WO2013151197A1 - 규소 화합물과 고분자 전해질을 이용한 이차전지 및 이의 제조방법 - Google Patents

규소 화합물과 고분자 전해질을 이용한 이차전지 및 이의 제조방법 Download PDF

Info

Publication number
WO2013151197A1
WO2013151197A1 PCT/KR2012/002655 KR2012002655W WO2013151197A1 WO 2013151197 A1 WO2013151197 A1 WO 2013151197A1 KR 2012002655 W KR2012002655 W KR 2012002655W WO 2013151197 A1 WO2013151197 A1 WO 2013151197A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
positive electrode
negative electrode
silicon compound
silicon
Prior art date
Application number
PCT/KR2012/002655
Other languages
English (en)
French (fr)
Inventor
변기택
홍지준
Original Assignee
주식회사 루트제이제이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 루트제이제이 filed Critical 주식회사 루트제이제이
Publication of WO2013151197A1 publication Critical patent/WO2013151197A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0407Methods of deposition of the material by coating on an electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery using a silicon compound and a polymer electrolyte, and a method of manufacturing the same. More specifically, a silicon compound, which is a powdery sintered body, is used as a cathode and an anode material, and a hydrogen ion conductive polymer impregnated with an ionic liquid is used. It relates to a secondary battery provided with an electrolyte separator and a method of manufacturing the same.
  • a lithium battery uses a lithium compound as a positive electrode and an organic solvent as an electrolyte, so it is difficult to secure safety at high temperatures, is not environmentally friendly, and the material is very expensive.
  • a disadvantage that causes environmental pollution.
  • the manufacturing cost is greatly reduced compared to lithium, and even if the battery is buried in the ground, it is very environmentally friendly and does not generate environmental pollutants.
  • the application of the polymer electrolyte to the battery is a simple battery manufacturing process, it is possible to manufacture a very safe battery even at high temperature, and there is an advantage that can produce a high energy density type battery.
  • Japanese Patent No. 4685192
  • the Japanese patent includes many disadvantages, and thus, there are disadvantages in that battery performance is difficult to manifest and costly to manufacture. That is, the disadvantages of the patent are largely in the electrode manufacturing process and the solid electrolyte production.
  • the Japanese patent was prepared by vacuum depositing a silicon compound as an electrode material during electrode production. This requires an expensive vacuum equipment rather than a wet slurry coating method has a high cost and most difficult electrode thickness control difficult.
  • the vacuum deposition method has a fatal disadvantage that it is difficult to penetrate ions into the electrode, so that when the electrode is thick from the thin film to the thick film, the output characteristic of the electrode is rapidly decreased.
  • the above patent has a disadvantage that the ion conductivity of the solid electrolyte is very low and the interface resistance between the electrode and the solid electrolyte is very high, so that the output characteristics cannot be expected at room temperature. For the reasons described above, such a battery has not been practically used industrially.
  • an object of the present invention is to provide a high energy density secondary battery employing a silicon compound, which is a powdery sintered body, as a positive electrode and a negative electrode and having an ionic polymer electrolyte.
  • Another problem to be solved by the present invention is a solution wet coating method that greatly improves the shortcomings of the vacuum deposition method, and has a high energy and high output characteristics that greatly improved the interface characteristics of the electrode and the polymer electrolyte separator using an ionic liquid It is to provide a method for manufacturing a secondary battery.
  • a secondary battery which is a polymer electrolyte separator made of a conductive polymer, is provided.
  • the silicon compound may be selected from the group consisting of silicon carbide, silicon nitride, silicon oxide, and single crystal silicon.
  • the binder may be a hydrogen ion conductive polymer.
  • the ionic liquid is formed by the combination between the positive and negative ions, the cations are alkyl ammonium, and imidazolium, pyrrole iridium, at least one element selected from the group consisting of such as piperidinium, wherein the anion is BF 4 -, PF 6 -, SbF 6 -, NO 3 -, CF 3 SO 3 -, (CF 3 SO 2) 2 N -, (C 2 F 5 SO 2) 2 N -, (CF 3 SO 2) 3 C -, CF 3 CO 2 -, C 3 F 7 CO 2 -, CH 3 CO 2 -, and (CN) 2 N - may be at least one selected from the group consisting of.
  • Preparing a positive electrode by forming a positive electrode active material layer on a current collector using a positive electrode forming slurry including a positive electrode active material, a binder, and a solvent;
  • Preparing a negative electrode by forming a negative electrode active material layer on a current collector using a negative electrode forming slurry including a negative electrode active material, a binder, and a solvent;
  • anode and the cathode each include a silicon compound and a binder which are powdery sintered bodies, and the separator is an electrolyte separator made of a hydrogen ion conductive polymer.
  • the secondary battery by using a silicon compound, which is a powdery sintered body, as an electrode material, there is an advantage in that the secondary battery can be manufactured in an environment-friendly and solution process.
  • the interfacial resistance between the electrode and the solid polymer electrolyte is significantly low, thereby providing an excellent output characteristic and greatly improving the safety of the battery even at a high temperature.
  • the present invention by using the solution wet coating process in manufacturing the electrode, it is possible to increase the density by controlling the thickness of the electrode as compared to the vacuum deposition process and has a great advantage in cost reduction.
  • FIG. 1 is a SEM image of the surface of a positive electrode (a) and a negative electrode (b) of a secondary battery according to an embodiment of the present invention.
  • FIG. 2 shows a discharge curve according to the rate of the secondary battery according to an embodiment of the present invention.
  • the silicon compound is formed of an electrode material such as a positive electrode and a negative electrode, manufacturing cost is greatly reduced compared to lithium used as an electrode material of a conventional lithium secondary battery, and it is very friendly to the environment, causing environmental pollution. There is an advantage that does not.
  • the said silicon compound consists of a powdery sintered compact.
  • the electrode formed by simply vacuum deposition using a silicon compound is composed of only a single crystal of the silicon compound is limited that the filler or binder is mixed in order to impart additional properties.
  • a multilayer electrode active material layer can be formed, thereby increasing the packing density of the electrode active material. As a result, the capacity per unit volume of the battery can be increased.
  • the sintered compact of the silicon compound is mixed with a silicon compound alone or with a silicon compound and an organic compound which generates carbon, nitrogen or the like by heating, which is heated to 1,000 ° C. in an inert atmosphere such as argon gas and allowed to cool to room temperature, Thereafter, the obtained mass may be pulverized with a ball mill in an inert atmosphere to prepare a powder having a predetermined average particle diameter.
  • a mixture of the silicon compound and the organic compound and the like may be cured and a mixed solid may be prepared.
  • a method of such hardening the method of bridge
  • mixing for obtaining the sintered compact of the silicon compound known mixing means, for example, a mixer, a planetary ball mill, or the like is used. Moreover, as mixing time, 10 to 30 hours are preferable and 16 to 24 hours are more preferable. From the point of obtaining a high purity silicon compound sintered compact, the synthetic resin which does not contain a metal as much as possible can be used as a material, such as a mixer and a planetary ball mill.
  • the mixed solid material can be heated for the purpose of improving handleability, removing volatile gas or water, and the like.
  • the heating is preferably performed for 30 to 120 minutes at 650 to 1,000 ° C in a non-oxidizing atmosphere such as nitrogen or argon.
  • the mixture (or mixed solids) is fired in a non-oxidizing atmosphere, and the conditions such as firing time and firing temperature are determined by the particle size of the sintered body powder of the desired silicon compound. Since it is different, although it is not limited to specific conditions, In order to make purity of the sintered compact of the silicon compound obtained, it can carry out at 1,350-2,100 degreeC, or 1,600-2,000 degreeC in non-oxidizing atmospheres, such as argon, Furthermore, it is non-oxidizing property Heat treatment may be performed at 2,000 to 2,100 ° C. for 5 to 20 minutes in an atmosphere.
  • silicon compounds may be selected from the group consisting of silicon carbide, silicon nitride, silicon oxide, and single crystal silicon.
  • An organic compound can be used.
  • examples of the organic compound include monomers and prepolymers of resins such as phenol resins, furan resins, polyimides, polyurethanes, and polyvinyl alcohols, and liquid organic compounds such as cellulose, sucrose, pitch, and tar. Can be. These organic compounds may be used individually by 1 type, and may use 2 or more types together.
  • any compound that generates nitrogen by heating can be used without limitation, for example, a polyimide resin and its precursor, hexamethylenetramine, ammonia, Various amines, such as triethylamine, are mentioned.
  • a compound based on SiC which is the most stable of silicon carbide
  • a compound based on Si 3 N 4 which is the most stable of silicon nitride
  • silicon nitride is Si 2 N 3 which is next stable by changing silicon from tetravalent to trivalent and nitrogen from trivalent to divalent from the most stable Si 3 N 4 .
  • the secondary battery made as above will have a charge and discharge mechanism as shown in equations (1) and (2).
  • SiC and Si 3 N 4 When SiC and Si 3 N 4 are charged, they form holes of Si + and Si -on each surface, and the counter ions are charged while maintaining their electrochemical neutrality on the surface of the formed holes.
  • discharging reactions occur in opposite directions and the reactions are reciprocally circulated to complete a structure capable of charging and discharging energy.
  • the silicon compound in order to facilitate and smoothly promote charge and discharge associated with the production of silicon ions (Si + and Si ⁇ ), the silicon compound is not a complete crystal structure, but includes an amorphous structure. It is preferable that it is a form to make. Therefore, the silicon compound is crystallized to 60% or less containing amorphous can be applied.
  • the particle size of the silicon compound powder is not particularly limited, but a high-density sintered body is obtained, controlled to have an appropriate contact area with the electrolyte, and for the reason of handling of the powder, raw material price and uniformity during electrode production, for example, 20 ⁇ m.
  • a high-density sintered body is obtained, controlled to have an appropriate contact area with the electrolyte, and for the reason of handling of the powder, raw material price and uniformity during electrode production, for example, 20 ⁇ m.
  • powders of average particle diameters in the range of 20 nm to 20 ⁇ m, or in the range of 300 nm to 5 ⁇ m, may be used.
  • the silicon compound employed in the positive electrode and the negative electrode of the secondary battery according to an embodiment of the present invention has the form of a powdery sintered body as described above, for example, a binder, a solvent, and a conductive agent, if necessary, in such a silicon compound. After mixing and stirring the dispersing agent to prepare a slurry, it can be applied to the current collector and compressed to produce an electrode.
  • the binder included in each of the positive electrode and the negative electrode may be a hydrogen ion conductive polymer.
  • the hydrogen ion conductive polymer may be, for example, a polymer having one or more cation exchange groups selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, and derivatives thereof in the side chain.
  • polyacrylamide polymers examples include polyacrylamide polymers, benzimidazole polymers, polyimide polymers, polyetherimide polymers, polyphenylene sulfide polymers, polysulfone polymers, polyether sulfone polymers, and polyether ketones. It may be one or more selected from the group consisting of a polymer, a polyether-etherketone-based polymer and a polyphenylquinoxaline-based polymer, but is not limited thereto.
