WO2013110607A1 - Verfahren zum herstellen eines elektrisch leitenden kontakts auf einer solarzelle - Google Patents

Verfahren zum herstellen eines elektrisch leitenden kontakts auf einer solarzelle Download PDF

Info

Publication number
WO2013110607A1
WO2013110607A1 PCT/EP2013/051143 EP2013051143W WO2013110607A1 WO 2013110607 A1 WO2013110607 A1 WO 2013110607A1 EP 2013051143 W EP2013051143 W EP 2013051143W WO 2013110607 A1 WO2013110607 A1 WO 2013110607A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
solar cell
connector
contact
region
Prior art date
Application number
PCT/EP2013/051143
Other languages
English (en)
French (fr)
Inventor
Marcel Martini
Stephan Huber
Stefan Meyer
Hilmar Von Campe
Sven BÖHME
Original Assignee
Schott Solar Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott Solar Ag filed Critical Schott Solar Ag
Priority to CN201380006350.2A priority Critical patent/CN104247034A/zh
Priority to EP13701609.3A priority patent/EP2807676B1/de
Priority to US14/373,951 priority patent/US9666751B2/en
Publication of WO2013110607A1 publication Critical patent/WO2013110607A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to a method for producing an electrically conductive contact on a rear and / or front side of a solar cell, wherein the contact is connected to a solar cell interconnecting connector by means of an adhesive.
  • JP-A-03183527 In order to connect a semiconductor chip to electrodes, it is known from JP-A-03183527 to arrange a conductive film between contacts, which is temporarily melted by the action of ultrasound. For electrically conductive connection of z.
  • LCDs according to JP-A-06045024 an electrically conductive adhesive is used.
  • US 2008/00776307 AI relates to a connection between a connector and a solar cell.
  • the connector consists of a conductor and a surrounding z. B. electroplated layer.
  • the connector may be provided with a conductive adhesive or solder material in the region where contact with the solar cell is made. It is also possible to apply to the area of the solar cell an adhesive or a solder material in which the contact with the connector is to be produced.
  • a connection of solar cells to a solar cell module can be found in EP 2 056 355 AI.
  • a busbar is first applied to the solar cell, which is then covered by an adhesive layer.
  • a connector is applied under pressure with simultaneous application of heat, so that the connector partially surrounds the busbar.
  • connection method for semiconductor chips is described in US Pat. No. 7,264,991 B1. Between the semiconductor chip and the connector, an electrically conductive adhesive is provided to form a sandwich structure. Outside the compound, the adhesive z. B. removed by brushing.
  • the present invention is based on the object of cost-effectively interconnecting solar cells, while at the same time ensuring that cell damage leading to power degradation is avoided. In particular, it should be avoided that damage to the adhesive joints such. B. delaminations occur. It should be made a secure connection.
  • the surface of the rear and / or front side is treated in the region of the contact to be formed, and that after the treatment in or on the area a strip-shaped adhesive or an adhesive band acts as strip the adhesive is applied at the same time electrically conductive connection in or with the area.
  • a secure connection between the adhesive in the form of the strip-shaped pasted paste adhesive or the adhesive tape and the back and / or front of the solar cell this is pretreated or treated.
  • Pretreated or treated means that compaction or solidification takes place at least in the region, preferably essentially only in the region in which the adhesive is applied.
  • the term surface also includes the near-surface region. Pre-treatment therefore does not result in the usual cleaning or cleaning of the contact surfaces before the adhesive is applied.
  • the adhesive in particular at least one material from the group of phenolic resin, epoxy resin, phenoxy resin, polyurethane, silicone, acrylate is used, which preferably contains electrically conductive particles.
  • the invention is not abandoned even if, when the adhesive is applied, it does not contain this electrically conductive particle, but rather reaches it after being applied to the rear and / or front side of the solar cell.
  • the back contact consists of a fairly porous layer, such as aluminum layer, and the adhesive is forced into the layer structure to solidify the porous material.
  • the electrical conductivity of the contact layer is maintained while the strength increases.
  • At least one measure from the group takes place at least partially compacting in a desired surface area, applying solder material and / or applying another adhesive to the desired surface area.
  • solder material or the adhesive penetrates into the surface and there is a compression.
  • a compaction can also be achieved mechanically, for example.
  • the at least partial densification can be carried out by means of ultrasound application, laser irradiation, heat treatment and / or mechanical surface treatment.
  • the latter is z. B. by means of a brush, which virtually takes place smearing / smoothing of the surface, especially in a crystalline solar cell with a porous back of very ductile material, so that the adhesion to the adhesive is improved.
  • a solderable or metallically wettable material is alloyed into the surface of the back, in particular at least one material from the group Sn, Pb, In, Ga, Cd, Fe, Ag, Au, Ti, Hf, Zn, Mg , Ca, Ba, solder material or a mixture of group materials.
  • the areas treated to make the contact may be patted or striped without being busbars or pads used in the prior art for connection to cell connectors, and in particular made of silver. Rather, the harid- or strip-shaped areas are formed by treating the back or front of the solar cell, in particular, a compression of the surface area by means of ultrasound or laser irradiation is preferable. With regard to the course of the strip-shaped region, it should be noted that this can run parallel or perpendicular to the fingers. The connector connecting the solar cells runs perpendicular to the fingers. Although a compacting, in particular of a rear side area, by alloying in of solder material is known (EP-A-2 003 699). However, then, by means of soldering, a cohesive connection to a cell connector takes place on the corresponding compacting regions, as a result of which cell damage can occur due to the temperatures which occur.
  • Ultrasonic compression is also known from DE-B-10 2010 016 814 or DE-A-10 2010 000 520.
  • solder material is heated to temperatures up to 500 ° C, so that in principle can not be ruled out that cell damage occurs.
  • the invention is also characterized by the possibility of forming an electrical connection between a solar cell and a cell connector without the use of silver, that is to say silver-free.
  • Pretreating the areas in which cell connectors are to be connected to a solar cell also includes that to achieve a substantially flat adhesive surface previously another adhesive material material is applied, the front texturing on the back of a porous back surface such as aluminum surface closes the pores and thus providing a desired planar contact area than the area.
  • a porous back surface such as aluminum surface closes the pores and thus providing a desired planar contact area than the area.
  • the adhesive material material is also a compression, in particular by the fact that the material is driven into the back contact, whereby at this point a solidification of the material occurs.
  • the invention is therefore also characterized in that the surface is smoothed in the region in which the electrical conductive contact is to be produced by means of an adhesive material, and that the adhesive material is then applied to the adhesive material material, with which the connector is subsequently connected becomes.
  • smoothing can also be carried out by means of a solder material.
  • the front side texturing can be "flattened" by a solder material to prevent the adhesive material from adhering substantially to the apex regions of the textured surface.
  • the surface treatment can be carried out in particular by local or full-surface laser irradiation or by ultrasound exposure, as is known from DE-A-10 2009 044 038.
  • the Einlegianssharm according to EP-A-2 003 699 can also apply to the back, then immediately the adhesive is applied.
  • tinning can additionally be carried out.
  • the teaching according to the invention is not limited to a specific solar cell type. However, preferably, crystalline solar cells such as crystalline silicon solar cells or thin film solar cells are used.
  • the adhesive tape and / or adhesive applied in strips in particular such or such having a width B with 0.5 mm ⁇ B ⁇ 10 mm, in particular 0.8 mm ⁇ B ⁇ 2 mm, and / or a thickness D with 3 ⁇ ⁇ D ⁇ 50 ⁇ used.
  • the actual width of the adhesive tape depends on the width of the connector.
  • Adhesive is also a paint, in particular clearcoat to subsume. This has the advantage that the width extension can be greater than that of the cell connector, without an unwanted shading occurs in the front area.
  • Preferred adhesives as the adhesive include epoxy resin, phenol resin, phenoxy resin, polyurethane, silicone, UV curing acrylate.
  • the adhesive For the adhesive to become conductive, one or more materials from the group of silver, copper, aluminum, gold, graphite, zinc, tin, palladium can be selected as fillers.
