WO2013172255A1 - 化合物、発光材料および有機発光素子 - Google Patents

化合物、発光材料および有機発光素子 Download PDF

Info

Publication number
WO2013172255A1
WO2013172255A1 PCT/JP2013/063112 JP2013063112W WO2013172255A1 WO 2013172255 A1 WO2013172255 A1 WO 2013172255A1 JP 2013063112 W JP2013063112 W JP 2013063112W WO 2013172255 A1 WO2013172255 A1 WO 2013172255A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
compound
group
light emitting
substituted
Prior art date
Application number
PCT/JP2013/063112
Other languages
English (en)
French (fr)
Inventor
功將 志津
田中 啓之
一 中野谷
安達 千波矢
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to EP13790074.2A priority Critical patent/EP2808323A1/en
Priority to KR1020147008613A priority patent/KR20150009512A/ko
Priority to US14/379,567 priority patent/US9660199B2/en
Priority to CN201380004283.0A priority patent/CN104136430A/zh
Publication of WO2013172255A1 publication Critical patent/WO2013172255A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/27Combination of fluorescent and phosphorescent emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a compound useful as a light emitting material and an organic light emitting device using the compound.
  • organic light emitting devices such as organic electroluminescence devices (organic EL devices)
  • organic electroluminescence devices organic electroluminescence devices
  • various efforts have been made to increase the light emission efficiency by newly developing and combining electron transport materials, hole transport materials, light emitting materials, and the like constituting the organic electroluminescence element.
  • studies on organic electroluminescence devices using a compound containing a 1,3,5-triazine structure or a compound containing a phenazine structure have been found, and several proposals have been made so far.
  • Patent Document 1 discloses that a compound containing a 1,3,5-triazine structure represented by the following general formula is contained in a layer formed outside an electrode, not between two electrodes. It is described to improve the light efficiency.
  • Ar 2 , Ar 4 and Ar 6 are a phenylene group or the like
  • b, d and f are any integers of 0 to 3
  • R 2 , R 4 and R 6 are hydrogen atoms
  • R 2 , R 4 and R 6 are hydrogen atoms
  • groups containing a phenoxazine structure, a phenothiazine structure or a phenazine structure are not described as R 2 , R 4 and R 6 .
  • Patent Document 2 describes that a compound containing a phenazine structure represented by the following general formula is used as a host material such as an organic electroluminescence element.
  • R 1 to R 8 are a hydrogen atom, an alkyl group, an aryl group, and the like
  • R 9 and R 10 are defined as a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group, or an alkenyl group.
  • a group containing a 1,3,5-triazine structure is not described as R 9 and R 10 .
  • a compound containing a 1,3,5-triazine structure or a compound containing a phenazine structure has been studied so far, and some proposals for application to an organic electroluminescence device have been made.
  • little specific studies have been made on compounds containing both 1,3,5-triazine structure and phenoxazine structure, phenothiazine structure or phenazine structure in the molecule.
  • no synthesis example has been reported for a compound containing both a 2,4,6-triaryl-1,3,5-triazine structure and a phenoxazine structure, a phenothiazine structure or a phenazine structure.
  • the present inventors synthesized a compound containing both a 1,3,5-triazine structure and a phenoxazine structure, a phenothiazine structure, or a phenazine structure in a molecule as a light emitting material.
  • a study was carried out for the purpose of evaluating the usefulness of.
  • a general formula of a compound useful as a light-emitting material has been derived, and extensive studies have been conducted with the aim of generalizing the structure of an organic light-emitting device having high luminous efficiency.
  • a compound represented by the following general formula (1) [In the general formula (1), Ar 1 to Ar 3 each independently represents a substituted or unsubstituted aryl group, and at least one represents an aryl group substituted with a group represented by the following general formula (2) . ]
  • R 1 to R 8 each independently represents a hydrogen atom or a substituent.
  • Z represents O, S, O ⁇ C or Ar 4 —N, and
  • Ar 4 represents a substituted or unsubstituted aryl group.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 may be bonded to each other to form a cyclic structure. Good.
  • R 1 to R 8 each independently represents a hydrogen atom or a substituent.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 may be bonded to each other to form a cyclic structure.
  • Good. [4]
  • R 1 to R 8 each independently represents a hydrogen atom or a substituent.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 may be bonded to each other to form a cyclic structure.
  • Ar 2 , Ar 3 , Ar 2 ′ and Ar 3 ′ each independently represent a substituted or unsubstituted aryl group
  • Ar 5 and Ar 5 ′ each independently represent a substituted or unsubstituted aryl group.
  • R 1 to R 8 each independently represents a hydrogen atom or a substituent.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 may be bonded to each other to form a cyclic structure.
  • R 11 to R 25 represents a group represented by the above general formula (2), and the other each independently represents a hydrogen atom or a substituent other than the above general formula (2).
  • R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 , R 19 and R 20 , R 21 And R 22 , R 22 and R 23 , R 23 and R 24 , and R 24 and R 25 may be bonded to each other to form a cyclic structure.
  • R 1 to R 8 , R 11 , R 12 , R 14 to R 25 , R 11 ′, R 12 ′ and R 14 ′ to R 25 ′ are each independently a hydrogen atom or a substituent. Represents.
  • [12] A luminescent material comprising the compound according to any one of [1] to [11].
  • [13] A delayed phosphor having a structure represented by the general formula (1).
  • An organic light emitting device having a light emitting layer containing the light emitting material according to [12] on a substrate.
  • the organic light-emitting device according to [14] which emits delayed fluorescence.
  • the compound of the present invention is useful as a light emitting material.
  • the compounds of the present invention include those that emit delayed fluorescence.
  • An organic light emitting device using the compound of the present invention as a light emitting material can realize high luminous efficiency.
  • 2 is an emission spectrum of a toluene solution of compound 1 of Example 1.
  • 2 is a time-resolved spectrum of a toluene solution of compound 1 of Example 1.
  • 2 is an emission spectrum of a toluene solution of the compound 7 of Example 1.
  • 2 is a time-resolved spectrum of a toluene solution of compound 7 of Example 1.
  • 2 is an emission spectrum of a thin film type organic photoluminescence device using Compound 1 of Example 2.
  • 2 is an emission spectrum of an organic electroluminescence device using Compound 1 of Example 3.
  • 4 is a graph showing current density-voltage-luminance characteristics of an organic electroluminescence device using Compound 1 of Example 3. 4 is a graph showing external quantum efficiency-current density characteristics of an organic electroluminescence device using Compound 1 of Example 3.
  • 2 is an emission spectrum of an organic electroluminescence device using the compound 2 of Example 3.
  • 3 is an emission spectrum of another organic electroluminescence device using the compound 2 of Example 3.
  • 6 is a graph showing current density-voltage characteristics of another organic electroluminescence device using the compound 2 of Example 3.
  • 4 is a graph showing external quantum efficiency-current density characteristics of another organic electroluminescence device using the compound 2 of Example 3.
  • 2 is an emission spectrum of an organic electroluminescence device using the compound 3 of Example 3.
  • 6 is a graph showing current density-voltage of an organic electroluminescence device using Compound 3 of Example 3.
  • 6 is a graph showing current density-voltage of an organic electroluminescence device using the compound 4 of Example 3.
  • 4 is a graph showing external quantum efficiency-current density characteristics of an organic electroluminescence device using the compound 4 of Example 3.
  • 3 is an emission spectrum of an organic electroluminescence device using the compound 5 of Example 3.
  • 6 is a graph showing current density-voltage of an organic electroluminescence device using the compound 5 of Example 3.
  • 4 is a graph showing external quantum efficiency-current density characteristics of an organic electroluminescence device using the compound 5 of Example 3. 2 is an emission spectrum of an organic electroluminescence device using the compound 13 of Example 3.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the compound of the present invention is characterized by having a structure represented by the following general formula (1).
  • Ar 1 to Ar 3 each independently represents a substituted or unsubstituted aryl group, and at least one represents an aryl group substituted with a group represented by the following general formula (2) .
  • R 1 to R 8 each independently represents a hydrogen atom or a substituent.
  • Z represents O, S, O ⁇ C or Ar 4 —N, and
  • Ar 4 represents a substituted or unsubstituted aryl group.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 may be bonded to each other to form a cyclic structure. Good.
  • the aromatic ring constituting the aryl group represented by Ar 1 to Ar 3 in the general formula (1) may be a single ring or a fused ring. Specific examples include a benzene ring, a naphthalene ring, an anthracene ring, and a phenanthrene ring. Can be mentioned.
  • the aryl group preferably has 6 to 40 carbon atoms, more preferably 6 to 20 carbon atoms, and still more preferably 6 to 14 carbon atoms.
  • At least one of Ar 1 to Ar 3 is an aryl group substituted with a group represented by the general formula (2).
  • Two of Ar 1 to Ar 3 may be aryl groups substituted with a group represented by the general formula (2), or all three are substituted with a group represented by the general formula (2) It may be an aryl group.
  • One aryl group may be substituted with two or more groups represented by the general formula (2).
  • R 1 to R 8 in the general formula (2) each independently represent a hydrogen atom or a substituent. All of R 1 to R 8 may be hydrogen atoms. Moreover, when two or more are substituents, those substituents may be the same or different. Examples of the substituent include a hydroxy group, a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, and an alkyl substitution having 1 to 20 carbon atoms.
  • substituents are a halogen atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, carbon A substituted or unsubstituted heteroaryl group having 3 to 40 carbon atoms, a substituted or unsubstituted dialkylamino group having 1 to 10 carbon atoms, a substituted or unsubstituted diarylamino group having 12 to 40 carbon atoms, and 12 to 40 carbon atoms A substituted or unsubstituted carbazolyl group; More preferred substituents are a fluorine atom, a chlorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms
  • an unsubstituted dialkylamino group a substituted or unsubstituted diarylamino group having 12 to 40 carbon atoms, a substituted or unsubstituted aryl group having 6 to 15 carbon atoms, and a substituted or unsubstituted heteroaryl group having 3 to 12 carbon atoms It is a group.
  • the alkyl group in the present specification may be linear, branched or cyclic, and more preferably has 1 to 6 carbon atoms. Specific examples thereof include a methyl group, an ethyl group, a propyl group, and butyl. A tert-butyl group, a pentyl group, a hexyl group and an isopropyl group.
  • the aryl group may be a single ring or a fused ring, and specific examples thereof include a phenyl group and a naphthyl group.
  • the alkoxy group may be linear, branched or cyclic, and more preferably has 1 to 6 carbon atoms.
  • the two alkyl groups of the dialkylamino group may be the same or different from each other, but are preferably the same.
  • the two alkyl groups of the dialkylamino group may each independently be linear, branched or cyclic, and more preferably have 1 to 6 carbon atoms.
  • Specific examples include a methyl group, an ethyl group, Examples thereof include a propyl group, a butyl group, a pentyl group, a hexyl group, and an isopropyl group.
  • Two alkyl groups of the dialkylamino group may be bonded to each other to form a cyclic structure together with the nitrogen atom of the amino group.
  • the aryl group that can be employed as the substituent may be a single ring or a fused ring, and specific examples thereof include a phenyl group and a naphthyl group.
  • the heteroaryl group may be a monocyclic ring or a fused ring, and specific examples include a pyridyl group, a pyridazyl group, a pyrimidyl group, a triazyl group, a triazolyl group, and a benzotriazolyl group.
  • These heteroaryl groups may be a group bonded through a hetero atom or a group bonded through a carbon atom constituting a heteroaryl ring.
  • the two aryl groups of the diarylamino group may be monocyclic or fused, and specific examples thereof include a phenyl group and a naphthyl group. Two aryl groups of the diarylamino group may be bonded to each other to form a cyclic structure together with the nitrogen atom of the amino group.
  • An example is a 9-carbazolyl group.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 are bonded to each other to form a cyclic structure May be formed.
  • the cyclic structure may be an aromatic ring or an alicyclic ring, and may contain a hetero atom.
  • the hetero atom here is preferably selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom.
  • Examples of cyclic structures formed include benzene ring, naphthalene ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, pyrrole ring, imidazole ring, pyrazole ring, triazole ring, imidazoline ring, oxazole ring, isoxazole ring, thiazole And a ring, an isothiazole ring, a cyclohexadiene ring, a cyclohexene ring, a cyclopentaene ring, a cycloheptatriene ring, a cycloheptadiene ring, and a cycloheptaene ring.
  • Z in the general formula (2) represents O, S, O ⁇ C or Ar 4 —N
  • Ar 4 represents a substituted or unsubstituted aryl group.
  • the aromatic ring constituting the aryl group represented by Ar 4 may be a single ring or a fused ring, and specific examples include a benzene ring, a naphthalene ring, an anthracene ring, and a phenanthrene ring.
  • the aryl group preferably has 6 to 40 carbon atoms, more preferably 6 to 20 carbon atoms.
  • the group represented by the general formula (2) is a group having a structure represented by the following general formula (3), a group having a structure represented by the following general formula (4), or A group having a structure represented by the following general formula (5) is preferable.
  • R 1 to R 8 each independently represents a hydrogen atom or a substituent.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 may be bonded to each other to form a cyclic structure. Good.
  • the compound represented by the general formula (1) particularly includes a structure represented by the following general formula (6).
  • Ar 2 , Ar 3 , Ar 2 ′ and Ar 3 ′ each independently represent a substituted or unsubstituted aryl group
  • Ar 5 and Ar 5 ′ each independently represent a substituted or unsubstituted arylene.
  • R 1 to R 8 each independently represents a hydrogen atom or a substituent.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 may be bonded to each other to form a cyclic structure. Good.
  • the aromatic ring constituting the arylene group that can be taken by Ar 5 and Ar 5 ′ of the general formula (6) may be a single ring or a fused ring. Specific examples include a benzene ring, a naphthalene ring, an anthracene ring, Mention may be made of phenanthrene rings.
  • the arylene group preferably has 6 to 40 carbon atoms, more preferably 6 to 20 carbon atoms, and still more preferably 6 to 14 carbon atoms.
  • R 1 ⁇ R 8 of general formula (6) For the description and the preferred range of R 1 ⁇ R 8 of general formula (6), reference can be made to the descriptions and preferred ranges of R 1 ⁇ R 8 in the general formula (2).
  • a compound in which Ar 2 and Ar 2 ′ are the same, Ar 3 and Ar 3 ′ are the same, and Ar 5 and Ar 5 ′ are the same is easily synthesized. There is an advantage of being.
  • the compound represented by the general formula (1) preferably has a structure represented by the following general formula (7).
  • R 11 to R 25 represents a group represented by the general formula (2), and the others each independently represent a hydrogen atom or a substituent other than the general formula (2).
  • At least one of R 11 to R 25 in the general formula (7) is a group represented by the general formula (2), but the number of substitutions of the group represented by the general formula (2) is R 11 to R 25 Of these, 1 to 9 is preferable, and 1 to 6 is more preferable. For example, it can be selected within a range of 1 to 3.
  • the group represented by the general formula (2) may be bonded to each of the three benzene rings bonded to the 1,3,5-triazine ring, or may be bonded to only one or two of them. You may do it.
  • Preferred is the case where each of the three benzene rings has 0 to 3 groups represented by the general formula (2), and more preferred is that each of the three benzene rings is represented by the general formula (2). In this case, 0 to 2 groups are present.
  • the case where each of the three benzene rings has 0 or 1 group represented by the general formula (2) can be selected.
  • the substitution position of the group represented by the general formula (2) may be any of R 11 to R 25 , but the substitution position is among R 12 to R 14 , R 17 to R 19 and R 22 to R 24 . It is preferable to select from.
  • 0 to 2 of R 12 to R 14 , 0 to 2 of R 17 to R 19 , and 0 to 2 of R 22 to R 24 are represented by the general formula (2).
  • 0 or 1 of R 12 to R 14 , 0 or 1 of R 17 to R 19 , 0 or 1 of R 22 to R 24 is represented by the general formula (2)
  • the case where it is group represented by can be illustrated.
  • the substitution position is preferably R 12 or R 13 .
  • the substitution positions are R 12 and R 14 , or any of R 12 and R 13 or that it is preferable that either R 17 or R 18.
  • the substitution position is any of R 12 , R 14 and R 17, or R 18 ; Alternatively, either R 12 or R 13 and either R 17 or R 18 and either R 22 or R 23 are preferable.
  • R 11 to R 25 those not represented by the general formula (2) each independently represent a hydrogen atom or a substituent other than the general formula (2). All of these may be hydrogen atoms. Moreover, when two or more are substituents, those substituents may be the same or different. For the explanation and preferred ranges of the substituents that R 11 to R 25 can take, the explanation and preferred ranges of the substituents that R 1 to R 8 can take can be referred to.
  • R 11 and R 12 , R 12 and R 13 , R 13 and R 14 , R 14 and R 15 , R 16 and R 17 , R 17 and R 18 , R 18 and R 19 , R 19 and R 20 , R 21 and R 22 , R 22 and R 23 , R 23 and R 24 , and R 24 and R 25 may be bonded to each other to form a cyclic structure.
  • R 21 and R 22 , R 22 and R 23 , R 23 and R 24 , and R 24 and R 25 may be bonded to each other to form a cyclic structure.
  • the group represented by the general formula (2) included in the general formula (7) is a group having a structure represented by the general formula (3) or a structure represented by the general formula (4). Or a group having a structure represented by the general formula (5).
  • the compound represented by the general formula (7) preferably has a symmetrical molecular structure.
  • R 11 , R 16 and R 21 in the general formula (7) are the same
  • R 12 , R 17 and R 22 are the same
  • R 13 , R 18 and R 23 are the same
  • R 14 And R 19 and R 24 are the same
  • R 15 , R 20 and R 25 are the same.
  • a compound in which R 13 , R 18, and R 23 are groups represented by the general formula (2) and the others are hydrogen atoms can be given.
  • the compound represented by the general formula (7) particularly includes a structure represented by the following general formula (8).
  • R 1 to R 8 , R 11 , R 12 , R 14 to R 25 , R 11 ′, R 12 ′ and R 14 ′ to R 25 ′ each independently represent a hydrogen atom or a substituent.
  • R 1 ⁇ R 8 of general formula (8) reference can be made to the descriptions and preferred ranges of R 1 ⁇ R 8 in the general formula (2).
  • R 11 to R 11 in the general formula (7) reference can be made to the descriptions and preferred ranges of R 25.
  • the molecular weight of the compound represented by the general formula (1) is, for example, 1500 or less when the organic layer containing the compound represented by the general formula (1) is intended to be formed by vapor deposition. Preferably, it is preferably 1200 or less, more preferably 1000 or less, and even more preferably 800 or less.
  • the lower limit of the molecular weight is the molecular weight of the minimum compound represented by the general formula (1).
  • the compound represented by the general formula (1) may be formed by a coating method regardless of the molecular weight. If a coating method is used, a film can be formed even with a compound having a relatively large molecular weight.
  • a compound containing a plurality of structures represented by the general formula (1) in the molecule as a light emitting material.
  • a polymer obtained by previously polymerizing a polymerizable group in the structure represented by the general formula (1) and polymerizing the polymerizable group as a light emitting material.
  • a monomer containing a polymerizable functional group in any of Ar 1 to Ar 3 of the general formula (1) and polymerizing it alone or copolymerizing with other monomers, It is conceivable to obtain a polymer having a repeating unit and use the polymer as a light emitting material.
  • it is also possible to obtain a dimer or trimer by coupling compounds having a structure represented by the general formula (1) and use them as a light emitting material.
  • Examples of the polymer having a repeating unit containing a structure represented by the general formula (1) include a polymer containing a structure represented by the following general formula (9) or (10).
  • Q represents a group including the structure represented by the general formula (1)
  • L 1 and L 2 represent a linking group.
  • the linking group preferably has 0 to 20 carbon atoms, more preferably 1 to 15 carbon atoms, and still more preferably 2 to 10 carbon atoms. And preferably has a structure represented by - linking group -X 11 -L 11.
  • X 11 represents an oxygen atom or a sulfur atom, and is preferably an oxygen atom.
  • L 11 represents a linking group, and is preferably a substituted or unsubstituted alkylene group, or a substituted or unsubstituted arylene group, and is a substituted or unsubstituted alkylene group having 1 to 10 carbon atoms, or a substituted or unsubstituted group A phenylene group is more preferable.
  • R 101 , R 102 , R 103 and R 104 each independently represent a substituent.
  • it is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 6 carbon atoms, or a halogen atom, more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms.
  • An unsubstituted alkoxy group having 1 to 3 carbon atoms, a fluorine atom, and a chlorine atom and more preferably an unsubstituted alkyl group having 1 to 3 carbon atoms and an unsubstituted alkoxy group having 1 to 3 carbon atoms.
  • the linking group represented by L 1 and L 2 is bonded to any one of Ar 1 to Ar 1 in the structure of the general formula (1) constituting Q. Two or more linking groups may be linked to one Q to form a crosslinked structure or a network structure.
  • repeating unit examples include structures represented by the following formulas (11) to (14).
  • At least one of the substituents of Ar 1 to Ar 3 in the general formula (1) is made into a hydroxy group, which is used as a linker below. It can be synthesized by reacting a compound to introduce a polymerizable group and polymerizing the polymerizable group.
  • the polymer containing the structure represented by the general formula (1) in the molecule may be a polymer composed only of repeating units having the structure represented by the general formula (1), or other structures may be used. It may be a polymer containing repeating units.
