WO2014082597A1 - 一种测量同频信号干扰的方法及接收机 - Google Patents

一种测量同频信号干扰的方法及接收机 Download PDF

Info

Publication number
WO2014082597A1
WO2014082597A1 PCT/CN2013/088172 CN2013088172W WO2014082597A1 WO 2014082597 A1 WO2014082597 A1 WO 2014082597A1 CN 2013088172 W CN2013088172 W CN 2013088172W WO 2014082597 A1 WO2014082597 A1 WO 2014082597A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
noise
power
noise ratio
receiver
Prior art date
Application number
PCT/CN2013/088172
Other languages
English (en)
French (fr)
Inventor
黄雄斌
李德军
吴麒麟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13859546.7A priority Critical patent/EP2916473B1/en
Publication of WO2014082597A1 publication Critical patent/WO2014082597A1/zh
Priority to US14/725,984 priority patent/US9413401B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • H04B2001/1045Adjacent-channel interference

Definitions

  • the invention belongs to the field of communications, and in particular relates to a method and a receiver for measuring interference of an intra-frequency signal.
  • Microwave systems propagate signals in free space, and the propagation of signals is affected by free space attenuation, rainfall attenuation, atmospheric absorption, multipath attenuation, and the like. Under normal circumstances, only the normal attenuation such as free space attenuation and atmospheric absorption attenuation occurs. At this time, the signal power reaching the receiver is much higher than the receiving sensitivity power (the sensitivity power is defined as the minimum received power to ensure the normal transmission of the signal, which usually leads to system error.
  • the code rate reaches 1E-6's receiving power to measure the sensitivity), the system can work normally; in the harsh weather conditions, the abnormal attenuation such as rainfall attenuation and multipath attenuation also occurs at the same time, the receiving power will drop significantly, when it falls Below the receiving sensitivity power, the system will not be able to transmit signals properly and the system will enter an unavailable state.
  • the link planner of the microwave system usually designs the part whose normal receiving power is much higher than the sensitivity power, and the part whose normal receiving power is higher than the sensitivity power is called the fading reserve, and its role is to fight against Abnormal decay under severe conditions such as rainfall and multipath.
  • the sensitivity power of a microwave system depends mainly on the performance of the system itself. However, when the microwave system is interfered by signals from other receivers operating at the same frequency, the sensitivity of the microwave system deteriorates, and the effective fading reserve of the microwave system is reduced. , the total availability decreased. Therefore, as a microwave network planner, it is desirable to know whether the current microwave link is subject to co-channel interference and to assess whether the interference is within an acceptable range.
  • the transmitter transmits a signal of its working frequency
  • the receiver receives a signal of the same frequency. No.; set the working transmitter to off so that it no longer transmits any signal; the receiver detects the received signal power at the operating frequency, and if it detects power, it is considered to be the signal power from other receivers. , that is, the same frequency interference power.
  • This method cannot detect low power interference.
  • the minimum received power that can be detected by a receiver in a microwave system is typically around -90 dBm (Decibel Referenced to one milliwatt, dBm), and the detection of smaller power leads to a significant increase in cost.
  • the minimum interference power that can be measured by the above technical solution can only be about -90 dBm.
  • the interference detection capability of -90dBm is often insufficient, and the same-frequency interference of less than -90dBm can cause significant deterioration of the sensitivity of the microwave system.
  • the transmitter transmits a signal of its working frequency, and the receiver receives the signal of the same frequency; the transmitter that is working is gradually reduced in transmission power, and the receiving power of the receiver is also simultaneously reduced, and the system simultaneously Gradually generate errors.
  • the receiver's bit error rate reaches 1E-6, the received power is equal to the actual sensitivity power at this time.
  • the transmitter needs to have a large transmission power adjustment range, such as an adjustment range greater than 40 decibels (dB), so that by adjusting the transmitter's transmit power, the receiver's received power can be reduced to the sensitivity power level. .
  • the transmitter achieves a power adjustment range of 40 dB, and the cost is high; at the same time, the method determines whether the receiving sensitivity is reached by observing the bit error rate of the system, and observing the bit error rate is a relatively time consuming process, so in the prior art 2 The measurement time is relatively long.
  • An object of the embodiments of the present invention is to provide a method for measuring interference of an intra-frequency signal, which solves the problem of simply measuring whether a microwave link is subjected to co-channel interference and co-channel interference power.
  • a method for measuring interference of an intra-frequency signal comprising:
  • the interference power of the same-frequency signal interference is obtained by the power superposition algorithm.
  • the measuring the temperature of the receiver, calculating the signal noise of the low power signal when there is no co-channel interference according to the temperature and the pre-stored noise figure Ratio including:
  • SNRA signal-to-noise ratio
  • the signal-to-noise ratio of the low-power signal and the signal-to-noise ratio of the actual operating low-power signal are interfered according to the interference of the same-frequency signal Noise, including:
  • the interference noise DS is obtained.
  • the acquiring, by the power superposition algorithm, the interference power according to the interference noise includes:
  • the total noise is equal to the thermal noise and the interference noise, and the power superposition algorithm is obtained:
  • the interference power is obtained:
  • a receiver the receiver includes:
  • a first calculating unit configured to measure a temperature of the receiver amplifier AMP, calculate, according to the temperature and a noise coefficient of a pre-stored receiver, when the receiver receives a low-power signal when there is no co-channel interference, the receiver Signal to noise ratio of the demodulator DEM;
  • a second calculating unit configured to measure received power and signal to noise ratio of the groups of receivers, each group comprising two signal to noise ratios and received power corresponding to the two signal to noise ratios, two of each group The difference between the signal to noise ratio is equal to or greater than 2 dB, and the signal to noise ratio of the low power signal of the receiver during actual operation is calculated according to the received power and the signal to noise ratio of the receivers;
  • a third calculating unit configured to obtain interference noise of the same frequency signal interference according to a signal to noise ratio of the low power signal when the same frequency signal is not interfered with a signal to noise ratio of the actual operating small power signal;
  • a fourth calculating unit configured to acquire, according to the interference noise of the same-frequency signal interference, the interference power of the same-frequency signal interference by using a power superposition algorithm.
  • the first calculating unit is configured to:
  • SNRA signal-to-noise ratio
  • the second calculating unit includes:
  • a first measuring unit configured to measure received power and a signal to noise ratio of at least one group of receivers, each group comprising two signal to noise ratios and received power corresponding to the two signal to noise ratios, each of the groups The difference between the two signal to noise ratios is equal to or greater than 2 dB;
  • a fifth calculating unit configured to calculate, according to the received power and the signal to noise ratio of each group of receivers, a signal to noise ratio of the low power signal of the actual operation of the receiver of each group;
  • a first averaging unit configured to average the signal-to-noise ratio of the at least one group of the actual operating low-power signals to obtain a signal-to-noise ratio of the low-power signal of the receiver during actual operation.
  • the second calculating unit includes:
  • a second measuring unit configured to measure a received power and a signal to noise ratio of a group of receivers, to obtain (si, snrl), (s2, snr2);
  • the second calculating unit includes:
  • a third measuring unit configured to measure a minimum received power and a signal to noise ratio of the receiver and a maximum received power and a signal to noise ratio of the receiver, to obtain (Smin, snr m i n ), ( s max , snr max ),
  • the third calculating unit includes:
  • the interference noise DS is obtained.
  • the fourth calculating unit includes:
  • the interference power is obtained:
  • Nth is thermal noise
  • I interference power
  • Nth+DS is total noise caused by co-channel interference.
  • FIG. 1 is a flowchart of a method for measuring interference of an intra-frequency signal according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of a method for measuring interference of an intra-frequency signal according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of a method for measuring interference of an intra-frequency signal according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram of the same-frequency measurement provided by Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of a device structure of a receiver according to Embodiment 2 of the present invention.
  • FIG. 7 is a structural diagram of a device provided by a second embodiment of the present invention.
  • FIG. 8 is a structural diagram of a device for receiving a receiver according to Embodiment 2 of the present invention.
  • FIG. 9 is a structural diagram of a device provided by a second embodiment of the present invention.
  • FIG. 10 is a device structure diagram of a receiver according to a third embodiment of the present invention.
  • the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. . It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • FIG. 1 is a flow chart of a method for measuring interference of an intra-frequency signal according to Embodiment 1 of the present invention. As shown in Figure 1, the method includes the following steps:
  • Step 101 Measure a temperature of a receiver amplifier AMP, and calculate a demodulator DEM of the receiver when the receiver receives a small power signal when there is no co-channel interference according to the temperature and a noise coefficient of a pre-stored receiver.
  • Signal to noise ratio Signal to noise ratio
  • the DEM signal to noise ratio of the receiver is approximately signal independent noise.
  • each physical quantity uses two scales, one is a linear scale, such as the power unit mw, which is represented by lowercase letters; the other is a decibel scale, such as power.
  • this scale is expressed in uppercase letters.
  • s represents the linear scale of the signal power, unit mw;
  • the signal transmitted by the receiver receiving transmitter is affected by the following noise: thermal noise; interference signal noise; internal noise of the system, including: nonlinear noise, phase noise, analog to digital (AD) In-phase and Quadrature (QI) unbalanced noise in quadrature Amplitude Modulation (QAM)
  • thermal noise including: thermal noise; interference signal noise; internal noise of the system, including: nonlinear noise, phase noise, analog to digital (AD) In-phase and Quadrature (QI) unbalanced noise in quadrature Amplitude Modulation (QAM)
  • Nonlinear noise includes transmitter nonlinear noise and receiver nonlinear noise.
  • the nonlinear noise of the transmitter is mainly from the Power Amplifer (PA).
  • PA Power Amplifer
  • AGA circuit automatic gain control unit
  • the signal-to-noise ratio of nonlinear noise is usually It is represented by Intermodulation distortion (imd).
  • the correlation coefficient, f is the frequency, fc is the cutoff frequency of the carrier recovery loop, and fs is the symbol bandwidth of the signal.
  • Inphase and Quadrature (IQ) imbalance is when IQ modulation
  • EVm can be used to measure the signal-to-noise ratio caused by IQ imbalance.
  • Interference noise from outside the system, is unknown, set to i
  • the signal to noise ratio (snr) of the signal is equal to the ratio of the signal power to the sum of the above noise powers:
  • the total noise is signal-independent noise X and signal-related noise y*s, when there is no co-channel signal interference, the signal-independent noise is thermal noise k*t*b*f;
  • SNR S-Nth.
  • the signal power and the signal-to-noise ratio have a change relationship of ldB:ldB, that is, the signal-to-noise ratio also changes ldB for every ldB of the signal power. It indicates that in the two-dimensional graph, it is a positive 45. .
  • the noise of the receiver is approximately signal-dependent noise, that is, x+y*s « y*s, which is recorded as large signal noise, and the receiver is established according to the large signal noise.
  • SA takes -90dBm; k and b are constants; t is temperature, detected by TEMP SENSOR and notified CONTROL UNIT; NF is the noise figure, read by CONTROL UNIT from FLASH.
  • SNRA is recorded as the signal-to-noise ratio of the low power signal when there is no interference from the same frequency signal.