  • a paste is used as an adhesive, preferably the following method steps are used. After the surface treatment of the contact surface of the cell, ie the areas in which the connector is to be electrically connected to the solar cell, the paste is applied. Subsequently, the connector is placed with light pressure for spreading the paste over the surface. Finally, a drying or hardening of the paste takes place, wherein this can be accelerated by raising the temperature.
  • the curing should be in the range between room temperature and 300 ° C, preferably in the range between 100 ° C and 200 ° C.
  • the temperature should act for a period between 0.5 sec and 25 min.
  • the adhesive tape When an adhesive tape is used as an adhesive, the following measures are preferable. After the surface treatment of the contact surface of the cell, ie the area in which the connector is to be contacted, the adhesive tape is applied. Subsequently, the connector with some pressure and at a heat between room temperature and preferably 70 ° C is placed. Measures can be taken, as is the case with standard stringers. The bonding of the adhesive should be carried out at a pressure between 0.5 MPa and 4 MPa at a temperature between 100 ° C and 200 ° C in a period between 0.5 s and 30 s.
  • the curing or bonding ie the connection between the connector and the adhesive, is also possible by means of ultrasound.
  • FIG. 1 is a plan view of a solar cell
  • 2 shows a view of the solar cell according to FIG. 1 from the rear
  • FIG. 3 shows a cross section through the solar cell of Fig. 1 and 2.
  • FIG. 5 shows a process sequence for producing an electrically conductive connection between a back side of a solar cell and a connector
  • a crystalline silicon solar cell 10 refer to the z. B. consists of a p-type substrate 12 with pn junction and has a front side metallization 14 as a front contact and a backside contact 16, which is in particular designed as a fully sintered aluminum layer with a porosity between 5% and 20% over the entire Rear form a back-surface field.
  • the rear side that is to say the rear side contact 16 and the front side, that is to say the front side contact 14 must be electrically conductively connected to so-called cells 18, 20 which interconnect adjoining cells.
  • the front side extending cell connector 18 of the solar cell 10 extends to the back z. B. a subsequent solar cell and vice versa, the back side cell connector 20 to the front of an upstream solar cell and vice versa.
  • the cell connectors 18, 20 can be connected to the front side contact 14 as well as to the back contact 16 to the required extent and with the required strength, it is provided according to the invention that in the contact regions 22, 24 the front side contact 14 and / or the rear contact make 16 is treated. This can be done in particular on the front side by applying strip-shaped solder strips on the front side in the regions in which the cell connectors 18, 20 are to be contacted. On the solder strips then electrically conductive adhesive strips 26 are applied, with which then cell connectors 18 are connected by gluing. As is apparent from Fig. 1, the cell connectors 18 extend transversely to the contact fingers 28, which are shown in dashed lines, as they extend continuously from edge to edge.
  • a total of three cell connectors 18 extend over the contact fingers 28.
  • the function of the contact layer with respect to the cells is prevented by 18, ie the busbars takes on the adhesive strip 26 or the previously applied solder material.
  • An additional busbar, as required by the state of the art and basically made of silver, is therefore eliminated.
  • the rear side layer 16 which consists in particular of aluminum, is compacted. This can be achieved by pure mechanical treatment z. B. by means of a brush, whereby the porous surface is smoothed and thus a sufficient adhesive surface for the adhesive strip 30 is formed.
  • a compaction can z. B. by laser irradiation, as taught by DE-A-10 2009 044 038 teaches. In that regard, reference is expressly made to the relevant disclosures.
  • FIG. 4 shows a further basic illustration of a crystalline silicon solar cell 100 with pn junction 104.
  • the silicon solar cell 100 is printed over its entire surface with a paste made of aluminum.
  • the aluminum layer 107 which may have a thickness between 30 ⁇ and 50 ⁇ , sintered.
  • a eutectic compound Al-Si is formed in the direct vicinity of the rear side of the substrate of the solar cell 100, which is labeled 106 in FIG. 4.
  • the thickness amounts to about 5 ⁇ .
  • the remaining area of the aluminum layer 107 thus has a thickness of between 25 ⁇ m and 45 ⁇ m, depending on how the original thickness of the aluminum layer 107 was designed.
  • the remaining layer consists of a loosely sintered composite of aluminum spheres and glass frit parts whose strength is not particularly high. If a connector is fastened to the layer 107, only limited pull-off forces are achieved, in particular ⁇ 1 N, since the pull-off force is determined by the strength of the base.
  • the layer 107 is solidified by a Ultraschallbelotung means of a solder, so treated. This is done by penetrating the solder into the pores of the loosely sintered aluminum layer 107 and forming a region 120 (FIG. 5) which is compacted as compared to the layer 107 outside the soldered region and thus has a higher strength.
  • a Belotungstemperatur around 250 ° C the penetration depth of the solder material is between 10 ⁇ to 30 ⁇ . However, it should be noted that the penetration depth depends on the given porosity and consistency of the aluminum paste. With increasing Belotungstemperatur increases penetration depth of the solder.
  • the entire layer 107 is penetrated to the eutectic 106. Due to the resulting solidification of the material higher withdrawal forces can be achieved.
  • the adhesive in the form of the adhesive strip 30 is then applied to the corresponding solidified region 120 in accordance with the basic illustration of FIG. 5, in order to then apply the connector 20 in the manner described above and electrically conductively contact the region 120 and thus the back contact via the adhesive strip 30 107 of the solar cell 100 to connect.
  • FIG. 6 the solar cell 100 with the densified regions 120 and the binders 20 is shown in principle. It can be seen that the solder material runs at a distance from the eutectic 106.
  • the compacted region 120 extends to the eutectic 106.
  • a liquid adhesive to treat the area that is to be electrically connected to a cell connector. This can be done at different temperatures depending on the type of adhesive. It is e.g. possible to infiltrate at room temperature or 20 ° C to about 80 ° C, a liquid adhesive which cures by evaporation of solvent. Other adhesives (eg thermoplastics) only become liquid at higher temperatures. If a corresponding adhesive is infiltrated into the porous aluminum layer 107 of a solar cell 140, stabilization of the strength of the corresponding region 122 of the aluminum layer 107 is achieved in the infiltrated region after curing.
  • Curing takes place, for example, by evaporation of the solvent, cooling in the case of thermoplastics, crosslinking in the case of multicomponent adhesives, UV curing in the case of UV-curing adhesives.
  • the adhesive together with the porous metal layer 107 forms a solid composite, on which higher withdrawal forces than outside the composite are achieved.
  • An adhesive such as adhesive tape 30 and then a connector 20 is then applied to the respective regions 122 in the manner described above ( Figure 7).
  • the solar cell 140 has a basic structure like the solar cell 100 with the restriction that it is passivated by a SiN or an Al 2 O 3 layer 126 at the rear.
  • the corresponding layer 126 is coated with the screen-printed and sintered aluminum back contact 107 in the manner previously described. Consequently, the majority of the back contact consists only of the combination of aluminum spheres and glass frit parts with low strength.
  • the previously described infiltration takes place with an adhesive.
  • a Beloten could be performed.
  • regions 122 are formed which have higher strength compared to the remaining aluminum layer 107.
  • the metallic surface is smoothed by mechanical brushing of the surface of the back contact, in which the surface-lying Al spheres, which are very ductile, are flattened by the mechanical deformation and connected to one another. This leads to an improvement of the contact resistance to be applied to the electrically conductive adhesive strip 30 and the applied cell or series connector 20th
  • FIG. 7 does not show that the layer has to have a plurality of openings in order to produce the electrically conductive contact between the aluminum layer 107 and the substrate 12 of the solar cell 10, 100, 140.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Die Erfindung bezieht sich auf ein Verfahren zum Herstellen eines elektrisch leitenden Kontakts auf einer Rück- und/oder Vorderseite (14, 16) einer Solarzelle (10), wobei der Kontakt mit einem Solarzellen verschaltenden Verbinder (18, 20) mittels eines Klebemittels (30, 26) verbunden wird. Um kostengünstig Solarzellen zu verschalten, wobei gleichzeitig sichergestellt sein soll, dass Zellschädigungen, die zu einer Leistungsdegradation führen, vermieden werden, wird vorgeschlagen, dass die Rück- und/oder Vorderseite (14, 16) der Solarzelle (10) im Bereich des auszubildenden Kontakts behandelt wird und dass nach der Behandlung in dem Bereich streifenförmig ein pastenförmiger Klebstoff oder ein Klebstoffband (30, 26) als das Klebemittel bei gleichzeitig elektrisch leitender Verbindung in dem Bereich aufgebracht wird.

