WO2014077106A1 - 超音波振動子エレメント及び超音波内視鏡 - Google Patents

超音波振動子エレメント及び超音波内視鏡 Download PDF

Info

Publication number
WO2014077106A1
WO2014077106A1 PCT/JP2013/078935 JP2013078935W WO2014077106A1 WO 2014077106 A1 WO2014077106 A1 WO 2014077106A1 JP 2013078935 W JP2013078935 W JP 2013078935W WO 2014077106 A1 WO2014077106 A1 WO 2014077106A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic transducer
cell
membrane
cavity
ultrasonic
Prior art date
Application number
PCT/JP2013/078935
Other languages
English (en)
French (fr)
Inventor
松本 一哉
勝裕 若林
Original Assignee
オリンパス株式会社
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社, オリンパスメディカルシステムズ株式会社 filed Critical オリンパス株式会社
Priority to CN201380057959.2A priority Critical patent/CN104823462B/zh
Priority to JP2014546920A priority patent/JP6061950B2/ja
Priority to EP13854660.1A priority patent/EP2922311A4/en
Publication of WO2014077106A1 publication Critical patent/WO2014077106A1/ja
Priority to US14/711,176 priority patent/US10342511B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0292Electrostatic transducers, e.g. electret-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes

Definitions

  • the present invention provides an ultrasonic transducer element (hereinafter also referred to as “element”) including a cell group including a plurality of capacitance-type ultrasonic transducer cells (hereinafter also referred to as “cells”) and the ultrasonic wave.
  • the present invention relates to an ultrasonic endoscope including an insertion portion in which a transducer element is disposed at a distal end portion.
  • Ultrasonic diagnostic methods that irradiate ultrasonic waves into the body and image and diagnose the internal state from echo signals have become widespread.
  • One of medical devices used for ultrasonic diagnosis is an ultrasonic endoscope.
  • an element is disposed at the distal end rigid portion of the insertion portion introduced into the body.
  • the element has a function of converting an electric signal into an ultrasonic wave and transmitting it into the body, and receiving an ultrasonic wave reflected in the body and converting it into an electric signal.
  • c-MUT capacitive Micro-machined Ultrasonic Transducer
  • the element 120 shown in FIGS. 1 to 3 is disclosed in US Pat. No. 6,854,338.
  • the element 120 has a cell 110 composed of 25 c-MUTs which are basic units of ultrasonic transmission / reception.
  • FIG. 2 is a cross-sectional view of one cell 110 of the element 120.
  • FIG. 3 is a partially exploded view of the four cells 110 of the element 120 shown in FIG.
  • the exclusive region of each cell 110 in other words, the shape of the cell 110 in plan view is shown.
  • the planar view shape is simply referred to as a shape.
  • the shape of the cell 110 can be regarded as a square.
  • the cell 110 includes a conductive substrate 111 that also serves as the lower electrode 12, and an upper electrode 116 that is disposed so as to face the cavity 114H.
  • the region directly above the cavity 114H of the upper electrode 116 constitutes a membrane 118 that vibrates ultrasonically.
  • the cavity 114H is formed by a through hole formed in the insulating layer 114.
  • the cavity 114H is a sealed space that does not communicate with the outside.
  • the membrane 118 vibrates to generate ultrasonic waves.
  • the ultrasonic waves are incident from the outside, the ultrasonic waves are converted into electric signals by utilizing the fact that the membrane 118 is deformed and the capacitance between the electrodes changes.
  • the transmission / reception sensitivity of the element 120 increases as the aperture ratio indicated by “(area of the membrane 118) / (area of the cell 110)” increases.
  • the area other than the membrane 118 immediately above the circular cavity 114H is a dead area that does not contribute to transmission / reception of ultrasonic waves.
  • the capacitance between the electrodes in the insensitive region becomes a so-called parasitic capacitance that does not change when receiving ultrasonic waves.
  • Element 120 has a wide insensitive area and a small aperture ratio, so it was not easy to obtain high transmission / reception sensitivity.
  • An object of the present invention is to provide an ultrasonic transducer element having high transmission / reception sensitivity and an ultrasonic endoscope including the ultrasonic transducer element.
  • An ultrasonic transducer element includes a substrate, a lower electrode disposed on the substrate, a membrane including an upper electrode opposed to the lower electrode via a cavity, A plurality of columns each including a plurality of columns forming the cavity by supporting a membrane, and each of the plurality of ultrasonic transducer cells communicating with each other.
  • An ultrasonic endoscope includes a substrate, a lower electrode disposed on the substrate, and a membrane including an upper electrode disposed opposite to the lower electrode via a cavity, A plurality of pillars forming the cavity by supporting the membrane, and a cell group including a plurality of ultrasonic transducer cells each of which communicates with each other.
  • the ultrasonic transducer element includes an insertion portion disposed at a distal end portion, an operation portion disposed on a proximal end side of the insertion portion, and a universal cord extending from the operation portion.
  • a cell group 10 ⁇ / b> Z including a plurality of ultrasonic transducer cells 10 is disposed on a substrate 11.
  • the cell group 10Z transmits an ultrasonic wave, and the incident ultrasonic wave is transmitted between the lower electrode terminal 12T and the upper electrode terminal 16T. It is converted into an electric signal based on the change in capacitance and received.
  • the cell 10 is supported by the lower electrode 12 connected to the lower electrode terminal 12T, the lower insulating layer 13 covering the lower electrode 12, the pillar 14 forming the cavity 14H, and the pillar 14.
  • the membrane 18 in the region immediately above the cavity 14 ⁇ / b> H includes an upper insulating layer 15, an upper electrode 16, and a protective layer 17.
  • the column 14 supports the membrane 18 to form a cavity 14H.
  • the cavity 14H is a space in which a vacuum state or a desired gas is contained and sealed at a desired pressure.
  • the lower electrode 12 is a single layer film or a multilayer film made of a conductive metal, such as Al, Mo, W, Ti, or an alloy of the above metals.
  • graphene, silicene, or the like may be used as the upper electrode 16.
  • Graphene has a two-dimensional network structure made of carbon atoms or a structure in which a plurality of two-dimensional network structure layers are stacked, and silicene has a two-dimensional network structure made of silicon atoms.
  • graphene and the like are extremely thin, they have electrical conductivity, high rigidity, and high thermal conductivity equivalent to metals.
  • the lower insulating layer 13, the upper insulating layer 15, and the pillars 14 are made of silicon nitride, silicon oxide, tantalum oxide, hafnium oxide, or the like.
  • the lower insulating layer 13, the upper insulating layer 15, and the pillar 14 may be made of different materials. Note that at least one of the lower insulating layer 13 and the upper insulating layer 15 is not an essential component.
  • the lower insulating layer 13 protects the lower electrode 12 during the process and ensures electrical insulation between the lower electrode 12 and the upper electrode 16.
  • the surface of the lower insulating layer 13 formed so as to cover the lower electrode 12 is planarized by a CMP method or the like as necessary after the film formation.
  • the cavity 14H is formed by sacrificial layer etching. That is, the pillar 14 and the sacrificial layer are disposed on the lower insulating layer 13, and the upper portion is covered with the upper insulating layer 15 and the like.
  • a through hole (VIA hole) in the upper insulating layer 15 or the like covering the sacrificial layer, an etchant is injected into the sacrificial layer, and the sacrificial layer is selectively etched. It is formed.
  • the material of the sacrificial layer is selected from materials having a high etching selectivity with the surrounding material. For example, when the lower insulating layer 13 or the like is made of silicon nitride, phosphorous glass or the like is used for the sacrificial layer.
  • the VIA hole is filled after the sacrifice layer etching, but a hole filling member may be used as a part of the pillars 14.
  • the upper electrode 16 is made of the same material as the lower electrode 12.
  • the protective layer 17 covering the upper electrode 16 is made of an insulator made of silicon nitride, silicon oxide, polyimide, polyparaxylylene, or the like.
  • the material of the component of the element 20, a manufacturing method, etc. are substantially the same as the conventional element. That is, the element 20 is different from the conventional element in that it is not the insulating layer 114 but the plurality of pillars 14 that support the membrane. For this reason, the manufacturing method etc. of the element 20 are not restricted to the said description, The manufacturing method etc. of a well-known element can be used.
  • each cavity 114H is a sealed space, in other words, each cavity 114H is isolated.
  • a cavity 14 ⁇ / b> H is formed by a plurality of pillars 14.
  • the plurality of cavities 14H of the cell group 10Z are so-called open cavities that communicate with each other. In other words, the plurality of cavities 14H form one space.
  • the lower insulating layer 13 and the protective layer 17 are not shown.
  • the top view of FIG. 7 shows only the arrangement of the pillars 14, the lower electrode 12, and the upper electrode 16.