  • the repeating unit having a structure represented by the general formula (1) contained in the polymer may be a single type or two or more types. Examples of the repeating unit not having the structure represented by the general formula (1) include those derived from monomers used in ordinary copolymerization. Examples thereof include a repeating unit derived from a monomer having an ethylenically unsaturated bond such as ethylene and styrene.
  • the compound represented by the general formula (1) can be synthesized by combining known reactions.
  • Ar 1 in the general formula (1) is an aryl group substituted with a group represented by the general formula (2)
  • the synthesis is a compound represented by the general formula (15) according to the following scheme.
  • a compound represented by the general formula (16) can be coupled. This coupling reaction itself is a known reaction, and known reaction conditions can be appropriately selected and used.
  • the compound represented by the general formula (16) can be synthesized, for example, by converting a corresponding chloride into an amine and further converting into a bromide.
  • the compound represented by the general formula (1) of the present invention is useful as a light emitting material of an organic light emitting device. For this reason, the compound represented by General formula (1) of this invention can be effectively used as a luminescent material for the light emitting layer of an organic light emitting element.
  • the compound represented by the general formula (1) includes a delayed fluorescent material (delayed phosphor) that emits delayed fluorescence. That is, the present invention relates to a delayed phosphor having a structure represented by the general formula (1), an invention using a compound represented by the general formula (1) as a delayed phosphor, and a general formula (1).
  • An invention of a method for emitting delayed fluorescence using the represented compound is also provided.
  • An organic light emitting device using such a compound as a light emitting material emits delayed fluorescence and has a feature of high luminous efficiency. The principle will be described below by taking an organic electroluminescence element as an example.
  • the organic electroluminescence element carriers are injected into the light emitting material from both positive and negative electrodes to generate an excited light emitting material and emit light.
  • 25% of the generated excitons are excited to the excited singlet state, and the remaining 75% are excited to the excited triplet state. Therefore, the use efficiency of energy is higher when phosphorescence, which is light emission from an excited triplet state, is used.
  • the excited triplet state has a long lifetime, energy saturation occurs due to saturation of the excited state and interaction with excitons in the excited triplet state, and in general, the quantum yield of phosphorescence is often not high.
  • delayed fluorescent materials after energy transition to an excited triplet state due to intersystem crossing, etc., are then crossed back to an excited singlet state due to triplet-triplet annihilation or absorption of thermal energy, and emit fluorescence.
  • a thermally activated delayed fluorescent material by absorption of thermal energy is particularly useful.
  • excitons in the excited singlet state emit fluorescence as usual.
  • excitons in the excited triplet state absorb heat generated by the device and cross between the excited singlets to emit fluorescence.
  • the light is emitted from the excited singlet, the light is emitted at the same wavelength as the fluorescence, but the lifetime of light generated (emission life) due to the reverse intersystem crossing from the excited triplet state to the excited singlet state is normal. Since the fluorescence becomes longer than the fluorescence and phosphorescence, it is observed as fluorescence delayed from these. This can be defined as delayed fluorescence. If such a heat-activated exciton transfer mechanism is used, the ratio of the compound in an excited singlet state, which normally generated only 25%, is increased to 25% or more by absorbing thermal energy after carrier injection. It can be raised.
  • the heat of the device will sufficiently cause intersystem crossing from the excited triplet state to the excited singlet state and emit delayed fluorescence. Efficiency can be improved dramatically.
  • organic light-emitting devices such as an organic photoluminescence device (organic PL device) and an organic electroluminescence device (organic EL device) can be provided.
  • the organic photoluminescence element has a structure in which at least a light emitting layer is formed on a substrate.
  • the organic electroluminescence element has a structure in which an organic layer is formed at least between an anode, a cathode, and an anode and a cathode.
  • the organic layer includes at least a light emitting layer, and may consist of only the light emitting layer, or may have one or more organic layers in addition to the light emitting layer.
  • Examples of such other organic layers include a hole transport layer, a hole injection layer, an electron blocking layer, a hole blocking layer, an electron injection layer, an electron transport layer, and an exciton blocking layer.
  • the hole transport layer may be a hole injection / transport layer having a hole injection function
  • the electron transport layer may be an electron injection / transport layer having an electron injection function.
  • FIG. 1 A specific example of the structure of an organic electroluminescence element is shown in FIG. In FIG. 1, 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, 5 is a light emitting layer, 6 is an electron transport layer, and 7 is a cathode. Below, each member and each layer of an organic electroluminescent element are demonstrated. In addition, description of a board
  • the organic electroluminescence device of the present invention is preferably supported on a substrate.
  • the substrate is not particularly limited and may be any substrate conventionally used for organic electroluminescence elements.
  • a substrate made of glass, transparent plastic, quartz, silicon, or the like can be used.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • a thin film may be formed by vapor deposition or sputtering of these electrode materials, and a pattern of a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • wet film-forming methods such as a printing system and a coating system, can also be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission luminance is advantageously improved.
  • a transparent or semi-transparent cathode can be produced. By applying this, an element in which both the anode and the cathode are transparent is used. Can be produced.
  • the light emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from each of the anode and the cathode, and the light emitting material may be used alone for the light emitting layer. , Preferably including a luminescent material and a host material.
  • a luminescent material the 1 type (s) or 2 or more types chosen from the compound group of this invention represented by General formula (1) can be used.
  • a host material in addition to the light emitting material in the light emitting layer.
  • the host material an organic compound having at least one of excited singlet energy and excited triplet energy higher than that of the light emitting material of the present invention can be used.
  • singlet excitons and triplet excitons generated in the light emitting material of the present invention can be confined in the molecules of the light emitting material of the present invention, and the light emission efficiency can be sufficiently extracted.
  • high luminous efficiency can be obtained, so that host materials that can achieve high luminous efficiency are particularly limited. And can be used in the present invention.
  • the organic light emitting device or organic electroluminescent device of the present invention light emission is generated from the light emitting material of the present invention contained in the light emitting layer. This emission includes both fluorescence and delayed fluorescence. However, light emission from the host material may be partly or partly emitted.
  • the amount of the compound of the present invention, which is a light emitting material is preferably 0.1% by weight or more, more preferably 1% by weight or more, and 50% or more. It is preferably no greater than wt%, more preferably no greater than 20 wt%, and even more preferably no greater than 10 wt%.
  • the host material in the light-emitting layer is preferably an organic compound that has a hole transporting ability and an electron transporting ability, prevents the emission of longer wavelengths, and has a high glass transition temperature.
  • the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission.
  • the injection layer can be provided as necessary.
  • the blocking layer is a layer that can prevent diffusion of charges (electrons or holes) and / or excitons existing in the light emitting layer to the outside of the light emitting layer.
  • the electron blocking layer can be disposed between the light emitting layer and the hole transport layer and blocks electrons from passing through the light emitting layer toward the hole transport layer.
  • a hole blocking layer can be disposed between the light emitting layer and the electron transporting layer to prevent holes from passing through the light emitting layer toward the electron transporting layer.
  • the blocking layer can also be used to block excitons from diffusing outside the light emitting layer. That is, each of the electron blocking layer and the hole blocking layer can also function as an exciton blocking layer.
  • the term “electron blocking layer” or “exciton blocking layer” as used herein is used in the sense of including a layer having the functions of an electron blocking layer and an exciton blocking layer in one layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense.
  • the hole blocking layer has a role of blocking holes from reaching the electron transport layer while transporting electrons, thereby improving the recombination probability of electrons and holes in the light emitting layer.
  • the material for the hole blocking layer the material for the electron transport layer described later can be used as necessary.
  • the electron blocking layer has a function of transporting holes in a broad sense.
  • the electron blocking layer has a role to block electrons from reaching the hole transport layer while transporting holes, thereby improving the probability of recombination of electrons and holes in the light emitting layer. .
  • the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
  • the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously.
  • the layer when the exciton blocking layer is provided on the anode side, the layer can be inserted adjacent to the light emitting layer between the hole transport layer and the light emitting layer, and when inserted on the cathode side, the light emitting layer and the cathode Between the luminescent layer and the light-emitting layer.
  • a hole injection layer, an electron blocking layer, or the like can be provided between the anode and the exciton blocking layer adjacent to the anode side of the light emitting layer, and the excitation adjacent to the cathode and the cathode side of the light emitting layer can be provided.
  • an electron injection layer, an electron transport layer, a hole blocking layer, and the like can be provided.
  • the blocking layer is disposed, at least one of the excited singlet energy and the excited triplet energy of the material used as the blocking layer is preferably higher than the excited singlet energy and the excited triplet energy of the light emitting material.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • hole transport materials that can be used include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, Examples include amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • An aromatic tertiary amine compound and an styrylamine compound are preferably used, and an aromatic tertiary amine compound is more preferably used.
  • the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
  • the electron transport material (which may also serve as a hole blocking material) may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • Examples of the electron transport layer that can be used include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide oxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • the compound represented by the general formula (1) may be used not only for the light emitting layer but also for layers other than the light emitting layer.
  • the compound represented by General formula (1) used for a light emitting layer and the compound represented by General formula (1) used for layers other than a light emitting layer may be same or different.
  • the compound represented by the general formula (1) may be used for the injection layer, blocking layer, hole blocking layer, electron blocking layer, exciton blocking layer, hole transporting layer, electron transporting layer, and the like. .
  • the method for forming these layers is not particularly limited, and the layer may be formed by either a dry process or a wet process.
  • the preferable material which can be used for an organic electroluminescent element is illustrated concretely.
  • the material that can be used in the present invention is not limited to the following exemplary compounds.
  • R, R ′, and R 1 to R 10 in the structural formulas of the following exemplary compounds each independently represent a hydrogen atom or a substituent.
  • X represents a carbon atom or a hetero atom forming a ring skeleton
  • n represents an integer of 3 to 5
  • Y represents a substituent
  • m represents an integer of 0 or more.
  • the organic electroluminescence device produced by the above-described method emits light by applying an electric field between the anode and the cathode of the obtained device. At this time, if the light is emitted by excited singlet energy, light having a wavelength corresponding to the energy level is confirmed as fluorescence emission and delayed fluorescence emission. In addition, in the case of light emission by excited triplet energy, a wavelength corresponding to the energy level is confirmed as phosphorescence. Since normal fluorescence has a shorter fluorescence lifetime than delayed fluorescence, the emission lifetime can be distinguished from fluorescence and delayed fluorescence.
  • the excited triplet energy is unstable and is converted into heat and the like, and the lifetime is short and it is immediately deactivated.
  • the excited triplet energy of a normal organic compound it can be measured by observing light emission under extremely low temperature conditions.
  • the organic electroluminescence element of the present invention can be applied to any of a single element, an element having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix. According to the present invention, an organic light emitting device with greatly improved light emission efficiency can be obtained by containing the compound represented by the general formula (1) in the light emitting layer.
  • the organic light emitting device such as the organic electroluminescence device of the present invention can be further applied to various uses. For example, it is possible to produce an organic electroluminescence display device using the organic electroluminescence element of the present invention.
  • organic electroluminescence device of the present invention can be applied to organic electroluminescence illumination and backlights that are in great demand.
  • a mixed solution of copper (I) bromide (8.24 mmol, 1.18 g) and 8 ml of hydrobromic acid (47%) was slowly added dropwise, followed by stirring at room temperature for several minutes.
  • reaction solution was heated to 115 ° C. with an oil bath and refluxed overnight. After allowing to cool to room temperature, the reaction solution was cooled with an ice bath and neutralized with sodium bicarbonate. Chloroform and brine were added, and the organic layer was separated and extracted. Anhydrous magnesium sulfate was added for dehydration, and the solvent was distilled off.
  • Benzoyl chloride (11.0 mmol, 1.55 g), 4-bromobenzonitrile (22.0 mmol, 4.00 g), and 15 ml of methylene chloride are added to a nitrogen-substituted two-necked flask and cooled in an ice bath (0 to 0). And stirred for 30 minutes.
  • Antimony chloride (11.0 mmol, 3.30 g) was added dropwise thereto, followed by stirring at room temperature for 1 hour. Thereafter, the mixture was further heated and refluxed for 12 hours. After allowing to cool to room temperature, the precipitated yellow solid was collected by suction filtration and dried in vacuo.
  • the obtained yellow solid was added to 75 ml of 28% aqueous ammonia cooled (0 to 5 ° C.) in an ice bath and stirred for 30 minutes. Then, it stirred at room temperature for 3 hours. The precipitated white solid was collected by suction filtration, washed with water, and then vacuum-dried. The obtained white solid was added to 30 ml of N, N-dimethylformamide heated to 155 ° C., stirred for 10 minutes, and the insoluble solid was separated by suction filtration. This operation was repeated two more times for purification.
  • the obtained yellow solid was added to 75 ml of 28% aqueous ammonia cooled (0 to 5 ° C.) in an ice bath and stirred for 30 minutes. Then, it stirred at room temperature for 3 hours. The precipitated white solid was collected by suction filtration, washed with water, and then vacuum-dried. The obtained white solid was added to 30 ml of N, N′-dimethylformamide heated to 155 ° C., stirred for 10 minutes, and the insoluble solid was separated by suction filtration. This operation was repeated two more times for purification.
  • the obtained yellow solid was added to 75 ml of 28% aqueous ammonia cooled (0 to 5 ° C.) in an ice bath and stirred for 30 minutes. Then, it stirred at room temperature for 3 hours. The precipitated white solid was collected by suction filtration, washed with water, and then vacuum-dried. The obtained white solid was added to 30 ml of N, N′-dimethylformamide heated to 155 ° C., stirred for 10 minutes, and the insoluble solid was separated by suction filtration. This operation was repeated two more times for purification.
  • N, N′-dimethylformamide was distilled off under heating and reduced pressure to obtain 2,4-bis (3-bromophenyl) -6-phenyl-1,3,5-triazine as a target product ( Yield: 2.67 g, yield: 51.9%).
  • Example 1 Preparation and evaluation of organic photoluminescence device (solution)
  • a toluene solution (concentration 10 ⁇ 4 mol / L) of Compound 1 synthesized in Synthesis Example 1 was prepared and irradiated with ultraviolet light at 300 K while bubbling nitrogen. As shown in FIG. 2, the peak wavelength was 545 nm. Fluorescence was observed. Further, before and after the nitrogen bubble, measurement was performed with a small fluorescence lifetime measuring apparatus (Quantaurus-tau manufactured by Hamamatsu Photonics Co., Ltd.) to obtain a time-resolved spectrum shown in FIG. A fluorescence having an excitation lifetime of 0.019 ⁇ s and a delayed fluorescence of 0.676 ⁇ s were observed.
  • a small fluorescence lifetime measuring apparatus Quantantaurus-tau manufactured by Hamamatsu Photonics Co., Ltd.
  • the compound 2 synthesized in Synthesis Example 2 the compound 3 synthesized in Synthesis Example 3, the compound 4 synthesized in Synthesis Example 4, the compound 13 synthesized in Synthesis Example 8, and the compound 19 synthesized in Synthesis Example 9 are also visible.
  • Luminescence was observed in the area.
  • the photoluminescence quantum efficiency of Compound 2 was 14.1% before the nitrogen bubble and 28.8% after the nitrogen bubble.
  • the photoluminescence quantum efficiency of Compound 3 was 12.6% before the nitrogen bubble and 23.1% after the nitrogen bubble.
  • the photoluminescence quantum efficiency of Compound 4 was 1.6% before the nitrogen bubble and 5.2% after the nitrogen bubble.
  • Example 2 Preparation and evaluation of organic photoluminescence device (thin film)
  • a thin film having a concentration of Compound 1 of 6.0% by weight on a silicon substrate by vapor deposition of Compound 1 and CBP from different vapor deposition sources under a vacuum degree of 5.0 ⁇ 10 ⁇ 4 Pa. was formed at a thickness of 100 nm at 0.3 nm / second to obtain an organic photoluminescence device.
  • An emission spectrum obtained using the same measuring apparatus as in Example 1 is shown in FIG. The photoluminescence quantum efficiency was 65.7% at 300K.
  • Example 3 Production and Evaluation of Organic Electroluminescence Element
  • ITO indium tin oxide
  • Lamination was performed at 0 ⁇ 10 ⁇ 4 Pa.
  • ⁇ -NPD was formed on ITO to a thickness of 35 nm.
  • Compound 1 and CBP were co-deposited from different vapor deposition sources to form a layer having a thickness of 15 nm as a light emitting layer. At this time, the concentration of Compound 1 was 6.0% by weight.
  • TPBi is formed to a thickness of 65 nm
  • further lithium fluoride (LiF) is vacuum-deposited to 0.8 nm
  • aluminum (Al) is evaporated to a thickness of 80 nm to form a cathode.
  • a luminescence element was obtained.
  • a semiconductor parameter analyzer manufactured by Agilent Technologies: E5273A
  • an optical power meter measuring device manufactured by Newport: 1930C
  • an optical spectrometer manufactured by Ocean Optics: USB2000
  • emission of 529 nm was observed.
  • FIG. 10 shows current density-voltage-luminance characteristics
  • FIG. 11 shows current density-external quantum efficiency characteristics.
  • the organic electroluminescence device using Compound 1 as the light emitting material achieved a high external quantum efficiency of 12.5%.
  • FIG. 12 shows an emission spectrum of an organic electroluminescent device (concentration of compound 2 in the light emitting layer is 6.0% by weight) prepared in the same manner using compound 2 instead of compound 1, and shows current density-voltage characteristics. Is shown in FIG. 13, and the current density-external quantum efficiency characteristic is shown in FIG. An organic electroluminescence device in which the concentration of the compound 2 in the light emitting layer was changed to 2.0% by weight was further produced, and the same measurement was performed. The emission spectrum is shown in FIG. 15, the current density-voltage characteristic is shown in FIG. 16, and the current density-external quantum efficiency characteristic is shown in FIG. The organic electroluminescence device using Compound 2 as the light emitting material achieved a high external quantum efficiency of 11.0%.
  • the compound 3 is used in place of the compound 1, and an organic electroluminescent element having a concentration of compound 3 in the light emitting layer of 2.0% by weight and an organic electroluminescent element having a concentration of compound 3 in the light emitting layer of 6.0% by weight.
  • a luminescence element was produced.
  • the emission spectrum is shown in FIG. 18, the current density-voltage characteristic is shown in FIG. 19, and the current density-external quantum efficiency characteristic is shown in FIG.
  • the organic electroluminescence device using Compound 3 as the light emitting material achieved a high external quantum efficiency of 14.2%.
  • Compound 4 was used in place of Compound 1 to prepare an organic electroluminescence device having a concentration of Compound 4 in the light emitting layer of 2.0% by weight.
  • the emission spectrum is shown in FIG. 21, the current density-voltage characteristic is shown in FIG. 22, and the current density-external quantum efficiency characteristic is shown in FIG.
  • An organic electroluminescent element having a concentration of Compound 5 in the light emitting layer of 2.0% by weight was prepared using Compound 5 instead of Compound 1.
  • the emission spectrum is shown in FIG. 24, the current density-voltage characteristic is shown in FIG. 25, and the current density-external quantum efficiency characteristic is shown in FIG.
  • FIG. 27 shows an emission spectrum of an organic electroluminescence device produced in the same manner using Compound 13 instead of Compound 1.
  • the compound of the present invention is useful as a luminescent material. For this reason, the compound of this invention is effectively used as a luminescent material for organic light emitting elements, such as an organic electroluminescent element. Since the compounds of the present invention include those that emit delayed fluorescence, it is also possible to provide an organic light-emitting device with high luminous efficiency. For this reason, this invention has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