Description

Beschreibung
Verfahren zum Herstellen eines elektrisch leitenden Kontakts auf einer Solarzelle
Die Erfindung bezieht sich auf ein Verfahren zum Herstellen eines elektrisch leitenden Kontakts auf einer Rück- und/oder Vorderseite einer Solarzelle, wobei der Kontakt mit einem Solarzellen verschaltenden Verbinder mittels eines Klebemittels verbunden wird.
Es ist bekannt, unter Beibehaltung des Aufbaus einer Solarzelle deren Busbars über einen elektrisch leitfähigen Klebstoff mit einem Zellenverbinder elektrisch leitend zu verbinden (s. INTERSOLAR 2011, 31. Mai 2011).
Um Halbleiterbauelemente elektrisch leitend zu verbinden, wird nach der JP-A-03188180 ein elektrisch leitfähiges Material enthaltendes Epoxidharz, Phenolharz oder Phenoxyharz benutzt.
Um einen Halbleiterchip mit Elektroden zu verbinden, ist es nach der JP-A-03183527 bekannt, zwischen Kontakten einen leitfähigen Film anzuordnen, der durch Einwirkung von Ultraschall zeitweise aufgeschmolzen wird. Zum elektrisch leitenden Verbinden von z. B. LCDs wird nach der JP-A-06045024 ein elektrisch leitender Kleber benutzt.
Die US 2008/00776307 AI bezieht sich auf eine Verbindung zwischen einem Verbinder und einer Solarzelle. Der Verbinder besteht aus einem Leiter und einer diesen umgebenden z. B. galvanisch aufgetragenen Schicht. Der Verbinder kann mit einem leitenden Kleber oder Lotmaterial in dem Bereich versehen werden, in dem der Kontakt zur Solarzelle hergestellt wird. Auch besteht die Möglichkeit, auf den Bereich der Solarzelle einen Kleber oder ein Lotmaterial aufzubringen, in der der Kontakt mit dem Verbinder hergestellt werden soll.
Ein Verschalten von Solarzellen zu einem Solarzellenmodul ist der EP 2 056 355 AI zu entnehmen. Hierzu wird zunächst auf die Solarzelle ein Busbar aufgebracht, der sodann von einer Kleberschicht abgedeckt wird. Anschließend wird unter Druckbeaufschlagung ein Verbinder bei gleichzeitiger Wärmeeinwirkung aufgebracht, so dass der Verbinder teilweise den Busbar umgibt.
Ein Verbindungsverfahren für Halbleiterchips wird in der US 7 264 991 Bl beschrieben. Zwischen dem Halbleiterchip und dem Verbinder ist ein elektrisch leitender Kleber vorgesehen, um eine Sandwich-Struktur zu bilden. Außerhalb der Verbindung wird der Kleber z. B. mittels Bürstens entfernt.
Der vorliegenden Erfindung liegt die Aufgabe zu Grunde, kostengünstig Solarzellen zu verschalten, wobei gleichzeitig sichergestellt sein soll, dass Zellschädigungen, die zu einer Leistungsdegradation führen, vermieden werden. Insbesondere soll vermieden werden, dass Schädigungen der Klebeverbindungen wie z. B. Delaminationen auftreten. Es soll eine sichere Verbindung hergestellt werden.
Zur Lösung der Aufgabe wird erfindungs gemäß im Wesentlichen vorgeschlagen, dass die Oberfläche der Rück- und/oder Vorderseite im Bereich des auszubildenden Kontakts behandelt wird und dass nach dem Behandeln in dem bzw. auf den Bereich streifenförmig ein pas- tenförmiger Klebstoff oder ein Klebstoffband als das Klebemittel bei gleichzeitig elektrisch leitender Verbindung in bzw. mit dem Bereich aufgebracht wird. Um erfindungs gemäß eine sichere Verbindung zwischen dem Klebemittel in Form des streifenförmig aufgetragenen pastenförmigen Klebstoffs oder des Klebebands und der Rück- und/oder Vorderseite der Solarzelle sicherzustellen, wird diese vorbehandelt bzw. behandelt. Vorbehandelt bzw. behandelt bedeutet dabei, dass ein Verdichten bzw. Verfestigen zumindest in dem Bereich, vorzugweise im Wesentlichen nur in dem Bereich erfolgt, in dem das Klebemittel aufgetragen wird. Der Begriff Oberfläche schließt dabei auch den oberflächennahen Bereich ein. Vorbehandeln beutet folglich nicht, das übliche Reinigen oder Säubern der Kontaktflächen, bevor das Klebemittel aufgetragen wird.
Durch das Behandeln der Oberfläche in den gewünschten Bereichen wird gewährleistet, dass das Klebemittel mit der erforderlichen Haftung auf der Rück- und/oder Vorderseite der Solarzelle verbunden ist, so dass Abzugskräfte auf das Klebemittel einwirken können, die ansonsten nur dann erreichbar sind, wenn das Klebemittel - wie nach dem Stand der Technik - mit insbesondere aus Silber bestehenden Busbars oder Pads verbunden wird. Da aufgrund der erfindungsgemäßen Lehre entsprechende Busbars und Pads für das Klebemittel nicht erforderlich sind, ergibt sich eine Kosteneinsparung. Zum elektrisch leitenden Verbinden mit den Zellverbindern ist des Weiteren aufgrund des verwendeten Klebemittels ein Löten grundsätzlich nicht erforderlich, so dass Zellschädigungen aufgrund der ansonsten auftretenden Temperaturen und eine damit einhergehende Leistungsdegradation vermieden werden.
Als Material für das Klebemittel wird insbesondere zumindest ein Material aus der Gruppe Phenolharz, Epoxidharz, Phenoxyharz, Polyurethan, Silikon, Acrylat verwendet, das vorzugsweise elektrisch leitende Partikel enthält. Die Erfindung wird jedoch auch dann nicht verlassen, wenn beim Auftragen des Klebemittels dieses elektrisch leitende Partikel nicht enthält, diese vielmehr erst nach dem Auftragen auf die Rück- und/oder Vorderseite der Solarzelle in diese gelangen. Dies erfolgt dann, wenn zumindest ein Kontakt, z. B. der Rückkon- takt, aus einer ziemlich porösen Schicht, wie Aluminiumschicht, besteht, und der Kleber zur Verfestigung des porösen Materials in die Schichtstruktur eingetrieben wird. Hierbei bleibt die elektrische Leitfähigkeit der Kontaktschicht erhalten, während die Festigkeit wächst. Zum Behandeln des Bereichs, in dem der Kontakt hergestellt werden soll, erfolgt zumindest eine Maßnahme aus der Gruppe zumindest partielles Verdichten in einem gewünschten Ober- flächenbereich, Auftragen von Lotmaterial und/oder Auftragen von einem weiteren Klebstoff auf den gewünschten Oberflächenbereich. Durch diese Maßnahmen dringt das Lotmaterial bzw. der Klebstoff in die Oberfläche ein und es erfolgt ein Verdichten. Ein Verdichten kann z.B. auch mechanisch erreicht werden.