  • the system is composed of a transmitter (Transmitter, TX), a transmitter antenna (Antenna, ANT) 1, a receiver antenna ANT2, a receiver (Receiver, RX), and a transmitter.
  • the TX is composed of a modulator (MOD), an attenuator (ATT), an amplifier (AMP) 1 and a communication unit (Communication Unit, COM UNIT) 1, and receives
  • the machine RX is composed of an amplifier AMP2, an AGC, a demodulator (Demodulator, DEM), a temperature sensor TEMP SENSOR, a memory FLASH, a control unit CONTROL UNIT, and a communication unit COM U IT2.
  • the signal transmitted by the transmitter is transmitted to the receiving end via ANT1 via free space, received by the receiving antenna ANT2 and delivered to the receiver RX.
  • the transmitter can control the power of the transmitted signal output to the antenna by controlling the attenuation of the ATT.
  • the transmit power adjustment range is about 23 dB.
  • the power control signal is sent by the CONTROL UNIT at RX and passed to the ATT via two communication units COM U IT1 and COM U IT2 for power control. Communication between COM U IT1 and COM U IT2 can be achieved through the overhead channel of the system or via the public telephone network. As an optional feature, the actual transmit power of the TX can be fed back to the CONTROL UNIT via the COM Units COM U IT1 and COM U IT2 to help monitor the TX's operating status and achieve fault diagnosis.
  • Receiver RX's AGC has a power detection function that detects the signal power output from the antenna ANT2 to the RX and notifies the CONTROL UNIT by the Received Signal Strength Indication (RSI).
  • RSSI Received Signal Strength Indication
  • the TEMP SENSOR of the receiver RX detects the temperature inside the receiver and notifies the CONTROL U IT 0
  • the demodulator DEM of the receiver RX can detect the signal-to-noise ratio of the received signal. For example, by detecting the mean square error of the received signal, the signal-to-noise ratio of the received signal can be measured. The signal-to-noise ratio signal is sent to CONTROL U IT 0.
  • Receiver RX's noise figure, NF is measured and written to the RX's memory FLASH during production for use by CONTROL UNIT.
  • Step 102 Measure receiving power and signal to noise ratio of several groups of receivers, each group including two signal to noise ratios and received power corresponding to the two signal to noise ratios, and two signal to noise ratios of each group The difference is equal to or greater than 2 dB, and the signal to noise ratio of the low power signal of the receiver during actual operation is calculated according to the received power and the signal to noise ratio of the receivers;
  • the received power is the power that the received signal is not amplified, that is, the signal power received by the antenna ANT2 in FIG. 2; the signal-to-noise ratio may be the signal-to-noise ratio of the received signal before or after the amplification.
  • measuring the received power and signal to noise ratio of a group of receivers to obtain (si, snrl), (s2, snr2);
  • CONTROL UNIT controls TX to transmit a large signal power
  • RX measures the received power, which is recorded as si (in mw), or SI (in dBm).
  • RX simultaneously measures the signal-to-noise ratio of the received signal, denoted as snrl (no unit), or SNR1 (in dB), and the measurement point (S1, SNR1) is labeled in Figure 4 (S1, SNR1).
  • the CONTROL UNIT controls the TX to transmit a small power signal power, and the RX measures the received power, which is recorded as s2 (in mw) or S2 (in dBm).
  • RX simultaneously measures the signal-to-noise ratio of the received signal, denoted as snr2 (no unit), or SNR2 (in dB).
  • the measurement point (S2, SNR2) is labeled in Figure 4 (S2, SNR2).
  • Snr2 s2/(x+y*s2)
  • Step 103 Obtain interference noise of the same-frequency signal interference according to a signal-to-noise ratio of the low-power signal and the signal-to-noise ratio of the actual low-power signal when the same-frequency signal is not interfered;
  • Step 104 Acquire interference power of the same frequency signal interference by using a power superposition algorithm according to the interference noise of the same frequency signal interference.
  • the total noise caused by the same-frequency interference is equal to the thermal noise and the interference noise, and the following is obtained:
  • Nth _ Nth+DS Nth is thermal noise
  • I interference power
  • Nth+DS total noise caused by co-channel interference.
  • the noise of the receiver is approximately a superposition of the thermal noise and the interference signal noise
  • the power of the interference signal is established according to the superposition, and the signal-to-noise ratio of the interference-free low-power signal is established.
  • the equation of the difference between the signal-to-noise ratio of the low-power signal in actual operation, and the power of the interference signal is calculated according to the equation.
  • the noise of the machine is approximately the superposition of thermal noise and interference signal noise, which is 10 +10 in the interference situation.
  • the interference power I is calculated from this equation.
  • the minimum detected interference depends on the DS of the minimum measurement.
  • the minimum measured DS of the actual measurement can reach about ldB, and the symbol rate of the signal is assumed to be 6 Mb/s, and the noise figure is 5 dB.
  • the minimum measurable interference power provided by the examples of the present invention is:
  • the minimum measurable interference power provided by the embodiment of the present invention is -107 dBm.
  • the SNR between the two measurement points has a difference of more than 2 dB to ensure the accuracy of the SNR-S curve fitting.
  • the receiver's received power is in the range of -30 to -55 dBm, typically -40 dBm.
  • the measurement data to be collected by the present invention is the received power and the signal-to-noise ratio, and both of the measurements can be completed in the second-order time without observing the error rate.
  • the error rate is required to be observed. A few minutes to tens of minutes.
  • Embodiments of the present invention provide a method for measuring interference of an intra-frequency signal, which obtains a signal-to-noise ratio of a low-power signal without interference of the same-frequency signal by measuring the temperature and the stored noise coefficient; and obtaining at least one group by controlling the transmit power.
  • the received power and signal-to-noise ratio of the receiver obtain the signal-to-noise ratio of the low-power signal in actual operation; the signal-to-noise ratio of the low-power signal and the signal-to-noise ratio of the low-power signal in actual operation according to the interference of the same-frequency signal Difference, calculate the interference power.
  • the minimum measurable interference power is -107dBm; the transmitter has a power regulation range of 23dB; measurements can be completed in seconds.
  • FIG. 6 is a structural diagram of a device of a receiver according to Embodiment 2 of the present invention. As shown in Figure 6, the receiver includes the following units:
  • a first calculating unit 601 measuring a temperature of the receiver amplifier AMP, calculating a solution of the receiver when the receiver receives a small power signal when there is no co-channel signal interference according to the temperature and a noise coefficient of a pre-stored receiver Signal to noise ratio of the modulator DEM;
  • the DEM signal to noise ratio of the receiver is approximately signal independent noise.
  • the first calculating unit 601 is configured to:
  • SNRA signal-to-noise ratio
  • a second calculating unit 602 which measures received power and signal to noise ratio of several groups of receivers, each group including The two signal to noise ratios and the received power corresponding to the two signal to noise ratios, the difference between the two signal to noise ratios of each group is equal to or greater than 2 dB, according to the received power and signal noise of the groups of receivers Calculating the signal to noise ratio of the low power signal when the receiver is actually operating;
  • the received power is the power that the received signal is not amplified, that is, the signal power received by the antenna ANT2 in FIG. 2; the signal-to-noise ratio may be the signal-to-noise ratio of the received signal before or after the amplification.
  • the second calculating unit 602 includes a first measuring unit 701, a fifth calculating unit 702, and a first averaging unit 703;
  • the first measuring unit 701 is configured to measure received power and a signal to noise ratio of at least one group of receivers, each group including two signal to noise ratios and received power corresponding to the two signal to noise ratios, The difference between the two signal to noise ratios of each group is equal to or greater than 2 dB;
  • the five calculating unit 702 is configured to calculate, according to the received power and the signal to noise ratio of each group of receivers, a signal to noise ratio of the low power signal of the actual operation of the receiver of each group;
  • the first averaging unit 703 is configured to average the signal-to-noise ratio of the actual operating low-power signal that is at least greater than one obtained by the at least one group, to obtain a low-power signal of the receiver during actual operation. Signal to noise ratio.
  • the second calculating unit 602 includes a second measuring unit 801, a sixth calculating unit 802;
  • the second measuring unit 801 is configured to measure a received power and a signal to noise ratio of a group of receivers to obtain (si, snrl), (s2, snr2);
  • the second calculating unit 602 includes a third measuring unit 901, and a seventh calculating unit 902.
  • the third measuring unit 901 is configured to measure a minimum received power and a signal to noise ratio of a group of receivers and a receiver. Maximum received power and signal-to-noise ratio, resulting in (Smin, SHr m i n ), (S max , Sli max ),
  • a third calculating unit 603, configured to obtain interference noise of the same-frequency signal interference according to a signal-to-noise ratio of the low-power signal and the signal-to-noise ratio of the actual operating low-power signal when the same-frequency signal is not interfered ;
  • the fourth calculating unit 604 is configured to obtain, according to the interference noise of the same-frequency signal interference, the interference power of the same-frequency signal interference by using the power superposition algorithm.
  • the total noise caused by the co-channel interference is equal to the thermal noise and the interference noise, and the power superposition algorithm is obtained:
  • the interference power is obtained: Among them, Nth is thermal noise, I is interference power, and Nth+DS is total noise caused by co-channel interference.
  • Nth thermal noise
  • I interference power
  • Nth+DS total noise caused by co-channel interference.
  • the minimum measurable interference power provided by the embodiment of the present invention is -107 dBm.
  • the SNR between the two measurement points has a difference of more than 2 dB to ensure the accuracy of the SNR-S curve fitting.
  • the receiver's received power is in the range of -30 to -55 dBm, typically -40 dBm.
  • the measurement data to be collected by the present invention is the received power and the signal-to-noise ratio, and both of the measurements can be completed in the second-order time without observing the error rate.
  • the error rate is required to be observed. A few minutes to tens of minutes.
  • Embodiments of the present invention provide a receiver that accurately obtains a signal-to-noise ratio of a low-power signal without interference of a co-frequency signal by measuring temperature and stored noise coefficient; and obtaining reception of at least one group of receivers by controlling transmit power Power and signal-to-noise ratio, obtain the signal-to-noise ratio of the low-power signal in actual operation; calculate the interference according to the difference between the signal-to-noise ratio of the low-power signal and the signal-to-noise ratio of the low-power signal during actual operation when the same-frequency signal is not interfered power.
  • the minimum measurable interference power is -107dBm; the transmitter has a power adjustment range of 23dB; measurements can be completed in seconds.
  • FIG. 10 is a structural diagram of a device according to a third embodiment of the present invention.
  • FIG. 10 is a receiver 1000 according to an embodiment of the present invention.
  • the specific implementation of the present invention does not limit the specific implementation of the receiver.
  • the receiver 1000 includes:
  • the receiving end antenna ANT1001 receives the signal sent by the transmitter and sends it to the receiver RX1000;
  • Receiver RX's AGC 1003 has a power detection function that detects the signal power output from the antenna ANT 1001 to the RX and notifies the CONTROL UNIT 1007 by the Received Signal Strength Indication (RSI).
  • RSSI Received Signal Strength Indication
  • Receiver RX's TEMP SENSOR1005 detects the temperature inside the receiver and notifies CONTROL UNIT 1007.
  • Receiver RX's demodulator DEM1004 can detect the signal-to-noise ratio of the received signal. For example, by detecting the mean square error of the received signal, the signal-to-noise ratio of the received signal can be measured. The signal-to-noise ratio signal is sent to CONTROL UNIT 1007.
  • the noise figure NF of the receiver RX is measured and written to the receiver RX's memory FLASH1006 during production for use by the CONTROL U IT1007.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Noise Elimination (AREA)

