WO2013024639A1 - Negative electrode active material and negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell - Google Patents

Negative electrode active material and negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell Download PDF

Info

Publication number
WO2013024639A1
WO2013024639A1 PCT/JP2012/066984 JP2012066984W WO2013024639A1 WO 2013024639 A1 WO2013024639 A1 WO 2013024639A1 JP 2012066984 W JP2012066984 W JP 2012066984W WO 2013024639 A1 WO2013024639 A1 WO 2013024639A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
ion secondary
secondary battery
Prior art date
Application number
PCT/JP2012/066984
Other languages
French (fr)
Japanese (ja)
Inventor
須黒 雅博
緑 志村
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2013024639A1 publication Critical patent/WO2013024639A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a negative electrode active material and a negative electrode for lithium ion secondary batteries, and a lithium ion secondary battery.
  • Lithium ion secondary batteries have already been put into practical use as batteries for electronic devices such as notebook computers and mobile phones due to advantages such as high energy density, small self-discharge, and excellent long-term reliability.
  • electronic devices have been enhanced in functionality and used in electric vehicles, and development of lithium ion secondary batteries with higher energy density has been demanded. Therefore, the secondary battery using the graphite-based negative electrode material cannot satisfy the required performance.
  • Patent Document 1 describes that silicon oxide or silicate is used as a negative electrode active material of a secondary battery.
  • Patent Document 2 discloses a negative electrode for a secondary battery including an active material layer including carbon material particles capable of inserting and extracting lithium ions, metal particles capable of being alloyed with lithium, and oxide particles capable of inserting and extracting lithium ions. Is described.
  • Patent Document 3 describes a negative electrode material for a secondary battery in which the surface of particles having a structure in which silicon microcrystals are dispersed in a silicon compound is coated with carbon.
  • Patent Document 4 describes a negative electrode for a lithium secondary battery using active material particles containing silicon and / or silicon alloy having a specific average particle size and particle size distribution, and polyimide as a binder.
  • Patent Document 5 describes a negative electrode for a non-aqueous electrolyte secondary battery including an active material containing Si, polyimide and polyacrylic acid as a binder, and a carbon material as a conductive material.
  • Patent Document 6 describes that surface-modified silicon particles having an organic silane layer formed by treating the surface of silicon particles with a silane coupling agent are used as a negative electrode active material.
  • Patent Document 7 describes a negative electrode active material obtained by surface-modifying silicon particles or silicon oxide particles with terminal hydrolyzable modified silicone.
  • a lithium ion secondary battery using a metal that can be alloyed with lithium (for example, silicon) or a metal oxide that can occlude and release lithium (for example, silicon oxide) as a negative electrode active material the cycle characteristics in a high-temperature environment are reduced. It becomes a problem.
  • an object of the present invention is to provide a secondary battery having good high-temperature cycle characteristics, and to provide a negative electrode active material and a negative electrode suitable for such a secondary battery.
  • the negative electrode active material according to an aspect of the present invention is a negative electrode active material for a lithium ion secondary battery, including a metal (a) that can be alloyed with lithium, Following formula (1):
  • R 1 and R 2 each independently represent an alkoxy group
  • R 3 and R 4 each independently represent an alkyl group or a hydrogen atom
  • n and m each independently represent 0, 1 or 2
  • X represents a divalent group containing an oxyalkylene group in the main chain.
  • a negative electrode for a lithium ion secondary battery according to another embodiment of the present invention includes the negative electrode active material described above.
  • a lithium ion secondary battery according to another aspect of the present invention includes the above negative electrode.
  • An assembled battery according to another aspect of the present invention includes a plurality of the above lithium ion secondary batteries.
  • a vehicle according to another aspect of the present invention has the above-described lithium ion secondary battery or the above assembled battery mounted as a motor driving power source.
  • a method for producing a negative electrode active material for a lithium ion secondary battery in which a negative electrode active material containing a metal (a) that can be alloyed with lithium is treated with a silane compound represented by the above formula (1). Processing step.
  • a method of manufacturing a lithium ion secondary battery according to another aspect of the present invention includes: Surface treatment of the negative electrode active material by the above method, Forming a negative electrode using the negative electrode active material surface-treated; Forming the electrode pair by disposing the negative electrode and the positive electrode opposite to each other with a separator interposed therebetween; Covering the electrode pair with a laminate film.
  • the present invention it is possible to provide a secondary battery with good high-temperature cycle characteristics, and to provide a negative electrode active material and a negative electrode suitable for such a secondary battery.
  • FIG. 1 is a schematic cross-sectional view for explaining the structure of a laminated laminate type secondary battery according to an embodiment of the present invention.
  • the negative electrode active material according to the embodiment of the present invention includes a metal (a) that can be alloyed with lithium and is surface-treated with a silane compound represented by the formula (1).
  • a negative electrode formed using this negative electrode active material is suitable for a lithium ion secondary battery.
  • a lithium ion secondary battery includes a positive electrode, a separator, an electrode laminate including the negative electrode disposed to face the positive electrode with the separator interposed therebetween, an electrolytic solution, and an outer package including them. including.
  • the electrode laminate can include one or two or more electrode pairs of a positive electrode and a negative electrode.
  • the secondary battery according to the present embodiment may have a laminated laminate type structure in which such an electrode laminate is packaged with a laminate film. According to this embodiment, it is possible to provide a lithium ion secondary battery in which gas generation during operation is suppressed and cycle characteristics under a high temperature environment are good.
  • FIG. 1 is a schematic cross-sectional view showing an example of an electrode laminated body of such a laminated laminate type secondary battery.
  • the exterior body is omitted.
  • the positive electrode 3 and the negative electrode 1 are alternately stacked via the separator 2.
  • the positive electrode current collector 5 of each positive electrode 3 is welded to and electrically connected to each other at an end portion not covered with the positive electrode active material, and the positive electrode terminal 6 is welded to the welded portion.
  • a negative electrode current collector 4 included in each negative electrode 1 is welded to and electrically connected to each other at an end portion not covered with the negative electrode active material, and a negative electrode terminal 7 is welded to the welded portion.
  • This electrode laminate is accommodated in a container formed of a laminate film as an exterior body, and an electrolyte is injected and sealed.
  • a laminated battery (laminated laminated battery) having such a planar laminated structure has a smaller R (for example, a wound core with a wound structure) than a battery having a wound structure (winded battery). Therefore, there is an advantage that it is difficult to be adversely affected by the volume change of the electrode accompanying charging / discharging.
  • the electrode since the electrode is curved in the wound type battery, the structure is easily distorted when a volume change occurs in the electrode. Such distortion is particularly noticeable when a negative electrode active material having a large volume change accompanying charge / discharge, such as a silicon-based active material, is used.
  • a laminated laminate battery is suitable when an active material having a large volume change associated with charge / discharge is used.
  • planar laminated structure means that each laminated electrode is a sheet-like material, and each electrode is laminated in a planar shape (the outer peripheral edge of the sheet-like material is at the peripheral edge of the laminated structure) It is distinguished from a structure in which the electrode stack is bent or a structure in which the electrode stack is wound.
  • such a laminated laminate type battery has a problem that when the gas is generated between the electrodes, the generated gas tends to stay between the electrodes. This is because the winding type battery has tension acting on the electrodes and thus the distance between the electrodes is difficult to widen, whereas in the laminated battery, the distance between the electrodes is likely to be widened. This problem is particularly noticeable when the outer package is an aluminum laminate film. Furthermore, this problem becomes more prominent when the electrolytic solution contains a carbonate ester or a carboxylic acid ester.
  • the negative electrode active material according to the present embodiment contains a metal (a) that can be alloyed with lithium and is surface-treated with a specific silane compound.
  • the negative electrode in the present embodiment includes a current collector and an active material layer on the current collector, and the active material layer includes a binder and the above-described negative electrode active material.
  • the binder binds between the active material particles and between the active material particles and the current collector.
  • the negative electrode active material only needs to contain the metal (a), but preferably contains both the metal (a) and the metal oxide (b).
  • the negative electrode active material preferably further contains a carbon material (c).
  • the negative electrode active material may have a carbon film.
  • the metal (a) Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, or an alloy containing two or more of these is used. it can.
  • silicon (Si) or a silicon-containing metal is preferable as the metal (a), and silicon is more preferable.
  • the content of the metal (a) in the negative electrode active material is preferably 5% by mass or more, more preferably 10% by mass or more, and even more preferably 20% by mass or more from the viewpoint of obtaining a sufficient addition effect (such as charge / discharge capacity). From the viewpoint of sufficiently obtaining the effect of adding other components, etc., it is preferably 95% by mass or less, more preferably 90% by mass or less, further preferably 80% by mass or less, and can also be 50% by mass or less.
  • silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, or a composite oxide containing two or more of these can be used.
  • silicon oxide is preferably included as the metal oxide (b). This is because silicon oxide is relatively stable and does not easily react with other compounds.
  • one or more elements selected from nitrogen, boron and sulfur may be added to the metal oxide (b), for example, 0.1 to 5% by mass. By carrying out like this, the electrical conductivity of a metal oxide (b) can be improved.
  • the content of the metal oxide (b) in the negative electrode active material may be 0% by mass, but is preferably 5% by mass or more and 15% by mass from the viewpoint of obtaining a sufficient addition effect (such as charge / discharge cycle characteristics).
  • the above is more preferable, 40% by mass or more is further preferable, and 50% by mass or more can also be achieved.
  • 90 mass% or less is preferable from the point which fully obtains the addition effect of another component, etc., 80 mass% or less is more preferable, and 70 mass% or less is further more preferable.
  • the metal oxide (b) preferably has an amorphous structure in whole or in part.
  • the metal oxide (b) having an amorphous structure can suppress the volume expansion of the carbon material (c) and the metal (a), which are other negative electrode active material components, and can suppress the decomposition of the electrolytic solution.
  • the metal oxide (b) has an amorphous structure, which has some influence on the film formation at the interface between the carbon material (c) and the electrolytic solution.
  • the amorphous structure is considered to have relatively few elements due to non-uniformity such as crystal grain boundaries and defects.
  • the metal (a) is entirely or partially dispersed in the metal oxide (b).
  • the metal oxide (b) By dispersing at least a part of the metal (a) in the metal oxide (b), volume expansion as the whole negative electrode can be further suppressed, and decomposition of the electrolytic solution can also be suppressed.
  • all or part of the metal (a) is dispersed in the metal oxide (b) because of observation with a transmission electron microscope (general TEM observation) and energy dispersive X-ray spectroscopy (general). This can be confirmed by using a combination of a standard EDX measurement. Specifically, the cross section of the sample containing the metal (a) is observed, the oxygen concentration of the particles dispersed in the metal oxide (b) is measured, and the metal (a) constituting the particles is It can be confirmed that it is not an oxide.
  • the metal oxide (b) is preferably an oxide of a metal constituting the metal (a). More preferably, the metal (a) is simple silicon and the metal oxide (b) is silicon oxide.
  • the mass ratio (a / b) of the metal (a) and the metal oxide (b) in the negative electrode active material is not particularly limited. Can be set in the range of 5/95 to 90/10, can be set in the range of 10/90 to 80/20, and can be set in the range of 30/70 to 60/40. it can.
  • carbon material (c) graphite, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite containing two or more of these can be used.
  • graphite with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a positive electrode current collector made of a metal such as copper.
  • amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
  • the content of the carbon material (c) in the negative electrode active material may be 0% by mass, but is preferably 1% by mass or more, more preferably 2% by mass or more from the viewpoint of obtaining a sufficient addition effect, and other components. From the viewpoint of sufficiently obtaining the addition effect, etc., 50% by mass or less is preferable, and 30% by mass or less is more preferable.
  • the ratio of the metal (a), the metal oxide (b), and the carbon material (c) is not particularly limited. However, it can be set according to the range of the above content rate.
  • the content ratio of the metal (a) is, for example, preferably 5% by mass or more, more preferably 10% by mass or more, and 20% by mass with respect to the total of the metal (a), the metal oxide (b), and the carbon material (c). % Or more is more preferable, 90 mass% or less is preferable, 80 mass% or less is more preferable, and it can also be set to 50 mass% or less.
  • the content ratio of the metal oxide (b) is preferably, for example, 5% by mass or more, more preferably 15% by mass or more, with respect to the total of the metal (a), the metal oxide (b), and the carbon material (c). It can also be set to 40% by mass or more, preferably 90% by mass or less, more preferably 80% by mass or less, and can also be set to 70% by mass or less.
  • the content ratio of the carbon material (c) is, for example, preferably 1% by mass or more, more preferably 2% by mass or more, with respect to the total of the metal (a), the metal oxide (b), and the carbon material (c). 50 mass% or less is preferable and 30 mass% mass% or less is more preferable.
  • the shape of the metal (a), the metal oxide (b), and the carbon material (c) is not particularly limited, but may be particulate.
  • the average particle diameter of the metal (a) is preferably smaller than the average particle diameter of the carbon material (c) and the average particle diameter of the metal oxide (b).
  • the metal (a) having a large volume change during charging and discharging has a relatively small particle size, and the metal oxide (b) and the carbon material (c) having a relatively small volume change are relatively large. Due to the particle size, dendrite formation and alloy pulverization are more effectively suppressed. In addition, during the charge / discharge process, large particles and small particles can alternately occlude and release lithium, thereby suppressing the occurrence of residual stress and residual strain.
  • the average particle diameter of the metal (a) can be, for example, 20 ⁇ m or less, preferably 15 ⁇ m or less, and can also be 10 ⁇ m or less.
  • the average particle diameter is a 50% cumulative diameter D 50 (median diameter) obtained by particle size distribution measurement by a laser diffraction scattering method.
  • the average particle diameter of the metal oxide (b) is preferably 1 ⁇ 2 or less of the average particle diameter of the carbon material (c). Moreover, it is preferable that the average particle diameter of a metal (a) is 1/2 or less of the average particle diameter of a metal oxide (b). Furthermore, the average particle diameter of the metal oxide (b) is 1 ⁇ 2 or less of the average particle diameter of the carbon material (c), and the average particle diameter of the metal (a) is the average particle diameter of the metal oxide (b). It is more preferable that it is 1/2 or less.
  • the average particle diameter of silicon oxide (b) is set to be 1 ⁇ 2 or less of the average particle diameter of graphite (c), and the average particle diameter of silicon (a) is equal to the average particle diameter of silicon oxide (b). It is preferable to make it 1/2 or less.
  • the average particle diameter of silicon (a) can be set to, for example, 20 ⁇ m or less, preferably 15 ⁇ m or less, and can also be set to 10 ⁇ m or less.
  • the negative electrode active material containing metal (a) and metal oxide (b) can be obtained, for example, by sintering metal (a) and metal oxide (b) under high temperature and reduced pressure. Or it can obtain by mixing a metal (a) and a metal oxide (b) by mechanical milling.
  • the active material thus formed can be coated with carbon. For example, there are a method of mixing and baking this active material and an organic compound, and a method of introducing this active material into a gas atmosphere of an organic compound such as methane and performing thermal CVD.
  • the negative electrode active material containing the metal (a), the metal oxide (b), and the carbon material (c) all or part of the metal oxide (b) has an amorphous structure, and all or part of the metal (a) A part of which is dispersed in the metal oxide (b) can be used.
  • a negative electrode active material can be produced, for example, by the method described in Patent Document 3 (Japanese Patent Laid-Open No. 2004-47404).
  • the metal oxide (b) is disproportionated at 900 to 1400 ° C. in an atmosphere containing an organic compound gas such as methane, and a thermal CVD process is performed.
  • the metal element in metal oxide (b) can be clustered as a metal (a), and the composite body by which the surface was coat
  • the negative electrode active material containing the metal (a), the metal oxide (b), and the carbon material (c) can also be produced by mixing by mechanical milling.
  • the specific surface area of the negative electrode active material is preferably 0.2 m 2 / g or more, more preferably 1.0 m 2 / g or more, still more preferably 2.0 m 2 / g or more, while 9.0 m 2 / g or less.
  • 8.0 m 2 / g or less is more preferable, and 7.0 m 2 / g or less is more preferable.
  • the specific surface area is obtained by an ordinary BET specific surface area measurement method.
  • the average particle diameter of the negative electrode active material is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, further preferably 0.2 ⁇ m or more, and on the other hand, 30 ⁇ m or less is more preferable, and 20 ⁇ m or less is more preferable.
  • the average particle diameter is 50% cumulative diameter D 50 (median diameter), and is obtained by particle size distribution measurement by a laser diffraction scattering method.