  • Nafion ® and poly (2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) which are trade names of polymers in which sulfonic acid groups are introduced into the skeleton of polytetrafluoroethylene are used alone or in combination thereof. Can be used.
  • the binder may further include a binder used for a positive electrode and / or a negative electrode of a conventional secondary battery, in addition to a hydrogen ion conductive polymer.
  • a binder used for a positive electrode and / or a negative electrode of a conventional secondary battery, in addition to a hydrogen ion conductive polymer.
  • examples of such a binder include vinylidene fluoride-hexafluoropropylene copolymer (PVDF- co-HFP), polyvinylidenefluoride, polyacrylonitrile, polymethylmethacrylate, and the like, various kinds of binder polymers may be used.
  • the solvent used to prepare the composition for forming the positive electrode and the negative electrode is not particularly limited as long as it is commonly used, for example, N-methyl-2-pyrrolidone (NMP, N-methyl pyrrolidone) may be applied.
  • NMP N-methyl-2-pyrrolidone
  • the content of the binder may be 2 to 20 parts by weight, or 3 to 10 parts by weight with respect to 100 parts by weight of the silicon compound included in the positive electrode or the negative electrode, and when the content range is satisfied, the silicon compound is positive and negative electrodes In order to form a strong bond to each other to prevent the detachment during operation of the secondary battery, and also serves as a bridge (bridge) between the electrolyte and the positive electrode or the negative electrode to significantly improve the transport and passage characteristics of hydrogen ions. Can be.
  • the positive electrode and the negative electrode may each independently include a conductive agent.
  • conductive agents include carbon black, super-P, acetylene black, fine graphite powder, carbon nanotubes (CNT), whiskers, carbon fibers, and vapor grown carbon fibers (VGCF). At least one selected from the group consisting of) can be used.
  • the content of the conductive agent may be 1 to 20 parts by weight, or 3 to 10 parts by weight with respect to 100 parts by weight of the silicon compound contained in the positive electrode or the negative electrode, and when the content range is satisfied, the effect of the addition of the conductive material is exerted.
  • any electron conductor that does not adversely affect the battery configured can be used.
  • the current collector for positive electrode in addition to aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer, conductive glass, etc.
  • the surface of aluminum or copper may be carbon, for the purpose of improving adhesion, conductivity, oxidation resistance, and the like. It is possible to use the thing processed with nickel, titanium, silver, etc.
  • the negative electrode current collector copper, stainless steel, nickel, aluminum, titanium, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., and other surfaces such as copper for the purpose of improving adhesion, conductivity and oxidation resistance. It is possible to use those treated with carbon, nickel, titanium or silver.
  • the separator of the present invention is a polymer electrolyte separator composed of a hydrogen ion conductive polymer, and serves as a separator for separating the positive electrode and the negative electrode, while providing a passage for ions, and during long-term repetitive operation at a high temperature of 80 ° C. or higher. It should not cause any degradation in performance and has excellent thermal, physical and chemical stability even in high temperature and strong acid environment.
  • the hydrogen ion conductive polymer may be used without limitation as long as it is applicable as the hydrogen ion conductive polymer described in the binder for forming the anode and the cathode. That is, polyacrylamide-based polymers, benzimidazole-based polymers, polyimide-based polymers, polyetherimide-based polymers, and polyphenylene sulfides, including Nafion-based polymers having sulfonic acid groups introduced into the backbone of polytetrafluoroethylene.
  • One or more cation exchanger-introduced ionomer-type hydrocarbon polymers selected from the group consisting of derivatives may be applied, and these may be used alone or in combination of two or more thereof.
  • polytetrafluoroethylene having a sulfonic acid group introduced therein, such as Nafion is added to the total weight of the membrane in order to improve ion conductivity and mechanical properties of the polymer electrolyte separator. It may contain more than%. Less than 1% does not affect the improvement of mechanical properties and ion conductivity.
  • an ionic liquid is used as the nonaqueous electrolyte of the secondary battery according to the exemplary embodiment of the present invention.
  • the ionic liquids are ionic salts or molten salts consisting of cations and anions.
  • An ionic compound composed of a cation and a non-metal anion, such as salt, is usually dissolved at a high temperature of 800 ° C. or higher, whereas an ionic salt existing as a liquid at a temperature of 100 ° C. or lower is called an ionic liquid.
  • the ionic liquid present as a liquid at room temperature is referred to as room temperature ionic liquid (RTIL).
  • Ionic liquids are nonvolatile, nontoxic, nonflammable, have excellent thermal stability and ionic conductivity.
  • inorganic and organometallic compounds are well dissolved and have a unique characteristic of being present as a liquid in a wide temperature range, and thus are widely applied in a wide range of chemical fields such as catalysts, separations, and electrochemistry.
  • the secondary battery according to one embodiment of the present invention contains such an ionic liquid, the high temperature stability is greatly improved, and since the ionic liquid has excellent thermal stability and excellent ionic conductivity, the secondary battery obtained is stable. It becomes excellent, has high performance even at high rates of charge and discharge, and can obtain a battery of high energy density and high voltage. That is, the ionic liquid is absorbed by the polymer chain and acts as a plasticizer without degrading mechanical properties by the intermolecular forces of the ionic liquid and the polymer main chain, thereby making the polymer film flexible and increasing ion carriers to increase ion conductivity. It greatly improves the action. Moreover, this has the advantage of significantly reducing the interfacial resistance between the polymer film and the electrode to enable high output characteristics.
  • Such ionic liquids are formed from a combination of anions and cations.
  • the anions are BF 4 -, PF 6 -, SbF 6 -, NO 3 -, CF 3 SO 3 -, (CF 3 SO 2) 2 N -, (C 2 F 5 SO 2) 2 N -, (CF 3 SO 2) 3 C -, CF 3 CO 2 -, C 3 F 7 CO 2 - , and the like -, CH 3 CO 2 -, (CN) 2 N.
  • the said anion can contain 2 or more types.
  • the anion is bis (perfluoroethylsulfonyl) imide, bis (trifluoromethylsulfonyl) imide, tris (trifluoromethylsulfonylmethide), trifluoromethanesulfonimide, Trifluoromethylsulfonimide, trifluoromethylsulfonate, tris (pentafluoroethyl) trifluoro phosphate, bis (trifluoromethylsulfonyl) imide, tetrafluoroborate, hexafluorophosphate, and It may be an anion of a compound selected from the group consisting of a combination of these.
  • the cation combined with the anion is not particularly limited, but may be a cation which forms an ionic liquid having a melting point of 50 ° C. or less. If the melting point exceeds 50 ° C., the resistance of the electrolyte separator rapidly increases, resulting in battery characteristic problems or discharge. This is because the capacity may be reduced.
  • any one of N, P, S, O, C, Si, or a compound containing two or more elements in the structure and having a chain structure or a five-membered or six-membered ring as a skeleton may be used. have.
  • cyclic structures such as five-membered rings and six-membered rings include furan, thiophene, pyrrole, pyridine, oxazole, isoxazole, and thiazole.
  • thiazole isothiazole, furazan, imidazole, pyrazole, pyrazine, pyrimidine, pyridazine, pyrrolidine ( heteromonocyclic compounds such as pyrrolidine and piperidine, benzofuran, isobenzofuran, indole, isoindole, indolizine, And condensed heterocyclic compounds such as carbazole.
  • a chain structure or a ring structure compound containing a nitrogen element is industrially inexpensive and has an advantage of being chemically and electrochemically stable.
  • the cation containing a nitrogen element include alkylammonium such as triethylammonium, imidazolium such as 1-ethyl-3-methyl imidazolium and 1-butyl-3-methyl imidazolium, and 1-methyl- And piperidinium such as pyrrolidinium such as 1-propyl pyrrolidinium and methyl propyl piperidinium.
  • the content of the ionic liquid may be about 0.05 to 30% by weight, or 0.1 to 5% by weight based on the total weight of the polymer electrolyte separator.
  • a positive electrode active material layer is formed on a current collector using a positive electrode forming slurry containing a positive electrode active material, a binder, and a solvent to prepare a positive electrode, and a negative electrode forming slurry including a negative electrode active material, a binder, and a solvent is used.
  • a negative electrode active material layer is formed on the current collector using a positive electrode forming slurry containing a positive electrode active material, a binder, and a solvent to prepare a positive electrode, and a negative electrode forming slurry including a negative electrode active material, a binder, and a solvent is used.
  • the positive electrode active material, the negative electrode active material, the binder, and the solvent used are as described above, and optionally, the slurry for forming a positive electrode and the slurry for forming a negative electrode may each independently further include a conductive agent.
  • a separator is inserted between the prepared positive and negative electrodes to prepare an electrode assembly.
  • an electrolyte separator made of a hydrogen ion conductive polymer is applied as described above. That is, the separator may be prepared by forming a film using a polymer capable of conducting hydrogen ions, and drying the film.
  • the prepared electrode assembly is placed in a case and an ionic liquid is injected. That is, a step of impregnating the ionic liquid in order to maximize the ionic conductivity and to reduce the interface resistance with the electrode in the dry solid separator prepared in the electrode assembly previously provided in the electrode assembly.
  • a secondary battery having an environmentally friendly and high energy density may be widely applied to various industrial fields, that is, a mobile communication device, an electric energy storage device, and an electric vehicle power source as an energy storage battery. .
  • Silicon carbide was used as the positive electrode active material and silicon nitride was used as the active material of the negative electrode.
  • Vapor-grown carbon fibers VGCF, Showa, Denko K.K., Japan
  • VGCF Vapor-grown carbon fibers
  • PAMPS poly (2-acrylamido-2-methyl-1-propanesulfonic acid)
  • NMP N-methyl-2-pyrrolidone
  • Nafion ® perfluorinated ion-exchange resin, Aldrich
  • PAMPS perfluorinated ion-exchange resin, Aldrich
  • 2 mL of the stirred solution was injected into a forming mold having a size of 3 cm x 3 cm, dried at room temperature for 72 hours, and vacuum dried at 40 ° C. for 24 hours to prepare a polymer electrolyte membrane having a thickness of 15 ⁇ m.
  • the finished positive and negative electrodes and the polymer electrolyte separator were fabricated into an aluminum pouch full cell in an argon glove box.
  • 30 ⁇ L of an ionic liquid of 1-ethyl-3-methyl imidazolium bis (trifluoromethane sulfonyl) imide EMITFSI, C-tri Co., Korea
  • the secondary battery was manufactured by sealing the outside of the battery stacked in the form of a cathode / polymer electrolyte separator / cathode using an aluminum pouch.
  • the discharge capacity of the secondary battery manufactured in Example was evaluated and shown in FIG. 2.
  • This value is about 30% higher than that of a conventional lithium ion battery, and the secondary battery manufactured in the embodiment of the present invention employs a silicon compound, which is a powdery sintered body, as an electrode material to form an electrode, thereby increasing energy density, and hydrogen ion.
  • a silicon compound which is a powdery sintered body
  • the ion conductivity is greatly improved, which is interpreted as a result showing high capacity characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