Abstract

本发明实施例提供一种测量同频信号干扰的方法及接收机,所述方法通过测量温度和存储的噪声系数精确得到无同频信号干扰时小功率信号的信噪比;通过控制发射功率获得至少一组接收机的接收功率和信噪比,得到实际运行时小功率信号的信噪比;根据所述无同频信号干扰时小功率信号的信噪比和实际运行时小功率信号的信噪比的差异,计算干扰功率。从而实现最小可测量的干扰功率为-107dBm;发射机具备功率调节范围为23dB;测量都可以在秒级时间内完成。

Description

一种测量同频信号干扰的方法及接收机 本申请要求了 2012年 11月 29日提交的, 申请号为 201210497166.X, 名 称为"一种测量同频信号干扰的方法及接收机"的中国申请的优先权,其全部内 容通过引用结合在本申请中。 技术领域
本发明属于通信领域, 尤其涉及一种测量同频信号干扰的方法及接收机。 背景技术 微波***在自由空间中传播信号,信号的传播受自由空间衰减、降雨衰减、 大气吸收、 多径衰减等影响。 正常情况下, 只有自由空间衰减和大气吸收衰 减等常态衰减发生, 此时到达接收机的信号功率远高于接收灵敏度功率 (灵 敏度功率定义为保证信号正常传输的最小接收功率, 通常用导致***误码率 达到 1E-6的接收功率来衡量灵敏度) , ***可以正常工作; 在恶劣的气候条 件下, 降雨衰减和多径衰减等非常态衰减也同时发生, 此时接收功率会显著 下降, 当下降到接收灵敏度功率以下, ***将无法正常传输信号, ***进入 不可用状态。 为了尽量降低***不可用的总时间, 微波***的链路规划者通 常设计正常接收功率远高于灵敏度功率, 并将正常接收功率高出灵敏度功率 的部分称为衰落储备, 其作用是用来对抗降雨、 多径等恶劣条件下的非常态 衰减。
微波***的灵敏度功率主要取决于***本身的性能,但是当微波***受到 来自其它接收机的工作于同一频率的信号的干扰时, 微波***的灵敏度会发 生恶化, 此时微波***的有效衰落储备降低, 总可用度下降。 因此作为微波 网络规划者, 希望知道当前的微波链路是否受到同频干扰, 并评估此干扰是 否在可接受范围。
现有技术一中, 发射机发射其工作频率的信号, 接收机接收同一频率的信 号; 将正在工作的发射机设置为关闭, 使其不再发射任何信号; 此时接收机 检测所述工作频率上的接收信号功率, 如果检测到功率, 则认为是来自其它 接收机的信号功率, 即同频干扰功率。 此方法无法检测到小功率的干扰。 由 于成本的原因, 微波***的接收机可检测的最小接收功率通常在 -90分贝毫瓦 ( Decibel Referenced to one milliwatt, dBm )左右, 更小功率的检测会导致成 本显著上升。因此上述技术方案可以测量的最小干扰功率只能到 -90dBm左右。 而 -90dBm的干扰检测能力常常是不够的, 小于 -90dBm的同频干扰也会导致微 波***灵敏度发生显著的恶化。
同时, 在现有技术二中, 发射机发射其工作频率的信号, 接收机接收同 一频率的信号; 将正在工作的发射机逐渐降低发射功率, 此时接收机的接收 功率也同时降低, 同时***逐渐产生误码。 当接收机的误码率达到 1E-6时, 接收功率等于此时的实际灵敏度功率。 通过判断此实际的灵敏度功率是否发 生恶化, 可知此时是否存在频率干扰, 同时根据灵敏度恶化的多少, 可以计 算出干扰功率大小。 所述方法中发射机需要具有较大的发射功率调节范围, 如调节范围要大于 40分贝 (Decibel, dB ) , 以实现通过调节发射机的发射功 率, 接收机的接收功率可以下降至灵敏度功率水平。 而发射机实现 40dB的功 率调节范围, 成本较高; 同时所述方法通过观察***误码率来判断是否达到 接收灵敏度, 观察误码率是一个比较耗时的过程, 因此现有技术二中的测量 时间比较长。 发明内容 本发明实施例的目的在于提供的一种测量同频信号干扰的方法, 所述方 法解决了简便测量微波链路是否受到同频干扰, 以及同频干扰功率。
第一方面, 一种测量同频信号干扰的方法, 所述方法包括:
测量接收机放大器 AMP的温度,根据所述温度和预先存储的接收机的噪 声系数计算无同频信号干扰时所述接收机接收小功率信号时, 所述接收机的 解调器 DEM 的信噪比;
测量若干组接收机的接收功率和信噪比, 每一组包括两个信噪比和所述 两个信噪比对应的接收功率, 所述每一组的两个信噪比的差值等于或者大于 2dB,根据所述若干组接收机的接收功率和信噪比计算所述接收机实际运行时 小功率信号的信噪比;
根据所述无同频信号干扰时小功率信号的信噪比和所述实际运行时小功 率信号的信噪比获得同频信号干扰的干扰噪声;
根据所述同频信号干扰的干扰噪声, 通过功率叠加算法获取同频信号干 扰的干扰功率。
结合第一方面, 在第一方面的第一种可能的实现方式中, 所述测量接收 机的温度, 根据所述温度和预先存储的噪声系数计算无同频信号干扰时小功 率信号的信噪比, 包括:
测量接收机的温度 t,根据所述 t和预先存储的噪声系数 NF, 和总信噪比 公式 SNR=S-Nth, 计算无同频信号干扰时小功率信号的信噪比 SNRA, 其中, SNRA = SA-(10*log ( k*t*b ) +NF), k是波耳兹曼常数, t是绝对温度, b为 等效噪声带宽, NF为噪声系数, SA是接收机的接收的小功率信号的功率。
结合第一方面或者第一方面的第一种可能的实现方式, 在第一方面的第 二种可能的实现方式中, 所述测量若干组接收机的接收功率和信噪比, 每一 组包括两个信噪比和所述两个信噪比对应的接收功率, 所述每一组的两个信 噪比的差值等于或者大于 2dB, 根据所述若干组接收机的接收功率和信噪比 计算所述接收机实际运行时小功率信号的信噪比, 包括:
测量至少一组的接收机的接收功率和信噪比, 每一组包括两个信噪比和 所述两个信噪比对应的接收功率, 所述每一组的两个信噪比的差值等于或者 大于 2dB;
根据每一组的接收机的接收功率和信噪比, 计算出每一组的所述接收机 实际运行时小功率信号的信噪比;
将所述至少一组得到的所述实际运行时小功率信号的信噪比取平均, 得 到所述接收机实际运行时小功率信号的信噪比。
结合第一方面或者第一方面的第一种可能的实现方式, 在第一方面的第 三种可能的实现方式中, 所述测量若干组接收机的接收功率和信噪比, 每一 组包括两个信噪比和所述两个信噪比对应的接收功率, 所述每一组的两个信 噪比的差值等于或者大于 2dB, 根据所述若干组接收机的接收功率和信噪比 计算所述接收机实际运行时小功率信号的信噪比, 包括:
测量一组接收机的接收功率和信噪比, 得到 (sl, snrl ), (s2, snr2 ); 根据 总信噪 比公式 snr=s/(x+y*s) , 得到 snrl=sl/(x+y*sl) , snr2=s2/(x+y*s2), 其中 x是信号无关噪声, y是信号相关噪声;
根据所述一组接收机的接收功率和信噪比, 得到
_ {snrl - snr\) *^1*^2
(^2 - ^l) * snrl * snrl 根据 SNRB=10*log (sa) -10*logx, 得到
Figure imgf000006_0001
5 5 snr ― snr 其中, SA=10*log (sa)。
结合第一方面或者第一方面的第一种可能的实现方式, 在第一方面的第 四种可能的实现方式中, 所述测量若干组接收机的接收功率和信噪比, 每一 组包括两个信噪比和所述两个信噪比对应的接收功率, 所述每一组的两个信 噪比的差值等于或者大于 2dB, 根据所述若干组接收机的接收功率和信噪比 计算所述接收机实际运行时小功率信号的信噪比, 包括:
测量一组接收机的最小接收功率和信噪比及接收机的最大接收功率和信 噪比, 得到 ( ), ( s snr
根据所述总信噪比公式 snr=s/(x+y*s),得到 snrmm = smm /(x+y* smm), snrmax /(x+y* s
根据所述一组接收机的接收功率和信噪比, 得到
Figure imgf000006_0002
根据 SNRB=10*log (sa) -10*logx, 得到
Figure imgf000006_0003
其中, SA=10*log ( sa )。
结合第一方面或者第一方面的第一种可能的实现方式或者第一方面的第 二种可能的实现方式或者第一方面的第三种可能的实现方式或者第一方面的 第四种可能的实现方式, 在第一方面的第五种可能的实现方式中, 所述根据 所述无同频信号干扰时小功率信号的信噪比和所述实际运行时小功率信号的 信噪比获得干扰噪声, 包括:
根据 DS=SNRA-SNRB, 得到干扰噪声 DS。
结合第一方面的第五种可能的实现方式, 在第一方面的第六种可能的实 现方式中, 所述根据所述干扰噪声, 通过功率叠加算法获取干扰功率, 包括: 根据同频干扰导致的总噪声等于热噪声和干扰噪声, 得到功率叠加算法:
Nth _ Nth+DS
根据所述功率叠加算法, 得到干扰功率:
Figure imgf000007_0001
其中, Nth是热噪声, I是干扰功率, Nth+DS是同频干扰导致的总噪声。 第二方面, 一种接收机, 所述接收机包括:
第一计算单元, 用于测量接收机放大器 AMP的温度, 根据所述温度和预 先存储的接收机的噪声系数计算无同频信号干扰时所述接收机接收小功率信 号时, 所述接收机的解调器 DEM 的信噪比;
第二计算单元, 用于测量若干组接收机的接收功率和信噪比, 每一组包 括两个信噪比和所述两个信噪比对应的接收功率, 所述每一组的两个信噪比 的差值等于或者大于 2dB, 根据所述若干组接收机的接收功率和信噪比计算 所述接收机实际运行时小功率信号的信噪比;
第三计算单元, 用于根据所述无同频信号干扰时小功率信号的信噪比和 所述实际运行时小功率信号的信噪比获得同频信号干扰的干扰噪声; 第四计算单元, 用于根据所述同频信号干扰的干扰噪声, 通过功率叠加 算法获取同频信号干扰的干扰功率。
结合第二方面, 在第二方面的第一种可能的实现方式中, 所述第一计算 单元, 用于:
测量接收机的温度 t,根据所述 t和预先存储的噪声系数 NF, 和总信噪比 公式 SNR=S-Nth, 计算无同频信号干扰时小功率信号的信噪比 SNRA, 其中, SNRA = SA-(10*log ( k*t*b ) +NF), k是波耳兹曼常数, t是绝对温度, b为 等效噪声带宽, NF为噪声系数, SA是接收机的接收的小功率信号的功率。
结合第二方面或者第二方面的第一种可能的实现方式, 在第二方面的第 二种可能的实现方式中, 所述第二计算单元, 包括:
第一测量单元, 用于测量至少一组的接收机的接收功率和信噪比, 每一 组包括两个信噪比和所述两个信噪比对应的接收功率, 所述每一组的两个信 噪比的差值等于或者大于 2dB;
第五计算单元, 用于根据每一组的接收机的接收功率和信噪比, 计算出 每一组的所述接收机实际运行时小功率信号的信噪比;
第一平均单元, 用于将所述至少一组得到的所述实际运行时小功率信号 的信噪比取平均, 得到所述接收机实际运行时小功率信号的信噪比。
结合第二方面或者第二方面的第一种可能的实现方式, 在第二方面的第 三种可能的实现方式中, 所述第二计算单元, 包括:
第二测量单元, 用于测量一组接收机的接收功率和信噪比, 得到 (si , snrl ), ( s2, snr2 );
第六计算单元, 用于根据总信噪比公式 snr=s/(x+y*s) , 得到 snrl=sl/(x+y*sl), snr2=s2/(x+y*s2), 其中 x是信号无关噪声, y是信号相关噪 声;
根据所述一组接收机的接收功率和信噪比, 得到
_ {snrl - snr\) * ^1 * ^2
(^2 - ^l) * snrl * snrl 根据 SNRB=10*log ( sa ) -10*logx, 得到
Figure imgf000009_0001
5 5 snr ― snr 其中, SA=10*log ( sa )。
结合第二方面或者第二方面的第一种可能的实现方式, 在第二方面的第 四种可能的实现方式中, 所述第二计算单元, 包括:
第三测量单元, 用于测量一组接收机的最小接收功率和信噪比及接收机 的最大接收功率和信噪比, 得到 ( Smin, snrmin ), ( smax, snrmax ),
第七计算单元, 用于根据所述总信噪比公式 snr=s/(x+y*s) , 得到 snrmm = Smin /(x+y* smin), snrmax― smax /(x+y* smax),
根据所述一组接收机的接收功率和信噪比, 得到 γ _ (Snrrmx― Snr n ) * ^min * S
(Srmx― ^min ) * ^^min * Snrx 根据 SNRB=10*log ( sa ) -10*logx, 得到
Figure imgf000009_0002
其中, SA=10*log ( sa )。
结合第二方面或者第二方面的第一种可能的实现方式或者第二方面的第 二种可能的实现方式或者第二方面的第三种可能的实现方式或者第二方面的 第四种可能的实现方式, 在第二方面的第五种可能的实现方式中, 所述第三 计算单元, 包括:
根据 DS=SNRA-SNRB , 得到干扰噪声 DS。
结合第二方面的第五种可能的实现方式, 在第二方面的第六种可能的实 现方式中, 所述第四计算单元, 包括:
根据同频干扰导致的总噪声等于热噪声和干扰噪声, 得到功率叠加算法:
Nth _ Nth+DS 根据所述功率叠加算法, 得到干扰功率:
Figure imgf000010_0001
其中, Nth是热噪声, I是干扰功率, Nth+DS是同频干扰导致的总噪声。 附图说明 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例中所需 要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前 提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例一提供的一种测量同频信号干扰的方法流程图 图 2是本发明实施例一提供的- -种测量同频信号干扰的方法示意图 图 3是本发明实施例一提供的- -种测量同频信号干扰的方法示意图 图 4是本发明实施例一提供的- -种测量同频信号干扰的方法示意图 图 5是本发明实施例一提供的- -种测量同频信号干扰的方法示意图 图 6是本发明实施例二提供的- -种接收机的装置结构图
图 7是本发明实施例二提供的- -种接收机的装置结构图
图 8是本发明实施例二提供的- -种接收机的装置结构图
图 9是本发明实施例二提供的- -种接收机的装置结构图
图 10是本发明实施例三提供的一种接收机的装置结构图 具体实施方式 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及 实施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施 例仅仅用以解释本发明, 并不用于限定本发明。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本 发明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本 发明的保护范围之内。
实施例一
参考图 1 ,图 1是本发明实施例一提供的一种测量同频信号干扰的方法流 程图。 如图 1所示, 该方法包括以下步骤:
步骤 101 , 测量接收机放大器 AMP的温度, 根据所述温度和预先存储的 接收机的噪声系数计算无同频信号干扰时所述接收机接收小功率信号时, 所 述接收机的解调器 DEM 的信噪比;
其中, 当接收机的接收信号是小功率信号时, 所述接收机的 DEM信噪比 近似为信号无关噪声。
具体的,在以下表述中,各物理量釆用了两种标度方式,一种是线性标度, 如功率单位 mw, 这种标度使用小写字母表示; 另一种是分贝标度, 如功率单 位 dBm, 这种标度使用大写字母表示。 举例: s表示线性标度的信号功率, 单 位 mw; S表示分贝标度的信号功率, 单位分 dBm , 两者之间的关系为: S=10*log(s;)。
微波传输***中, 接收机接收发射机发射的信号受到如下噪声的影响: 热噪声; 干扰信号噪声; ***内部噪声, 包含: 非线性噪声、 相位噪声、 模拟到数字转换 (Analog to Digital , AD ) 釆样量化噪声、 正交幅度调制 ( Quadrature Amplitude Modulation, QAM )中的同相分量和正交分量 ( Inphase and Quadrature, IQ ) 不平衡噪声
非线性噪声包括发射机非线性噪声和接收机非线性噪声。发射机的非线性 噪声主要来源于功放 (Power Amplifer, PA), 功率越高, 非线性噪声越大。 通 过发射功率的适当回退, 可以将 PA的非线性噪声影响降到足够低以至忽略, 因此主要考虑接收机的非线性噪声, 接收机的非线性噪声来源于接收机中的 各级放大器, 接收机通常会通过自动增益控制单元(Automatic Gain Control, AGO 电路, 控制各级放大器输入功率使放大器工作于线性区间, 以维持总 的非线性相对恒定且满足***要求。 非线性噪声的信噪比通常用三阶交调失 真 ( Intermodulation distortion,imd ) 来表示。
相位噪声来自***中的各级频率源, 最终起作用的是加总的相位噪声, 可 以表示为: L(f)=a/(fA2), 这是一个相位噪声曲线, 它对信噪比的影响通过曲线 的积分来评估。 接收解调电路中的载波恢复环路对相位噪声起到滤波作用, 最终的积分相位噪声信噪比等于 ipn=4*a*(l/fc-l/fs), 其中 a是与相位噪声大小 相关的系数, f是频率, fc是载波恢复环路的截止频率, fs是信号的符号带宽。
AD釆样量化噪声来源于接收机的数字 AD釆样, 由于 AD芯片釆样位数有 限, 釆样中要量化处理, 釆样后的数字信号值与被釆样的模拟信号值之间的 误差, 成为量化噪声, 其信噪比等于量化噪声信噪比 (Signal to quantization noise ratio, SQNR ) =6.02*q, 单位 dB, 其中 q为 AD的位数。 以 10位 AD为例, 量化噪声信噪比为: 6.02*10=60.2dB 。 SQNR转换为线性标度单位, sqnr=10A(SQNR/10)o
同相和正交分量(Inphase and Quadrature, IQ ) 不平衡是指在 IQ调制时,
I路信号与 Q路信号由于路径不同, 其幅度和相位产生的不一致, 并由此导致 调制信号在星座图上偏离理想位置, 可用 evm来衡量 IQ不平衡导致的信噪比。
热噪声, 在经过接收机噪声因子 f恶化以后, 数值上等于 k*t*b*f, 其中 k为 波耳兹曼常数, t为绝对温度, b为等效噪声带宽, f为噪声因子, 噪声因子与 噪声系数 NF的关系: 噪声系数( Noise Figure, NF ) =10*logf。
干扰噪声, 来自***外部, 是未知的, 设为 i
信号的总信噪比 ( signal to noise ratio,snr ) , 等于信号功率与上述噪声功 率之和的比值:
snr=s/ (k*t*b *f+i+( 11 imd+ 11 ipn+ 11 sqnr+ 11 evm) * s)。
其中 s为信号功率。
将总噪声表示为与信号相关的部分和与信号无关的部分,分别为 y*s,和 X , 其中 =1 111(1+1/1 11+1/89111+1/6¥111 , x= k*t*b*f+i,则总信噪比为: snr=s/(x+y*s), 所述总信噪比为接收机的信噪比等式。
可实现的, 获取总噪声, 所述总噪声为信号无关噪声 X和信号相关噪声 y*s, 当无同频信号干扰时, 所述信号无关噪声为热噪声 k*t*b*f;
测量接收机的温度 t,根据所述 t和预先存储的噪声系数 NF, 和总信噪比 公式 SNR=S-Nth, S=10*log(s), Nth=10*log( x+y*s )=10*log( k*t*b*f+i+y*s ), 当接收机接收的是小功率信号时, y*s近似为 0,计算无同频信号干扰时, i=0 , 则计算无同频信号干扰时小功率信号的信噪比 SNRA , 其中, SNRA=SA-Nth, Nth=10*log ( k*t*b*f ) =10*log ( k*t*b ) +NF, k是波耳兹 曼常数, t是绝对温度, b为等效噪声带宽, f为噪声因子, SA是接收机接收 的小功率信号功率。