  • the regular hexagons indicated by broken lines in FIGS. 6 and 7 indicate the exclusive region of one cell 10, in other words, the planar view shape of the cell 10, but the boundary is not clearly shown in practice.
  • the boundary lines of the cavities 14H of the plurality of cells 10 indicated by broken lines are virtual lines that do not actually exist.
  • the element 20 is provided with a plurality of cells 10 having a regular hexagonal shape in plan view without any gaps. That is, each column 14 supports the membranes 18 of the three adjacent cells 10 and forms a cavity 14H.
  • the area where the upper insulating layer 15 is joined to the pillar 14 is a dead area that does not contribute to transmission / reception that does not vibrate. Is much higher. That is, the shape and area of the cell 10 are substantially equal to the shape and area of the cavity 14H.
  • the shape of the cell 10 is different from the shape of the cavity 14H that does not include the region of the column 14, but hereinafter, the shape of the cavity 14H may be referred to as the shape of the cell 10.
  • the lower electrodes 12 of the plurality of cells 10 are connected to each other by a lower electrode wiring 12S, and the upper electrodes 16 are connected to each other by an upper electrode wiring 16S. That is, the plurality of cells 10 of the element 20 constitute a cell group 10Z that is driven simultaneously.
  • the membrane 18 causes the lower electrode 12 to be electrostatically attracted by the potential difference. It is attracted in the direction of and displaced.
  • the upper electrode 16 is preferably set to the ground potential.
  • the amount of displacement of the membrane 18 is maximum at the center point of the cell 10 and is maximum at the bisector of each side of the regular hexagon at the boundary of the adjacent cell. Further, the displacement amount is line symmetric with respect to the boundary line of adjacent cells 10 indicated by a broken line. Furthermore, since the cell 10 is a regular hexagon, the amount of displacement is 6-fold symmetric when rotated 6 degrees with respect to the center point of the cell 10.
  • the waveform of the drive signal when transmitting an ultrasonic wave in pulses, it is preferable to control the waveform of the drive signal to be applied. For example, the potential is slowly increased so that the displacement of the membrane 18 can follow the increase of the applied potential, or the next pulse is applied after allowing sufficient time for the membrane 18 to completely stop. Is preferred. Further, after transmitting the ultrasonic wave, the membrane 18 may be forcibly stopped by generating an attractive force by applying an auxiliary pulse or generating a counter vibration by applying an auxiliary pulse having a phase opposite to that of the main pulse.
  • a drive signal composed of, for example, a triangular wave pulse equal to the resonance frequency of the membrane 18 is applied.
  • the vibration frequency of the membrane 18 when ultrasonic waves are generated is slightly lower than the frequency of ultrasonic waves generated by a cell having a circular cavity inscribed in the regular hexagonal cell 10.
  • the cell 10 may be reduced in a similar shape.
  • the membrane 18 vibrates at the frequency of the incident ultrasonic wave due to the sound pressure of the ultrasonic wave, and the thickness of the cavity 14H, that is, the distance between the electrodes changes according to the vibration, Accordingly, the capacitance between the electrodes changes. For this reason, the intensity and frequency of the incident ultrasonic waves are detected by detecting the capacitance between the electrodes.
  • the element 20 can transmit and receive higher frequency ultrasonic waves by always minutely deforming the membrane 18 using the DC offset bias method in which a potential difference is constantly applied between the electrodes.
  • the drive signal may be supplied from the outside of the element 20, or a drive circuit made of an IC or the like may be disposed on the back surface of the element 20.
  • the diameter R of the cross section of the column 14 that is a cylinder is preferably 1/20 or more and 1/5 or less of the interval D between the column 14 and the column 14. If it is above the range, the membrane 18 can be stably supported, and if it is below the range, the aperture ratio is as large as 95% or more, for example, and the feeling of transmission and reception is high.
  • the aperture ratio is “(circle area) / (circumscribed to the circle) even if the cavities are virtually in contact with each other.
  • the area was 78.5%.
  • the aperture ratio is less than 80% in the conventional element in which cells having isolated circular cavities are arranged in a square lattice, but in the element 20, a high aperture ratio exceeding 95% can be easily realized.
  • the element 20 achieves an improvement in ultrasonic transmission / reception sensitivity, and further expands application development.
  • a high aperture ratio means that the membrane can be driven efficiently, or the proportion of parasitic capacitance is reduced, and the signal-to-noise ratio (SN ratio) is also increased.
  • the element 20 has a large aperture ratio and high transmission / reception sensitivity.
  • the opposing region of the lower electrode 12 and the upper electrode 16 all contributes to the reception of ultrasonic waves, it is not affected by the parasitic capacitance due to the insensitive region, so the receiving sensitivity is high.
  • the shape of the pillar 14 is not limited to a cylinder.
  • the pillar 14A shown in FIG. 8A has a substantially equilateral triangle in cross section
  • the pillar 14B shown in FIG. 8B has a substantially star shape with a cross section protruding in three directions.
  • the pillar 14C shown in FIG. 8C has an entasis shape in which the central part of the pillar swells
  • the pillar 14D shown in FIG. 8D has a decorative pillar shape in which the upper part of the pillar is widened.
  • the column 14 may be in the shape of an elliptical column, a polygonal column, a star column, a cone or a polygonal pyramid, and the plurality of columns 14 of the element 20 may be composed of a plurality of columns having different shapes. Good. Even in the case of the pillars 14 other than the cylinders, the pillars 45 are preferably designed so that the aperture ratio of the cells is 90% or more, preferably 95% or more.
  • the lower electrode 12A is a common lower electrode of the plurality of vibrators 10 disposed on the entire surface of the cell group 10ZA formation region. That is, in FIG. 9, the lower electrode 12A of each vibrator 10 is indicated by a broken line, but the boundary line is a virtual line.
  • the lower electrode 12A is disposed on the entire surface. However, since the entire area where the upper and lower electrodes face each other is the membrane 18, the insensitive area is increased as compared with the element 20 having the patterned lower electrode 12. None do.
  • the element 20A is easy to manufacture because it is not necessary to pattern the lower electrode 12A. Further, as described above, since the unevenness is formed on the surface of the lower insulating layer 13 formed on the patterned lower electrode 12, it is preferable to flatten the surface. However, in the element 20A, since the lower electrode 12 is disposed on the entire surface of the cell group 10ZA formation region, no unevenness is formed on the surface of the lower insulating layer 13, and planarization is not necessary.
  • Element 20A has the effect of element 20 and is easier to manufacture.
  • each cell 10 occupies six pillars 14 respectively. For this reason, useless areas that do not contribute to transmission and reception are formed between the cells 10.
  • the element 20B has a high probability of being usable as a product because only one cell 10 is defective even if the column is defective. In other words, in the element 20, not all cells 10 need to be non-defective products in many cases.
  • the element 20B has the effect of the element 20 and the manufacturing yield is higher than that of the element 20 and the like.
  • the element 20B is also designed to have an aperture ratio of 90% or more, particularly preferably 95%. Moreover, some pillars may be shared by adjacent cells, and the remaining pillars may be occupied.
  • three pillars 14 are disposed not only at six apexes of the regular hexagonal cell 10C but also on two sides of the boundary line with the adjacent cell. That is, the membrane of the cell 10 ⁇ / b> C is supported by the twelve columns 14.
  • the displacement of the membrane of the cell 10C is not a six-fold symmetry with respect to the cell center but a two-fold symmetry, and is displaced into a complicated shape. For this reason, the cell 10C has a wide resonance frequency.
  • the element 20C has the effect of the element 20, and the ultrasonic waves generated by the membrane 18 are in a wide band, and similarly, the broadband ultrasonic waves can be transmitted and received.
  • the pillar 14 is arranged not at the apex of the regular hexagonal cell 10D but at a position slightly deviated from the apex.
  • the shift amount d is set at random, but is set inside a circle with a diameter RD.
  • the diameter RD is preferably 1/100 or more and 1/10 or less of the distance D, for example. If it is the said range, an effect is remarkable. Further, the shift amount d is set based on, for example, a random number.
  • the cells 10 having the same spacing D between the pillars 14 may cause unnecessary resonance or emphasize unnecessary transverse waves.
  • the pillars 14 of the cell 10D are randomly arranged from the hexagonal apex with a small plane displacement, so that unnecessary resonance does not occur.