양극, 음극, 상기 양극과 음극 사이에 마련되는 분리막, 및 상기 분리막에 함침되는 이온성 액체를 구비하고, 상기 양극 및 음극이 각각 분말상의 소결체인 규소 화합물 및 바인더를 포함하고, 상기 분리막이 수소이온 전도성 고분자로 이루어진 고체 전해질 분리막인 이차전지, 및 상기 양극 및 음극을 습식 용액 코팅법으로 제조하는 이차전지의 제조방법이 제시된다.

Description

규소 화합물과 고분자 전해질을 이용한 이차전지 및 이의 제조방법
본 발명은 규소 화합물과 고분자 전해질을 이용한 이차전지 및 이의 제조방법에 관한 것으로, 보다 상세하게는 분말상의 소결체인 규소 화합물을 양극 및 음극 재료로 채용하고, 이온성 액체가 함침된 수소이온전도성 고분자를 전해질 분리막으로 구비한 이차전지 및 이의 제조방법에 관한 것이다.
본 출원은 2012년 4월 6일에 출원된 한국특허출원 제10-2012-0036184호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
최근, 정보 통신기기의 급속한 발전과 더불어 안전하고 환경에 친화적인 고에너지 밀도형 이차전지가 요구되고 있다. 대표적인 이차전지의 예로서 리튬전지는 리튬화합물을 양극으로 사용하고 유기용매를 전해질로 사용하기 때문에 고온에서 안전성 확보가 어렵고, 환경에 친화적이지 못할 뿐 아니라 소재가 매우 고가인 단점이 있다. 특히 환경적인 면에서 유기용매를 포함한 리튬전지를 폐기할 경우 환경오염을 유발하는 단점이 있다.
반면 규소 화합물을 전극소재로 하는 경우는 리튬에 비하여 제조 원가가 크게 감소되고, 전지를 지중에 매몰 처분해도 환경에 매우 친화적이어서 환경 오염분제가 발생하지 않는 장점이 있다. 여기에 고분자 전해질을 적용하면 전지 제조 공정이 간편해지고 고온에서도 매우 안전한 전지를 제조할 수 있고, 또한 높은 에너지 밀도형 전지를 제조 할 수 있는 장점이 있다.
이러한 배경을 바탕으로 하여 최근 규소화합물을 이차전지의 소재로 채용하려는 연구가 유일하게 일본 특허(제4685192호)에 나타나 있다. 상기의 일본 특허는 많은 단점을 포함하고 있어 현실적으로 전지 성능 발현이 어렵고 제조 비용이 많이 드는 단점이 있다. 즉 상기 특허의 단점으로는 크게 전극제조 공정과 고체전해질 제조에 있다. 이를 상세히 설명하면 상기 일본 특허는 전극제조시 전극물질인 규소화합물을 진공증착하여 제조하였다. 이는 습식 슬러리 코팅법 보다는 고가의 진공장비가 요구되어 고가의 비용이 들고 무엇 보다 전극 두께 조절이 어려운 단점이 있다. 또한 진공증착법은 전극에 이온의 침투가 어려워 전극이 박막에서 후막으로 두꺼워지면 전극의 출력 특성이 급격히 저하되는 치명적인 단점이 있다. 게다가 상기의 특허는 고체전해질의 이온전도도가 매우 낮고 전극과 고체전해질 사이의 계면저항이 매우 높아 상온에서 출력 특성을 기대할 수 없는 단점이 있다. 상기의 이유로 아직까지 이러한 전지가 산업적으로 실용화 되지 못하고 있는 실정이다.
따라서, 본 발명이 해결하고자 하는 과제는 분말상의 소결체인 규소 화합물을 양극 및 음극으로 채용하고 이온성 고분자 전해질을 구비한 고에너지밀도형 이차전지를 제공하는 것이다.
본 발명이 해결하고자 하는 다른 과제는 진공증착법의 단점을 크게 개선한 용액 습식 코팅법을 채용하고, 이온성 액체를 사용하여 전극과 고분자 전해질 분리막의 계면특성을 크게 개선한 고에너지 및 고출력 특성을 갖는 이차전지의 제조 방법을 제공하는 데 있다.
상기 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면,
양극, 음극, 상기 양극과 음극 사이에 마련되는 분리막, 및 상기 분리막에 함침되는 이온성 액체를 구비하고, 상기 양극 및 음극이 각각 분말상의 소결체인 규소 화합물 및 바인더를 포함하고, 상기 분리막이 수소이온 전도성 고분자로 이루어진 고분자 전해질 분리막인 이차전지가 제공된다.
상기 규소 화합물이 실리콘 카바이드, 실리콘 나이트라이드, 실리콘 옥사이드, 및 단결정 실리콘으로 이루어진 군으로부터 선택될 수 있다.
상기 바인더가 수소이온 전도성 고분자일 수 있다.
상기 이온성 액체가 양이온과 음이온 간의 조합으로 형성되며, 상기 양이온이 알킬암모늄, 이미다졸륨, 피롤리듐, 피페리디늄 등으로 이루어진 군에서 선택되는 1종 이상이고, 상기 음이온이 BF4 -, PF6 -, SbF6 -, NO3 -, CF3SO3 -, (CF3SO2)2N-, (C2F5SO2)2N-, (CF3SO2)3C-, CF3CO2 -, C3F7CO2 -, CH3CO2 -, 및 (CN)2N- 로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
또한, 본 발명의 다른 측면에 따르면,
양극 활물질, 바인더, 및 용매를 포함하는 양극 형성용 슬러리를 이용하여 집전체 상에 양극 활물질층을 형성하여 양극을 준비하는 단계;
음극 활물질, 바인더, 및 용매를 포함하는 음극 형성용 슬러리를 이용하여 집전체 상에 음극 활물질층을 형성하여 음극을 준비하는 단계;
양극과 음극 사이에 분리막을 삽입하여 전극 조립체를 준비하는 단계; 및
상기 전극 조립체를 케이스 안에 넣고, 이온성 액체를 주입하는 단계를 포함하고, 상기 양극 및 음극이 각각 분말상의 소결체인 규소 화합물 및 바인더를 포함하고, 상기 분리막이 수소이온 전도성 고분자로 이루어진 전해질 분리막인 이차전지의 제조방법이 제공된다.
따라서, 본 발명의 일 실시예에 따르면, 분말상의 소결체인 규소 화합물을 전극 재료로 사용함으로써 친환경적이고 용액공정이 가능한 이차전지를 제조할 수 있는 장점이 있다.
또한, 본 발명에서는 이온성 액체가 포함된 고분자 전해질을 사용함으로써 전극과 고체 고분자 전해질간의 계면저항이 현저히 낮아 우수한 출력 특성과 고온에서도 전지의 안전성을 크게 향상시키는 장점이 있다.
더욱이, 본 발명에서는 전극 제조시 용액 습식 코팅 공정을 사용함으로써 진공증착 공정에 비하여 전극의 두께 조절에 의한 고밀도화가 가능하고 비용절감에 큰 장점이 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 이차전지의 양극(a) 및 음극(b)의 표면 SEM 사진이다.
도 2는 본 발명의 일 실시예에 따른 이차전지의 율속에 따른 방전 곡선을 나타낸다.
이하, 본 발명을 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명함으로써, 본 발명을 상세히 설명한다.
본 발명의 일 측면에 따르면,
양극, 음극, 상기 양극과 음극 사이에 마련되는 분리막, 및 상기 분리막에 함침되는 이온성 액체를 구비하고, 상기 양극 및 음극이 각각 분말상의 소결체인 규소 화합물 및 바인더를 포함하고, 상기 분리막이 수소이온 전도성 고분자로 이루어진 고분자 전해질 분리막인 이차전지가 제공된다.
상기 규소 화합물은 전술한 바와 같이 양극 및 음극과 같은 전극소재로 하는 경우는 종래의 리튬 이차전지의 전극 재료로 사용되는 리튬에 비하여 제조 원가가 크게 감소되고, 환경에 매우 친화적이어서 환경 오염문제가 발생하지 않는 장점이 있다.
