ、第1のトランジスタ)211~215と、電源線(電源電位VSSQ)とノードBとの間に並列接続された複数(本実施形態では5つ)のNチャンネルMOSトランジスタ(出力トランジスタ、第2のトランジスタ)221~225とを備える。また、ノードBはダンピング抵抗R14、及び、静電気保護部160を介してデータ端子24に接続される。単位バッファ131のうち、PチャンネルMOSトランジスタ211~215からなる部分はプルアップ回路18を構成しており、NチャンネルMOSトランジスタ221~225からなる部分はプルダウン回路19を構成している。 As shown in FIG. 3, the unit buffer 131 includes a plurality (five in this embodiment) of P-channel MOS transistors (output transistors, first transistors) connected in parallel between the power supply line (power supply potential VDDQ) and the node B. Transistors) 211 to 215, and a plurality (five in this embodiment) of N-channel MOS transistors (output transistors, second transistors) 221 connected in parallel between the power supply line (power supply potential VSSQ) and the node B. To 225. The node B is connected to the data terminal 24 via the damping resistor R14 and the electrostatic protection unit 160. In the unit buffer 131, a part composed of P channel MOS transistors 211 to 215 constitutes a pull-up circuit 18, and a part composed of N channel MOS transistors 221 to 225 constitutes a pull-down circuit 19.
 出力トランジスタ211~215のゲートには、活性化信号143Pを構成する5つの活性化信号143P1~143P5が供給され、出力トランジスタ221~225のゲートには、活性化信号143Nを構成する5つの活性化信号143N1~143N5が供給される。これにより、単位バッファ131に含まれる10個のMOSトランジスタは、10本の活性化信号143P1~143P5と活性化信号143N1~143N5によって、個別にオン/オフ制御される。 Five activation signals 143P1 to 143P5 constituting the activation signal 143P are supplied to the gates of the output transistors 211 to 215, and five activation signals constituting the activation signal 143N are supplied to the gates of the output transistors 221 to 225. Signals 143N1 to 143N5 are supplied. As a result, the ten MOS transistors included in the unit buffer 131 are individually turned on / off by the ten activation signals 143P1 to 143P5 and the activation signals 143N1 to 143N5.
 プルアップ回路18とプルダウン回路19は、それぞれ、導通時に所定のインピーダンス(実施例においては、120Ω)となるように設計されている。しかしながら、出力トランジスタのオン抵抗は製造条件によってばらつくとともに、動作時における環境温度や電源電圧によって変動することから、必ずしも所望のインピーダンスが得られるとは限らない。このため、実際のインピーダンスを目標値とするためには、オンさせるべき出力トランジスタの数を調整する必要があり、かかる目的のために、複数の出力トランジスタからなる並列回路が用いられている。 The pull-up circuit 18 and the pull-down circuit 19 are each designed to have a predetermined impedance (120Ω in the embodiment) when conducting. However, the on-resistance of the output transistor varies depending on the manufacturing conditions and varies depending on the environmental temperature and the power supply voltage during operation. Therefore, a desired impedance is not always obtained. For this reason, in order to set the actual impedance to the target value, it is necessary to adjust the number of output transistors to be turned on. For this purpose, a parallel circuit including a plurality of output transistors is used.
 単位バッファ131のインピーダンスを微細且つ広範囲に調整するためには、プルアップ回路18及びプルダウン回路19を構成する複数の出力トランジスタのW/L比(ゲート幅/ゲート長比)を互いに異ならせることが好ましく、2のべき乗の重み付けをすることが特に好ましい。すなわち、出力トランジスタ211のW/L比を「1WLp」とした場合、出力トランジスタ212~215のW/L比をそれぞれ「2WLp」、「4WLp」、「8WLp」、「16WLp」に設定することが特に好ましい。同様に、出力トランジスタ221のW/L比を「1WLn」とした場合、出力トランジスタ222~225のW/L比をそれぞれ「2WLn」、「4WLn」、「8WLn」、「16WLn」に設定することが特に好ましい。 In order to finely adjust the impedance of the unit buffer 131 over a wide range, the W / L ratio (gate width / gate length ratio) of the plurality of output transistors constituting the pull-up circuit 18 and the pull-down circuit 19 may be different from each other. It is particularly preferable to weight the power of 2. That is, when the W / L ratio of the output transistor 211 is “1WLp”, the W / L ratios of the output transistors 212 to 215 can be set to “2WLp”, “4WLp”, “8WLp”, and “16WLp”, respectively. Particularly preferred. Similarly, when the W / L ratio of the output transistor 221 is “1WLn”, the W / L ratios of the output transistors 222 to 225 are set to “2WLn”, “4WLn”, “8WLn”, and “16WLn”, respectively. Is particularly preferred.
 他の単位バッファ111~114、121、122についても、それらに対応する活性化信号141P、142P及び動作信号141N、142Nが入力される他は、図3に示した単位バッファ131と実質的に同じ回路構成を有している。 The other unit buffers 111 to 114, 121, and 122 are substantially the same as the unit buffer 131 shown in FIG. 3 except that the activation signals 141P and 142P and the operation signals 141N and 142N corresponding thereto are input. It has a circuit configuration.
 図4は、キャリブレーション回路100の回路図である。 FIG. 4 is a circuit diagram of the calibration circuit 100.
 図4に示すように、キャリブレーション回路100は、プルアップ回路(レプリカ回路)310,320と、プルダウン回路330と、プルアップ回路310,320の動作を制御するカウンタ340と、プルダウン回路330の動作を制御するカウンタ350と、カウンタ340を制御するコンパレータ360と、カウンタ350を制御するコンパレータ370と、コンパレータ360、370に基準電圧ZQVREF(=1/2VDD)を供給する電圧発生回路380と、カウンタの動作信号ACT1,ACT2を発生するキャリブレーション制御回路390と、を備えている。また、キャリブレーション回路100は、プルアップ回路310とキャリブレーション端子ZQとの間に直列に接続されたダンピング抵抗R21(第2の抵抗部、第2ダンピング抵抗)と、補正抵抗311(第3の抵抗部、補正抵抗)と、静電気保護部312とを含む。さらにまた、キャリブレーション回路100は、プルアップ回路320とノードAとの間に接続されたダンピング抵抗R22及び補正抵抗321と、プルダウン回路330とノードAとの間に接続されたダンピング抵抗R23及び補正抵抗331とを含む。ノードAは、コンパレータ370の一方の入力端子に接続される。補正抵抗311と静電気保護部312の詳細については、後述する。 As shown in FIG. 4, the calibration circuit 100 includes pull-up circuits (replica circuits) 310 and 320, a pull-down circuit 330, a counter 340 that controls operations of the pull-up circuits 310 and 320, and an operation of the pull-down circuit 330. A counter 350 for controlling the counter 350, a comparator 360 for controlling the counter 340, a comparator 370 for controlling the counter 350, a voltage generation circuit 380 for supplying the reference voltage ZQVREF (= 1 / 2VDD) to the comparators 360 and 370, And a calibration control circuit 390 for generating operation signals ACT1 and ACT2. The calibration circuit 100 includes a damping resistor R21 (second resistor unit, second damping resistor) and a correction resistor 311 (third resistor) connected in series between the pull-up circuit 310 and the calibration terminal ZQ. Resistance portion, correction resistor) and electrostatic protection portion 312. Furthermore, the calibration circuit 100 includes a damping resistor R22 and a correction resistor 321 connected between the pull-up circuit 320 and the node A, and a damping resistor R23 and a correction connected between the pull-down circuit 330 and the node A. And a resistor 331. Node A is connected to one input terminal of comparator 370. Details of the correction resistor 311 and the electrostatic protection unit 312 will be described later.
 図5は、プルアップ回路310の回路図である。 FIG. 5 is a circuit diagram of the pull-up circuit 310.
 図5に示すように、プルアップ回路310は、単位バッファ111~114、121、122、131に含まれるプルアップ回路18と実質的に同じ回路構成を有する。具体的には、プルアップ回路310は、電源線(電源電位VDD)とダンピング抵抗R21との間に並列接続された5つのPチャンネルMOSトランジスタ411~415とを備える。 As shown in FIG. 5, the pull-up circuit 310 has substantially the same circuit configuration as the pull-up circuit 18 included in the unit buffers 111 to 114, 121, 122, 131. Specifically, the pull-up circuit 310 includes five P-channel MOS transistors 411 to 415 connected in parallel between the power supply line (power supply potential VDD) and the damping resistor R21.