  • the element 20D has the effect that the element 20 has, and there is no possibility that unnecessary resonance will occur.
  • equilateral triangular cells 10E are arranged without gaps. That is, the membrane 18 of each cell 10E is supported by the three common pillars 14. As shown in FIG. 14, in the element 20F, the cell 10F is a regular octagon. The membrane 18 of the cell 10F is supported by twelve columns 14, of which eight are arranged at the apexes of the regular octagonal cell 10F.
  • Element 20E and element 20F have the same effect as element 20. That is, if the column 14 has a transducer cell that forms the cavity 14H by supporting the membrane 18, the number of columns supporting the transducer cell is six if the number is three or more. It is not limited to. Note that the number of columns supporting the transducer cell is preferably 16 or less, and if the number is less than the above range, it is easy to increase the aperture ratio.
  • planar view shape of the membrane (cell) is not limited to a specific shape.
  • it may be a parallelogram, a rectangle, a diamond, or a trapezoid.
  • a shape in which a plurality of cells can be planarly filled, that is, a shape that can be disposed without gaps is preferable because it is easy to increase the aperture ratio.
  • the cell group 10ZG of the element 20G of the eighth embodiment includes three types of cells 10G1 to 10G3 having the same square cavity shape but different sizes (planar dimensions of the cell 10G). To do.
  • the cell group 10ZH of the element 20H according to the ninth embodiment has the same shape and size of the cavities, but four types of cells with different numbers of columns 14 supporting the cavities. 10H1 to 10H4.
  • the cell group 10ZI of the element 20I of the tenth embodiment includes two types of cells 10I1 to 10I2 having different cavities (cells).
  • the cell group 10ZJ of the element 20J of the eleventh embodiment includes two types of cells 10J1 to 10J2 having the same cavity shape and the like, but having different membrane 18 thicknesses.
  • the plurality of types of cells in which the cell group is different from at least one selected from the shape of the cavity in plan view, the size of the cavity (plan view size), the number of columns, or the thickness of the membrane have different resonance frequencies.
  • the elements 20G to 20J have a wide frequency band of ultrasonic waves that can be transmitted and received.
  • the largest cell 10G1 is arranged at the center of the element 20G, and the smallest cell 10G3 is arranged on the outermost periphery. Since the ultrasonic wave generated by the large cell 10G1 has a low frequency, the beam is likely to expand, and the ultrasonic wave generated by the small cell 10G3 has a high frequency, and thus the beam is difficult to expand.
  • the low-frequency cell is arranged in the center, the convergence property of the ultrasonic beam in the entire element is good.
  • the resonance frequency of the cell 10H2 and the cell 10H3 is between the resonant frequency of the cell 10H1 and the resonant frequency of the cell 10H4.
  • Element 20H can observe the near point side of the observation target with high resolution. That is, the near point side has a high resolution because an image is formed by a high frequency signal.
  • the shapes of the two types of cells 10I1 and 10I2 of the element 20I shown in FIG. 17 are two types of rhombuses constituting a Penrose tile pattern, and a column is arranged at the apex of the two types of rhombuses.
  • the Penrose tile pattern two types of rhombuses (rhombuses having an acute angle of 72 degrees and an obtuse angle of 108 degrees and an acute angle of 36 degrees and an obtuse angle of 144 degrees) are plane-filled.
  • a periodic pattern appears, but the Penrose tile pattern does not have a periodic pattern unlike other planar fillings.
  • the Penrose tile pattern has a specific symmetry of 5 times symmetry, so there is no translational symmetry in plan view. For this reason, the element 20I is extremely unlikely to cause unnecessary resonance, and can be particularly preferably used.
  • the element 20I has two types of resonance frequencies.
  • an element having a plurality of cells obtained by reducing or expanding a Penrose tile pattern in one direction is a broadband element having ten kinds of resonance frequencies in principle.
  • the resonance frequency of the cell 10J2 having a thick membrane 18 is higher than the resonance frequency of the cell 10J1 having a small thickness. That is, the resonance frequency is proportional to the membrane thickness.
  • the cell arrangement in an element having a plurality of types of cells having different resonance frequencies can be changed according to the purpose.
  • the number of cell types may be two or more.
  • Each of the elements 20G to 20J has the effects of the element 20 and the like, and further has a wider band characteristic, so that it can be applied to and deployed in ultrasonic Doppler measurement. Further, depending on the purpose, it is possible to arrange the cells in consideration of the directivity of the sound wave in the element, or to arrange the cells with high resolution with excellent convergence in the ultrasonic beam.
  • a very wide band element is obtained by continuously and gently changing the resonance frequency of the arranged cell.
  • the lower electrode 12A is formed on the entire surface of the cell group formation region.
  • the upper electrode 16J is also formed on substantially the entire surface of the cell group formation region, but a hole 16JH is formed in the region facing the column 14.
  • the membrane immediately above the pillar 14 becomes a dead area, but in the element 20J, since there is no upper electrode 16 in the dead area, the receiving sensitivity is higher.
  • FIG. 19 shows an example of an end portion of the cell group 10Z of the element 20 described in the above embodiment.
  • the plurality of cavities 14H of the cells 10 constituting the cell group 10Z communicate with each other.
  • the outer peripheral side of the cavity 14H in the outermost peripheral region of the cell group 10Z is surrounded by a sealing wall made of an envelope surface, and is a sealed space in which the plurality of cavities 14H of the cell group 10Z do not communicate with the outside. It is preferable.
  • the plurality of cavities 14H are preferably sealed spaces that do not communicate with the outside.
  • the element which is a sealed space in which the plurality of cavities 14H of the cell group 10Z do not communicate with the outside, does not change the internal pressure of the cavity 14H even if the surrounding environment changes. .
  • the elements 20 to 20J described above can be preferably used for an ultrasonic endoscope (hereinafter referred to as “endoscope”) 2.
  • endoscope an ultrasonic endoscope
  • the radial array ultrasonic transducer 30 includes a plurality of elements 20, a cylindrical holding member 31 in which the elements 20 are arranged on the outer surface, and a cable 80.
  • the lower electrode terminal 12T and the upper electrode terminal 16T of the element 20 are connected to the conducting wires 81A and 8B of the cable 80, respectively.
  • the ultrasonic array may be a convex type or a linear type.
  • FIG. 21 shows the ultrasonic endoscope system 1 having the ultrasonic endoscope 2 of the twelfth embodiment in which the array-type ultrasonic transducer 30 (element 20) is disposed at the distal end portion 47.
  • the endoscope 2 constitutes an ultrasonic endoscope system 1 together with the ultrasonic observation device 3 and the monitor 4.
  • the endoscope 2 includes an elongated insertion portion 41 to be inserted into the body, an operation portion 42 disposed at the proximal end of the insertion portion 41, and a universal cord 43 extending from a side portion of the operation portion 42. .
  • a connector 44A connected to a light source device (not shown) is disposed at the base end of the universal cord 43. From the connector 44A, there are a cable 45 that is detachably connected to a camera control unit (not shown) via a connector 45A, and a cable 46 that is detachably connected to the ultrasonic observation apparatus 3 via a connector 46A. It is extended.
  • a monitor 4 is connected to the ultrasonic observation apparatus 3.
  • the insertion portion 41 is, in order from the distal end side, a distal end portion 47, a bending portion 48 positioned at the rear end of the distal end portion 47, and a small diameter and long length reaching the operation portion 42 at the rear end of the bending portion 48.
  • a flexible tube portion 49 having flexibility is provided in series.
  • An array type ultrasonic transducer 30 is disposed on the distal end side of the distal end portion 47. The endoscope 2 acquires an ultrasonic image by the array type ultrasonic transducer 30 provided at the distal end portion 47.
  • the endoscope 2 includes an ultrasonic transducer element having high ultrasonic transmission sensitivity and ultrasonic reception sensitivity, a high-resolution image can be acquired.
  • the elements 20 to 20J are not only the endoscope 2 shown in FIG. 21, but also various ultrasonic diagnostic apparatuses that are small and require meridianization, such as IVUS (Intra Vascular UltraSound), extracorporeal ultrasonic probes. Needless to say, it can also be disposed in a capsule ultrasonic endoscope.
  • IVUS Intra Vascular UltraSound
  • extracorporeal ultrasonic probes Needless to say, it can also be disposed in a capsule ultrasonic endoscope.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Gynecology & Obstetrics (AREA)
  • Mechanical Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