  • binder for the negative electrode examples include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polytetrafluoroethylene, polypropylene, polyethylene, Polyimide, polyamideimide, or the like can be used. Of these, polyimide or polyamideimide is preferred because of its high binding properties.
  • the amount of the binder for negative electrode to be used is preferably 5 to 25 parts by mass with respect to 100 parts by mass of the negative electrode active material, from the viewpoints of binding force and high energy density which are in a trade-off relationship.
  • the negative electrode current collector aluminum, nickel, copper, silver, and alloys thereof are preferable in view of electrochemical stability.
  • the shape include foil, flat plate, and mesh.
  • a copper foil can be used.
  • the negative electrode can be produced, for example, by forming a negative electrode active material layer containing a negative electrode active material and a negative electrode binder on a negative electrode current collector.
  • a negative electrode can be produced by preparing a slurry containing a negative electrode active material, a binder, and a solvent, applying the slurry onto a negative electrode current collector, and drying the slurry.
  • the slurry application method include a doctor blade method, a die coater method, and a dip coating method.
  • a metal thin film may be formed by a method such as vapor deposition or sputtering, and this metal thin film may be used as the negative electrode current collector.
  • the silane compound used for the surface treatment of the negative electrode active material in the present embodiment is a compound represented by the above formula (1).
  • R 1 and R 2 each independently represents an alkoxy group, preferably an alkoxy group having 1 to 4 carbon atoms, more preferably an alkoxy group having 1 to 3 carbon atoms, such as a methoxy group, an ethoxy group, or n-propoxy Group, i-propoxy group is preferable, and methoxy group and ethoxy group are more preferable.
  • R 3 and R 4 each independently represents an alkyl group or a hydrogen atom.
  • the alkyl group is preferably an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, or an i-propyl group, Group and ethyl group are more preferred.
  • X represents a divalent group containing an oxyalkylene group in the main chain.
  • the oxyalkylene group an oxyethylene group and an oxypropylene group are preferable, and an oxyethylene group is more preferable.
  • the number of oxyalkylene groups in the main chain of the divalent group X is one or more, and preferably the divalent group X has a polyoxyalkylene chain containing two or more oxyalkylene groups in the main chain. preferable.
  • the number of oxyalkylene groups in the polyoxyalkylene chain is preferably in the range of 2 to 10, more preferably in the range of 2 to 5.
  • the atom bonded to the Si atom of the divalent group X may be a carbon atom or an oxygen atom.
  • Such a divalent group X is preferably an organic chain containing an oxyalkylene group or a polyoxyalkylene group in the main chain, and each terminal of the oxyalkylene group or polyoxyalkylene group is an alkylene group (for example, a carbon number). 1 to 3) or can be bonded to the silicon atom via an oxygen atom.
  • Examples of the silane compound represented by the formula (1) include organosilicon compounds represented by the following formulas (2) to (43).
  • the method of surface treatment using a silane compound is not particularly limited, and for example, a method of surface treating Si-based inorganic particles with a normal silane coupling agent can be applied.
  • a solution in which a silane compound is dissolved in a solvent is prepared, and active material particles (or a mixture of active material particles and a solvent) are added to the solution and mixed.
  • a silane compound solution may be added and mixed in a solvent in which the active material particles are dispersed. Thereafter, filtration and drying can be performed to obtain surface-treated active material particles.
  • the solvent include lower alcohols such as methanol and ethanol, and water.
  • the mixing ratio between the silane compound and the active material particles is not particularly limited as long as the particle surface is sufficiently processed.
  • a surface treatment is performed using, for example, a 1% by mass solution of a silane compound, and this amount can be appropriately increased or decreased so as to obtain a desired effect. Determining the minimum coverage of the silane compound (m 2 / g), based on the product of the mass (g) and specific surface area of the particles of the active material particles (m 2 / g) to a value obtained by dividing this minimum coverage silane You may set the addition amount of a compound.
  • the treatment temperature can be set, for example, in the range of 10 to 40 ° C.
  • the treatment time can be set, for example, in the range of 1 to 24 hours.
  • the amount of silane compound bonded to the active material particles is such that, for example, the mass reduction rate when heated to 600 ° C. at 20 ° C./min in an air atmosphere is in the range of 0.01 to 5% by mass. Can be set.
  • the mass reduction rate is preferably 0.1% by mass or more, and more preferably 0.5% by mass or more. If this mass reduction rate is too large (that is, if the coating amount is too large), the charge transfer resistance may increase, and therefore it is preferably 5% by mass or less, more preferably 3% by mass or less.
  • This mass reduction rate can be measured using a thermal analyzer such as TGA. This mass reduction rate is the ratio (%) of the mass reduction amount when heated at 600 ° C. with respect to the mass of the sample before heating.
  • Positive electrode for example, a positive electrode having a positive electrode active material layer containing a positive electrode active material and a positive electrode binder on a positive electrode current collector can be used.
  • lithium manganate having a layered structure or spinel structure such as LiMnO 2 or Li x Mn 2 O 4 (0 ⁇ x ⁇ 2); a part of Mn of lithium manganate was replaced with another metal Lithium metal oxide; LiCoO 2 , LiNiO 2 , lithium metal oxide in which a part of these transition metals (Co, Ni) is replaced with another metal; LiNi 1/3 Co 1/3 Mn 1/3 O 2, etc. Lithium transition metal oxides whose specific transition metals do not exceed half of the total number of transition metals (atomic ratio); in these lithium transition metal oxides, mention may be made of lithium metal oxides containing Li in excess of the stoichiometric composition It is done.
  • ⁇ ⁇ 0.1 and ⁇ ⁇ 0.01 can be set.
  • a positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
  • the positive electrode binder the same negative electrode binder as that used for normal negative electrodes can be used.
  • polyvinylidene fluoride is preferable from the viewpoint of versatility and low cost.
  • the amount of the positive electrode binder used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material, from the viewpoints of binding force and energy density which are in a trade-off relationship.
  • the positive electrode current collector can be selected from the same conductive materials as the negative electrode current collector, and can be electrochemically stable.
  • Examples of the shape include foil, flat plate, and mesh. In particular, an aluminum foil can be suitably used.
  • a conductive auxiliary material may be added to the positive electrode active material layer containing the positive electrode active material for the purpose of reducing impedance.
  • the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
  • the positive electrode is prepared by, for example, preparing a slurry containing a positive electrode active material, a binder, and a solvent (and, if necessary, a conductive auxiliary material), applying the slurry onto the negative electrode current collector, and drying the slurry.
  • a positive electrode active material layer can be produced by forming a positive electrode active material layer.
  • Electrolytic Solution As the electrolytic solution used in the present embodiment, a nonaqueous electrolytic solution that is stable at the operating potential of the battery can be used.
  • a non-aqueous electrolyte an electrolyte containing a lithium salt (supporting salt) and a non-aqueous solvent that dissolves the lithium salt can be used.
  • an aprotic organic solvent such as carbonate ester (chain or cyclic carbonate) or carboxylic acid ester (chain or cyclic carboxylic acid ester) can be used.
  • Examples of the carbonate ester include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate ( EMC), chain carbonates such as dipropyl carbonate (DPC); and propylene carbonate derivatives.
  • Examples of the carboxylic acid ester include aliphatic carboxylic acid esters such as methyl formate, methyl acetate, and ethyl propionate.
  • Non-aqueous solvents can be used alone or in combination of two or more.
  • the non-aqueous electrolyte preferably further contains a fluorinated ether compound.
  • the fluorinated ether compound has a high affinity with the Si-based active material (particularly Si), and can improve cycle characteristics (particularly capacity retention rate).
  • the fluorinated ether compound may be a fluorinated chain ether compound obtained by substituting a part of hydrogen of a non-fluorinated chain ether compound with fluorine, or a part of hydrogen of a non-fluorinated cyclic ether compound with fluorine. It may be a substituted fluorinated cyclic ether compound.
  • fluorinated chain ether compound examples include fluorinated products of non-fluorinated chain ether compounds exemplified below.
  • non-fluorinated chain ether compounds include dimethyl ether, methyl ethyl ether, diethyl ether, methyl propyl ether, ethyl propyl ether, dipropyl ether, methyl butyl ether, ethyl butyl ether, propyl butyl ether, dibutyl ether, methyl pentyl ether, ethyl pentyl.
  • Chain monoether compounds such as ether, propylpentyl ether, butylpentyl ether, dipentyl ether; 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), ethoxymethoxyethane (EME), 1, 2-dipropoxyethane, propoxyethoxyethane, propoxymethoxyethane, 1,2-dibutoxyethane, butoxypropoxyethane, butoxyethoxyethane, butoxy Methoxy ethane, 1,2-pentoxy ethane, pentoxy butoxy ethane, pent propoxy ethane, pentoxy ethoxy ethane, chain diether compounds such as pentoxifylline methoxy ethane.
  • DME 1,2-dimethoxyethane
  • DEE 1,2-diethoxyethane
  • EME ethoxymethoxyethane
  • 1, 2-dipropoxyethane propoxye
  • fluorinated cyclic ether compound examples include fluorinated products of non-fluorinated cyclic ether compounds exemplified below.
  • non-fluorinated cyclic ether compound examples include ethylene oxide, propylene oxide, oxetane, tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, tetrahydropyran, 2-methyltetrahydropyran, 3-methyltetrahydropyran, 4-methyltetrahydropyran, etc.
  • a fluorinated chain ether compound having good stability is preferable, and such a fluorinated chain ether compound has the following formula: H- (CX 1 X 2 -CX 3 X 4 ) n -CH 2 O-CX 5 X 6 -CX 7 X 8 -H (In the formula, n is 1, 2, 3 or 4, and X 1 to X 8 are each independently a fluorine atom or a hydrogen atom, provided that at least one of X 1 to X 4 is a fluorine atom, At least one of X 5 to X 8 is a fluorine atom, and the atomic ratio of fluorine atoms to hydrogen atoms bonded to the fluorinated chain ether compound (total number of fluorine atoms / total number of hydrogen atoms ⁇ 1).
  • the content of such a fluorinated ether compound is preferably 10 vol% or more, more preferably 15 vol% or more based on the total amount of the nonaqueous solvent (100 vol%) from the viewpoint of obtaining a sufficient addition effect within the range not impairing the battery characteristics. More preferably, it is 75 vol% or less, more preferably 70 vol% or less, and further preferably 50 vol% or less.
  • Examples of the supporting salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) A lithium salt such as 2 .
  • the supporting salt can be used alone or in combination of two or more.
  • separator As the separator, a polyolefin film such as polypropylene or polyethylene, a porous film or a nonwoven fabric made of a fluororesin, or the like can be used. Moreover, what laminated
  • Exterior Body As the exterior body, a laminate film that is stable in an electrolytic solution and has a sufficient water vapor barrier property can be used.
  • a laminate film made of polypropylene, polyethylene or the like coated with aluminum, silica, or alumina can be used as such an exterior body.
  • a change in the volume of the battery and distortion of the electrode due to the generation of gas are more likely to occur than in a secondary battery using a metal can as the exterior body. This is because the laminate film is more easily deformed by the internal pressure of the secondary battery than the metal can.
  • the internal pressure of the battery is usually lower than atmospheric pressure, and there is no extra space inside, so when gas is generated in the battery Immediately leads to battery volume change and electrode deformation.
  • the secondary battery according to the present embodiment can suppress the occurrence of such a problem. Thereby, a laminated laminate type lithium ion secondary battery having excellent high-temperature cycle characteristics can be provided.
  • an assembled battery in which a plurality of the secondary batteries (single cells) described above are electrically connected and packed with a tube or a case.
  • the cells in the assembled battery can be connected in series, in parallel, or both.
  • the capacity and voltage can be adjusted according to the number of cells and the connection method.
  • a plurality of the assembled batteries can be connected in series or in parallel.
  • the above-mentioned secondary battery or assembled battery can be used as a power source for driving a vehicle, and can provide a vehicle with a long life and high reliability.
  • the vehicle can be applied to a hybrid vehicle, an electric vehicle, an electric motorcycle, an electric assist bicycle, and the like. It is not limited to a four-wheel vehicle or a two-wheel vehicle, and a three-wheel vehicle is also included, and the number of wheels is not limited. Furthermore, it can be applied to various power sources for moving / transporting media such as trains.
  • Example 1 Silicon particles (metal (a)) having an average particle diameter of 5 ⁇ m are immersed in a 1 wt% ethanol solution of the silane compound represented by the above formula (3) for 1 hour at room temperature, and then water is added so that the water concentration becomes 5 wt%. And stirred for 1 hour. Next, filtration was performed, and the obtained silicon particles were heated at 100 ° C. for 1 hour to obtain silicon particles surface-treated with a silane compound.
  • silicon particles and graphite (carbon material (c)) having an average particle diameter of 30 ⁇ m are weighed at a mass ratio of 90:10 (silicon: graphite) and mixed by so-called mechanical milling for 24 hours to obtain a negative electrode active material. Obtained.
  • This negative electrode slurry was applied to a copper foil having a thickness of 10 ⁇ m, dried, and further subjected to a heat treatment in a nitrogen atmosphere at 300 ° C. to obtain a negative electrode.
  • 3 layers of the obtained positive electrode and 4 layers of the negative electrode were alternately stacked via a polypropylene porous film as a separator.
  • the electrode laminate was wrapped with an aluminum laminate film as an outer package, and an electrolytic solution was injected therein, and then sealed while reducing pressure to 0.1 atm to obtain a secondary battery.
  • Example 2 to 25 A secondary battery was fabricated in the same manner as in Example 1 except that the silane compound shown in Table 1 was used instead of the silane compound of the formula (3).
  • Example 26 Polyamideimide (PAI, manufactured by Toyobo Co., Ltd., trade name: Pyromax (registered trademark)) is used instead of polyimide (PI) as the binder for the negative electrode, and the mass of the negative electrode active material and the polyamideimide is 85:15.
  • a secondary battery was fabricated in the same manner as in Example 1 except that the ratio was reduced and the mixture was mixed with n-methylpyrrolidone to obtain a negative electrode slurry.
  • Example 27 to 50 A secondary battery was made in the same manner as in Example 26 except that the silane compound shown in Table 2 was used instead of the silane compound of the formula (3).
  • Example 51 Silicon having an average particle size of 5 ⁇ m as metal (a), amorphous silicon oxide (SiOx, 0 ⁇ x ⁇ 2) having an average particle size of 13 ⁇ m as metal oxide (b), and carbon material (c) Graphite with an average particle size of 30 ⁇ m was weighed at a mass ratio of 29:61:10 and mixed for 24 hours by so-called mechanical milling to obtain a negative electrode active material.
  • a secondary battery was fabricated in the same manner as in Example 1.
  • Example 52 to 75 A secondary battery was made in the same manner as in Example 51 except that the silane compound shown in Table 3 was used instead of the silane compound of the formula (3).
  • Example 76 Polyamideimide (PAI, manufactured by Toyobo Co., Ltd., trade name: Pyromax (registered trademark)) is used instead of polyimide (PI) as a binder for the negative electrode, and the mass of the negative electrode active material and the polyamideimide is 85:15.
  • a secondary battery was fabricated in the same manner as in Example 51 except that they were reduced in weight and mixed with n-methylpyrrolidone to obtain a negative electrode slurry.
  • Example 77 to 100 A secondary battery was made in the same manner as in Example 76 except that the silane compound shown in Table 4 was used instead of the silane compound of the formula (3).
  • a secondary battery was fabricated in the same manner, and H—CF 2 CF 2 —CH 2 O—CF 2 CF 2 —H was used as the fluorinated ether compound.
  • Example 102 to 104 A secondary battery was fabricated in the same manner as in Example 101 except that the silane compound shown in Table 5 was used instead of the silane compound of the formula (3).
  • a secondary battery was fabricated in the same manner as described above.
  • As the fluorinated ether compound H—CF 2 CF 2 —CH 2 O—CF 2 CF 2 —H was used.
  • Example 106 to 108 A secondary battery was fabricated in the same manner as in Example 105 except that the silane compound shown in Table 5 was used instead of the silane compound of the formula (3).
  • a secondary battery was fabricated in the same manner as described above.
  • As the fluorinated ether compound H—CF 2 CF 2 —CH 2 O—CF 2 CF 2 —H was used.
  • Example 110 to 112 A secondary battery was made in the same manner as Example 109 except that the silane compound shown in Table 5 was used instead of the silane compound of formula (3).
  • a secondary battery was fabricated in the same manner as described above.
  • As the fluorinated ether compound H—CF 2 CF 2 —CH 2 O—CF 2 CF 2 —H was used.
  • Example 114 to 116 A secondary battery was made in the same manner as in Example 113 except that the silane compound shown in Table 5 was used instead of the silane compound of the formula (3).
  • the swelling rate was determined to be “AA” for less than 5%, “A” for 5% or more and less than 10%, “B” for 10% or more but less than 20%, and “C” for 20% or more.
  • the swelling rate of the secondary batteries of the examples at 60 ° C. is smaller than that of the secondary batteries of Comparative Examples 1 to 4, and 60% of the secondary batteries of the examples. It can be seen that the capacity retention rate at 0 ° C. is higher than that of the secondary batteries of Comparative Examples 1 to 4, and a secondary battery with good high-temperature cycle characteristics can be obtained.
  • This embodiment can be used in all industrial fields that require a power source and in industrial fields related to the transport, storage, and supply of electrical energy.
  • power sources for mobile devices such as mobile phones and laptop computers
  • power sources for electric vehicles such as electric cars, hybrid cars, electric motorcycles, electric assist bicycles, and trains
  • power sources for mobile and transport media such as satellites and submarines
  • a backup power source such as a UPS (uninterruptible power supply); a power storage facility for storing power generated by solar power generation, wind power generation, or the like.
  • UPS uninterruptible power supply

Abstract

A negative electrode active material for a lithium-ion secondary cell containing a metal capable of forming an alloy with lithium, wherein the negative electrode active material is surface-treated with a silane compound represented by formula (1) R1 3-nR3 nSi-X-SiR2 3-mR4 m (1) (where R1 and R2 each independently represent an alkoxy group; R3 and R4 each independently represent an alkyl group or a hydrogen atom; n and m each independently represent 0, 1, or 2; and X represents a divalent group containing an oxyalkylene group in the main chain).