当接收机接收的信号功率较小时, 所述接收机的噪声近似为信号无关噪 声, 即为 x+y*s x= k*t*b*f+i, 记为小功率信号噪声, 根据所述小功率信号噪 声建立接收机的小功率信号信噪比等式, 即为 snrx= s/(x+y*s s/x。 在未受到 同频干扰时, 接收机的信噪比为 snrx=s/ ( k*t*b*f ) , i=0, 转换为 dB标度单位, 并设: Nth=10*log(k*t*b*f)。 有: SNR= S-Nth。 表明在小功率信号情况下, 信 号功率与信噪比存在 ldB:ldB的变化关系, 即信号功率每变化 ldB, 信噪比也 变化 ldB。 它表示在二维图中, 是一条正 45。 斜率的直线。
当接收机接收的信号功率较大时, 所述接收机的噪声近似为信号相关噪 声, 即为 x+y*s « y*s, 记为大信号噪声, 根据所述大信号噪声建立接收机的 大信号信噪比等式, 即为 snry= s/(x+y*s) - s/ ( y*s )。 转换为 dB标度单位: SNR=10*log(l/y), 是一个与信号功率无关的常数。
综合这两种情况, 可将 SNR与 S之间的关系表示在一个二维图中, 具体 参考图 2所示。
具体的, 小功率信号信噪比等式为 snrx= s/(x+y*s) « s/x=s/ ( k*t*b*f+i ) , 在未受到同频干扰时, 接收机的信噪比为 snrx=s/ ( k*t*b*f ) , i=0, 转换为 dB 标度单位, 并设: Nth=10*log(k*t*b*f)。
有: SNR= S-Nth。
计算在一个小功率信号功率 SA,如 SA=-90dBm时,对应的信噪比 SNRA, SNRA= SA-Nth= SA-10*log(k*t*b*f)=SA-10*log(k*t*b)-NF
其中, SA取 -90dBm; k和 b为常数; t是温度, 由 TEMP SENSOR检测并通 知 CONTROL UNIT; NF是噪声系数, 由 CONTROL UNIT从 FLASH中读取。 SNRA记为无同频信号干扰时的小功率信号信噪比。
具体的, 参考图 3所示, 如图 3中, ***由发射机(Transmitter, TX ) 、 发 射端天线 (Antenna, ANT ) 1、 接收端天线 ANT2、 接收机 ( Receiver, RX ) 构成, 发射机 TX由调制器 (Modulator,MOD)、 衰减器 (Attenuator,ATT)、 放大 器 (Amplifier,AMP) 1和通讯单元 (Communication Unit, COM UNIT) 1构成,接收 机 RX由放大器 AMP2、 AGC、 解调器 (Demodulator, DEM)、 温度传感器 TEMP SENSOR,存储器 FLASH、控制单元 CONTROL UNIT和通讯单元 COM U IT2 构成。 发射机发射的信号通过 ANT1经由自由空间传输到接收端, 由接收天线 ANT2接收并输送给接收机 RX。
发射机通过控制 ATT的衰减, 可以控制输出到天线的发射信号功率, 典型 情况下, 发射功率调节范围 23dB左右。 功率控制信号由位于 RX的 CONTROL UNIT发出, 经由两个通讯单元 COM U IT1和 COM U IT2传递给 ATT, 实现 功率控制。 COM U IT1和 COM U IT2的通讯可以通过***的开销通道实现, 也可以借助公共电话网络实现。 作为可选功能, TX的实际发射功率可以经由 通讯单元 COM U IT1和 COM U IT2反馈给 CONTROL UNIT , 以帮助监控 TX 的工作状态和实现故障判断。
接收机 RX的 AGC具有功率检测功能, 可以检测到天线 ANT2输出给 RX的 信号功率, 由接收信号强度指示 (Received Signal Strength Indication, RSSI ) 通知 CONTROL UNIT。
接收机 RX的 TEMP SENSOR检测接收机内部的温度 , 并通知 CONTROL U IT0
接收机 RX的解调器 DEM可以检测接收信号的信噪比, 比如通过检测接收 信号的均方误差, 可以测量接收信号的信噪比, 该信噪比信号送给 CONTROL U IT0
接收机 RX的噪声系数 NF, 通过在生产时测量并写入接收机 RX的存储器 FLASH, 供 CONTROL UNIT读取使用。
步骤 102, 测量若干组接收机的接收功率和信噪比,每一组包括两个信噪 比和所述两个信噪比对应的接收功率, 所述每一组的两个信噪比的差值等于 或者大于 2dB, 根据所述若干组接收机的接收功率和信噪比计算所述接收机 实际运行时小功率信号的信噪比;
其中, 所述接收功率是接收信号未经过放大的功率, 即图 2中天线 ANT2 接收的信号功率; 所述信噪比可以是放大前或者放大后的接收信号的信噪比。
可优选的, 测量至少大于一组的接收机的接收功率和信噪比, 每一组包 括两个信噪比和所述两个信噪比对应的接收功率, 所述每一组的两个信噪比 的差值等于或者大于 2dB;
根据每一组的接收机的接收功率和信噪比, 计算出每一组的所述接收机 实际运行时小功率信号的信噪比;
将所述至少大于一组得到的至少大于一个的所述实际运行时小功率信号 的信噪比取平均, 得到所述接收机实际运行时小功率信号的信噪比。
作为一种可优选的实施例, 测量一组接收机的接收功率和信噪比, 得到 ( si , snrl ), ( s2, snr2 );
根据 总信噪 比公式 snr=s/(x+y*s) , 得到 snrl=sl/(x+y*sl) , snr2=s2/ (x+y * s2);
根据所述一组接收机的接收功率和信噪比, 得到
_ {snrl - snr\) *^1*^2
(^2 - ^l) * snrl * snrl 根据 SNRB=10*log (sa) -10*logx, 得
Figure imgf000015_0001
5 5 snr ― snr 其中, SA=10*log (sa)。
具体的, 假设 CONTROL UNIT控制 TX发射一个大信号功率, RX测量接 收功率, 记为 si (单位 mw) , 或者 SI (单位 dBm) 。
RX同时测量接收信号的信噪比,记为 snrl (无单位),或者 SNR1 (单位 dB ) , 该测量点 (S1,SNR1)标注在图 4中 (S1,SNR1 ) 。
假设 CONTROL UNIT控制 TX发射一个小功率信号功率, RX测量接收功 率, 记为 s2 (单位 mw) , 或者 S2 (单位 dBm) 。
RX同时测量接收信号的信噪比,记为 snr2(无单位),或者 SNR2 (单位 dB ) , 该测量点 (S2,SNR2)标注在图 4中 (S2,SNR2) 。
根据所述接收机的信噪比等式, 建立一组接收机的信噪比等式, 即为 snrl=sl/(x+y*sl)
snr2=s2/(x+y*s2) 具体的, 从 snrl=sl/(x+y*sl); snr2=s2/(x+y*s2)中可计算出 x、 y参数, 并 估计同样在小功率信号功率 SA时的信噪比。在小功率信号条件, 总噪声近似 为信号无关噪声 X, 即根据所述小功率信号信噪比等式 SNR= S-10*logx, 根 据 SNRB=10*log ( sa ) -10*logx, 得到
Figure imgf000016_0001
其中 sa=10A(SA/10), 所述 SNRB为实际运行时小功率信号的信噪比。
作为另一种可优选的实施例, 测量一组接收机的最小接收功率和信噪比 及接收机的最大接收功率和信噪比, 得到 ( Smin, snrmin ), smax, snrmax ), 根据所述总信噪比公式 snr=s/(x+y*s),得到 snrmm = smm /(x+y* smm), snrmax /(x+y* s
根据所述一组接收机的接收功率和信噪比, 得到
x = (Snrrmx― Snr n ) * ^min * S
) * snr snr 根据 SNRB=10*log ( sa ) -10*logx, 得到
Figure imgf000016_0002
其中, SA=10*log ( sa )。
步骤 103 ,根据所述无同频信号干扰时小功率信号的信噪比和所述实际运 行时小功率信号的信噪比获得同频信号干扰的干扰噪声;
具体的, 根据 DS=SNRA-SNRB , 得到干扰噪声 DS。
步骤 104,根据所述同频信号干扰的干扰噪声, 通过功率叠加算法获取同 频信号干扰的干扰功率。
具体的, 根据同频干扰导致的总噪声等于热噪声和干扰噪声, 得到:
Nth _ Nth+DS 其中, Nth是热噪声, I是干扰功率, Nth+DS是同频干扰导致的总噪声。 当接收机的功率为小功率信号功率时, 接收机的噪声近似为热噪声和干 扰信号噪声的叠加, 根据所述叠加建立所述干扰信号的功率, 及所述无干扰 小功率信号信噪比和实际运行时小功率信号信噪比的差值的等式, 并根据所 述等式计算出干扰信号的功率。
具体的, 参考图 5 所示, 在有干扰的情况下, 理论的信噪比曲线将会由 图 5的曲线 1降低 DS到曲线 2。 在接收机的功率为小功率信号功率时, 接收
Nth 丄
机的噪声近似为热噪声和干扰信号噪声的叠加, 即为 10 +10 在干扰情况
Nth+DS
下, 噪声的分贝标度值为 Nth+DS,转换为线性标度为 10^ , 建立如下等式;
Nth Ί_ Nth+DS
IO^ + ΙΟ10 = 10 10
求解出干扰功率 I为:
Figure imgf000017_0001
由此等式计算出干扰功率 I。 本发明实施例中, 假设最小检测的干扰取决于最小测量的 DS, 考虑到测 量误差因素, 实际测量的最小测量 DS大约能达到 ldB左右, 假定信号的符 号率为 6Mb/s, 噪声系数为 5dB, 则本发明实例提供的最小可测量的干扰功率 为:
1=10 *log(l 0A(Nth+ 1 )/10- 10A(Nth/10))
Nth=10*log(k*t*b*f)=10*log((1.38E-20)*(25+273.15)*(6E6))+5 = -101dBm I=10*log(10A(-101+l)/10-10A(-101/10)) = -107dBm
所以, 本发明实施例提供的最小可测量的干扰功率为 -107dBm
本发明中, 需要两个测量点之间的 SNR存在 2dB以上的差异, 以保证 SNR-S曲线拟合精度。 考虑一般情况, 假设发射机发射最大功率时, 接收机的 接收功率位于 -30到 -55dBm区间,典型情况为 -40dBm。此时由于信号功率较高, 接收信号的信噪比主要取决于信号相关噪声, snr=l/y。 对微波***来说, 此 信噪比在 36dB左右, 即 10*log(l/y)=36, y=2.5E-4。
随着发射功率降低, 接收功率也随之降低, 信噪比减小。 通过计算可知, SNR=S-10*log(k*t*b*f + y*s)=36dB-2 dB=34 dB, 其中, 根据 y=2.5E-4, 求出 S=-63 dBm;
则典型的情况,本发明需要发射机具备功率调节范围为: -40 - (-63) =23dB 所以, 本发明实施例提供的方法中只要求发射机的功率调节范围为 23dB 即可。
另外, 本发明需釆集的测量数据是接收功率和信噪比, 这两个测量都可 以在秒级时间内完成, 而不需要观察误码率, 现有技术二中观察误码率需耗 时几分钟至几十分钟。
本发明实施例提供一种测量同频信号干扰的方法, 所述方法通过测量温 度和存储的噪声系数精确得到无同频信号干扰时小功率信号的信噪比; 通过 控制发射功率获得至少一组接收机的接收功率和信噪比, 得到实际运行时小 功率信号的信噪比; 根据所述无同频信号干扰时小功率信号的信噪比和实际 运行时小功率信号的信噪比的差异, 计算干扰功率。 从而实现最小可测量的 干扰功率为 -107dBm; 发射机具备功率调节范围为 23dB; 测量都可以在秒级 时间内完成。
实施例二
参考图 6, 图 6是本发明实施例二提供的一种接收机的装置结构图。 如图 6所示, 该接收机包括以下单元:
第一计算单元 601 , 测量接收机放大器 AMP的温度, 根据所述温度和预 先存储的接收机的噪声系数计算无同频信号干扰时所述接收机接收小功率信 号时, 所述接收机的解调器 DEM 的信噪比;
其中, 当接收机的接收信号是小功率信号时, 所述接收机的 DEM信噪比 近似为信号无关噪声。
具体的, 所述第一计算单元 601 , 用于:
测量接收机的温度 t,根据所述 t和预先存储的噪声系数 NF, 和总信噪比 公式 SNR=S-Nth, 计算无同频信号干扰时小功率信号的信噪比 SNRA, 其中, SNRA = SA-(10*log ( k*t*b ) +NF), k是波耳兹曼常数, t是绝对温度, b为 等效噪声带宽, NF为噪声系数, SA是接收机的接收的小功率信号的功率。
第二计算单元 602, 测量若干组接收机的接收功率和信噪比, 每一组包括 两个信噪比和所述两个信噪比对应的接收功率, 所述每一组的两个信噪比的 差值等于或者大于 2dB, 根据所述若干组接收机的接收功率和信噪比计算所 述接收机实际运行时小功率信号的信噪比;
其中, 所述接收功率是接收信号未经过放大的功率, 即图 2中天线 ANT2 接收的信号功率; 所述信噪比可以是放大前或者放大后的接收信号的信噪比。
可优选的, 所述第二计算单元 602包括第一测量单元 701, 第五计算单元 702, 第一平均单元 703;
所述第一测量单元 701,用于测量至少大于一组的接收机的接收功率和信 噪比, 每一组包括两个信噪比和所述两个信噪比对应的接收功率, 所述每一 组的两个信噪比的差值等于或者大于 2dB;
所述五计算单元 702, 用于根据每一组的接收机的接收功率和信噪比, 计 算出每一组的所述接收机实际运行时小功率信号的信噪比;
所述第一平均单元 703,用于将所述至少大于一组得到的至少大于一个的 所述实际运行时小功率信号的信噪比取平均, 得到所述接收机实际运行时小 功率信号的信噪比。
作为一种可优选的实施例,所述第二计算单元 602包括第二测量单元 801, 第六计算单元 802;
所述第二测量单元 801, 用于测量一组接收机的接收功率和信噪比, 得到 ( si , snrl ), ( s2, snr2 );
所述第六计算单元 802, 用于根据总信噪比公式 snr=s/(x+y*s), 得到 snrl=sl/(x+y*sl), snr2=s2/(x+y*s2), 根据所述一组接收机的接收功率和信噪 比, 得到
_ {snrl - snr\) *^1*^2
(^2 - ^l) * snrl * snrl 根据 SNRB=10*log (sa) -10*logx, 得到
SNRB = 其中, SA=10*log (sa)。
Figure imgf000019_0001
作为另一种可优选的实 施例, 所述第二计算单元 602包括第三测量单元 901 , 第七计算单元 902; 所述第三测量单元 901 ,用于测量一组接收机的最小接收功率和信噪比及 接收机的最大接收功率和信噪比, 得到 ( Smin, SHrmin ), ( Smax, Sli max ),
所述第七计算单元 902, 用于根据所述总信噪比公式 snr=s/(x+y*s), 得到 snrmin― smin /(x+y* smin), sn max― smax /(x+y* smax),
根据所述一组接收机的接收功率和信噪比, 得到 χ _ (Snrrmx― Snr n ) * ^min * S
(^max― ^min ) * ^^min * Snrr
根据 SNRB=10*log ( sa ) -10*logx, 得到
Figure imgf000020_0001
其中, SA=10*log ( sa )。
第三计算单元 603 , 第三计算单元, 用于根据所述无同频信号干扰时小功 率信号的信噪比和所述实际运行时小功率信号的信噪比获得同频信号干扰的 干扰噪声;
具体的, 根据 DS=SNRA-SNRB , 得到干扰噪声 DS。
第四计算单元 604, 用于根据所述同频信号干扰的干扰噪声, 通过功率叠 加算法获取同频信号干扰的干扰功率。
具体的, 根据同频干扰导致的总噪声等于热噪声和干扰噪声, 得到功率 叠加算法:
Nth Nth+DS
1010 +1010 = 10 10
根据所述功率叠加算法, 得到干扰功率:
Figure imgf000020_0002
其中, Nth是热噪声, I是干扰功率, Nth+DS是同频干扰导致的总噪声。 本发明实施例中, 假设最小检测的干扰取决于最小测量的 DS, 考虑到测 量误差因素, 实际测量的最小测量 DS大约能达到 ldB左右, 假定信号的符号 率为 6Mb/s, 噪声系数为 5dB, 则本发明实例提供的最小可测量的干扰功率为: 1=10 *log(l 0A(Nth+ 1 )/10- 10A(Nth/10))
Nth=10*log(k*t*b*f)=10*log((1.38E-20)*(25+273.15)*(6E6))+5 = -101dBm I=10*log(10A(-101+l)/10-10A(-101/10)) = -107dBm
所以, 本发明实施例提供的最小可测量的干扰功率为 -107dBm
本发明中, 需要两个测量点之间的 SNR存在 2dB以上的差异, 以保证 SNR-S曲线拟合精度。 考虑一般情况, 假设发射机发射最大功率时, 接收机的 接收功率位于 -30到 -55dBm区间,典型情况为 -40dBm。此时由于信号功率较高, 接收信号的信噪比主要取决于信号相关噪声, snr=l/y。 对微波***来说, 此 信噪比在 36dB左右, 即 10*log(l/y)=36, y=2.5E-4。
随着发射功率降低, 接收功率也随之降低, 信噪比减小。 通过计算可知, SNR=S-10*log(k*t*b*f + y*s)=36dB-2 dB=34 dB, 其中, 根据 y=2.5E-4, 求出 S=-63 dBm;
则典型的情况,本发明需要发射机具备功率调节范围为: -40 - (-63) =23dB 所以, 本发明实施例提供的方法中只要求发射机的功率调节范围为 23dB 即可。
另外, 本发明需釆集的测量数据是接收功率和信噪比, 这两个测量都可 以在秒级时间内完成, 而不需要观察误码率, 现有技术二中观察误码率需耗 时几分钟至几十分钟。
本发明实施例提供一种接收机, 所述接收机通过测量温度和存储的噪声 系数精确得到无同频信号干扰时小功率信号的信噪比; 通过控制发射功率获 得至少一组接收机的接收功率和信噪比, 得到实际运行时小功率信号的信噪 比; 根据所述无同频信号干扰时小功率信号的信噪比和实际运行时小功率信 号的信噪比的差异, 计算干扰功率。 从而实现最小可测量的干扰功率为 -107dBm; 发射机具备功率调节范围为 23dB; 测量都可以在秒级时间内完成。
实施例三 参考图 10, 图 10是本发明实施例三提供的一种接收机的装置结构图。 参 考图 10, 图 10是本发明实施例提供的一种接收机 1000, 本发明具体实施例 并不对所述接收机的具体实现做限定。 所述接收机 1000包括:
接收端天线 ANT1001 ,放大器 AMP1002、 AGC1003、解调器 (Demodulator, DEM) 1004, 温度传感器 TEMP SENSOR1005、 存储器 FLASH1006、 控制单 元 CONTROL UNIT 1007和通讯单元 COM U IT1008构成。
所述接收端天线 ANT1001 接收发射机发送的信号并输送给接收机 RX1000;
接收机 RX的 AGC 1003具有功率检测功能, 可以检测到天线 ANT 1001输出 给 RX的信号功率, 由接收信号强度指示 ( Received Signal Strength Indication, RSSI )通知 CONTROL UNIT 1007。
接收机 RX的 TEMP SENSOR1005检测接收机内部的温度, 并通知 CONTROL UNIT 1007。
接收机 RX的解调器 DEM1004可以检测接收信号的信噪比, 比如通过检测 接收信号的均方误差, 可以测量接收信号的信噪比, 该信噪比信号送给 CONTROL UNIT 1007。
接收机 RX的噪声系数 NF, 通过在生产时测量并写入接收机 RX的存储器 FLASH1006 , 供 CONTROL U IT1007读取使用。
以上所述仅为本发明的优选实施方式, 并不构成对本发明保护范围的限 定。 任何在本发明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明要求包含范围之内。