超音波振動子エレメント20は、基板11と、基板11の上に配設された下部電極12と、下部電極12とキャビティ14Hを介して対向配置している上部電極16を含むメンブレン18と、メンブレン18を支持することでキャビティ14Hを形成している複数の柱14と、をそれぞれが有し、それぞれのキャビティ14Hが互いに通じている複数のセル10からなるセル群10Zと、を具備する。

Description

超音波振動子エレメント及び超音波内視鏡
 本発明は、複数の静電容量型の超音波振動子セル(以下、「セル」ともいう)からなるセル群を具備する超音波振動子エレメント(以下、「エレメント」ともいう)及び前記超音波振動子エレメントが先端部に配設された挿入部を具備する超音波内視鏡に関する。
 体内に超音波を照射し、エコー信号から体内の状態を画像化して診断する超音波診断法が普及している。超音波診断法に用いられる医療装置の1つに超音波内視鏡がある。超音波内視鏡は、体内へ導入される挿入部の先端硬性部にエレメントが配設されている。エレメントは電気信号を超音波に変換し体内へ送信し、また体内で反射した超音波を受信して電気信号に変換する機能を有する。
 現在の多くのエレメントには、環境負荷が大きい鉛を含むセラミック圧電材、例えばPZT(ジルコン酸チタン酸鉛)等が主に使用されている。これに対して、MEMS(Micro Electro Mechanical Systems)技術を用いて製造される、材料に鉛を含まない静電容量型超音波振動子(Capacitive Micro-machined Ultrasonic Transducer;以下、「c-MUT」という)からなる複数のセルを有するエレメントの開発が進んでいる。
 例えば、図1~図3に示すエレメント120が、米国特許第6854338号明細書に開示されている。上面図である図1に示すように、エレメント120は、超音波送受信の基本単位である25個のc-MUTからなるセル110を有する。
 図2はエレメント120の1個のセル110の断面図であり、図3は、図1に示したエレメント120の4個のセル110の部分分解図であり、破線で示された正方形は、1個のセル110の専有領域、言い換えればセル110の平面視形状を示している。なお、以下、平面視形状を単に形状という。セル110の形状は正方形と見なすことができる。
 図2及び図3に示すように、セル110は、下部電極12を兼ねた導電性の基板111と、キャビティ114Hを介して対向配置している上部電極116を有する。上部電極116のキャビティ114Hの直上の領域が超音波振動するメンブレン118を構成している。キャビティ114Hは、絶縁層114に形成された貫通孔により形成されている。キャビティ114Hは、外部と通じていない密封された空間である。
 セル110は、下部電極12と上部電極116との間に駆動信号が印加されるとメンブレン118が振動して超音波を発生する。外部から超音波が入射すると、メンブレン118が変形し電極間の静電容量が変化することを利用して、超音波を電気信号に変換する。エレメント120の送受信感度は、「(メンブレン118の面積)/(セル110の面積)」で示される開口率が大きいほど高い。
 しかし、正方形のセル110を有するエレメント120では、円形のキャビティ114Hの直上のメンブレン118以外の領域は、超音波の送受信には寄与しない不感領域である。例えば不感領域の電極間の静電容量は超音波受信時に変化しない、いわゆる寄生容量となる。
 エレメント120では不感領域が広く開口率が小さいため、高い送受信感度を得ることが容易ではなかった。
 送受信感度の高い超音波振動子エレメント及び前記超音波振動子エレメントを具備する超音波内視鏡を提供することを目的とする。
 本発明の実施形態の超音波振動子エレメントは、基板と、前記基板の上に配設された下部電極と、前記下部電極とキャビティを介して対向配置している上部電極を含むメンブレンと、前記メンブレンを支持することで前記キャビティを形成している複数の柱と、をそれぞれが有し、それぞれの前記キャビティが互いに通じている複数の超音波振動子セルからなるセル群と、を具備する。
 また、別の実施形態の超音波内視鏡は、基板と、前記基板の上に配設された下部電極と、前記下部電極とキャビティを介して対向配置している上部電極を含むメンブレンと、前記メンブレンを支持することで前記キャビティを形成している複数の柱と、をそれぞれが有し、それぞれの前記キャビティが互いに通じている複数の超音波振動子セルからなるセル群と、を具備する超音波振動子エレメントが先端部に配設された挿入部と、前記挿入部の基端側に配設された操作部と、前記操作部から延出するユニバーサルコードと、を具備する。
 本発明の実施形態によれば、受信感度の高い超音波振動子エレメント及び前記超音波振動子エレメントを具備する超音波内視鏡を提供できる。
従来のエレメントの上面図である。 従来のエレメントの超音波振動子セルの断面図である。 従来のエレメントの分解図である。 第1実施形態のエレメントの斜視図である。 第1実施形態のエレメントの超音波振動子セルの断面図である。 第1実施形態のエレメントの分解図である。 第1実施形態のエレメントのセルを説明するための上面模式図である。 第1実施形態のエレメントの柱の変形例を示す図である。 第1実施形態のエレメントの柱の変形例を示す図である。 第1実施形態のエレメントの柱の変形例を示す図である。 第1実施形態のエレメントの柱の変形例を示す図である。 第2実施形態のエレメントの分解図である。 第3実施形態のエレメントを説明するための上面模式図である。 第4実施形態のエレメントを説明するための上面模式図である。 第5実施形態のエレメントを説明するための上面模式図である。 第6実施形態のエレメントを説明するための上面模式図である。 第7実施形態のエレメントを説明するための上面模式図である。 第8実施形態のエレメントを説明するための上面模式図である。 第9実施形態のエレメントを説明するための上面模式図である。 第10実施形態のエレメントを説明するための上面模式図である。 第11実施形態のエレメントの分解図である。 実施形態のエレメントの封止壁の上面図である。 第12実施形態の超音波内視鏡のアレイ型超音波振動子の斜視図である。 第12実施形態の超音波内視鏡の外観図である。
<第1実施形態>
 図4に示すように、本実施形態の超音波振動子エレメント20は、基板11の上に、複数の超音波振動子セル10からなるセル群10Zが配設されている。そして、下部電極端子12Tと上部電極端子16Tとの間に駆動信号が印加されるとセル群10Zは超音波を送信し、入射した超音波は下部電極端子12Tと上部電極端子16Tとの間の静電容量変化をもとに電気信号に変換され受信される。
 図5に示すように、セル10は、下部電極端子12Tと接続された下部電極12と、下部電極12を覆う下部絶縁層13と、キャビティ14Hを形成している柱14と、柱14により支持されている、上部電極端子16Tと接続された上部電極16を含むメンブレン18と、を有する。キャビティ14Hの直上の領域のメンブレン18は、上部絶縁層15と、上部電極16と、保護層17と、を含む。
 柱14は、メンブレン18を支持することでキャビティ14Hを形成している。後述するように、キャビティ14Hは、真空状態又は所望の気体が所望の気圧にて封じ込め密封されている空間である。
 なお、単結晶シリコン等からなる基板11の表面には絶縁薄膜が形成されているが図示していない。下部電極12は導電性の金属、例えば、Al、Mo、W、Ti又は前記金属の合金等からなる単層膜又は多層膜である。
 なお、メンブレン18の厚さを薄くするためには上部電極16として、グラフェン又はシリセン等を用いてもよい。グラフェンは炭素原子よりなる2次元網構造又は複数の2次元網構造層が積層された構造を有し、シリセンはシリコン原子からなる2次元網構造を有する。グラフェン等は、厚さが極薄であるにも係わらず、金属同等の、導電率、高剛性及び高熱伝導率を、有する。