Description

リチウムイオン二次電池用の負極活物質および負極、並びにリチウムイオン二次電池Negative electrode active material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
 本発明は、リチウムイオン二次電池用の負極活物質および負極、並びにリチウムイオン二次電池に関するものである。 The present invention relates to a negative electrode active material and a negative electrode for lithium ion secondary batteries, and a lithium ion secondary battery.
 リチウムイオン二次電池は、エネルギー密度が高く、自己放電が小さく、長期信頼性に優れる等の利点により、ノート型パソコンや携帯電話などの電子機器用の電池としてすでに実用化されている。しかし、近年では電子機器の高機能化や電気自動車への利用が進み、よりエネルギー密度の高いリチウムイオン二次電池の開発が求められている。そのため、黒鉛系負極材料を用いた二次電池では要求性能を満たすことができなくなっている。 Lithium ion secondary batteries have already been put into practical use as batteries for electronic devices such as notebook computers and mobile phones due to advantages such as high energy density, small self-discharge, and excellent long-term reliability. However, in recent years, electronic devices have been enhanced in functionality and used in electric vehicles, and development of lithium ion secondary batteries with higher energy density has been demanded. Therefore, the secondary battery using the graphite-based negative electrode material cannot satisfy the required performance.
 そこで、黒鉛系負極材料に代わる種々の負極材料が検討されている。 Therefore, various negative electrode materials that can replace graphite-based negative electrode materials have been studied.
 特許文献1には、ケイ素の酸化物またはケイ酸塩を二次電池の負極活物質に利用することが記載されている。 Patent Document 1 describes that silicon oxide or silicate is used as a negative electrode active material of a secondary battery.
 特許文献2には、リチウムイオンを吸蔵、放出し得る炭素材料粒子、リチウムと合金可能な金属粒子、リチウムイオンを吸蔵、放出し得る酸化物粒子を含む活物質層を備えた二次電池用負極が記載されている。 Patent Document 2 discloses a negative electrode for a secondary battery including an active material layer including carbon material particles capable of inserting and extracting lithium ions, metal particles capable of being alloyed with lithium, and oxide particles capable of inserting and extracting lithium ions. Is described.
 特許文献3には、ケイ素の微結晶がケイ素化合物に分散した構造を有する粒子の表面を炭素でコーティングした二次電池用負極材料が記載されている。 Patent Document 3 describes a negative electrode material for a secondary battery in which the surface of particles having a structure in which silicon microcrystals are dispersed in a silicon compound is coated with carbon.
 特許文献4には、特定の平均粒径と粒度分布をもつケイ素及び/又はケイ素合金を含む活物質粒子と、結着剤としてポリイミドを用いたリチウム二次電池用負極が記載されている。 Patent Document 4 describes a negative electrode for a lithium secondary battery using active material particles containing silicon and / or silicon alloy having a specific average particle size and particle size distribution, and polyimide as a binder.
 特許文献5には、Siを含む活物質と、結着剤としてポリイミド及びポリアクリル酸、並びに導電材として炭素材料を含む非水電解質二次電池用負極が記載されている。 Patent Document 5 describes a negative electrode for a non-aqueous electrolyte secondary battery including an active material containing Si, polyimide and polyacrylic acid as a binder, and a carbon material as a conductive material.
 特許文献6には、シリコン粒子表面をシランカップリング剤で処理することにより形成される有機シラン層を有する表面修飾シリコン粒子を負極活物質として用いることが記載されている。 Patent Document 6 describes that surface-modified silicon particles having an organic silane layer formed by treating the surface of silicon particles with a silane coupling agent are used as a negative electrode active material.
 特許文献7には、シリコン粒子または酸化シリコン粒子を末端加水分解性変性シリコーンで表面修飾されてなる負極活物質が記載されている。 Patent Document 7 describes a negative electrode active material obtained by surface-modifying silicon particles or silicon oxide particles with terminal hydrolyzable modified silicone.
特開平6-325765号公報JP-A-6-325765 特開2003-123740号公報JP 2003-123740 A 特開2004-47404号公報JP 2004-47404 A 特開2004-22433号公報Japanese Patent Laid-Open No. 2004-22433 特開2007-95670号公報JP 2007-95670 A 特開2011-11928号公報JP 2011-11928 A 特開2011-14298号公報JP 2011-14298 A
 リチウムと合金可能な金属(例えばシリコン)やリチウムを吸蔵放出できる金属酸化物(例えばシリコン酸化物)を負極活物質として用いたリチウムイオン二次電池においては、高温環境下でのサイクル特性の低下が問題となる。 In a lithium ion secondary battery using a metal that can be alloyed with lithium (for example, silicon) or a metal oxide that can occlude and release lithium (for example, silicon oxide) as a negative electrode active material, the cycle characteristics in a high-temperature environment are reduced. It becomes a problem.
 そこで、本発明の目的は、高温サイクル特性が良好な二次電池を提供することにあり、また、このような二次電池に好適な負極活物質および負極を提供することにある。 Therefore, an object of the present invention is to provide a secondary battery having good high-temperature cycle characteristics, and to provide a negative electrode active material and a negative electrode suitable for such a secondary battery.
 本発明の一態様による負極活物質は、リチウムと合金可能な金属(a)を含む、リチウムイオン二次電池用の負極活物質であって、
 下記式(1):
The negative electrode active material according to an aspect of the present invention is a negative electrode active material for a lithium ion secondary battery, including a metal (a) that can be alloyed with lithium,
Following formula (1):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、R及びRはそれぞれ独立にアルコキシ基を示し、R及びRはそれぞれ独立にアルキル基又は水素原子を示し、n及びmはそれぞれ独立に0,1又は2を示し、Xはオキシアルキレン基を主鎖内に含む2価基を示す。)
で示されるシラン化合物で表面処理されている。
(Wherein R 1 and R 2 each independently represent an alkoxy group, R 3 and R 4 each independently represent an alkyl group or a hydrogen atom, n and m each independently represent 0, 1 or 2, X represents a divalent group containing an oxyalkylene group in the main chain.)
It is surface-treated with a silane compound represented by
 本発明の他の態様によるリチウムイオン二次電池用負極は、上記の負極活物質を含む。 A negative electrode for a lithium ion secondary battery according to another embodiment of the present invention includes the negative electrode active material described above.
 本発明の他の態様によるリチウムイオン二次電池は、上記の負極を含む。 A lithium ion secondary battery according to another aspect of the present invention includes the above negative electrode.
 本発明の他の態様による組電池は、上記のリチウムイオン二次電池を複数含む。 An assembled battery according to another aspect of the present invention includes a plurality of the above lithium ion secondary batteries.
 本発明の他の態様による車両は、上記のリチウムイオン二次電池、または上記の組電池をモータ駆動用電源として搭載している。 A vehicle according to another aspect of the present invention has the above-described lithium ion secondary battery or the above assembled battery mounted as a motor driving power source.
 本発明の他の態様によるリチウムイオン二次電池用負極活物質の製造方法は、リチウムと合金可能な金属(a)を含む負極活物質を、上記の式(1)で示されるシラン化合物で表面処理する工程を含む。 According to another aspect of the present invention, there is provided a method for producing a negative electrode active material for a lithium ion secondary battery, in which a negative electrode active material containing a metal (a) that can be alloyed with lithium is treated with a silane compound represented by the above formula (1). Processing step.
 本発明の他の態様によるリチウムイオン二次電池の製造方法は、
 上記の方法により負極活物質を表面処理する工程と、
 表面処理された前記負極活物質を用いて負極を形成する工程と、
 前記負極と正極をセパレータを介して対向配置して電極対を形成する工程と、
 前記電極対をラミネートフィルムにより外装する工程とを含む。
A method of manufacturing a lithium ion secondary battery according to another aspect of the present invention includes:
Surface treatment of the negative electrode active material by the above method,
Forming a negative electrode using the negative electrode active material surface-treated;
Forming the electrode pair by disposing the negative electrode and the positive electrode opposite to each other with a separator interposed therebetween;
Covering the electrode pair with a laminate film.
 本発明の実施形態によれば、高温サイクル特性が良好な二次電池を提供でき、また、このような二次電池に好適な負極活物質及び負極を提供できる。 According to the embodiment of the present invention, it is possible to provide a secondary battery with good high-temperature cycle characteristics, and to provide a negative electrode active material and a negative electrode suitable for such a secondary battery.
本発明の実施形態による積層ラミネート型の二次電池の構造を説明するための模式的断面図である。1 is a schematic cross-sectional view for explaining the structure of a laminated laminate type secondary battery according to an embodiment of the present invention.
 以下、本発明の実施形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 本発明の実施形態による負極活物質は、リチウムと合金可能な金属(a)を含み、式(1)で示されるシラン化合物によって表面処理されたものである。この負極活物質を用いて形成した負極は、リチウムイオン二次電池に好適である。 The negative electrode active material according to the embodiment of the present invention includes a metal (a) that can be alloyed with lithium and is surface-treated with a silane compound represented by the formula (1). A negative electrode formed using this negative electrode active material is suitable for a lithium ion secondary battery.
 本発明の他の実施形態によるリチウムイオン二次電池は、正極、セパレータ及びこのセパレータを介して正極と対向配置された前記負極を含む電極積層体と、電解液と、これらを内包する外装体とを含む。この外装体からなる一つの容器内において、この電極積層体は、正極と負極の電極対を一つ又は二つ以上を含むことができる。本実施形態による二次電池は、このような電極積層体をラミネートフィルムで外装した積層ラミネート型構造を有することができる。本実施形態によれば、動作時のガス発生が抑えられ、高温環境下でのサイクル特性が良好なリチウムイオン二次電池を提供することができる。 A lithium ion secondary battery according to another embodiment of the present invention includes a positive electrode, a separator, an electrode laminate including the negative electrode disposed to face the positive electrode with the separator interposed therebetween, an electrolytic solution, and an outer package including them. including. In one container made of the outer package, the electrode laminate can include one or two or more electrode pairs of a positive electrode and a negative electrode. The secondary battery according to the present embodiment may have a laminated laminate type structure in which such an electrode laminate is packaged with a laminate film. According to this embodiment, it is possible to provide a lithium ion secondary battery in which gas generation during operation is suppressed and cycle characteristics under a high temperature environment are good.
 図1は、このような積層ラミネート型の二次電池の電極積層体の一例を示す模式的断面図である。図1においては、外装体を省略している。正極3と負極1は、セパレータ2を介して交互に積み重ねられている。各正極3が有する正極集電体5は、正極活物質に覆われていない端部で互いに溶接されて電気的に接続され、さらにその溶接箇所に正極端子6が溶接されている。各負極1が有する負極集電体4は、負極活物質に覆われていない端部で互いに溶接されて電気的に接続され、さらにその溶接箇所に負極端子7が溶接されている。この電極積層体は、外装体としてのラミネートフィルムで形成した容器内に収容され、電解液が注入され、シールされる。 FIG. 1 is a schematic cross-sectional view showing an example of an electrode laminated body of such a laminated laminate type secondary battery. In FIG. 1, the exterior body is omitted. The positive electrode 3 and the negative electrode 1 are alternately stacked via the separator 2. The positive electrode current collector 5 of each positive electrode 3 is welded to and electrically connected to each other at an end portion not covered with the positive electrode active material, and the positive electrode terminal 6 is welded to the welded portion. A negative electrode current collector 4 included in each negative electrode 1 is welded to and electrically connected to each other at an end portion not covered with the negative electrode active material, and a negative electrode terminal 7 is welded to the welded portion. This electrode laminate is accommodated in a container formed of a laminate film as an exterior body, and an electrolyte is injected and sealed.
 このような平面的な積層構造を有する積層型の電池(積層ラミネート型電池)は、捲回構造を持つ電池(捲回型電池)に比べて、Rの小さい部分(例えば捲回構造の巻き芯に近い領域や、扁平捲回構造の折り返し領域)が存在しないため、充放電に伴う電極の体積変化に対する悪影響を受けにくいという利点がある。一方、捲回型電池では電極が湾曲しているため、電極に体積変化が生じた場合にその構造が歪みやすい。このような歪みは、特に、ケイ素系活物質ように充放電に伴う体積変化が大きい負極活物質を用いた場合に顕著である。このように、捲回型電池と比較して、積層ラミネート型電池は、充放電に伴う体積変化が大きい活物質を用いる場合に適している。なお、「平面的な積層構造」とは、積層された各電極がシート状物であり、各電極が平面状のまま積層配置(シート状物の外周縁が積層構造の周端部にあるように配置)されていることを意味し、電極積層体が折り曲げられた構造や、電極積層体が捲き回された構造と区別される。 A laminated battery (laminated laminated battery) having such a planar laminated structure has a smaller R (for example, a wound core with a wound structure) than a battery having a wound structure (winded battery). Therefore, there is an advantage that it is difficult to be adversely affected by the volume change of the electrode accompanying charging / discharging. On the other hand, since the electrode is curved in the wound type battery, the structure is easily distorted when a volume change occurs in the electrode. Such distortion is particularly noticeable when a negative electrode active material having a large volume change accompanying charge / discharge, such as a silicon-based active material, is used. Thus, as compared with a wound battery, a laminated laminate battery is suitable when an active material having a large volume change associated with charge / discharge is used. In addition, “planar laminated structure” means that each laminated electrode is a sheet-like material, and each electrode is laminated in a planar shape (the outer peripheral edge of the sheet-like material is at the peripheral edge of the laminated structure) It is distinguished from a structure in which the electrode stack is bent or a structure in which the electrode stack is wound.
 しかしながら、このような積層ラミネート型電池は、電極間にガスが発生した際に、その発生したガスが電極間に滞留しやすい問題がある。これは、捲回型電池では電極に張力が働いているため電極間の間隔が広がりにくいのに対して、積層ラミネート型の電池では電極間の間隔が広がりやすいためである。外装体がアルミラミネートフィルムである場合、この問題は特に顕著となる。さらに、電解液が炭酸エステルやカルボン酸エステルを含む場合、この問題がより顕著になる。 However, such a laminated laminate type battery has a problem that when the gas is generated between the electrodes, the generated gas tends to stay between the electrodes. This is because the winding type battery has tension acting on the electrodes and thus the distance between the electrodes is difficult to widen, whereas in the laminated battery, the distance between the electrodes is likely to be widened. This problem is particularly noticeable when the outer package is an aluminum laminate film. Furthermore, this problem becomes more prominent when the electrolytic solution contains a carbonate ester or a carboxylic acid ester.
 本実施形態によれば、ガスを発生させやすい高エネルギー型の負極を用いた積層ラミネート型のリチウムイオン二次電池であっても、ガス発生が十分に抑制され、長寿命駆動が可能となる。 According to the present embodiment, even in a laminated laminate type lithium ion secondary battery using a high-energy negative electrode that easily generates gas, gas generation is sufficiently suppressed and long-life driving is possible.
 以下、本実施形態による二次電池の構成要素について順に説明する。 Hereinafter, the components of the secondary battery according to the present embodiment will be described in order.
 [1]負極および負極活物質
 本実施形態による負極活物質は、リチウムと合金可能な金属(a)を含み、特定のシラン化合物によって表面処理されたものである。
[1] Negative Electrode and Negative Electrode Active Material The negative electrode active material according to the present embodiment contains a metal (a) that can be alloyed with lithium and is surface-treated with a specific silane compound.
 本実施形態における負極は、集電体と、この集電上の活物質層とを含み、この活物質層は、結着剤と上記の負極活物質を含む。結着剤によって、活物質粒子間、活物質粒子と集電体間が結着される。 The negative electrode in the present embodiment includes a current collector and an active material layer on the current collector, and the active material layer includes a binder and the above-described negative electrode active material. The binder binds between the active material particles and between the active material particles and the current collector.
 負極活物質は、金属(a)を含んでいればよいが、金属(a)と金属酸化物(b)の両方を含むことが好ましい。負極活物質は、さらに炭素材料(c)を含んでいることが好ましい。負極活物質は、炭素被膜を有していてもよい。 The negative electrode active material only needs to contain the metal (a), but preferably contains both the metal (a) and the metal oxide (b). The negative electrode active material preferably further contains a carbon material (c). The negative electrode active material may have a carbon film.
 金属(a)としては、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、La、またはこれらの2種以上を含む合金を用いることができる。特に、金属(a)としてシリコン(Si)又はシリコン含有金属が好ましく、シリコンがより好ましい。 As the metal (a), Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, or an alloy containing two or more of these is used. it can. In particular, silicon (Si) or a silicon-containing metal is preferable as the metal (a), and silicon is more preferable.
 負極活物質中の金属(a)の含有率は、十分な添加効果(充放電容量等)を得る点から5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上がさらに好ましく、他の成分の添加効果等を十分に得る点から、95質量%以下が好ましく、90質量%以下がより好ましく、80質量%以下がさらに好ましく、50質量%以下とすることもできる。 The content of the metal (a) in the negative electrode active material is preferably 5% by mass or more, more preferably 10% by mass or more, and even more preferably 20% by mass or more from the viewpoint of obtaining a sufficient addition effect (such as charge / discharge capacity). From the viewpoint of sufficiently obtaining the effect of adding other components, etc., it is preferably 95% by mass or less, more preferably 90% by mass or less, further preferably 80% by mass or less, and can also be 50% by mass or less.
 金属酸化物(b)としては、酸化シリコン、酸化アルミニウム、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、またはこれらの二種以上を含む複合酸化物を用いることができる。特に、金属酸化物(b)として酸化シリコンを含むことが好ましい。これは、酸化シリコンは、比較的安定で他の化合物との反応を起こしにくいからである。また、金属酸化物(b)に、窒素、ホウ素およびイオウから選ばれる一種または二種以上の元素を、例えば0.1~5質量%添加することもできる。こうすることで、金属酸化物(b)の電気伝導性を向上させることができる。 As the metal oxide (b), silicon oxide, aluminum oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, or a composite oxide containing two or more of these can be used. In particular, silicon oxide is preferably included as the metal oxide (b). This is because silicon oxide is relatively stable and does not easily react with other compounds. In addition, one or more elements selected from nitrogen, boron and sulfur may be added to the metal oxide (b), for example, 0.1 to 5% by mass. By carrying out like this, the electrical conductivity of a metal oxide (b) can be improved.