상기 규소 화합물은 분말상의 소결체로 이루어져 있다. 반면에, 규소 화합물을 이용하여 단순히 진공증착 방법으로 형성된 전극은 규소 화합물의 단결정만으로 이루어져 있어 추가적인 특성을 부여하기 위하여 충진제나 바인더 등이 혼입되는 것이 제한된다. 하지만, 본 발명의 일 실시예와 같이 전극 재료로서 규소 화합물을 분말상의 소결체의 형태로 습식 공정을 이용하여 전극을 제조하는 경우, 다층의 전극 활물질층의 형성이 가능하여, 전극활물질의 충전 밀도를 높게 할 수 있고, 그 결과, 전지의 단위 체적당의 용량을 증대시킬 수 있다.
상기 규소 화합물의 소결체는, 규소 화합물 단독, 또는 규소 화합물과 가열에 의하여 탄소, 질소 등을 발생하는 유기 화합물과 혼합하고, 이를 아르곤 가스 등의 불활성 분위기 중에서 1,000 ℃ 로 가열하고, 실온까지 방냉시키고, 이후 이렇게 얻어지는 덩어리를 불활성 분위기 중에서 볼 밀로 분쇄하여 소정의 평균 입경을 갖는 분말상으로 제조될 수 있다.
상기 규소 화합물의 소결체를 얻기 위한 혼합에 있어서는, 선택적으로 상기 규소 화합물 및 상기 유기 화합물을 보다 균질하게 혼합시킬 목적에서, 상기 규소 화합물 및 상기 유기 화합물 등의 혼합물을 경화시키고 혼합 고형물을 준비할 수도 있다. 이러한 경화의 방법으로서는, 가열에 의하여 가교하는 방법, 경화 촉매에 의하여 경화하는 방법, 전자선이나 방사선에 의한 방법을 들 수 있다.
상기 규소 화합물의 소결체를 얻기 위한 혼합에 있어서는, 공지의 혼합 수단, 예를 들면, 믹서(mixer), 유성 볼 밀(ball mill) 등이 사용된다. 또한 혼합 시간으로서는, 10 내지 30 시간이 바람직하고, 16 내지 24 시간이 보다 바람직하다. 고순도의 규소 화합물 소결체를 얻는 점으로부터, 상기 믹서(mixer), 유성 볼 밀(ballmill) 등의 재료로서는, 금속이 가능한 한 함유되어 있지 않은 합성수지가 사용될 수 있다.
상기 혼합 고형물은 취급성의 향상, 휘발 가스나 수분의 제거 등을 목적으로 하고, 가열할 수 있다. 그 가열은 질소 또는 아르곤 등의 비산화성 분위기속에서 650 내지 1,000 ℃에 있어서, 30 내지 120 분간 행해지는 것이 바람직하다.
상기 규소 화합물의 소결체를 얻기 위한 소성에 있어서는, 상기 혼합물(또는 혼합 고형물)을 비산화성 분위기속에서 소성하고, 이때 소성시간이나 소성 온도 등의 조건은, 희망하는 규소 화합물의 소결체 분말의 입경 등에 의하여 다르기 때문에, 특정 조건으로 한정되지 않으나, 아르곤 등의 비산화성 분위기속 1,350 내지 2,100 ℃, 또는 1,600 내지 2,000 ℃로 행할 수 있고, 또는 얻어지는 규소 화합물의 소결체의 순도를 보다 높게 하기 위해서는, 또한, 비산화성 분위기 속에서 2,000 내지 2,100 ℃로 5 내지 20 분간 가열 처리를 가할 수도 있다.
이러한 규소 화합물의 예로는 실리콘 카바이드, 실리콘 나이트라이드, 실리콘 옥사이드, 및 단결정 실리콘으로 이루어진 군으로부터 선택될 수 있다.
이때, 예를 들어, 실리콘 카바이드의 소결체 분말을 제조하기 위해서는, 가열에 의하여 탄소를 발생하는 유기 화합물로서는, 특별히 제한은 없고, 잔탄율이 높고, 촉매의 존재 및/또는 가열에 따라서, 중합·가교하는 유기 화합물을 사용할 수 있다. 특히, 예를 들면, 상기 유기 화합물로는 페놀 수지, 푸란 수지, 폴리이미드, 폴리우레탄, 폴리비닐 알코올 등의 수지의 모노머나 프리폴리머 등이나, 셀룰로오스, 자당, 피치, 타르 등의 액상 유기 화합물을 들 수 있다. 이러한 유기 화합물은 1종 단독으로 사용해도 좋고, 2종 이상을 병용해도 좋다.
또한, 실리콘 나이트라이드의 소결체 분말을 제조하는데 혼합하는 유기 화합물로서는, 가열에 의하여 질소를 발생하는 화합물이라면 제한 없이 사용될 수 있고, 예를 들면, 폴리이미드 수지 및 그 전구체, 헥사메틸렌트라민, 암모니아, 트리에틸아민 등의 각종 아민류를 들 수 있다.
본 발명의 일 실시예에 따른 이차전지는, 양극으로 실리콘 카바이드 중 가장 안정되어 있는 SiC에 의한 화합물을 채용할 수 있고, 음극에 있어서는 실리콘 나이트라이드 중 가장 안정되어 있는 Si3N4에 의한 화합물을 채용할 수 있다.
탄소보다 규소가 산화수가 변화하기 쉽고, 게다가 규소에 있어서 4가 다음으로 안정된 상태는 2가이기 때문에, 양극에 의한 충전 및 방전시에는, 이하와 같은 화학반응이 행하여지게 된다.
Figure PCTKR2012002655-appb-I000001
(1)
음극에 있어서는, 실리콘 나이트라이드는 가장 안정되어 있는 Si3N4로부터 규소가 4가에서 3가로 변화하고, 질소가 3가에서 2가로 변화하는 것에 의해서, 다음으로 안정되어 있는 Si2N3라고 하는 화합물 상태로 변화하여, 음극에 의한 충전 및 방전시에는 이하와 같은 화학식이 성립하게 된다.
Figure PCTKR2012002655-appb-I000002
(2)
위와 같이 만들어진 이차전지는 식 (1) 및 (2)와 같은 충·방전 메커니즘을 가지게 된다. SiC와 Si3N4는 충전이 되면 각각의 표면의 Si+와 Si-의 정공을 형성하게 되고 형성된 정공의 표면에 상대이온들이 전기화학적 중성을 유지하며 충전상태가 된다. 방전시에는 반대방향으로 반응이 발생하고 이 반응들이 가역적으로 순환됨에 따라서 에너지를 충·방전할 수 있는 구조가 완성된다.
또한, 상기 규소 화합물은 규소 이온(Si+ 및 Si-)의 생성을 수반하는 충방전을 용이하고 원활하게 추진하기 위해서는, 상기 규소 화합물이 완전한 결정 구조가 아니고, 비정질(非晶質) 구조를 포함하는 형태인 것이 바람직하다. 따라서, 상기 규소 화합물은 비결정질을 포함하는 60% 이하로 결정화된 것이 적용될 수 있다.
상기 규소 화합물 분말의 입경은 큰 제한이 없으나, 고밀도의 소결체를 얻고, 전해액과의 적절한 접촉 면적을 갖도록 제어하고, 전극 제조시에 분말의 취급성, 원료 가격과 균일성의 이유로, 예를 들면 20 ㎛ 이하, 또는 20 nm 내지 20 ㎛ 범위, 또는 300 nm 내지 5 ㎛ 범위의 평균 입경의 분말이 사용될 수 있다.
본 발명의 일 실시예에 따른 이차전지의 양극 및 음극에 채용되는 규소 화합물은 전술한 바와 같이 분말상의 소결체의 형태를 가짐으로써, 예를 들면, 이러한 규소 화합물에 바인더와 용매, 필요에 따라 도전제와 분산제를 혼합 및 교반하여 슬러리를 제조한 후, 이를 집전체에 도포하고 압축하여 전극을 제조할 수 있다.
이때, 상기 양극 및 음극에 각각 포함되는 바인더는 수소이온 전도성 고분자일 수 있다.
상기 수소이온 전도성 고분자로는 예를 들어, 측쇄에 설폰산기, 카르복실산기, 인산기, 포스포닌산기 및 이들의 유도체로 이루어진 군으로부터 선택되는 하나 이상의 양이온 교환기를 가지는 고분자일 수 있다.
이들의 구체적인 예로는, 폴리아크릴아미드계 고분자, 벤즈이미다졸계 고분자, 폴리이미드계 고분자, 폴리에테르이미드계 고분자, 폴리페닐렌설파이드계 고분자, 폴리술폰계 고분자, 폴리에테르술폰계 고분자, 폴리에테르케톤계 고분자, 폴리에테르-에테르케톤계 고분자 및 폴리페닐퀴녹살린계 고분자로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이들로 한정되는 것은 아니다.