 一般式(1)で表される化合物は、発光材料として有用である。一般式(1)のAr~Arはアリール基を表し、少なくとも1つは一般式(2)で表される基で置換されたアリール基を表す。一般式(2)のR~Rは水素原子または置換基を表し、ZはO、S、O=CまたはAr-Nを表し、Arはアリール基を表す。

Description

化合物、発光材料および有機発光素子
 本発明は、発光材料として有用な化合物とそれを用いた有機発光素子に関する。
 有機エレクトロルミネッセンス素子(有機EL素子)などの有機発光素子の発光効率を高める研究が盛んに行われている。特に、有機エレクトロルミネッセンス素子を構成する電子輸送材料、正孔輸送材料、発光材料などを新たに開発して組み合わせることにより、発光効率を高める工夫が種々なされてきている。その中には、1,3,5-トリアジン構造を含む化合物やフェナジン構造を含む化合物を利用した有機エレクトロルミネッセンス素子に関する研究も見受けられ、これまでにも幾つかの提案がなされてきている。
 例えば、特許文献1には、下記の一般式で表される1,3,5-トリアジン構造を含む化合物を、2つの電極間ではなくて電極の外側に形成される層内に含有させることによって光効率を改善することが記載されている。下記の一般式において、Ar、ArおよびArはフェニレン基等であり、b、dおよびfは0~3のいずれかの整数であり、R、RおよびRは水素原子、ハロゲン原子、アルキル基、アリール基など幅広い基の中から選択されることが規定されている。しかしながら、R、RおよびRとして、フェノキサジン構造、フェノチアジン構造またはフェナジン構造を含む基は記載されていない。
Figure JPOXMLDOC01-appb-C000015
 特許文献2には、下記の一般式で表されるフェナジン構造を含む化合物を、有機エレクトロルミネセンス素子などのホスト材料として用いることが記載されている。下記の一般式において、R~Rは水素原子、アルキル基、アリール基等であり、RおよびR10は水素原子、アルキル基、アリール基、ヘテロ環基またはアルケニル基であることが規定されている。しかしながら、RおよびR10として、1,3,5-トリアジン構造を含む基は記載されていない。
Figure JPOXMLDOC01-appb-C000016
特開2010-45034号公報 米国特許第6869699号公報
 このように1,3,5-トリアジン構造を含む化合物やフェナジン構造等を含む化合物については、これまでにも検討がなされており、有機エレクトロルミネッセンス素子への応用に関する幾つかの提案もなされている。しかしながら、1,3,5-トリアジン構造と、フェノキサジン構造、フェノチアジン構造またはフェナジン構造をともに分子中に含む化合物については、具体的な検討がほとんどなされていない。特に、2,4,6-トリアリール-1,3,5-トリアジン構造と、フェノキサジン構造、フェノチアジン構造またはフェナジン構造とをともに含む化合物については、合成例すら報告されていない。このため、これらの構造を組み合わせた化合物がどのような性質を示すのかを正確に予測することは極めて困難である。特に、発光材料としての有用性については、引用文献1や引用文献2において発光材料としての用途がまったく記載されていないことからも明らかなように、予測の根拠となりうる文献を見出すことすら困難である。
 本発明者らはこれらの従来技術の課題を考慮して、1,3,5-トリアジン構造と、フェノキサジン構造、フェノチアジン構造またはフェナジン構造をともに分子中に含む化合物を合成して、発光材料としての有用性を評価することを目的として検討を進めた。また、発光材料として有用な化合物の一般式を導きだし、発光効率が高い有機発光素子の構成を一般化することも目的として鋭意検討を進めた。
 上記の目的を達成するために鋭意検討を進めた結果、本発明者らは、2,4,6-トリアリール-1,3,5-トリアジン構造と、フェノキサジン構造、フェノチアジン構造またはフェナジン構造とをともに含む化合物を合成することに成功するとともに、これらの化合物が発光材料として有用であることを初めて明らかにした。また、そのような化合物の中に、遅延蛍光材料として有用なものがあることを見出し、発光効率が高い有機発光素子を安価に提供しうることを明らかにした。本発明者らは、これらの知見に基づいて、上記の課題を解決する手段として、以下の本発明を提供するに至った。
[1] 下記一般式(1)で表される化合物。
Figure JPOXMLDOC01-appb-C000017
[一般式(1)において、Ar~Arは各々独立に置換もしくは無置換のアリール基を表し、少なくとも1つは下記一般式(2)で表される基で置換されたアリール基を表す。]
Figure JPOXMLDOC01-appb-C000018
[一般式(2)において、R~Rは各々独立に水素原子または置換基を表す。ZはO、S、O=CまたはAr-Nを表し、Arは置換もしくは無置換のアリール基を表す。RとR、RとR、RとR、RとR、RとR、RとRは、それぞれ互いに結合して環状構造を形成していてもよい。]
[2] 一般式(1)のAr~Arの少なくとも1つは下記一般式(3)で表される基で置換されたアリール基であることを特徴とする[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000019
[一般式(3)において、R~Rは各々独立に水素原子または置換基を表す。RとR、RとR、RとR、RとR、RとR、RとRは、それぞれ互いに結合して環状構造を形成していてもよい。]
[3] 一般式(1)のAr~Arの少なくとも1つは下記一般式(4)で表される基で置換されたアリール基であることを特徴とする[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000020
[一般式(4)において、R~Rは各々独立に水素原子または置換基を表す。RとR、RとR、RとR、RとR、RとR、RとRは、それぞれ互いに結合して環状構造を形成していてもよい。]
[4] 一般式(1)のAr~Arの少なくとも1つは下記一般式(5)で表される基で置換されたアリール基であることを特徴とする[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000021
[一般式(5)において、R~Rは各々独立に水素原子または置換基を表す。RとR、RとR、RとR、RとR、RとR、RとRは、それぞれ互いに結合して環状構造を形成していてもよい。]
[5] 下記一般式(6)で表される構造を有することを特徴とする[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000022
[一般式(6)において、Ar、Ar、Ar’およびAr’は各々独立に置換もしくは無置換のアリール基を表し、ArおよびAr’は各々独立に置換もしくは無置換のアリーレン基を表す。R~Rは各々独立に水素原子または置換基を表す。RとR、RとR、RとR、RとR、RとR、RとRは、それぞれ互いに結合して環状構造を形成していてもよい。]
[6] 下記一般式(7)で表される構造を有することを特徴とする[1]に記載の化合物。
Figure JPOXMLDOC01-appb-C000023
[一般式(7)において、R11~R25の少なくとも1つは上記一般式(2)で表される基を表し、その他は各々独立に水素原子または上記一般式(2)以外の置換基を表す。R11とR12、R12とR13、R13とR14、R14とR15、R16とR17、R17とR18、R18とR19、R19とR20、R21とR22、R22とR23、R23とR24、R24とR25は、それぞれ互いに結合して環状構造を形成していてもよい。]
[7] 一般式(7)のR11~R25の少なくとも1つは上記一般式(3)で表される基であることを特徴とする[6]に記載の化合物。
[8] 一般式(7)のR11~R25の少なくとも1つは上記一般式(4)で表される基であることを特徴とする[6]に記載の化合物。
[9] 一般式(7)のR11~R25の少なくとも1つは上記一般式(5)で表される基であることを特徴とする[6]に記載の化合物。
[10] 一般式(7)のトリアジン環の中心を軸とする回転対称構造を有することを特徴とする[7]~[9]のいずれか1項に記載の化合物。
[11] 下記一般式(8)で表される構造を有することを特徴とする[6]に記載の化合物。
Figure JPOXMLDOC01-appb-C000024
[一般式(8)において、R~R、R11、R12、R14~R25、R11’、R12’およびR14’~R25’は各々独立に水素原子または置換基を表す。RとR、RとR、RとR、RとR、RとR、RとR、R11とR12、R14とR15、R16とR17、R17とR18、R18とR19、R19とR20、R21とR22、R22とR23、R23とR24、R24とR25、R11’とR12’、R14’とR15’、R16’とR17’、R17’とR18’、R18’とR19’、R19’とR20’、R21’とR22’、R22’とR23’、R23’とR24’、R24’とR25’は、それぞれ互いに結合して環状構造を形成していてもよい。]
[12] [1]~[11]のいずれか1項に記載の化合物からなる発光材料。
[13] 上記一般式(1)で表される構造を有する遅延蛍光体。
[14] [12]に記載の発光材料を含む発光層を基板上に有することを特徴とする有機発光素子。
[15] 遅延蛍光を放射することを特徴とする[14]に記載の有機発光素子。
[16] 有機エレクトロルミネッセンス素子であることを特徴とする[14]または[15]に記載の有機発光素子。
 本発明の化合物は、発光材料として有用である。また、本発明の化合物の中には遅延蛍光を放射するものが含まれている。本発明の化合物を発光材料として用いた有機発光素子は、高い発光効率を実現しうる。
有機エレクトロルミネッセンス素子の層構成例を示す概略断面図である。 実施例1の化合物1のトルエン溶液の発光スペクトルである。 実施例1の化合物1のトルエン溶液の時間分解スペクトルである。 実施例1の化合物7のトルエン溶液の発光スペクトルである。 実施例1の化合物7のトルエン溶液の時間分解スペクトルである。 実施例2の化合物1を用いた薄膜型有機フォトルミネッセンス素子の発光スペクトルである。 実施例2の化合物1を用いた薄膜型有機フォトルミネッセンス素子の温度による各蛍光成分の量子効率の変化を示すグラフである。 実施例2の化合物13を用いた薄膜型有機フォトルミネッセンス素子の発光スペクトルである。 実施例3の化合物1を用いた有機エレクトロミネッセンス素子の発光スペクトルである。 実施例3の化合物1を用いた有機エレクトロルミネッセンス素子の電流密度-電圧-輝度特性を示すグラフである。 実施例3の化合物1を用いた有機エレクトロルミネッセンス素子の外部量子効率-電流密度特性を示すグラフである。 実施例3の化合物2を用いた有機エレクトロミネッセンス素子の発光スペクトルである。 実施例3の化合物2を用いた有機エレクトロルミネッセンス素子の電流密度-電圧特性を示すグラフである。 実施例3の化合物2を用いた有機エレクトロルミネッセンス素子の外部量子効率-電流密度特性を示すグラフである。 実施例3の化合物2を用いた別の有機エレクトロミネッセンス素子の発光スペクトルである。 実施例3の化合物2を用いた別の有機エレクトロルミネッセンス素子の電流密度-電圧特性を示すグラフである。 実施例3の化合物2を用いた別の有機エレクトロルミネッセンス素子の外部量子効率-電流密度特性を示すグラフである。 実施例3の化合物3を用いた有機エレクトロミネッセンス素子の発光スペクトルである。 実施例3の化合物3を用いた有機エレクトロルミネッセンス素子の電流密度-電圧を示すグラフである。 実施例3の化合物3を用いた有機エレクトロルミネッセンス素子の外部量子効率-電流密度特性を示すグラフである。 実施例3の化合物4を用いた有機エレクトロミネッセンス素子の発光スペクトルである。 実施例3の化合物4を用いた有機エレクトロルミネッセンス素子の電流密度-電圧を示すグラフである。 実施例3の化合物4を用いた有機エレクトロルミネッセンス素子の外部量子効率-電流密度特性を示すグラフである。 実施例3の化合物5を用いた有機エレクトロミネッセンス素子の発光スペクトルである。 実施例3の化合物5を用いた有機エレクトロルミネッセンス素子の電流密度-電圧を示すグラフである。 実施例3の化合物5を用いた有機エレクトロルミネッセンス素子の外部量子効率-電流密度特性を示すグラフである。 実施例3の化合物13を用いた有機エレクトロミネッセンス素子の発光スペクトルである。
 以下において、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
[一般式(1)で表される化合物]
 本発明の化合物は、下記一般式(1)で表される構造を有することを特徴とする。
Figure JPOXMLDOC01-appb-C000025
[一般式(1)において、Ar~Arは各々独立に置換もしくは無置換のアリール基を表し、少なくとも1つは下記一般式(2)で表される基で置換されたアリール基を表す。]
Figure JPOXMLDOC01-appb-C000026
[一般式(2)において、R~Rは各々独立に水素原子または置換基を表す。ZはO、S、O=CまたはAr-Nを表し、Arは置換もしくは無置換のアリール基を表す。RとR、RとR、RとR、RとR、RとR、RとRは、それぞれ互いに結合して環状構造を形成していてもよい。]
 一般式(1)のAr~Arが表すアリール基を構成する芳香環は、単環であっても融合環であってもよく、具体例としてベンゼン環、ナフタレン環、アントラセン環、フェナントレン環を挙げることができる。アリール基の炭素数は6~40であることが好ましく、6~20であることがより好ましく、6~14であることがさらに好ましい。Ar~Arのうちの少なくとも1つは、一般式(2)で表される基で置換されたアリール基である。Ar~Arのうちの2つが一般式(2)で表される基で置換されたアリール基であってもよいし、3つとも一般式(2)で表される基で置換されたアリール基であってもよい。また、1つのアリール基は2つ以上の一般式(2)で表される基で置換されていてもよい。Ar~Arが表すアリール基に置換しうる置換基の説明と好ましい範囲については、後述のR~Rがとりうる置換基の説明と好ましい範囲を参照することができる。
 一般式(2)のR~Rは各々独立に水素原子または置換基を表す。R~Rはすべてが水素原子であってもよい。また、2個以上が置換基である場合、それらの置換基は同じであっても異なっていてもよい。置換基としては、例えばヒドロキシ基、ハロゲン原子、シアノ基、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のアルキルチオ基、炭素数1~20のアルキル置換アミノ基、炭素数12~40のアリール置換アミノ基、炭素数2~20のアシル基、炭素数6~40のアリール基、炭素数3~40のヘテロアリール基、炭素数12~40の置換もしくは無置換のカルバゾリル基、炭素数2~10のアルケニル基、炭素数2~10のアルキニル基、炭素数2~10のアルコキシカルボニル基、炭素数1~10のアルキルスルホニル基、炭素数1~10のハロアルキル基、アミド基、炭素数2~10のアルキルアミド基、炭素数3~20のトリアルキルシリル基、炭素数4~20のトリアルキルシリルアルキル基、炭素数5~20のトリアルキルシリルアルケニル基、炭素数5~20のトリアルキルシリルアルキニル基およびニトロ基等が挙げられる。これらの具体例のうち、さらに置換基により置換可能なものは置換されていてもよい。より好ましい置換基は、ハロゲン原子、シアノ基、炭素数1~20の置換もしくは無置換のアルキル基、炭素数1~20のアルコキシ基、炭素数6~40の置換もしくは無置換のアリール基、炭素数3~40の置換もしくは無置換のヘテロアリール基、炭素数1~10の置換もしくは無置換のジアルキルアミノ基、炭素数12~40の置換もしくは無置換のジアリールアミノ基、炭素数12~40の置換もしくは無置換のカルバゾリル基である。さらに好ましい置換基は、フッ素原子、塩素原子、シアノ基、炭素数1~10の置換もしくは無置換のアルキル基、炭素数1~10の置換もしくは無置換のアルコキシ基、炭素数1~10の置換もしくは無置換のジアルキルアミノ基、炭素数12~40の置換もしくは無置換のジアリールアミノ基、炭素数6~15の置換もしくは無置換のアリール基、炭素数3~12の置換もしくは無置換のヘテロアリール基である。
 本明細書でいうアルキル基は、直鎖状、分枝状、環状のいずれであってもよく、より好ましくは炭素数1~6であり、具体例としてメチル基、エチル基、プロピル基、ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、イソプロピル基を挙げることができる。アリール基は、単環でも融合環でもよく、具体例としてフェニル基、ナフチル基を挙げることができる。アルコキシ基は、直鎖状、分枝状、環状のいずれであってもよく、より好ましくは炭素数1~6であり、具体例としてメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、イソプロピポキシ基を挙げることができる。ジアルキルアミノ基の2つのアルキル基は、互いに同一であっても異なっていてもよいが、同一であることが好ましい。ジアルキルアミノ基の2つのアルキル基は、各々独立に直鎖状、分枝状、環状のいずれであってもよく、より好ましくは炭素数1~6であり、具体例としてメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、イソプロピル基を挙げることができる。ジアルキルアミノ基の2つのアルキル基は互いに結合してアミノ基の窒素原子とともに環状構造を形成していてもよい。置換基として採用しうるアリール基は、単環でも融合環でもよく、具体例としてフェニル基、ナフチル基を挙げることができる。ヘテロアリール基も、単環でも融合環でもよく、具体例としてピリジル基、ピリダジル基、ピリミジル基、トリアジル基、トリアゾリル基、ベンゾトリアゾリル基を挙げることができる。これらのヘテロアリール基は、ヘテロ原子を介して結合する基であっても、ヘテロアリール環を構成する炭素原子を介して結合する基であってもよい。ジアリールアミノ基の2つのアリール基は、単環でも融合環でもよく、具体例としてフェニル基、ナフチル基を挙げることができる。ジアリールアミノ基の2つのアリール基は互いに結合してアミノ基の窒素原子とともに環状構造を形成していてもよい。例えば、9-カルバゾリル基を挙げることができる。
 一般式(2)におけるRとR、RとR、RとR、RとR、RとR、RとRは、それぞれ互いに結合して環状構造を形成していてもよい。環状構造は芳香環であっても脂肪環であってもよく、またヘテロ原子を含むものであってもよい。ここでいうヘテロ原子としては、窒素原子、酸素原子および硫黄原子からなる群より選択されるものであることが好ましい。形成される環状構造の例として、ベンゼン環、ナフタレン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ピロール環、イミダゾール環、ピラゾール環、トリアゾール環、イミダゾリン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、シクロヘキサジエン環、シクロヘキセン環、シクロペンタエン環、シクロヘプタトリエン環、シクロヘプタジエン環、シクロヘプタエン環などを挙げることができる。