 負極活物質中の金属酸化物(b)の含有率は、0質量%でも構わないが、十分な添加効果(充放電サイクル特性等)を得る点から、5質量%以上が好ましく、15質量%以上がより好ましく、40質量%以上にすることがさらに好ましく、50質量%以上にすることもできる。他の成分の添加効果等を十分に得る点から、90質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下がさらに好ましい。 The content of the metal oxide (b) in the negative electrode active material may be 0% by mass, but is preferably 5% by mass or more and 15% by mass from the viewpoint of obtaining a sufficient addition effect (such as charge / discharge cycle characteristics). The above is more preferable, 40% by mass or more is further preferable, and 50% by mass or more can also be achieved. 90 mass% or less is preferable from the point which fully obtains the addition effect of another component, etc., 80 mass% or less is more preferable, and 70 mass% or less is further more preferable.
 金属酸化物(b)は、その全部または一部がアモルファス構造を有することが好ましい。アモルファス構造の金属酸化物(b)は、他の負極活物質成分である炭素材料(c)や金属(a)の体積膨張を抑制でき、また、電解液の分解を抑制できる。このメカニズムは明確ではないが、金属酸化物(b)がアモルファス構造であることにより、炭素材料(c)と電解液の界面への皮膜形成に何らかの影響があるものと推側される。また、アモルファス構造は、結晶粒界や欠陥といった不均一性に起因する要素が比較的少ないと考えられる。なお、金属酸化物(b)の全部または一部がアモルファス構造を有することは、エックス線回折測定(一般的なXRD測定)にて確認することができる。具体的には、金属酸化物(b)がアモルファス構造を有しない場合には、金属酸化物(b)に固有のピークが観測されるが、金属酸化物(b)の全部または一部がアモルファス構造を有する場合は、金属酸化物(b)に固有のピークがブロードとなって観測される。 The metal oxide (b) preferably has an amorphous structure in whole or in part. The metal oxide (b) having an amorphous structure can suppress the volume expansion of the carbon material (c) and the metal (a), which are other negative electrode active material components, and can suppress the decomposition of the electrolytic solution. Although this mechanism is not clear, it is presumed that the metal oxide (b) has an amorphous structure, which has some influence on the film formation at the interface between the carbon material (c) and the electrolytic solution. The amorphous structure is considered to have relatively few elements due to non-uniformity such as crystal grain boundaries and defects. It can be confirmed by X-ray diffraction measurement (general XRD measurement) that all or part of the metal oxide (b) has an amorphous structure. Specifically, when the metal oxide (b) does not have an amorphous structure, a peak specific to the metal oxide (b) is observed, but all or part of the metal oxide (b) is amorphous. When it has a structure, a peak specific to the metal oxide (b) is observed as a broad.
 負極活物質が金属(a)および金属酸化物(b)を含む場合、金属(a)は、その全部または一部が金属酸化物(b)中に分散していることが好ましい。金属(a)の少なくとも一部を金属酸化物(b)中に分散させることで、負極全体としての体積膨張をより抑制することができ、電解液の分解も抑制することができる。なお、金属(a)の全部または一部が金属酸化物(b)中に分散していることは、透過型電子顕微鏡観察(一般的なTEM観察)とエネルギー分散型X線分光法測定(一般的なEDX測定)を併用することで確認することができる。具体的には、金属(a)を含むサンプルの断面を観察し、金属酸化物(b)中に分散している粒子の酸素濃度を測定し、その粒子を構成している金属(a)が酸化物となっていないことを確認することができる。 When the negative electrode active material contains a metal (a) and a metal oxide (b), it is preferable that the metal (a) is entirely or partially dispersed in the metal oxide (b). By dispersing at least a part of the metal (a) in the metal oxide (b), volume expansion as the whole negative electrode can be further suppressed, and decomposition of the electrolytic solution can also be suppressed. Note that all or part of the metal (a) is dispersed in the metal oxide (b) because of observation with a transmission electron microscope (general TEM observation) and energy dispersive X-ray spectroscopy (general). This can be confirmed by using a combination of a standard EDX measurement. Specifically, the cross section of the sample containing the metal (a) is observed, the oxygen concentration of the particles dispersed in the metal oxide (b) is measured, and the metal (a) constituting the particles is It can be confirmed that it is not an oxide.
 負極活物質が金属(a)および金属酸化物(b)を含む場合、金属酸化物(b)は、金属(a)を構成する金属の酸化物であることが好ましい。金属(a)が単体シリコンであり、金属酸化物(b)が酸化シリコンであることがより好ましい。 When the negative electrode active material contains a metal (a) and a metal oxide (b), the metal oxide (b) is preferably an oxide of a metal constituting the metal (a). More preferably, the metal (a) is simple silicon and the metal oxide (b) is silicon oxide.
 負極活物質が金属(a)と金属酸化物(b)とを含む場合、負極活物質中の金属(a)と金属酸化物(b)の質量比率(a/b)は、特に制限はないが、5/95~90/10の範囲に設定することができ、また10/90~80/20の範囲に設定することができ、さらに30/70~60/40の範囲に設定することができる。 When the negative electrode active material contains a metal (a) and a metal oxide (b), the mass ratio (a / b) of the metal (a) and the metal oxide (b) in the negative electrode active material is not particularly limited. Can be set in the range of 5/95 to 90/10, can be set in the range of 10/90 to 80/20, and can be set in the range of 30/70 to 60/40. it can.
 炭素材料(c)としては、黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブ、またはこれらの二種以上を含む複合物を用いることができる。ここで、結晶性の高い黒鉛は、電気伝導性が高く、銅などの金属からなる正極集電体との接着性および電圧平坦性が優れている。一方、結晶性の低い非晶質炭素は、体積膨張が比較的小さいため、負極全体の体積膨張を緩和する効果が高く、かつ結晶粒界や欠陥といった不均一性に起因する劣化が起きにくい。 As the carbon material (c), graphite, amorphous carbon, diamond-like carbon, carbon nanotube, or a composite containing two or more of these can be used. Here, graphite with high crystallinity has high electrical conductivity, and is excellent in adhesiveness and voltage flatness with a positive electrode current collector made of a metal such as copper. On the other hand, since amorphous carbon having low crystallinity has a relatively small volume expansion, it has a high effect of relaxing the volume expansion of the entire negative electrode, and deterioration due to non-uniformity such as crystal grain boundaries and defects hardly occurs.
 負極活物質中の炭素材料(c)の含有率は、0質量%でも構わないが、十分な添加効果を得る点から、1質量%以上が好ましく、2質量%以上がより好ましく、他の成分の添加効果等を十分に得る点から、50質量%以下が好ましく、30質量%質量%以下がより好ましい。 The content of the carbon material (c) in the negative electrode active material may be 0% by mass, but is preferably 1% by mass or more, more preferably 2% by mass or more from the viewpoint of obtaining a sufficient addition effect, and other components. From the viewpoint of sufficiently obtaining the addition effect, etc., 50% by mass or less is preferable, and 30% by mass or less is more preferable.
 負極活物質が金属(a)と金属酸化物(b)と炭素材料(c)とを含む場合、金属(a)、金属酸化物(b)および炭素材料(c)の割合に特に制限はないが、上記の含有率の範囲に従って設定することができる。金属(a)の含有割合は、金属(a)、金属酸化物(b)および炭素材料(c)の合計に対し、例えば、5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上がさらに好ましく、また、90質量%以下が好ましく、80質量%以下がより好ましく、50質量%以下に設定することもできる。金属酸化物(b)の含有割合は、金属(a)、金属酸化物(b)および炭素材料(c)の合計に対し、例えば、5質量%以上が好ましく、15質量%以上がより好ましく、40質量%以上に設定することもでき、また、90質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下に設定することもできる。炭素材料(c)の含有割合は、金属(a)、金属酸化物(b)および炭素材料(c)の合計に対し、例えば、1質量%以上が好ましく、2質量%以上がより好ましく、また、50質量%以下が好ましく、30質量%質量%以下がより好ましい。 When the negative electrode active material includes a metal (a), a metal oxide (b), and a carbon material (c), the ratio of the metal (a), the metal oxide (b), and the carbon material (c) is not particularly limited. However, it can be set according to the range of the above content rate. The content ratio of the metal (a) is, for example, preferably 5% by mass or more, more preferably 10% by mass or more, and 20% by mass with respect to the total of the metal (a), the metal oxide (b), and the carbon material (c). % Or more is more preferable, 90 mass% or less is preferable, 80 mass% or less is more preferable, and it can also be set to 50 mass% or less. The content ratio of the metal oxide (b) is preferably, for example, 5% by mass or more, more preferably 15% by mass or more, with respect to the total of the metal (a), the metal oxide (b), and the carbon material (c). It can also be set to 40% by mass or more, preferably 90% by mass or less, more preferably 80% by mass or less, and can also be set to 70% by mass or less. The content ratio of the carbon material (c) is, for example, preferably 1% by mass or more, more preferably 2% by mass or more, with respect to the total of the metal (a), the metal oxide (b), and the carbon material (c). 50 mass% or less is preferable and 30 mass% mass% or less is more preferable.
 金属(a)、金属酸化物(b)および炭素材料(c)の形状は、特に制限するものではないが、それぞれ粒子状のものを用いることができる。 The shape of the metal (a), the metal oxide (b), and the carbon material (c) is not particularly limited, but may be particulate.
 金属(a)の平均粒子径は、炭素材料(c)の平均粒子径および金属酸化物(b)の平均粒子径よりも小さいことが好ましい。このようにすれば、充放電時に伴う体積変化の大きい金属(a)が相対的に小粒径となり、体積変化の比較的小さい金属酸化物(b)や炭素材料(c)が相対的に大粒径となるため、デンドライト生成および合金の微粉化がより効果的に抑制される。また、充放電の過程で大粒径の粒と小粒径の粒子が交互にリチウムを吸蔵、放出することができ、これにより、残留応力、残留歪みの発生が抑制できる。金属(a)の平均粒子径は、例えば20μm以下とすることができ、15μm以下が好ましく、10μm以下にすることもできる。ここで平均粒径は、レーザー回折散乱法による粒度分布測定により得られる50%累積径D50(メジアン径)である。 The average particle diameter of the metal (a) is preferably smaller than the average particle diameter of the carbon material (c) and the average particle diameter of the metal oxide (b). In this way, the metal (a) having a large volume change during charging and discharging has a relatively small particle size, and the metal oxide (b) and the carbon material (c) having a relatively small volume change are relatively large. Due to the particle size, dendrite formation and alloy pulverization are more effectively suppressed. In addition, during the charge / discharge process, large particles and small particles can alternately occlude and release lithium, thereby suppressing the occurrence of residual stress and residual strain. The average particle diameter of the metal (a) can be, for example, 20 μm or less, preferably 15 μm or less, and can also be 10 μm or less. Here, the average particle diameter is a 50% cumulative diameter D 50 (median diameter) obtained by particle size distribution measurement by a laser diffraction scattering method.
 加えて、金属酸化物(b)の平均粒子径は、炭素材料(c)の平均粒子径の1/2以下であることが好ましい。また、金属(a)の平均粒子径は、金属酸化物(b)の平均粒子径の1/2以下であることが好ましい。さらに、金属酸化物(b)の平均粒子径が炭素材料(c)の平均粒子径の1/2以下であり、かつ金属(a)の平均粒子径が金属酸化物(b)の平均粒子径の1/2以下であることがより好ましい。これらの平均粒子径をこのような範囲に制御すれば、金属および合金相の体積膨脹の緩和効果をより有効に得ることができ、エネルギー密度、サイクル寿命および効率のバランスに優れた二次電池を得ることができる。より具体的には、酸化シリコン(b)の平均粒子径を黒鉛(c)の平均粒子径の1/2以下とし、シリコン(a)の平均粒子径を酸化シリコン(b)の平均粒子径の1/2以下とすることが好ましい。その際、シリコン(a)の平均粒子径は、例えば20μm以下とすることができ、15μm以下が好ましく、10μm以下にすることもできる。 In addition, the average particle diameter of the metal oxide (b) is preferably ½ or less of the average particle diameter of the carbon material (c). Moreover, it is preferable that the average particle diameter of a metal (a) is 1/2 or less of the average particle diameter of a metal oxide (b). Furthermore, the average particle diameter of the metal oxide (b) is ½ or less of the average particle diameter of the carbon material (c), and the average particle diameter of the metal (a) is the average particle diameter of the metal oxide (b). It is more preferable that it is 1/2 or less. By controlling the average particle diameter within such a range, it is possible to more effectively obtain the effect of reducing the volume expansion of the metal and alloy phases, and to produce a secondary battery with an excellent balance of energy density, cycle life and efficiency. Obtainable. More specifically, the average particle diameter of silicon oxide (b) is set to be ½ or less of the average particle diameter of graphite (c), and the average particle diameter of silicon (a) is equal to the average particle diameter of silicon oxide (b). It is preferable to make it 1/2 or less. At that time, the average particle diameter of silicon (a) can be set to, for example, 20 μm or less, preferably 15 μm or less, and can also be set to 10 μm or less.
 金属(a)と金属酸化物(b)を含む負極活物質は、例えば、金属(a)と金属酸化物(b)を高温減圧下で焼結させることにより得ることができる。あるいは、金属(a)と金属酸化物(b)をメカニカルミリングで混合することで得ることができる。このようにして形成された活物質は、炭素で被覆することができる。例えば、この活物質と有機化合物とを混合し焼成する方法や、メタン等の有機化合物のガス雰囲気下にこの活物質を導入し、熱CVDを行う方法がある。 The negative electrode active material containing metal (a) and metal oxide (b) can be obtained, for example, by sintering metal (a) and metal oxide (b) under high temperature and reduced pressure. Or it can obtain by mixing a metal (a) and a metal oxide (b) by mechanical milling. The active material thus formed can be coated with carbon. For example, there are a method of mixing and baking this active material and an organic compound, and a method of introducing this active material into a gas atmosphere of an organic compound such as methane and performing thermal CVD.
 金属(a)と金属酸化物(b)と炭素材料(c)とを含む負極活物質としては、金属酸化物(b)の全部または一部がアモルファス構造であり、金属(a)の全部または一部が金属酸化物(b)中に分散しているものを用いることができる。このような負極活物質は、例えば、特許文献3(特開2004-47404号公報)に記載されている方法で作製することができる。例えば、金属酸化物(b)をメタン等の有機化合物のガスを含む雰囲気下、900~1400℃で不均化するとともに熱CVD処理を行う。これにより、金属酸化物(b)中の金属元素が金属(a)としてナノクラスター化し、かつ表面が炭素材料(c)で被覆された複合体を得ることができる。 As the negative electrode active material containing the metal (a), the metal oxide (b), and the carbon material (c), all or part of the metal oxide (b) has an amorphous structure, and all or part of the metal (a) A part of which is dispersed in the metal oxide (b) can be used. Such a negative electrode active material can be produced, for example, by the method described in Patent Document 3 (Japanese Patent Laid-Open No. 2004-47404). For example, the metal oxide (b) is disproportionated at 900 to 1400 ° C. in an atmosphere containing an organic compound gas such as methane, and a thermal CVD process is performed. Thereby, the metal element in metal oxide (b) can be clustered as a metal (a), and the composite body by which the surface was coat | covered with the carbon material (c) can be obtained.
 金属(a)と金属酸化物(b)と炭素材料(c)とを含む負極活物質は、メカニカルミリングで混合することでも、作製することができる。 The negative electrode active material containing the metal (a), the metal oxide (b), and the carbon material (c) can also be produced by mixing by mechanical milling.
 負極活物質の比表面積は、0.2m/g以上が好ましく、1.0m/g以上がより好ましく、2.0m/g以上がさらに好ましく、一方、9.0m/g以下が好ましく、8.0m/g以下がより好ましく、7.0m/g以下がさらに好ましい。ここで、比表面積は、通常のBET比表面積測定法により得られる。 The specific surface area of the negative electrode active material is preferably 0.2 m 2 / g or more, more preferably 1.0 m 2 / g or more, still more preferably 2.0 m 2 / g or more, while 9.0 m 2 / g or less. Preferably, 8.0 m 2 / g or less is more preferable, and 7.0 m 2 / g or less is more preferable. Here, the specific surface area is obtained by an ordinary BET specific surface area measurement method.
 負極活物質の平均粒径は、0.01μm以上が好ましく、0.1μm以上がより好ましく、0.2μm以上がさらに好ましく、一方、30μm以下が好ましく、20μm以下がより好ましい。ここで、平均粒径は、50%累積径D50(メジアン径)であり、レーザー回折散乱法による粒度分布測定により得られる。 The average particle diameter of the negative electrode active material is preferably 0.01 μm or more, more preferably 0.1 μm or more, further preferably 0.2 μm or more, and on the other hand, 30 μm or less is more preferable, and 20 μm or less is more preferable. Here, the average particle diameter is 50% cumulative diameter D 50 (median diameter), and is obtained by particle size distribution measurement by a laser diffraction scattering method.
 負極用結着剤としては、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等を用いることができる。中でも、結着性が強いことから、ポリイミドまたはポリアミドイミドが好ましい。使用する負極用結着剤の量は、トレードオフの関係にある結着力と高エネルギー密度の観点から、負極活物質100質量部に対して、5~25質量部が好ましい。 Examples of the binder for the negative electrode include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polytetrafluoroethylene, polypropylene, polyethylene, Polyimide, polyamideimide, or the like can be used. Of these, polyimide or polyamideimide is preferred because of its high binding properties. The amount of the binder for negative electrode to be used is preferably 5 to 25 parts by mass with respect to 100 parts by mass of the negative electrode active material, from the viewpoints of binding force and high energy density which are in a trade-off relationship.
 負極集電体としては、電気化学的な安定性から、アルミニウム、ニッケル、銅、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。例えば、銅箔を用いることができる。 As the negative electrode current collector, aluminum, nickel, copper, silver, and alloys thereof are preferable in view of electrochemical stability. Examples of the shape include foil, flat plate, and mesh. For example, a copper foil can be used.
 負極は、例えば、負極集電体上に、負極活物質と負極用結着剤を含む負極活物質層を形成することにより作製できる。具体的には、負極活物質、結着剤及び溶媒を含むスラリーを調製し、これを負極集電体上に塗布し、乾燥することにより、負極を作製することができる。スラリーの塗布方法としては、ドクターブレード法、ダイコーター法、ディップコーティング法が挙げられる。予め負極活物質層を形成した後に、蒸着、スパッタ等の方法で金属薄膜を形成して、この金属薄膜を負極集電体としてもよい。 The negative electrode can be produced, for example, by forming a negative electrode active material layer containing a negative electrode active material and a negative electrode binder on a negative electrode current collector. Specifically, a negative electrode can be produced by preparing a slurry containing a negative electrode active material, a binder, and a solvent, applying the slurry onto a negative electrode current collector, and drying the slurry. Examples of the slurry application method include a doctor blade method, a die coater method, and a dip coating method. After forming the negative electrode active material layer in advance, a metal thin film may be formed by a method such as vapor deposition or sputtering, and this metal thin film may be used as the negative electrode current collector.
 [2]負極活物質の表面処理剤
 本実施形態における負極活物質の表面処理に用いられるシラン化合物は前記の式(1)で表される化合物である。
[2] Surface Treatment Agent for Negative Electrode Active Material The silane compound used for the surface treatment of the negative electrode active material in the present embodiment is a compound represented by the above formula (1).
 R及びRは、それぞれ独立にアルコキシ基を表し、炭素数が1~4のアルコキシ基が好ましく、炭素数1~3のアルコキシ基がより好ましく、例えば、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基が好ましく、メトキシ基、エトキシ基がより好ましい。 R 1 and R 2 each independently represents an alkoxy group, preferably an alkoxy group having 1 to 4 carbon atoms, more preferably an alkoxy group having 1 to 3 carbon atoms, such as a methoxy group, an ethoxy group, or n-propoxy Group, i-propoxy group is preferable, and methoxy group and ethoxy group are more preferable.
 R及びRは、それぞれ独立にアルキル基又は水素原子を表す。このアルキル基は、炭素数1~4のアルキル基が好ましく、炭素数の1~3のアルキル基がより好ましく、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基が好ましく、メチル基、エチル基がより好ましい。 R 3 and R 4 each independently represents an alkyl group or a hydrogen atom. The alkyl group is preferably an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, or an i-propyl group, Group and ethyl group are more preferred.
 Xは、オキシアルキレン基を主鎖内に含む2価基を示す。オキシアルキレン基としては、オキシエチレン基、オキシプロピレン基が好ましく、オキシエチレン基がより好ましい。2価基Xの主鎖中のオキシアルキレン基の数は一つ以上であり、好ましくは、2価基Xが、オキシアルキレン基を二つ以上含むポリオキシアルキレン鎖を主鎖中に有することが好ましい。このポリオキシアルキレン鎖中のオキシアルキレン基の数は2~10の範囲が好ましく、2~5の範囲がより好ましい。2価基Xの、Si原子と結合する原子は、炭素原子であっても、酸素原子であってもよい。このような2価基Xは、オキシアルキレン基またはポリオキシアルキレン基を主鎖に含む有機鎖であることが好ましく、このオキシアルキレン基またはポリオキシアルキレン基の各末端は、アルキレン基(例えば炭素数1~3)または酸素原子を介してケイ素原子に結合することができる。 X represents a divalent group containing an oxyalkylene group in the main chain. As the oxyalkylene group, an oxyethylene group and an oxypropylene group are preferable, and an oxyethylene group is more preferable. The number of oxyalkylene groups in the main chain of the divalent group X is one or more, and preferably the divalent group X has a polyoxyalkylene chain containing two or more oxyalkylene groups in the main chain. preferable. The number of oxyalkylene groups in the polyoxyalkylene chain is preferably in the range of 2 to 10, more preferably in the range of 2 to 5. The atom bonded to the Si atom of the divalent group X may be a carbon atom or an oxygen atom. Such a divalent group X is preferably an organic chain containing an oxyalkylene group or a polyoxyalkylene group in the main chain, and each terminal of the oxyalkylene group or polyoxyalkylene group is an alkylene group (for example, a carbon number). 1 to 3) or can be bonded to the silicon atom via an oxygen atom.
 式(1)で表されるシラン化合物として、下記の式(2)~(43)で表される有機ケイ素化合物が挙げられる。 Examples of the silane compound represented by the formula (1) include organosilicon compounds represented by the following formulas (2) to (43).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 シラン化合物を用いた表面処理の方法は、特に制限されず、例えば通常のシランカップリング剤でSi系無機粒子を表面処理する方法を適用できる。例えば、シラン化合物を溶媒に溶解した溶液を調製し、この溶液に活物質粒子(あるいは活物質粒子と溶媒との混合物)を添加し、混合する。あるいは、活物質粒子が分散する溶媒中にシラン化合物の溶液を添加し、混合してもよい。その後、濾過、乾燥を行って表面処理された活物質粒子を得ることができる。この溶剤としては、メタノール、エタノール等の低級アルコールや水が挙げられる。シラン化合物と活物質粒子との混合比は、粒子表面が十分に処理される比率であれば特に制限されない。シラン化合物の例えば1質量%溶液を用いて表面処理を行い、この量を適宜増減して所望の効果が得られる量に設定することができる。シラン化合物の最小被覆面積(m/g)を求め、活物質粒子の質量(g)と粒子の比表面積(m/g)との積をこの最小被覆面積で除した値に基づいてシラン化合物の添加量を設定してもよい。処理温度は、例えば10~40℃の範囲に設定でき、処理時間は、例えば1~24時間の範囲に設定することができる。 The method of surface treatment using a silane compound is not particularly limited, and for example, a method of surface treating Si-based inorganic particles with a normal silane coupling agent can be applied. For example, a solution in which a silane compound is dissolved in a solvent is prepared, and active material particles (or a mixture of active material particles and a solvent) are added to the solution and mixed. Alternatively, a silane compound solution may be added and mixed in a solvent in which the active material particles are dispersed. Thereafter, filtration and drying can be performed to obtain surface-treated active material particles. Examples of the solvent include lower alcohols such as methanol and ethanol, and water. The mixing ratio between the silane compound and the active material particles is not particularly limited as long as the particle surface is sufficiently processed. A surface treatment is performed using, for example, a 1% by mass solution of a silane compound, and this amount can be appropriately increased or decreased so as to obtain a desired effect. Determining the minimum coverage of the silane compound (m 2 / g), based on the product of the mass (g) and specific surface area of the particles of the active material particles (m 2 / g) to a value obtained by dividing this minimum coverage silane You may set the addition amount of a compound. The treatment temperature can be set, for example, in the range of 10 to 40 ° C., and the treatment time can be set, for example, in the range of 1 to 24 hours.
 活物質粒子に結合したシラン化合物の量(被覆量)は、例えば、空気雰囲気中にて600℃まで20℃/分で加熱したときの質量減少率が、0.01~5質量%の範囲に設定することができる。より十分な被覆効果を得る点から、この質量減少率は0.1質量%以上が好ましく、0.5質量%以上がより好ましい。この質量減少率が大きすぎると(すなわち被覆量が多すぎると)、電荷移動抵抗が増大する虞があるため、5質量%以下が好ましく、3質量%以下がより好ましい。この質量減少率の測定は、TGA等の熱分析装置を用いて行うことができる。この質量減少率は、加熱前の試料の質量に対する600℃加熱時の質量減少量の比率(%)である。 The amount of silane compound bonded to the active material particles (covering amount) is such that, for example, the mass reduction rate when heated to 600 ° C. at 20 ° C./min in an air atmosphere is in the range of 0.01 to 5% by mass. Can be set. In terms of obtaining a more sufficient coating effect, the mass reduction rate is preferably 0.1% by mass or more, and more preferably 0.5% by mass or more. If this mass reduction rate is too large (that is, if the coating amount is too large), the charge transfer resistance may increase, and therefore it is preferably 5% by mass or less, more preferably 3% by mass or less. This mass reduction rate can be measured using a thermal analyzer such as TGA. This mass reduction rate is the ratio (%) of the mass reduction amount when heated at 600 ° C. with respect to the mass of the sample before heating.
 [3]正極
 正極は、例えば、正極活物質と正極用結着剤を含む正極活物質層が正極集電体上に設けられたものを用いることができる。
[3] Positive electrode As the positive electrode, for example, a positive electrode having a positive electrode active material layer containing a positive electrode active material and a positive electrode binder on a positive electrode current collector can be used.
 正極活物質としては、LiMnO、LiMn(0<x<2)等の層状構造またはスピネル構造を有するマンガン酸リチウム;マンガン酸リチウムのMnの一部を他の金属で置き換えたリチウム金属酸化物;LiCoO、LiNiO、これらの遷移金属(Co、Ni)の一部を他の金属で置き換えたリチウム金属酸化物;LiNi1/3Co1/3Mn1/3などの特定の遷移金属が遷移金属全体の半数(原子数比)を超えないリチウム遷移金属酸化物;これらのリチウム遷移金属酸化物において化学量論組成よりもLiを過剰に含むリチウム金属酸化物が挙げられる。具体的には、LiαNiβCoγAlδ(0.8≦α≦1.2、β+γ+δ=1、0.5<β、0<γ、0<δ)、又はLiαNiβCoγMnδ(0.8≦α≦1.2、β+γ+δ=1、0.5<β、0<γ、0<δ)が挙げられる。これらのリチウム金属酸化物において、γ≧0.1、δ≧0.01に設定できる。特に、LiαNiβCoγAlδ(1≦α≦1.2、β+γ+δ=1、β≧0.7、γ≦0.2)、又はLiαNiβCoγMnδ(1≦α≦1.2、β+γ+δ=1、β≧0.6、γ≦0.2)が好ましい。正極活物質は、一種を単独で、または二種以上を組み合わせて使用することができる。 As a positive electrode active material, lithium manganate having a layered structure or spinel structure such as LiMnO 2 or Li x Mn 2 O 4 (0 <x <2); a part of Mn of lithium manganate was replaced with another metal Lithium metal oxide; LiCoO 2 , LiNiO 2 , lithium metal oxide in which a part of these transition metals (Co, Ni) is replaced with another metal; LiNi 1/3 Co 1/3 Mn 1/3 O 2, etc. Lithium transition metal oxides whose specific transition metals do not exceed half of the total number of transition metals (atomic ratio); in these lithium transition metal oxides, mention may be made of lithium metal oxides containing Li in excess of the stoichiometric composition It is done. Specifically, Li α Ni β Co γ Al δ O 2 (0.8 ≦ α ≦ 1.2, β + γ + δ = 1, 0.5 <β, 0 <γ, 0 <δ), or Li α Ni β Co γ Mn δ O 2 (0.8 ≦ α ≦ 1.2, β + γ + δ = 1, 0.5 <β, 0 <γ, 0 <δ). In these lithium metal oxides, γ ≧ 0.1 and δ ≧ 0.01 can be set. In particular, Li α Ni β Co γ Al δ O 2 (1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.7, γ ≦ 0.2), or Li α Ni β Co γ Mn δ O 2 ( 1 ≦ α ≦ 1.2, β + γ + δ = 1, β ≧ 0.6, γ ≦ 0.2) are preferable. A positive electrode active material can be used individually by 1 type or in combination of 2 or more types.
 正極用結着剤としては、通常の負極用結着剤と同様のものを用いることができる。中でも、汎用性や低コストの観点から、ポリフッ化ビニリデンが好ましい。使用する正極用結着剤の量は、トレードオフの関係にある結着力とエネルギー密度の観点から、正極活物質100質量部に対して、2~10質量部が好ましい。 As the positive electrode binder, the same negative electrode binder as that used for normal negative electrodes can be used. Among these, polyvinylidene fluoride is preferable from the viewpoint of versatility and low cost. The amount of the positive electrode binder used is preferably 2 to 10 parts by mass with respect to 100 parts by mass of the positive electrode active material, from the viewpoints of binding force and energy density which are in a trade-off relationship.
 正極集電体としては、負極集電体と同様なもの導電材料から選択することができ、電気化学的に安定なものを用いることができる。その形状としては、箔、平板状、メッシュ状のものが挙げられる。特に、アルミ箔を好適に用いることができる。 The positive electrode current collector can be selected from the same conductive materials as the negative electrode current collector, and can be electrochemically stable. Examples of the shape include foil, flat plate, and mesh. In particular, an aluminum foil can be suitably used.
 正極活物質を含む正極活物質層には、インピーダンスを低下させる目的で、導電補助材を添加してもよい。導電補助材としては、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子が挙げられる。 A conductive auxiliary material may be added to the positive electrode active material layer containing the positive electrode active material for the purpose of reducing impedance. Examples of the conductive auxiliary material include carbonaceous fine particles such as graphite, carbon black, and acetylene black.
 正極は、例えば、正極活物質、結着剤及び溶媒(さらに必要により導電補助材)を含むスラリーを調製し、これを負極集電体上に塗布し、乾燥することにより、正極集電体上に正極活物質層を形成することにより作製できる。 The positive electrode is prepared by, for example, preparing a slurry containing a positive electrode active material, a binder, and a solvent (and, if necessary, a conductive auxiliary material), applying the slurry onto the negative electrode current collector, and drying the slurry. Can be produced by forming a positive electrode active material layer.
 [4]電解液
 本実施形態で用いる電解液は、電池の動作電位において安定な非水電解液を用いることができる。非水電解液としては、リチウム塩(支持塩)と、このリチウム塩を溶解する非水溶媒を含む電解液を用いることができる。
[4] Electrolytic Solution As the electrolytic solution used in the present embodiment, a nonaqueous electrolytic solution that is stable at the operating potential of the battery can be used. As the non-aqueous electrolyte, an electrolyte containing a lithium salt (supporting salt) and a non-aqueous solvent that dissolves the lithium salt can be used.
 非水溶媒としては、炭酸エステル(鎖状又は環状カーボネート)、カルボン酸エステル(鎖状又は環状カルボン酸エステル)等の非プロトン性有機溶媒を用いることができる。 As the non-aqueous solvent, an aprotic organic solvent such as carbonate ester (chain or cyclic carbonate) or carboxylic acid ester (chain or cyclic carboxylic acid ester) can be used.
 炭酸エステルとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類;プロピレンカーボネート誘導体が挙げられる。カルボン酸エステルとしては、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類が挙げられる。 Examples of the carbonate ester include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate ( EMC), chain carbonates such as dipropyl carbonate (DPC); and propylene carbonate derivatives. Examples of the carboxylic acid ester include aliphatic carboxylic acid esters such as methyl formate, methyl acetate, and ethyl propionate.
 これらの中でも、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(MEC)、ジプロピルカーボネート(DPC)等の炭酸エステル(環状または鎖状カーボネート類)が好ましい。 Among these, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (MEC), dipropyl carbonate Carbonic acid esters (cyclic or chain carbonates) such as (DPC) are preferred.
 非水溶媒は、一種を単独で、または二種以上を組み合わせて使用することができる。 Non-aqueous solvents can be used alone or in combination of two or more.
 非水電解液は、さらに、フッ素化エーテル化合物を含むことが好ましい。フッ素化エーテル化合物は、Si系活物質(特にSi)と親和性が高く、サイクル特性(特に容量維持率)を向上させることができる。フッ素化エーテル化合物は、非フッ素化鎖状エーテル化合物の水素の一部をフッ素で置換したフッ素化鎖状エーテル化合物であってもよいし、非フッ素化環状エーテル化合物の水素の一部をフッ素で置換したフッ素化環状エーテル化合物であってもよい。 The non-aqueous electrolyte preferably further contains a fluorinated ether compound. The fluorinated ether compound has a high affinity with the Si-based active material (particularly Si), and can improve cycle characteristics (particularly capacity retention rate). The fluorinated ether compound may be a fluorinated chain ether compound obtained by substituting a part of hydrogen of a non-fluorinated chain ether compound with fluorine, or a part of hydrogen of a non-fluorinated cyclic ether compound with fluorine. It may be a substituted fluorinated cyclic ether compound.
 フッ素化鎖状エーテル化合物は、以下に例示する非フッ素化鎖状エーテル化合物のフッ素化物が挙げられる。この非フッ素化鎖状エーテル化合物としては、ジメチルエーテル、メチルエチルエーテル、ジエチルエーテル、メチルプロピルエーテル、エチルプロピルエーテル、ジプロピルエーテル、メチルブチルエーテル、エチルブチルエーテル、プロピルブチルエーテル、ジブチルエーテル、メチルペンチルエーテル、エチルペンチルエーテル、プロピルペンチルエーテル、ブチルペンチルエーテル、ジペンチルエーテル等の鎖状モノエーテル化合物;1,2-ジメトキシエタン(DME)、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)、1,2-ジプロポキシエタン、プロポキシエトキシエタン、プロポキシメトキシエタン、1,2-ジブトキシエタン、ブトキシプロポキシエタン、ブトキシエトキシエタン、ブトキシメトキシエタン、1,2-ジペントキシエタン、ペントキシブトキシエタン、ペントキシプロポキシエタン、ペントキシエトキシエタン、ペントキシメトキシエタン等の鎖状ジエーテル化合物が挙げられる。 Examples of the fluorinated chain ether compound include fluorinated products of non-fluorinated chain ether compounds exemplified below. Examples of the non-fluorinated chain ether compounds include dimethyl ether, methyl ethyl ether, diethyl ether, methyl propyl ether, ethyl propyl ether, dipropyl ether, methyl butyl ether, ethyl butyl ether, propyl butyl ether, dibutyl ether, methyl pentyl ether, ethyl pentyl. Chain monoether compounds such as ether, propylpentyl ether, butylpentyl ether, dipentyl ether; 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), ethoxymethoxyethane (EME), 1, 2-dipropoxyethane, propoxyethoxyethane, propoxymethoxyethane, 1,2-dibutoxyethane, butoxypropoxyethane, butoxyethoxyethane, butoxy Methoxy ethane, 1,2-pentoxy ethane, pentoxy butoxy ethane, pent propoxy ethane, pentoxy ethoxy ethane, chain diether compounds such as pentoxifylline methoxy ethane.
 フッ素化環状エーテル化合物は、以下に例示する非フッ素化環状エーテル化合物のフッ素化物が挙げられる。この非フッ素化環状エーテル化合物としては、エチレンオキシド、プロピレンオキシド、オキセタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、3-メチルテトラヒドロフラン、テトラヒドロピラン、2-メチルテトラヒドロピラン、3-メチルテトラヒドロピラン、4-メチルテトラヒドロピラン等の環状モノエーテル化合物;1,3-ジオキソラン、2-メチル-1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,4-ジオキサン、2-メチル-1,4-ジオキサン、1,3-ジオキサン、2-メチル-1,3-ジオキサン、4-メチル-1,3-ジオキサン、5-メチル-1,3-ジオキサン、2,4-ジメチル-1,3-ジオキサン、4-エチル-1,3-ジオキサン等の環状ジエーテル化合物が挙げられる。 Examples of the fluorinated cyclic ether compound include fluorinated products of non-fluorinated cyclic ether compounds exemplified below. Examples of the non-fluorinated cyclic ether compound include ethylene oxide, propylene oxide, oxetane, tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, tetrahydropyran, 2-methyltetrahydropyran, 3-methyltetrahydropyran, 4-methyltetrahydropyran, etc. 1,3-dioxolane, 2-methyl-1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,4-dioxane, 2-methyl-1,4-dioxane, 1, 3-dioxane, 2-methyl-1,3-dioxane, 4-methyl-1,3-dioxane, 5-methyl-1,3-dioxane, 2,4-dimethyl-1,3-dioxane, 4-ethyl- And cyclic diether compounds such as 1,3-dioxane That.
 特に、安定性が良好なフッ素化鎖状エーテル化合物が好ましく、このようなフッ素化鎖状エーテル化合物としては、下記式:
 H-(CX-CX-CHO-CX-CX-H
(式中、nは1、2、3または4であり、X~Xはそれぞれ独立にフッ素原子または水素原子である。ただし、X~Xの少なくとも1つはフッ素原子であり、X~Xの少なくとも1つはフッ素原子である。また、本フッ素化鎖状エーテル化合物に結合しているフッ素原子と水素原子の原子比(フッ素原子の総数/水素原子の総数≧1である。)
で表される化合物が好ましく、さらに下記式:
  H-(CF-CF-CHO-CF-CF-H
(式中、nは1または2である。)
で表される化合物が好ましい。
In particular, a fluorinated chain ether compound having good stability is preferable, and such a fluorinated chain ether compound has the following formula:
H- (CX 1 X 2 -CX 3 X 4 ) n -CH 2 O-CX 5 X 6 -CX 7 X 8 -H
(In the formula, n is 1, 2, 3 or 4, and X 1 to X 8 are each independently a fluorine atom or a hydrogen atom, provided that at least one of X 1 to X 4 is a fluorine atom, At least one of X 5 to X 8 is a fluorine atom, and the atomic ratio of fluorine atoms to hydrogen atoms bonded to the fluorinated chain ether compound (total number of fluorine atoms / total number of hydrogen atoms ≧ 1). is there.)
Is preferably a compound represented by the following formula:
H— (CF 2 —CF 2 ) n —CH 2 O—CF 2 —CF 2 —H
(In the formula, n is 1 or 2.)
The compound represented by these is preferable.
 このようなフッ素化エーテル化合物の含有量は、電池特性を損なわない範囲で十分な添加効果を得る点から、非水溶媒全体(100vol%)に対して、10vol%以上が好ましく、15vol%以上がより好ましく、また、75vol%以下が好ましく、70vol%以下がより好ましく、50vol%以下がさらに好ましい。 The content of such a fluorinated ether compound is preferably 10 vol% or more, more preferably 15 vol% or more based on the total amount of the nonaqueous solvent (100 vol%) from the viewpoint of obtaining a sufficient addition effect within the range not impairing the battery characteristics. More preferably, it is 75 vol% or less, more preferably 70 vol% or less, and further preferably 50 vol% or less.
 支持塩としては、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbF、LiCFSO、LiCSO、Li(CFSO、LiN(CFSO等のリチウム塩が挙げられる。支持塩は、一種を単独で、または二種以上を組み合わせて使用することができる。 Examples of the supporting salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) A lithium salt such as 2 . The supporting salt can be used alone or in combination of two or more.
 [5]セパレータ
 セパレータとしては、ポリプロピレン、ポリエチレン等のポリオレフィンや、フッ素樹脂等からなる多孔質フィルムや不織布を用いることができる。また、セパレータとして、それらを積層したものを用いることもできる。
[5] Separator As the separator, a polyolefin film such as polypropylene or polyethylene, a porous film or a nonwoven fabric made of a fluororesin, or the like can be used. Moreover, what laminated | stacked them can also be used as a separator.
 [6]外装体
 外装体としては、電解液に安定で、かつ十分な水蒸気バリア性を持つラミネートフィルムを用いることができる。例えば、このような外装体として、アルミニウム、シリカ、アルミナをコーティングしたポリプロピレン、ポリエチレン等のラミネートフィルムを用いることができる。特に、体積膨張を抑制する観点から、アルミニウムラミネートフィルムを用いることが好ましい。
[6] Exterior Body As the exterior body, a laminate film that is stable in an electrolytic solution and has a sufficient water vapor barrier property can be used. For example, a laminate film made of polypropylene, polyethylene or the like coated with aluminum, silica, or alumina can be used as such an exterior body. In particular, it is preferable to use an aluminum laminate film from the viewpoint of suppressing volume expansion.