 以下、プルアップ回路310、補正抵抗311、静電気保護部312、キャリブレーション端子ZQおよび外部抵抗Reをまとめて「調整バッファ50(第2バッファ)」とよぶこともある。 Hereinafter, the pull-up circuit 310, the correction resistor 311, the electrostatic protection unit 312, the calibration terminal ZQ, and the external resistor Re may be collectively referred to as “adjustment buffer 50 (second buffer)”.
 プルアップ回路310に含まれるトランジスタ411~415は、図3に示した出力トランジスタ211~215に対応しており、それぞれ同一のインピーダンスを有している。したがって、トランジスタ211~215のW/L比と同様、トランジスタ411~415のW/L比もそれぞれ「1WLp」、「2WLp」、「4WLp」、「8WLp」、「16WLp」に設定されている。但し、インピーダンスが実質的に同じである限り、プルアップ回路310に含まれるトランジスタ411~415と、図3に示す出力トランジスタ211~215とが全く同じトランジスタサイズである必要はなく、シュリンクしたトランジスタを用いても構わない。 The transistors 411 to 415 included in the pull-up circuit 310 correspond to the output transistors 211 to 215 shown in FIG. 3, and have the same impedance. Therefore, similarly to the W / L ratios of the transistors 211 to 215, the W / L ratios of the transistors 411 to 415 are set to “1WLp”, “2WLp”, “4WLp”, “8WLp”, and “16WLp”, respectively. However, as long as the impedance is substantially the same, the transistors 411 to 415 included in the pull-up circuit 310 and the output transistors 211 to 215 shown in FIG. 3 do not have to have the same transistor size. You may use.
 トランジスタ411~415のゲートには、カウンタ340よりインピーダンスコードDRZQP1~DRZQP5が供給され、これによってプルアップ回路310が制御される。インピーダンスコードDRZQP1~DRZQP5は、それぞれ活性化信号141P1~141P5に対応する。 Impedance codes DRZQP1 to DRZQP5 are supplied from the counter 340 to the gates of the transistors 411 to 415, whereby the pull-up circuit 310 is controlled. Impedance codes DRZQP1 to DRZQP5 correspond to activation signals 141P1 to 141P5, respectively.
 プルアップ回路320についても、図5に示したプルアップ回路310と同一の回路構成を有している。プルアップ回路320側に含まれる5つのトランジスタのゲートにも、インピーダンスコードDRZQP1~DRZQP5が供給される。 The pull-up circuit 320 also has the same circuit configuration as the pull-up circuit 310 shown in FIG. Impedance codes DRZQP1 to DRZQP5 are also supplied to the gates of the five transistors included in the pull-up circuit 320 side.
 図6は、プルダウン回路330の回路図である。 FIG. 6 is a circuit diagram of the pull-down circuit 330.
 図6に示すように、プルダウン回路330は、単位バッファ111~114、121、122、131に含まれるプルダウン回路19と実質的に同じ回路構成を有している。具体的には、プルダウン回路330は、電源線(電源電位VSS)とノードAとの間に並列接続された5つのNチャンネルMOSトランジスタ421~425とを備える。プルダウン回路330に含まれるトランジスタ421~425は、図3に示したトランジスタ221~225に対応しており、それぞれ同一のインピーダンスを有している。この点は、プルアップ回路310と同様である。 As shown in FIG. 6, the pull-down circuit 330 has substantially the same circuit configuration as the pull-down circuit 19 included in the unit buffers 111 to 114, 121, 122, and 131. Specifically, the pull-down circuit 330 includes five N-channel MOS transistors 421 to 425 connected in parallel between the power supply line (power supply potential VSS) and the node A. Transistors 421 to 425 included in the pull-down circuit 330 correspond to the transistors 221 to 225 shown in FIG. 3 and have the same impedance. This is the same as the pull-up circuit 310.
 ダンピング抵抗R21は、図2に示した出力ユニット130のダンピング抵抗R14に対応しており、その抵抗値は120Ωに設定される。この理由は、本実施形態において、キャリブレーション回路100が1つの単位バッファからなる出力ユニット、即ち、図2の出力ユニット130に対応するように構成されるからである。 The damping resistor R21 corresponds to the damping resistor R14 of the output unit 130 shown in FIG. 2, and its resistance value is set to 120Ω. This is because, in the present embodiment, the calibration circuit 100 is configured to correspond to the output unit composed of one unit buffer, that is, the output unit 130 of FIG.
 また、ダンピング抵抗R22及び補正抵抗321は、それぞれ、ダンピング抵抗R21及び補正抵抗311に対応する抵抗である。このような構成とすることで、プルアップ回路310からみたノードCとプルアップ回路320からみたノードAとが実質的に同一の関係となる。ここで、ダンピング抵抗R22は、ダンピング抵抗R21と実質的に同一の抵抗値(120Ω)を有し、また、補正抵抗321は、補正抵抗311と実質的に同一の抵抗値(後述)を有する。 Further, the damping resistor R22 and the correction resistor 321 are resistors corresponding to the damping resistor R21 and the correction resistor 311, respectively. With such a configuration, the node C viewed from the pull-up circuit 310 and the node A viewed from the pull-up circuit 320 have substantially the same relationship. Here, the damping resistor R22 has substantially the same resistance value (120Ω) as the damping resistor R21, and the correction resistor 321 has substantially the same resistance value (described later) as the correction resistor 311.
 また、ダンピング抵抗R23及び補正抵抗331は、それぞれ、ダンピング抵抗R22及び補正抵抗321に対応する抵抗である。このような構成とすることで、ノードAから見たプルアップ回路320とノードAから見たプルダウン回路330とが実質的に同一の関係となり、プルダウン回路330の調整をより精確に行うことができる。ここで、ダンピング抵抗R23は、ダンピング抵抗R22と実質的に同一の抵抗値(120Ω)を有し、また、補正抵抗331は、補正抵抗321と実質的に同一の抵抗値を有する。 Further, the damping resistor R23 and the correction resistor 331 are resistors corresponding to the damping resistor R22 and the correction resistor 321, respectively. With such a configuration, the pull-up circuit 320 viewed from the node A and the pull-down circuit 330 viewed from the node A have substantially the same relationship, and the pull-down circuit 330 can be adjusted more accurately. . Here, the damping resistor R23 has substantially the same resistance value (120Ω) as the damping resistor R22, and the correction resistor 331 has substantially the same resistance value as the correction resistor 321.
 トランジスタ421~425のゲートには、カウンタ350よりインピーダンスコードDRZQN1~DRZQN5が供給され、これによってプルダウン回路330が制御される。インピーダンスコードDRZQN1~DRZQN5は、それぞれ活性化信号161N1~161N5に対応する。 Impedance codes DRZQN1 to DRZQN5 are supplied from the counter 350 to the gates of the transistors 421 to 425, whereby the pull-down circuit 330 is controlled. Impedance codes DRZQN1 to DRZQN5 correspond to activation signals 161N1 to 161N5, respectively.
 このように、プルアップ回路310,320は、いずれも単位バッファ111~114、121、122、131に含まれるプルアップ回路18と実質的に同じ回路構成を有しており、プルダウン回路330は、単位バッファ111~114、121、122、131に含まれるプルダウン回路19と実質的に同じ回路構成を有している。 As described above, the pull-up circuits 310 and 320 all have substantially the same circuit configuration as the pull-up circuit 18 included in the unit buffers 111 to 114, 121, 122, and 131. The pull-down circuit 19 included in the unit buffers 111 to 114, 121, 122, 131 has substantially the same circuit configuration.
 図4に示すように、プルアップ回路320とプルダウン回路330は、単位バッファ111と実質的に同じ回路構成をもった「レプリカバッファ」を構成する。ここでいう「実質的に同じ」とは、レプリカバッファに含まれるトランジスタがシュリンクされている場合であっても同じとみなす意である。レプリカバッファの出力端である接点Aは、図4に示すように、コンパレータ370の非反転入力端子(+)に接続されている。 As shown in FIG. 4, the pull-up circuit 320 and the pull-down circuit 330 constitute a “replica buffer” having a circuit configuration substantially the same as that of the unit buffer 111. Here, “substantially the same” means that the transistors included in the replica buffer are regarded as the same even if they are shrunk. As shown in FIG. 4, the contact A that is the output terminal of the replica buffer is connected to the non-inverting input terminal (+) of the comparator 370.
 キャリブレーション制御回路390は、キャリブレーション信号ZQCOMと内部クロックICLKに応じて、カウンタ340の動作信号ACT1とカウンタ350の動作信号ACT2とをそれぞれ発生する。 The calibration control circuit 390 generates the operation signal ACT1 of the counter 340 and the operation signal ACT2 of the counter 350 in response to the calibration signal ZQCOM and the internal clock ICLK.
