WO2013045218A1 - Speicherelement - Google Patents

Speicherelement Download PDF

Info

Publication number
WO2013045218A1
WO2013045218A1 PCT/EP2012/067131 EP2012067131W WO2013045218A1 WO 2013045218 A1 WO2013045218 A1 WO 2013045218A1 EP 2012067131 W EP2012067131 W EP 2012067131W WO 2013045218 A1 WO2013045218 A1 WO 2013045218A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
particle
particles
storage element
metal
Prior art date
Application number
PCT/EP2012/067131
Other languages
English (en)
French (fr)
Inventor
Katrin Benkert
Carsten Schuh
Thomas Soller
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP20120753730 priority Critical patent/EP2724401B1/de
Publication of WO2013045218A1 publication Critical patent/WO2013045218A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/801Sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/801Sintered carriers
    • H01M4/803Sintered carriers of only powdered material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a storage element for a solid electrolyte battery according to the preamble of patent claim 1.
  • Solid electrolyte batteries are constructed in the manner of a solid oxide fuel cell and additionally have ceramic SpeI ⁇ cheriana, into which particles of a metal
  • the fuel cell portion ⁇ the battery is operated in the electrolysis mode, so that hydrogen is formed which can reduce the metal oxide to each ⁇ wells associated metal.
  • the metal is again electrochemically oxidized to the corresponding oxide, for which atmospheric oxygen is used.
  • the ent ⁇ standing electrical energy can be removed from the electrodes of Bat ⁇ terie.
  • the battery is operated at relatively high temperatures of up to 900 ° C.
  • the oxidation mechanism in the discharge operation of such a battery is based primarily on cationic diffusion.
  • the present invention is therefore based on the object to provide a memory element according to the preamble of claim 1, which is particularly stable against structural changes due to metal ion diffusion and retains its useful capacity as long as possible.
  • Such a memory element for a solid electrolyte battery includes a base body of a porous matrix gesinteter ceramic particles, in which particles are formed from a ⁇ Me tall and / or a corresponding metal oxide, which measures a redox couple together, are incorporated. According to the invention, it is provided that the particles are embedded in subareas of the matrix which are separated from each other by particle-free subregions of the matrix.
  • the provision of porous, but particle-free partial regions of the matrix between the active storage composite layers or particles inhibits and controls the mass flow of the storage material, ie the metal, which arises in the course of the oxidation process in the direction of the oxygen gradient.
  • particle-containing and particle-free subregions of the matrix are arranged in the form of alternating layers. Expediently, the alternating layers each have a thickness of 0.1 mm to 2 mm.
  • Such storage elements are technically particularly easy to produce, for example, by film casting of green sheets of particle-containing and particle-free matrix material, which are stacked in the desired manner and then sintered together. Also, the infiltration of porous skeletal structures of pure matrix material, coating processes by wet chemical routes such as sol-gel processes, electrophoretic deposition, coprecipitation or the like can be used to build such storage elements.
  • the particle-containing subregions of the matrix in the form of core structures, for which in each case a particle-free subregion of the matrix forms a surrounding sheath.
  • core-shell structures can be in globular or tubular
  • the core structures preferably have a diameter of 0.1 mm to 2 mm.
  • Such structures can be prepared in a process-reliable and large ⁇ production-ready manner also, for example the deposition of fibers and subsequent thermal aftertreatment.
  • a particularly expedient system comprises particles of iron or nickel and / or the respective oxides, which show a particularly good exploitable redox behavior.
  • FIG 1 is a schematic sectional view through an embodiment of an inventive Speicherele ⁇ ments having a layer structure and a schematic sectional view through an old native embodiment of a memory element having a core-shell structure.
  • the layers 12 are formed from a porous oxide ceramic, such as zirconia.
  • oxide ceramics of the main group or subgroup metals Ver ⁇ application can find.
  • the layers 14 likewise have a matrix of a porous oxide ceramic, which may be identical to or different from the ceramic of the layers 12.
  • a porous oxide ceramic which may be identical to or different from the ceramic of the layers 12.
  • particles of a metal or the associated metal oxide are incorporated, which serve as eigentli ⁇ cher energy storage for the storage element 10.
  • such storage elements 10 are connected to a solid electrolyte fuel cell to form a unit.
  • the particles of the layers 14 are completely oxidized.
  • the fuel cell in the electric ⁇ lysemodus is operated, so that the metal oxides ⁇ caused by the hydrogen or hydrogen ions to the metal réelleoxi- be diert.
  • the particles of the layers 14 must be particularly well distributed and have a large active surface area. This raises the problem that the oxidation mode of such a fuel cell is based primarily on cationic diffusion, so that during the discharge process, the metal ions in the
  • Layers 14 migrate embedded particles in the direction of the oxygen source. This is due to the fact that the diffusion of metal ions in the reaction zone is faster than the corresponding transport of oxygen ions. Due to the corresponding mass flow towards the oxidation source, there is a decrease in the active surface area, in particular due to sintering or agglomeration of the metallic particles. To avoid this, the particle-free layers 12 are provided. In the energy storage devices 10 shown in the figures, the metal species migrate in the direction of the oxygen gradient in the course of the discharge process, ie during the oxidation, whereby the migration is inhibited or controlled by the particle-free layers 12.
  • the metal species migrate into the pores of the particle-free layers 12 and deposit there on the pore surfaces as a thin film with a high surface area, so that they are almost completely available for redox processes despite the migration. This greatly inhibits and slows down the otherwise occurring sintering and grain coarsening of the storage particles during the discharge process.
  • the storage volume available for redox processes is also retained over a higher number of redox cycles, with the kinetics of the oxidation and reduction processes also changing less during aging of the storage element 10 than in homogeneously formed cells.
  • a so-called core-shell structure according to FIG. 2 can also be provided.
  • the particle-containing Keramikmatrizes are here formed as globular or tubular structures, which in turn are completely enveloped by a pore-containing but particle-free layer 12.
  • the mechanism of controlling the diffusion of the metal species in this case is the same as in the case of layer structures according to FIG. 1.
  • Both possible structures of the memory element 10 can be constructed by means of conventional ceramic processes.
  • the lamination of green sheets made of particle-containing and particle-free KER is mikmatrix followed by joint sintering, the Infilt- ration of porous skeletal structures, tung processes alternating coating, also on wet chemical routes, Example ⁇ , in the sol-gel Process can be represented by electrophoretic deposition or coprecipitation.
  • Core-shell structures can be created by fiber deposition with subsequent thermal aftertreatment.