 一般式(2)のZはO、S、O=CまたはAr-Nを表し、Arは置換もしくは無置換のアリール基を表す。Arが表すアリール基を構成する芳香環は、単環であっても融合環であってもよく、具体例としてベンゼン環、ナフタレン環、アントラセン環、フェナントレン環を挙げることができる。アリール基の炭素数は6~40であることが好ましく、6~20であることがより好ましい。Arが表すアリール基に置換しうる置換基の説明と好ましい範囲については、上記のR~Rがとりうる置換基の説明と好ましい範囲を参照することができる。
 一般式(2)で表される基は、下記一般式(3)で表される構造を有する基であるか、下記一般式(4)で表される構造を有する基であるか、または、下記一般式(5)で表される構造を有する基であることが好ましい。
Figure JPOXMLDOC01-appb-C000027
 一般式(3)~(5)において、R~Rは各々独立に水素原子または置換基を表す。R~Rの説明と好ましい範囲については、一般式(2)の対応する記載を参照することができる。RとR、RとR、RとR、RとR、RとR、RとRは、それぞれ互いに結合して環状構造を形成していてもよい。
 一般式(2)のZがAr-Nであるとき、一般式(1)で表される化合物は、特に下記一般式(6)で表される構造を包含する。
Figure JPOXMLDOC01-appb-C000028
 一般式(6)において、Ar、Ar、Ar’およびAr’は各々独立に置換もしくは無置換のアリール基を表し、ArおよびAr’は各々独立に置換もしくは無置換のアリーレン基を表す。R~Rは各々独立に水素原子または置換基を表す。RとR、RとR、RとR、RとR、RとR、RとRは、それぞれ互いに結合して環状構造を形成していてもよい。
 一般式(6)のAr、Ar、Ar’およびAr’の説明と好ましい範囲については、一般式(1)のAr~Arの説明と好ましい範囲を参照することができる。一般式(6)のArおよびAr’がとりうるアリーレン基を構成する芳香環は、単環であっても融合環であってもよく、具体例としてベンゼン環、ナフタレン環、アントラセン環、フェナントレン環を挙げることができる。アリーレン基の炭素数は6~40であることが好ましく、6~20であることがより好ましく、6~14であることがさらに好ましい。一般式(6)のR~Rの説明と好ましい範囲については、一般式(2)のR~Rの説明と好ましい範囲を参照することができる。
 一般式(6)で表される化合物のうち、ArとAr’が同一であり、ArとAr’が同一であり、ArとAr’が同一である化合物は合成が容易であるという利点がある。
 一般式(1)で表される化合物は、下記一般式(7)で表される構造を有するものであることが好ましい。
Figure JPOXMLDOC01-appb-C000029
 一般式(7)において、R11~R25の少なくとも1つは上記一般式(2)で表される基を表し、その他は各々独立に水素原子または上記一般式(2)以外の置換基を表す。
 一般式(7)のR11~R25の少なくとも1つは一般式(2)で表される基であるが、一般式(2)で表される基の置換数はR11~R25のうちの1~9個であることが好ましく、1~6個であることがより好ましい。例えば1~3個の範囲内で選択したりすることができる。一般式(2)で表される基は、1,3,5-トリアジン環に結合している3つのベンゼン環のそれぞれに結合していてもよいし、いずれか1つまたは2つだけに結合していてもよい。好ましいのは、3つのベンゼン環のそれぞれが一般式(2)で表される基を0~3個有する場合であり、より好ましいのは3つのベンゼン環のそれぞれが一般式(2)で表される基を0~2個有する場合である。例えば、3つのベンゼン環のそれぞれが一般式(2)で表される基を0または1個有する場合を選択したりすることができる。
 一般式(2)で表される基の置換位置はR11~R25のいずれであってもよいが、置換位置はR12~R14、R17~R19およびR22~R24の中から選択することが好ましい。例えば、R12~R14のうちの0~2個、R17~R19のうちの0~2個、R22~R24のうちの0~2個が一般式(2)で表される基である場合や、R12~R14のうちの0または1個、R17~R19のうちの0または1個、R22~R24のうちの0または1個が一般式(2)で表される基である場合を例示することができる。
 R11~R25のうちの1個が一般式(2)で表される基で置換されているとき、その置換位置はR12またはR13であることが好ましい。R11~R25のうちの2個が一般式(2)で表される基で置換されているとき、その置換位置はR12とR14であるか、あるいは、R12またはR13のいずれかとR17またはR18のいずれかであることが好ましい。R11~R25のうちの3個が一般式(2)で表される基で置換されているとき、その置換位置はR12とR14とR17またはR18のいずれかであるか、あるいは、R12またはR13のいずれかとR17またはR18のいずれかとR22またはR23のいずれかであることが好ましい。
 R11~R25のうち、一般式(2)で表される基ではないものは、各々独立に水素原子または一般式(2)以外の置換基を表す。これらはすべてが水素原子であってもよい。また、2個以上が置換基である場合、それらの置換基は同じであっても異なっていてもよい。R11~R25がとりうる置換基の説明と好ましい範囲については、上記のR~Rがとりうる置換基の説明と好ましい範囲を参照することができる。
 なお、一般式(7)におけるR11とR12、R12とR13、R13とR14、R14とR15、R16とR17、R17とR18、R18とR19、R19とR20、R21とR22、R22とR23、R23とR24、R24とR25は、それぞれ互いに結合して環状構造を形成していてもよい。環状構造の説明と好ましい範囲についは、一般式(2)の対応する記載を参照することができる。
 一般式(7)に含まれる一般式(2)で表される基は、上記一般式(3)で表される構造を有する基であるか、上記一般式(4)で表される構造を有する基であるか、または、上記一般式(5)で表される構造を有する基であることが好ましい。
 一般式(7)で表される化合物は、分子構造が対称形であることが好ましい。例えば、トリアジン環の中心を軸とする回転対称構造を有することが好ましい。このとき、一般式(7)のR11とR16とR21は同一であり、R12とR17とR22は同一であり、R13とR18とR23は同一であり、R14とR19とR24は同一であり、R15とR20とR25は同一である。例えば、R13とR18とR23が一般式(2)で表される基であって、その他が水素原子である化合物を挙げることができる。
 一般式(2)のZがAr-Nであるとき、一般式(7)で表される化合物は、特に下記一般式(8)で表される構造を包含する。
Figure JPOXMLDOC01-appb-C000030
 一般式(8)において、R~R、R11、R12、R14~R25、R11’、R12’およびR14’~R25’は各々独立に水素原子または置換基を表す。一般式(8)のR~Rの説明と好ましい範囲については、一般式(2)のR~Rの説明と好ましい範囲を参照することができる。一般式(8)のR11、R12、R14~R25、R11’、R12’およびR14’~R25’の説明と好ましい範囲については、一般式(7)のR11~R25の説明と好ましい範囲を参照することができる。一般式(8)におけるRとR、RとR、RとR、RとR、RとR、RとR、R11とR12、R14とR15、R16とR17、R17とR18、R18とR19、R19とR20、R21とR22、R22とR23、R23とR24、R24とR25、R11’とR12’、R14’とR15’、R16’とR17’、R17’とR18’、R18’とR19’、R19’とR20’、R21’とR22’、R22’とR23’、R23’とR24’、R24’とR25’は、それぞれ互いに結合して環状構造を形成していてもよい。環状構造の説明と好ましい範囲についは、一般式(2)の対応する記載を参照することができる。
 以下において、一般式(1)で表される化合物の具体例を例示する。ただし、本発明において用いることができる一般式(1)で表される化合物はこれらの具体例によって限定的に解釈されるべきものではない。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
 一般式(1)で表される化合物の分子量は、例えば一般式(1)で表される化合物を含む有機層を蒸着法により製膜して利用することを意図する場合には、1500以下であることが好ましく、1200以下であることがより好ましく、1000以下であることがさらに好ましく、800以下であることがさらにより好ましい。分子量の下限値は、一般式(1)で表される最小化合物の分子量である。
 一般式(1)で表される化合物は、分子量にかかわらず塗布法で成膜してもよい。塗布法を用いれば、分子量が比較的大きな化合物であっても成膜することが可能である。
 本発明を応用して、分子内に一般式(1)で表される構造を複数個含む化合物を、発光材料として用いることも考えられる。
 例えば、一般式(1)で表される構造中にあらかじめ重合性基を存在させておいて、その重合性基を重合させることによって得られる重合体を、発光材料として用いることが考えられる。具体的には、一般式(1)のAr~Arのいずれかに重合性官能基を含むモノマーを用意して、これを単独で重合させるか、他のモノマーとともに共重合させることにより、繰り返し単位を有する重合体を得て、その重合体を発光材料として用いることが考えられる。あるいは、一般式(1)で表される構造を有する化合物どうしをカップリングさせることにより、二量体や三量体を得て、それらを発光材料として用いることも考えられる。
 一般式(1)で表される構造を含む繰り返し単位を有する重合体の例として、下記一般式(9)または(10)で表される構造を含む重合体を挙げることができる。
Figure JPOXMLDOC01-appb-C000034
 一般式(9)および(10)において、Qは一般式(1)で表される構造を含む基を表し、LおよびLは連結基を表す。連結基の炭素数は、好ましくは0~20であり、より好ましくは1~15であり、さらに好ましくは2~10である。連結基は-X11-L11-で表される構造を有するものであることが好ましい。ここで、X11は酸素原子または硫黄原子を表し、酸素原子であることが好ましい。L11は連結基を表し、置換もしくは無置換のアルキレン基、または置換もしくは無置換のアリーレン基であることが好ましく、炭素数1~10の置換もしくは無置換のアルキレン基、または置換もしくは無置換のフェニレン基であることがより好ましい。
 一般式(9)および(10)において、R101、R102、R103およびR104は、各々独立に置換基を表す。好ましくは、炭素数1~6の置換もしくは無置換のアルキル基、炭素数1~6の置換もしくは無置換のアルコキシ基、ハロゲン原子であり、より好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基、フッ素原子、塩素原子であり、さらに好ましくは炭素数1~3の無置換のアルキル基、炭素数1~3の無置換のアルコキシ基である。
 LおよびLで表される連結基は、Qを構成する一般式(1)の構造のAr~Arのいずれかに結合する。1つのQに対して連結基が2つ以上連結して架橋構造や網目構造を形成していてもよい。
 繰り返し単位の具体的な構造例として、下記式(11)~(14)で表される構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000035
 これらの式(11)~(14)を含む繰り返し単位を有する重合体は、一般式(1)のAr~Arの置換基の少なくとも1つをヒドロキシ基にしておき、それをリンカーとして下記化合物を反応させて重合性基を導入し、その重合性基を重合させることにより合成することができる。
Figure JPOXMLDOC01-appb-C000036
 分子内に一般式(1)で表される構造を含む重合体は、一般式(1)で表される構造を有する繰り返し単位のみからなる重合体であってもよいし、それ以外の構造を有する繰り返し単位を含む重合体であってもい。また、重合体の中に含まれる一般式(1)で表される構造を有する繰り返し単位は、単一種であってもよいし、2種以上であってもよい。一般式(1)で表される構造を有さない繰り返し単位としては、通常の共重合に用いられるモノマーから誘導されるものを挙げることができる。例えば、エチレン、スチレンなどのエチレン性不飽和結合を有するモノマーから誘導される繰り返し単位を挙げることができる。
[一般式(1)で表される化合物の合成方法]
 一般式(1)で表される化合物は、既知の反応を組み合わせることによって合成することができる。例えば、一般式(1)のArが、一般式(2)で表される基で置換されたアリール基である場合の合成は、以下のスキームにしたがって一般式(15)で表される化合物と一般式(16)で表される化合物をカップリングさせることにより行うことができる。このカップリング反応自体は公知の反応であり、公知の反応条件を適宜選択して用いることができる。また、一般式(16)で表される化合物は、例えば、対応する塩化物をアミンに変換し、さらに臭化物へと変換することにより合成することが可能である。
Figure JPOXMLDOC01-appb-C000037
 上記スキームにおけるR~R、Zの定義については、一般式(2)の対応する記載を参照することができる。上のスキームにおけるAr、Ar、Arの定義については、一般式(6)の対応する記載を参照することができる。
 上記スキームにおいて用いる一般式(16)で表される化合物を、臭素による多置換体に変更することにより、一般式(2)で表される基を複数導入した化合物を合成することが可能である。
 上記の反応の詳細については、後述の合成例を参考にすることができる。また、一般式(1)で表される化合物は、その他の公知の合成反応を組み合わせることによっても合成することができる。
[有機発光素子]
 本発明の一般式(1)で表される化合物は、有機発光素子の発光材料として有用である。このため、本発明の一般式(1)で表される化合物は、有機発光素子の発光層に発光材料として効果的に用いることができる。一般式(1)で表される化合物の中には、遅延蛍光を放射する遅延蛍光材料(遅延蛍光体)が含まれている。すなわち本発明は、一般式(1)で表される構造を有する遅延蛍光体の発明と、一般式(1)で表される化合物を遅延蛍光体として使用する発明と、一般式(1)で表される化合物を用いて遅延蛍光を発光させる方法の発明も提供する。そのような化合物を発光材料として用いた有機発光素子は、遅延蛍光を放射し、発光効率が高いという特徴を有する。その原理を、有機エレクトロルミネッセンス素子を例にとって説明すると以下のようになる。
 有機エレクトロルミネッセンス素子においては、正負の両電極より発光材料にキャリアを注入し、励起状態の発光材料を生成し、発光させる。通常、キャリア注入型の有機エレクトロルミネッセンス素子の場合、生成した励起子のうち、励起一重項状態に励起されるのは25%であり、残り75%は励起三重項状態に励起される。従って、励起三重項状態からの発光であるリン光を利用するほうが、エネルギーの利用効率が高い。しかしながら、励起三重項状態は寿命が長いため、励起状態の飽和や励起三重項状態の励起子との相互作用によるエネルギーの失活が起こり、一般にリン光の量子収率が高くないことが多い。一方、遅延蛍光材料は、項間交差等により励起三重項状態へとエネルギーが遷移した後、三重項-三重項消滅あるいは熱エネルギーの吸収により、励起一重項状態に逆項間交差され蛍光を放射する。有機エレクトロルミネッセンス素子においては、なかでも熱エネルギーの吸収による熱活性化型の遅延蛍光材料が特に有用であると考えられる。有機エレクトロルミネッセンス素子に遅延蛍光材料を利用した場合、励起一重項状態の励起子は通常通り蛍光を放射する。一方、励起三重項状態の励起子は、デバイスが発する熱を吸収して励起一重項へ項間交差され蛍光を放射する。このとき、励起一重項からの発光であるため蛍光と同波長での発光でありながら、励起三重項状態から励起一重項状態への逆項間交差により、生じる光の寿命(発光寿命)は通常の蛍光やりん光よりも長くなるため、これらよりも遅延した蛍光として観察される。これを遅延蛍光として定義できる。このような熱活性化型の励起子移動機構を用いれば、キャリア注入後に熱エネルギーの吸収を経ることにより、通常は25%しか生成しなかった励起一重項状態の化合物の比率を25%以上に引き上げることが可能となる。100℃未満の低い温度でも強い蛍光および遅延蛍光を発する化合物を用いれば、デバイスの熱で充分に励起三重項状態から励起一重項状態への項間交差が生じて遅延蛍光を放射するため、発光効率を飛躍的に向上させることができる。
 本発明の一般式(1)で表される化合物を発光層の発光材料として用いることにより、有機フォトルミネッセンス素子(有機PL素子)や有機エレクトロルミネッセンス素子(有機EL素子)などの優れた有機発光素子を提供することができる。有機フォトルミネッセンス素子は、基板上に少なくとも発光層を形成した構造を有する。また、有機エレクトロルミネッセンス素子は、少なくとも陽極、陰極、および陽極と陰極の間に有機層を形成した構造を有する。有機層は、少なくとも発光層を含むものであり、発光層のみからなるものであってもよいし、発光層の他に1層以上の有機層を有するものであってもよい。そのような他の有機層として、正孔輸送層、正孔注入層、電子阻止層、正孔阻止層、電子注入層、電子輸送層、励起子阻止層などを挙げることができる。正孔輸送層は正孔注入機能を有した正孔注入輸送層でもよく、電子輸送層は電子注入機能を有した電子注入輸送層でもよい。具体的な有機エレクトロルミネッセンス素子の構造例を図1に示す。図1において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を表わす。
 以下において、有機エレクトロルミネッセンス素子の各部材および各層について説明する。なお、基板と発光層の説明は有機フォトルミネッセンス素子の基板と発光層にも該当する。
(基板)
 本発明の有機エレクトロルミネッセンス素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機エレクトロルミネッセンス素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英、シリコンなどからなるものを用いることができる。
(陽極)