 コンパレータ360は、ノードCの電位と基準電圧ZQVREFとを比較し、比較結果に基づいてハイレベル又はローレベルのいずれか一方の論理レベルをとる比較結果信号COMP1を出力する。 The comparator 360 compares the potential of the node C with the reference voltage ZQVREF, and outputs a comparison result signal COMP1 that takes either the high level or the low level based on the comparison result.
 コンパレータ370は、ノードAの電位と基準電圧ZQVREFとを比較し、比較結果に基づいてハイレベル又はローレベルのいずれか一方の論理レベルをとる比較結果信号COMP2を出力する。 The comparator 370 compares the potential of the node A with the reference voltage ZQVREF, and outputs a comparison result signal COMP2 that takes either the high level or the low level based on the comparison result.
 カウンタ340は、動作制御信号ACT1に同期して、コンパレータ360の出力信号COMP1の論理レベルに応じて自身のカウント値をカウントアップ又カウントダウンする。カウンタ340のカウント値はインピーダンスコードDRZQPとして用いられる。 The counter 340 counts up or down its own count value according to the logic level of the output signal COMP1 of the comparator 360 in synchronization with the operation control signal ACT1. The count value of the counter 340 is used as the impedance code DRZQP.
 一方、カウンタ350は、動作制御信号ACT2に同期して、コンパレータ370の出力信号COMP2の論理レベルに応じて自身のカウント値をカウントアップ又カウントダウンする。カウンタ350のカウント値はインピーダンスコードDRZQNとして用いられる。 On the other hand, the counter 350 counts up or counts down its own count value in accordance with the logic level of the output signal COMP2 of the comparator 370 in synchronization with the operation control signal ACT2. The count value of the counter 350 is used as the impedance code DRZQN.
 以上が、入出力回路16及びキャリブレーション回路100の構成である。キャリブレーション動作においては、キャリブレーション回路100が、プルアップ回路310及びダンピング抵抗R21の合成インピーダンスを外部抵抗Reのインピーダンスと一致させるようにプルアップ回路310のインピーダンス及びプルダウン回路330のインピーダンスをそれぞれ120Ωに調整する。そして、この調整結果を利用して入出力回路16の各単位バッファのプルアップ回路18及びプルダウン回路19のそれぞれのインピーダンスを120Ωに設定する。しかしながら、従来のキャリブレーション回路は、入出力回路16の静電気保護部160を通過する配線やキャリブレーション回路100の静電気保護部312を通過する配線の配線抵抗の影響を考慮しておらず、このため、キャリブレーション動作後の各単位バッファのインピーダンスが、所望の値からずれてしまう恐れがあった。本実施形態では、このずれを解消するために、キャリブレーション回路100のダンピング抵抗R21とノードCとの間に補正抵抗311を配置する。以下、静電気保護部312を通過する配線がキャリブレーション動作に与える影響、及び、補正抵抗311の配置について、詳細に説明する。 The above is the configuration of the input / output circuit 16 and the calibration circuit 100. In the calibration operation, the calibration circuit 100 sets the impedance of the pull-up circuit 310 and the impedance of the pull-down circuit 330 to 120Ω so that the combined impedance of the pull-up circuit 310 and the damping resistor R21 matches the impedance of the external resistor Re. adjust. Then, using this adjustment result, the impedances of the pull-up circuit 18 and the pull-down circuit 19 of each unit buffer of the input / output circuit 16 are set to 120Ω. However, the conventional calibration circuit does not consider the influence of the wiring resistance of the wiring that passes through the electrostatic protection unit 160 of the input / output circuit 16 or the wiring that passes through the electrostatic protection unit 312 of the calibration circuit 100. The impedance of each unit buffer after the calibration operation may be deviated from a desired value. In the present embodiment, in order to eliminate this shift, the correction resistor 311 is disposed between the damping resistor R21 and the node C of the calibration circuit 100. Hereinafter, the influence of the wiring passing through the electrostatic protection unit 312 on the calibration operation and the arrangement of the correction resistor 311 will be described in detail.
 図7は、静電気保護部160を通過する配線の配線抵抗を考慮したときのデータ端子24と出力回路101との接続関係を示す回路図である。特に、図7は、出力ユニット130とデータ端子24との接続に着目した図である。データ端子24などの外部端子には、静電気放電から半導体回路を守るためにESD(Electro-Static Discharge)素子ESD1(第1ESD素子)が設置されることがある。このESD素子は、例えば、ダイオード接続されたMOSトランジスタ等から構成される。静電気放電から内部回路を保護するためには、外部端子に印加された静電気を速やかに電源線(図7では、VSS電源線)に逃がす必要がある。このため、ESD素子には、サイズの大きなMOSトランジスタが使用される。 FIG. 7 is a circuit diagram showing the connection relationship between the data terminal 24 and the output circuit 101 when the wiring resistance of the wiring passing through the electrostatic protection unit 160 is taken into consideration. In particular, FIG. 7 is a diagram focusing on the connection between the output unit 130 and the data terminal 24. An external terminal such as the data terminal 24 may be provided with an ESD (Electro-Static Discharge) element ESD1 (first ESD element) to protect the semiconductor circuit from electrostatic discharge. The ESD element is composed of, for example, a diode-connected MOS transistor. In order to protect the internal circuit from electrostatic discharge, it is necessary to quickly release the static electricity applied to the external terminal to the power line (VSS power line in FIG. 7). For this reason, a large MOS transistor is used for the ESD element.
 図8は、データ端子24と出力回路101との間のレイアウトを示す模式図である。また、図9は、本実施形態の半導体装置10が含む多層配線構造を模式的に示した図である。 FIG. 8 is a schematic diagram showing a layout between the data terminal 24 and the output circuit 101. FIG. 9 is a diagram schematically showing a multilayer wiring structure included in the semiconductor device 10 of the present embodiment.
 図9に示すとおり、本実施形態の半導体装置10は、基板SSの表面に拡散層DL及びゲート配線層GLが形成され、その上方に、基板SSの表面に近い側から順に第1配線層L1、第2配線層L2、第3配線層L3、第4配線層L4が積層された構造を有している。第1配線層は、例えば、タングステンを含む配線層、第2乃至第4配線層は、それぞれアルミニウムや銅を含む配線層である。各層は、層間絶縁層IL1~IL4によって相互に絶縁される。また、最上層の第4配線層L4の上面は、保護用の層間絶縁層IL5によって覆われる。ゲート配線層GLと基板SSの表面の間には、薄いゲート絶縁膜GIが形成される。拡散層DL及びゲート配線層GLと第1配線層L1とは、層間絶縁層IL1を貫通するスルーホール電極TH0によって、必要な場所でのみ相互に接続される。同様に、第1配線層L1と第2配線層L2とは、層間絶縁層IL2を貫通するスルーホール電極TH1によって、必要な場所でのみ相互に接続される。また、第2配線層L2と第3配線層L3とは、層間絶縁層IL3を貫通するスルーホール電極TH2によって、必要な場所でのみ相互に接続される。さらに、第3配線層L3と第4配線層L4とは、層間絶縁層IL4を貫通するスルーホール電極TH3によって、必要な場所でのみ相互に接続される。 As shown in FIG. 9, in the semiconductor device 10 according to the present embodiment, the diffusion layer DL and the gate wiring layer GL are formed on the surface of the substrate SS, and the first wiring layer L1 is sequentially disposed above the diffusion layer DL and the gate wiring layer GL. The second wiring layer L2, the third wiring layer L3, and the fourth wiring layer L4 are stacked. For example, the first wiring layer is a wiring layer containing tungsten, and the second to fourth wiring layers are wiring layers containing aluminum or copper, respectively. Each layer is insulated from each other by interlayer insulating layers IL1 to IL4. The upper surface of the uppermost fourth wiring layer L4 is covered with a protective interlayer insulating layer IL5. A thin gate insulating film GI is formed between the gate wiring layer GL and the surface of the substrate SS. The diffusion layer DL, the gate wiring layer GL, and the first wiring layer L1 are connected to each other only at a necessary place by a through-hole electrode TH0 that penetrates the interlayer insulating layer IL1. Similarly, the first wiring layer L1 and the second wiring layer L2 are connected to each other only where necessary by a through-hole electrode TH1 that penetrates the interlayer insulating layer IL2. Further, the second wiring layer L2 and the third wiring layer L3 are connected to each other only at a necessary place by a through-hole electrode TH2 penetrating the interlayer insulating layer IL3. Further, the third wiring layer L3 and the fourth wiring layer L4 are connected to each other only at a necessary place by a through-hole electrode TH3 penetrating the interlayer insulating layer IL4.