Es besteht auch die Möglichkeit des Auftragens eines Polymers mit endständigen funktionalen Gruppen. Beispielhaft ist das Auftragen eines Silans und Thiol mit endständigen funktionalen Gruppen wie Amino- oder Epoxidgruppen zu nennen.
Das zumindest partielle Verdichten kann mittels Ultraschallbeaufschlagung, Laserbestrahlung, Wärmebehandlung und/oder mechanischer Oberflächenbehandlung durchgeführt werden. Letzteres ist z. B. mittels einer Bürste möglich, wodurch quasi ein Verschmieren/Glätten der Oberfläche, insbesondere bei einer kristallinen Solarzelle mit poröser Rückseite aus sehr duktilem Material erfolgt, so dass die Haftung zu dem Klebemittel verbessert wird.
Insbesondere ist auch vorgesehen, dass in die Oberfläche der Rückseite ein lötbares oder metallisch benetzbares Material einlegiert wird, insbesondere zumindest ein Material aus der Gruppe Sn, Pb, In, Ga, Cd, Fe, Ag, Au, Ti, Hf, Zn, Mg, Ca, Ba, Lotmaterial oder eine Mischung von Materialien der Gruppe.
Die zur Herstellung des Kontaktes behandelten Bereiche können päd- oder streifenförmig ausgebildet werden, ohne dass es sich hierbei um Busbars oder Pads handelt, die nach dem Stand der Technik zum Verbinden mit Zellenverbindern benutzt werden und insbesondere aus Silber bestehen. Vielmehr werden die päd- oder streifenförmigen Bereiche durch Behandeln der Rück- bzw. Vorderseite der Solarzelle ausgebildet, wobei insbesondere ein Verdichten des Oberflächenbereichs mittels Ultraschall oder Laserbestrahlung zu bevorzugen ist. Bezüglich des Verlaufs des streifenförmigen Bereichs ist anzumerken, dass dieser parallel oder senkrecht zu den Fingern verlaufen kann. Der die Solarzellen verbindende Verbinder verläuft senkrecht zu den Fingern. Zwar ist ein Verdichten insbesondere eines Rückseitenbereichs durch Einlegieren von Lotmaterial bekannt (EP-A-2 003 699). Auf die entsprechenden verdichtenden Bereiche erfolgt jedoch sodann durch Löten ein stoffschlüssiges Verbinden mit einem Zellenverbinder, wodurch aufgrund der auftretenden Temperaturen eine Zellschädigung erfolgen kann.
Ein Verdichten mittels Ultraschall ist auch aus der DE-B-10 2010 016 814 oder der DE-A-10 2010 000 520 bekannt. Dabei wird Lotmaterial auf Temperaturen bis 500 °C erwärmt, so dass grundsätzlich nicht auszuschließen ist, dass eine Zellschädigung auftritt.
Aufgrund der erfindungsgemäßen Lehre erfolgt ein Einsparen von ansonsten erforderlichem Silber zum elektrisch leitenden Verbinden zwischen Zellenverbindern und einer Solarzelle. Als Zellenverbinder können kostengünstige verzinnte oder verzinkte Kupferbänder oder Aluminiumbänder benutzt werden, wobei sich Produktionskosten einsparen lassen. Daher zeichnet sich die Erfindung auch dadurch aus, dass die Möglichkeit besteht, ohne Verwendung von Silber, also silberfrei eine elektrische Verbindung zwischen einer Solarzelle und einem Zellenverbinder auszubilden.
Ein Vorbehandeln der Bereiche, in denen Zellenverbinder mit einer Solarzelle verbunden werden sollen, schließt auch ein, dass zur Erzielung einer weitgehend ebenen Haftfläche zuvor ein weiteres Kleb Stoff material aufgetragen wird, das frontseitig die Texturierung rückseitig bei einer porösen Rückseitenfläche wie Aluminiumfläche die Poren verschließt und somit eine gewünschte ebene Kontaktfläche als den Bereich zur Verfügung stellt. Im eigentlichen Sinne erfolgt durch das Kleb Stoffmaterial auch ein Verdichten, insbesondere dadurch, dass das Material in den Rückkontakt eingetrieben wird, wodurch an dieser Stelle eine Verfestigung des Materials eintritt.
Die Erfindung zeichnet sich daher auch dadurch aus, dass die Oberfläche in dem Bereich, in dem der elektrische leitende Kontakt hergestellt werden soll, mittels eines Klebstoffmaterials geglättet wird, und dass auf das Kleb Stoffmaterial sodann das Klebemittel aufgetragen wird, mit dem anschließend der Verbinder verbunden wird. Ein Glätten kann jedoch auch durch ein Lotmaterial durchgeführt werden. Insbesondere kann frontseitig die Texturierung durch ein Lotmaterial„geebnet" bzw. geglättet werden, um zu vermeiden, dass das Klebermaterial bzw. Klebemittel im Wesentlichen auf den Scheitelbereichen der texturierten Oberfläche anhaftet.
Rückseitig kann die Oberflächenbehandlung insbesondere durch lokale oder vollflächige Laserbestrahlung oder durch Ultraschalleinwirkung erfolgen, wie dies aus der DE-A-10 2009 044 038 bekannt ist. Die Einlegierungsmaßnahmen nach der EP-A-2 003 699 können auf der Rückseite gleichfalls zur Anwendung gelangen, wobei sodann unmittelbar das Klebemittel aufgebracht wird.
Bei der Ultraschallbeaufschlagung kann zusätzlich eine Verzinnung durchgeführt werden.
Die erfindungsgemäße Lehre ist auf einen bestimmten Solarzellentyp nicht beschränkt. Bevorzugterweise werden jedoch kristalline Solarzellen wie kristalline Siliziumsolarzellen oder Dünnschichtsolarzellen verwendet.
Als das Klebeband und/oder streifenförmig aufgebrachter Klebstoff wird insbesondere ein solches bzw. ein solcher mit einer Breite B mit 0,5 mm <B <10 mm, insbesondere 0,8 mm <B <2 mm, und/oder einer Dicke D mit 3 μιη <D <50 μιη verwendet. Die aktuelle Breite des Klebebandes richtet sich nach der Breite der Verbinder.
Unter Klebstoff ist auch ein Lack, insbesondere Klarlack zu subsumieren. Hierdurch ergibt sich der Vorteil, dass die Breitenerstreckung größer als die des Zellenverbinders sein kann, ohne das eine unerwünschte Abschattung im Frontseitenbereich erfolgt.
Als bevorzugte Klebstoffe als das Klebemittel sind Epoxidharz, Phenolharz, Phenoxyharz, Polyurethan, Silikon, UV-härtendes Acrylat zu nennen. Damit der Klebstoff leitend wird, können als Füllstoffe ein Material oder mehrere Materialen aus der Gruppe Silber, Kupfer, Aluminium, Gold, Graphit, Zink, Zinn, Palladium gewählt werden. Wird eine Paste als Klebemittel benutzt, so gelangen vorzugsweise folgende Verfahrensschritte zur Anwendung. Nach der Oberflächenbehandlung der Kontaktfläche der Zelle, also den Bereichen, in dem der Verbinder mit der Solarzelle elektrisch leitend verbunden werden soll, wird die Paste aufgetragen. Anschließend wird der Verbinder mit leichtem Andrücken zum flächigen Verteilen der Paste aufgelegt. Schließlich erfolgt ein Antrocknen bzw. Aushärten der Paste, wobei dieses durch Erhöhen der Temperatur beschleunigt werden kann. Das Aushärten sollte im Bereich zwischen Raumtemperatur und 300 °C, bevorzugt im Bereich zwischen 100 °C und 200 °C erfolgen. Die Temperatur sollte über einen Zeitraum zwischen 0,5 sek und 25 min einwirken. Es besteht jedoch auch die Möglichkeit, das Aushärten erst in einem Laminator durchzuführen, in dem ein Solarzellenmodul hergestellt wird.