Abstract

Die Erfindung betrifft ein Speicherelement (10) für eine Festelektrolyt-Batterie, mit einem Grundkörper aus einer porösen Matrix gesinterter Keramikpartikel, in welche Partikel aus einem Metall und/oder einem Metalloxid, welche zusammen ein Redoxpaar bilden, eingelagert sind, wobei die Partikel in Teilbereiche (14) der Matrix eingelagert sind, welche jeweils durch partikelfreie Teilbereiche (12) der Matrix voneinander getrennt sind.

Description

Beschreibung
Speicherelement Die Erfindung betrifft ein Speicherelement für eine Fest¬ elektrolyt-Batterie nach dem Oberbegriff von Patentanspruch 1.
Festelektrolyt-Batterien sind nach Art einer Festoxidbrenn- stoffzelle aufgebaut und weisen zusätzlich keramische Spei¬ cherelemente auf, in welche Partikel aus einem Metall
und/oder einem Metalloxid eingelagert sind, wobei das Metall und das Metalloxid zusammen ein Redoxpaar bilden. Im Ladebetrieb einer derartigen Batterie wird der Brennstoff¬ zellenteil der Batterie im Elektrolysemodus betrieben, so dass Wasserstoff gebildet wird, der das Metalloxid zum je¬ weils zugeordneten Metall reduzieren kann. Zur Energieentnahme wird das Metall wieder elektrochemisch zum entsprechenden Oxid oxidiert, wozu Luftsauerstoff verwendet wird. Die ent¬ stehende elektrische Energie kann an den Elektroden der Bat¬ terie abgenommen werden. Die Batterie wird dabei bei relativ hohen Temperaturen von bis zu 900 °C betrieben. Der Oxidationsmechanismus im Entladebetrieb einer derartigen Batterie beruht vorwiegend auf kationischer Diffusion. Dies führt insbesondere beim Entladen zu einer sukzessiven Migration des Speichermetalls in Richtung der Sauerstoffquelle, da beim zugrunde liegenden Oxidationsprozess die Diffusion der Metallspezies in die Reaktionszone schneller erfolgt als der entsprechende Transport der Sauerstoffspezies . Der resultie¬ rende Massefluss auf die Oxidationsquelle hin führt zu einer kontinuierlichen Veränderung der Speicherstruktur und begünstigt die Versinterung bzw. Agglomeratbildung der ursprünglich vorhandenen reaktiven Metallpartikel. Hierdurch nimmt die aktive Oberfläche der Metallpartikel ab, was sich in einer sich kontinuierlich verändernden Lade- und Entladecharakteristik sowie in einer Abnahme der Nutzkapazität niederschlägt. Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, ein Speicherelement nach dem Oberbegriff von Patentanspruch 1 bereitzustellen, welches gegenüber strukturellen Veränderun- gen aufgrund von Metallionendiffusion besonders stabil ist und seine Nutzkapazität möglichst lange behält.
Diese Aufgabe wird durch ein Speicherelement mit den Merkma¬ len des Patentanspruchs 1 gelöst.
Ein derartiges Speicherelement für eine Festelektrolyt- Batterie umfasst einen Grundkörper aus einer porösen Matrix gesinteter Keramikpartikel, in welche Partikel aus einem Me¬ tall und/oder einem entsprechenden Metalloxid, welche zusam- men ein Redoxpaar bilden, eingelagert sind. Erfindungsgemäß ist dabei vorgesehen, dass die Partikel in Teilbereiche der Matrix eingelagert sind, welche jeweils durch partikelfreie Teilbereiche der Matrix voneinander getrennt sind. Durch das Vorsehen von porösen, aber partikelfreien Teilbereichen der Matrix zwischen den aktiven Speicherkompositschichten oder -partikeln wird der im Zuge des Oxidationspro- zesses entstehende Massefluss des Speichermaterials - also des Metalls - in Richtung des Sauerstoffgradienten gehemmt und kontrolliert.
Metallionen können in das Porennetzwerk des partikelfreien Teilbereichs diffundieren und sich dort an den Oberflächen als dünner Film mit einem hohen Oberflächenanteil abscheiden und somit weiterhin für die Redoxprozesse nahezu vollständig zur Verfügung stehen. Auch die üblicherweise auftretende zu¬ nehmende Versinterung und Kornvergröberung der Partikel aus dem Metall- und/oder Metalloxid während des Entladevorgangs wird hierdurch stark gehemmt und verlangsamt. Insgesamt wird somit Alterung und Degradation des Speicherelements vermieden bzw. vermindert. In einer bevorzugten Ausführungsform der Erfindung sind par- tikelhaltige und partikelfreie Teilbereiche der Matrix in Form von alternierenden Schichten angeordnet. Zweckmäßigerweise weisen die alternierenden Schichten dabei jeweils eine Dicke von 0,1 mm bis 2 mm auf. Derartige Speicherelemente sind technisch besonders einfach herzustellen, beispielsweise durch Folienguss von Grünfolien aus partikelhaltigem und partikelfreiem Matrixmaterial, die in der gewünschten Weise gestapelt und anschließend zusammengesintert werden. Auch die Infiltration von porösen Skelettstrukturen aus reinem Matrixmaterial, Beschichtungsverfahren über nasschemische Routen wie beispielsweise Sol-Gel-Prozesse, elektrophoretische Ab- scheidung, Kopräzipitation oder dergleichen kann genutzt werden, um derartige Speicherelemente aufzubauen.
Alternativ hierzu ist es auch möglich, die partikelhaltigen Teilbereiche der Matrix in Form von Kernstrukturen auszubilden, für welche jeweils ein partikelfreier Teilbereich der Matrix eine sie umgebende Hülle ausbildet. Solche so genannte Core-Shell-Strukturen können in globulärer oder tubulärer
Form vorliegen, wobei auch hier die Kernstrukturen vorzugsweise einen Durchmesser von 0,1 mm bis 2 mm aufweisen. Derartige Strukturen können ebenfalls auf prozesssichere und gro߬ serienfähige Weise hergestellt werden, beispielsweise über die Abscheidung von Fasern mit anschließender thermischer Nachbehandlung .
Ein besonders zweckmäßiges System umfasst Partikel aus Eisen oder Nickel und/oder den jeweiligen Oxiden, die ein besonders gut ausnutzbares Redoxverhalten zeigen.
Die keramische Matrix ist dabei vorzugsweise aus einer Oxid¬ keramik, insbesondere aus Zirkondioxid, ausgebildet. Selbst¬ verständlich können auch andere oxidische Keramiken verwendet werden, die elektrochemisch unter den Betriebsbedingungen des Speicherelements inert sind und eine gute Beständigkeit ge¬ genüber den üblichen Betriebstemperaturen in der Größenordnung von 900 °C zeigen. Im Folgenden wird die Erfindung und ihre Ausführungsformen anhand der Zeichnung näher erläutert. Es zeigen: FIG 1 eine schematische Schnittdarstellung durch ein Ausführungsbeispiel eines erfindungsgemäßen Speicherele¬ ments mit Schichtstruktur und eine schematische Schnittdarstellung durch ein alter natives Ausführungsbeispiel eines erfindungsgemäßen Speicherelements mit Core-Shell-Struktur .
Ein im Ganzen mit 10 bezeichnetes Speicherelement zum Spei¬ chern von Energie in einer Festelektrolyt-Batterie passt eine alternierende Abfolge von Schichten 12, 14. Die Schichten 12 sind dabei aus einer porösen Oxidkeramik, beispielsweise aus Zirkonoxid gebildet. Selbstverständlich können auch andere oxidische Keramiken der Haupt- oder Nebengruppenmetalle Ver¬ wendung finden.
Die Schichten 14 weisen ebenfalls eine Matrix aus einer porösen Oxidkeramik auf, die zur Keramik der Schichten 12 identisch oder auch von dieser verschieden sein kann. In die Schichten 14 sind zusätzlich Partikel aus einem Metall bzw. dem zugehörigen Metalloxid eingelagert, welche als eigentli¬ cher Energiespeicher für das Speicherelement 10 dienen.