 図8に示すとおり、第4配線層L4として形成されたデータパッドDQP(データ端子24に対応)と出力回路101との間には、MOSトランジスタ構造で形成されたESD素子ESD1と、それぞれ第1配線層L1として形成されたダンピング抵抗R11~R14と、第2配線層L2として形成されESD素子ESD1の上方を通過してデータパッドDQPとダンピング抵抗R11~R14のそれぞれの一端とを接続するデータ配線DQL1(第1の配線)と、それぞれダンピング抵抗R11~R14のうちの対応する1つの他端と単位バッファ111~114、121、122、131のうちの対応する1又は複数個とを接続するデータ配線DQL2とを含む。ESD素子ESD1は、シリコン等の基板SS中にソース・ドレインとして形成された拡散層DLと基板SS上に形成されたゲート電極Gとを含む。ESD素子1のソース・ドレインの一方は、スルーホール電極TH0、TH1及び第1配線層L1(図8には図示せず)を介してデータ配線DQL1に接続される。ESD素子ESD1のソース・ドレインの他方は、不図示の電源線(VSS電位)に接続される。データパッドDQPは、スルーホール電極TH3、TH2及び第3配線層L3(図8には図示せず)を介してデータ配線DQL1と接続される。データ配線DQL1とダンピング抵抗R11~R14のそれぞれの一端は、スルーホール電極TH1を介して互いに接続される。同様に、ダンピング抵抗R11~R14の他端とデータ配線DQL2とは、対応するスルーホール電極TH1を介して、互いに接続される。図8に示すように、データ配線DQL1は、ESD素子ESD1の対応する拡散層DLに接続されるためにスリット状の部分を含む。このため、本実施形態では、データ配線DQL1は1Ω程度の配線抵抗を有する。 As shown in FIG. 8, between the data pad DQP (corresponding to the data terminal 24) formed as the fourth wiring layer L4 and the output circuit 101, the ESD element ESD1 formed in the MOS transistor structure, and the first A data wiring that connects the damping pads R11 to R14 formed as the wiring layer L1 and the data pad DQP and one end of each of the damping resistors R11 to R14 through the ESD element ESD1 formed as the second wiring layer L2. Data connecting DQL1 (first wiring), one corresponding other end of each of the damping resistors R11 to R14, and one or more corresponding ones of the unit buffers 111 to 114, 121, 122, 131 Wiring DQL2. The ESD element ESD1 includes a diffusion layer DL formed as a source / drain in a substrate SS such as silicon and a gate electrode G formed on the substrate SS. One of the source and drain of the ESD element 1 is connected to the data wiring DQL1 via the through-hole electrodes TH0 and TH1 and the first wiring layer L1 (not shown in FIG. 8). The other of the source and drain of the ESD element ESD1 is connected to a power line (not shown) (VSS potential). The data pad DQP is connected to the data wiring DQL1 through the through-hole electrodes TH3 and TH2 and the third wiring layer L3 (not shown in FIG. 8). One end of each of the data line DQL1 and the damping resistors R11 to R14 is connected to each other through the through-hole electrode TH1. Similarly, the other ends of the damping resistors R11 to R14 and the data wiring DQL2 are connected to each other through the corresponding through-hole electrode TH1. As shown in FIG. 8, the data line DQL1 includes a slit-like portion to be connected to the corresponding diffusion layer DL of the ESD element ESD1. For this reason, in this embodiment, the data wiring DQL1 has a wiring resistance of about 1Ω.
 再び図7に戻って、上述のデータ配線DQL1の配線抵抗を考慮して、出力ユニット130がデータ端子24を駆動するインピーダンスを計算すると、rm+r1+rdESDとなる。rmはプルアップ回路18のインピーダンスを示し、r1はダンピング抵抗R14の抵抗値を示す。また、rdESDは、データ配線DQL1の抵抗値を示し、具体的には、データ端子24からダンピング抵抗R14の一端までの抵抗値を示す。即ち、rdESDは、図8において、データパッドDQPからダンピング抵抗R14の一端とデータ配線DQL1とを接続するスルーホール電極TH1までの抵抗値を示す。 Returning to FIG. 7 again, when the impedance at which the output unit 130 drives the data terminal 24 is calculated in consideration of the wiring resistance of the data wiring DQL1, the result is rm + r1 + rdESD. rm represents the impedance of the pull-up circuit 18, and r1 represents the resistance value of the damping resistor R14. Further, rdESD indicates the resistance value of the data wiring DQL1, and specifically indicates the resistance value from the data terminal 24 to one end of the damping resistor R14. That is, in FIG. 8, rdESD indicates the resistance value from the data pad DQP to the through-hole electrode TH1 that connects one end of the damping resistor R14 and the data wiring DQL1.
 図10は、従来のキャリブレーション回路における調整バッファ50'の構成を示す回路図である(補正抵抗なし)。この調整バッファ50'は、図4に示した調整バッファ50に対応する。上述のとおり、データ端子24と同様、キャリブレーション端子ZQにもESD素子ESD2(第2ESD素子)が設置される。このため、ノードCからキャリブレーション端子ZQの間には、キャリブレーション配線ZQL1(抵抗値rzESD)が存在する。 FIG. 10 is a circuit diagram showing the configuration of the adjustment buffer 50 ′ in the conventional calibration circuit (no correction resistor). The adjustment buffer 50 ′ corresponds to the adjustment buffer 50 shown in FIG. As described above, like the data terminal 24, the ESD element ESD2 (second ESD element) is also installed in the calibration terminal ZQ. Therefore, the calibration wiring ZQL1 (resistance value rzESD) exists between the node C and the calibration terminal ZQ.
 プルアップ回路310のインピーダンスをrmとすると、コンパレータ360はrm+r1=reではなく、より厳密には、rm+r1=rzESD+reとなるrmを探ることになる。ここでreは外部抵抗Reの抵抗値を示す。また、r1はダンピング抵抗R21の抵抗値を示し、この値は、出力ユニット130のダンピング抵抗R14と等しくなるように設定されている。この結果を用いて出力ユニット130の単位バッファ131のインピーダンスを調整した場合、即ち、出力ユニット130の単位バッファ131のインピーダンスrmがプルアップ回路310のインピーダンスrm=rzESD+re-r1と等しくなるように単位バッファ131のインピーダンスを調整した場合、出力ユニット130の単位バッファがデータ端子24を駆動するインピーダンスがre+rdEDS+rzEDSとなる。つまり、出力ユニット130の単位バッファがデータ端子24を駆動するインピーダンスが外部抵抗Reのインピーダンスからずれてしまう恐れがある。他の単位バッファにおいても同様の問題が生じる。したがって、プルアップ回路310の調整内容をレプリカバッファに反映させ、レプリカバッファの調整内容を出力バッファのプルアップ回路18に反映させるときには、図7、8に示したデータ配線DQL1と図10に示したキャリブレーション配線ZQL1の配線抵抗も考慮することが望ましい。 Suppose that the impedance of the pull-up circuit 310 is rm, the comparator 360 is not rm + r1 = re, but more strictly, it searches for rm that satisfies rm + r1 = rzESD + re. Here, re indicates the resistance value of the external resistor Re. R1 represents the resistance value of the damping resistor R21, and this value is set to be equal to the damping resistor R14 of the output unit 130. When the impedance of the unit buffer 131 of the output unit 130 is adjusted using this result, that is, the unit buffer 131 so that the impedance rm of the unit buffer 131 of the output unit 130 becomes equal to the impedance rm = rzESD + re−r1 of the pull-up circuit 310. When the impedance of 131 is adjusted, the impedance at which the unit buffer of the output unit 130 drives the data terminal 24 becomes re + rdEDS + rzEDS. That is, there is a possibility that the impedance at which the unit buffer of the output unit 130 drives the data terminal 24 deviates from the impedance of the external resistor Re. Similar problems occur in other unit buffers. Therefore, when the adjustment contents of the pull-up circuit 310 are reflected in the replica buffer and the adjustment contents of the replica buffer are reflected in the pull-up circuit 18 of the output buffer, the data wiring DQL1 shown in FIGS. It is desirable to consider the wiring resistance of the calibration wiring ZQL1.
 図11は、本実施形態において補正抵抗311を追加したプルアップ回路310とキャリブレーション端子ZQの接続関係を示す回路図(第1構成例)である。本実施形態においては、ダンピング抵抗R21と接続点Cの間に補正抵抗311を追加している。この補正抵抗311により、図7、8に示したデータ配線DQL1の配線抵抗と図10、11に示したキャリブレーション配線ZQL1の配線抵抗の影響を相殺する。 FIG. 11 is a circuit diagram (first configuration example) showing a connection relationship between the pull-up circuit 310 to which the correction resistor 311 is added and the calibration terminal ZQ in the present embodiment. In the present embodiment, a correction resistor 311 is added between the damping resistor R21 and the connection point C. The correction resistor 311 cancels the influence of the wiring resistance of the data wiring DQL1 shown in FIGS. 7 and 8 and the wiring resistance of the calibration wiring ZQL1 shown in FIGS.
 図11に示す回路図のキャリブレーション端子ZQとプルアップ回路310及びコンパレータ360間のレイアウトを示す模式図を図12に示す。 FIG. 12 is a schematic diagram showing a layout between the calibration terminal ZQ, the pull-up circuit 310, and the comparator 360 in the circuit diagram shown in FIG.
 図12に示すとおり、第4配線層L4として形成されたキャリブレーションパッドZQP(キャリブレーション端子ZQに対応)とプルアップ回路310及びコンパレータ360との間には、MOSトランジスタ構造で形成されたESD素子ESD2と、第2配線層L2として形成されたキャリブレーション配線ZQL1(第2の配線)、ZQL2(第3の配線)、及び、補正抵抗311と、第1配線層L1として形成されたダンピング抵抗R21と、を含む。ESD素子ESD2は、図8に示したESD素子ESD1と同様に、シリコン等の基板SS中にソース・ドレインとして形成された拡散層DLと基板SS上に形成されたゲート電極Gとを含む。ESD素子ESD2のソース・ドレインの一方は、スルーホール電極TH0、TH1及び第1配線層L1(図12には図示せず)を介してキャリブレーション配線ZQL1に接続される。ESD素子ESD1のソース・ドレインの他方は、不図示の電源線(VSS電位)に接続される。キャリブレーションパッドZQPは、スルーホール電極TH3、TH2及び第3配線層L3(図12には図示せず)を介してキャリブレーション配線ZQL1と接続される。図12に示すように、キャリブレーション配線ZQL1は、ESD素子ESD2の対応する拡散層DLに接続されるためにスリット状の部分を含む。このため、本実施形態では、キャリブレーション配線ZQL1は1Ω程度の配線抵抗を有する。 As shown in FIG. 12, between the calibration pad ZQP (corresponding to the calibration terminal ZQ) formed as the fourth wiring layer L4 and the pull-up circuit 310 and the comparator 360, an ESD element formed with a MOS transistor structure. ESD2, calibration wiring ZQL1 (second wiring), ZQL2 (third wiring) formed as the second wiring layer L2, correction resistor 311 and damping resistance R21 formed as the first wiring layer L1 And including. Similarly to the ESD element ESD1 shown in FIG. 8, the ESD element ESD2 includes a diffusion layer DL formed as a source / drain in a substrate SS such as silicon and a gate electrode G formed on the substrate SS. One of the source and drain of the ESD element ESD2 is connected to the calibration wiring ZQL1 via the through-hole electrodes TH0 and TH1 and the first wiring layer L1 (not shown in FIG. 12). The other of the source and drain of the ESD element ESD1 is connected to a power line (not shown) (VSS potential). The calibration pad ZQP is connected to the calibration wiring ZQL1 through the through-hole electrodes TH3 and TH2 and the third wiring layer L3 (not shown in FIG. 12). As shown in FIG. 12, the calibration wiring ZQL1 includes a slit-like portion to be connected to the corresponding diffusion layer DL of the ESD element ESD2. For this reason, in the present embodiment, the calibration wiring ZQL1 has a wiring resistance of about 1Ω.
 また、キャリブレーション配線ZQL1が、コンパレータ360に向かうキャリブレーション配線ZQL2とプルアップ回路310に向かう補正抵抗311とに分岐する分岐点が、図11のノードCに対応する。補正抵抗311は、一端でスルーホール電極TH1を介してダンピング抵抗R21の一端と接続される。 Further, a branch point where the calibration wiring ZQL1 branches to the calibration wiring ZQL2 toward the comparator 360 and the correction resistor 311 toward the pull-up circuit 310 corresponds to the node C in FIG. The correction resistor 311 is connected to one end of the damping resistor R21 through the through-hole electrode TH1 at one end.
 図12において、図11に示したキャリブレーション配線ZQL1の配線抵抗の抵抗値rzESDは、キャリブレーションパッドZQPからノードCまでの抵抗値に対応する。 12, the resistance value rzESD of the wiring resistance of the calibration wiring ZQL1 shown in FIG. 11 corresponds to the resistance value from the calibration pad ZQP to the node C.
 次に、補正抵抗311の抵抗値の決め方について説明する。補正抵抗311の抵抗値rcは、下記の方法により算出される。プルアップ回路310の抵抗値rmは、rm+r1+rc=rzESD+reが成立するように調整される。この抵抗値rmを出力バッファに反映させたあと、出力バッファにおいては、rm+r1+rdESD=reが成立しなければならない(図7参照)。以上の2式からreを消去すると、rm+r1+rc=rzESD+(rm+r1+rdESD)となり、rc=rzESD+rdESDとなる。すなわち、rc=(rzESD+rdESD)の補正抵抗311を追加することにより、図7、8に示したデータ配線DQL1の配線抵抗と図11、12に示したキャリブレーション配線ZQL1の配線抵抗の影響を相殺できる。その結果、出力回路101の各単位バッファのインピーダンスrm=re-r1となり、出力回路101の出力ユニット110、120、130のそれぞれがデータ端子24を駆動するインピーダンスの精度が改善される。ここで、rc=rzESD+rdESDであることが望ましいが、rcはその近辺の値であっても一定の補正効果は得られ、rcはrzESD+rdESDの1.5倍未満とすることが望ましい。 Next, how to determine the resistance value of the correction resistor 311 will be described. The resistance value rc of the correction resistor 311 is calculated by the following method. The resistance value rm of the pull-up circuit 310 is adjusted so that rm + r1 + rc = rzESD + re is established. After reflecting the resistance value rm in the output buffer, rm + r1 + rdESD = re must be established in the output buffer (see FIG. 7). If re is deleted from the above two formulas, rm + r1 + rc = rzESD + (rm + r1 + rdESD) and rc = rzESD + rdESD. That is, by adding the correction resistor 311 of rc = (rzESD + rdESD), the influence of the wiring resistance of the data wiring DQL1 shown in FIGS. 7 and 8 and the wiring resistance of the calibration wiring ZQL1 shown in FIGS. . As a result, the impedance rm = re−r1 of each unit buffer of the output circuit 101 is obtained, and the accuracy of the impedance at which each of the output units 110, 120, and 130 of the output circuit 101 drives the data terminal 24 is improved. Here, it is desirable that rc = rzESD + rdESD, but even if rc is a value in the vicinity thereof, a certain correction effect is obtained, and it is desirable that rc is less than 1.5 times rzESD + rdESD.
 図13は、本実施形態において補正抵抗を追加したプルアップ回路310(調整バッファ50)の回路図(第2構成例)である。図8、図12に示したとおり、第1実施形態では、データ配線DQL1とキャリブレーション配線ZQL1とが共に第2配線層L2として形成される例を示した。これに対し、第2構成例は、図14及び図15に示すとおり、データ配線DQL1'とキャリブレーション配線ZQL1とが互いに異なる配線層に形成されている。ここで、図14は、第2構成例におけるデータ端子24と出力回路101との間のレイアウトを示す模式図であり、図15は、第2構成例におけるキャリブレーション端子ZQとプルアップ回路310及びコンパレータ360との間のレイアウトを示す模式図である。尚、図14、図15では、それぞれ図8,図12と重複する構成には同一の符号を付し、重複する説明を省略する。 FIG. 13 is a circuit diagram (second configuration example) of the pull-up circuit 310 (adjustment buffer 50) to which a correction resistor is added in the present embodiment. As shown in FIGS. 8 and 12, in the first embodiment, the data wiring DQL1 and the calibration wiring ZQL1 are both formed as the second wiring layer L2. On the other hand, in the second configuration example, as shown in FIGS. 14 and 15, the data wiring DQL1 ′ and the calibration wiring ZQL1 are formed in different wiring layers. Here, FIG. 14 is a schematic diagram showing a layout between the data terminal 24 and the output circuit 101 in the second configuration example, and FIG. 15 shows a calibration terminal ZQ, a pull-up circuit 310, and the like in the second configuration example. 3 is a schematic diagram showing a layout with a comparator 360. FIG. In FIGS. 14 and 15, the same components as those in FIGS. 8 and 12 are denoted by the same reference numerals, and redundant description is omitted.
 図14に示すとおり、第2構成例では、データ配線DQL1'が第3配線層L3として形成されている。一方、図15に示すとおり、キャリブレーション配線ZQL1は、第1構成例と同様に第2配線層L2として形成されている。 As shown in FIG. 14, in the second configuration example, the data wiring DQL1 ′ is formed as the third wiring layer L3. On the other hand, as shown in FIG. 15, the calibration wiring ZQL1 is formed as the second wiring layer L2 as in the first configuration example.
 そこで、図13、図15に示すとおり、第2構成例では、補正抵抗311'を2つの補正抵抗3111,3112の直列抵抗として形成している。具体的には、補正抵抗3112(第1抵抗成分)は、データ配線DQL1'と同一の配線層、即ち、第3配線層L3として形成さるとともに、データ配線DQL1'と実質的に等しい抵抗値(rc'1)を有する。一方、補正抵抗3111(第2抵抗成分)は、キャリブレーション配線ZQL1と同一の配線層、即ち、第2配線層L2として形成されるとともに、キャリブレーション配線ZQL1と同一の抵抗値(rc'2)を有する。このように2種類の抵抗により補正抵抗を構成することにより、2つの配線DQL1'、ZQL1の温度特性と補正抵抗の温度特性を近づけることができる。 Therefore, as shown in FIGS. 13 and 15, in the second configuration example, the correction resistor 311 ′ is formed as a series resistance of the two correction resistors 3111 and 3112. Specifically, the correction resistor 3112 (first resistance component) is formed as the same wiring layer as the data wiring DQL1 ′, that is, the third wiring layer L3, and has a resistance value substantially equal to the data wiring DQL1 ′ ( rc′1). On the other hand, the correction resistor 3111 (second resistance component) is formed as the same wiring layer as the calibration wiring ZQL1, ie, the second wiring layer L2, and has the same resistance value (rc′2) as the calibration wiring ZQL1. Have By configuring the correction resistor with two types of resistors in this way, the temperature characteristics of the two wirings DQL1 ′ and ZQL1 and the temperature characteristics of the correction resistor can be brought close to each other.
 図16は、電源寄生抵抗およびボンディング抵抗を考慮したときのデータ端子24と出力回路101との接続関係を示す回路図である。データ配線DQL1やキャリブレーション配線ZQL1の抵抗以外にも、MOSトランジスタのソースには電源線PSDLの電源寄生抵抗(抵抗値rsd)、外部端子の外側にはパッケージのボンディングワイヤBWDのボンディング抵抗(抵抗値rud)が存在する。 FIG. 16 is a circuit diagram showing a connection relationship between the data terminal 24 and the output circuit 101 when the power source parasitic resistance and the bonding resistance are taken into consideration. In addition to the resistance of the data wiring DQL1 and the calibration wiring ZQL1, the source of the MOS transistor is a power source parasitic resistance (resistance value rsd) of the power source line PSDL, and the outside of the external terminal is a bonding resistance (resistance value of the package bonding wire BWD). rud) exists.
 図17は、本実施形態において補正抵抗を追加したプルアップ回路310とキャリブレーション端子ZQの接続関係を示す回路図(第3構成例)である。第3構成例の補正抵抗3113は、上述の電源線PSDLの電源寄生抵抗やボンディングワイヤBWZのボンディング抵抗も考慮される。プルアップ回路310の電源線PSZLにも電源寄生抵抗(抵抗値rsr)や外部抵抗Reの接続に起因するボンディング抵抗(抵抗値rur)が存在する。 FIG. 17 is a circuit diagram (third configuration example) showing a connection relationship between the pull-up circuit 310 to which the correction resistor is added and the calibration terminal ZQ in the present embodiment. The correction resistor 3113 of the third configuration example takes into account the power supply parasitic resistance of the power supply line PSDL and the bonding resistance of the bonding wire BWZ. The power supply line PSZL of the pull-up circuit 310 also has a power supply parasitic resistance (resistance value rsr) and a bonding resistance (resistance value ur) due to the connection of the external resistance Re.
 配線DQL1、ZQL1の抵抗だけでなく、電源寄生抵抗やボンディング抵抗を考慮した補正抵抗3113の抵抗値rc2は、下記の方法により算出される。調整バッファ50においては、rsr+rm+r1+rc2=rzESD+rur+reが成立するようにプルアップ回路310の抵抗値rmが調整される。このときの抵抗値rmを出力バッファに反映させたあと、出力バッファにおいては、rsd+rm+r1+rdESD=re-rudが成立しなければならない(図16参照)。以上の2式からreを消去すると、rsr+rm+r1+rc2=rzESD+rur+(rsd+rm+r1+rdESD+rud)となる。rc2=rzESD+rdESD+(rsd-rsr)+(rud+rur)となる。となる。すなわち、抵抗値rc2がrzESD+rdESD+(rsd-rsr)+(rud+rur)の補正抵抗3113を追加することにより、配線DQL1、ZQL1に加え、電源寄生抵抗やボンディング抵抗よる相違までを補正できる。rc2=rzESD+rdESD+(rsd-rsr)+(rud+rur)であることが望ましいが、rc2はその近辺の値であっても一定の補正効果は得られる。 The resistance value rc2 of the correction resistor 3113 considering not only the resistances of the wirings DQL1 and ZQL1 but also the power source parasitic resistance and bonding resistance is calculated by the following method. In the adjustment buffer 50, the resistance value rm of the pull-up circuit 310 is adjusted so that rsr + rm + r1 + rc2 = rzESD + rur + re is established. After reflecting the resistance value rm at this time in the output buffer, rsd + rm + r1 + rdESD = re−rud must be satisfied in the output buffer (see FIG. 16). If re is deleted from the above two equations, rsr + rm + r1 + rc2 = rzESD + rur + (rsd + rm + r1 + rdESD + rud). rc2 = rzESD + rdESD + (rsd−rsr) + (rud + rur) It becomes. That is, by adding the correction resistor 3113 whose resistance value rc2 is rzESD + rdESD + (rsd−rsr) + (rud + rur), it is possible to correct even the difference due to the power source parasitic resistance and the bonding resistance in addition to the wirings DQL1 and ZQL1. Although it is desirable that rc2 = rzESD + rdESD + (rsd−rsr) + (rud + rur), a constant correction effect can be obtained even if rc2 is a value in the vicinity thereof.
 以上、実施形態に基づいて、半導体装置10について説明した。調整バッファ50に補正抵抗を導入することにより、データ配線やキャリブレーション配線の配線抵抗、電源寄生抵抗、ボンディング抵抗の影響を相殺し、より精確なキャリブレーションが可能となる。データ配線やキャリブレーション配線の配線抵抗、電源寄生抵抗およびボンディング抵抗のうちいずれを考慮するかについては任意である。たとえば、ボンディング抵抗がデータ配線やキャリブレーション配線の配線抵抗や電源寄生抵抗に比べて充分に小さいときには、データ配線やキャリブレーション配線の配線抵抗と電源寄生抵抗の影響のみを考慮してもよい。 The semiconductor device 10 has been described above based on the embodiment. By introducing a correction resistor into the adjustment buffer 50, the influence of the wiring resistance of the data wiring and the calibration wiring, the power source parasitic resistance, and the bonding resistance can be offset, and more accurate calibration can be performed. Which of the wiring resistance, power supply parasitic resistance, and bonding resistance of the data wiring and calibration wiring is taken into consideration is arbitrary. For example, when the bonding resistance is sufficiently smaller than the wiring resistance and power supply parasitic resistance of the data wiring and calibration wiring, only the influence of the wiring resistance of the data wiring and calibration wiring and the power supply parasitic resistance may be considered.
 補正抵抗の抵抗値が大きくなると、調整バッファ50のIV特性における線形性が強くなる。いいかえれば、プルアップ回路310に含まれるトランジスタ群のIV特性(非線形)の調整バッファ50における影響が小さくなる。しかし、本発明者らの調査によれば、rm+r1=240Ωに対して、補正抵抗は1Ω程度、大きくとも5Ω程度である。そして、補正抵抗が5Ω以下であるならば、調整バッファ50のIV特性に対する補正抵抗の影響はほとんど生じていないことが確認されている。 When the resistance value of the correction resistor increases, the linearity in the IV characteristic of the adjustment buffer 50 increases. In other words, the influence of the IV characteristics (non-linearity) of the transistor group included in the pull-up circuit 310 on the adjustment buffer 50 is reduced. However, according to the investigation by the present inventors, for rm + r1 = 240Ω, the correction resistance is about 1Ω, and at most about 5Ω. If the correction resistance is 5Ω or less, it has been confirmed that the influence of the correction resistance on the IV characteristics of the adjustment buffer 50 hardly occurs.
 以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。例えば、本発明は、特開2008-228332号公報及び特開2011-61580号公報に記載の半導体装置にも適用可能である。これらの公開公報の開示内容を引用してここに取り込むものとする。 The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. Needless to say, it is included in the range. For example, the present invention can be applied to the semiconductor devices described in Japanese Patent Application Laid-Open Nos. 2008-228332 and 2011-61580. The disclosure contents of these publications are incorporated herein by reference.
2    外部基板
10   半導体装置
11   メモリセルアレイ
12   ロウデコーダ
13   カラムデコーダ
14   モードレジスタ
15   ラッチ回路
16   入出力回路
18   プルアップ回路
19   プルダウン回路
21   コマンドアドレス端子
22   チップセレクト端子
23   クロック端子
24   データ端子
25,26  電源端子
31   CA入力回路
32   アドレスラッチ回路
34   コマンドデコード回路
36   クロック入力回路
39   内部電源発生回路
50   調整バッファ
54   クロック発生回路
100  キャリブレーション回路
101  出力回路
110,120,130  出力ユニット
111~114,121,122,131  単位バッファ
141~143  前段回路
150  出力制御回路
160  静電気保護部
170  入力バッファ
310,320  プルアップ回路
311,321,331,3111~3113  補正抵抗
312  静電気保護部
330  プルダウン回路
340,350  カウンタ
360,370  コンパレータ
380  電圧発生回路
390  キャリブレーション制御回路
BWD,BWZ  ボンディングワイヤ
DL   拡散層
DQP  データパッド
ESD1,ESD2  ESD素子
G    ゲート電極
GI   ゲート絶縁膜
GL   ゲート配線層
IL1~IL4  層間絶縁層
L1~L4  配線層
PSDL,PSZL  電源線
R11~R14,R21~R23  ダンピング抵抗
Re   外部抵抗
SS   基板
TH0~TH3  スルーホール電極
TL   タングステン層
ZQL1,ZQL2  キャリブレーション配線
ZQP  キャリブレーションパッド
2 External substrate 10 Semiconductor device 11 Memory cell array 12 Row decoder 13 Column decoder 14 Mode register 15 Latch circuit 16 Input / output circuit 18 Pull-up circuit 19 Pull-down circuit 21 Command address terminal 22 Chip select terminal 23 Clock terminal 24 Data terminal 25, 26 Power supply Terminal 31 CA input circuit 32 Address latch circuit 34 Command decode circuit 36 Clock input circuit 39 Internal power generation circuit 50 Adjustment buffer 54 Clock generation circuit 100 Calibration circuit 101 Output circuits 110, 120, 130 Output units 111-114, 121, 122 131 Unit buffers 141 to 143 Pre-stage circuit 150 Output control circuit 160 Static electricity protection unit 170 Input buffers 310 and 320 Up circuit 311, 321, 331, 3111 to 3113 Correction resistor 312 Static electricity protection unit 330 Pull down circuit 340, 350 Counter 360, 370 Comparator 380 Voltage generation circuit 390 Calibration control circuit BWD, BWZ Bonding wire DL Diffusion layer DQP Data pad ESD 1 ESD2 ESD element G Gate electrode GI Gate insulating film GL Gate wiring layers IL1 to IL4 Interlayer insulating layers L1 to L4 Wiring layers PSDL, PSZL Power supply lines R11 to R14, R21 to R23 Damping resistance Re External resistance SS Substrate TH0 to TH3 Through-hole electrode TL Tungsten layer ZQL1, ZQL2 Calibration wiring ZQP Calibration pad

Claims (18)

  1.  データ端子及びキャリブレーション端子と、
     出力バッファと、
     前記出力バッファに一端で接続された第1の抵抗部と、
     前記データ端子と前記第1の抵抗部の他端とを接続する第1の配線と、
     前記出力バッファと実質的に等しいインピーダンスを有するレプリカ回路と、
     比較回路と、
     前記レプリカ回路に一端で接続された第2の抵抗部と、
     前記第2の抵抗部の他端に一端で接続された第3の抵抗部と、
     前記第3の抵抗部の他端と前記キャリブレーション端子とを接続する第2の配線と、
     前記第3の抵抗部の他端と前記比較回路とを接続する第3の配線と、を備え、
     前記第3の抵抗部の抵抗値は、前記第1の配線の抵抗値及び前記第2の配線の抵抗値よりも大きいことを特徴とする半導体装置。
    A data terminal and a calibration terminal;
    An output buffer;
    A first resistor connected at one end to the output buffer;
    A first wiring connecting the data terminal and the other end of the first resistance unit;
    A replica circuit having an impedance substantially equal to the output buffer;
    A comparison circuit;
    A second resistor connected at one end to the replica circuit;
    A third resistor connected at one end to the other end of the second resistor;
    A second wiring for connecting the other end of the third resistance unit and the calibration terminal;
    A third wiring for connecting the other end of the third resistance portion and the comparison circuit;
    The semiconductor device, wherein a resistance value of the third resistance portion is larger than a resistance value of the first wiring and a resistance value of the second wiring.
  2.  前記第3の抵抗部の抵抗値は、前記第1の配線の抵抗値と前記第2の配線の抵抗値の和に実質的に等しいことを特徴とする請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein a resistance value of the third resistance portion is substantially equal to a sum of a resistance value of the first wiring and a resistance value of the second wiring.
  3.  前記第3の抵抗部は、前記第1の配線と同じ温度特性を有する第1の部分と、前記第2の配線と同じ温度特性を有する第2の部分とを含むことを特徴とする請求項1に記載の半導体装置。 The third resistance portion includes a first portion having the same temperature characteristic as that of the first wiring, and a second portion having the same temperature characteristic as that of the second wiring. 2. The semiconductor device according to 1.
  4.  前記第1の配線に接続された第1の保護素子と、前記第2の配線に接続された第2の保護素子と、をさらに備えることを特徴とする請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, further comprising: a first protection element connected to the first wiring; and a second protection element connected to the second wiring.
  5.  前記第1および第2の保護素子は、ESD保護素子であることを特徴とする請求項4に記載の半導体装置。 The semiconductor device according to claim 4, wherein the first and second protection elements are ESD protection elements.
  6.  第1の配線層と前記第1の配線層の上方に形成された第2の配線層とを含む多層配線構造を更に含み、前記第1及び第2の配線並びに前記第3の抵抗部の各々は前記第2の配線層として形成されることを特徴とする請求項1に記載の半導体装置。 A multilayer wiring structure including a first wiring layer and a second wiring layer formed above the first wiring layer; and each of the first and second wirings and the third resistance portion. The semiconductor device according to claim 1, wherein the semiconductor device is formed as the second wiring layer.
  7.  前記第1及び第2の抵抗部の各々が前記第1の配線層として形成されることを特徴とする請求項6に記載の半導体装置。 The semiconductor device according to claim 6, wherein each of the first and second resistance portions is formed as the first wiring layer.
  8.  出力バッファと、
     レプリカ回路及びコンパレータを含み、前記コンパレータの出力に基づいて前記レプリカ回路のインピーダンスを調整してその調整結果を前記出力バッファに反映させるキャリブレーション回路を備え、
     前記キャリブレーション回路が、前記レプリカ回路と前記コンパレータの一方の入力端子との間に直列に接続された第2ダンピング抵抗および補正抵抗を、更に含むことを特徴とする半導体装置。
    An output buffer;
    A calibration circuit that includes a replica circuit and a comparator, adjusts the impedance of the replica circuit based on the output of the comparator, and reflects the adjustment result in the output buffer;
    The semiconductor device, wherein the calibration circuit further includes a second damping resistor and a correction resistor connected in series between the replica circuit and one input terminal of the comparator.
  9.  キャリブレーション端子を更に備え、
     前記補正抵抗は一端で前記第2ダンピング抵抗と接続され、他端で前記キャリブレーション端子とも接続されることを特徴とする請求項8に記載の半導体装置。
    A calibration terminal,
    9. The semiconductor device according to claim 8, wherein the correction resistor is connected to the second damping resistor at one end and to the calibration terminal at the other end.