Claims

权利 要求 书
1、 一种测量同频信号干扰的方法, 所述方法包括:
测量接收机放大器 AMP的温度,根据所述温度和预先存储的接收机的噪声 系数计算无同频信号干扰时所述接收机接收小功率信号时, 所述接收机的解调 器 DEM 的信噪比;
测量若干组接收机的接收功率和信噪比, 每一组包括两个信噪比和所述两 个信噪比对应的接收功率, 所述每一组的两个信噪比的差值等于或者大于 2dB, 根据所述若干组接收机的接收功率和信噪比计算所述接收机实际运行时小功率 信号的信噪比;
根据所述无同频信号干扰时小功率信号的信噪比和所述实际运行时小功率 信号的信噪比获得同频信号干扰的干扰噪声;
根据所述同频信号干扰的干扰噪声, 通过功率叠加算法获取同频信号干扰 的干扰功率。
2、 根据权利要求 1所述的方法, 其特征在于, 所述测量接收机的温度, 根 据所述温度和预先存储的噪声系数计算无同频信号干扰时小功率信号的信噪 比, 包括:
测量接收机的温度 t,根据所述 t和预先存储的噪声系数 NF,和总信噪比公 式 SNR=S-Nth,计算无同频信号干扰时小功率信号的信噪比 SNRA,其中, SNRA = SA-(10*log ( k*t*b ) +NF), k是波耳兹曼常数, t是绝对温度, b为等效噪声 带宽, NF为噪声系数, SA是接收机接收的小功率信号的功率。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述测量若干组接收机 的接收功率和信噪比, 每一组包括两个信噪比和所述两个信噪比对应的接收功 率,所述每一组的两个信噪比的差值等于或者大于 2dB,根据所述若干组接收机 的接收功率和信噪比计算所述接收机实际运行时小功率信号的信噪比, 包括: 测量至少一组的接收机的接收功率和信噪比, 每一组包括两个信噪比和所 述两个信噪比对应的接收功率, 所述每一组的两个信噪比的差值等于或者大于 2dB;
根据每一组的接收机的接收功率和信噪比, 计算出每一组的所述接收机实 际运行时小功率信号的信噪比; 将所述至少一组得到的所述实际运行时小功率信号的信噪比取平均, 得到 所述接收机实际运行时小功率信号的信噪比。
4、 根据权利要求 1或 2所述的方法, 其特征在于, 所述测量若干组接收机 的接收功率和信噪比, 每一组包括两个信噪比和所述两个信噪比对应的接收功 率,所述每一组的两个信噪比的差值等于或者大于 2dB ,根据所述若干组接收机 的接收功率和信噪比计算所述接收机实际运行时小功率信号的信噪比, 包括: 测量一组接收机的接收功率和信噪比, 得到 (si , snrl ), ( s2 , snr2 );
根据总信噪比公式 snr=s/(x+y*s) , 得到 snrl=sl/(x+y*sl) , snr2=s2/(x+y*s2); 根据所述一组接收机的接收功率和信噪比, 得到
_ {snrl - snr\) * ^1 * ^2
(^2 - ^l) * snrl * snrl 根据 SNRB=10*log ( sa ) -10*logx, 得到
Figure imgf000024_0001
5 5 snr ― snr 其中, SA=10*log ( sa ) , si , s2是测量得到的接收机的接收功率; snrl和 snrl 是测量得到的接收的信噪比; X是信号无关噪声, y是信号相关噪声, SA 是接收机接收的小功率信号的功率, sa是 SA的线性标度, SNRB是所述接收机 实际运行时小功率信号的信噪比。
5、 根据权利要求 1或 2所述的方法, 其特征在于, 所述测量若干组接收机 的接收功率和信噪比, 每一组包括两个信噪比和所述两个信噪比对应的接收功 率,所述每一组的两个信噪比的差值等于或者大于 2dB ,根据所述若干组接收机 的接收功率和信噪比计算所述接收机实际运行时小功率信号的信噪比, 包括: 测量一组接收机的最小接收功率和信噪比及接收机的最大接收功率和信噪 比, 得到 ( ), ( s snr
根据所述总信噪比公式 snr=s/(x+y*s) ,得到 snrmm = /(x+y* smm) , snrmax = /(x+y* s
根据所述一组接收机的接收功率和信噪比, 得到 (Snrrmx― Snr n ) * ^min * S
X =
) * snr snr 根据 SNRB=10*log ( sa ) -10*logx, 得
其中, SA=10*log ( sa ), smm是接收机的最小接收功率, smax是接收机的最 大接收功率; snrmm是所述最小接收功率时接收机测量得到的信噪比, snrmax是所 述最大接收功率时接收机测量得到的信噪比; X是信号无关噪声, y是信号相 关噪声, SA是接收机接收的小功率信号的功率, sa是 SA的线性标度, SNRB 是所述接收机实际运行时小功率信号的信噪比。
6、 根据权利要求 1至 5任意一项所述的方法, 其特征在于, 所述根据所述 无同频信号干扰时小功率信号的信噪比和所述实际运行时小功率信号的信噪比 获得干扰噪声, 包括:
根据 DS=SNRA-SNRB, 得到干扰噪声 DS。
7、 根据权利要求 6所述的方法, 其特征在于, 所述根据所述干扰噪声, 通 过功率叠加算法获取干扰功率, 包括:
根据同频干扰导致的总噪声等于热噪声和干扰噪声, 得到功率叠加算法:
Nth _ Nth+DS
根据所述功率叠加算法, 得到干扰功率:
Figure imgf000025_0001
其中, Nth是热噪声, I是干扰功率, Nth+DS是同频干扰导致的总噪声。
8、 一种接收机, 所述接收机包括:
第一计算单元, 用于测量接收机放大器 AMP的温度, 根据所述温度和预先 存储的接收机的噪声系数计算无同频信号干扰时所述接收机接收小功率信号 时, 所述接收机的解调器 DEM 的信噪比;
第二计算单元, 用于测量若干组接收机的接收功率和信噪比, 每一组包括 两个信噪比和所述两个信噪比对应的接收功率, 所述每一组的两个信噪比的差 值等于或者大于 2dB,根据所述若干组接收机的接收功率和信噪比计算所述接收 机实际运行时小功率信号的信噪比;
第三计算单元, 用于根据所述无同频信号干扰时小功率信号的信噪比和所 述实际运行时小功率信号的信噪比获得同频信号干扰的干扰噪声;
第四计算单元, 用于根据所述同频信号干扰的干扰噪声, 通过功率叠加算 法获取同频信号干扰的干扰功率。
9、根据权利要求 8所述的接收机, 其特征在于, 所述第一计算单元, 用于: 测量接收机的温度 t,根据所述 t和预先存储的噪声系数 NF,和总信噪比公 式 SNR=S-Nth,计算无同频信号干扰时小功率信号的信噪比 SNRA,其中, SNRA = SA-(10*log ( k*t*b ) +NF), k是波耳兹曼常数, t是绝对温度, b为等效噪声 带宽, NF为噪声系数, SA是接收机的接收的小功率信号的功率。
10、 根据权利要求 8或 9所述的接收机, 其特征在于, 所述第二计算单元, 包括:
第一测量单元, 用于测量至少一组的接收机的接收功率和信噪比, 每一组 包括两个信噪比和所述两个信噪比对应的接收功率, 所述每一组的两个信噪比 的差值等于或者大于 2dB;
第五计算单元, 用于根据每一组的接收机的接收功率和信噪比, 计算出每 一组的所述接收机实际运行时小功率信号的信噪比;
第一平均单元, 用于将所述至少一组得到的所述实际运行时小功率信号的 信噪比取平均, 得到所述接收机实际运行时小功率信号的信噪比。
11、 根据权利要求 8或 9所述的接收机, 其特征在于, 所述第二计算单元, 包括:
第二测量单元,用于测量一组接收机的接收功率和信噪比,得到(si , snrl ), ( s2, snr2 );
第六计算单元,用于根据总信噪比公式 snr=s/(x+y*s),得到 snrl=sl/(x+y*sl), snr2=s2/(x+y*s2), 其中 x是信号无关噪声, y是信号相关噪声; 根据所述一组接收机的接收功率和信噪比, 得到
{snrl - snr\) ^ si
X =
si - s\) * snr\ * snrl 根据 S RB=10*log (sa) -10*logx, 得到
Figure imgf000027_0001
其中, SA=10*log (sa)。
12、 根据权利要求 8或 9所述的接收机, 其特征在于, 所述第二计算单元, 包括:
第三测量单元, 用于测量一组接收机的最小接收功率和信噪比及接收机的 最大接收功率和信噪比, 得到 ( ), ( s snr
第七计算单元, 用于根据所述总信噪比公式 snr=s/(x+y*s), 得到 snrmm = smn /(x+y* s匪), snrmax = smax /(x+y* s丽);
根据所述一组接收机的接收功率和信噪比, 得到 x = ( 丽 - mJ ,
(^max― ^min ) * " min 根据 SNRB=10*log (sa) -10*logx, 得 ί',
Figure imgf000027_0002
其中, SA=10*log (sa)。
13、 根据权利要求 8至 12任意一项所述的接收机, 其特征在于, 所述第三 算单元, 包括:
根据 DS=SNRA-SNRB, 得到干扰噪声 DS。
14、 根据权利要求 13所述的接收机, 其特征在于, 所述第四计算单元, 包 根据同频干扰导致的总噪声等于热噪声和干扰噪声, 得到功率叠加算法:
Nth I Nth+DS
1010 +1010 = 10 10
根据所述功率叠加算法, 得到干扰功率:
Figure imgf000028_0001
其中, Nth是热噪声, I是干扰功率, Nth+DS是同频干扰导致的总噪声
PCT/CN2013/088172 2012-11-29 2013-11-29 一种测量同频信号干扰的方法及接收机 WO2014082597A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13859546.7A EP2916473B1 (en) 2012-11-29 2013-11-29 Same-frequency signal interference measurement method and receiver
US14/725,984 US9413401B2 (en) 2012-11-29 2015-05-29 Method for measuring co-channel signal interference, and receiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210497166.X 2012-11-29
CN201210497166.XA CN102983922B (zh) 2012-11-29 2012-11-29 一种测量同频信号干扰的方法及接收机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/725,984 Continuation US9413401B2 (en) 2012-11-29 2015-05-29 Method for measuring co-channel signal interference, and receiver