 下部絶縁層13、上部絶縁層15及び柱14は、チッ化シリコン、酸化シリコン、酸化タンタル又は酸化ハフニウム等からなる。下部絶縁層13、上部絶縁層15及び柱14は、それぞれ別の材料により構成されていてもよい。なお、下部絶縁層13又は上部絶縁層15の少なくともいずれかは必須の構成要素ではない。
 下部絶縁層13は、下部電極12をプロセス工程中において保護するとともに、下部電極12と上部電極16の間の電気的絶縁を担保する。下部電極12を覆うように成膜された下部絶縁層13の表面は、成膜後に必要に応じてCMP法等により平坦化される。
 キャビティ14Hは、犠牲層エッチングにより形成される。すなわち、下部絶縁層13の上に柱14と犠牲層とが配設され、その上が上部絶縁層15等により覆われる。
 そして犠牲層を覆っている上部絶縁層15等に貫通穴(VIA穴)を形成することにより犠牲層にエッチャントを注入し、犠牲層を選択的にエッチングすることにより、空洞部であるキャビティ14Hが形成される。犠牲層の材料は、周囲の材料とのエッチング選択比の大きい材料から選択される。例えば、下部絶縁層13等がチッ化シリコンからなる場合には、犠牲層にはリンガラス等が用いられる。VIA穴は、犠牲層エッチング後に穴埋めされるが、穴埋め部材を一部の柱14として用いてもよい。
 上部電極16は、下部電極12と同様の材料からなる。上部電極16を覆う保護層17は、チッ化シリコン、酸化シリコン、ポリイミド又はポリパラキシリレン等からなる絶縁体からなる。
 なお、エレメント20の構成要素の材料及び製造方法等は、従来のエレメントと略同じである。すなわち、エレメント20が、従来のエレメントと異なるのはメンブレンを支持しているのが絶縁層114ではなく、複数の柱14であることである。このため、エレメント20の製造方法等は、上記記載に限られるものではなく、公知のエレメントの製造方法等を用いることができる。
 図5に示すセル10は、図2に示したセル110と類似しているようにも見える。しかし、図3で示したように、従来のエレメント120では、キャビティ114Hは、それぞれが密閉された空間であり、言い換えれば、それぞれのキャビティ114Hは孤立していた。これに対して、図6に示すように、エレメント20では、複数の柱14によりキャビティ14Hが形成されている。このため、セル群10Zの複数のキャビティ14Hは、互いに通じている(communicate)、いわゆるオープンキャビティである。言い換えれば、複数のキャビティ14Hは、1つの空間を形成している。
 なお、図6の分解図においては、下部絶縁層13及び保護層17は図示していない。また図7の上面図は柱14と下部電極12と上部電極16の配置だけを示している。図6及び図7等に破線で示した正六角形は、1個のセル10の専有領域、言い換えればセル10の平面視形状を示しているが、実際には境界は明示されない。例えば、破線で示した複数のセル10のキャビティ14Hの境界線は実際には存在しない仮想線である。
 図6及び図7に示すように、エレメント20には、平面視形状が正六角形の複数のセル10が隙間なく配設されている。すなわち、それぞれの柱14が、隣接する3つのセル10のメンブレン18を支持し、キャビティ14Hを形成している。上部絶縁層15が柱14と接合されている領域は、振動しない送受信に寄与しない不感領域であるが、エレメント20の、振動領域であるメンブレン18の面積がセル面積に対する開口率は従来のエレメントよりもはるかに高い。すなわち、セル10の形状及び面積はキャビティ14Hの形状及び面積と略等しい。
 なお、エレメント20においても、厳密には、セル10の形状と、柱14の領域を含まないキャビティ14Hの形状と、は異なるが、以下、キャビティ14Hの形状をセル10の形状ということがある。
 複数のセル10の下部電極12は、下部電極配線12Sにより互いに接続されており、上部電極16は、上部電極配線16Sにより互いに接続されている。すなわち、エレメント20の複数のセル10は、同時に駆動されるセル群10Zを構成している。
 下部電極12と上部電極16の間に、下部電極端子12Tと上部電極端子16Tとを介して、0でない電位が印加されると、電位差により発生する静電引力により、メンブレン18が、下部電極12の方向に引き寄せられ変位する。なお、安全確保の観点から上部電極16は接地電位とすることが好ましい。
 メンブレン18の変位量は、セル10の中心点で最大あり、隣接セル境界では正六角形の各辺の2等分点で最大となる。また変位量は、破線で表示した隣接するセル10の境界線を軸として線対称となる。更に、セル10は正六角形であるので、変位量は、セル10の中心点に対して6度回転すると等しい6回対称である。
 メンブレン18が変位した状態で印加電位が切断されると静電引力が消滅し、メンブレン18は構成材料及び構造パラメータで決まる共振周波数で振動し、共振周波数に等しい振動数の超音波が送信される。
 なお、超音波をパルス的に送信する場合は、印加する駆動信号の波形等を制御することが好ましい。例えば、印加電位の上昇にメンブレン18の変位が追従できるように、ゆっくりと電位を上昇したり、メンブレン18が完全に静止するよう十分な時間をおいてから、次のパルスを印加したりすることが好ましい。また、超音波を送信した後に、補助パルス印加による引力、又は、主パルスと逆位相の補助パルス印加によるカウンター振動発生によりメンブレン18を強制的に静止してもよい。
 一方、ドップラー計測などのために、連続して超音波を送信する場合には、メンブレン18の共振周波数に等しい、例えば三角波パルスからなる駆動信号が印加される。
 超音波発生時のメンブレン18の振動周波数、すなわち、発生する超音波の周波数は、正六角形のセル10に内接する円形のキャビティを有するセルが発生する超音波の周波数より若干低い。前記内接する円形のキャビティを有するセルと等しい超音波周波数を実現するには、セル10を相似形状で縮小すればよい。
 セル10に超音波が入射した場合は、メンブレン18が超音波の音圧により入射超音波の周波数で振動し、その振動に応じてキャビティ14Hの厚さ、すなわち、電極間の距離が変化し、これに応じて電極間の静電容量が変化する。このため、電極間の静電容量を検出することにより、入射した超音波の強度及び周波数が検出される。
 なお、電極間に常時、電位差を印加するDCオフセットバイアス法を用いメンブレン18を常時、微小変形しておくことで、エレメント20は、より高周波数の超音波を送受信できる。
 なお、駆動信号は、エレメント20の外部から供給されてもよいし、エレメント20の裏面に、IC等からなる駆動回路を配設してもよい。
 ここで、図7に示すように、円柱である柱14の断面の直径Rは、柱14と柱14の間隔Dの1/20以上1/5以下が好ましい。前記範囲以上であれば、メンブレン18を安定して支持可能であり、前記範囲以下であれば開口率が例えば95%以上と大きいため、送受信感が高い。
 例えば、正六角形のセル10において、間隔Dが100μm、直径Rが10μmの場合、セル10の面積は26000μm2、柱14の面積は157μm2である。このため、開口率は、(26000-157)/26000=99.4%である。
 これに対して、従来の孤立した円形キャビティを有するセルが正方格子配列したエレメントでは、仮想的にキャビティ同士が接している形態でも、開口率は、「(円の面積)/(円に外接する正方形の面積)」であるため、78.5%であった。
 すなわち、従来の孤立した円形キャビティを有するセルが正方格子配列したエレメントでは開口率は80%未満であったが、エレメント20では、95%を超える高開口率が容易に実現できる。
 エレメント20は、超音波の送受信感度の向上が達成され、更に応用展開の拡大が可能となる。また開口率が大きいということは、効率のよいメンブレンのドライブが可能、又は、寄生容量の割合が低下して、信号雑音比(SN比)も上昇する。
 すなわち、エレメント20は、開口率が大きく、送受信感度が高い。
 更に、エレメント20では、下部電極12と上部電極16との対向領域は、全て超音波の受信に寄与するため、不感領域による寄生容量の影響を受けないため、受信感度が高い。
 なお、柱14の形状は円柱に限られるものではない。例えば、図8Aに示す柱14Aでは断面が円形ではなく、略正三角形であり、図8Bに示す柱14Bは断面が3方向に突出した略星型である。また、図8Cに示す柱14Cは、柱中央部が膨らんだエンタシス形状であり、図8Dに示す柱14Dは、柱の上部が広がった飾り柱形状である。
 柱14は、楕円柱、多角柱、星型柱、円錐又は多角錐等の形状であってもよく、また、エレメント20の複数の柱14が、複数の異なる形状の柱から構成されていてもよい。なお、円柱以外の柱14の場合にも、セルの開口率が90%以上、好ましくは95%以上となるように柱45が設計されることが好ましい。
<第2実施形態>
 図9に示す第2実施形態のエレメント20Aは、エレメント20と類似しているので、同じ構成要素には同じ符号を付し説明は省略する。
 エレメント20Aでは下部電極12Aが、セル群10ZA形成領域の全面に配設されている、複数の振動子10の共通の下部電極である。すなわち、図9では、破線により、それぞれの振動子10の下部電極12Aを示しているが、その境界線は仮想線である。
 エレメント20Aでは、下部電極12Aが全面に配設されているが、上下電極が対向する領域の全てがメンブレン18であるため、パターニングされた下部電極12を有するエレメント20と比較して不感領域が増加することはない。
 エレメント20Aは、下部電極12Aをパターニングする必要がないため、製造が簡単である。また、既に説明したように、パターニングされた下部電極12の上に成膜された下部絶縁層13の表面には凹凸が形成されるため、平坦化することが好ましい。しかし、エレメント20Aでは、セル群10ZA形成領域の全面に下部電極12が配設されているため、下部絶縁層13の表面には凹凸が形成されず、平坦化も不要である。
 エレメント20Aは、エレメント20の効果を有し、更に製造が容易である。
 なお、下部電極12又は上部電極16の少なくともいずれかが、基板11のセル群10Z形成領域の全面に配設されていても、エレメント20Aと同様の効果を有することは言うまでも無い。
<第3実施形態>
 図10に示す第3実施形態のエレメント20Bは、エレメント20等と類似しているので、同じ構成要素には同じ符号を付し説明は省略する。
 エレメント20Bは、それぞれのセル10が、それぞれ6本の柱14を専有する。このため、セル10の間に、送受信に寄与しない無駄な領域が形成されている。
 隣接するセル10が柱14を共用しているエレメント20等では、1本の柱が不良であると、その柱を共用している3個のセル10が不良となる。これに対して、エレメント20Bは、柱が不良あっても1個のセル10が不良となるだけであるため、製品として使用可能となる確率が高い。すなわち、エレメント20においては、必ずしも全てのセル10が良品である必要はない場合も多い。
 エレメント20Bは、エレメント20等の効果を有し、更にエレメント20等よりも製造歩留まりが高い。
 なお、エレメント20Bにおいても、開口率90%以上が好ましく、特に好ましくは95%となるように設計される。また、一部の柱が隣接セルにより共用されており、残りの柱が専有されていてもよい。
<第4実施形態>
 図11に示す第3実施形態のエレメント20Cは、エレメント20等と類似しているので、同じ構成要素には同じ符号を付し説明は省略する。なお、以下の図においては、柱14は中心を示す黒丸で示す。
 エレメント20Cでは、柱14が、正六角形のセル10Cの頂点6箇所だけでなく、隣接セルとの境界線の2辺の上にも、それぞれ3本が配設されている。すなわち、セル10Cのメンブレンは、12本の柱14により支持されている。
 セル10Cのメンブレンの変位は、セル中心に対して6回対称ではなく、2回対称であり、複雑な形状に変位する。このため、セル10Cは、共振周波数の幅が広い。
 エレメント20Cは、エレメント20が有する効果を有し、更に、メンブレン18が発生する超音波は、広帯域であり、同様に、広帯域の超音波を送受信可能である。
<第5実施形態>
 図12に示す第5実施形態のエレメント20Dは、エレメント20等と類似しているので、同じ構成要素には同じ符号を付し説明は省略する。
 エレメント20Dでは、柱14が、正六角形のセル10Dの頂点ではなく、頂点から少しずれた位置に配設されている。ずれ量dはランダムに設定されているが、直径RDの円の内部に設定されている。直径RDは、例えば、間隔Dの1/100以上1/10以下が好ましい。前記範囲であれば、効果が顕著である。また、ずれ量dは、例えば乱数をもとに設定される。
 柱14の間隔Dが同じセル10は、不必要共振が発生したり、不要な横波が強調されたりするおそれがある。これに対して、エレメント20Dでは、セル10Dの柱14が、六角形の頂点から微小な平面変位でランダムに配置されているため、不必要共振が発生したりするおそれがない。
 すなわち、エレメント20Dは、エレメント20が有する効果を有し、更に、不必要共振が発生したりするおそれがない。
<第6実施形態及び第7実施形態>
 第6実施形態のエレメント20E及び第7実施形態のエレメント20Fは、エレメント20等と類似しているので、同じ構成要素には同じ符号を付し説明は省略する。
 図13に示すように、エレメント20Eでは、正三角形のセル10Eが隙間なく配設されている。すなわち、それぞれのセル10Eのメンブレン18は、共通の3本の柱14により支持されている。また、図14に示すように、エレメント20Fでは、セル10Fは正八角形である。セル10Fのメンブレン18は12本の柱14により支持されており、そのうち、8本は正八角形のセル10Fの頂点に配置されている。
 エレメント20E及びエレメント20Fは、エレメント20と同じ効果を有する。すなわち、柱14がメンブレン18を支持することでキャビティ14Hを形成している振動子セルを有していれば、振動子セルを支えている柱の数は、3本以上であれば、6本に限定されるものではない。なお、振動子セルを支えている柱の数は、16本以下が好ましく、前記範囲以下であれば、開口率を大きくすることが容易である。
 また、メンブレン(セル)の平面視形状は、特定の形状に限定されるものではない。例えば、並行四辺形、長方形、菱形、又は台形であってもよい。特に、複数のセルを平面充填できる、すなわち、隙間なく配設できる形状が、開口率を大きくすることが容易であるため、好ましい。
<第8実施形態~第11実施形態>
 第8実施形態のエレメント20G~第10実施形態のエレメント20Jは、エレメント20等と類似しているので、同じ構成要素には同じ符号を付し説明は省略する。
 図15に示すように、第8実施形態のエレメント20Gのセル群10ZGは、キャビティの形状は同じ正方形であるが大きさ(セル10Gの平面視寸法)が異なる3種類のセル10G1~10G3を具備する。
 図16に示すように、第9実施形態のエレメント20Hのセル群10ZHは、キャビティの形状及び大きさは同じであるが、それぞれのキャビティを支持している柱14の数が異なる4種類のセル10H1~10H4を具備する。
 図17に示すように、第10実施形態のエレメント20Iのセル群10ZIは、キャビティ(セル)の形状が異なる2種類のセル10I1~10I2を具備する。
 図18に示すように、第11実施形態のエレメント20Jのセル群10ZJは、キャビティの形状等は同じだが、メンブレン18の厚さが異なる2種類のセル10J1~10J2を具備する。