 有機エレクトロルミネッセンス素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが好ましく用いられる。このような電極材料の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極材料を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な材料を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
(陰極)
 一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機エレクトロルミネッセンス素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
 また、陽極の説明で挙げた導電性透明材料を陰極に用いることで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
(発光層)
 発光層は、陽極および陰極のそれぞれから注入された正孔および電子が再結合することにより励起子が生成した後、発光する層であり、発光材料を単独で発光層に使用しても良いが、好ましくは発光材料とホスト材料を含む。発光材料としては、一般式(1)で表される本発明の化合物群から選ばれる1種または2種以上を用いることができる。本発明の有機エレクトロルミネッセンス素子および有機フォトルミネッセンス素子が高い発光効率を発現するためには、発光材料に生成した一重項励起子および三重項励起子を、発光材料中に閉じ込めることが重要である。従って、発光層中に発光材料に加えてホスト材料を用いることが好ましい。ホスト材料としては、励起一重項エネルギー、励起三重項エネルギーの少なくとも何れか一方が本発明の発光材料よりも高い値を有する有機化合物を用いることができる。その結果、本発明の発光材料に生成した一重項励起子および三重項励起子を、本発明の発光材料の分子中に閉じ込めることが可能となり、その発光効率を十分に引き出すことが可能となる。もっとも、一重項励起子および三重項励起子を十分に閉じ込めることができなくても、高い発光効率を得ることが可能な場合もあるため、高い発光効率を実現しうるホスト材料であれば特に制約なく本発明に用いることができる。本発明の有機発光素子または有機エレクトロルミネッセンス素子において、発光は発光層に含まれる本発明の発光材料から生じる。この発光は蛍光発光および遅延蛍光発光の両方を含む。但し、発光の一部或いは部分的にホスト材料からの発光があってもかまわない。
 ホスト材料を用いる場合、発光材料である本発明の化合物が発光層中に含有される量は0.1重量%以上であることが好ましく、1重量%以上であることがより好ましく、また、50重量%以下であることが好ましく、20重量%以下であることがより好ましく、10重量%以下であることがさらに好ましい。
 発光層におけるホスト材料としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する有機化合物であることが好ましい。
(注入層)
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層または正孔輸送層の間、および陰極と発光層または電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
(阻止層)
 阻止層は、発光層中に存在する電荷(電子もしくは正孔)および/または励起子の発光層外への拡散を阻止することができる層である。電子阻止層は、発光層および正孔輸送層の間に配置されることができ、電子が正孔輸送層の方に向かって発光層を通過することを阻止する。同様に、正孔阻止層は発光層および電子輸送層の間に配置されることができ、正孔が電子輸送層の方に向かって発光層を通過することを阻止する。阻止層はまた、励起子が発光層の外側に拡散することを阻止するために用いることができる。すなわち電子阻止層、正孔阻止層はそれぞれ励起子阻止層としての機能も兼ね備えることができる。本明細書でいう電子阻止層または励起子阻止層は、一つの層で電子阻止層および励起子阻止層の機能を有する層を含む意味で使用される。
(正孔阻止層)
 正孔阻止層とは広い意味では電子輸送層の機能を有する。正孔阻止層は電子を輸送しつつ、正孔が電子輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔の再結合確率を向上させることができる。正孔阻止層の材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
(電子阻止層)
 電子阻止層とは、広い意味では正孔を輸送する機能を有する。電子阻止層は正孔を輸送しつつ、電子が正孔輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔が再結合する確率を向上させることができる。
(励起子阻止層)
 励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。すなわち、励起子阻止層を陽極側に有する場合、正孔輸送層と発光層の間に、発光層に隣接して該層を挿入することができ、陰極側に挿入する場合、発光層と陰極との間に、発光層に隣接して該層を挿入することができる。また、陽極と、発光層の陽極側に隣接する励起子阻止層との間には、正孔注入層や電子阻止層などを有することができ、陰極と、発光層の陰極側に隣接する励起子阻止層との間には、電子注入層、電子輸送層、正孔阻止層などを有することができる。阻止層を配置する場合、阻止層として用いる材料の励起一重項エネルギーおよび励起三重項エネルギーの少なくともいずれか一方は、発光材料の励起一重項エネルギーおよび励起三重項エネルギーよりも高いことが好ましい。
(正孔輸送層)
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層または複数層設けることができる。
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
(電子輸送層)
 電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層または複数層設けることができる。
 電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。使用できる電子輸送層としては例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 有機エレクトロルミネッセンス素子を作製する際には、一般式(1)で表される化合物を発光層に用いるだけでなく、発光層以外の層にも用いてもよい。その際、発光層に用いる一般式(1)で表される化合物と、発光層以外の層に用いる一般式(1)で表される化合物は、同一であっても異なっていてもよい。例えば、上記の注入層、阻止層、正孔阻止層、電子阻止層、励起子阻止層、正孔輸送層、電子輸送層などにも一般式(1)で表される化合物を用いてもよい。これらの層の製膜方法は特に限定されず、ドライプロセス、ウェットプロセスのどちらで作製してもよい。
 以下に、有機エレクトロルミネッセンス素子に用いることができる好ましい材料を具体的に例示する。ただし、本発明において用いることができる材料は、以下の例示化合物によって限定的に解釈されることはない。また、特定の機能を有する材料として例示した化合物であっても、その他の機能を有する材料として転用することも可能である。なお、以下の例示化合物の構造式におけるR、R’、R~R10は、各々独立に水素原子または置換基を表す。Xは環骨格を形成する炭素原子または複素原子を表し、nは3~5の整数を表し、Yは置換基を表し、mは0以上の整数を表す。
 まず、発光層のホスト材料としても用いることができる好ましい化合物を挙げる。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
 次に、正孔注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000043
 次に、正孔輸送材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
 次に、電子阻止材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000050
 次に、正孔阻止材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000051
 次に、電子輸送材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
 次に、電子注入材料として用いることができる好ましい化合物例を挙げる。
Figure JPOXMLDOC01-appb-C000055
 さらに添加可能な材料として好ましい化合物例を挙げる。例えば、安定化材料として添加すること等が考えられる。
Figure JPOXMLDOC01-appb-C000056
 上述の方法により作製された有機エレクトロルミネッセンス素子は、得られた素子の陽極と陰極の間に電界を印加することにより発光する。このとき、励起一重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長の光が、蛍光発光および遅延蛍光発光として確認される。また、励起三重項エネルギーによる発光であれば、そのエネルギーレベルに応じた波長が、りん光として確認される。通常の蛍光は、遅延蛍光発光よりも蛍光寿命が短いため、発光寿命は蛍光と遅延蛍光で区別できる。
 一方、りん光については、本発明の化合物のような通常の有機化合物では、励起三重項エネルギーは不安定で熱等に変換され、寿命が短く直ちに失活するため、室温では殆ど観測できない。通常の有機化合物の励起三重項エネルギーを測定するためには、極低温の条件での発光を観測することにより測定可能である。
 本発明の有機エレクトロルミネッセンス素子は、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれにおいても適用することができる。本発明によれば、発光層に一般式(1)で表される化合物を含有させることにより、発光効率が大きく改善された有機発光素子が得られる。本発明の有機エレクトロルミネッセンス素子などの有機発光素子は、さらに様々な用途へ応用することが可能である。例えば、本発明の有機エレクトロルミネッセンス素子を用いて、有機エレクトロルミネッセンス表示装置を製造することが可能であり、詳細については、時任静士、安達千波矢、村田英幸共著「有機ELディスプレイ」(オーム社)を参照することができる。また、特に本発明の有機エレクトロルミネッセンス素子は、需要が大きい有機エレクトロルミネッセンス照明やバックライトに応用することもできる。
 以下に合成例および実施例を挙げて本発明の特徴をさらに具体的に説明する。以下に示す材料、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
(合成例1) 化合物1の合成
(1) 2-(4-アミノフェニル)-4,6-ジフェニル-1,3,5-トリアジンの合成
Figure JPOXMLDOC01-appb-C000057
 窒素置換した二つ口フラスコに、2-クロロ-4,6-ジフェニル-1,3,5-トリアジン(20mmol,5.35g)、4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)アニリン(22mmol,4.82g)、テトラキス(トリフェニルホスフィン)パラジウム(0)(1.0mmol,1.16g)、テトラヒドロフラン(THF)150ml、トルエン100mlを加え、室温下で10分間攪拌した。そこに炭酸カリウム(40mmol,5.53g)と水100mlの水溶液を加え、48時間加熱・還流した。室温まで放冷した後、酢酸エチルと食塩水を加え、有機層を分液・抽出した。無水硫酸マグネシウムを加え脱水し、溶媒を留去すると茶色固体が得られた。そこにクロロホルムを加え、不溶固体を吸引濾過することにより目的物である2-(4-アミノフェニル)-4,6-ジフェニル-1,3,5-トリアジンを得た(収量:4.60g,収率:71%).
H-NMR(CDCl,300MHz)δ=4.11(s,2H),6.80(d,2H),7.54-7.60(m,6H),8.61(s,2H),8.74(d,4H)
MALDI-MS m/z:324
(2) 2-(4-ブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジンの合成
Figure JPOXMLDOC01-appb-C000058
 2-(4-アミノフェニル)-4,6-ジフェニル-1,3,5-トリアジン(13.7mmol,4.45g)と臭化水素酸(47%)20mlの混合溶液を氷浴により0~5℃に冷却した。亜硝酸ナトリウム(13.7mmol,946.8mg)と水20mlの水溶液を氷浴により冷却し、反応溶液にゆっくりと滴下し、氷浴中で1時間攪拌した。冷却した反応溶液に臭化銅(I)(8.24mmol,1.18g)と臭化水素酸(47%)8mlの混合溶液をゆっくりと滴下した後、室温下で数分攪拌した。反応溶液をオイルバスにより115℃に加熱し、一晩還流した。室温まで放冷した後、反応溶液を氷浴により冷却し、炭酸水素ナトリウムにより中和した。クロロホルムと食塩水を加え、有機層を分液・抽出した。無水硫酸マグネシウムを加え脱水し、溶媒を留去した。クロロホルム:ヘキサン=1:4の混合溶媒を用い、シリカゲルカラムクロマトグラフィーにより目的物である2-(4-ブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジンを単離・精製した(収量:3.19g,収率:60%).
H-NMR(CDCl,300MHz)δ=7.58(m,6H),7.70(d,2H),8.64(s,2H),8.76(s,4H)
MALDI-MS m/z:388
(3) 化合物1の合成
Figure JPOXMLDOC01-appb-C000059
 窒素置換した二つ口フラスコに、2-(4-ブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン(3.0mmol,1.17g)、フェノキサジン(3.3mmol,611.2mg)、炭酸カリウム(9.0mmol,1.24g)、トルエン30mlを加え、室温下で10分間攪拌した。そこに酢酸パラジウム(II)(0.09mmol,20.2mg)、トリ-tert-ブチルホスフィン(0.33mmol,66.8mg)、トルエン30mlの混合溶液を加え、24時間加熱・還流した。室温まで放冷した後、クロロホルムと食塩水を加え、有機層を分液・抽出した。無水硫酸マグネシウムを加え脱水し、溶媒を留去した。クロロホルム:ヘキサン=1:4の混合溶媒を用い、シリカゲルカラムクロマトグラフィーにより目的物である化合物1を単離・精製した(収量:912.4mg,収率:62%).
H-NMR(CDCl,300MHz)δ=6.04(d,2H),6.60(t,2H),6.66(t,2H),6.72(d,2H),7.57(m,8H),8.80(d,4H),8.99(d,2H)
MALDI-MS m/z:491
(合成例2) 化合物2の合成
(1) 2,4-ビス(4-ブロモフェニル)-6-フェニル-1,3,5-トリアジンの合成
Figure JPOXMLDOC01-appb-C000060
 窒素置換した二つ口フラスコに、塩化ベンゾイル(11.0mmol,1.55g)、4-ブロモベンゾニトリル(22.0mmol,4.00g)、塩化メチレン15mlを加え、氷浴に浸け冷却(0~5℃)し30分間攪拌した。そこに塩化アンチモン(11.0mmol,3.30g)を滴下した後、室温で1時間攪拌した。その後、さらに12時間加熱・還流した。室温まで放冷した後、析出した黄色固体を吸引濾過により収集し、真空乾燥した。得られた黄色固体を、氷浴で冷却(0~5℃)した28%アンモニア水75mlに加え、30分間攪拌した。その後、室温で3時間攪拌した。析出した白色固体を吸引濾過により収集し、水で洗浄した後、真空乾燥した。得られた白色固体を155℃に加熱したN,N-ジメチルホルムアミド30mlに加え、10分間攪拌し、不溶固体を吸引濾過により濾別した。この操作を更に2回繰り返し、精製を行った。その後、N,N-ジメチルホルムアミドを加熱・減圧下留去することにより目的物である2,4-ビス(4-ブロモフェニル)-6-フェニル-1,3,5-トリアジンを得た(収量:2.55g,収率:49.6%)。
(2) 化合物2の合成
Figure JPOXMLDOC01-appb-C000061
 窒素置換した二つ口フラスコに、2,4-ビス(4-ブロモフェニル)-6-フェニル-1,3,5-トリアジン(1.28mmol,600mg)、フェノキサジン(2.82mmol,522mg)、炭酸カリウム(8.46mmol,1.17g)、トルエン25mlを加え、室温下10分間攪拌した。そこに酢酸パラジウム(II)(0.09mmol,20.0mg)、トリ-tert-ブチルホスフィン(0.31mmol,62.7mg)、トルエン25mlの混合溶液を加え、24時間加熱・還流した。室温まで放冷した後、クロロホルムと食塩水を加え、有機層を分液・抽出した。無水硫酸マグネシウムを加え脱水し、溶媒を留去した。クロロホルムを展開溶媒に用いたシリカゲルカラムクロマトグラフィーにより目的物である2,4-ビス(4-N-フェノキサジルフェニル)-6-フェニル-1,3,5-トリアジンを単離・精製した(収量:723mg,収率:84.1%)。
[1H-NMR (CDCl3, 300MHz)] δ6.05(d, 4H), 6.62(t, 4H), 6.68(t, 4H), 6.72(d, 4H), 7.58(m, 7H), 8.81(d, 2H), 9.00(d, 4H).
[MS] MALDI-MS m/z: 671.
(合成例3) 化合物3の合成
(1) 2,4,6-トリ(4-ブロモフェニル)-1,3,5-トリアジンの合成
Figure JPOXMLDOC01-appb-C000062
 窒素置換した二つ口フラスコに、トリフルオロメタンスルホン酸(66.6mmol,9.99g)を加え、氷浴に浸け冷却(0~5℃)した。そこに4-ブロモベンゾニトリル(19.6mmol,3.57g)を加え、30分間攪拌した。その後、室温で12時間攪拌した。水を加え、NaOHで中和した後、クロロホルム/アセトン=50/50の混合溶媒で洗い、有機層を抽出した。無水硫酸マグネシウムを加え脱水し、溶媒を留去することにより目的物である2,4,6-トリ(4-ブロモフェニル)-1,3,5-トリアジンを得た(収量:3.34g,収率:93.6%)。
(2) 化合物3の合成
Figure JPOXMLDOC01-appb-C000063
 窒素置換した二つ口フラスコに、2,4,6-トリ(4-ブロモフェニル)-1,3,5-トリアジン(2.0mmol,1.09g)、フェノキサジン(6.6mmol,1.22g)、炭酸カリウム(19.8mmol,2.74g)、トルエン60mlを加え、室温下10分間攪拌した。そこに酢酸パラジウム(II)(0.20mmol,45.0mg)、トリ-tert-ブチルホスフィン(0.73mmol,147.7mg)、トルエン60mlの混合溶液を加え、24時間加熱・還流した。室温まで放冷した後、クロロホルムと食塩水を加え、有機層を分液・抽出した。無水硫酸マグネシウムを加え脱水し、溶媒を留去した。クロロホルム:ヘキサン=1:1の混合溶媒を用い、シリカゲルカラムクロマトグラフィーにより目的物である2,4,6-トリ(4-N-フェノキサジルフェニル)-1,3,5-トリアジンを単離・精製した(収量:1.65g,収率:96.5%)。