이 중에서도, 특히 폴리테트라플루오르에틸렌의 골격에 술폰산기를 도입한 폴리머의 상품명인 Nafion®이나 폴리(2-아크릴아미도-2-메틸-1-프로판술로산) (PAMPS)를 단독 또는 이들을 적절히 혼합하여 사용할 수 있다.
상기 바인더로는 수소이온 전도성 고분자 이외에, 통상의 이차전지의 양극 및/또는 음극에 사용되는 바인더를 더 포함할 수 있으며, 이러한 바인더의 예로는 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate) 등, 다양한 종류의 바인더 고분자가 사용될 수 있다. 양극 및 음극 형성용 조성물을 제조하기 위해 사용되는 용매는 통상적으로 사용가능한 것이라면 특별히 제한되지 않으며, 예를 들면 N-메틸-2-피롤리돈(NMP, N-methyl pyrrolidone)이 적용될 수 있다.
이때, 상기 바인더의 함량은 상기 양극 또는 음극에 포함된 규소 화합물 100 중량부에 대하여 2 내지 20 중량부, 또는 3 내지 10 중량부일 수 있고, 이러한 함량 범위를 만족하는 경우, 규소 화합물이 양극 및 음극을 형성함에 있어서 서로 견고하게 결착할 수 있게 하여 이차전지의 작동 중에 탈리되는 현상을 방지하고, 또한 전해액과 양극 또는 음극과의 가교(bridge) 역할을 하여 수소 이온의 이송, 통과 특성을 크게 개선할 수 있다.
또한, 상기 양극 및 음극은 각각 독립적으로 도전제를 더 포함할 수 있다. 이러한 상기 도전제로는 카본블랙, 수퍼-P(Super-P), 아세틸렌 블랙, 미세 흑연 분말, 탄소나노튜브(CNT), 휘스커(whisker), 탄소섬유, 증기성장탄소섬유(VGCF, vapor grown carbon fiber)로 이루어진 군으로부터 선택된 1종 이상이 사용될 수 있다.
상기 도전제의 함량은 상기 양극 또는 음극에 포함된 규소 화합물 100 중량부에 대하여 1 내지 20 중량부, 또는 3 내지 10 중량부일 수 있고, 이러한 함량 범위를 만족하는 경우, 도전제 첨가의 효과가 발휘되고, 과도한 첨가로 전극의 고용량 특성의 저하시키는 문제를 방지할 수 있으며, 도전제가 적은 경우 활물질간의 충분한 전도도를 확보할 수 없어 내부저항이 증가하고 출력밀도가 저하될 수 있다.
상기 전극 활물질의 집전체로서는, 구성된 전지에 있어서 악영향을 미치지 않는 전자 전도체라면 무엇이든 사용가능하다. 예를 들면, 양극용 집전체로서는, 알루미늄, 티타늄, 스테인레스 스틸, 니켈, 소성 탄소, 도전성 고분자, 도전성 글래스 등외에도, 접착성, 도전성, 내산화성 향상을 목적으로 알루미늄이나 동 등의 표면을 카본, 니켈, 티타늄이나 은 등으로 처리한 것을 이용하는 것이 가능하다. 또한, 음극용 집전체로서는, 동, 스테인레스 스틸, 니켈, 알루미늄, 티타늄, 소성 탄소, 도전성 고분자, 도전성 글래스, Al-Cd 합금 등 외에, 접착성, 도전성, 내산화성 향상을 목적으로 동 등의 표면을 카본, 니켈, 티타늄이나 은 등으로 처리한 것을 이용하는 것이 가능하다.
본 발명의 분리막은 수소이온 전도성 고분자로 이루어진 고분자 전해질 분리막으로서, 양극과 음극을 분리하는 격리판의 역할을 수행함과 동시에, 이온의 이동 통로를 제공하고, 80 ℃ 이상의 고온 조건에서의 장기간 반복 운전 시에도 성능 저하가 발생되지 않아야 하며, 높은 온도와 강한 산성 환경에서도 열적, 물리적 및 화학적 안정성이 우수한 특징을 가지고 있다.
이러한 수소이온 전도성 고분자로는 상기 양극 및 음극 형성을 위한 바인더에서 기술한 수소이온 전도성 고분자라로서 적용 가능한 것이라면 제한 없이 사용될 수 있다. 즉, 폴리테트라플루오르에틸렌의 골격에 술폰산기를 도입한 나피온(Nafion)계 고분자를 비롯하여, 폴리아크릴아미드계 고분자, 벤즈이미다졸계 고분자, 폴리이미드계 고분자, 폴리에테르이미드계 고분자, 폴리페닐렌설파이드계 고분자, 폴리술폰계 고분자, 폴리에테르술폰계 고분자, 폴리에테르케톤계 고분자, 폴리에테르-에테르케톤계 고분자 및 폴리페닐퀴녹살린계 고분자에 술폰산기, 카르복실산기, 인산기, 포스포닌산기 및 이들의 유도체로 이루어진 군으로부터 선택되는 하나 이상의 양이온 교환기 도입된 이오노머(ionomer) 형태의 탄화수소계 고분자들이 적용될 수 있고, 이들은 각각 단독 또는 2종 이상을 혼합하여 사용할 수도 있다.
상기 고분자 전해질 분리막이 2종 이상의 수소이온 전도성 고분자를 포함하는 경우, 고분자 전해질 분리막의 이온전도도 향상과 기계적 물성 향상을 위하여 나피온과 같이 술폰산기가 도입된 폴리테트라플루오르에틸렌을 분리막 총 중량에 대하여 1 중량% 이상으로 포함할 수 있다. 1% 이하는 기계적 물성 향상과 이온전도도 향상에 영향을 주지 못한다.
본 발명의 일 실시예에 따른 이차전지의 비수 전해액으로는, 이온성 액체를 사용한다. 상기 이온성 액체는 양이온과 음이온으로 이루어져 있는 이온성 염(ionic salts 또는 molten salts)이다. 소금과 같이 양이온과 비금속 음이온으로 이루어진 이온성 화합물은 통상 800 ℃ 이상의 고온에서 녹는 것과 달리, 100 ℃ 이하의 온도에서 액체로 존재하는 이온성 염을 이온성 액체라고 한다. 특히, 상온에서 액체로 존재하는 이온성 액체를 상온 이온성 액체(room temperature ionic liquid, RTIL)라고 한다. 이온성 액체는 비휘발성, 무독성, 비가연성이며 우수한 열적 안정성, 이온 전도도를 지니고 있다. 또한, 극성이 커서 무기 및 유기 금속 화합물을 잘 용해시키고 넓은 온도 범위에서 액체로 존재하는 독특한 특성을 가지고 있어 촉매, 분리, 전기화학 등 광범위한 화학분야에 응용되고 있다.
본 발명의 일 실시예에 따른 이차전지는 이러한 이온성 액체를 함유하기 때문에, 고온 안정성이 크게 향상되고, 또한, 이온성 액체는 우수한 열적 안정성과 우수한 이온 전도도를 갖기 때문에, 얻어지는 이차전지는 안전성이 우수하게 되고, 고율의 충방전시에서도 높은 성능을 갖으며, 고에너지 밀도, 고전압의 전지를 얻을 수 있다. 즉, 상기 이온성 액체는 고분자 사슬에 흡수되어 이온성 액체와 고분자 주사슬의 분자간력에 의해 기계적 물성을 저하시키지 않고 가소제 역할을 하여 고분자 필름을 유연하게 할 뿐 아니라 이온 캐리어를 증가시켜 이온전도성을 크게 향상시키는 작용을 한다. 더욱이 이는 고분자 필름과 전극사이의 계면저항을 현저히 감소시켜 고출력 특성을 가능하게 하는 장점이 있다.
이러한 이온성 액체는 음이온과 양이온 간의 조합으로 형성된다.
상기 음이온으로는 BF4 -, PF6 -, SbF6 -, NO3 -, CF3SO3 -, (CF3SO2)2N-, (C2F5SO2)2N-, (CF3SO2)3C-, CF3CO2 -, C3F7CO2 -, CH3CO2 -, (CN)2N- 등을 들 수 있다. 상기 음이온은 2종류 이상을 포함할 수 있다.
구체적으로, 상기 음이온은 비스(퍼플루오로에틸설포닐)이미드, 비스(트리플루오로메틸설포닐)이미드, 트리스(트리플루오로메틸설포닐메타이드), 트리플루오로메탄설폰이미드, 트리플루오로메틸설폰이미드, 트리플루오로메틸설포네이트, 트리스(펜타플루오로에틸)트리플루오로 포스페이트, 비스(트리플루오로메틸설포닐)이미드, 테트라플루오로보레이트, 헥사플루오로포스페이트, 및 이들의 조합으로 이루어진 군에서 선택되는 화합물의 음이온일 수 있다.
이러한 음이온과 조합되는 양이온은 특별히 제한되지 않으나, 융점이 50 ℃ 이하인 이온 액체를 형성하는 양이온일 수 있으며, 이는 융점이 50 ℃를 넘으면, 전해질 분리막의 저항이 급격히 증가하여 전지특성문제가 일어나거나 방전용량이 저하될 수 있기 때문이다. 상기 양이온으로는, N, P, S, O, C, Si 중 어느 것, 또는 2종류 이상의 원소를 구조 안에 포함하고, 사슬구조 또는 5원환, 6원환의 환상구조를 골격으로 갖는 화합물이 사용될 수 있다. 5원환, 6원환 등의 환상구조의 구체적인 예로는, 퓨란(furan), 티오펜(thiophene), 피롤(pyrrole), 피리딘(pyridine), 옥사졸(oxazole), 이소옥사졸(isoxazole), 티아졸(thiazole), 이소티아졸(isothiazole), 퓨라잔(furazan), 이미다졸(imidazole), 피라졸(pyrazole), 피라진(pyrazine), 피리미딘(pyrimidine), 피리다진(pyridazine), 피롤리딘(pyrrolidine), 피페리딘(piperidine) 등의 헤테로 단일환(heteromonocyclic) 화합물과, 벤조퓨란(benzofuran), 이소벤조퓨란(isobenzofuran), 인돌(indole), 이소인돌(isoindole), 인돌진(indolizine), 카르바졸(carbazole) 등의 축합된 헤테로환(condensed heterocyclic) 화합물을 들 수 있다.
상기 양이온 중에는, 특히 질소 원소를 포함하는 사슬 구조 또는 고리 구조의 화합물이 공업적으로 싼 가격이며, 화학적, 전기화학적으로 안정하다는 장점이 있다. 질소 원소를 포함하는 양이온의 예로는, 트리에틸암모늄 등의 알킬암모늄과, 1-에틸-3-메틸 이미다졸륨, 1-부틸-3-메틸 이미다졸륨 등의 이미다졸륨, 1-메틸-1-프로필 피롤리듐(pyrrolidinium) 등의 피롤리듐, 메틸 프로필 피페리디늄 등의 피페리디늄을 들 수 있다.
이러한 이온성 액체의 함량은 고분자 전해질 분리막 전체 중량에 대하여 약 0.05 내지 30 중량%, 또는 0.1 내지 5 중량% 일 수 있다. 상기 이온성 액체의 함량 범위를 만족하는 경우, 이온전도도가 저하에 따른 저항이 너무 커지거나, 염의 과량에 따라 전지의 수명특성이 저하되는 단점을 방지할 수 있다.
본 발명의 일 측면에 따른 이차전지의 제조방법을 설명하면 다음과 같다.
먼저, 양극 활물질, 바인더, 및 용매를 포함하는 양극 형성용 슬러리를 이용하여 집전체 상에 양극 활물질층을 형성하여 양극을 준비하고, 음극 활물질, 바인더, 및 용매를 포함하는 음극 형성용 슬러리를 이용하여 집전체 상에 음극 활물질층을 형성하여 음극을 준비한다.
사용되는 양극 활물질, 음극 활물질, 바인더, 및 용매는 전술한 바와 같고, 이때, 선택적으로 양극 형성용 슬러리 및 음극 형성용 슬러리는 각각 독립적으로 도전제를 더 포함할 수 있다.
이후, 준비된 양극과 음극 사이에 분리막을 삽입하여 전극 조립체를 준비한다. 상기 분리막으로는 전술한 바와 같이 수소이온 전도성 고분자로 이루어진 전해질 분리막이 적용된다. 즉, 상기 분리막은 수소이온 전도가 가능한 고분자를 이용하여 필름을 형성하고, 이를 건조함으로써 제조될 수 있다.
다음으로, 상기 준비된 전극 조립체를 케이스 안에 넣고, 이온성 액체를 주입한다. 즉, 앞서 제조되어 전극 조립체에 구비된 완전 고체형의 건조된 분리막에 이온전도도를 극대화하고 전극과의 계면저항을 감소시키기 위하여 이온성 액체를 함침하는 단계가 포함된다.
이와 같이 제조되는 본 발명의 일 실시예에 따른, 환경 친화적이며 고에너지 밀도를 가진 이차전지는 에너지 저장 전지로서 다양한 산업분야, 즉 휴대통신기기, 전기에너지 저장장치 및 전기자동차 전원 등에 크게 적용될 수 있다.
이하, 본 발명의 구체적인 시험 실시예를 참고하여 본 발명을 더욱 상세하게 설명한다. 하기의 실시예는 본 발명을 보다 상세히 설명하기 위해 제공되는 것일 뿐, 이에 의해 본 발명의 기술적 범위가 한정되는 것은 아니다.
실시예
양극 활물질로는 실리콘 카바이드를 사용하였고 음극의 활물질로는 실리콘 나이트라이드를 사용하였다. 도전제로는 증기성장탄소섬유(VGCF, Showa, Denko K.K., Japan)을 사용하였고 바인더로는 폴리(2-아크릴아미도-2-메틸-1-프로판술폰산)(PAMPS, Aldrich)를 사용하였다. 전극 형성용 슬러리를 제조하기 위하여 N-메틸-2-피롤리돈(NMP, Aldrich)를 용매로 사용하여 NMP 4 mL에 PAMPS 50 mg을 넣고 3시간 동안 교반시켰다. 8 : 1의 중량비의 양극 활물질과 도전제, 및 음극 활물질과 도전제를 막자사발을 이용하여 잘 섞어준 후 각각 45 mg을 수득하여 NMP와 PAMPS가 교반된 용액에 넣어준 후 12 시간 이상 충분히 교반시켜주었다. 이렇게 교반된 양극 형성용 슬러리는 2 cm x 2 cm 크기의 알루미늄 집전체 위에 코팅하고, 음극 형성용 슬러리는 2.2 cm x 2.2 cm 크기의 구리 집전체 위에 적정량을 도포한 후 상온에서 36시간동안 건조 시킨 후 40℃에서 12시간 이상 충분히 진공 건조시켜 양극 및 음극을 제조하였다. 이렇게 얻어진 양극 및 음극을 전자현미경 사진으로 관찰하여 도 1에 각각 나타내었다. ((a) 실리콘 카바이드 양극, (b) 실리콘 나이트라이드 음극)
고분자 전해질 분리막을 제조하기 위해서 Nafion® (perfluorinated ion-exchange resin, Aldrich)과 PAMPS를 3:1의 중량비로 섞어 6시간 동안 교반시켜 주었다. 이렇게 교반된 용액 2 mL을 3 cm x 3 cm 크기의 형성틀 속에 주입한 후 상온에서 72 시간 건조 후 40℃에서 24시간 진공 건조시켜 주어 15 ㎛ 두께의 고분자 전해질 분리막을 준비하였다.
완성된 양극 및 음극과 고분자 전해질 분리막을 아르곤 상태의 글러브 박스 속에서 알루미늄 파우치 형태의 풀셀로 제작하였다. 고분자 전해질 분리막에는 1-에틸-3-메틸 이미다졸리움 비스(트리플루오로메탄 술포닐)이미드(EMITFSI, C-tri Co., Korea)의 이온성 액체 30 μL를 이용하여 고분자 전해질 분리막 내부까지 잘 스며들 수 있게 분사하였다. 이렇게 양극/고분자 전해질 분리막/음극의 형태로 적층된 전지를 알루미늄 파우치를 이용하여 외부를 봉합하여 이차전지를 제조하였다.
이차전지의 방전용량 특성 평가
실시예에서 제조된 이차전지의 방전용량 특성을 평가하여 도 2에 나타내었다.
도 2의 방전곡선을 참조하면, 4.5 V에서 3.5 V까지 우수한 방전특성을 나타냄을 확인할 수 있고, 0.1 C에서 312 mAh/g의 높은 방전 용량을 나타낸다.
이는 종래의 리튬이온전지보다 약 30% 이상 높은 값으로서, 본 발명의 실시예에서 제조된 이차전지가 분말상의 소결체인 규소 화합물을 전극 재료로 채용하여 전극을 형성함으로써 에너지 밀도를 증가시키고, 수소이온전도성 고분자를 고분자 전해질 분리막으로 구비함으로써, 이온전도성을 크게 향상시킴으로서, 고용량 특성을 나타낸 결과로 해석된다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (14)

  1. 양극, 음극, 상기 양극과 음극 사이에 마련되는 분리막, 및 상기 분리막에 함침되는 이온성 액체를 구비하고,
    상기 양극 및 음극이 각각 분말상의 소결체인 규소 화합물 및 바인더를 포함하고,
    상기 분리막이 수소이온 전도성 고분자로 이루어진 고체 전해질 분리막인 이차전지.
  2. 제1항에 있어서,
    상기 규소 화합물이 실리콘 카바이드, 실리콘 나이트라이드, 실리콘 옥사이드 및 단결정 실리콘으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 이차전지.
  3. 제1항에 있어서,
    상기 규소 화합물이 비결정질을 포함하는 60% 이하로 결정화된 것을 특징으로 하는 이차전지.
  4. 제1항에 있어서,
    상기 규소 화합물의 평균입경이 20 ㎛ 이하인 것을 특징으로 하는 이차전지.
  5. 제1항에 있어서,
    상기 양극 및 음극이 각각 독립적으로 도전제를 더 포함하는 것을 특징으로 하는 이차전지.
  6. 제5항에 있어서,
    상기 도전제가 카본블랙, 수퍼-P(Super-P), 아세틸렌 블랙, 미세 흑연 분말, 탄소나노튜브(CNT), 휘스커(whisker), 탄소섬유, 증기성장탄소섬유(VGCF, vapor grown carbon fiber)로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 이차전지.
  7. 제1항에 있어서,
    상기 바인더가 수소이온 전도성 고분자인 것을 특징으로 하는 이차전지.
  8. 제1항 또는 제7항에 있어서,
    상기 수소이온 전도성 고분자가 측쇄에 설폰산기, 카르복실산기, 인산기, 포스포닌산기 및 이들의 유도체로 이루어진 군으로부터 선택되는 하나 이상의 양이온 교환기를 가지는 고분자로 이루어진 군에서 선택된 1종 또는 2종 이상의 혼합물인 것을 특징으로 하는 이차전지.
  9. 제1항에 있어서,
    상기 이온성 액체가 양이온과 음이온 간의 조합으로 형성되며, 상기 양이온이 알킬암모늄, 이미다졸륨, 피롤리듐, 피페리디늄로 이루어진 군에서 선택되는 1종 이상이고, 상기 음이온이 BF4 -, PF6 -, SbF6 -, NO3 -, CF3SO3 -, (CF3SO2)2N-, (C2F5SO2)2N-, (CF3SO2)3C-, CF3CO2 -, C3F7CO2 -, CH3CO2 -, 및 (CN)2N-로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 이차전지.
  10. 제1항에 있어서,
    상기 이온성 액체의 함량이 고분자 전해질 분리막 전체 중량에 대하여 0.05 내지 30 중량%인 것을 특징으로 하는 이차전지.
  11. 양극 활물질, 바인더, 및 용매를 포함하는 양극 형성용 슬러리를 이용하여 집전체 상에 양극 활물질층을 형성하여 양극을 준비하는 단계;
    음극 활물질, 바인더, 및 용매를 포함하는 음극 형성용 슬러리를 이용하여 집전체 상에 음극 활물질층을 형성하여 음극을 준비하는 단계;
    양극과 음극 사이에 분리막을 삽입하여 전극 조립체를 준비하는 단계; 및
    상기 전극 조립체를 케이스 안에 넣고, 이온성 액체를 주입하는 단계를 포함하고,
    상기 양극 및 음극이 각각 분말상의 소결체인 규소 화합물 및 바인더를 포함하고, 상기 분리막이 수소이온 전도성 고분자로 이루어진 전해질 분리막인 이차전지의 제조방법.
  12. 제11항에 있어서,
    상기 규소 화합물이 실리콘 카바이드, 실리콘 나이트라이드, 실리콘 옥사이드, 및 단결정 실리콘으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 이차전지의 제조방법.
  13. 제11항에 있어서,
    상기 양극 및 음극이 각각 독립적으로 도전제를 더 포함하는 것을 특징으로 하는 이차전지의 제조방법.
  14. 제13항에 있어서,
    상기 도전제가 상기 양극 또는 음극에 포함된 규소 화합물 100 중량부에 대하여 1 내지 20 중량부의 함량으로 포함되는 것을 특징으로 하는 이차전지의 제조방법.
PCT/KR2012/002655 2012-04-06 2012-04-06 규소 화합물과 고분자 전해질을 이용한 이차전지 및 이의 제조방법 WO2013151197A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120036184A KR101366064B1 (ko) 2012-04-06 2012-04-06 규소 화합물과 고분자 전해질을 이용한 이차전지 및 이의 제조방법
KR10-2012-0036184 2012-04-06

Publications (1)

Publication Number Publication Date
WO2013151197A1 true WO2013151197A1 (ko) 2013-10-10

Family

ID=49300668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002655 WO2013151197A1 (ko) 2012-04-06 2012-04-06 규소 화합물과 고분자 전해질을 이용한 이차전지 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR101366064B1 (ko)
WO (1) WO2013151197A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160329556A1 (en) * 2013-12-30 2016-11-10 Samsung Electronics Co., Ltd. Production method for negative electrode active material for lithium secondary battery, and lithium secondary battery
CN109755580A (zh) * 2018-12-29 2019-05-14 桑德集团有限公司 一种锂硫电池粘结剂及其制备方法、正极材料

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3188300B1 (en) * 2014-07-22 2019-04-10 Rekrix Co., Ltd. Silicon secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109590A (ja) * 2001-09-28 2003-04-11 Mitsubishi Materials Corp 負極材料及びこれを用いた負極、並びにこの負極を用いた非水電解液リチウム二次電池及びリチウムイオンポリマー二次電池
KR20050057462A (ko) * 2002-09-20 2005-06-16 닛신보세키 가부시키 가이샤 고분자 전해질용 조성물 및 고분자 전해질 및 전기 이중층캐패시터 및 비수전해질 2차전지
JP4685192B1 (ja) * 2010-07-27 2011-05-18 富久代 市村 シリコン化合物による固体型二次電池及びその製造方法
JP4800440B1 (ja) * 2010-12-22 2011-10-26 富久代 市村 シリコン化合物による固体型二次電池及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109590A (ja) * 2001-09-28 2003-04-11 Mitsubishi Materials Corp 負極材料及びこれを用いた負極、並びにこの負極を用いた非水電解液リチウム二次電池及びリチウムイオンポリマー二次電池
KR20050057462A (ko) * 2002-09-20 2005-06-16 닛신보세키 가부시키 가이샤 고분자 전해질용 조성물 및 고분자 전해질 및 전기 이중층캐패시터 및 비수전해질 2차전지
JP4685192B1 (ja) * 2010-07-27 2011-05-18 富久代 市村 シリコン化合物による固体型二次電池及びその製造方法
JP4800440B1 (ja) * 2010-12-22 2011-10-26 富久代 市村 シリコン化合物による固体型二次電池及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160329556A1 (en) * 2013-12-30 2016-11-10 Samsung Electronics Co., Ltd. Production method for negative electrode active material for lithium secondary battery, and lithium secondary battery
CN106165157A (zh) * 2013-12-30 2016-11-23 三星电子株式会社 用于锂二次电池的负极活性材料的制造方法、和锂二次电池
US10050259B2 (en) * 2013-12-30 2018-08-14 Samsung Electronics Co., Ltd. Production method for negative electrode active material for lithium secondary battery, and lithium secondary battery
CN109755580A (zh) * 2018-12-29 2019-05-14 桑德集团有限公司 一种锂硫电池粘结剂及其制备方法、正极材料

Also Published As

Publication number Publication date
KR20130113749A (ko) 2013-10-16
KR101366064B1 (ko) 2014-02-21

Similar Documents

Publication Publication Date Title
Cao et al. Covalent organic framework for rechargeable batteries: mechanisms and properties of ionic conduction
Zhou et al. Wide working temperature range rechargeable lithium–sulfur batteries: a critical review
WO2019088672A1 (ko) 전기화학소자용 음극 활물질, 상기 음극 활물질을 포함하는 음극 및 이를 포함하는 전기화학소자
CN111244537A (zh) 复合固态电解质,固态电池及其制备方法
Irfan et al. Recent advances in high performance conducting solid polymer electrolytes for lithium-ion batteries
CN108933284B (zh) 一种柔性全固态锂离子二次电池及其制备方法
CN108701820A (zh) 表面涂布的正极活性材料粒子和包含其的二次电池
WO2018084449A2 (ko) 황-탄소 복합체 및 이를 포함하는 리튬-황 전지
US11217826B2 (en) Methods of making sulfide-impregnated solid-state battery
CN111261932B (zh) 离子型塑晶-聚合物-无机复合电解质膜、其制法及应用
WO2019216713A1 (ko) 안전성이 향상된 리튬 금속 이차전지 및 그를 포함하는 전지모듈
Ponnada et al. History and recent developments in divergent electrolytes towards high-efficiency lithium–sulfur batteries–a review
Xu et al. Double Crosslinked Polymer Electrolyte by C–S–C Group and Metal–Organic Framework for Solid‐State Lithium Batteries
JP2023522761A (ja) 固体電気化学セル、その調製方法およびその使用
Liu et al. Fiber-supported alumina separator for achieving high rate of high-temperature lithium-ion batteries
WO2022164107A1 (ko) 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
Zhang et al. Electrochemical construction of functional polymers and their application advances in lithium batteries
WO2020105981A1 (ko) 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
WO2013151197A1 (ko) 규소 화합물과 고분자 전해질을 이용한 이차전지 및 이의 제조방법
WO2019212313A1 (ko) 고분자계 고체 전해질을 포함하는 전극의 제조 방법 및 그 방법으로 제조된 전극
WO2017061807A1 (ko) 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀
Li et al. Constructing Rechargeable Solid‐State Lithium‐Oxygen Batteries
WO2021210814A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
Bristi et al. Ionic Conductivity, Na Plating–Stripping, and Battery Performance of Solid Polymer Na Ion Electrolyte Based on Poly (vinylidene fluoride) and Poly (vinyl pyrrolidone)
WO2022045852A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12873699

Country of ref document: EP

Kind code of ref document: A1