Publications (1)

Publication Number Publication Date
WO2014082597A1 true WO2014082597A1 (zh) 2014-06-05

Family

ID=47857699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088172 WO2014082597A1 (zh) 2012-11-29 2013-11-29 一种测量同频信号干扰的方法及接收机

Country Status (4)

Country Link
US (1) US9413401B2 (zh)
EP (1) EP2916473B1 (zh)
CN (1) CN102983922B (zh)
WO (1) WO2014082597A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055104A (zh) * 2021-03-09 2021-06-29 上海移远通信技术股份有限公司 基于信道扫描的信号检测方法及***

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102983922B (zh) 2012-11-29 2014-12-24 华为技术有限公司 一种测量同频信号干扰的方法及接收机
CN105721075B (zh) * 2016-02-06 2017-12-08 中国人民解放军理工大学 数据辅助同频复用卫星干扰信号强度测量方法及装置
US11012106B2 (en) * 2016-09-23 2021-05-18 Qualcomm Incorporated Implementation of improved omni mode signal reception
CN112825534B (zh) * 2019-11-21 2023-06-23 Oppo广东移动通信有限公司 一种灵敏度恶化检测方法、装置及存储介质
CN113993199B (zh) * 2020-07-27 2024-05-14 北京小米移动软件有限公司 天线辐射功率的调节方法及装置、电子设备
CN113805156B (zh) * 2021-11-17 2022-01-25 成都远望探测技术有限公司 一种低信噪比的信号还原方法及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070054700A1 (en) * 2002-04-16 2007-03-08 Omri Hovers Method and apparatus for beam selection in a smart antenna system
CN101808350A (zh) * 2010-03-15 2010-08-18 北京天碁科技有限公司 同频小区的确定方法和装置
CN101960747A (zh) * 2008-03-31 2011-01-26 英特尔公司 降低同信道干扰
CN102983922A (zh) * 2012-11-29 2013-03-20 华为技术有限公司 一种测量同频信号干扰的方法及接收机

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3513361A1 (de) * 1985-04-15 1986-10-16 Philips Patentverwaltung Gmbh, 2000 Hamburg Verfahren und schaltungsanordnung zur qualitaetsmessung von funkuebertragungskanaelen eines funkuebertragungssystems
FI982857A (fi) * 1998-12-31 2000-07-01 Nokia Networks Oy Vastaanottomenetelmä ja vastaanotin
SE516228C2 (sv) 1999-06-11 2001-12-03 Ericsson Telefon Ab L M Fädningsmarginaltest
EP1100211A1 (en) * 1999-11-09 2001-05-16 Lucent Technologies Inc. Filter for telecommunications system
US6668164B2 (en) * 2000-06-01 2003-12-23 Motorola, Inc. Method and apparatus for reducing intermodulation distortion in a low current drain automatic gain control system
JP3420228B2 (ja) 2001-09-07 2003-06-23 松下電器産業株式会社 干渉波電力測定装置、干渉波電力測定方法、送信電力制御装置及び送信電力制御方法
EP1501234A1 (de) * 2003-07-25 2005-01-26 Com-Research GmbH Solutions for Communication Systems Verfahren und Vorrichtung zur Bestimmung des dominanten Störtyps
US7864898B2 (en) * 2006-05-17 2011-01-04 Sirf Technology Holdings, Inc. Systems and methods for signal acquistion in navigational satellite signal receivers
JP2008199209A (ja) * 2007-02-09 2008-08-28 Matsushita Electric Ind Co Ltd 無線受信装置
TWI354454B (en) * 2008-04-17 2011-12-11 Sunplus Mmobile Inc Method for mitigating interference
US8325858B2 (en) * 2008-12-22 2012-12-04 Entropic Communications, Inc. Estimation of noise variance combined with narrow-band interference detection
CN101860509B (zh) * 2009-04-13 2012-10-10 扬智科技股份有限公司 同频信道干扰的处理方法、装置及其通信***
US8688065B2 (en) * 2012-08-31 2014-04-01 California Institute Of Technology Method to measure total noise temperature of a wireless receiver during operation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070054700A1 (en) * 2002-04-16 2007-03-08 Omri Hovers Method and apparatus for beam selection in a smart antenna system
CN101960747A (zh) * 2008-03-31 2011-01-26 英特尔公司 降低同信道干扰
CN101808350A (zh) * 2010-03-15 2010-08-18 北京天碁科技有限公司 同频小区的确定方法和装置
CN102983922A (zh) * 2012-11-29 2013-03-20 华为技术有限公司 一种测量同频信号干扰的方法及接收机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113055104A (zh) * 2021-03-09 2021-06-29 上海移远通信技术股份有限公司 基于信道扫描的信号检测方法及***

Also Published As

Publication number Publication date
EP2916473B1 (en) 2017-08-23
EP2916473A4 (en) 2015-10-14
US20150263770A1 (en) 2015-09-17
US9413401B2 (en) 2016-08-09
EP2916473A1 (en) 2015-09-09
CN102983922B (zh) 2014-12-24
CN102983922A (zh) 2013-03-20

Similar Documents

Publication Publication Date Title
WO2014082597A1 (zh) 一种测量同频信号干扰的方法及接收机
KR101294021B1 (ko) 무선 통신 시스템에서 데이터 수신 장치 및 방법
US7593689B2 (en) Method for detecting an oscillation in an on-frequency repeater
US7881411B2 (en) Modulation dependent automatic gain control
EP0859462A1 (en) Gain controlling method and receiver
JP2009525011A (ja) 中継器のライズオーバサーマル(rot)値の較正
US10009049B2 (en) Method for detecting and handling oscillations in a signal booster device, a signal booster device and a means of transportation comprising a signal booster device
US8804882B2 (en) Receiving apparatus, and computer readable memory medium that stores a program
US20090318133A1 (en) Error detector, error detecting method and control program thereof
KR20090063049A (ko) 무선 통신시스템의 링크 적응 방법 및 장치
JP4933624B2 (ja) 無線受信機
JP5372163B2 (ja) 移動通信システムの利得制御装置及び方法
US20040038656A1 (en) Method and apparatus for distortion reduction and optimizing current consumption via adjusting amplifier linearity
JP2005020139A (ja) 通信システム
JP4843397B2 (ja) 受信装置
CN113839709B (zh) 一种误码平层的标定方法以及装置
JP7447040B2 (ja) 無線伝送システム
US8280371B2 (en) Base station and receiver failure diagnosing method
KR100918586B1 (ko) 중계기의 이득 제어 방법 및 그 장치
US20180294865A1 (en) Relay apparatus and method of suppressing interference
KR101567966B1 (ko) 광중계기로 인한 노이즈 제거 기능을 갖는 접속노드 장치 및 그 방법
KR100595204B1 (ko) 자동이득조정 회로를 이용한 페이딩 검파 방법 및 그 장치
KR100606688B1 (ko) 코드 분할 다중 접속 방식의 전력 제어 장치
CN117354969A (zh) 避免封包碰撞方法
JPH11122132A (ja) 無線装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013859546

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013859546

Country of ref document: EP