[1H-NMR (CDCl3, 300MHz)] δ6.06(d, 6H), 6.63(t, 6H), 6.69(t, 6H), 6.73(d, 6H), 7.60(d, 6H), 9.01(d, 6H).
[MS] MALDI-MS m/z: 852.
(合成例4) 化合物4の合成
(1) 2-(3-ブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジンの合成
Figure JPOXMLDOC01-appb-C000064
 窒素置換した二つ口フラスコに、塩化3-ブロモベンゾイル(11.0mmol,2.41g)、ベンゾニトリル(22.0mmol,2.27g)、塩化メチレン15mlを加え、氷浴に浸け冷却(0~5℃)し、30分間攪拌した。そこに塩化アンチモン(11.0mmol,3.30g)を滴下した後、室温で1時間攪拌した。その後、さらに12時間加熱・還流した。室温まで放冷した後、析出した黄色固体を吸引濾過により収集し、真空乾燥した。得られた黄色固体を、氷浴で冷却(0~5℃)した28%アンモニア水75mlに加え、30分間攪拌した。その後、室温で3時間攪拌した。析出した白色固体を吸引濾過により収集し、水で洗浄した後、真空乾燥した。得られた白色固体を155℃に加熱したN,N’-ジメチルホルムアミド30mlに加え、10分間攪拌し、不溶固体を吸引濾過により濾別した。この操作を更に2回繰り返し、精製を行った。その後、N,N’-ジメチルホルムアミドを加熱・減圧下留去することにより目的物2-(3-ブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジンを得た(収量:2.85g,収率:66.7%)。
[1H-NMR (CDCl3, 300MHz)] δ5.99(d, 2H), 6.61(t, 2H), 6.67(t, 2H), 6.73(d, 2H), 7.55(m, 7H), 7.82(t, 1H), 8.75(s, 1H), 8.76(d, 4H), 8.90(d, 1H).
[MS] MALDI-MS m/z: 490.
(2) 化合物4の合成
Figure JPOXMLDOC01-appb-C000065
 窒素置換したな二つ口フラスコに、2-(3-ブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン(3.50mmol,1.36g)、フェノキサジン(3.85mmol,713.1mg)、炭酸カリウム(11.6mmol,1.60g)、トルエン20mlを加え、室温下10分間攪拌した。そこに酢酸パラジウム(II)(0.12mmol,27.0mg)、トリ-tert-ブチルホスフィン(0.42mmol,85.0mg)、トルエン20mlの混合溶液を加え、24時間加熱・還流した。室温まで放冷した後、クロロホルムと食塩水を加え、有機層を分液・抽出した。無水硫酸マグネシウムを加え脱水し、溶媒を留去した。クロロホルム:ヘキサン=1:1の混合溶媒を用い、シリカゲルカラムクロマトグラフィーにより化合物4を単離・精製した(収量:1.45g,収率:84.3%)。
[1H-NMR(CDCl3, 300MHz)] δ5.99(d, 2H), 6.61(t, 2H), 6.67(t, 2H), 6.73(d, 2H), 7.55(m, 7H), 7.82(t, 1H), 8.75(s, 1H), 8.76(d, 4H), 8.90(d, 1H).
[MS] MALDI-MS m/z: 490.
(合成例5) 化合物5の合成
(1) 2,4-ビス(3-ブロモフェニル)-6-フェニル-1,3,5-トリアジンの合成
Figure JPOXMLDOC01-appb-C000066
 窒素置換した二つ口フラスコに、塩化ベンゾイル(11.0mmol,1.55g)、3-ブロモベンゾニトリル(22.0mmol,4.01g)、塩化メチレン15mlを加え、氷浴に浸け冷却(0~5℃)し30分間攪拌した。そこに塩化アンチモン(11.0mmol,3.30g)を滴下した後、室温で1時間攪拌した。その後、さらに12時間加熱・還流した。室温まで放冷した後、析出した黄色固体を吸引濾過により収集し、塩化メチレンで洗浄した後、真空乾燥した。得られた黄色固体を、氷浴で冷却(0~5℃)した28%アンモニア水75mlに加え、30分間攪拌した。その後、室温で3時間攪拌した。析出した白色固体を吸引濾過により収集し、水で洗浄した後、真空乾燥した。得られた白色固体を155℃に加熱したN,N’-ジメチルホルムアミド30mlに加え、10分間攪拌し、不溶固体を吸引濾過により濾別した。この操作を更に2回繰り返し、精製を行った。その後、N,N’-ジメチルホルムアミドを加熱・減圧下留去することで目的物である2,4-ビス(3-ブロモフェニル)-6-フェニル-1,3,5-トリアジンを得た(収量:2.67g,収率:51.9%)。
(2) 化合物5の合成
Figure JPOXMLDOC01-appb-C000067
 窒素置換した二つ口フラスコに、2,4-ビス(3-ブロモフェニル)-6-フェニル-1,3,5-トリアジン(3.00mmol,1.40g)、フェノキサジン(6.60mmol,1.22g)、炭酸カリウム(19.8mmol,2.74g)、トルエン55mlを加え、室温下10分間攪拌した。そこに酢酸パラジウム(II)(0.20mmol,45.0mg)、トリ-tert-ブチルホスフィン(0.73mmol,147.7mg)、トルエン55mlの混合溶液を加え、24時間加熱・還流した。室温まで放冷した後、クロロホルムと食塩水を加え、有機層を分液・抽出した。無水硫酸マグネシウムを加え脱水し、加熱・減圧下、溶媒を留去した。得られた固体をクロロホルムにより洗浄することにより、目的物である2,4-ビス(3-N-フェノキサジルフェニル)-6-フェニル-1,3,5-トリアジンを得た(収量:1.55g,収率:76.7%)。
[1H-NMR (CDCl3, 300MHz)] δ5.95(d, 4H), 6.58(t, 4H), 6.66(t, 4H), 6.71(d, 4H), 7.55(m, 5H), 7.81(t, 2H), 8.75(s, 2H), 8.75(d, 2H), 8.87(d, 2H).
[MS] MALDI-MS m/z: 671.
(合成例6) 化合物6の合成
(1) 2,4,6-トリ(3-ブロモフェニル)-1,3,5-トリアジンの合成
Figure JPOXMLDOC01-appb-C000068
 窒素置換した二つ口フラスコに、トリフルオロメタンスルホン酸(66.6mmol,9.99g)を加え、氷浴に浸け冷却(0~5℃)した。そこに3-ブロモベンゾニトリル(19.6mmol,3.57g)を加え、30分間攪拌した。その後、室温で12時間攪拌した。水を加え、NaOHで中和した後、クロロホルム/アセトン=50/50の混合溶媒で洗い、有機層を抽出した。無水硫酸マグネシウムを加え脱水し、溶媒を留去することにより目的物である2,4,6-トリ(3-ブロモフェニル)-1,3,5-トリアジンを得た(収量:3.32g,収率:93.0%)。
(2) 化合物6の合成
Figure JPOXMLDOC01-appb-C000069
 窒素置換した二つ口フラスコに、2,4,6-トリ(3-ブロモフェニル)-1,3,5-トリアジン(2.00mmol,1.09g)、フェノキサジン(6.60mmol,1.22g)、炭酸カリウム(19.8mmol,2.74g)、トルエン60mlを加え、室温下10分間攪拌した。そこに酢酸パラジウム(II)(0.20mmol,45.0mg)、トリ-tert-ブチルホスフィン(0.73mmol,147.7mg)、トルエン60mlの混合溶液を加え、24時間加熱・還流した。室温まで放冷した後、クロロホルムと食塩水を加え、有機層を分液・抽出した。無水硫酸マグネシウムを加え脱水し、加熱・減圧下、溶媒を留去した。得られた固体をクロロホルムにより洗浄することにより、目的物である2,4,6-トリ(3-N-フェノキサジルフェニル)-1,3,5-トリアジンを得た(収量:1.63g,収率:95.3%)。
[1H-NMR (CDCl3, 300MHz)] δ5.91(d, 6H), 6.52(t, 6H), 6.63(t, 6H), 6.68(d, 6H), 7.57(d, 3H), 7.78(t, 3H), 8.75(s, 3H), 8.85(d, 3H).
[MS] MALDI-MS m/z: 852.
(合成例7) 化合物7の合成
Figure JPOXMLDOC01-appb-C000070
 窒素置換した二つ口フラスコに、2-(4-ブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン(3.0mmol,1.17g)、フェノチアジン(3.3mmol,657.6mg)、炭酸カリウム(9.0mmol,1.24g)、トルエン30mlを加え、室温下で10分間攪拌した。そこに酢酸パラジウム(II)(0.09mmol,20.2mg)、トリ-tert-ブチルホスフィン(0.33mmol,66.8mg)、トルエン30mlの混合溶液を加え、24時間加熱・還流した。室温まで放冷した後、クロロホルムと食塩水を加え、有機層を分液・抽出した。無水硫酸マグネシウムを加え脱水し、溶媒を留去した。クロロホルム:ヘキサン=1:4の混合溶媒を用い、シリカゲルカラムクロマトグラフィーにより目的物である化合物7を単離・精製した(収量:1.03g,収率:68%).
H-NMR(CDCl,300MHz)δ=6.72(d,2H),6.95(t,2H),7.02(t,2H),7.19(d,2H),7.46(d,2H),7.56(m,6H),8.77(d,4H),8.86(d,2H)
MALDI-MS m/z:506
(合成例8) 化合物13の合成
Figure JPOXMLDOC01-appb-C000071
 窒素置換した二つ口フラスコに、2-(4-ブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン(2.57mmol,1.0g)、5-ヒドロ-10-フェニルフェナジン(4.0mmol)、ナトリウムtert-ブトキシド(3.87mmol,371.9mg)、o-キシレン15mlを加え、室温下で10分間攪拌した。そこに酢酸パラジウム(II)(0.16mmol,35mg)、トリ-tert-ブチルホスフィン(0.49mmol,100mg)、o-キシレン15mlの混合溶液を加え、一晩加熱・還流した。室温まで放冷した後、クロロホルムと食塩水を加え、有機層を分液・抽出した。無水硫酸マグネシウムを加え脱水し、溶媒を留去した。クロロホルム:ヘキサン=1:4の混合溶媒を用い、シリカゲルカラムクロマトグラフィーにより目的物である化合物13を単離・精製した(収量:654.2mg,収率:45%).
H-NMR(CDCl,300MHz)δ=7.59(m,17H),8.81(d,10H)
MALDI-MS m/z:566
(合成例9) 化合物19の合成
Figure JPOXMLDOC01-appb-C000072
 窒素置換した二つ口フラスコに、2-(4-ブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン(1.0mmol,388.3mg)、5,10-ジヒドロフェナジン(0.5mmol,91.1mg)、ナトリウムtert-ブトキシド(1.5mmol,144.2mg)、トルエン5mlを加え、室温下で10分間攪拌した。そこに酢酸パラジウム(II)(0.04mmol,4.5mg)、トリ-tert-ブチルホスフィン(0.11mmol,11.2mg)、トルエン5mlの混合溶液を加え、一晩加熱・還流した。室温まで放冷した後、クロロホルムと食塩水を加え、有機層を分液・抽出した。無水硫酸マグネシウムを加え脱水し、溶媒を留去した。クロロホルム:ヘキサン=1:4の混合溶媒を用い、シリカゲルカラムクロマトグラフィーにより目的物である化合物19を単離・精製した(収量:446.3mg,収率:56%).
H-NMR(CDCl,300MHz)δ=7.58(m,20H),8.79(d,16H)
MALDI-MS m/z:796
(実施例1) 有機フォトルミネッセンス素子の作製と評価(溶液)
 合成例1で合成した化合物1のトルエン溶液(濃度10-4mol/L)を調製して、窒素をバブリングしながら300Kで紫外光を照射したところ、図2に示すようにピーク波長が545nmの蛍光が観測された。また、窒素バブル前後に小型蛍光寿命測定装置(浜松ホトニクス(株)製Quantaurus-tau)による測定を行って、図3に示す時間分解スペクトルを得た。励起寿命が0.019μsの蛍光と、0.676μsの遅延蛍光が観測された。化合物1のトルエン溶液中でのフォトルミネッセンス量子効率を絶対PL量子収率測定装置(浜松ホトニクス(株)製Quantaurus-QY)により300Kで測定したところ、窒素バブル前が14.5%であり、窒素バブル後が29.5%であった。
 同様にして、化合物1のかわりに合成例7で合成した化合物7を用いてトルエン溶液の作製と評価を行った。図4に発光スペクトルを示し、図5に窒素バブル後の時間分解スペクトルを示す。励起寿命が0.016μsの蛍光と、0.527μsの遅延蛍光が観測された。フォトルミネッセンス量子効率は、窒素バブル前が7.4%であり、窒素バブル後が21.8%であった。
 合成例2で合成した化合物2、合成例3で合成した化合物3、合成例4で合成した化合物4、合成例8で合成した化合物13、合成例9で合成した化合物19についても、同様に可視領域に発光が認められた。化合物2のフォトルミネッセンス量子効率は、窒素バブル前が14.1%であり、窒素バブル後が28.8%であった。化合物3のフォトルミネッセンス量子効率は、窒素バブル前が12.6%であり、窒素バブル後が23.1%であった。化合物4のフォトルミネッセンス量子効率は、窒素バブル前が1.6%であり、窒素バブル後が5.2%であった。
(実施例2) 有機フォトルミネッセンス素子の作製と評価(薄膜)
 シリコン基板上に真空蒸着法にて、真空度5.0×10-4Paの条件にて化合物1とCBPとを異なる蒸着源から蒸着し、化合物1の濃度が6.0重量%である薄膜を0.3nm/秒にて100nmの厚さで形成して有機フォトルミネッセンス素子とした。実施例1と同じ測定装置を用いて得た発光スペクトルを図6に示す。フォトルミネッセンス量子効率は300Kで65.7%であった。次に、20K、50K、100K、150K、200K、250Kおよび300Kの各温度で時間分解スペクトルを得て、発光寿命の短い成分と発光寿命が長い成分の量子効率の温度依存性を評価した(図7)。その結果、化合物1は熱活性型遅延蛍光材料であることが確認された。
 化合物1のかわりに化合物2、化合物3、化合物4、化合物5、化合物7、化合物13、化合物19を用いて有機フォトルミネッセンス素子の作製したところ、発光が認められた。図8に化合物13を用いた有機フォトルミネッセンス素子の発光スペクトルを示す。化合物濃度2.0重量%の有機フォトルミネッセンス素子のフォトルミネッセンス量子効率は、化合物2で69%、化合物3で69%、化合物4で32%、化合物5で22%であった。
(実施例3) 有機エレクトロルミネッセンス素子の作製と評価
 膜厚100nmのインジウム・スズ酸化物(ITO)からなる陽極が形成されたガラス基板上に、各薄膜を真空蒸着法にて、真空度5.0×10-4Paで積層した。まず、ITO上にα-NPDを35nmの厚さに形成した。次に、化合物1とCBPを異なる蒸着源から共蒸着し、15nmの厚さの層を形成して発光層とした。この時、化合物1の濃度は6.0重量%とした。次に、TPBiを65nmの厚さに形成し、さらにフッ化リチウム(LiF)を0.8nm真空蒸着し、次いでアルミニウム(Al)を80nmの厚さに蒸着することにより陰極を形成し、有機エレクトロルミネッセンス素子とした。
 製造した有機エレクトロルミネッセンス素子を、半導体パラメータ・アナライザ(アジレント・テクノロジー社製:E5273A)、光パワーメータ測定装置(ニューポート社製:1930C)、および光学分光器(オーシャンオプティクス社製:USB2000)を用いて測定したところ、図9に示すように529nmの発光が認められた。電流密度-電圧-輝度特性を図10に示し、電流密度-外部量子効率特性を図11に示す。化合物1を発光材料として用いた有機エレクトロルミネッセンス素子は12.5%の高い外部量子効率を達成した。
 化合物1のかわりに化合物2を用いて同様にして作製した有機エレクトロミネッセンス素子(発光層の化合物2の濃度は6.0重量%)の発光スペクトルを図12に示し、電流密度-電圧特性を図13に示し、電流密度-外部量子効率特性を図14に示す。発光層の化合物2の濃度を2.0重量%に変更した有機エレクトロミネッセンス素子をさらに作製して、同様の測定を行った。その発光スペクトルを図15に示し、電流密度-電圧特性を図16に示し、電流密度-外部量子効率特性を図17に示す。化合物2を発光材料として用いた有機エレクトロルミネッセンス素子は11.0%の高い外部量子効率を達成した。
 化合物1のかわりに化合物3を用いて、発光層の化合物3の濃度が2.0重量%の有機エレクトロミネッセンス素子と、発光層の化合物3の濃度が6.0重量%の有機エレクトロミネッセンス素子を作製した。発光スペクトルを図18に示し、電流密度-電圧特性を図19に示し、電流密度-外部量子効率特性を図20に示す。化合物3を発光材料として用いた有機エレクトロルミネッセンス素子は14.2%の高い外部量子効率を達成した。
 化合物1のかわりに化合物4を用いて、発光層の化合物4の濃度が2.0重量%の有機エレクトロミネッセンス素子を作製した。発光スペクトルを図21に示し、電流密度-電圧特性を図22に示し、電流密度-外部量子効率特性を図23に示す。
 化合物1のかわりに化合物5を用いて、発光層の化合物5の濃度が2.0重量%の有機エレクトロミネッセンス素子を作製した。発光スペクトルを図24に示し、電流密度-電圧特性を図25に示し、電流密度-外部量子効率特性を図26に示す。
 化合物1のかわりに化合物13を用いて同様にして作製した有機エレクトロミネッセンス素子の発光スペクトルを図27に示す。
Figure JPOXMLDOC01-appb-C000073
 本発明の化合物は発光材料として有用である。このため本発明の化合物は、有機エレクトロルミネッセンス素子などの有機発光素子用の発光材料として効果的に用いられる。本発明の化合物の中には、遅延蛍光が放射するものも含まれているため、発光効率が高い有機発光素子を提供することも可能である。このため、本発明は産業上の利用可能性が高い。
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 電子輸送層
 7 陰極