Wird ein Klebeband als Klebemittel verwendet, so sind nachstehende Maßnahmen bevorzugt anzuwenden. Nach der Oberflächenbehandlung der Kontaktfläche der Zelle, also des Bereichs, in dem der Verbinder kontaktiert werden soll, wird das Klebeband aufgebracht. Anschließend wird der Verbinder mit etwas Druck und bei einer Wärme zwischen Raumtemperatur und vorzugsweise 70 °C aufgelegt. Es können Maßnahmen erfolgen, wie dies bei Stan- dard-Stringern der Fall ist. Das Bonden bzw. Aushärten des Klebstoffs sollte bei einem Druck zwischen 0,5 MPa und 4 MPa bei einer Temperatur zwischen 100 °C und 200 °C in einem Zeitraum zwischen 0,5 s und 30 s erfolgen.
Ganz allgemein ist anzumerken, dass das Aushärten bzw. Bonden, also die Verbindung zwischen dem Verbinder und dem Klebemittel, auch mittels Ultraschall möglich ist.
Weitere Einzelheiten, Vorteile und Merkmale der Erfindung ergeben sich nicht nur aus den Ansprüchen, den diesen zu entnehmenden Merkmalen - für sich und/oder in Kombination-, sondern auch aus der nachfolgenden Beschreibung von der Zeichnung zu entnehmende bevorzugten Ausführungsbeispielen.
Es zeigen:
Fig. 1 eine Draufsicht auf eine Solarzelle, Fig. 2 eine Ansicht der Solarzelle gemäß Fig. 1 von der Rückseite her,
Fig. 3 einen Querschnitt durch die Solarzelle der Fig. 1 und 2.,
Fig. 4 eine weitere Prinzipdarstellung einer Solarzelle,
Fig. 5 eine Prozessfolge zur Herstellung einer elektrisch leitenden Verbindung zwischen einer Rückseite einer Solarzelle und einem Verbinder und
Fig. 6, 7 Solarzellen mit entlang deren Rückseiten verlaufenden Verbindern.
Den Figuren ist rein prinzipiell eine kristalline Siliziumsolarzelle 10 zu entnehmen, die z. B. aus einem p-leitenden Substrat 12 mit pn-Übergang besteht und eine Frontseitenmetallisierung 14 als Frontkontakt und einen Rückseitenkontakt 16 aufweist, der insbesondere als voll- flächig gesinterte Aluminiumschicht mit einer Porosität zwischen 5 % und 20 % ausgebildet ist, um über die gesamte Rückseite ein Back-Surface-Field auszubilden. Um die Solarzelle 10 mit weiteren Solarzellen zu verschalten, muss die Rückseite, also der Rückseitenkontakt 16 und die Frontseite, also der Frontseitenkontakt 14 mit sogenannten Zellen verhindern 18, 20 elektrisch leitend verbunden werden, die aneinander grenzende Zellen miteinander verbinden. Dabei erstreckt sich der frontseitig verlaufende Zellenverbinder 18 der Solarzelle 10 zur Rückseite z. B. einer nachfolgenden Solarzelle und umgekehrt der rückseitig verlaufende Zellenverbinder 20 zur Frontseite einer vorgeordneten Solarzelle und umgekehrt.
Damit die Zellenverbinder 18, 20 sowohl mit dem Frontseitenkontakt 14 als auch mit dem Rückseitenkontakt 16 im erforderlichen Umfang und mit der erforderlichen Festigkeit verbunden werden können, ist erfindungs gemäß vorgesehen, dass in den herzustellenden Kontaktbereichen 22, 24 der Frontseitenkontakt 14 und/oder der Rückseitenkontakt 16 behandelt wird. Dies kann insbesondere frontseitig dadurch erfolgen, dass streifenförmige Lotstreifen auf der Frontseite in den Bereichen aufgebracht werden, in denen die Zellen verbinder 18, 20 kontaktiert werden sollen. Auf die Lotstreifen werden sodann elektrisch leitende Klebestreifen 26 aufgetragen, mit denen anschließend Zellenverbinder 18 durch Kleben verbunden werden. Wie sich aus der Fig. 1 ergibt, verlaufen die Zellenverbinder 18 quer zu Kontaktfingern 28, die gestrichelt dargestellt sind, gleichwenn diese durchgängig von Rand zu Rand verlaufen. Im Ausführungsbeispiel erstrecken sich über die Kontaktfinger 28, insgesamt drei Zellenverbinder 18. Die Funktion der Kontaktschicht zu den Zellen verhindern 18, also der Busbars übernimmt dabei der Klebestreifen 26 bzw. das zuvor aufgebrachte Lotmaterial. Ein zusätzlicher Busbar, wie dieser nach dem Stand der Technik notwendig ist und grundsätzlich aus Silber besteht, entfällt somit.
Rückseitig wird in den Bereichen, in denen die Zellenverbinder 20 verlaufen, die insbesondere aus Aluminium bestehende Rückseitenschicht 16 verdichtet. Dies kann durch reines mechanisches Behandeln z. B. mittels einer Bürste erfolgen, wodurch die poröse Oberfläche geglättet und somit eine hinreichende Haftfläche für den Klebestreifen 30 gebildet wird.
Insbesondere erfolgt jedoch eine Laserbestrahlung oder eine Ultraschallbeaufschlagung, wobei zusätzlich ein Einlegieren von Material wie Lotmaterial erfolgen kann, wie dies z. B. in der EP-A-2 003 699 beschrieben ist.
Ein Verdichten kann z. B. durch Laserbestrahlung erfolgen, wie dies die DE-A-10 2009 044 038 lehrt. Insoweit wird auf die diesbezüglichen Offenbarungen ausdrücklich Bezug genommen.
Auf die entsprechend behandelten streifenförmigen Bereiche 24 wird sodann jeweils ein Klebestreifen 30 aufgetragen, der die Verbindung zwischen dem Bereich 24 und dem Zellenverbinder 20 herstellt.
Nachstehend wird die erfindungsgemäße Lehre anhand von bevorzugten Ausführungsbeispielen näher erläutert.
Anhand der nachstehend beschriebenen Ausführungsbeispiele ergeben sich weitere hervorzuhebende Merkmal der erfindungsgemäßen Lehre. In Fig. 4 ist eine weitere Prinzipdarstellung einer kristallinen Siliziumsolarzelle 100 mit pn- Übergang 104 dargestellt. Die Siliziumsolarzelle 100 wird rückseitig ganzflächig mit einer Paste aus Aluminium bedruckt. Zur Kontaktbildung der so gebildeten Aluminiumschicht 107 mit dem Substrat der Solarzelle 100 wird die Aluminiumschicht 107, die eine Dicke zwischen 30 μιη und 50 μιη aufweisen kann, gesintert. Bei diesem Prozess entsteht in direkter Nachbarschaft zur Rückseite des Substrats der Solarzelle 100 eine eutektische Verbindung Al-Si, die der Fig. 4 mit 106 gekennzeichnet ist. Die Dicke beläuft sich auf ca. 5 μιη. Der verbleibende Bereich der Aluminiumschicht 107 weist somit eine Dicke zwischen 25 μιη und 45 μιη auf, je nachdem wie die Ursprungsdicke der Aluminiumschicht 107 ausgelegt war. Die verbleibende Schicht besteht aus einem locker gesinterten Verbund aus Aluminiumkugeln und Glasfritten- anteilen, dessen Festigkeit nicht besonders hoch ist. Befestigt man auf die Schicht 107 einen Verbinder, so erreicht man nur begrenzte Abzugskräfte - insbesondere <1 N -, da die Abzugskraft von der Festigkeit der Unterlage bestimmt wird.
Nach einem erfindungsgemäßen Aspekt wird die Schicht 107 durch eine Ultraschallbelotung mittels eines Lotes verfestigt, also behandelt. Dies geschieht dadurch, dass das Lot in die Poren der locker gesinterten Aluminiumschicht 107 eindringt und ein Bereich 120 (Fig. 5) entsteht, der im Vergleich zu der Schicht 107 außerhalb des beloteten Bereichs verdichtet ist und somit eine höhere Festigkeit aufweist. Bei einer Belotungstemperatur um 250 °C beträgt die Eindringtiefe des Lotmaterials zwischen 10 μιη bis 30 μιη. Allerdings ist anzumerken, dass die Eindringtiefe von der vorgegebenen Porosität und Konsistenz der Aluminiumpaste abhängt. Mit zunehmender Belotungstemperatur erhöht sich Eindringtiefe des Lots. Dabei ist festzustellen, dass bei einer Temperatur zwischen 350 °C und 400 °C die gesamte Schicht 107 bis zum Eutektikum 106 durchdrungen wird. Durch die hierdurch entstehende Verfestigung des Materials sind höhere Abzugskräfte erzielbar. Auf den entsprechenden verfestigten Bereich 120 wird sodann entsprechend der Prinzipdarstellung der Fig. 5 das Klebemittel in Form des Klebestreifens 30 aufgebracht, um sodann in vorbeschriebener Weise auf diesen den Verbinder 20 aufzulegen und über den Klebestreifen 30 elektrisch leitend mit dem Bereich 120 und damit dem Rückkontakt 107 der Solarzelle 100 zu verbinden. In der Fig. 6 ist die Solarzelle 100 mit den verdichteten Bereichen 120 und den Ver-bindern 20 prinzipiell dargestellt. Man erkennt, dass das Lotmaterial beabstandet zum Eutektikum 106 verläuft. Selbstverständlich besteht entsprechend der zuvor erfolgten Erläuterungen auch die Möglichkeit, dass der verdichtete Bereich 120 sich bis zum Eutektikum 106 erstreckt.
Alternativ besteht die Möglichkeit anstelle von Lot einen flüssigen Kleber zu infiltrieren, um den Bereich zu behandeln, der mit einem Zellenverbinder elektrisch leitend verbunden werden soll. Dies kann je nach Art des Klebers bei verschiedenen Temperaturen geschehen. Es ist z.B. möglich bei Raumtemperatur bzw. 20 °C bis ca. 80 °C einen flüssigen Kleber zu infiltrieren, der durch Ausdampfen von Lösungsmittel aushärtet. Andere Kleber (z. B. Thermoplast) werden erst bei höheren Temperaturen flüssig. Wird in die poröse Aluminiumschicht 107 einer Solarzelle 140 ein entsprechender Kleber infiltriert, so wird in dem infiltrierten Bereich nach dem Aushärten eine Stabilisierung der Festigkeit des entsprechenden Bereichs 122 der Aluminiumschicht 107 erzielt. Das Aushärten erfolgt beispielsweise durch Ausdampfen des Lösungsmittels, Abkühlen bei Thermoplasten, Vernetzung bei Mehrkomponentenklebern, UV-Härtung bei UV-härtenden Klebern. Nach dem Aushärten bildet der Kleber zusammen mit der porösen Metallschicht 107 einen festen Verbund, auf dem höhere Abzugskräfte als außerhalb des Verbundes erreicht werden. Auf die entsprechenden Bereiche 122 wird sodann in vorbeschriebener Art ein Klebemittel wie Klebestreifen 30 und auf diesen sodann ein Verbinder 20 aufgebracht (Fig. 7).
Anhand der Fig. 7 soll eine weitere Ausgestaltung der erfindungsgemäßen Lehre erläutert werden. Die Solarzelle 140 weist einen prinzipiellen Aufbau wie die Solarzelle 100 mit der Einschränkung auf, dass diese rückseitig durch eine SiN - oder eine A1203-Schicht 126 passiviert ist. Die entsprechende Schicht 126 ist in zuvor beschriebener Weise mit dem siebgedruckten und gesinterten Aluminiumrückkontakt 107 beschichtet. Folglich besteht der Rück- kontakt im überwiegenden Bereich nur aus dem Verbund aus Aluminiumkugeln und Glasfrit- tenanteilen mit geringer Festigkeit. Um Bereiche höherer Festigkeit zu erzielen, erfolgt das zuvor beschriebene Infiltrieren mit einem Kleber. Alternativ könnte ein Beloten durchgeführt werden. Somit sind Bereiche 122 ausgebildet, die im Vergleich zu der verbleibenden Aluminiumschicht 107 eine höhere Festigkeit aufweisen. Ferner kann vorgesehen sein, dass durch mechanisches Bürsten der Oberfläche des Rückkon- takts die metallische Oberfläche geglättet wird, in dem die oberflächig liegenden Al-Kugeln, die sehr duktil sind, durch die mechanische Verformung flachgezogen und miteinander verbunden werden. Dies führt zu einer Verbesserung des Kontaktwiderstands zum aufzubringenden elektrisch leitenden Klebestreifen 30 bzw. dem aufzubringenden Zellen- bzw. Serienverbinder 20.
Ist das mechanische Verdichten, das z. B. durch das zuvor beschriebene Bürsten erfolgt, zusätzlich zu dem bereichs weisen Verdichten der Aluminiumschicht 107 durch Infiltrieren oder Beloten möglich, so kann auch ohne entsprechende Verfahrens schritte allein durch mechanische Bearbeitung der Rückseitenfläche der Aluminiumschicht 107 in einem Umfang eine Verfestigung bzw. eine Verbesserung des Kontaktwiderstandes erfolgen, dass eine hinreichend elektrisch leitende Verbindung zwischen dem Verbinder und der Oberfläche der Aluminiumschicht 107 über das Klebemittel wie Paste oder Klebestreifen bei gleichzeitig gewünschten relativ hohen Abzugskräften erfolgt.
In der Fig. 7 ist nicht dargestellt, dass die Schicht mehrere Öffnungen aufweisen muss, damit der elektrisch leitende Kontakt zwischen der Aluminiumschicht 107 und dem Substrat 12 der Solarzelle 10, 100, 140 hergestellt wird.

Claims

Patentansprüche Verfahren zum Herstellen eines elektrisch leitenden Kontakts auf einer Solarzelle
1. Verfahren zum Herstellen eines elektrisch leitenden Kontakts auf einer Rück- und/oder Vorderseite (14, 16) einer Solarzelle (10, 100, 140), wobei der Kontakt mit einem Solarzellen verschaltenden Verbinder (18, 20) mittels eines Klebemittels (30, 26) verbunden wird,
dadurch gekennzeichnet,
dass Oberfläche der Rück- und/oder Vorderseite (14, 16) der Solarzelle (10, 100, 140) im Bereich des auszubildenden Kontakts behandelt wird und dass nach dem Behandeln in dem Bereich streifenförmig ein pastenförmiger Klebstoff oder ein Klebstoffband (30, 26) als das Klebemittel bei gleichzeitig elektrisch leitender Verbindung in dem Bereich aufgebracht wird.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass das Behandeln des Bereichs mit zumindest einer Maßnahme aus der Gruppe zumindest partielles Verdichten, Auftragen von Lotmaterial, Auftragen von einem Klebstoff durchgeführt wird.
3. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass als Material für das Klebemittel ein solches auf der Basis von zumindest einem Material aus der Gruppe Epoxidharz, Phenolharz, Phenoxyharz, Polyurethan, Silikon, UV-härtendes Acrylat verwendet wird, das insbesondere elektrisch leitend ist.
4. Verfahren nach zumindest Anspruch 2,
dadurch gekennzeichnet,
dass mittels Ultraschallbeaufschlagen, Laserbestrahlung, Wärmebehandlung und/oder mechanisches Oberflächenbehandeln das zumindest partielle Verdichten der Oberfläche bzw. eines oberflächennahen Bereichs durchgeführt wird.
5. Verfahren nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die mechanische Oberflächenbehandlung mittels Bürstens durchgeführt wird.
6. Verfahren nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass in die Oberfläche der Rückseite (16) der Solarzelle ein lötbares oder metallisch benetzbares Material einlegiert wird, insbesondere zumindest ein Material aus der Gruppe Sn, Pb, In, Ga, Cd, Fe, Ag, Au, Ti, Hf, Zn, Mg, Ca, Ba, Lotmaterial oder eine Mischung von Materialien der Gruppe.
7. Verfahren nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass als Solarzelle eine Solarzelle (10, 100, 140) verwendet wird, die rückseitig vollflä- chig eine poröse Schicht (102) als Rückkontakt aufweist, in der päd- oder streifenförmige Bereiche als die Bereiche ausgebildet werden, mit denen das Klebemittel verbunden wird.
8. Verfahren nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass als Solarzelle eine Solarzelle (10, 100, 140) mit busbar-freier Vorderseite mit in etwa parallel zueinander verlaufenden Stromsammlern (Fingern) (28) verwendet wird, mit denen der streifenförmig aufgebrachte Klebstoff bzw. das Klebstoffband (30, 26) verbunden wird, der bzw. das quer zu den Stromsammlern verläuft.
9. Verfahren nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass vor Aufbringen des Klebemittels (30, 26) auf den Bereich des auszubildenden Kontakts ein Lotmaterial aufgebracht wird.
10. Verfahren nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass als Solarzelle (10, 100, 140) eine kristalline Solarzelle, insbesondere kristalline Silizium-Solarzelle, oder eine Dünnschicht-Solarzelle verwendet wird.
11. Verfahren nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass mit dem Klebemittel (30, 26) ein Verbinder elektrisch leitend verbunden wird, der insbesondere aus belotetem Kupfer, verzinktem Kupfer oder aus Aluminium oder belotetem Aluminium besteht.
12. Verfahren nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass das Klebemittel mit einer Breite B mit B 0,5 mm <B <10 mm, insbesondere 0,8 mm <B <2 mm, und/oder einer Dicke D mit 3 μιη <D <50 μιη auf den Bereich aufgebracht wird.
13. Verfahren nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass der mit dem Klebemittel zu belegende Bereich zuvor mit einem funktionalen Silan aus der Gruppe Ethoxy- oder Methoxy-Silane mit einer weiteren funktionalen Amino- oder Epoxy-Gruppe belegt wird.
14. Verfahren nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass als Klebemittel ein Klebemittel (30, 26) verwendet wird, dass als Füllstoff zumindest ein Material aus der Gruppe Silber, Kupfer, Nickel, Aluminium, Gold, Graphit, Zink, Zinn, Palladium enthält.
15. Verfahren nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass der Bereich der Oberfläche, in dem der Verbinder (18, 20) mit der Solarzelle (10, 100, 140) verbunden wird, mittels eines Klebstoffmaterials geglättet wird, dass auf das Klebstoffmaterial sodann das Klebemittel aufgetragen wird und dass anschließend der Verbinder (18, 20) mit dem Klebemittel elektrisch leitend verbunden wird.
16. Verfahren nach zumindest einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass zunächst in dem Bereich der Oberfläche das Lotmaterial eingebracht wird, in dem der Verbinder (18, 20) kontaktiert wird, sodann auf den Bereich das Klebemittel aufgebracht wird und schließlich mit diesem der Verbinder verbunden wird.
PCT/EP2013/051143 2012-01-23 2013-01-22 Verfahren zum herstellen eines elektrisch leitenden kontakts auf einer solarzelle WO2013110607A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380006350.2A CN104247034A (zh) 2012-01-23 2013-01-22 用于在太阳能电池上制造导电接触部的方法
EP13701609.3A EP2807676B1 (de) 2012-01-23 2013-01-22 Verfahren zum herstellen eines elektrisch leitenden kontakts auf einer solarzelle
US14/373,951 US9666751B2 (en) 2012-01-23 2013-01-22 Method for producing an electrically conductive contact on a solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012100535A DE102012100535A1 (de) 2012-01-23 2012-01-23 Verfahren zum Herstellen eines elektrisch leitenden Kontakts auf einer Solarzelle
DE102012100535.4 2012-01-23

Publications (1)

Publication Number Publication Date
WO2013110607A1 true WO2013110607A1 (de) 2013-08-01

Family

ID=47624052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/051143 WO2013110607A1 (de) 2012-01-23 2013-01-22 Verfahren zum herstellen eines elektrisch leitenden kontakts auf einer solarzelle

Country Status (5)

Country Link
US (1) US9666751B2 (de)
EP (1) EP2807676B1 (de)
CN (1) CN104247034A (de)
DE (1) DE102012100535A1 (de)
WO (1) WO2013110607A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147151A1 (de) * 2013-03-19 2014-09-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Rückseitenkontaktierte solarzelle und verfahren zu deren herstellung
WO2014149714A1 (en) * 2013-03-22 2014-09-25 3M Innovative Properties Company Solar cells and modules including conductive tapes and methods of making and using same
EP2958155A1 (de) 2014-06-20 2015-12-23 Vismunda S.r.l. Anlage und system für die automatische, waagerechte montage von photovoltaische modulen mit front-back verbindung und vormontage

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9888584B2 (en) 2014-12-31 2018-02-06 Invensas Corporation Contact structures with porous networks for solder connections, and methods of fabricating same
ES2772256T3 (es) * 2015-11-06 2020-07-07 Meyer Burger Switzerland Ag Láminas conductoras de polímero, celdas solares y métodos para producirlos
WO2018159306A1 (ja) * 2017-02-28 2018-09-07 アートビーム有限会社 太陽電池および太陽電池の製造方法
CN110383500A (zh) * 2017-02-28 2019-10-25 亚特比目有限会社 太阳能电池及太阳能电池的制造方法
JP6932659B2 (ja) * 2017-03-15 2021-09-08 アートビーム有限会社 太陽電池および太陽電池の製造方法
CN109524487B (zh) * 2018-11-26 2020-11-10 西安交通大学 具有微观圆滑棱角的绒面电池硅其及制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183527A (ja) 1989-12-13 1991-08-09 Hitachi Constr Mach Co Ltd 超音波接合装置
JPH03188180A (ja) 1989-12-18 1991-08-16 Hitachi Chem Co Ltd 導電性フイルム状接着剤,接着法,半導体装置および半導体装置の製造法
JPH0645024A (ja) 1992-07-22 1994-02-18 Hitachi Chem Co Ltd 異方導電性接着フィルム
US7264991B1 (en) 2000-10-13 2007-09-04 Bridge Semiconductor Corporation Method of connecting a conductive trace to a semiconductor chip using conductive adhesive
US20080076307A1 (en) 2006-09-13 2008-03-27 Hitachi Cable, Ltd. Connecting lead wire for a solar battery, method for fabricating same, and solar battery using the connecting lead wire
EP2003699A2 (de) 2007-06-13 2008-12-17 SCHOTT Solar GmbH Halbleiterbauelement und Verfahren zur Herstellung eines Metall-Halbleiter-Kontakts
EP2056355A1 (de) 2006-08-25 2009-05-06 Sanyo Electric Co., Ltd. Solarbatteriemodul und verfahren zur herstellung von solarbatteriemodulen
US20110048492A1 (en) * 2009-08-31 2011-03-03 Sanyo Electric Co., Ltd. Solar cell and solar cell module
DE102009044038A1 (de) 2009-09-17 2011-03-31 Schott Solar Ag Verfahren zur Herstellung eines Kontaktbereichs eines elektronischen Bauteils
US20110120752A1 (en) * 2009-11-20 2011-05-26 Hitachi Cable, Ltd. Method for fabricating a solar battery module and a wiring substrate for a solar battery
DE102010000520A1 (de) 2010-02-23 2011-08-25 SCHOTT Solar AG, 55122 Verfahren und Vorrichtung zum Aufbringen von Lot auf ein Werkstück
DE102010016814B3 (de) 2010-05-05 2011-10-06 Schott Solar Ag Verfahren und Vorrichtung zum Aufbringen von Lot auf ein Werkstück

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10313126A (ja) * 1997-05-13 1998-11-24 Sharp Corp 太陽電池素子及びその電極の表面処理方法及び太陽電池モジュール
CN100541821C (zh) * 2006-09-13 2009-09-16 日立电线株式会社 太阳能电池用连接引线和它的制造方法及太阳能电池
JP5115553B2 (ja) * 2007-05-09 2013-01-09 日立化成工業株式会社 導電体接続用部材、接続構造及び太陽電池モジュール
DE102008019769A1 (de) * 2008-04-18 2009-10-22 Henkel Ag & Co. Kgaa Verfahren zum Verkleben eines ersten Bauteils mit einem zweiten Bauteil
JP6085076B2 (ja) * 2009-03-16 2017-02-22 リンテック株式会社 粘着シートおよび半導体ウエハの加工方法、半導体チップの製造方法
WO2012135052A1 (en) * 2011-03-25 2012-10-04 Kevin Michael Coakley Foil-based interconnect for rear-contact solar cells
WO2012138986A1 (en) * 2011-04-07 2012-10-11 Specialized Technology Resources, Inc Encapsulant for terrestrial photovoltaic modules

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183527A (ja) 1989-12-13 1991-08-09 Hitachi Constr Mach Co Ltd 超音波接合装置
JPH03188180A (ja) 1989-12-18 1991-08-16 Hitachi Chem Co Ltd 導電性フイルム状接着剤,接着法,半導体装置および半導体装置の製造法
JPH0645024A (ja) 1992-07-22 1994-02-18 Hitachi Chem Co Ltd 異方導電性接着フィルム
US7264991B1 (en) 2000-10-13 2007-09-04 Bridge Semiconductor Corporation Method of connecting a conductive trace to a semiconductor chip using conductive adhesive
EP2056355A1 (de) 2006-08-25 2009-05-06 Sanyo Electric Co., Ltd. Solarbatteriemodul und verfahren zur herstellung von solarbatteriemodulen
US20080076307A1 (en) 2006-09-13 2008-03-27 Hitachi Cable, Ltd. Connecting lead wire for a solar battery, method for fabricating same, and solar battery using the connecting lead wire
EP2003699A2 (de) 2007-06-13 2008-12-17 SCHOTT Solar GmbH Halbleiterbauelement und Verfahren zur Herstellung eines Metall-Halbleiter-Kontakts
US20110048492A1 (en) * 2009-08-31 2011-03-03 Sanyo Electric Co., Ltd. Solar cell and solar cell module
DE102009044038A1 (de) 2009-09-17 2011-03-31 Schott Solar Ag Verfahren zur Herstellung eines Kontaktbereichs eines elektronischen Bauteils
US20110120752A1 (en) * 2009-11-20 2011-05-26 Hitachi Cable, Ltd. Method for fabricating a solar battery module and a wiring substrate for a solar battery
DE102010000520A1 (de) 2010-02-23 2011-08-25 SCHOTT Solar AG, 55122 Verfahren und Vorrichtung zum Aufbringen von Lot auf ein Werkstück
DE102010016814B3 (de) 2010-05-05 2011-10-06 Schott Solar Ag Verfahren und Vorrichtung zum Aufbringen von Lot auf ein Werkstück

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERSOLAR, 31 May 2011 (2011-05-31)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147151A1 (de) * 2013-03-19 2014-09-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Rückseitenkontaktierte solarzelle und verfahren zu deren herstellung
WO2014149714A1 (en) * 2013-03-22 2014-09-25 3M Innovative Properties Company Solar cells and modules including conductive tapes and methods of making and using same
EP2976401A4 (de) * 2013-03-22 2016-11-16 3M Innovative Properties Co Solarzellen und module mit leitenden bändern und verfahren zur herstellung und verwendung davon
EP2958155A1 (de) 2014-06-20 2015-12-23 Vismunda S.r.l. Anlage und system für die automatische, waagerechte montage von photovoltaische modulen mit front-back verbindung und vormontage
US10186628B2 (en) 2014-06-20 2019-01-22 Vismunda Srl Apparatus for the automatic horizontal assembly of photovoltaic panels

Also Published As

Publication number Publication date
DE102012100535A1 (de) 2013-07-25
US20150050773A1 (en) 2015-02-19
EP2807676A1 (de) 2014-12-03
CN104247034A (zh) 2014-12-24
EP2807676B1 (de) 2019-10-16
US9666751B2 (en) 2017-05-30

Similar Documents

Publication Publication Date Title
EP2807676B1 (de) Verfahren zum herstellen eines elektrisch leitenden kontakts auf einer solarzelle
EP0275433B1 (de) Verfahren zur Befestigung von elektronischen Bauelementen auf einem Substrat, Folie zur Durchführung des Verfahrens und Verfahren zur Herstellung der Folie
DE112012004671B4 (de) Solarzellenmodul und Herstellungsverfahren für dieses
EP2568508A1 (de) Halbleiterbauelement und Verfahren zur Herstellung eines Metall-Halbleiter-Kontakts
EP2721646A1 (de) Verfahren zum elektrischen verbinden mehrerer solarzellen und photovoltaikmodul
EP2390904A2 (de) Verfahren zur Niedertemperatur Drucksinterverbindung zweier Verbindungspartner und hiermit hergestellte Anordnung
WO2016146323A2 (de) Chipanordnung und verfahren zur ausbildung einer kontaktverbindung
WO2010139454A2 (de) Photovoltaisches modul mit flächigem zellverbinder
WO2013067998A1 (de) Beidseitig kontaktierte halbleiterwafer-solarzelle mit oberflächenpassivierter rückseite
DE102009053416B4 (de) Verfahren zur Herstellung und Verschaltung von Solarzellenanordnungen und Solarzellenanordnung
DE102008044354B4 (de) Solarzellensystem, Solarzellenmodul und Verfahren zur Herstellung eines Solarzellensystems
EP2159847A2 (de) System aus einem rahmenlosen Dünnschichtsolarmodul und einer Befestigungsklammer
EP2737542B1 (de) Herstellungsverfahren einer solarzelle
DE102015007157A1 (de) Flächige elektrische Kontaktierung und Verfahren zu deren Herstellung
EP3392916A1 (de) Alterungsresistente aluminiumverbinder für solarzellen
DE102011083423A1 (de) Kontaktfederanordnung und Verfahren zur Herstellung derselben
DE102015107712B3 (de) Verfahren zur Herstellung eines Schaltungsträgers
DE102010024331B4 (de) Verfahren zur Verklebung eines bandförmigen Leiters mit einer Solarzelle, Anordnung mit der Verklebung und Verwendung eines Piezo-Jet-Dispensers dafür
WO2024051894A1 (de) Verfahren zur herstellung eines solarmodul-halbzeugs
DE102017204887B4 (de) Verfahren mit Nutzung eines Flüssigmetalls zur Fügung thermoelektrischer Module in einem SLID-Prozess und damit hergestellte Anordnung und Verwendung zur Fügung thermoelektrischer Module
DE102010041917B4 (de) Schaltungsanordnung und Verfahren zu deren Herstellung
DE102013204828A1 (de) Rückseitenkontaktiertes Halbleiterbauelement und Verfahren zu dessen Herstellung
DE10000834A1 (de) Verfahren zur Herstellung elektrisch leitender Verbindungen
EP3335247A1 (de) Verbundsystem zur rückseitenkontaktierung von photovoltaik-modulen
EP2561553A2 (de) Verfahren zur herstellung eines photovoltaikmoduls mit rückseitenkontaktierten halbleiterzellen und photovoltaik-modul

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13701609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14373951

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013701609

Country of ref document: EP