 外装体としてラミネートフィルムを用いた二次電池の場合、外装体として金属缶を用いた二次電池に比べて、ガスが発生に起因する電池の体積変化や電極の歪みが生じやすい。これは、ラミネートフィルムが金属缶に比べて二次電池の内圧により変形しやすいためである。さらに、外装体としてラミネートフィルムを用いた二次電池を封止する際には、通常、電池内圧を大気圧より低くし、内部に余分な空間がないため、電池内でガスが発生した場合に直ちに電池の体積変化や電極の変形につながりやすい。本実施形態による二次電池は、このような問題の発生を抑えることができる。それにより、高温サイクル特性に優れた、積層ラミネート型のリチウムイオン二次電池を提供することができる。 In the case of a secondary battery using a laminate film as an exterior body, a change in the volume of the battery and distortion of the electrode due to the generation of gas are more likely to occur than in a secondary battery using a metal can as the exterior body. This is because the laminate film is more easily deformed by the internal pressure of the secondary battery than the metal can. In addition, when sealing a secondary battery using a laminate film as an exterior body, the internal pressure of the battery is usually lower than atmospheric pressure, and there is no extra space inside, so when gas is generated in the battery Immediately leads to battery volume change and electrode deformation. The secondary battery according to the present embodiment can suppress the occurrence of such a problem. Thereby, a laminated laminate type lithium ion secondary battery having excellent high-temperature cycle characteristics can be provided.
 以上に説明した二次電池(単電池)が複数個電気的に接続されチューブやケース等によりパックされた組電池を提供することができる。組電池内の単電池の接続は、直列、並列、その両方で行うことできる。単電池の個数や接続方法により容量や電圧を調節することができる。この組電池をさらに複数、直列または並列に接続することができる。 It is possible to provide an assembled battery in which a plurality of the secondary batteries (single cells) described above are electrically connected and packed with a tube or a case. The cells in the assembled battery can be connected in series, in parallel, or both. The capacity and voltage can be adjusted according to the number of cells and the connection method. A plurality of the assembled batteries can be connected in series or in parallel.
 上記の二次電池や組電池は、車両の駆動用電源として用いることができ、高寿命で信頼性の高い車両を提供することができる。車両としては、ハイブリッド自動車、電気自動車電動バイク、電動アシスト自転車等に適用できる。4輪車や2輪車に限定されず、3輪車も含まれ、車輪の数は限定されない。さらに電車などの移動/輸送媒体の各種電源にも適用できる。 The above-mentioned secondary battery or assembled battery can be used as a power source for driving a vehicle, and can provide a vehicle with a long life and high reliability. The vehicle can be applied to a hybrid vehicle, an electric vehicle, an electric motorcycle, an electric assist bicycle, and the like. It is not limited to a four-wheel vehicle or a two-wheel vehicle, and a three-wheel vehicle is also included, and the number of wheels is not limited. Furthermore, it can be applied to various power sources for moving / transporting media such as trains.
 以下、本発明の実施形態について実施例を挙げてさらに具体的に説明する。 Hereinafter, the embodiment of the present invention will be described more specifically with reference to examples.
 (実施例1)
 平均粒径5μmのシリコン粒子(金属(a))を、上記式(3)で示されるシラン化合物の1wt%エタノール溶液に室温下1時間浸し、次いで水分濃度が5wt%になるように水を加えて1時間攪拌した。次いで、ろ過を行い、得られたシリコン粒子を100℃で1時間加熱することで、シラン化合物で表面処理されたシリコン粒子を得た。
(Example 1)
Silicon particles (metal (a)) having an average particle diameter of 5 μm are immersed in a 1 wt% ethanol solution of the silane compound represented by the above formula (3) for 1 hour at room temperature, and then water is added so that the water concentration becomes 5 wt%. And stirred for 1 hour. Next, filtration was performed, and the obtained silicon particles were heated at 100 ° C. for 1 hour to obtain silicon particles surface-treated with a silane compound.
 このシリコン粒子と、平均粒径30μmの黒鉛(炭素材料(c))とを、90:10(シリコン:黒鉛)の質量比で計量し、いわゆるメカニカルミリングで24時間混合して、負極活物質を得た。 The silicon particles and graphite (carbon material (c)) having an average particle diameter of 30 μm are weighed at a mass ratio of 90:10 (silicon: graphite) and mixed by so-called mechanical milling for 24 hours to obtain a negative electrode active material. Obtained.
 この負極活物質(平均粒径D50=5μm)とポリイミド(PI)との質量比が85:15となるように、負極活物質とポリアミック酸(宇部興産株式会社製、商品名:UワニスA)とを計量し、それらをn-メチルピロリドンと混合して、負極スラリーを調製した。この負極スラリーを厚さ10μmの銅箔に塗布した後に乾燥し、さらに窒素雰囲気300℃の熱処理を行うことで、負極を得た。 The negative electrode active material and polyamic acid (trade name: U Varnish A, manufactured by Ube Industries, Ltd.) so that the mass ratio of the negative electrode active material (average particle size D 50 = 5 μm) and polyimide (PI) is 85:15. ) And were mixed with n-methylpyrrolidone to prepare a negative electrode slurry. This negative electrode slurry was applied to a copper foil having a thickness of 10 μm, dried, and further subjected to a heat treatment in a nitrogen atmosphere at 300 ° C. to obtain a negative electrode.
 正極活物質としてのニッケル酸リチウム(LiNi0.80Co0.15Al0.15)と、導電補助材としてのカーボンブラックと、正極用結着剤としてのポリフッ化ビニリデンとを、90:5:5(活物質:導電補助剤:結着剤)の質量比で計量し、それらをn-メチルピロリドンと混合して、正極スラリーを形成した。この正極スラリーを厚さ20μmのアルミ箔(集電体)に塗布した後に乾燥し、さらにプレスすることで、正極を得た。 Lithium nickelate (LiNi 0.80 Co 0.15 Al 0.15 O 2 ) as a positive electrode active material, carbon black as a conductive auxiliary material, and polyvinylidene fluoride as a binder for the positive electrode, 90: A weight ratio of 5: 5 (active material: conductive auxiliary agent: binder) was weighed and mixed with n-methylpyrrolidone to form a positive electrode slurry. This positive electrode slurry was applied to an aluminum foil (current collector) having a thickness of 20 μm, dried, and further pressed to obtain a positive electrode.
 得られた正極の3層と負極の4層を、セパレータとしてのポリプロピレン多孔質フィルムを介して交互に重ねた。正極活物質に覆われていない正極集電体同士を溶接し、その溶接箇所にアルミニウム製の正極端子を溶接し、負極活物質に覆われていない負極集電体の端部同士を溶接し、その溶接箇所にニッケル製の負極端子を溶接し、平面状の電極積層体を得た。 3 layers of the obtained positive electrode and 4 layers of the negative electrode were alternately stacked via a polypropylene porous film as a separator. Welding the positive electrode current collectors not covered with the positive electrode active material, welding the positive electrode terminal made of aluminum to the welding location, welding the ends of the negative electrode current collector not covered with the negative electrode active material, A nickel negative electrode terminal was welded to the welded portion to obtain a planar electrode laminate.
 一方、EC/PC/DMC/EMC/DEC=20/20/20/20/20(体積比)からなる溶媒に、支持塩としてのLiPFを1mol/Lの濃度になるように溶解して、カーボネート系電解液を得た。 On the other hand, LiPF 6 as a supporting salt is dissolved in a solvent consisting of EC / PC / DMC / EMC / DEC = 20/20/20/20/20 (volume ratio) to a concentration of 1 mol / L, A carbonate-based electrolyte was obtained.
 上記電極積層体を、外装体としてのアルミニウムラミネートフィルムで包み、内部に電解液を注液した後、0.1気圧まで減圧しつつ封止することで、二次電池を得た。 The electrode laminate was wrapped with an aluminum laminate film as an outer package, and an electrolytic solution was injected therein, and then sealed while reducing pressure to 0.1 atm to obtain a secondary battery.
 (実施例2~25)
 式(3)のシラン化合物に代えて、表1に示されるシラン化合物を用いたこと以外は実施例1と同様にして二次電池を作製した。
(Examples 2 to 25)
A secondary battery was fabricated in the same manner as in Example 1 except that the silane compound shown in Table 1 was used instead of the silane compound of the formula (3).
 (実施例26)
 負極用結着剤としてのポリイミド(PI)に代えてポリアミドイミド(PAI、東洋紡績株式会社製、商品名:パイロマックス(登録商標))を用い、負極活物質とポリアミドイミドを85:15の質量比で軽量し、それらをn-メチルピロリドンと混合して、負極スラリーを得たこと以外は、実施例1と同様にして二次電池を作製した。
(Example 26)
Polyamideimide (PAI, manufactured by Toyobo Co., Ltd., trade name: Pyromax (registered trademark)) is used instead of polyimide (PI) as the binder for the negative electrode, and the mass of the negative electrode active material and the polyamideimide is 85:15. A secondary battery was fabricated in the same manner as in Example 1 except that the ratio was reduced and the mixture was mixed with n-methylpyrrolidone to obtain a negative electrode slurry.
 (実施例27~50)
 式(3)のシラン化合物に代えて、表2に示されるシラン化合物を用いたこと以外は実施例26と同様にして二次電池を作製した。
(Examples 27 to 50)
A secondary battery was made in the same manner as in Example 26 except that the silane compound shown in Table 2 was used instead of the silane compound of the formula (3).
 (実施例51)
 金属(a)としての平均粒径5μmのシリコンと、金属酸化物(b)としての平均粒径13μmの非晶質酸化シリコン(SiOx、0<x≦2)と、炭素材料(c)としての平均粒径30μmの黒鉛とを、29:61:10の質量比で計量し、いわゆるメカニカルミリングで24時間混合して、負極活物質を得た。なお、この負極活物質において、金属(a)であるシリコンは、金属酸化物(b)である酸化シリコン(SiOx、0<x≦2)中に分散している。そして、この負極活物質(平均粒径D50=5μm)を表面処理したこと以外は、実施例1と同様にして二次電池を作製した。
(Example 51)
Silicon having an average particle size of 5 μm as metal (a), amorphous silicon oxide (SiOx, 0 <x ≦ 2) having an average particle size of 13 μm as metal oxide (b), and carbon material (c) Graphite with an average particle size of 30 μm was weighed at a mass ratio of 29:61:10 and mixed for 24 hours by so-called mechanical milling to obtain a negative electrode active material. In this negative electrode active material, silicon which is metal (a) is dispersed in silicon oxide (SiOx, 0 <x ≦ 2) which is metal oxide (b). Except for the negative electrode active material (average particle diameter D 50 = 5 [mu] m) surface treated A secondary battery was fabricated in the same manner as in Example 1.
 (実施例52~75)
 式(3)のシラン化合物に代えて、表3に示されるシラン化合物を用いたこと以外は実施例51と同様にして二次電池を作製した。
(Examples 52 to 75)
A secondary battery was made in the same manner as in Example 51 except that the silane compound shown in Table 3 was used instead of the silane compound of the formula (3).
 (実施例76)
 負極用結着剤としてのポリイミド(PI)に代えてポリアミドイミド(PAI、東洋紡績株式会社製、商品名:パイロマックス(登録商標))を用い、負極活物質とポリアミドイミドを85:15の質量比で軽量し、それらをn-メチルピロリドンと混合して、負極スラリーを得たこと以外は実施例51と同様にして二次電池を作製した。
(Example 76)
Polyamideimide (PAI, manufactured by Toyobo Co., Ltd., trade name: Pyromax (registered trademark)) is used instead of polyimide (PI) as a binder for the negative electrode, and the mass of the negative electrode active material and the polyamideimide is 85:15. A secondary battery was fabricated in the same manner as in Example 51 except that they were reduced in weight and mixed with n-methylpyrrolidone to obtain a negative electrode slurry.
 (実施例77~100)
 式(3)のシラン化合物に代えて、表4に示されるシラン化合物を用いたこと以外は実施例76と同様にして二次電池を作製した。
(Examples 77 to 100)
A secondary battery was made in the same manner as in Example 76 except that the silane compound shown in Table 4 was used instead of the silane compound of the formula (3).
 (実施例101)
 電解液の溶媒として、EC/PC/DMC/EMC/DEC/フッ素化エーテル化合物(=10/10/10/10/10/50(体積比)の混合溶媒を用いたこと以外は実施例1と同様にして二次電池を作製した。このフッ素化エーテル化合物としては、H-CFCF-CHO-CFCF-Hを用いた。
(Example 101)
Example 1 except that a mixed solvent of EC / PC / DMC / EMC / DEC / fluorinated ether compound (= 10/10/10/10/10/50 (volume ratio)) was used as the solvent of the electrolytic solution. A secondary battery was fabricated in the same manner, and H—CF 2 CF 2 —CH 2 O—CF 2 CF 2 —H was used as the fluorinated ether compound.
 (実施例102~104)
 式(3)のシラン化合物に代えて、表5に示されるシラン化合物を用いたこと以外は実施例101と同様にして二次電池を作製した。
(Examples 102 to 104)
A secondary battery was fabricated in the same manner as in Example 101 except that the silane compound shown in Table 5 was used instead of the silane compound of the formula (3).
 (実施例105)
 電解液の溶媒として、EC/PC/DMC/EMC/DEC/フッ素化エーテル化合物(=10/10/10/10/10/50(体積比))の混合溶媒を用いたこと以外は実施例26と同様にして二次電池を作製した。このフッ素化エーテル化合物としては、H-CFCF-CHO-CFCF-Hを用いた。
(Example 105)
Example 26 except that a mixed solvent of EC / PC / DMC / EMC / DEC / fluorinated ether compound (= 10/10/10/10/10/50 (volume ratio)) was used as a solvent for the electrolytic solution. A secondary battery was fabricated in the same manner as described above. As the fluorinated ether compound, H—CF 2 CF 2 —CH 2 O—CF 2 CF 2 —H was used.
 (実施例106~108)
 式(3)のシラン化合物に代えて、表5に示されるシラン化合物を用いたこと以外は実施例105と同様にして二次電池を作製した。
(Examples 106 to 108)
A secondary battery was fabricated in the same manner as in Example 105 except that the silane compound shown in Table 5 was used instead of the silane compound of the formula (3).
 (実施例109)
 電解液の溶媒として、EC/PC/DMC/EMC/DEC/フッ素化エーテル化合物(=10/10/10/10/10/50(体積比))の混合溶媒を用いたこと以外は実施例51と同様にして二次電池を作製した。このフッ素化エーテル化合物としては、H-CFCF-CHO-CFCF-Hを用いた。
(Example 109)
Example 51 except that a mixed solvent of EC / PC / DMC / EMC / DEC / fluorinated ether compound (= 10/10/10/10/10/50 (volume ratio)) was used as the solvent of the electrolytic solution. A secondary battery was fabricated in the same manner as described above. As the fluorinated ether compound, H—CF 2 CF 2 —CH 2 O—CF 2 CF 2 —H was used.
 (実施例110~112)
 式(3)のシラン化合物に代えて、表5に示されるシラン化合物を用いたこと以外は実施例109と同様にして二次電池を作製した。
(Examples 110 to 112)
A secondary battery was made in the same manner as Example 109 except that the silane compound shown in Table 5 was used instead of the silane compound of formula (3).
 (実施例113)
 電解液の溶媒として、EC/PC/DMC/EMC/DEC/フッ素化エーテル化合物(=10/10/10/10/10/50(体積比))の混合溶媒を用いたこと以外は実施例76と同様にして二次電池を作製した。このフッ素化エーテル化合物としては、H-CFCF-CHO-CFCF-Hを用いた。
(Example 113)
Example 76, except that a mixed solvent of EC / PC / DMC / EMC / DEC / fluorinated ether compound (= 10/10/10/10/10/50 (volume ratio)) was used as a solvent for the electrolytic solution. A secondary battery was fabricated in the same manner as described above. As the fluorinated ether compound, H—CF 2 CF 2 —CH 2 O—CF 2 CF 2 —H was used.
 (実施例114~116)
 式(3)のシラン化合物に代えて、表5に示されるシラン化合物を用いたこと以外は実施例113と同様にして二次電池を作製した。
(Examples 114 to 116)
A secondary battery was made in the same manner as in Example 113 except that the silane compound shown in Table 5 was used instead of the silane compound of the formula (3).
 (比較例1~4)
 シラン化合物によって負極活物質の表面処理をしなかったこと以外は、それぞれ実施例1、26、51、76と同様にして二次電池を作製した。
(Comparative Examples 1 to 4)
Secondary batteries were fabricated in the same manner as in Examples 1, 26, 51, and 76, respectively, except that the negative electrode active material was not surface-treated with the silane compound.
 (評価方法)
 実施例および比較例による二次電池の高温サイクル特性を次のようにして測定した。
(Evaluation methods)
The high-temperature cycle characteristics of the secondary batteries according to the examples and comparative examples were measured as follows.
 60℃に保った恒温槽中で、4.1Vまでの充電と2.5Vまでの放電を1Cレートで50回繰り返す試験を行った。そして、(50サイクル目の放電容量)/(5サイクル目の放電容量)を維持率(%)として算出した。また、充放電サイクル前の電池体積に対する50サイクル目の体積増加量の比率を膨れ率(%)として算出した。この体積増加量は、アルキメデス法によって測定した。電池を秤に吊し、脱イオン水に沈めた時の質量減少から体積を算出することができる。 In a constant temperature bath maintained at 60 ° C., a test was performed in which charging up to 4.1 V and discharging up to 2.5 V were repeated 50 times at a 1 C rate. Then, (discharge capacity at the 50th cycle) / (discharge capacity at the 5th cycle) was calculated as the maintenance ratio (%). Moreover, the ratio of the volume increase amount of the 50th cycle with respect to the battery volume before a charge / discharge cycle was computed as a swelling rate (%). This volume increase was measured by the Archimedes method. The volume can be calculated from the decrease in mass when the battery is suspended on a scale and submerged in deionized water.
 以上のようにして測定した高温サイクル特性の測定結果を表に示す。 The measurement results of the high-temperature cycle characteristics measured as described above are shown in the table.
 維持率については、75%以上で「AA」、50%以上75%未満で「A」、25%以上50%未満で「B」、25%未満で「C」と判定した。 Regarding the maintenance rate, it was determined as “AA” at 75% or more, “A” at 50% or more and less than 75%, “B” at 25% or more and less than 50%, and “C” at less than 25%.
 膨れ率については、5%未満で「AA」、5%以上10%未満で「A」、10%以上20%未満で「B」、20%以上で「C」と判定した。 The swelling rate was determined to be “AA” for less than 5%, “A” for 5% or more and less than 10%, “B” for 10% or more but less than 20%, and “C” for 20% or more.
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
 表1~5、及び表6に示すように、実施例の二次電池の60℃における膨れ率は、比較例1~4の二次電池に比べて小さく、また実施例の二次電池の60℃における容量維持率は、比較例1~4の二次電池に比べて高く、高温サイクル特性が良好な二次電池が得られることがわかる。 As shown in Tables 1 to 5 and Table 6, the swelling rate of the secondary batteries of the examples at 60 ° C. is smaller than that of the secondary batteries of Comparative Examples 1 to 4, and 60% of the secondary batteries of the examples. It can be seen that the capacity retention rate at 0 ° C. is higher than that of the secondary batteries of Comparative Examples 1 to 4, and a secondary battery with good high-temperature cycle characteristics can be obtained.
 以上、実施形態および実施例を参照して本発明を説明したが、本発明は上記実施形態および実施例に限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解し得る様々な変更をすることができる。 As mentioned above, although this invention was demonstrated with reference to embodiment and an Example, this invention is not limited to the said embodiment and Example. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2011年8月17日に出願された日本出願特願2011-178325を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2011-178325 filed on August 17, 2011, the entire disclosure of which is incorporated herein.
 本実施形態は、電源を必要とするあらゆる産業分野、ならびに電気的エネルギーの輸送、貯蔵および供給に関する産業分野にて利用することができる。具体的には、携帯電話、ノートパソコンなどのモバイル機器の電源;電気自動車、ハイブリッドカー、電動バイク、電動アシスト自転車、電車などの電動車両の電源;衛星、潜水艦などの移動・輸送用媒体の電源;UPS(無停電電源装置)などのバックアップ電源;太陽光発電、風力発電などで発電した電力を貯める蓄電設備などに利用することができる。 This embodiment can be used in all industrial fields that require a power source and in industrial fields related to the transport, storage, and supply of electrical energy. Specifically, power sources for mobile devices such as mobile phones and laptop computers; power sources for electric vehicles such as electric cars, hybrid cars, electric motorcycles, electric assist bicycles, and trains; power sources for mobile and transport media such as satellites and submarines A backup power source such as a UPS (uninterruptible power supply); a power storage facility for storing power generated by solar power generation, wind power generation, or the like.
 1 負極
 2 セパレータ
 3 正極
 4 負極集電体
 5 正極集電体
 6 正極端子
 7 負極端子
DESCRIPTION OF SYMBOLS 1 Negative electrode 2 Separator 3 Positive electrode 4 Negative electrode collector 5 Positive electrode collector 6 Positive electrode terminal 7 Negative electrode terminal

Claims (24)

  1.  リチウムと合金可能な金属(a)を含む、リチウムイオン二次電池用の負極活物質であって、
     下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、R及びRはそれぞれ独立にアルコキシ基を示し、R及びRはそれぞれ独立にアルキル基又は水素原子を示し、n及びmはそれぞれ独立に0,1又は2を示し、Xはオキシアルキレン基を主鎖内に含む2価基を示す。)
    で示されるシラン化合物で表面処理されていることを特徴とする負極活物質。
    A negative electrode active material for a lithium ion secondary battery, comprising a metal (a) that can be alloyed with lithium,
    Following formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 and R 2 each independently represent an alkoxy group, R 3 and R 4 each independently represent an alkyl group or a hydrogen atom, n and m each independently represent 0, 1 or 2, X represents a divalent group containing an oxyalkylene group in the main chain.)
    A negative electrode active material which is surface-treated with a silane compound represented by
  2.  リチウムイオンを吸蔵放出し得る炭素材料(c)をさらに含む、請求項1に記載の負極活物質。 The negative electrode active material according to claim 1, further comprising a carbon material (c) capable of occluding and releasing lithium ions.
  3.  リチウムイオンを吸蔵放出し得る金属酸化物(b)をさらに含む、請求項1又は2に記載の負極活物質。 The negative electrode active material according to claim 1 or 2, further comprising a metal oxide (b) capable of occluding and releasing lithium ions.
  4.  前記金属酸化物(b)は、前記金属(a)を構成する金属の酸化物である、請求項3に記載の負極活物質。 The negative electrode active material according to claim 3, wherein the metal oxide (b) is an oxide of a metal constituting the metal (a).
  5.  前記金属(a)の全部または一部が、前記金属酸化物(b)中に分散している、請求項3又は4に記載の負極活物質。 The negative electrode active material according to claim 3 or 4, wherein all or part of the metal (a) is dispersed in the metal oxide (b).
  6.  前記金属酸化物(b)の全部または一部がアモルファス構造を有する、請求項3から5のいずれか一項に記載の負極活物質。 The negative electrode active material according to any one of claims 3 to 5, wherein all or part of the metal oxide (b) has an amorphous structure.
  7.  前記金属酸化物(b)として酸化シリコンを含む、請求項3から6のいずれか一項に記載の負極活物質。 The negative electrode active material according to any one of claims 3 to 6, comprising silicon oxide as the metal oxide (b).
  8.  前記金属(a)としてシリコンを含む、請求項1から7のいずれか一項に記載の負極活物質。 The negative electrode active material according to any one of claims 1 to 7, comprising silicon as the metal (a).
  9.  請求項1から8のいずれか一項に記載の負極活物質を含む、リチウムイオン二次電池用負極。 A negative electrode for a lithium ion secondary battery, comprising the negative electrode active material according to any one of claims 1 to 8.
  10.  集電体と、該集電体上の活物質層とをさらに含み、
     前記活物質層は、結着剤と、前記負極活物質を含む、請求項9に記載の負極。
    A current collector and an active material layer on the current collector;
    The negative electrode according to claim 9, wherein the active material layer includes a binder and the negative electrode active material.
  11.  前記結着剤は、ポリイミド又はポリアミドイミドからなる、請求項10に記載の負極。 The negative electrode according to claim 10, wherein the binder is made of polyimide or polyamideimide.
  12.  請求項9から11のいずれか一項に記載の負極を含むリチウムイオン二次電池。 A lithium ion secondary battery comprising the negative electrode according to any one of claims 9 to 11.
  13.  セパレータと、該セパレータを介して前記負極と対向配置された正極と、電解液と、該電解液、該正極、該負極及び該セパレータを内包する外装体とをさらに含む、請求項12に記載のリチウムイオン二次電池。 The separator according to claim 12, further comprising a separator, a positive electrode disposed opposite to the negative electrode with the separator interposed therebetween, an electrolytic solution, and an outer package including the electrolytic solution, the positive electrode, the negative electrode, and the separator. Lithium ion secondary battery.
  14.  前記電解液は、炭酸エステル又はカルボン酸エステルを溶媒として含む、請求項13に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 13, wherein the electrolytic solution contains a carbonate ester or a carboxylate ester as a solvent.
  15.  前記電解液は、フッ素化エーテル化合物をさらに含む、請求項14に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 14, wherein the electrolytic solution further contains a fluorinated ether compound.
  16.  前記外装体はラミネートフィルムからなる、請求項13から15のいずれか一項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 13 to 15, wherein the exterior body is made of a laminate film.
  17.  前記正極と前記負極との電極対が複数積層配置された積層型構造を有する、請求項13から16のいずれか一項に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 13 to 16, which has a stacked structure in which a plurality of electrode pairs of the positive electrode and the negative electrode are stacked.
  18.  請求項12から17のいずれか一項に記載のリチウムイオン二次電池を複数含む組電池。 An assembled battery including a plurality of lithium ion secondary batteries according to any one of claims 12 to 17.
  19.  請求項12から17のいずれか一項に記載のリチウムイオン二次電池、または請求項18に記載の組電池をモータ駆動用電源として搭載した車両。 A vehicle equipped with the lithium ion secondary battery according to any one of claims 12 to 17 or the assembled battery according to claim 18 as a motor driving power source.
  20.  リチウムと合金可能な金属(a)を含む負極活物質を、
     下記式(1):
    Figure JPOXMLDOC01-appb-C000002
    (式中、R及びRはそれぞれ独立にアルコキシ基を示し、R及びRはそれぞれ独立にアルキル基又は水素原子を示し、n及びmはそれぞれ独立に0,1又は2を示し、Xはオキシアルキレン基を主鎖内に含む2価基を示す。)
    で示されるシラン化合物で表面処理する工程を含む、リチウムイオン二次電池用負極活物質の製造方法。
    A negative electrode active material containing a metal (a) that can be alloyed with lithium,
    Following formula (1):
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 1 and R 2 each independently represent an alkoxy group, R 3 and R 4 each independently represent an alkyl group or a hydrogen atom, n and m each independently represent 0, 1 or 2, X represents a divalent group containing an oxyalkylene group in the main chain.)
    The manufacturing method of the negative electrode active material for lithium ion secondary batteries including the process of surface-treating with the silane compound shown by these.
  21.  請求項20に記載の方法により負極活物質を表面処理する工程と、
     表面処理された前記負極活物質を用いて負極を形成する工程と、
     前記負極と正極をセパレータを介して対向配置した電極対を含む電極積層体を形成する工程と、
     前記電極積層体を外装体で包む工程とを含む、リチウムイオン二次電池の製造方法。
    Surface treating the negative electrode active material by the method according to claim 20;
    Forming a negative electrode using the negative electrode active material surface-treated;
    Forming an electrode laminate including an electrode pair in which the negative electrode and the positive electrode are arranged to face each other with a separator interposed therebetween;
    A method of manufacturing a lithium ion secondary battery, comprising: wrapping the electrode stack with an outer package.
  22.  前記外装体としてラミネートフィルムを用いた、請求項21に記載のリチウムイオン二次電池の製造方法。 The method for manufacturing a lithium ion secondary battery according to claim 21, wherein a laminate film is used as the outer package.
  23.  炭酸エステル又はカルボン酸エステルを溶媒として含む電解液を用いた、請求項21又は22に記載のリチウムイオン二次電池の製造方法。 The method for producing a lithium ion secondary battery according to claim 21 or 22, wherein an electrolytic solution containing a carbonate ester or a carboxylate ester as a solvent is used.
  24.  前記電解液は、フッ素化エーテル化合物をさらに含む、請求項23に記載のリチウムイオン二次電池の製造方法。 The method for manufacturing a lithium ion secondary battery according to claim 23, wherein the electrolytic solution further contains a fluorinated ether compound.
PCT/JP2012/066984 2011-08-17 2012-07-03 Negative electrode active material and negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell WO2013024639A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-178325 2011-08-17
JP2011178325 2011-08-17

Publications (1)

Publication Number Publication Date
WO2013024639A1 true WO2013024639A1 (en) 2013-02-21

Family

ID=47714968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066984 WO2013024639A1 (en) 2011-08-17 2012-07-03 Negative electrode active material and negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell

Country Status (2)

Country Link
JP (1) JPWO2013024639A1 (en)
WO (1) WO2013024639A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015185446A (en) * 2014-03-25 2015-10-22 三菱化学株式会社 Composite graphite particle for nonaqueous secondary battery negative electrode, and nonaqueous secondary battery using the same
WO2016152716A1 (en) * 2015-03-24 2016-09-29 日本電気株式会社 Negative electrode for lithium ion secondary battery and secondary battery
JP2017112010A (en) * 2015-12-17 2017-06-22 日本電気株式会社 Lithium ion secondary battery
JP2021501168A (en) * 2017-11-01 2021-01-14 クローダ,インコーポレイティド Compounds suitable for personal care and cosmetic applications
WO2021172443A1 (en) * 2020-02-28 2021-09-02 パナソニックIpマネジメント株式会社 Secondary-battery negative electrode, method for manufacturing same, and secondary battery
CN113801155A (en) * 2020-06-15 2021-12-17 中国石油化工股份有限公司 Chemical agent suitable for preparing quartz sand anti-adsorption hydrophilic coating and preparation and application thereof
WO2022092212A1 (en) * 2020-10-30 2022-05-05 パナソニックIpマネジメント株式会社 Alkoxysilyl compound and nonaqueous electrolytic solution additive containing same, and nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery containing said additive
WO2023032592A1 (en) * 2021-08-31 2023-03-09 パナソニックIpマネジメント株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using same, and method for producing negative electrode active material for non-aqueous electrolyte secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327190A (en) * 2003-04-24 2004-11-18 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery and its manufacturing method
JP2009535781A (en) * 2006-05-04 2009-10-01 エルジー・ケム・リミテッド Electrode active material with improved safety and electrochemical device using the same
JP2011014298A (en) * 2009-06-30 2011-01-20 Nissan Motor Co Ltd Negative electrode active material with surface ornamentation
WO2011040443A1 (en) * 2009-09-29 2011-04-07 Necエナジーデバイス株式会社 Secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327190A (en) * 2003-04-24 2004-11-18 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery and its manufacturing method
JP2009535781A (en) * 2006-05-04 2009-10-01 エルジー・ケム・リミテッド Electrode active material with improved safety and electrochemical device using the same
JP2011014298A (en) * 2009-06-30 2011-01-20 Nissan Motor Co Ltd Negative electrode active material with surface ornamentation
WO2011040443A1 (en) * 2009-09-29 2011-04-07 Necエナジーデバイス株式会社 Secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015185446A (en) * 2014-03-25 2015-10-22 三菱化学株式会社 Composite graphite particle for nonaqueous secondary battery negative electrode, and nonaqueous secondary battery using the same
WO2016152716A1 (en) * 2015-03-24 2016-09-29 日本電気株式会社 Negative electrode for lithium ion secondary battery and secondary battery
CN107431184A (en) * 2015-03-24 2017-12-01 日本电气株式会社 Lithium ion secondary battery cathode and secondary cell
JP2017112010A (en) * 2015-12-17 2017-06-22 日本電気株式会社 Lithium ion secondary battery
JP2021501168A (en) * 2017-11-01 2021-01-14 クローダ,インコーポレイティド Compounds suitable for personal care and cosmetic applications
JP7301826B2 (en) 2017-11-01 2023-07-03 クローダ,インコーポレイティド Compounds suitable for personal care and cosmetic applications
WO2021172443A1 (en) * 2020-02-28 2021-09-02 パナソニックIpマネジメント株式会社 Secondary-battery negative electrode, method for manufacturing same, and secondary battery
CN113801155A (en) * 2020-06-15 2021-12-17 中国石油化工股份有限公司 Chemical agent suitable for preparing quartz sand anti-adsorption hydrophilic coating and preparation and application thereof
CN113801155B (en) * 2020-06-15 2023-10-31 中国石油化工股份有限公司 Chemical agent suitable for preparing quartz sand anti-adsorption hydrophilic coating, and preparation and application thereof
WO2022092212A1 (en) * 2020-10-30 2022-05-05 パナソニックIpマネジメント株式会社 Alkoxysilyl compound and nonaqueous electrolytic solution additive containing same, and nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery containing said additive
WO2023032592A1 (en) * 2021-08-31 2023-03-09 パナソニックIpマネジメント株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using same, and method for producing negative electrode active material for non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPWO2013024639A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
JP6070540B2 (en) Secondary battery and electrolyte
JP5704633B2 (en) Secondary battery
JP5748193B2 (en) Secondary battery
RU2582666C1 (en) Lithium-ion secondary battery
WO2012132060A1 (en) Secondary battery and electrolyte
WO2013024639A1 (en) Negative electrode active material and negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell
KR20180014710A (en) Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery and method for manufacturing negative active material particle
KR20160110380A (en) Negative electrode material for nonaqueous electrolyte secondary batteries and method for producing negative electrode active material particles
JP5867399B2 (en) Secondary battery
JP5867396B2 (en) Secondary battery
JP6032204B2 (en) Lithium ion secondary battery
JP5920217B2 (en) Secondary battery
JP5867397B2 (en) Secondary battery
JP5811093B2 (en) Secondary battery
JP5867398B2 (en) Secondary battery
WO2012049889A1 (en) Secondary battery and electrolyte solution for secondary battery to be used in same
JP6123674B2 (en) Lithium secondary battery and vehicle using the same
JP2012033346A (en) Aprotic electrolyte secondary battery
WO2012029645A1 (en) Secondary cell and secondary cell electrolyte used therein
WO2013183525A1 (en) Lithium ion secondary battery
TW202310474A (en) Negative electrode and method for producing negative electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013528931

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823322

Country of ref document: EP

Kind code of ref document: A1