Claims (16)

  1.  下記一般式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)において、Ar~Arは各々独立に置換もしくは無置換のアリール基を表し、少なくとも1つは下記一般式(2)で表される基で置換されたアリール基を表す。]
    Figure JPOXMLDOC01-appb-C000002
    [一般式(2)において、R~Rは各々独立に水素原子または置換基を表す。ZはO、S、O=CまたはAr-Nを表し、Arは置換もしくは無置換のアリール基を表す。RとR、RとR、RとR、RとR、RとR、RとRは、それぞれ互いに結合して環状構造を形成していてもよい。]
  2.  一般式(1)のAr~Arの少なくとも1つは下記一般式(3)で表される基で置換されたアリール基であることを特徴とする請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    [一般式(3)において、R~Rは各々独立に水素原子または置換基を表す。RとR、RとR、RとR、RとR、RとR、RとRは、それぞれ互いに結合して環状構造を形成していてもよい。]
  3.  一般式(1)のAr~Arの少なくとも1つは下記一般式(4)で表される基で置換されたアリール基であることを特徴とする請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
    [一般式(4)において、R~Rは各々独立に水素原子または置換基を表す。RとR、RとR、RとR、RとR、RとR、RとRは、それぞれ互いに結合して環状構造を形成していてもよい。]
  4.  一般式(1)のAr~Arの少なくとも1つは下記一般式(5)で表される基で置換されたアリール基であることを特徴とする請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000005
    [一般式(5)において、R~Rは各々独立に水素原子または置換基を表す。RとR、RとR、RとR、RとR、RとR、RとRは、それぞれ互いに結合して環状構造を形成していてもよい。]
  5.  下記一般式(6)で表される構造を有することを特徴とする請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000006
    [一般式(6)において、Ar、Ar、Ar’およびAr’は各々独立に置換もしくは無置換のアリール基を表し、ArおよびAr’は各々独立に置換もしくは無置換のアリーレン基を表す。R~Rは各々独立に水素原子または置換基を表す。RとR、RとR、RとR、RとR、RとR、RとRは、それぞれ互いに結合して環状構造を形成していてもよい。]
  6.  下記一般式(7)で表される構造を有することを特徴とする請求項1に記載の化合物。
    Figure JPOXMLDOC01-appb-C000007
    [一般式(7)において、R11~R25の少なくとも1つは下記一般式(2)で表される基を表し、その他は各々独立に水素原子または下記一般式(2)以外の置換基を表す。R11とR12、R12とR13、R13とR14、R14とR15、R16とR17、R17とR18、R18とR19、R19とR20、R21とR22、R22とR23、R23とR24、R24とR25は、それぞれ互いに結合して環状構造を形成していてもよい。]
    Figure JPOXMLDOC01-appb-C000008
    [一般式(2)において、R~Rは各々独立に水素原子または置換基を表す。ZはO、S、O=CまたはAr-Nを表し、Arは置換もしくは無置換のアリール基を表す。RとR、RとR、RとR、RとR、RとR、RとRは、それぞれ互いに結合して環状構造を形成していてもよい。]
  7.  一般式(7)のR11~R25の少なくとも1つは下記一般式(3)で表される基であることを特徴とする請求項6に記載の化合物。
    Figure JPOXMLDOC01-appb-C000009
    [一般式(3)において、R~Rは各々独立に水素原子または置換基を表す。RとR、RとR、RとR、RとR、RとR、RとRは、それぞれ互いに結合して環状構造を形成していてもよい。]
  8.  一般式(7)のR11~R25の少なくとも1つは下記一般式(4)で表される基であることを特徴とする請求項6に記載の化合物。
    Figure JPOXMLDOC01-appb-C000010
    [一般式(4)において、R~Rは各々独立に水素原子または置換基を表す。RとR、RとR、RとR、RとR、RとR、RとRは、それぞれ互いに結合して環状構造を形成していてもよい。]
  9.  一般式(7)のR11~R25の少なくとも1つは下記一般式(5)で表される基であることを特徴とする請求項6に記載の化合物。
    Figure JPOXMLDOC01-appb-C000011
    [一般式(5)において、R~Rは各々独立に水素原子または置換基を表す。RとR、RとR、RとR、RとR、RとR、RとRは、それぞれ互いに結合して環状構造を形成していてもよい。]
  10.  一般式(7)のトリアジン環の中心を軸とする回転対称構造を有することを特徴とする請求項7~9のいずれか1項に記載の化合物。
  11.  下記一般式(8)で表される構造を有することを特徴とする請求項6に記載の化合物。
    Figure JPOXMLDOC01-appb-C000012
    [一般式(8)において、R~R、R11、R12、R14~R25、R11’、R12’およびR14’~R25’は各々独立に水素原子または置換基を表す。RとR、RとR、RとR、RとR、RとR、RとR、R11とR12、R14とR15、R16とR17、R17とR18、R18とR19、R19とR20、R21とR22、R22とR23、R23とR24、R24とR25、R11’とR12’、R14’とR15’、R16’とR17’、R17’とR18’、R18’とR19’、R19’とR20’、R21’とR22’、R22’とR23’、R23’とR24’、R24’とR25’は、それぞれ互いに結合して環状構造を形成していてもよい。]
  12.  請求項1~11のいずれか1項に記載の化合物からなる発光材料。
  13.  下記一般式(1)で表される構造を有する遅延蛍光体。
    Figure JPOXMLDOC01-appb-C000013
    [一般式(1)において、Ar~Arは各々独立に置換もしくは無置換のアリール基を表し、少なくとも1つは下記一般式(2)で表される基で置換されたアリール基を表す。]
    Figure JPOXMLDOC01-appb-C000014
    [一般式(2)において、R~Rは各々独立に水素原子または置換基を表す。ZはO、S、O=CまたはAr-Nを表し、Arは置換もしくは無置換のアリール基を表す。RとR、RとR、RとR、RとR、RとR、RとRは、それぞれ互いに結合して環状構造を形成していてもよい。]
  14.  請求項12に記載の発光材料を含む発光層を基板上に有することを特徴とする有機発光素子。
  15.  遅延蛍光を放射することを特徴とする請求項14に記載の有機発光素子。
  16.  有機エレクトロルミネッセンス素子であることを特徴とする請求項14または15に記載の有機発光素子。
PCT/JP2013/063112 2012-05-17 2013-05-10 化合物、発光材料および有機発光素子 WO2013172255A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13790074.2A EP2808323A1 (en) 2012-05-17 2013-05-10 Compound, light emitting material, and organic light emitting element
KR1020147008613A KR20150009512A (ko) 2012-05-17 2013-05-10 화합물, 발광 재료 및 유기 발광 소자
US14/379,567 US9660199B2 (en) 2012-05-17 2013-05-10 Compound, light-emitting material, and organic light-emitting device
CN201380004283.0A CN104136430A (zh) 2012-05-17 2013-05-10 化合物、发光材料和有机发光元件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012113654 2012-05-17
JP2012-113654 2012-05-17
JP2013-034967 2013-02-25
JP2013034967A JP5594750B2 (ja) 2012-05-17 2013-02-25 化合物、発光材料および有機発光素子

Publications (1)

Publication Number Publication Date
WO2013172255A1 true WO2013172255A1 (ja) 2013-11-21

Family

ID=49583661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063112 WO2013172255A1 (ja) 2012-05-17 2013-05-10 化合物、発光材料および有機発光素子

Country Status (7)