In einer vollständigen Festelektrolyt-Batterie sind derartige Speicherelemente 10 mit einer Festelektrolyt-Brennstoffzelle zu einer Einheit verbunden. Im entladenen Zustand liegen die Partikel der Schichten 14 vollständig oxidiert vor. Zum Wie¬ deraufladen der Batterie wird die Brennstoffzelle im Elektro¬ lysemodus betrieben, so dass die Metalloxide durch entstehen¬ den Wasserstoff bzw. Wasserstoffionen zum Metall zurückoxi- diert werden.
Im Entladebetrieb, also zur Energieentnahme, werden die Me¬ tallpartikel wieder zum Metall oxidiert, wobei die freiwer- dende elektrochemische Energie an den Abgriffspolen der Bat¬ terie entnommen werden kann.
Um ein möglichst großes Speichervermögen sowie eine gute und konstante Lade- bzw. Entladekinetik sicherzustellen, müssen die Partikel der Schichten 14 besonders gut verteilt sein und eine große aktive Oberfläche aufweisen. Hierbei ergibt sich nun das Problem, dass der Oxidationsbetrieb einer derartigen Brennstoffzelle vorwiegend auf kationischer Diffusion beruht, so dass beim Entladevorgang die Metallionen der in die
Schichten 14 eingelagerten Partikel in Richtung der Sauerstoffquelle migrieren. Dies beruht darauf, dass die Diffusion der Metallionen in der Reaktionszone schneller erfolgt als der entsprechende Transport der Sauerstoffionen . Durch den entsprechenden Massefluss auf die Oxidationsquelle hin kommt es zu einer Abnahme der aktiven Oberfläche, insbesondere durch Versinterung bzw. Agglomeratbildung der metallischen Partikel . Um dies zu vermeiden, sind die partikelfreien Schichten 12 vorgesehen. In den in den Figuren gezeigten Energiespeichern 10 wandern im Zuge des Entladevorgangs, also während der Oxi- dation, die Metallspezies in Richtung des Sauerstoffgradien- ten, wobei die Wanderung durch die parikelfreien Schichten 12 gehemmt bzw. kontrolliert werden. Die Metallspezies wandern in die Poren der partikelfreien Schichten 12 ein und scheiden sich dort auf den Porenoberflächen als dünner Film mit hoher Oberfläche ab, so dass sie trotz der Migration weiter für Re- doxprozesse nahezu vollständig zur Verfügung stehen. Hier- durch wird die ansonsten stattfindende Versinterung und Korn- vergröberung der Speicherpartikel während des Entladevorgangs stark gehemmt und verlangsamt. Auch das für Redoxprozesse zur Verfügung stehende Speichervolumen bleibt über eine höhere Anzahl an Redoxzyklen erhalten, wobei sich auch während der Alterung des Speicherelements 10 die Kinetik der Oxidations- und Reduktionssprozesse weniger verändert als bei homogen ausgebildeten Zellen. Alternativ zur Schichtstruktur gemäß FIG 1 kann auch eine so genannte Core-Shell-Struktur gemäß FIG 2 vorgesehen sein. Die partikelhaltigen Keramikmatrizes sind hier als globuläre bzw. tubuläre Strukturen ausgebildet, die ihrerseits wieder von einer porenhaltigen aber partikelfreien Schicht 12 vollständig umhüllt sind. Der Mechanismus der Kontrolle der Diffusion der Metallspezies ist in diesem Fall der gleiche wie bei Schichtstrukturen gemäß FIG 1. Beide mögliche Strukturen des Speicherelements 10 können über übliche keramische Prozesse aufgebaut werden. Zum Aufbau von Schichtstrukturen eignet sich beispielsweise die Laminierung von Grünfolien aus partikelhaltiger und partikelfreier Ker- mikmatrix mit anschließendem gemeinsamen Sintern, die Infilt- ration von porösen Skelettstrukturen, alternierende Beschich- tungsprozesse, die auch auf nasschemischen Routen, beispiels¬ weise im Sol-Gel-Verfahren, durch elektrophoretische Abschei- dung oder Kopräzipitation dargestellt werden können. Core- Shell-Strukturen können zu dem durch Faserabscheidung mit an- schließender thermischer Nachbehandlung geschaffen werden.
Alle genannten Herstellungsverfahren sind prozesssicher und großserienfähig, so dass die Speicherelemente 10 auch beson¬ ders ökonomisch gefertigt werden können.

Claims

Patentansprüche
1. Speicherelement (10) für eine Festelektrolyt-Batterie, mit einem Grundkörper aus einer porösen Matrix (10) gesinterter Keramikpartikel (12, 18), in welche Partikel (16) aus einem Metall und/oder einem Metalloxid, welche zusammen ein Redox- paar bilden, eingelagert sind,
dadurch gekennzeichnet, dass
die Partikel in Teilbereiche (14) der Matrix eingelagert sind, welche jeweils durch partikelfreie Teilbereiche (12) der Matrix voneinander getrennt sind.
2. Speicherelement (10) nach Anspruch 1, dadurch gekennzeichnet, dass partikelhaltige (14) und partikelfreie Teilbereiche (12) der Matrix in Form von alternierenden Schichten angeordnet sind.
3. Speicherelement (10) nach Anspruch 2, dadurch gekennzeichnet, dass die alternierenden Schichten (12, 14) jeweils eine Dicke von 0,1 mm bis 2 mm aufweisen.
4. Speicherelement (10) nach Anspruch 1, dadurch gekennzeichnet, dass die partikelhaltigen Teilbereiche (14) der Matrix Kernstrukturen ausbilden, für welche jeweils ein partikel- freier Teilbereich (12) der Matrix eine sie umgebende Hülle ausbildet .
5. Speicherelement (10) nach Anspruch 4, dadurch gekennzeichnet, dass die Kernstrukturen (14) globulär oder tubulär aus- gebildet sind.
6. Speicherelement (10) nach Anspruch 5, dadurch gekennzeichnet, dass die Kernstrukturen (14) einen Durchmesser von
0,1 mm bis 2 mm aufweisen.
7. Speicherelement (10) nach einem der Ansprüche 1 bis 6, da¬ durch gekennzeichnet, dass die Partikel aus Eisen oder Nickel und/oder den jeweiligen Oxiden bestehen.
8. Speicherelement (10) nach einem der Ansprüche 1 bis 7, da¬ durch gekennzeichnet, dass die keramische Matrix aus einer Oxidkeramik, insbesondere aus Zr02, gebildet ist.
PCT/EP2012/067131 2011-09-27 2012-09-03 Speicherelement WO2013045218A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20120753730 EP2724401B1 (de) 2011-09-27 2012-09-03 Speicherelement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011083542.3 2011-09-27
DE102011083542A DE102011083542A1 (de) 2011-09-27 2011-09-27 Speicherelement

Publications (1)