  10.  データ端子を更に備え、
     前記出力バッファは、プルアップ回路と、一端で前記プルアップ回路に接続され、他端で前記データ端子に接続される第1ダンピング抵抗とを更に含むことを特徴とする請求項9に記載の半導体装置。
    A data terminal;
    The semiconductor device according to claim 9, wherein the output buffer further includes a pull-up circuit, and a first damping resistor connected to the pull-up circuit at one end and connected to the data terminal at the other end. apparatus.
  11.  前記第1ダンピング抵抗の他端と前記データ端子を接続する第1の配線と、前記補正抵抗の他端と前記キャリブレーション端子を接続する第2の配線と、を更に備えることを特徴とする請求項10に記載の半導体装置。 The apparatus further comprises: a first wiring that connects the other end of the first damping resistor and the data terminal; and a second wiring that connects the other end of the correction resistor and the calibration terminal. Item 11. The semiconductor device according to Item 10.
  12.  前記補正抵抗の抵抗値は、前記第1の配線の抵抗値および前記第2の配線の抵抗値に基づいて設定されることを特徴とする請求項11に記載の半導体装置。 12. The semiconductor device according to claim 11, wherein the resistance value of the correction resistor is set based on a resistance value of the first wiring and a resistance value of the second wiring.
  13.  前記補正抵抗の抵抗値は、前記第1の配線の抵抗値と前記第2の配線の抵抗値の合計値と実質的に等しいことを特徴とする請求項12に記載の半導体装置。 13. The semiconductor device according to claim 12, wherein a resistance value of the correction resistor is substantially equal to a total value of a resistance value of the first wiring and a resistance value of the second wiring.
  14.  前記第1の配線に接続された第1の保護素子と前記第2の配線に接続された第2の保護素子と、を更に含むことを特徴とする請求項11に記載の半導体装置。 12. The semiconductor device according to claim 11, further comprising a first protection element connected to the first wiring and a second protection element connected to the second wiring.
  15.  第1の配線層と当該第1の配線層の上方に形成された第2の配線層とを含む多層配線構造を更に備え、
     前記第1及び第2ダンピング抵抗のそれぞれは前記第1の配線層として形成され、前記第1及び第2の配線並びに前記補正抵抗のそれぞれは前記第2の配線層として形成されることを特徴とする請求項11に記載の半導体装置。
    A multilayer wiring structure including a first wiring layer and a second wiring layer formed above the first wiring layer;
    Each of the first and second damping resistors is formed as the first wiring layer, and each of the first and second wirings and the correction resistor is formed as the second wiring layer. The semiconductor device according to claim 11.
  16.  第1の配線層と当該第1の配線層の上方に形成された第2の配線層と当該第2の配線層の上方に形成された第3の配線層とを含む多層配線構造を更に備え、
     前記第1及び第2ダンピング抵抗のそれぞれは前記第1の配線層として形成され、前記第1の配線は前記第2の配線層として形成され、前記第2の配線は前記第3の配線層として形成され、前記補正抵抗は前記第2の配線層として形成された第1の部分と前記第3の配線層として形成された第3の部分とを含むことを特徴とする請求項11に記載の半導体装置。
    A multilayer wiring structure including a first wiring layer, a second wiring layer formed above the first wiring layer, and a third wiring layer formed above the second wiring layer; ,
    Each of the first and second damping resistors is formed as the first wiring layer, the first wiring is formed as the second wiring layer, and the second wiring is formed as the third wiring layer. The formed correction resistor includes a first portion formed as the second wiring layer and a third portion formed as the third wiring layer. Semiconductor device.
  17.  前記補正抵抗の抵抗値は、前記データ端子のボンディング抵抗の抵抗値と前記キャリブレーション端子のボンディング抵抗の抵抗値に基づいて設定されることを特徴とする請求項10に記載の半導体装置。 11. The semiconductor device according to claim 10, wherein the resistance value of the correction resistor is set based on a resistance value of the bonding resistor of the data terminal and a resistance value of the bonding resistor of the calibration terminal.
  18.  前記補正抵抗の抵抗値は、前記出力バッファにおける電源寄生抵抗の抵抗値と前記レプリカ回路における電源寄生抵抗の抵抗値に基づいて設定されることを特徴とする請求項8に記載の半導体装置。 9. The semiconductor device according to claim 8, wherein the resistance value of the correction resistor is set based on a resistance value of a power supply parasitic resistance in the output buffer and a resistance value of a power supply parasitic resistance in the replica circuit.
PCT/JP2013/083310 2012-12-26 2013-12-12 Semiconductor device WO2014103735A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012283311 2012-12-26
JP2012-283311 2012-12-26
JP2013034399 2013-02-25
JP2013-034399 2013-02-25

Publications (1)

Publication Number Publication Date
WO2014103735A1 true WO2014103735A1 (en) 2014-07-03

Family

ID=51020824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083310 WO2014103735A1 (en) 2012-12-26 2013-12-12 Semiconductor device

Country Status (2)

Country Link
TW (1) TW201444284A (en)
WO (1) WO2014103735A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107527650A (en) * 2016-06-20 2017-12-29 三星电子株式会社 Calibrate the semiconductor memory system of terminating resistor and the calibration method of terminating resistor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353245B (en) * 2015-11-16 2018-05-18 西安紫光国芯半导体有限公司 A kind of DRAM DDR calibration circuits and method based on ZQ pins
CN109994146B (en) * 2017-12-29 2021-03-23 长鑫存储技术有限公司 Detection circuit of semiconductor memory device and semiconductor memory device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001177580A (en) * 1999-12-20 2001-06-29 Sony Corp Impedance adapting system
JP2001352238A (en) * 2000-04-03 2001-12-21 Matsushita Electric Ind Co Ltd Constant impedance driver and method for designing the same
JP2005150392A (en) * 2003-11-14 2005-06-09 Renesas Technology Corp Semiconductor device
JP2008219463A (en) * 2007-03-05 2008-09-18 Nec Corp Impedance adjustment circuit and impedance adjustment method
JP2011061580A (en) * 2009-09-11 2011-03-24 Elpida Memory Inc Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001177580A (en) * 1999-12-20 2001-06-29 Sony Corp Impedance adapting system
JP2001352238A (en) * 2000-04-03 2001-12-21 Matsushita Electric Ind Co Ltd Constant impedance driver and method for designing the same
JP2005150392A (en) * 2003-11-14 2005-06-09 Renesas Technology Corp Semiconductor device
JP2008219463A (en) * 2007-03-05 2008-09-18 Nec Corp Impedance adjustment circuit and impedance adjustment method
JP2011061580A (en) * 2009-09-11 2011-03-24 Elpida Memory Inc Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107527650A (en) * 2016-06-20 2017-12-29 三星电子株式会社 Calibrate the semiconductor memory system of terminating resistor and the calibration method of terminating resistor
CN107527650B (en) * 2016-06-20 2021-03-12 三星电子株式会社 Semiconductor memory device for calibrating termination resistor and method for calibrating termination resistor

Also Published As

Publication number Publication date
TW201444284A (en) 2014-11-16

Similar Documents

Publication Publication Date Title
JP4201128B2 (en) Semiconductor integrated circuit device
US9368189B2 (en) Semiconductor device including output circuit constituted of plural unit buffer circuits in which impedance thereof are adjustable
JP5624441B2 (en) Semiconductor device
JP5578820B2 (en) Semiconductor device
US8749267B2 (en) Device
JP2013085078A (en) Semiconductor device and semiconductor module having the same
WO2014103735A1 (en) Semiconductor device
JP5662122B2 (en) Semiconductor device
US9362908B2 (en) Semiconductor apparatus including output buffer
US10488914B2 (en) Wiring with external terminal
US20080290961A1 (en) Semiconductor device
US20140049294A1 (en) Input buffer
JP2009022029A (en) Semiconductor integrated circuit device
US11296047B2 (en) Wiring with external terminal
US10819296B2 (en) Apparatus for receiving or transmitting voltage signals
US20120146409A1 (en) Semiconductor device having data output buffers
JP2014146641A (en) Semiconductor device
JP2013200933A (en) Semiconductor storage device
US11329036B2 (en) Semiconductor memory device
US8717795B2 (en) Semiconductor device having plural circuit blocks operating at the same timing
US11967355B2 (en) Systems for reducing inconsistencies across current mirror
JP2012253485A (en) Semiconductor device
WO2014125938A1 (en) Semiconductor device
JP2006310871A (en) Semiconductor device
JP2014146910A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 13869308

Country of ref document: EP

Kind code of ref document: A1