 セル群がキャビティの平面視形状、キャビティの大きさ(平面視寸法)、柱の数又はメンブレンの厚さから選ばれる少なくともいずれかが異なる複数の種類のセルは、共振周波数が異なる。
 このため、エレメント20G~20Jは、送受信できる超音波の周波数帯域が広い。例えば、図15に示すエレメント20Gでは、最も大きなセル10G1をエレメント20Gの中心部に配置し、最外周には最も小さなセル10G3を配置している。大きなセル10G1が発生する超音波は周波数が低いため、ビームが拡がりやすく、小さなセル10G3が発生する超音波は周波数が高いため、ビームが拡がりにくい。エレメント20Gでは、低周波数のセルを中心部に配置しているため、エレメント全体での超音波ビームの収束性が良い。
 一方、図16に示すエレメント20Hでは、中心部に配置されたセル10H1のメンブレン18は16本の柱14で支持されているため、共振周波数が高い。これに対して、周辺部に配置されたセル10H4のメンブレン18は5本の柱14で支持されているため、共振周波数が低い。セル10H1とセル10H3との間に配置された、セル10H2のメンブレン18は10本の柱14で支持されており、セル10H3のメンブレン18は8本の柱14で支持されている。このため、セル10H2及びセル10H3の共振周波数は、セル10H1の共振周波数とセル10H4の共振周波数との間にある。
 エレメント20Hは、観察対象の近点側が高分解能に観察できる。すなわち、近点側は高周波数の信号により画像形成をするため高分解能である。
 図17に示したエレメント20Iの2種類のセル10I1及び10I2の形状は、ペンローズタイルパターンを構成する2種類の菱形であり、柱が2種類の菱形の頂点に配置されている。ペンローズタイルパターンでは、2種類の菱形(鋭角72度、鈍角108度の菱形と鋭角36度、鈍角144度の菱形)が平面充填されている。正多角形を利用した充填の場合、周期的なパターンが現れるが、ペンローズタイルパターンは、他の平面充填とは違い周期的なパターンがない。
 ペンローズタイルパターンは5回対称という特異的な対称性を持つため、平面的に見て並進対称性はない。このため、エレメント20Iは不要共振が極めて発生しにくく、特に好ましく用いることができる。
 なお、菱形のセルは、略同一寸法の楕円型キャビティのあるセルと等しい共振周波数を示すため、エレメント20Iは、2種類の共振周波数を有する。更に、ペンローズタイルパターンを一方向に縮小又は拡大した複数のセルを有するエレメントは、原理的には10種類の共振周波数を有する広帯域なエレメントである。
 図18に示すエレメント20Jでは、メンブレン18の厚さが厚いセル10J2の共振周波数が、厚さが薄いセル10J1の共振周波数よりも高い。すなわち、共振周波数は、メンブレン厚さに比例する。
 なお、共振周波数が異なる複数の種類のセルを有するエレメントにおける、セル配置は、目的に応じて変更可能である。またセルの種類は2種類以上であればよい。
 エレメント20G~20Jは、いずれもエレメント20等が有する効果を有し、更に、より広帯域な特性を有するため、超音波ドップラー計測などに応用展開できる。また、目的に応じて、エレメント内で音波の指向性に配慮したセル配置としたり、超音波ビーム内の収束性に優れた高い解像度を有するセル配置としたりできる。
 また、キャビティの平面視形状、キャビティの大きさ(平面視寸法)、柱の数及びメンブレンの厚さから選択される2以上の要因を変化することで、より多くの共振周波数を有する広帯域のエレメントとなる。特に、配置するセルの共振周波数を連続的になだらかに変化させることにより、非常に広帯域のエレメントとなる。
 なお、図18に示したエレメント20Jでは、下部電極12Aはセル群形成領域の全面に形成されている。一方、上部電極16Jもセル群形成領域の略全面に形成されているが、柱14と対向する領域には穴16JHが形成されている。柱14の直上のメンブレンは不感領域となるが、エレメント20Jでは、不感領域には上部電極16がないため、受信感度が、より高い。
 ここで、図19は、上記実施形態で説明したエレメント20のセル群10Zの端部の一例を示している。既に説明したように、セル群10Zを構成するセル10の複数のキャビティ14Hは、互いに通じている。しかし、セル群10Zの最外周領域のキャビティ14Hの外周側は、包絡面からなる封止壁により囲まれており、セル群10Zの複数のキャビティ14Hが外部と通じていない密封された空間であることが好ましい。なお、エレメント20A~20Jにおいても複数のキャビティ14Hが外部と通じていない密封された空間であることが好ましい。
 セル群10Zの複数のキャビティ14Hが外部と通じていない密封された空間であるエレメントは、周囲の環境が変化しても、キャビティ14Hの内部圧力が変化しないため、送受信感度が変化するおそれがない。
<第12実施形態>
 上記で説明したエレメント20~20Jは、超音波内視鏡(以下、「内視鏡」という)2に好ましく用いることができる。
 図20に示すように、ラジアルタイプのアレイ型超音波振動子30は、複数のエレメント20と、エレメント20が外面に配設された円筒形の保持部材31と、ケーブル80と、を有する。エレメント20の下部電極端子12Tと上部電極端子16Tとは、それぞれケーブル80の導線81A、8Bと接続される。なお、超音波アレイは、コンベックス型又はリニア型等でもよい。
 図21は、アレイ型超音波振動子30(エレメント20)が先端部47に配設された第12実施形態の超音波内視鏡2を有する超音波内視鏡システム1を示す。内視鏡2は、超音波観測装置3及びモニタ4とともに超音波内視鏡システム1を構成する。内視鏡2は、体内に挿入される細長の挿入部41と、挿入部41の基端に配された操作部42と、操作部42の側部から延出したユニバーサルコード43とを具備する。
 ユニバーサルコード43の基端部には、光源装置(不図示)に接続されるコネクタ44Aが配設されている。コネクタ44Aからは、カメラコントロールユニット(不図示)にコネクタ45Aを介して着脱自在に接続されるケーブル45と、超音波観測装置3にコネクタ46Aを介して着脱自在に接続されるケーブル46と、が延出している。超音波観測装置3にはモニタ4が接続される。
 挿入部41は、先端側から順に、先端部47と、先端部47の後端に位置する湾曲部48と、湾曲部48の後端に位置して操作部42に至る細径かつ長尺で可撓性を有する可撓管部49と、を連設して構成されている。そして、先端部47の先端側にはアレイ型超音波振動子30が配設されている。
 先端部47に設けられたアレイ型超音波振動子30によって内視鏡2は、超音波画像を取得する。
 内視鏡2は、高い超音波送信感度及び超音波受信感度を有する超音波振動子エレメントを具備するため、高解像度の画像を取得可能である。
 なお、エレメント20~20Jは、図21に示した内視鏡2だけでなく、小型で細経化が必要な各種超音波診断装置、例えば、IVUS(Intra Vascular UltraSound)、体外式の超音波プローブ、又はカプセル型超音波内視鏡にも配設できることは言うまでもない。
 本発明は、上述した実施形態等に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変、例えば、実施形態の構成要素の組み合わせ等が可能である。
 本発明は上述した実施形態等に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変、組み合わせ等ができる。
 本出願は、2012年11月15日に日本国に出願された特願2012-251444号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。

Claims (8)

  1.  基板と、
     前記基板の上に配設された下部電極と、前記下部電極とキャビティを介して対向配置している上部電極を含むメンブレンと、前記メンブレンを支持することで前記キャビティを形成している複数の柱と、をそれぞれが有し、それぞれの前記キャビティが互いに通じている複数の超音波振動子セルからなるセル群と、を具備することを特徴とする超音波振動子エレメント。
  2.  前記メンブレンが、3本以上16本以下の前記複数の柱により支持されていることを特徴とする請求項1に記載の超音波振動子エレメント。
  3.  それぞれの柱が、隣接する複数の超音波振動子セルのメンブレンを支持していることを特徴とする請求項2に記載の超音波振動子エレメント。
  4.  前記超音波振動子セルの前記下部電極又は前記上部電極の少なくともいずれかが、前記基板のセル群形成領域の全面に配設されている、前記複数の振動子の共通電極であることを特徴とする請求項3に記載の超音波振動子エレメント。
  5.  前記セル群が、前記キャビティの形状、前記キャビティの大きさ、前記柱の数又は前記メンブレンの厚さから選ばれる少なくともいずれかが異なる複数の種類の前記超音波振動子セルを具備することを特徴とする請求項3に記載の超音波振動子エレメント。
  6.  それぞれの前記キャビティの形状が、ペンローズタイルパターンを構成する2種類の菱形であり、
     前記柱が、前記2種類の菱形の頂点に配置されていることを特徴とする請求項3に記載の超音波振動子エレメント。
  7.  前記セル群の最外周領域の前記キャビティの外周側が、包絡面からなる封止壁により囲まれており、前記セル群の前記複数のキャビティが外部と通じていない密封された空間であることを特徴とする請求項3に記載の超音波振動子エレメント。
  8.  請求項1から請求項7のいずれか1項に記載の超音波振動子エレメントが先端部に配設された挿入部と、前記挿入部の基端側に配設された操作部と、前記操作部から延出するユニバーサルコードと、を具備することを特徴とする超音波内視鏡。
PCT/JP2013/078935 2012-11-15 2013-10-25 超音波振動子エレメント及び超音波内視鏡 WO2014077106A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380057959.2A CN104823462B (zh) 2012-11-15 2013-10-25 超声波振子元件及超声波内窥镜
JP2014546920A JP6061950B2 (ja) 2012-11-15 2013-10-25 超音波振動子エレメント及び超音波内視鏡
EP13854660.1A EP2922311A4 (en) 2012-11-15 2013-10-25 ULTRASONIC TRANSMITTER ELEMENT AND ULTRASOUND DOSCOPE
US14/711,176 US10342511B2 (en) 2012-11-15 2015-05-13 Ultrasound transducer element and ultrasound endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012251444 2012-11-15
JP2012-251444 2012-11-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/711,176 Continuation US10342511B2 (en) 2012-11-15 2015-05-13 Ultrasound transducer element and ultrasound endoscope

Publications (1)

Publication Number Publication Date
WO2014077106A1 true WO2014077106A1 (ja) 2014-05-22

Family

ID=50731024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078935 WO2014077106A1 (ja) 2012-11-15 2013-10-25 超音波振動子エレメント及び超音波内視鏡

Country Status (5)

Country Link
US (1) US10342511B2 (ja)
EP (1) EP2922311A4 (ja)
JP (1) JP6061950B2 (ja)
CN (1) CN104823462B (ja)
WO (1) WO2014077106A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2992829B1 (en) * 2014-09-02 2018-06-20 Esaote S.p.A. Ultrasound probe with optimized thermal management
JP2018129725A (ja) * 2017-02-09 2018-08-16 キヤノン株式会社 静電容量型トランスデューサおよびその製造方法
JP2019209169A (ja) * 2019-09-06 2019-12-12 キヤノン株式会社 静電容量型トランスデューサ、及び被検体情報取得装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5901566B2 (ja) * 2013-04-18 2016-04-13 キヤノン株式会社 トランスデューサ、トランスデューサの製造方法、及び被検体情報取得装置
WO2021038722A1 (ja) * 2019-08-27 2021-03-04 オリンパス株式会社 超音波エレメントおよび内視鏡

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6854338B2 (en) 2000-07-14 2005-02-15 The Board Of Trustees Of The Leland Stanford Junior University Fluidic device with integrated capacitive micromachined ultrasonic transducers
JP2007229327A (ja) * 2006-03-03 2007-09-13 Olympus Medical Systems Corp 超音波振動子及びそれを搭載した体腔内超音波診断装置
JP2008546239A (ja) * 2005-05-18 2008-12-18 コロ テクノロジーズ インコーポレイテッド 微細電子機械変換器
WO2010053032A1 (ja) * 2008-11-04 2010-05-14 オリンパスメディカルシステムズ株式会社 音響振動子及び画像生成装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262946B1 (en) * 1999-09-29 2001-07-17 The Board Of Trustees Of The Leland Stanford Junior University Capacitive micromachined ultrasonic transducer arrays with reduced cross-coupling
ITRM20030318A1 (it) * 2003-06-25 2004-12-26 Esaote Spa Trasduttore ultracustico capacitivo microlavorato e
US8658453B2 (en) * 2004-09-15 2014-02-25 Sonetics Ultrasound, Inc. Capacitive micromachined ultrasonic transducer
CA2607885A1 (en) * 2005-05-18 2006-11-23 Kolo Technologies, Inc. Through-wafer interconnection
US8796901B2 (en) 2005-06-17 2014-08-05 Kolo Technologies, Inc. Micro-electro-mechanical transducer having an insulation extension
JP2008099036A (ja) * 2006-10-12 2008-04-24 Olympus Medical Systems Corp 超音波トランスデューサ、超音波探触子及び超音波診断装置
JP2011035916A (ja) * 2010-09-14 2011-02-17 Olympus Medical Systems Corp 超音波内視鏡

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6854338B2 (en) 2000-07-14 2005-02-15 The Board Of Trustees Of The Leland Stanford Junior University Fluidic device with integrated capacitive micromachined ultrasonic transducers
JP2008546239A (ja) * 2005-05-18 2008-12-18 コロ テクノロジーズ インコーポレイテッド 微細電子機械変換器
JP2007229327A (ja) * 2006-03-03 2007-09-13 Olympus Medical Systems Corp 超音波振動子及びそれを搭載した体腔内超音波診断装置
WO2010053032A1 (ja) * 2008-11-04 2010-05-14 オリンパスメディカルシステムズ株式会社 音響振動子及び画像生成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2922311A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2992829B1 (en) * 2014-09-02 2018-06-20 Esaote S.p.A. Ultrasound probe with optimized thermal management
JP2018129725A (ja) * 2017-02-09 2018-08-16 キヤノン株式会社 静電容量型トランスデューサおよびその製造方法
JP2019209169A (ja) * 2019-09-06 2019-12-12 キヤノン株式会社 静電容量型トランスデューサ、及び被検体情報取得装置

Also Published As

Publication number Publication date
EP2922311A4 (en) 2016-08-03
CN104823462B (zh) 2018-10-12
US20150245811A1 (en) 2015-09-03
CN104823462A (zh) 2015-08-05
JPWO2014077106A1 (ja) 2017-01-05
US10342511B2 (en) 2019-07-09
JP6061950B2 (ja) 2017-01-18
EP2922311A1 (en) 2015-09-23

Similar Documents

Publication Publication Date Title
US10586912B2 (en) Method for fabricating flexible micromachined transducer device
Jung et al. Review of piezoelectric micromachined ultrasonic transducers and their applications
JP6061950B2 (ja) 超音波振動子エレメント及び超音波内視鏡
JP6482558B2 (ja) モノリシックに集積された三電極cmut装置
CN106999163B (zh) 具有交错列的微加工超声换能器的导管换能器
JP4804961B2 (ja) 超音波振動子及びそれを搭載した体腔内超音波診断装置
CN109311055B (zh) 宽带超声换能器
US9085012B2 (en) Ultrasonic transducer and ultrasonic diagnostic apparatus provided with same
US8617078B2 (en) Ultrasonic transducer and ultrasonic diagnostic device using same
WO2012050172A1 (ja) 超音波トランスデューサおよびそれを用いた超音波診断装置
KR20160023154A (ko) 초음파 변환기
WO2012127737A1 (ja) 超音波振動子および超音波診断装置
KR102250185B1 (ko) 전기 음향 변환기
JP2013034665A (ja) 超音波エレメントおよび超音波内視鏡
EP2733961B1 (en) Ultrasonic element, and ultrasonic endoscope
JP6390428B2 (ja) 超音波振動子セル、超音波プローブ、及び超音波振動子セルの制御方法
WO2021132074A1 (ja) 超音波デバイス及び超音波診断装置
JP7312274B2 (ja) 超音波デバイス及び超音波診断装置
JP2014072554A (ja) 超音波エレメント及び超音波内視鏡
CN114408853A (zh) 刚柔融合电容式柔性mems超声换能器及其制备方法
JP2019016912A (ja) 超音波トランスデューサーアレイ、超音波探触子および超音波診断装置
JP2014068674A (ja) 超音波エレメント及び超音波内視鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854660

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014546920

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013854660

Country of ref document: EP