Publication Number Publication Date
WO2013045218A1 true WO2013045218A1 (de) 2013-04-04

Family

ID=46785425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/067131 WO2013045218A1 (de) 2011-09-27 2012-09-03 Speicherelement

Country Status (3)

Country Link
EP (1) EP2724401B1 (de)
DE (1) DE102011083542A1 (de)
WO (1) WO2013045218A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013211380A1 (de) * 2013-06-18 2014-12-18 Siemens Aktiengesellschaft Speicherstruktur

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2627531A (en) * 1947-12-15 1953-02-03 Vogt Hans Porous electrode
DE4129553A1 (de) * 1990-09-10 1992-03-12 Fuji Electric Co Ltd Brennstoffzelle und verfahren zu ihrer herstellung
WO1998019351A2 (en) * 1996-10-30 1998-05-07 Nanomaterials Research Corporation Nanostructured ion conducting solid electrolytes
EP1513214A1 (de) * 2003-09-05 2005-03-09 Sulzer Hexis AG Hochtemperaturbrennstoffzelle mit stabilisierter Cermet-Struktur
US20060204830A1 (en) * 2005-03-10 2006-09-14 Ovonic Fuel Cell Company, Llc Molten carbonate fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2627531A (en) * 1947-12-15 1953-02-03 Vogt Hans Porous electrode
DE4129553A1 (de) * 1990-09-10 1992-03-12 Fuji Electric Co Ltd Brennstoffzelle und verfahren zu ihrer herstellung
WO1998019351A2 (en) * 1996-10-30 1998-05-07 Nanomaterials Research Corporation Nanostructured ion conducting solid electrolytes
EP1513214A1 (de) * 2003-09-05 2005-03-09 Sulzer Hexis AG Hochtemperaturbrennstoffzelle mit stabilisierter Cermet-Struktur
US20060204830A1 (en) * 2005-03-10 2006-09-14 Ovonic Fuel Cell Company, Llc Molten carbonate fuel cell

Also Published As

Publication number Publication date
EP2724401A1 (de) 2014-04-30
EP2724401B1 (de) 2015-05-20
DE102011083542A1 (de) 2013-03-28

Similar Documents

Publication Publication Date Title
EP2712467B1 (de) Speicherelement und verfahren zu dessen herstellung
EP2681343A2 (de) Verfahren zur herstellung eines porösen körpers und zelle einer wieder aufladbaren oxidbatterie
WO2014154406A1 (de) Energiewandlerzelle mit elektrochemischer wandlereinheit
EP2721670B1 (de) Speicherelement und verfahren zu dessen herstellung
EP2751858B1 (de) Speicherelement für eine festelektrolytbatterie
EP2724401B1 (de) Speicherelement
WO2013045211A1 (de) Speicherelement
WO2013045223A1 (de) Speicherelement für eine festelektrolyt-batterie sowie verfahren zu dessen herstellung
EP2332205A1 (de) Hochtemperatur-brennstoffzelle und zugehörige brennstoffzellenanlage
EP2850676B1 (de) Speicherstruktur einer elektrischen energiespeicherzelle
EP2810337B1 (de) Speicherstruktur einer elektrischen energiespeicherzelle
EP2850680B1 (de) Speicherstruktur einer elektrischen energiespeicherzelle
WO2013045217A1 (de) Speicherelement
DE102012202974A1 (de) Verfahren zur Herstellung einer Speicherstruktur
EP2926394B1 (de) Wiederaufladbarer elektrischer energiespeicher
DE102012223794A1 (de) Wiederaufladbarer elektrischer Energiespeicher, insbesondere in Form eines Metalloxid-Luft-Energiespeichers, mit wenigstens einem wenigstens ein Speichermaterial zur Speicherung elektrischer Energie umfassenden Speicherelement
DE102022108265A1 (de) Verfahren zur herstellung dreidimensionaler festelektrolytstrukturen
WO2015010823A1 (de) Speicherstruktur und verfahren zur herstellung
WO2014195099A1 (de) Speicherstruktur und verfahren zur regeneration eines speichermediums
WO2014195111A1 (de) Speicherstruktur
WO2014111273A1 (de) Wiederaufladbarer elektrischer energiespeicher
DE102012204171A1 (de) Speicherstruktur einer elektrischen Energiespeicherzelle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12753730

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012753730

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE