WO2013015312A1 - ボトル - Google Patents

ボトル Download PDF

Info

Publication number
WO2013015312A1
WO2013015312A1 PCT/JP2012/068822 JP2012068822W WO2013015312A1 WO 2013015312 A1 WO2013015312 A1 WO 2013015312A1 JP 2012068822 W JP2012068822 W JP 2012068822W WO 2013015312 A1 WO2013015312 A1 WO 2013015312A1
Authority
WO
WIPO (PCT)
Prior art keywords
bottle
wall portion
peripheral wall
movable wall
grounding
Prior art date
Application number
PCT/JP2012/068822
Other languages
English (en)
French (fr)
Inventor
忠和 中山
吾郎 栗原
宏明 今井
Original Assignee
株式会社吉野工業所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011163103A external-priority patent/JP2013023278A/ja
Priority claimed from JP2011188613A external-priority patent/JP6151881B2/ja
Application filed by 株式会社吉野工業所 filed Critical 株式会社吉野工業所
Priority to CA2841101A priority Critical patent/CA2841101C/en
Priority to EP12817631.0A priority patent/EP2738107B1/en
Priority to KR1020137027405A priority patent/KR101894448B1/ko
Priority to US14/131,595 priority patent/US8998026B2/en
Priority to AU2012287900A priority patent/AU2012287900B2/en
Priority to CN201280019689.1A priority patent/CN103492273B/zh
Publication of WO2013015312A1 publication Critical patent/WO2013015312A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/40Details of walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0223Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
    • B65D1/0261Bottom construction
    • B65D1/0276Bottom construction having a continuous contact surface, e.g. Champagne-type bottom

Definitions

  • the present invention relates to a bottle.
  • This application claims priority based on Japanese Patent Application No. 2011-163103 filed in Japan on July 26, 2011 and Japanese Patent Application No. 2011-188613 filed in Japan on August 31, 2011. The contents are incorporated herein.
  • a bottom wall portion of a bottom portion is a grounding portion located at an outer peripheral edge portion, a rising peripheral wall portion that extends from the inside in the bottle radial direction to the grounding portion and extends upward, and an upper end of the rising peripheral wall portion
  • starting surrounding wall part so that it may move upward is disclosed.
  • the movable wall portion rises and pivots downward about the connection portion with the peripheral wall portion.
  • part of the movable wall part may reach the position where the grounding part is disposed or protrude downward from the grounding part, which may cause a so-called bottom drop that may cause grounding stability problems. It was. Note that the “bottom” in the present embodiment refers to a phenomenon that causes a failure in grounding stability as described above.
  • the conventional bottle has room for improvement with respect to improving the vacuum absorption performance in the bottle.
  • the first object of the present invention is to provide a bottle that can ensure the reduced pressure absorption performance while suppressing the occurrence of bottoming out.
  • the second object of the present invention is to provide a bottle capable of improving the vacuum absorption performance in the bottle.
  • the bottle is a bottle formed of a synthetic resin material in a bottomed cylindrical shape, and the bottom wall portion of the bottom portion is a grounding portion, a rising peripheral wall portion, and an annular movable portion.
  • a wall portion and a depressed peripheral wall portion are provided.
  • the grounding portion is located at the outer peripheral edge.
  • the rising peripheral wall portion extends from the inner side in the bottle radial direction to the grounding portion and extends upward.
  • the movable wall portion projects inward in the bottle radial direction from the upper end portion of the rising peripheral wall portion.
  • the depressed peripheral wall portion extends from the inner side in the bottle radial direction to the movable wall portion and extends upward.
  • the movable wall portion is disposed so as to be rotatable about a connection portion with the rising peripheral wall portion so as to move the depressed peripheral wall portion upward.
  • the rising peripheral wall portion extends so as to be gradually inclined inward in the bottle radial direction from the grounding portion toward the connection portion with the movable wall portion, and the inclination angle is 10 with respect to the bottle axis. Less than or equal to degrees.
  • the movable wall portion rises and pivots upward about the connecting portion with the peripheral wall portion, and the depressed peripheral wall portion is moved upward. be able to. Therefore, the reduced pressure absorption capacity of the bottle can be increased to ensure a predetermined reduced pressure absorption performance.
  • the rising peripheral wall portion is inclined inward in the bottle radial direction with respect to the bottle axis as it goes to the connection portion with the movable wall portion. At that time, the inclination angle of the rising peripheral wall portion is set to 10 degrees or less, and it is formed in a state close to a vertically rising shape.
  • the height from the grounding portion to the connecting portion between the rising peripheral wall portion and the movable wall portion is higher than 7.5 mm.
  • the connecting portion that becomes the rotation center of the movable wall portion is located at a height that exceeds 7.5 mm from the grounding portion, so-called bottom falling is more unlikely to occur when filling the contents. be able to. Therefore, stable grounding performance can be ensured, and for example, it is possible to cope with high temperature filling of contents.
  • the movable wall portion gradually extends downward from the outer end portion connected to the rising peripheral wall portion toward the inner end portion connected to the depressed peripheral wall portion.
  • the height from the grounding portion to the lowermost end portion of the movable wall portion is set to be 35% to 65% of the height from the grounding portion to the outer end portion of the movable wall portion.
  • the depressed peripheral wall portion moves upward by the rotation of the movable wall portion, so that the depressurization can be absorbed.
  • the movable wall portion gradually extends downward from the outer end portion toward the inner end portion, and the height from the ground contact portion to the lowest end portion of the movable wall portion is the height from the ground contact portion to the outer end portion. Since the height difference between the outer end portion and the lowermost end portion is ensured to be 65% or less, it is easy to rotate the movable wall portion downward when filling the contents. Therefore, the volume in a bottle can be increased and the vacuum absorption capacity immediately after filling can be increased.
  • the reduced pressure absorption performance can be improved.
  • the height from the grounding portion to the bottom end portion is 35% or more of the height from the grounding portion to the outer end portion, the distance between the bottom end portion and the grounding portion is sufficiently secured.
  • the height of the lowermost end portion of the movable wall portion from the grounding portion is 3 mm or more.
  • the lowermost end portion of the movable wall portion can be sufficiently separated from the grounding surface, and the above-mentioned jumping out can be further reliably suppressed.
  • the vacuum absorption performance in the bottle can be improved.
  • FIG. 3 is a cross-sectional view of the bottle along the line AA shown in FIG. 2.
  • FIG. 6 is a cross-sectional view of the bottle along the line BB shown in FIG. 5.
  • FIG. 8 is a cross-sectional view of the bottle along the line CC shown in FIG. 7.
  • the bottle 11 according to the first embodiment includes a mouth portion 111, a shoulder portion 112, a trunk portion 113, and a bottom portion 114.
  • the mouth portion 111, the shoulder portion 112, the trunk portion 113, and the bottom portion 114 are connected in this order with their respective central axes positioned on a common axis.
  • the common axis is referred to as a bottle axis O
  • the mouth 111 side is referred to as the upper side
  • the bottom 114 side is referred to as the lower side along the bottle axis O direction.
  • a direction perpendicular to the bottle axis O is referred to as a bottle radial direction
  • a direction around the bottle axis O is referred to as a bottle circumferential direction.
  • the bottle 11 is formed by blow molding a preform formed into a bottomed cylinder by injection molding, and is integrally formed of a synthetic resin material.
  • a cap (not shown) is screwed into the mouth portion 111.
  • each of the mouth portion 111, the shoulder portion 112, the body portion 113, and the bottom portion 114 is formed in a circular shape in a cross-sectional view orthogonal to the bottle axis O.
  • the body portion 113 is formed in a cylindrical shape and has a smaller diameter than a lower end portion of the shoulder portion 112 and a heel portion 117 described later of the bottom portion 114.
  • a plurality of second annular grooves 116 are formed in the body portion 113 at intervals in the bottle axis O direction. In the example of FIG. 1, five second annular grooves 116 are formed at equal intervals in the bottle axis O direction. Each of these second annular grooves 116 is a groove formed continuously over the entire circumference of the body 113.
  • the bottom portion 114 is formed in a cup shape including a heel portion 117 and a bottom wall portion 119.
  • the heel portion 117 has an upper end opening connected to the lower end opening of the body portion 113.
  • the bottom wall portion 119 closes the lower end opening of the heel portion 117, and the outer peripheral edge portion serves as the ground contact portion 118.
  • a heel lower end portion 127 connected to the ground contact portion 118 from the outside in the bottle radial direction is formed to have a smaller diameter than an upper heel portion 128 connected to the heel lower end portion 127 from above.
  • the upper heel portion 128 is the maximum outer diameter portion of the bottle 11 together with the lower end portion of the shoulder portion 112.
  • the connecting portion 129 between the heel lower end portion 127 and the upper heel portion 128 is gradually reduced in diameter from the upper side toward the lower side. Accordingly, the heel lower end portion 127 is formed with a smaller diameter than the upper heel portion 128.
  • a plurality of third annular concave grooves 120 having substantially the same depth as the first annular concave groove 115 are continuously formed over the entire circumference. In the example of FIG. 1, two third annular grooves 120 are formed at an interval in the bottle axis O direction.
  • the bottom wall portion 119 includes a rising peripheral wall portion 121, an annular movable wall portion 122, and a depressed peripheral wall portion 123.
  • the rising peripheral wall portion 121 is connected to the ground contact portion 118 from the inner side in the bottle radial direction and extends upward.
  • the annular movable wall 122 projects from the upper end of the rising peripheral wall 121 toward the inside in the bottle radial direction.
  • the depressed peripheral wall portion 123 extends upward from the inner end portion of the movable wall portion 122 in the bottle radial direction.
  • the movable wall portion 122 is formed in a curved surface protruding downward and gradually extends downward from the outside in the bottle radial direction toward the inside.
  • the movable wall portion 122 and the rising peripheral wall portion 121 are connected via a curved surface portion 125 that protrudes upward.
  • the movable wall portion 122 is formed to be rotatable around the curved surface portion (connection portion with the rising peripheral wall portion 121) 125 so as to move the depressed peripheral wall portion 123 upward.
  • the rising peripheral wall 121 is gradually reduced in diameter from the lower side toward the upper side. Specifically, it extends so as to incline toward the inner side in the bottle radial direction from the grounding portion 118 toward the curved surface portion 125 which is a connecting portion with the movable wall portion 122. At that time, the inclination angle ⁇ is 10 ° or less with respect to the bottle axis O.
  • the height T from the ground contact portion 118 to the curved surface portion 125 is a height exceeding 7.5 mm. For example, the height T is 7.7 mm.
  • the depressed peripheral wall portion 123 is disposed coaxially with the bottle axis O, and is formed in a circular shape in a cross-sectional view that gradually increases in diameter from the upper side toward the lower side.
  • a disc-shaped top wall 124 arranged coaxially with the bottle axis O is connected to the upper end portion of the depressed peripheral wall portion 123.
  • the depressed peripheral wall portion 123 and the entire top wall 124 form a crested cylindrical shape.
  • the depressed peripheral wall portion 123 includes a curved wall portion 123 a that is formed in a curved shape protruding toward the inner side in the bottle radial direction and whose upper end portion is connected to the outer peripheral edge portion of the top wall 124.
  • the lower end portion of the curved wall portion 123a is connected to the inner end portion of the movable wall portion 122 in the bottle radial direction via a curved surface portion 126 protruding downward.
  • the rising peripheral wall portion 121 is inclined inward in the bottle radial direction toward the curved surface portion 125.
  • the inclination angle ⁇ of the rising peripheral wall 121 is 10 degrees or less with respect to the bottle axis O, and is formed in a state close to a vertically rising shape. Therefore, it can suppress that the upper end part side (curved surface part 125 side) of the standup
  • the curved surface portion 125 that is the rotation center of the movable wall portion 122 is disposed at a height that is 7.7 mm above the ground contact portion 118. For this reason, even if the movable wall portion 122 rotates slightly downward, it is easy to prevent the bottom from falling. Therefore, stable grounding performance can be ensured and, for example, the contents can be filled with high temperature (for example, 80 to 100 ° C., preferably 85 to 93 ° C.).
  • the bottle 11 of the first embodiment is suitable for a bottle having an internal volume of 1 liter or less and a grounding diameter of 85 mm or less.
  • the bottle has a grounding diameter of 70 mm and a height T of the curved surface part 125 from the grounding part 118 of 7.7 mm.
  • the inclination angle ⁇ of the rising peripheral wall 121 may be 10 degrees or less. More preferably, the inclination angle ⁇ of the rising peripheral wall portion 121 is 3 degrees or less.
  • the movable wall 122 may be appropriately changed such as projecting in parallel along the bottle radial direction, or tilting upward. Moreover, you may change suitably, such as forming the movable wall part 122 in the shape of a flat surface or the concave curved surface which dents upwards. Further, the movable wall 122 is connected to the outer wall extending gradually downward from the curved surface 125 toward the inner side in the bottle radial direction, and the outer wall and the depressed peripheral wall are connected to each other and upward. You may comprise by the inner wall part formed in the concave curved surface shape which becomes depressed. By doing so, for example, when filling the contents, the inner wall portion of the movable wall portion 122 is less likely to reach the lower side, so that it is easy to effectively suppress the occurrence of so-called bottoming.
  • the cross-sectional view orthogonal to the bottle axis O of each of the shoulder 112, the body 113, and the bottom 114 is a circular shape.
  • the present invention is not limited to this.
  • the cross-sectional view shape may be appropriately changed to a polygonal shape.
  • the synthetic resin material forming the bottle 11 may be appropriately changed, for example, polyethylene terephthalate, polyethylene naphthalate, amorphous polyester, or a blend material thereof.
  • the bottle 11 is not limited to a single layer structure, and may be a laminated structure having an intermediate layer. Examples of the intermediate layer include a layer made of a resin material having a gas barrier property, a layer made of a recycled material, or a layer made of a resin material having an oxygen absorption property.
  • the following four patterns were tested as examples. Further, the following four patterns were tested as comparative examples. In other words, a total of eight patterns were tested.
  • the height (at the time of an empty bottle) from the ground-contact surface of this test to the uppermost part of the curved surface part 125 is 7.7 mm.
  • four patterns of 1.5 degrees, 3 degrees, 4.5 degrees, and 9 degrees were employed as the inclination angle ⁇ of the rising peripheral wall portion 121.
  • four patterns of 12 degrees, 15 degrees, 20 degrees, and 30 degrees were employed as the inclination angle ⁇ of the rising peripheral wall portion 121.
  • a predetermined internal pressure (0.5 kg / cm 2 (49 KPa)) was applied to the bottle 11 including the rising peripheral wall portion 121 having a total of eight patterns described above, assuming the filling of the contents. Then, all the bottles 11 were deformed so that the movable wall portion 122 turned downward about the curved surface portion 125 and the upper end portion of the rising peripheral wall portion 121 fell down toward the inside in the bottle radial direction. That is, in any case, the rising peripheral wall 121 is deformed so that the inclination angle ⁇ increases.
  • the bottle 21 according to the second embodiment includes a mouth portion 211, a shoulder portion 212, a trunk portion 213, and a bottom portion 214.
  • the mouth portion 211, the shoulder portion 212, the body portion 213, and the bottom portion 214 are connected in this order with their central axes positioned on a common axis.
  • the common axis is referred to as a bottle axis O
  • the mouth 211 side is referred to as the upper side
  • the bottom 214 side is referred to as the lower side along the bottle axis O direction.
  • a direction perpendicular to the bottle axis O is referred to as a bottle radial direction
  • a direction around the bottle axis O is referred to as a bottle circumferential direction.
  • the bottle 21 is formed by blow molding a preform formed into a bottomed cylinder by injection molding, and is integrally formed of a synthetic resin material.
  • a cap (not shown) is screwed into the mouth portion 211.
  • the mouth portion 211, the shoulder portion 212, the body portion 213, and the bottom portion 214 are each formed in a circular shape in a cross-sectional view orthogonal to the bottle axis O.
  • a first annular groove 216 is continuously formed over the entire circumference at a connection portion between the shoulder portion 212 and the body portion 213.
  • the body portion 213 is formed in a cylindrical shape, and between both ends in the bottle axis O direction is formed to have a smaller diameter than these both ends.
  • a plurality of second annular grooves 215 are formed in the body 213 at intervals in the bottle axis O direction. In the example of FIG. 4, four second annular grooves 215 are formed at equal intervals in the bottle axis O direction.
  • Each second annular groove 215 is a groove formed continuously over the entire circumference of the body 213.
  • a third annular groove 220 is continuously formed over the entire circumference at the connecting portion between the body portion 213 and the bottom portion 214.
  • the bottom 214 includes a heel portion 217 whose upper end opening is connected to the lower end opening of the body portion 213, and a bottom wall portion 219 whose upper peripheral edge portion is a grounding portion 218 that closes the lower end opening of the heel portion 217.
  • a heel portion 217 whose upper end opening is connected to the lower end opening of the body portion 213, and a bottom wall portion 219 whose upper peripheral edge portion is a grounding portion 218 that closes the lower end opening of the heel portion 217.
  • a grounding portion 218 that closes the lower end opening of the heel portion 217.
  • a heel lower end portion 227 connected to the grounding portion 218 from the outside in the bottle radial direction is formed to have a smaller diameter than an upper heel portion 228 connected to the heel lower end portion 227 from above.
  • the upper heel portion 228 is the maximum outer diameter portion of the bottle 21 together with both end portions of the body portion 213 in the bottle axis O direction.
  • the connecting portion 229 between the heel lower end portion 227 and the upper heel portion 228 is gradually reduced in diameter from the upper side toward the lower side, whereby the heel lower end portion 227 is formed to have a smaller diameter than the upper heel portion 228.
  • a fourth annular groove 231 having substantially the same depth as the third annular groove 220 is continuously formed on the upper heel portion 228 over the entire circumference.
  • the bottom wall part 219 includes a rising peripheral wall part 221, an annular movable wall part 222, and a depressed peripheral wall part 223.
  • the rising peripheral wall portion 221 is connected to the ground contact portion 218 from the inner side in the bottle radial direction and extends upward.
  • the annular movable wall 222 protrudes from the upper end of the rising peripheral wall 221 toward the inside in the bottle radial direction.
  • the depressed peripheral wall portion 223 is connected to the movable wall portion 222 from the inner side in the bottle radial direction and extends upward.
  • the grounding part 218 is in line contact with the grounding surface G, for example in an annular shape.
  • the rising peripheral wall portion 221 is gradually reduced in diameter from the lower side toward the upper side.
  • the movable wall portion 222 is formed in a curved surface projecting downward, and gradually moves downward from the outer end portion connected to the rising peripheral wall portion 221 toward the inner end portion connected to the depressed peripheral wall portion 223. It is extended.
  • the movable wall portion 222 and the rising peripheral wall portion 221 are connected to each other via a curved surface portion 225 protruding upward, and the movable wall portion 222 and the depressed peripheral wall portion 223 are downward. It is connected via a curved surface portion 226 that protrudes toward the surface. Further, the curved surface portion 225 is an outer end portion of the movable wall portion 222. The curved surface portion 226 is an inner end portion and a lowermost end portion of the movable wall portion 222. The movable wall portion 222 is formed to be rotatable about the curved surface portion 225 that is the outer end portion so as to move the depressed peripheral wall portion 223 upward.
  • the curved surface portion 225 which is the outer end portion of the movable wall portion 222 and the curved surface portion 226 which is the inner end portion are both separated from the ground contact surface G.
  • the height H1 from the grounding portion 218 to the curved surface portion 226 which is the inner end portion is 3 mm or more. Further, the height H1 is not less than 35% and not more than 65% of the height H2 from the ground contact portion 218 to the curved surface portion 225 which is the outer end portion.
  • the depressed peripheral wall portion 223 is arranged coaxially with the bottle axis O, and is formed in multiple stages while gradually increasing in diameter from the upper side to the lower side.
  • a disc-shaped top wall 224 disposed coaxially with the bottle axis O is connected to the upper end portion of the depressed peripheral wall portion 223.
  • the depressed peripheral wall portion 223 and the top wall 224 as a whole form a top cylinder.
  • the depressed peripheral wall portion 223 of the second embodiment includes a lower cylinder portion 223a, an upper cylinder portion 223b, and a step portion 223c, and is formed in a two-stage cylinder shape.
  • the lower cylindrical portion 223a is gradually reduced in diameter as it goes upward from the inner end portion of the movable wall portion 222 in the bottle radial direction.
  • the upper cylinder portion 223b has an upper end portion connected to the outer peripheral edge portion of the top wall 224, and gradually increases in diameter toward the lower side and is formed in a curved surface shape that protrudes downward.
  • the step portion 223c connects the lower cylinder portion 223a and the upper cylinder portion 223b.
  • the lower cylinder part 223a is formed in a circular shape in cross section and is connected to the movable wall part 222 through the curved surface part 226.
  • An overhang portion 223d is formed on the upper tube portion 223b so as to protrude toward the inside in the bottle radial direction.
  • the overhang portion 223d is formed over substantially the entire length in the bottle axis O direction excluding the upper end portion of the upper tube portion 223b.
  • a plurality of overhang portions 223d are formed in a row in the bottle circumferential direction.
  • the overhang portions 223 d adjacent in the bottle circumferential direction are arranged with an interval in the bottle circumferential direction.
  • the cross-sectional view shape of the upper cylinder part 223b is changing from the polygonal shape to the circular shape as it goes upwards from the downward direction by forming the overhang
  • the cross-sectional view shape in the upper end part of the upper cylinder part 223b is formed in circular shape.
  • the overhang portion 223d is a polygonal side portion.
  • a portion 223e located between the overhanging portions 223d adjacent in the bottle circumferential direction is a polygonal corner.
  • the polygonal shape is a substantially equilateral triangle is described as an example, but the present invention is not limited to this case.
  • the movable wall portion 222 When the inside of the bottle 21 configured as described above is depressurized, the movable wall portion 222 lifts the depressed peripheral wall portion 223 upward by rotating the movable wall portion 222 upward about the curved surface portion 225. To move. That is, by actively deforming the bottom wall portion 219 of the bottle 21 at the time of depressurization, the internal pressure change (decompression) of the bottle 21 can be absorbed.
  • the movable wall portion 222 gradually extends downward from the curved surface portion 225 which is the outer end portion toward the curved surface portion 226 which is the inner end portion.
  • the height H1 from the ground contact portion 218 to the curved surface portion 226 that is the inner end portion is 65% or less of the height H2 from the ground contact portion 218 to the curved surface portion 225 that is the outer end portion, so that a large height difference is secured. Therefore, it is easy to rotate the movable wall portion 222 downward when filling the contents. Therefore, the volume in the bottle 21 can be increased to increase the amount of vacuum absorption immediately after filling. Thereby, the reduced pressure absorption performance can be improved.
  • the height H1 is 35% or more of the height H2, and the distance between the curved surface portion 226 that is the inner end portion of the movable wall portion 222 and the grounding portion 218 is sufficiently secured. For this reason, when the movable wall portion 222 rotates downward with the filling of the contents, the curved surface portion 226 hardly protrudes below the grounding portion 218, and contact with the grounding surface G is easily avoided. Therefore, even when the filling is performed at a high temperature, the filling operation can be reliably performed while suppressing the protrusion of the curved surface portion 226.
  • the curved surface portion 226 that is the inner end portion of the movable wall portion 222 is spaced 3 mm or more upward from the ground contact portion 218, the curved surface portion 226 can be sufficiently spaced upward from the ground contact surface G. Thereby, the said popping out can be suppressed more reliably.
  • the case where the curved surface portion 226 which is the inner end portion of the movable wall portion 222 is the lowermost end portion closest to the ground contact surface G in the movable wall portion 222 is taken as an example.
  • a case where the substantially middle portion in the bottle radial direction is the lowermost end portion may be considered. In such a case, the height to the lowest end is H1.
  • the bottle 21 of the second embodiment has an internal capacity of 1 liter or less, a grounding diameter of 85 mm or less, and 80 ° C. or more (more specifically, a temperature range of 80 ° C. to 95 ° C., more specifically about 87 ° C. filling). It is suitable for bottles used when filling contents with temperature.
  • a plurality of ribs 240 may be radially formed around the bottle axis O on the movable wall portion 222. That is, the ribs 240 are arranged at equal intervals along the bottle circumferential direction.
  • the rib 240 is formed by extending a plurality of recesses 240a that are recessed in a curved shape upward and intermittently and linearly along the bottle radial direction. Thereby, the rib 240 is formed in a wave shape in a longitudinal sectional view along the bottle radial direction.
  • each recessed part 240a is each formed in the same shape and the same magnitude
  • the recesses 240a are arranged at equal intervals along the bottle radial direction. And in the some rib 240, each position along the bottle radial direction in which the some recessed part 240a is arrange
  • positioned is formed in the same way.
  • the surface area of the movable wall portion 222 can be increased to increase the pressure receiving area. It can be deformed corresponding to.
  • an uneven portion 241 may be formed on the rising peripheral wall portion 221 over the entire circumference.
  • grooved part 241 is comprised by arrange
  • the uneven portion 241 for example, light incident on the rising peripheral wall portion 221 is irregularly reflected by the uneven portion 241, or the contents in the bottle 21 are also filled in the uneven portion 241. For this reason, it is difficult to feel uncomfortable when looking at the bottom 214 of the bottle 21 filled with the contents.
  • the rising peripheral wall portion 221 may be appropriately changed, for example, extending in parallel along the bottle axis O direction.
  • the movable wall portion 222 may be appropriately changed, for example, formed in a planar shape or a concave curved shape that is recessed upward.
  • the upper cylindrical portion 223b is formed in a protruding curved shape facing downward, but the shape is not limited to this.
  • projection parts 223d adjacent to the bottle circumferential direction are arrange
  • the overhang portions 223d may be arranged without being spaced apart in the bottle circumferential direction and directly connected to each other.
  • positioned among the upper cylinder parts 223b may be circular.
  • the cross-sectional view shape of the upper tube portion 223b may be circular over the entire length in the bottle axis O direction. Further, the overhang portion 223d is not essential and may not be provided. Furthermore, although the depressed peripheral wall portion 223 is formed in a two-stage cylindrical shape, it may be formed in a three-stage or higher cylindrical shape. Further, the depressed peripheral wall portion 223 may not be formed in a multistage shape.
  • the synthetic resin material forming the bottle 21 may be appropriately changed, for example, polyethylene terephthalate, polyethylene naphthalate, amorphous polyester, or a blend material thereof.
  • the bottle 21 is not limited to a single layer structure, and may be a laminated structure having an intermediate layer. Examples of the intermediate layer include a layer made of a resin material having a gas barrier property, a layer made of a recycled material, or a layer made of a resin material having an oxygen absorption property.
  • the cross-sectional view of each of the shoulder 212, the trunk 213, and the bottom 214 orthogonal to the bottle axis O is circular.
  • the present invention is not limited to this.
  • the cross-sectional view shape may be changed to a polygonal shape as appropriate.
  • the bottle it is possible to ensure the reduced pressure absorption performance while suppressing the occurrence of bottoming when the contents are filled or when the internal pressure is increased. Moreover, according to the said bottle, the pressure reduction absorption performance in a bottle can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

 このボトルは、合成樹脂材料で有底筒状に形成されたボトルであって、底部の底壁部は、外周縁部に位置する接地部と、前記接地部にボトル径方向の内側から連なり上方に向けて延びる立ち上がり周壁部と、前記立ち上がり周壁部の上端部からボトル径方向の内側に向けて突出する環状の可動壁部と、前記可動壁部にボトル径方向の内側から連なり上方に向けて延びる陥没周壁部と、を備える。前記可動壁部は、前記陥没周壁部を上方に向けて移動させるように、前記立ち上がり周壁部との接続部分を中心に回動自在に配設される。前記立ち上がり周壁部は、前記接地部から前記可動壁部との前記接続部分に向かうに従い漸次ボトル径方向の内側に向けて傾斜するように延在すると共に、その傾斜角度がボトル軸に対して10度以下とされている。

Description

ボトル
 本発明は、ボトルに関する。
 本願は、2011年7月26日に日本に出願された特願2011-163103号及び2011年8月31日に日本に出願された特願2011-188613号に基づいて優先権を主張し、その内容をここに援用する。
 従来から、合成樹脂材料で有底筒状に形成されたボトルとして、例えば下記特許文献1に示されるボトルの構成が知られている。特許文献1には、底部の底壁部が、外周縁部に位置する接地部と、前記接地部にボトル径方向の内側から連なり上方に向けて延びる立ち上がり周壁部と、前記立ち上がり周壁部の上端部からボトル径方向の内側に向けて突出する可動壁部と、前記可動壁部のボトル径方向の内端部から上方に向けて延びる陥没周壁部と、を備え、可動壁部が陥没周壁部を上方に向けて移動させるように、立ち上がり周壁部との接続部分を中心に回動することにより、ボトル内の減圧を吸収する構成が開示されている。
特開2010-126184号公報
 しかしながら、前記従来のボトルでは、内容物の充填時や内圧上昇時等に、可動壁部が立ち上がり周壁部との接続部分を中心に下方に回動してしまう。その結果、可動壁部の一部が接地部の配設位置に到達したり接地部よりも下方に突出したりして、接地安定性の不具合を招く、いわゆる底落ちが生じ易くなる可能性があった。
 なお、本実施形態における「底落ち」とは、上記したように接地安定性の不具合を招く現象を言う。
 また、前記従来のボトルでは、ボトル内の減圧吸収性能を向上させることに対して改善の余地があった。
 本発明は、底落ちの発生を抑えつつ、減圧吸収性能を確保することができるボトルを提供することを第一の目的とする。
 本発明は、ボトル内の減圧吸収性能を向上させることができるボトルを提供することを第二の目的とする。
 本発明の第一の態様によれば、ボトルは、合成樹脂材料で有底筒状に形成されたボトルであって、底部の底壁部は、接地部と、立ち上がり周壁部と、環状の可動壁部と、陥没周壁部と、を備える。前記接地部は、外周縁部に位置する。前記立ち上がり周壁部は、前記接地部にボトル径方向の内側から連なり上方に向けて延びる。前記可動壁部は、前記立ち上がり周壁部の上端部からボトル径方向の内側に向けて突出する。前記陥没周壁部は、前記可動壁部にボトル径方向の内側から連なり上方に向けて延びる。前記可動壁部は、前記陥没周壁部を上方に向けて移動させるように、前記立ち上がり周壁部との接続部分を中心に回動自在に配設される。前記立ち上がり周壁部は、前記接地部から前記可動壁部との前記接続部分に向かうに従い漸次ボトル径方向の内側に向けて傾斜するように延在すると共に、その傾斜角度がボトル軸に対して10度以下とされている。
 本発明の第一の態様に係るボトルによれば、ボトル内の減圧時、可動壁部を立ち上がり周壁部との接続部分を中心に上方に向けて回動させ、陥没周壁部を上方に移動させることができる。そのため、ボトルの減圧吸収容量を高めて所定の減圧吸収性能を確保することができる。
 ところで、立ち上がり周壁部は、可動壁部との接続部分に向かうに従い、ボトル軸に対してボトル径方向の内側に傾斜している。そのとき、立ち上がり周壁部の傾斜角度は10度以下とされており、垂直に立ち上がった形に近い状態に形成されている。そのため、立ち上がり周壁部の上端部側(上記接続部分側)がボトル径方向に容易に動いてしまうことを抑制できる。内容物の充填時等に可動壁部が上記接続部分を中心として下方に回動してしまうことを抑制し易い。これにより、いわゆる底落ちを生じ難くすることができる。
 好ましくは、前記接地部から前記立ち上がり周壁部と前記可動壁部との前記接続部分までの高さが、7.5mmを超える高さとされている。
 この場合には、可動壁部の回動中心となる接続部分が接地部から7.5mmを超える高さに位置しているので、内容物の充填時等に、いわゆる底落ちをより生じ難くさせることができる。そのため、安定した接地性能を確保できると共に、例えば内容物の高温充填にも対応することが可能である。
 本発明の第二の態様によれば、前記可動壁部は、前記立ち上がり周壁部に接続される外端部から前記陥没周壁部に接続される内端部に向かうに従い漸次下方に向けて延在する。前記接地部から前記可動壁部の最下端部までの高さは、前記接地部から前記可動壁部の前記外端部までの高さの35%以上65%以下とされている。
 本発明の第二の態様に係るボトルによれば、ボトル内の減圧時、可動壁部の回動によって陥没周壁部が上方に移動することで減圧を吸収することができる。特に、可動壁部は外端部から内端部に向かうに従い漸次下方に延在しているうえ、接地部から可動壁部の最下端部までの高さが接地部から外端部までの高さの65%以下とされて外端部と最下端部との高低差が大きく確保されているので、内容物の充填時に前記可動壁部を下方に向けて回動させ易い。そのため、ボトル内の容積を増大させて充填直後の減圧吸収容量を高めることができる。これにより減圧吸収性能を向上させることができる。
 また、接地部から前記最下端部までの高さが接地部から外端部までの高さの35%以上とされて、前記最下端部と接地部との距離が十分に確保されているので、内容物の充填に伴って可動壁部が下方に回動した際、この最下端部が接地部よりも下方に飛び出してしまい難く、接地面への接触を回避し易い。従って、例えば高温充填した場合であっても、可動壁部の上記飛び出しを抑制しながら充填作業を確実に行うことができる。
好ましくは、前記可動壁部の最下端部の前記接地部からの高さが3mm以上とされている。
 この場合には、可動壁部の最下端部を接地面から十分に上方に離間させることが可能になり、上記飛び出しをより一層確実に抑制することができる。
 上記ボトルによれば、内容物の充填時や内圧上昇時等における底落ちの発生を抑えつつ、減圧吸収性能を確保することができる。
 上記ボトルによれば、ボトル内の減圧吸収性能を向上させることができる。
本発明の第一実施形態におけるボトルの正面図である。 図1に示すボトルの底面図である。 図2に示すA-A線に沿ったボトルの断面図である。 本発明の第二実施形態におけるボトルの正面図である。 図4に示すボトルの底面図である。 図5に示すB-B線に沿ったボトルの断面図である。 本発明の実施形態に係る変形例を示すボトルの底面図である。 図7に示すC-C線に沿ったボトルの断面図である。
 以下、図1から図3を参照し、本発明の第一実施形態に係るボトルを説明する。
(ボトルの構成)
 第一実施形態に係るボトル11は、図1に示すように、口部111、肩部112、胴部113及び底部114を備える。口部111、肩部112、胴部113及び底部114は、それぞれの中心軸線を共通軸上に位置した状態で、この順に連設されている。
 以下、前記共通軸をボトル軸Oといい、ボトル軸O方向に沿って口部111側を上側、底部114側を下側という。また、ボトル軸Oに直交する方向をボトル径方向といい、ボトル軸Oを中心に周回する方向をボトル周方向という。
 なお、ボトル11は、射出成形により有底筒状に形成されたプリフォームがブロー成形されて形成され、合成樹脂材料で一体に形成されている。また、口部111には、図示されないキャップが螺着される。更に、口部111、肩部112、胴部113及び底部114は、それぞれボトル軸Oに直交する横断面視形状が円形状に形成されている。
 肩部112と胴部113との間には、第1環状凹溝115が全周に亘って連続して形成されている。
 胴部113は筒状に形成されていると共に、肩部112の下端部及び底部114の後述するヒール部117よりも小径に形成されている。また、この胴部113には、ボトル軸O方向に間隔を開けて複数の第2環状凹溝116が形成されている。図1の例では、ボトル軸O方向に等間隔を開けて第2環状凹溝116が5つ形成されている。これら各第2環状凹溝116は、胴部113の全周に亘って連続して形成された溝部である。
 底部114は、ヒール部117と、底壁部119と、を備えるカップ状に形成されている。ヒール部117は、上端開口部が胴部113の下端開口部に接続される。底壁部119は、ヒール部117の下端開口部を閉塞し、且つ外周縁部が接地部118とされる。
 ヒール部117のうち、上記接地部118にボトル径方向の外側から連なるヒール下端部127は、前記ヒール下端部127に上方から連なる上ヒール部128より小径に形成されている。
なお、この上ヒール部128は、肩部112の下端部と共にボトル11の最大外径部である。
 また、ヒール下端部127と上ヒール部128との連結部分129は、上方から下方に向かうに従い漸次縮径されている。これによりヒール下端部127は、上ヒール部128より小径に形成されている。また、上ヒール部128には、例えば上記第1環状凹溝115と略同じ深さの複数の第3環状凹溝120が全周に亘って連続して形成されている。図1の例では、ボトル軸O方向に間隔を開けて第3環状凹溝120が2つ形成されている。
 底壁部119は、図2及び図3に示すように、立ち上がり周壁部121と、環状の可動壁部122と、陥没周壁部123と、を備えている。立ち上がり周壁部121は、接地部118にボトル径方向の内側から連なり上方に向けて延びる。環状の可動壁部122は、立ち上がり周壁部121の上端部からボトル径方向の内側に向けて突出する。陥没周壁部123は、可動壁部122のボトル径方向の内端部から上方に向けて延びる。
 可動壁部122は、下方に向けて突の曲面状に形成されると共に、ボトル径方向の外側から内側に向かうに従い漸次下方に向けて延在している。この可動壁部122と立ち上がり周壁部121とは、上方に向けて突の曲面部125を介して連結されている。そして、可動壁部122は、陥没周壁部123を上方に向けて移動させるように、上記曲面部(立ち上がり周壁部121との接続部分)125を中心に回動自在に形成されている。
 立ち上がり周壁部121は、下方から上方に向かうに従い漸次縮径している。具体的には、接地部118から可動壁部122との接続部分である上記曲面部125に向かうに従い漸次ボトル径方向の内側に向けて傾斜するように延在している。その際、傾斜角度θは、ボトル軸Oに対して10°以下である。
 また、第一実施形態では、接地部118から上記曲面部125までの高さTが、7.5mmを超える高さである。例えば、高さTは、7.7mmである。
 陥没周壁部123は、ボトル軸Oと同軸に配設されると共に、上方から下方に向かうに従い漸次拡径する横断面視円形状に形成されている。陥没周壁部123の上端部には、ボトル軸Oと同軸に配置された円板状の頂壁124が接続されている。陥没周壁部123及び頂壁124の全体で有頂筒状を形成している。
 この陥没周壁部123は、ボトル径方向の内側に向けて突の曲面状に形成され、上端部が頂壁124の外周縁部に連設された湾曲壁部123aを備えている。湾曲壁部123aの下端部は、下方に向けて突の曲面部126を介して可動壁部122のボトル径方向の内端部に連設されている。
(ボトルの作用)
 このように構成されたボトル11内が減圧すると、底壁部119の曲面部125を中心にして可動壁部122が上方に向かって回動することで、可動壁部122は陥没周壁部123を上方に向けて持ち上げるように移動する。即ち、減圧時にボトル11の底壁部119を積極的に変形させることで、ボトル11の内圧変化(減圧)を吸収することができる。これにより、所定の減圧吸収性能を確保することができる。
 ところで、第一実施形態のボトル11では、立ち上がり周壁部121が曲面部125に向かうに従いボトル径方向の内側に傾斜している。立ち上がり周壁部121の傾斜角度θは、ボトル軸Oに対して10度以下とされ、垂直に立ち上がった形に近い状態に形成されている。そのため、立ち上がり周壁部121の上端部側(曲面部125側)がボトル径方向に容易に動いてしまうことを抑制できる。このため、内容物の充填時や内圧上昇時に、可動壁部122が曲面部125を中心として下方に回動してしまうことを抑制し易い。つまり、立ち上がり周壁部121がボトル径方向の内側に倒れ込むように変形することが抑制され、これにより、いわゆる底落ちを生じ難くすることができる。
 しかも、可動壁部122の回動中心となる曲面部125は、接地部118から7.7mm上方に位置する高さに配設されている。そのため、可動壁部122が多少下方に回動したとしても、底落ちの発生を防止し易い。そのため、安定した接地性能を確保できると共に、例えば内容物の高温充填(例えば、80~100℃、好ましくは85~93℃)にも対応することができる。
 また、第一実施形態のボトル11は、内容量が1リットル以下、接地径が85mm以下とされるボトルに好適である。図3の例では、接地径が70mm、接地部118からの曲面部125の高さTが7.7mmとされたボトルである。
 なお、本発明の技術範囲は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、種々の変更を加えることが可能である。
 例えば、立ち上がり周壁部121の傾斜角度θとしては、10度以下であれば良い。より好ましくは、立ち上がり周壁部121の傾斜角度θは3度以下である。
 また、可動壁部122をボトル径方向に沿って平行に突出させたり、上方に傾斜させたりする等、適宜変更しても良い。また、可動壁部122を平面状若しくは上方に向けて窪む凹曲面状に形成する等、適宜変更しても良い。
 更には、可動壁部122を、曲面部125からボトル径方向の内側に向かうに従い漸次下方に向けて延びる外側壁部と、前記外側壁部と陥没周壁部とを接続し、且つ上方に向けて窪む凹曲面状に形成された内側壁部と、で構成しても構わない。こうすることで、例えば内容物の充填時に、可動壁部122の内側壁部が下方により到達し難くなるので、いわゆる底落ちの発生を効果的に抑制し易い。
 また、上記第一実施形態では、肩部112、胴部113及び底部114のそれぞれのボトル軸Oに直交する横断面視形状を円形状とした。しかしながら、これに限らず例えば、横断面視形状を多角形状にする等、適宜変更しても良い。
 また、ボトル11を形成する合成樹脂材料は、例えばポリエチレンテレフタレートや、ポリエチレンナフタレート、非晶性ポリエステル等、またはこれらのブレンド材料等、適宜変更しても良い。更に、ボトル11は単層構造体に限らず中間層を有する積層構造体としても良い。なお、中間層としては例えばガスバリア性を有する樹脂材料からなる層、再生材からなる層、若しくは酸素吸収性を有する樹脂材料からなる層等が挙げられる。
(実施例)
 次に、立ち上がり周壁部121の傾斜角度θの違いによって、内容物の充填時に前記立ち上がり周壁部121の上端部がボトル径方向にどのように変化するかを試験(解析)した実施例について説明する。
 本試験では、実施例として下記の4パターンの試験を行った。さらに、実施例の比較例として下記の4パターンの試験を行った。つまり、合計8つのパターンについて、それぞれ試験を行った。なお、本試験の接地面から曲面部125の最上部までの高さ(空ボトル時)は7.7mmである。
 実施例としては、立ち上がり周壁部121の傾斜角度θとして、1.5度、3度、4.5度、9度の4つのパターンを採用した。これに対して、比較例としては、立ち上がり周壁部121の傾斜角度θとして、12度、15度、20度、30度の4つのパターンを採用した。
 そして、上記した合計8つのパターンの立ち上がり周壁部121を具備するボトル11内に、内容物の充填を想定して所定の内圧(0.5kg/cm(49KPa))を加えた。
すると、いずれのボトル11も、可動壁部122が曲面部125を中心として下方に回動し、且つ立ち上がり周壁部121の上端部がボトル径方向の内側に向けて倒れ込むように変形した。つまり、いずれの場合も、立ち上がり周壁部121は傾斜角度θが増大するように変形した。
 具体的には、実施例の4パターンにおいて、傾斜角度θが1.5度の場合には4.7度(変化量3.2度)に増大した。傾斜角度θが3度の場合には6.2度(変化量3.2度)に増大した。傾斜角度θが4.5度の場合には7.8度(変化量3.3度)に増大した。傾斜角度θが9度の場合には12.3度(変化量3.3度)に増大した。
 これに対して、比較例の4パターンにおいて、傾斜角度θが12度の場合には15.4度(変化量3.4度)に増大した。傾斜角度θが15度の場合には18.5度(変化量3.5度)に増大した。傾斜角度θが20度の場合には23.7度(変化量3.7度)に増大した。傾斜角度θが30度の場合には34度(変化量4度)に増大した。
 これらの結果から、立ち上がり周壁部121の傾斜角度θが大きいほど、内容物の充填時に、その上端部がボトル径方向の内側に倒れ込むように移動し易くなることが確認できた。それにより可動壁部122の一部が接地部118に対して接近し易くなること、即ち、底落ちが生じ易くなることが確認できた。
 しかしながら、上記した実施例の4パターンのいずれにおいても、確実に底落ちが発生しないことが確認できた。これにより、立ち上がり周壁部121の傾斜角度θをボトル軸Oに対して10度以下にすることで、底落ちの発生を抑制できることが実際に確認できた。
 次に、図4から図8を参照し、本発明の第二実施形態に係るボトルを説明する。
 第二実施形態に係るボトル21は、図4から図6に示すように、口部211、肩部212、胴部213及び底部214を備える。口部211、肩部212、胴部213及び底部214は、それぞれの中心軸線を共通軸上に位置した状態で、この順に連設されている。
 以下、前記共通軸をボトル軸Oといい、ボトル軸O方向に沿って口部211側を上側、底部214側を下側という。また、ボトル軸Oに直交する方向をボトル径方向といい、ボトル軸O回りに周回する方向をボトル周方向という。
 なお、ボトル21は、射出成形により有底筒状に形成されたプリフォームがブロー成形されて形成され、合成樹脂材料で一体に形成されている。また、口部211には、図示されないキャップが螺着される。更に、口部211、肩部212、胴部213及び底部214は、それぞれボトル軸Oに直交する横断面視形状が円形状に形成されている。
 肩部212と胴部213との接続部分には、第1環状凹溝216が全周に亘って連続して形成されている。
 胴部213は筒状に形成されていると共に、ボトル軸O方向の両端部同士の間がこれら両端部より小径に形成されている。この胴部213には、ボトル軸O方向に間隔を開けて複数の第2環状凹溝215が形成されている。図4の例では、ボトル軸O方向に等間隔を開けて第2環状凹溝215が4つ形成されている。各第2環状凹溝215は、胴部213の全周に亘って連続して形成された溝部である。
 胴部213と底部214との接続部分には、第3環状凹溝220が全周に亘って連続して形成されている。
 底部214は、上端開口部が胴部213の下端開口部に接続されたヒール部217と、ヒール部217の下端開口部を閉塞し、且つ外周縁部が接地部218とされた底壁部219と、を備えるカップ状に形成されている。
 ヒール部217のうち、上記接地部218にボトル径方向の外側から連なるヒール下端部227は、前記ヒール下端部227に上方から連なる上ヒール部228より小径に形成されている。
なお、この上ヒール部228は、胴部213のボトル軸O方向の両端部と共にボトル21の最大外径部である。
 また、ヒール下端部227と上ヒール部228との連結部分229は、上方から下方に向かうに従い漸次縮径されており、これによりヒール下端部227が上ヒール部228より小径に形成されている。また、上ヒール部228には、第3環状凹溝220と略同じ深さの第4環状凹溝231が全周に亘って連続して形成されている。
 底壁部219は、図6に示すように、立ち上がり周壁部221と、環状の可動壁部222と、陥没周壁部223と、を備えている。立ち上がり周壁部221は、接地部218にボトル径方向の内側から連なり上方に向けて延びる。環状の可動壁部222は、立ち上がり周壁部221の上端部からボトル径方向の内側に向けて突出する。陥没周壁部223は、可動壁部222にボトル径方向の内側から連なり上方に向けて延びる。
 接地部218は、接地面Gに対して例えば環状に線接触している。立ち上がり周壁部221は、下方から上方に向かうに従い漸次縮径している。
 可動壁部222は、下方に向けて突の曲面状に形成されると共に、立ち上がり周壁部221に接続される外端部から陥没周壁部223に接続される内端部に向かうに従い漸次下方に向けて延在している。
 なお、第二実施形態では、可動壁部222と立ち上がり周壁部221とが上方に向けて突の曲面部225を介して連結されていると共に、可動壁部222と陥没周壁部223とが下方に向けて突の曲面部226を介して連結されている。また、上記曲面部225が可動壁部222の外端部である。上記曲面部226が可動壁部222の内端部でかつ最下端部である。
 そして、可動壁部222は、陥没周壁部223を上方に向けて移動させるように、外端部である上記曲面部225を中心に回動自在に形成されている。
 また、可動壁部222の外端部である曲面部225及び内端部である曲面部226は、共に接地面Gから離間している。この際、接地部218から内端部である曲面部226までの高さH1は、3mm以上である。また、高さH1は、接地部218から外端部である曲面部225までの高さH2の35%以上65%以下である。
 陥没周壁部223は、ボトル軸Oと同軸に配設されると共に、上方から下方に向かうに従い漸次拡径しながら多段に形成されている。陥没周壁部223の上端部には、ボトル軸Oと同軸に配置された円板状の頂壁224が接続されている。陥没周壁部223及び頂壁224の全体で有頂筒状を形成している。
 第二実施形態の陥没周壁部223は、下筒部223aと、上筒部223bと、段部223cと、を備えており、2段筒状に形成されている。下筒部223aは、可動壁部222のボトル径方向の内端部から上方に向かうに従い漸次縮径される。上筒部223bは、上端部が上記頂壁224の外周縁部に連設され、下方に向かうに従い漸次拡径されると共に下方に向けて突の曲面状に形成される。段部223cは、下筒部223aと上筒部223bを連結する。
 下筒部223aは、横断面視円形状に形成され、上記曲面部226を介して可動壁部222に連結されている。上筒部223bには、ボトル径方向の内側に向けて張り出す張出部223dが形成されている。この張出部223dは、上筒部223bの上端部を除くボトル軸O方向のほぼ全長に亘って形成されている。張出部223dは、図5に示すようにボトル周方向に複数連ねられて形成されている。
 なお図5の例では、ボトル周方向に隣り合う張出部223d同士は、ボトル周方向に間隔を開けて配置されている。
 そして、上筒部223bの横断面視形状は、張出部223dが形成されることにより、下方から上方に向かうに従い多角形状から円形状に変形している。上筒部223bの上端部における横断面視形状は円形状に形成されている。上筒部223bのうち、横断面視形状が多角形状とされた部分では、張出部223dが多角形状の辺部である。ボトル周方向で隣り合う張出部223d同士の間に位置する間部分223eが、多角形状の角部である。
 なお、図5の例では、多角形状が略正三角形状の場合を例に挙げているが、この場合に限定されるものではない。
 このように構成されたボトル21内が減圧すると、曲面部225を中心にして可動壁部222が上方に向かって回動することで、可動壁部222は陥没周壁部223を上方に向けて持ち上げるように移動する。即ち、減圧時にボトル21の底壁部219を積極的に変形させることで、ボトル21の内圧変化(減圧)を吸収することができる。
 特に、この可動壁部222は、外端部である曲面部225から内端部である曲面部226に向かうに従い漸次下方に延在している。そのうえで、接地部218から内端部である曲面部226までの高さH1が接地部218から外端部である曲面部225までの高さH2の65%以下とされて高低差が大きく確保されているので、内容物の充填時に可動壁部222を下方に向けて回動させ易い。そのため、ボトル21内の容積を増大させて充填直後の減圧吸収量を高めることができる。これにより減圧吸収性能を向上させることができる。
 しかも、前記高さH1が前記高さH2の35%以上とされて、可動壁部222の内端部である曲面部226と接地部218との距離が十分に確保されている。このため、内容物の充填に伴って可動壁部222が下方に回動した際、曲面部226が接地部218よりも下方に飛び出してしまい難く、接地面Gへの接触を回避し易い。従って、高温充填した場合であっても、曲面部226の上記飛び出しを抑制しながら充填作業を確実に行うことができる。
 さらに、可動壁部222の内端部である曲面部226が接地部218から上方に3mm以上離間しているので、曲面部226を接地面Gから上方に十分に離間させることが可能になる。これにより、上記飛び出しをより一層確実に抑制することができる。
 なお、上記第二実施形態では、可動壁部222の内端部である曲面部226が、前記可動壁部222において最も接地面Gに近い最下端部である場合を例に挙げた。しかしながら、可動壁部222の形状によってはボトル径方向の略中間部分が最下端部となる場合も考えられる。このような場合には、この最下端部までの高さが上記H1となる。
 また、第二実施形態のボトル21は、内容量が1リットル以下、接地径が85mm以下とされ、且つ80℃以上(詳しくは80℃から95℃の温度範囲、より詳しくは87℃程度の充填温度)で内容物を充填作業する際に用いられるボトルに好適である。
 なお、本発明の技術範囲は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、種々の変更を加えることが可能である。
 例えば、上記第二実施形態において、図7及び図8に示すように、可動壁部222に、ボトル軸Oを中心として複数のリブ240を放射状に形成しても構わない。即ち、各リブ240はボトル周方向に沿って等間隔に配設されている。
 なお、図7及び図8の例では、リブ240は上方に向けて曲面状に窪んだ複数の凹部240aがボトル径方向に沿って断続的に、且つ直線状に延在して形成される。これによりリブ240は、ボトル径方向に沿う縦断面視形状が波形状に形成されている。また、各凹部240aは、それぞれ同じ形、同じ大きさに形成されている。つまり、凹部240aは、ボトル径方向に沿って等間隔に配置されている。そして、複数のリブ240において、複数の凹部240aが配設されているボトル径方向に沿う各位置は、同じに形成されている。
 このように、可動壁部222に複数のリブ240を形成することで、可動壁部222の表面積を増加させて受圧面積を増すことができるので、可動壁部222をボトル21の内圧変化により速やかに対応して変形させることができる。
 更には、図7及び図8に示すように、立ち上がり周壁部221に凹凸部241を全周に亘って形成しても構わない。なお、凹凸部241は、ボトル径方向の内側に向けて突の曲面状に形成された凸部241aが、ボトル周方向に間隔を開けて複数配設されることで構成されている。
 このように、凹凸部241を形成することで、例えば、立ち上がり周壁部221に入射する光が凹凸部241によって乱反射されたり、或いはボトル21内の内容物が凹凸部241内にも満たされたりすること等によって、内容物が充填されたボトル21の底部214を見たときに違和感を覚え難い。
 また、上記第二実施形態において、立ち上がり周壁部221は、例えばボトル軸O方向に沿って平行に延在させる等、適宜変更しても良い。また、可動壁部222は、例えば平面状若しくは上方に向けて窪む凹曲面状に形成する等、適宜変更しても良い。
 また、上記第二実施形態では、上筒部223bを下方に向けて突の曲面状に形成したが、この形状に限られるものではない。
 また、上記第二実施形態では、ボトル周方向に隣り合う張出部223d同士がボトル周方向に間隔を開けて配置されているが、これに限られるものではない。例えば張出部223d同士がボトル周方向に間隔を開けずに配置され、互いに直接連結されていても良い。この場合、上筒部223bのうち、張出部223dが配設された部分における横断面視形状が円形状となっていても良い。上筒部223bの横断面視形状がボトル軸O方向の全長に亘って円形状となっていても良い。
 また、張出部223dは必須ではなく具備しなくとも良い。更に、陥没周壁部223は、2段筒状に形成されているものとしたが、3段以上の筒状に形成されていてもよい。また、陥没周壁部223は、多段状に形成されていなくても良い。
 また、ボトル21を形成する合成樹脂材料は、例えばポリエチレンテレフタレートや、ポリエチレンナフタレート、非晶性ポリエステル等、またはこれらのブレンド材料等、適宜変更しても良い。更に、ボトル21は単層構造体に限らず中間層を有する積層構造体としても良い。なお、中間層としては例えばガスバリア性を有する樹脂材料からなる層、再生材からなる層、若しくは酸素吸収性を有する樹脂材料からなる層等が挙げられる。
 また、上記第二実施形態では、肩部212、胴部213及び底部214のそれぞれのボトル軸Oに直交する横断面視形状を円形状とした。しかしながら、これに限らず、例えば、横断面視形状を多角形状にする等、適宜変更しても良い。
 上記ボトルによれば、内容物の充填時や内圧上昇時等における底落ちの発生を抑えつつ、減圧吸収性能を確保することができる。
 また、上記ボトルによれば、ボトル内の減圧吸収性能を向上させることができる。
 O ボトル軸
 T 接地部から曲面部までの高さ
 θ 立ち上がり周壁部の傾斜角度
 11、21ボトル
 114、214 底部
 118、218 接地部
 119、219 底部の底壁部
 121、221 立ち上がり周壁部
 122、222 可動壁部
 123、223 陥没周壁部
 125 曲面部(可動壁部と立ち上がり周壁部との接続部分)
 225 曲面部(可動壁部の外端部)
 226 曲面部(可動壁部の内端部)

Claims (4)

  1.  合成樹脂材料で有底筒状に形成されたボトルであって、
     底部の底壁部は、
      外周縁部に位置する接地部と、
      前記接地部にボトル径方向の内側から連なり上方に向けて延びる立ち上がり周壁部と、
      前記立ち上がり周壁部の上端部からボトル径方向の内側に向けて突出する環状の可動壁部と、
      前記可動壁部にボトル径方向の内側から連なり上方に向けて延びる陥没周壁部と、を備え、
     前記可動壁部は、前記陥没周壁部を上方に向けて移動させるように、前記立ち上がり周壁部との接続部分を中心に回動自在に配設され、
     前記立ち上がり周壁部は、前記接地部から前記可動壁部との前記接続部分に向かうに従い漸次ボトル径方向の内側に向けて傾斜するように延在すると共に、その傾斜角度がボトル軸に対して10度以下とされているボトル。
  2.  請求項1に記載のボトルであって、
     前記接地部から前記立ち上がり周壁部と前記可動壁部との前記接続部分までの高さが、7.5mmを超える高さとされているボトル。
  3.  請求項1または2に記載のボトルであって、
     前記可動壁部は、前記立ち上がり周壁部に接続される外端部から前記陥没周壁部に接続される内端部に向かうに従い漸次下方に向けて延在し、
     前記接地部から前記可動壁部の最下端部までの高さは、前記接地部から前記可動壁部の前記外端部までの高さの35%以上65%以下とされているボトル。
  4.  請求項3に記載のボトルであって、
     前記可動壁部の最下端部の前記接地部からの高さは、3mm以上とされているボトル。
PCT/JP2012/068822 2011-07-26 2012-07-25 ボトル WO2013015312A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2841101A CA2841101C (en) 2011-07-26 2012-07-25 Bottle
EP12817631.0A EP2738107B1 (en) 2011-07-26 2012-07-25 Bottle
KR1020137027405A KR101894448B1 (ko) 2011-07-26 2012-07-25
US14/131,595 US8998026B2 (en) 2011-07-26 2012-07-25 Bottle formed of synthetic resin material into cylindrical shape with bottom
AU2012287900A AU2012287900B2 (en) 2011-07-26 2012-07-25 Bottle
CN201280019689.1A CN103492273B (zh) 2011-07-26 2012-07-25 瓶子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-163103 2011-07-26
JP2011163103A JP2013023278A (ja) 2011-07-26 2011-07-26 ボトル
JP2011-188613 2011-08-31
JP2011188613A JP6151881B2 (ja) 2011-08-31 2011-08-31 ブローボトル

Publications (1)

Publication Number Publication Date
WO2013015312A1 true WO2013015312A1 (ja) 2013-01-31

Family

ID=47601153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068822 WO2013015312A1 (ja) 2011-07-26 2012-07-25 ボトル

Country Status (8)

Country Link
US (1) US8998026B2 (ja)
EP (1) EP2738107B1 (ja)
KR (1) KR101894448B1 (ja)
CN (1) CN103492273B (ja)
AU (1) AU2012287900B2 (ja)
CA (1) CA2841101C (ja)
TW (1) TWI603893B (ja)
WO (1) WO2013015312A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3028951B1 (en) * 2013-07-31 2019-12-25 Yoshino Kogyosho Co., Ltd. Pressure reduction absorbing bottle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3109176A1 (en) * 2015-06-23 2016-12-28 Sidel Participations Container provided with a curved invertible diaphragm
CA2999296A1 (en) * 2017-03-27 2018-09-27 Yoshino Kogyosho Co., Ltd. Pressure reduction-absorbing bottle
US11479400B2 (en) 2018-01-18 2022-10-25 Nissei Asb Machine Co., Ltd. Container
US11970324B2 (en) 2022-06-06 2024-04-30 Envases USA, Inc. Base of a plastic container

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539141A (ja) * 2005-04-28 2008-11-13 アムコー リミテッド 真空に関連した力に反応する容器の底部構造
JP2010126184A (ja) 2008-11-27 2010-06-10 Yoshino Kogyosho Co Ltd 合成樹脂製壜体
WO2012057158A1 (ja) * 2010-10-27 2012-05-03 株式会社吉野工業所 ボトル

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325186A (en) * 1976-08-20 1978-03-08 Daiwa Can Co Ltd Metallic can for drink containing carbon dioxide or the like
US4465199A (en) 1981-06-22 1984-08-14 Katashi Aoki Pressure resisting plastic bottle
JPH0747293Y2 (ja) * 1990-01-19 1995-11-01 株式会社吉野工業所 樹脂製容器の底部構造
US5730314A (en) * 1995-05-26 1998-03-24 Anheuser-Busch Incorporated Controlled growth can with two configurations
US6176382B1 (en) * 1998-10-14 2001-01-23 American National Can Company Plastic container having base with annular wall and method of making the same
US6595380B2 (en) 2000-07-24 2003-07-22 Schmalbach-Lubeca Ag Container base structure responsive to vacuum related forces
US7900425B2 (en) * 2005-10-14 2011-03-08 Graham Packaging Company, L.P. Method for handling a hot-filled container having a moveable portion to reduce a portion of a vacuum created therein
US7451886B2 (en) * 2003-05-23 2008-11-18 Amcor Limited Container base structure responsive to vacuum related forces
JP5019810B2 (ja) 2006-07-18 2012-09-05 北海製罐株式会社 合成樹脂製ボトル及びその製造方法
KR101684711B1 (ko) 2008-11-27 2016-12-08 가부시키가이샤 요시노 고교쇼 합성수지제 병체
US8047388B2 (en) * 2008-12-08 2011-11-01 Graham Packaging Company, L.P. Plastic container having a deep-inset base
EP2623428B1 (en) * 2010-09-30 2017-04-26 Yoshino Kogyosho Co., Ltd. Bottle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008539141A (ja) * 2005-04-28 2008-11-13 アムコー リミテッド 真空に関連した力に反応する容器の底部構造
JP2010126184A (ja) 2008-11-27 2010-06-10 Yoshino Kogyosho Co Ltd 合成樹脂製壜体
WO2012057158A1 (ja) * 2010-10-27 2012-05-03 株式会社吉野工業所 ボトル

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3028951B1 (en) * 2013-07-31 2019-12-25 Yoshino Kogyosho Co., Ltd. Pressure reduction absorbing bottle

Also Published As

Publication number Publication date
US20140124473A1 (en) 2014-05-08
CA2841101C (en) 2019-08-06
AU2012287900A1 (en) 2014-01-30
TWI603893B (zh) 2017-11-01
AU2012287900B2 (en) 2016-09-22
KR101894448B1 (ko) 2018-09-04
CN103492273A (zh) 2014-01-01
CA2841101A1 (en) 2013-01-31
EP2738107A1 (en) 2014-06-04
EP2738107B1 (en) 2019-09-11
EP2738107A4 (en) 2015-03-04
US8998026B2 (en) 2015-04-07
TW201313560A (zh) 2013-04-01
CN103492273B (zh) 2016-06-08
KR20140125283A (ko) 2014-10-28

Similar Documents

Publication Publication Date Title
WO2013015312A1 (ja) ボトル
KR101818078B1 (ko)
WO2012057158A1 (ja) ボトル
JP5501184B2 (ja) ボトル
WO2012057026A1 (ja) ボトル
JP5886521B2 (ja) ボトル
WO2015166682A1 (ja) ボトル
JP5719677B2 (ja) ボトル
JP5785823B2 (ja) ボトル
JP5789440B2 (ja) ボトル
JP2013023278A (ja) ボトル
JP5645603B2 (ja) ボトル
JP5645604B2 (ja) ボトル
JP6151881B2 (ja) ブローボトル
JP2012091827A (ja) ボトル
JP2018162087A (ja) 減圧吸収ボトル
JP5489953B2 (ja) ボトル
JP5992665B2 (ja) ボトル
JP5568440B2 (ja) ボトル
JP2018162086A (ja) 減圧吸収ボトル
JP2012076747A (ja) ボトル
JP5645602B2 (ja) ボトル
JP2012091816A (ja) ボトル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817631

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137027405

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2841101

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14131595

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012287900

Country of ref document: AU

Date of ref document: 20120725

Kind code of ref document: A