Country Link
US (1) US9660199B2 (ja)
EP (1) EP2808323A1 (ja)
JP (1) JP5594750B2 (ja)
KR (1) KR20150009512A (ja)
CN (1) CN104136430A (ja)
TW (1) TW201350558A (ja)
WO (1) WO2013172255A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014189122A1 (ja) * 2013-05-24 2014-11-27 国立大学法人九州大学 化合物、発光材料および有機発光素子
US20160028025A1 (en) * 2013-03-18 2016-01-28 Idemitsu Kosan Co., Ltd. Light-emitting device
JP2016037490A (ja) * 2014-08-11 2016-03-22 東ソー株式会社 トリアジン化合物、その製造方法、およびその用途
WO2016042070A1 (de) 2014-09-17 2016-03-24 Cynora Gmbh Organische moleküle zur verwendung als emitter
CN106062126A (zh) * 2014-02-28 2016-10-26 九州有机光材股份有限公司 发光材料、有机发光元件及化合物
EP3150604A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056055A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2018192227A1 (zh) * 2017-04-20 2018-10-25 江苏三月光电科技有限公司 一种以三嗪和苯并咪唑为核心的有机化合物及其在有机电致发光器件上的应用
US10388888B2 (en) 2014-12-29 2019-08-20 University Court Of The University Of St Andrews Light emitting electrochemical cells and compounds
US10686139B2 (en) 2016-05-26 2020-06-16 Samsung Display Co., Ltd. Nitrogen-containing compound and organic electroluminescence device including the same
US10734589B2 (en) 2016-08-17 2020-08-04 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US10734587B2 (en) * 2014-03-13 2020-08-04 Merck Patent Gmbh Formulations of luminescent compounds
US11174427B2 (en) 2016-12-01 2021-11-16 Samsung Display Co., Ltd. Aromatic compound and organic electroluminescence device including the same
US11437582B2 (en) * 2015-06-16 2022-09-06 Kunshan Go-Visionox Opto-Electronics Co., Ltd. Organic electroluminescent device and manufacturing method thereof
US11462696B2 (en) 2018-01-19 2022-10-04 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI661589B (zh) 2013-03-29 2019-06-01 日商九州有機光材股份有限公司 有機電致發光元件
CN105283976B (zh) * 2013-06-06 2020-11-03 默克专利有限公司 有机电致发光器件
JP6441896B2 (ja) 2014-03-11 2018-12-19 株式会社Kyulux 有機発光素子、ホスト材料、発光材料および化合物
CN103985822B (zh) * 2014-05-30 2017-05-10 广州华睿光电材料有限公司 有机混合物、包含其的组合物、有机电子器件及应用
JP6387726B2 (ja) * 2014-07-31 2018-09-12 東ソー株式会社 N−トリアジルフェナジン化合物、その製造方法、およびその用途
JP2017212024A (ja) * 2014-08-28 2017-11-30 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
JP6534250B2 (ja) 2014-09-03 2019-06-26 保土谷化学工業株式会社 遅延蛍光体用ホスト材料、有機発光素子および化合物
EP3038181A1 (en) 2014-12-22 2016-06-29 Solvay SA Organic electronic devices comprising acridine derivatives in an emissive layer free of heavy atom compounds
JP6464779B2 (ja) * 2015-01-30 2019-02-06 東ソー株式会社 トリアジン化合物、その製造方法、及びそれを用いた有機電界発光素子
JP6663363B2 (ja) * 2015-02-06 2020-03-11 出光興産株式会社 有機エレクトロルミネッセンス素子および電子機器
JP6769712B2 (ja) 2015-07-01 2020-10-14 国立大学法人九州大学 有機エレクトロルミネッセンス素子
KR20170010715A (ko) 2015-07-20 2017-02-01 롬엔드하스전자재료코리아유한회사 지연 형광용 발광 재료 및 이를 포함하는 유기 전계 발광 소자
CN108291103B (zh) 2015-11-12 2021-12-07 广州华睿光电材料有限公司 印刷组合物、包含其的电子器件及功能材料薄膜的制备方法
WO2017092545A1 (zh) 2015-12-04 2017-06-08 广州华睿光电材料有限公司 一种金属有机配合物及其在电子器件中的应用
CN106892857B (zh) 2015-12-18 2020-02-18 昆山国显光电有限公司 热活化延迟荧光材料及其在有机电致发光器件中的应用
CN105399696B (zh) * 2015-12-25 2019-12-24 上海天马有机发光显示技术有限公司 有机电致发光化合物及其有机光电装置
JP6739804B2 (ja) 2015-12-28 2020-08-12 国立大学法人九州大学 有機エレクトロルミネッセンス素子
JP6808329B2 (ja) * 2016-02-25 2021-01-06 株式会社ジャパンディスプレイ 有機エレクトロルミネッセンス表示装置用材料及び有機エレクトロルミネッセンス表示装置
CN107043382A (zh) * 2016-04-25 2017-08-15 中节能万润股份有限公司 一种以三嗪为核心的化合物及其在有机电致发光器件上的应用
KR102681293B1 (ko) 2016-09-06 2024-07-03 가부시키가이샤 큐럭스 유기 발광 소자
WO2018095389A1 (zh) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 含氮稠杂环的化合物及其应用
WO2018095392A1 (zh) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 有机混合物、组合物以及有机电子器件
CN109790194B (zh) 2016-11-23 2021-07-23 广州华睿光电材料有限公司 金属有机配合物、高聚物、组合物及有机电子器件
WO2018095388A1 (zh) 2016-11-23 2018-05-31 广州华睿光电材料有限公司 有机化合物
US11518723B2 (en) 2016-11-23 2022-12-06 Guangzhou Chinaray Optoelectronic Materials Ltd. Fused ring compound, high polymer, mixture, composition and organic electronic component
US11248138B2 (en) 2016-11-23 2022-02-15 Guangzhou Chinaray Optoelectronic Materials Ltd. Printing ink formulations, preparation methods and uses thereof
US11453745B2 (en) 2016-11-23 2022-09-27 Guangzhou Chinaray Optoelectronic Materials Ltd. High polymer, mixture containing same, composition, organic electronic component, and monomer for polymerization
US11512039B2 (en) 2016-11-23 2022-11-29 Guangzhou Chinaray Optoelectronic Materials Ltd. Aromatic amine derivatives, preparation methods therefor, and uses thereof
CN109790460B (zh) 2016-11-23 2023-10-13 广州华睿光电材料有限公司 含硼有机化合物及应用、有机混合物、有机电子器件
US10978642B2 (en) 2016-12-08 2021-04-13 Guangzhou Chinaray Optoelectronic Materials Ltd. Mixture, composition and organic electronic device
WO2018103748A1 (zh) 2016-12-08 2018-06-14 广州华睿光电材料有限公司 芘三嗪类衍生物及其在有机电子器件中的应用
WO2018108108A1 (zh) 2016-12-13 2018-06-21 广州华睿光电材料有限公司 共轭聚合物及其在有机电子器件的应用
US11292875B2 (en) 2016-12-22 2022-04-05 Guangzhou Chinaray Optoelectronic Materials Ltd. Cross-linkable polymer based on Diels-Alder reaction and use thereof in organic electronic device
CN109790136B (zh) 2016-12-22 2024-01-12 广州华睿光电材料有限公司 含呋喃交联基团的聚合物及其应用
US10783823B2 (en) * 2017-01-04 2020-09-22 Universal Display Corporation OLED device with controllable brightness
CN108336236B (zh) * 2017-01-20 2020-07-10 中节能万润股份有限公司 一种双主体结构的有机电致发光器件
TW201843148A (zh) * 2017-05-08 2018-12-16 國立大學法人京都大學 化合物、發光材料及有機發光元件
WO2018216820A1 (en) 2017-05-23 2018-11-29 Kyushu University, National University Corporation Compound, light-emitting lifetime lengthening agent, use of n-type compound, film and light-emitting device
KR20230067706A (ko) 2017-07-06 2023-05-16 가부시키가이샤 큐럭스 유기 발광 소자
JPWO2019039174A1 (ja) 2017-08-24 2020-10-01 国立大学法人九州大学 ホスト材料、膜および有機発光素子
US11594690B2 (en) 2017-12-14 2023-02-28 Guangzhou Chinaray Optoelectronic Materials Ltd. Organometallic complex, and polymer, mixture and formulation comprising same, and use thereof in electronic device
US11404651B2 (en) 2017-12-14 2022-08-02 Guangzhou Chinaray Optoelectronic Materials Ltd. Transition metal complex material and application thereof in electronic devices
WO2019114608A1 (zh) 2017-12-14 2019-06-20 广州华睿光电材料有限公司 过渡金属配合物、聚合物、混合物、组合物及其应用
CN111315721B (zh) 2017-12-21 2023-06-06 广州华睿光电材料有限公司 有机混合物及其在有机电子器件中的应用
WO2019191454A1 (en) * 2018-03-28 2019-10-03 Kyulux, Inc. Composition of matter for use organic light-emitting diodes
US12029116B2 (en) 2018-10-09 2024-07-02 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
EP3680239A1 (en) * 2019-01-10 2020-07-15 Cynora Gmbh Phenazine compounds for optoelectronic devices
CN113646315A (zh) 2019-04-11 2021-11-12 默克专利有限公司 用于有机电致发光器件的材料
US11355713B2 (en) 2019-06-24 2022-06-07 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Hole transport material, manufacturing method thereof, and electroluminescent device thereof
CN110299460B (zh) * 2019-06-24 2020-11-24 武汉华星光电半导体显示技术有限公司 一种空穴传输材料、制备方法及电致发光器件
CN110628022B (zh) * 2019-09-25 2021-06-22 福州大学 一种含吩嗪基团有机聚合物及其制备方法和其对苄胺氧化偶联反应的催化应用
WO2021089450A1 (en) 2019-11-04 2021-05-14 Merck Patent Gmbh Materials for organic electroluminescent devices
TW202134252A (zh) 2019-11-12 2021-09-16 德商麥克專利有限公司 有機電致發光裝置用材料
US20230119624A1 (en) 2020-02-04 2023-04-20 Kyulux, Inc. Composition, film, organic light emitting element, method for providing light emitting composition, and program
US20230337537A1 (en) 2020-03-23 2023-10-19 Merck Patent Gmbh Materials for organic electroluminescent devices
KR20210136224A (ko) 2020-05-06 2021-11-17 삼성디스플레이 주식회사 발광 소자 및 이를 포함하는 전자 장치
US20230210000A1 (en) 2020-05-22 2023-06-29 Kyulux, Inc. Compound, light emitting material, and light emitting device
JP2022027733A (ja) 2020-07-31 2022-02-14 株式会社Kyulux 化合物、発光材料および発光素子
KR20230142466A (ko) 2021-02-04 2023-10-11 가부시키가이샤 큐럭스 화합물, 발광 재료 및 유기 발광 소자
JP2022178366A (ja) 2021-05-20 2022-12-02 株式会社Kyulux 有機発光素子
EP4362120A1 (en) 2021-06-23 2024-05-01 Kyulux, Inc. Organic light-emitting element and film
JP7222159B2 (ja) 2021-06-23 2023-02-15 株式会社Kyulux 化合物、発光材料および有機発光素子
EP4369886A1 (en) 2021-07-06 2024-05-15 Kyulux, Inc. Organic light-emitting element and design method therefor
KR20240068663A (ko) 2021-09-28 2024-05-17 가부시키가이샤 큐럭스 화합물, 조성물, 호스트 재료, 전자 장벽 재료 및 유기 발광 소자
TW202334160A (zh) 2021-11-19 2023-09-01 日商九州有機光材股份有限公司 化合物、發光材料及發光元件
WO2024105066A1 (en) 2022-11-17 2024-05-23 Merck Patent Gmbh Materials for organic electroluminescent devices

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193952A (ja) * 2000-12-25 2002-07-10 Fuji Photo Film Co Ltd 新規含窒素へテロ環化合物、発光素子材料およびそれらを使用した発光素子
US6869699B2 (en) 2003-03-18 2005-03-22 Eastman Kodak Company P-type materials and mixtures for electronic devices
JP2005306862A (ja) * 2004-03-25 2005-11-04 Semiconductor Energy Lab Co Ltd トリアジン誘導体およびそれを含む発光素子、発光装置
JP2010045034A (ja) 2008-08-18 2010-02-25 Samsung Mobile Display Co Ltd 光効率改善層を具備した有機発光素子
WO2011000455A1 (de) * 2009-06-30 2011-01-06 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011070963A1 (ja) * 2009-12-07 2011-06-16 新日鐵化学株式会社 有機発光材料及び有機発光素子
WO2012050002A1 (ja) * 2010-10-13 2012-04-19 新日鐵化学株式会社 含窒素芳香族化合物、有機半導体材料及び有機電子デバイス
JP2012116784A (ja) * 2010-11-30 2012-06-21 Idemitsu Kosan Co Ltd 縮合多環化合物、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
WO2012133188A1 (ja) * 2011-03-25 2012-10-04 出光興産株式会社 有機エレクトロルミネッセンス素子
JP2012193352A (ja) * 2011-02-28 2012-10-11 Kyushu Univ 遅延蛍光材料および有機エレクトロルミネッセンス素子
WO2012149999A1 (de) * 2011-05-05 2012-11-08 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen
JP5163837B2 (ja) * 2011-01-11 2013-03-13 三菱化学株式会社 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7015324B2 (en) 2004-03-25 2006-03-21 Semiconductor Energy Laboratory Co., Ltd. Triazine derivative and light emitting element and light emitting device including the same
JP5609024B2 (ja) * 2008-06-30 2014-10-22 住友化学株式会社 フェノキサジン系高分子化合物及びそれを用いた発光素子
KR101741415B1 (ko) * 2009-04-29 2017-05-30 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
WO2012150001A1 (de) 2011-05-05 2012-11-08 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002193952A (ja) * 2000-12-25 2002-07-10 Fuji Photo Film Co Ltd 新規含窒素へテロ環化合物、発光素子材料およびそれらを使用した発光素子
US6869699B2 (en) 2003-03-18 2005-03-22 Eastman Kodak Company P-type materials and mixtures for electronic devices
JP2005306862A (ja) * 2004-03-25 2005-11-04 Semiconductor Energy Lab Co Ltd トリアジン誘導体およびそれを含む発光素子、発光装置
JP2010045034A (ja) 2008-08-18 2010-02-25 Samsung Mobile Display Co Ltd 光効率改善層を具備した有機発光素子
WO2011000455A1 (de) * 2009-06-30 2011-01-06 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011070963A1 (ja) * 2009-12-07 2011-06-16 新日鐵化学株式会社 有機発光材料及び有機発光素子
WO2012050002A1 (ja) * 2010-10-13 2012-04-19 新日鐵化学株式会社 含窒素芳香族化合物、有機半導体材料及び有機電子デバイス
JP2012116784A (ja) * 2010-11-30 2012-06-21 Idemitsu Kosan Co Ltd 縮合多環化合物、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
JP5163837B2 (ja) * 2011-01-11 2013-03-13 三菱化学株式会社 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
JP2012193352A (ja) * 2011-02-28 2012-10-11 Kyushu Univ 遅延蛍光材料および有機エレクトロルミネッセンス素子
WO2012133188A1 (ja) * 2011-03-25 2012-10-04 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2012149999A1 (de) * 2011-05-05 2012-11-08 Merck Patent Gmbh Verbindungen für elektronische vorrichtungen

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ENDO, A. ET AL.: "Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes", APPLIED PHYSICS LETTERS, vol. 98, no. 8, 2011, pages 083302/1 - 083302/3, XP012140060 *
TANAKA, H. ET AL.: "Efficient green thermally activated delayed fluorescence (TADF) from a phenoxazine-triphenyltriazine", CHEMICAL COMMUNICATIONS, vol. 48, no. 93, October 2012 (2012-10-01), pages 11392 - 11394, XP055115819 *
WANG, Y. ET AL.: "Optical limiting properties and ultrafast dynamics of six-branched styryl derivatives based on 1,3,5-triazine", JOURNAL OF APPLIED PHYSICS, vol. 110, no. 3, 2011, pages 033518/ 1 - 033518/10, XP012154045 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160028025A1 (en) * 2013-03-18 2016-01-28 Idemitsu Kosan Co., Ltd. Light-emitting device
US11730052B2 (en) * 2013-03-18 2023-08-15 Idemitsu Kosan Co., Ltd. Light-emitting device
JPWO2014189122A1 (ja) * 2013-05-24 2017-02-23 国立大学法人九州大学 化合物、発光材料および有機発光素子
WO2014189122A1 (ja) * 2013-05-24 2014-11-27 国立大学法人九州大学 化合物、発光材料および有機発光素子
US10050215B2 (en) 2014-02-28 2018-08-14 Kyulux, Inc. Light-emitting material, organic light-emitting device, and compound
CN106062126A (zh) * 2014-02-28 2016-10-26 九州有机光材股份有限公司 发光材料、有机发光元件及化合物
US10734587B2 (en) * 2014-03-13 2020-08-04 Merck Patent Gmbh Formulations of luminescent compounds
JP2016037490A (ja) * 2014-08-11 2016-03-22 東ソー株式会社 トリアジン化合物、その製造方法、およびその用途
EP3246373A1 (de) 2014-09-17 2017-11-22 cynora GmbH Organische moleküle zur verwendung als emitter
WO2016042070A1 (de) 2014-09-17 2016-03-24 Cynora Gmbh Organische moleküle zur verwendung als emitter
US10388888B2 (en) 2014-12-29 2019-08-20 University Court Of The University Of St Andrews Light emitting electrochemical cells and compounds
US11437582B2 (en) * 2015-06-16 2022-09-06 Kunshan Go-Visionox Opto-Electronics Co., Ltd. Organic electroluminescent device and manufacturing method thereof
WO2017056052A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
WO2017056055A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
EP3150604A1 (en) 2015-10-01 2017-04-05 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
US10686139B2 (en) 2016-05-26 2020-06-16 Samsung Display Co., Ltd. Nitrogen-containing compound and organic electroluminescence device including the same
US10734589B2 (en) 2016-08-17 2020-08-04 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US20200358003A1 (en) 2016-08-17 2020-11-12 Semiconductor Energy Laboratory Co., Ltd. Organic Compound, Light-Emitting Element, Light-Emitting Device, Electronic Device and Lighting Device
US11121326B2 (en) 2016-08-17 2021-09-14 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device and lighting device
US11174427B2 (en) 2016-12-01 2021-11-16 Samsung Display Co., Ltd. Aromatic compound and organic electroluminescence device including the same
WO2018192227A1 (zh) * 2017-04-20 2018-10-25 江苏三月光电科技有限公司 一种以三嗪和苯并咪唑为核心的有机化合物及其在有机电致发光器件上的应用
US10882850B2 (en) 2017-04-20 2021-01-05 Jiangsu Sunera Technology Co., Ltd Organic compound with triazine and benzimidazole as core and application thereof in organic electroluminescent device
US11462696B2 (en) 2018-01-19 2022-10-04 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device

Also Published As

Publication number Publication date
US20150041784A1 (en) 2015-02-12
EP2808323A1 (en) 2014-12-03
TW201350558A (zh) 2013-12-16
US9660199B2 (en) 2017-05-23
KR20150009512A (ko) 2015-01-26
JP2013256490A (ja) 2013-12-26
CN104136430A (zh) 2014-11-05
JP5594750B2 (ja) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5594750B2 (ja) 化合物、発光材料および有機発光素子
JP7486238B2 (ja) 化合物、発光材料および発光素子
JP6277182B2 (ja) 化合物、発光材料および有機発光素子
JP6318155B2 (ja) 化合物、発光材料および有機発光素子
JP6263524B2 (ja) 化合物、発光材料および有機発光素子
JP5679496B2 (ja) 有機発光素子ならびにそれに用いる遅延蛍光材料および化合物
JP6225111B2 (ja) 発光材料、化合物、およびそれらを用いた有機発光素子
JP6293417B2 (ja) 化合物、発光材料および有機発光素子
JP6367189B2 (ja) 発光材料、有機発光素子および化合物
JP5366106B1 (ja) 有機発光素子ならびにそれに用いる発光材料および化合物
JP6326050B2 (ja) 化合物、発光材料および有機発光素子
WO2013154064A1 (ja) 有機発光素子ならびにそれに用いる発光材料および化合物
WO2015080183A1 (ja) 発光材料、有機発光素子および化合物
WO2013161437A1 (ja) 発光材料および有機発光素子
JP2014009352A (ja) 発光材料、化合物および有機発光素子
JP2017222623A (ja) 化合物および有機発光素子
WO2014126076A1 (ja) 化合物、発光材料および有機発光素子
JP6249151B2 (ja) 発光材料およびそれを用いた有機発光素子
JP2018111751A (ja) 発光材料、化合物および有機発光素子
JP2016084283A (ja) 化合物、発光材料および有機発光素子
JP2016084284A (ja) 化合物、発光材料および有機発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790074

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147008613

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14379567

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013790074

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013790074

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE