WO2013015047A1 - 界磁極用磁石体の製造装置およびその製造方法 - Google Patents

界磁極用磁石体の製造装置およびその製造方法 Download PDF

Info

Publication number
WO2013015047A1
WO2013015047A1 PCT/JP2012/065769 JP2012065769W WO2013015047A1 WO 2013015047 A1 WO2013015047 A1 WO 2013015047A1 JP 2012065769 W JP2012065769 W JP 2012065769W WO 2013015047 A1 WO2013015047 A1 WO 2013015047A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet body
cleaving
manufacturing
magnet
pair
Prior art date
Application number
PCT/JP2012/065769
Other languages
English (en)
French (fr)
Inventor
泰久 小池
西村 公男
宏治 竹内
国朋 石黒
長谷川 清
伊澤 佳典
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US14/234,746 priority Critical patent/US9796150B2/en
Priority to CA2842889A priority patent/CA2842889C/en
Priority to CN201280033307.0A priority patent/CN103650304B/zh
Priority to AU2012288174A priority patent/AU2012288174B2/en
Priority to EP12817482.8A priority patent/EP2738922B1/en
Priority to KR1020147001705A priority patent/KR101607409B1/ko
Publication of WO2013015047A1 publication Critical patent/WO2013015047A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/0082Dust eliminating means; Mould or press ram cleaning means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/38Cutting-out; Stamping-out
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F3/00Severing by means other than cutting; Apparatus therefor
    • B26F3/002Precutting and tensioning or breaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/22Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising
    • B28D1/222Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by cutting, e.g. incising by pressing, e.g. presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D7/00Accessories specially adapted for use with machines or devices of the preceding groups
    • B28D7/02Accessories specially adapted for use with machines or devices of the preceding groups for removing or laying dust, e.g. by spraying liquids; for cooling work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B13/00Methods of pressing not special to the use of presses of any one of the preceding main groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Definitions

  • the present invention relates to an apparatus for manufacturing a field pole magnet body disposed in a rotor core of a permanent magnet embedded rotary electric machine and a method for manufacturing the same.
  • a technique for reducing eddy currents caused by fluctuations in the acting magnetic field is known by cleaving and dividing the field pole magnet body disposed in the rotor core of the permanent magnet embedded rotary electric machine to reduce its surface area. ing. This suppresses heat generation of the field pole magnet body due to eddy current and prevents irreversible thermal demagnetization (see JP2009-148201A).
  • a field pole magnet body in which a notch serving as a guide for cleaving is provided in advance, is inserted into a resin-filled container having the same dimension and shape as the rotor slot. .
  • the field pole magnet body is cleaved into magnet pieces in the container, and the resin is infiltrated between the magnet pieces at the same time as the cleaving.
  • the accuracy of the cleaved surface may deteriorate due to abnormal cracks in which the cleaved surface of the magnet piece deviates from the planned cutting surface or becomes bifurcated. It is presumed that this occurs when the pair of lower mold support parts or the upper mold blade hit the field pole magnet body at the time of cleaving.
  • the pair of support portions of the blade or the lower die hits the field pole magnet body, a fine powder generated during cleaving between the pair of lower mold support portions and the field pole magnet body that is a brittle material It can be estimated that the field pole magnet body is supported by the lower die in a state of being floated by the foreign matter.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide an apparatus for manufacturing a field pole magnet body disposed on a rotor core of a rotating electrical machine and a method for manufacturing the same, which are suitable for improving the accuracy of a split section.
  • a field pole magnet body manufacturing apparatus manufactures magnet pieces constituting a field pole magnet body disposed in a rotating electrical machine by cleaving the magnet body.
  • the field pole magnet body manufacturing apparatus is provided on the opposite side of the support portion with the magnet body between the support portion and the magnet body, and cleaves the magnet body by contacting and pressing the magnet body.
  • a cleaving portion and a powder removing portion for removing crushed powder generated by cleaving the magnet body are provided.
  • FIG. 1 is a schematic configuration diagram illustrating a configuration of a main part of a permanent magnet type electric motor to which a magnet body manufactured by a field pole magnet body manufacturing apparatus according to the present embodiment is applied.
  • FIG. 2 is a configuration diagram showing the configuration of the magnet body.
  • FIG. 3 is a schematic configuration diagram of a field pole magnet body manufacturing apparatus according to the first embodiment.
  • FIG. 4 is an enlarged view of a main part of the field pole magnet body manufacturing apparatus shown in FIG.
  • FIG. 5 is a cross-sectional view showing the configuration of the elevating member.
  • FIG. 6 is a diagram showing a modified structure example of the lower mold protrusion.
  • FIG. 7 is a diagram illustrating another modified structure example of the lower protrusion.
  • FIG. 1 is a schematic configuration diagram illustrating a configuration of a main part of a permanent magnet type electric motor to which a magnet body manufactured by a field pole magnet body manufacturing apparatus according to the present embodiment is applied.
  • FIG. 2 is a configuration diagram showing the
  • FIG. 8 is a schematic configuration diagram of an apparatus for manufacturing a field pole magnet body according to the second embodiment.
  • FIG. 9 is a schematic configuration diagram of an apparatus for manufacturing a field pole magnet body according to the third embodiment.
  • FIG. 10 is a schematic configuration diagram of a field pole magnet body manufacturing apparatus according to the fourth embodiment.
  • FIG. 11 is a schematic block diagram of the manufacturing apparatus of the magnetic body for field poles which does not have one side of a pair of protrusion part.
  • FIG. 12 is an explanatory diagram for explaining an abnormal cracking state when the magnet body is cleaved.
  • FIG. 1 is a schematic configuration diagram illustrating a configuration of a main part of a permanent magnet type electric motor to which a magnet body manufactured by a field pole magnet body manufacturing apparatus according to the present embodiment is applied.
  • the left diagram is a cross-sectional view of a permanent magnet motor
  • the right diagram is a side view.
  • a permanent magnet embedded type rotary electric machine A (hereinafter, simply referred to as “rotary electric machine”) is arranged in a ring-shaped stator 10 that constitutes a part of a casing (not shown), and coaxially arranged with the stator 10.
  • a cylindrical rotor 20 is arranged in a ring-shaped stator 10 that constitutes a part of a casing (not shown), and coaxially arranged with the stator 10.
  • the stator 10 includes a stator core 11 and a plurality of coils 12.
  • the plurality of coils 12 are accommodated in slots 13 formed at equal angular intervals on the same circumference around the axis O in the stator core 11.
  • the rotor 20 includes a rotor core 21, a rotating shaft 23 that rotates integrally with the rotor core 21, and a plurality of field pole magnet bodies 30.
  • the plurality of field pole magnet bodies 30 are accommodated in slots 22 formed at equal angular intervals on the same circumference around the axis O.
  • the field pole magnet body 30 housed in the slot 22 of the rotor 20 is configured as an assembly of a plurality of magnet pieces 31 obtained by cleaving and dividing the field pole magnet body 30 as shown in FIG. More specifically, the field pole magnet body 30 is configured as an aggregate of magnet pieces 31 aligned in a line by bonding the split sections of a plurality of magnet pieces 31 with a resin 32.
  • a resin 32 having a heat resistance of about 200 ° C. is used, and the adjacent magnet pieces 31 are electrically insulated from each other.
  • a notch groove 33 in advance in a portion (scheduled planned surface) of the field pole magnet body 30 to be cleaved.
  • the field pole magnet body 30 in which the notch groove 33 is formed will be described, but the notch groove 33 is not indispensable. In other words, if the cleaving can be performed without providing the notch groove 33, the notch groove 33 may not be provided in the field pole magnet body 30. As the notch groove 33 is deeper from the surface and the sharpness of the tip of the notch groove 33 is sharper, the flatness of the cut section when cleaved as the magnet piece 31 is improved.
  • a method of forming the notch groove 33 As a method of forming the notch groove 33, a method of providing in the forming step of the field pole magnet body 30 by a groove forming protrusion provided in the forming die of the field pole magnet body 30, a method of machining such as a dicer, There is a method using laser beam irradiation.
  • FIG. 3 is a schematic configuration diagram illustrating a magnet body cleaving apparatus that is a field pole magnet body manufacturing apparatus according to the first embodiment
  • FIG. 4 is an enlarged view of a main part of the magnet cleaving apparatus.
  • a magnet cleaving device 40 of a field pole magnet body (hereinafter simply referred to as “magnet body”) 30 cleaves the magnet body 30 into a plurality of magnet pieces 31, and a lower mold 50 that supports and guides the magnet body 30.
  • an upper mold 60 that is cleaved by pressing the blade 61 against the positioned magnet body 30.
  • the magnet cleaving device 40 suctions and discharges a positioning device 70 that sequentially moves the magnet body 30 supported by the lower mold 50 and positions the magnet body 30 at the cleaving position, and crushed powder (also referred to as contamination) generated at the cleaving.
  • a suction device 80 suctions and discharges a positioning device 70 that sequentially moves the magnet body 30 supported by the lower mold 50 and positions the magnet body 30 at the cleaving position, and crushed powder (also referred to as contamination) generated at the cleaving.
  • a suction device 80 A suction device 80.
  • the lower mold 50 that supports and guides the magnet body 30 includes a plurality of protrusions 51 on the upper surface, and supports the magnet body 30 from below on the upper surface of the protrusion 51.
  • the lower die 50 includes a through hole 52 that opens downward at a position corresponding to the blade 61 of the upper die 60, and the suction device 80 is provided in the through hole 52.
  • the upper mold 60 includes a blade 61 for cleaving the positioned magnet body 30 and a magnet jump prevention clamp 62 that suppresses the magnet body 30 from jumping up when cleaving.
  • the blade 61 is provided with a sharp cutting edge facing the magnet body 30 arranged in the width direction of the magnet body 30, and is lowered by the upper mold 60, thereby pushing the cutting edge while bringing the cutting edge into contact with the planned cutting surface of the magnet body 30.
  • the magnet body 30 is cut by lowering and bending by a three-point bend between the pair of protrusions 51 before and after the through hole 52 of the lower mold 50.
  • the magnet jump-up prevention clamp 62 is formed by a leaf spring whose base is fixed to the upper die 60, and presses the magnet body 30 against the lower die 50 by its spring action, thereby cleaving the magnet body 30 (particularly the magnet on the tip side). It suppresses that the piece 31) jumps up.
  • the positioning device 70 includes a pusher 71 that contacts the rear end of the magnet body 30 and presses the magnet body 30, and a holder 72 that contacts the front end of the magnet body 30 and holds the magnet body 30.
  • the pusher 71 includes a servo motor that pushes out the magnet body 30, and repeats the operation of pushing out the magnet body 30 by one pitch of a predetermined length set by the notch groove 33 every time the cleaving operation is executed. Thereby, the planned cutting surface of the magnet body 30 is sequentially positioned.
  • the holder 72 comes into contact with the front end of the magnet body 30 to apply a braking force to the magnet body 30, and the moving amount of the magnet body 30 pushed out by the pusher 71 is exceeded.
  • the movement of the magnet body 30 is suppressed and the positioning accuracy of the magnet body 30 is improved. For this reason, when the magnet body 30 is cleaved, the holder 72 releases the contact with the front end of the magnet body 30 to allow the movement of the front end side magnet piece 31 cleaved from the magnet body 30.
  • the pusher 71 is provided with a blowout nozzle 91 as a downward cleaning means toward the lower mold 50.
  • the blowout nozzle 91 blows out air supplied from the air supply source 92.
  • the air blown from the nozzle 91 acts to blow out crushed powder (also referred to as contamination) accumulated on the upper surface of the protrusion 51 of the lower mold 50 that supports the magnet body 30 to the outside of the mold.
  • FIG. 5 is an enlarged view of a part of the suction device 80.
  • the suction device 80 includes an elevating member 81 that is inserted into the through hole 52 of the lower mold 50 so as to be movable up and down.
  • the elevating member 81 is urged to move upward by an elastic body 82 such as a spring arranged at the lower portion, and the upper end surface of the lower die 50 is engaged by the hook portion provided at the lower portion engaging the lower die 50.
  • the protrusion 51 is positioned at an initial position that is substantially the same height as the upper surface of the protrusion 51. In the initial position of the elevating member 81, the upper surface faces the lower surface of the magnet body 30 with contact or a slight gap.
  • the magnet body 30 when the magnet body 30 is cleaved, the magnet body 30 is pushed down by the blade 61 and descends. Therefore, the elevating member 81 is also pushed down against the elastic body 82 by the lower end of the cleaved portion of the magnet body 30. Descend. Then, the blade 61 is raised by the end of the cleaving, and as the cleaving portion of the magnet body 30 is raised and returned, the elastic body 82 rises and returns to the initial position, and the cleaved magnet piece 31 is replaced with the protrusion 51 of the upper die 60. Push back up.
  • the elevating member 81 includes a suction nozzle 83 made up of a plurality of openings penetrating in the vertical direction.
  • a piping hose 84 is connected to these openings and is connected to a suction machine 85 via the piping hose 84.
  • the suction nozzle 83, the piping hose 84, and the suction machine 85 constitute a suction device 80.
  • the suction device 80 sucks the pulverized powder that is generated when the magnet body 30 is cleaved and is deposited or scattered on the upper part of the elevating member 81 from the upper part of the opening to the outside of the mold. Acts to drain.
  • the magnet body 30 is placed on the protrusion 51 of the lower mold 50, and the first cleaving plane of the magnet body 30 by the pusher 71 and the holder 72 of the positioning device 70. Is positioned between the elevating member 81 and the blade 61 of the upper mold 60.
  • the contact of the holder 72 with the magnet body 30 is released, and then the upper mold 60 is lowered.
  • the magnet jump-up prevention clamp 62 provided on the upper mold 60 comes into contact with the upper surface of the magnet body 30 and elastically presses the magnet body 30 against the protrusion 51 of the lower mold 50 to move the magnet body 30. Do not hold.
  • the tip (lower end) of the blade 61 comes into contact with the planned cutting surface of the magnet body 30, and the gap between the pair of protrusions 51 before and after the through hole 52 of the lower mold 50 is 3.
  • the magnet body 30 is cleaved by being pushed down by point bending.
  • the elevating member 81 is pushed down by the lower end of the cleaved portion of the magnet body 30 that is lowered by the blade 61 and descends against the elastic body 82. At the same time, the magnet body 30 is prevented from jumping up by the magnet jump-up prevention clamp 62.
  • crushed powder generated when the magnet body 30 is cleaved is sucked into the opening together with the air from the opening of the suction nozzle 83 without being deposited or scattered on the lifting member 81 and discharged. For this reason, it is suppressed that crushed powder adheres to the upper surface of the protrusion 51 of the lower mold 50 and the lower surface of the magnet body 30.
  • the crushed powder generated when the magnet body 30 is cleaved adheres to and accumulates on the upper surface of the protrusion 51 of the lower mold 50, so that it is caught between the magnet body 30 and the lower mold 50.
  • the magnet body 30 is not supported in a state where it floats from the protrusion 51. If the pulverized powder is caught between the protrusion 51 of the lower mold 50 and the magnet body 30, and the magnet body 30 is lifted from the protrusion 51 of the lower mold 50 as shown in FIG. In the case of being supported, abnormal cracks occur when the magnet body 30 is cleaved due to foreign matter as crushed powder.
  • an abnormal tension 2 is also generated in the width direction of the magnet body 30 by the foreign object.
  • the abnormal tension 2 generates an action of bending the magnet body 30 along the longitudinal direction, and as shown by a broken line in the figure, the magnet body 30 is also cleaved in the longitudinal direction, and the magnet body 30 is abnormally cracked. As a result, the surface accuracy of the cut section is reduced.
  • the size of the crushed powder (contamination) that causes the magnet body 30 to be supported and floats abnormally in the magnet body 30 in a state of floating from the protrusion 51 of the lower mold 50 is 20 ⁇ m or more.
  • the crushed powder is sucked into the opening together with air from the opening of the suction nozzle 83 of the elevating member 81 and discharged, and adheres to the upper surface of the protrusion 51 of the lower mold 50. Or deposit. For this reason, the crushed powder is not caught between the magnet body 30 and the magnet body 30 is not supported in a state where it floats from the protrusion 51 of the lower mold 50. For this reason, generation
  • the blade 61 After cutting, the blade 61 is raised together with the upper mold 60, and as the cleaved portion of the magnet body 30 rises and returns, the elevating member 81 also rises and returns to the initial position by the elastic body 82, and pushes back the cleaved magnet piece 31.
  • the magnet jumping prevention clamp 62 provided in the upper die 60 also releases the contact with the upper surface of the magnet body 30 and releases the holding of the magnet body 30.
  • the magnet piece 31 at the tip that is cleaved from the magnet body 30 is conveyed by a conveying device (not shown) in the next step, is aligned in the cleaving order, and is bonded and integrated through an adhesive.
  • the pusher 71 of the positioning device 70 pushes the magnet body 30 by one pitch, and the holder 72 contacts the front end of the magnet body 30 to apply a braking force to the magnet body 30, so that the magnet body 30 is next cleaved.
  • the planned surface is positioned between the elevating member 81 and the blade 61 of the upper mold 60.
  • the air nozzle 91 serving as a cleaning means provided in the pusher 71 of the positioning device 70 blows air onto the upper surface of the protruding portion 51 that is exposed upward when the magnet body 30 is fed.
  • the exposed upper surface of the protruding ridge 51 is cleaned to prevent the crushed powder from adhering and accumulating.
  • the above magnet body cleaving apparatus has a configuration in which the suction nozzle 83 of the elevating member 81 is disposed between the pair of protrusions 51 of the lower mold 50 where the cleaving operation of the magnet body 30 is executed. For this reason, the crushed powder (contamination) generated when the magnet body 30 is cleaved can be sucked and discharged by the suction nozzle 83. Therefore, it is possible to suppress the crushed powder from adhering to the upper surface of the protrusion 51 of the lower mold 50 and the lower surface of the magnet body 30.
  • the elevating member 81 including the suction nozzle 83 is lowered in synchronization with the lowering of the fractured surface due to the cleaving of the magnet body 30, so that the magnet body 30, particularly the fractured surface is damaged or damaged. Can be prevented. Further, since the lifting member 81 is present at the cleaving portion, it is possible to prevent the cleaved magnet piece 31 from falling between the pair of protrusions 51.
  • FIGS. 6 and 7 are diagrams showing examples of deformation structures of the protrusion 51 of the lower mold 50, respectively.
  • 6 and 7 show a shape in which the upper end shape of the ridge 51 that contacts the magnet body 30 of the lower mold 50 is changed from a planar shape to a convex shape, and is linearly contacted in the width direction of the magnet body 30. .
  • the tip portion is formed into a convex shape 53 having a mountain-shaped cross section, thereby making line contact in the width direction of the magnet body 30.
  • the protrusion part 51 shown in FIG. 7 it forms a line contact in the width direction of the magnet body 30 by forming the front-end
  • the contact between the magnet body 30 and the protrusion 51 of the lower mold 50 is not a surface contact but a line contact. it can.
  • the amount of crushed powder (contamination) intervening between the contact surfaces can be reduced, and the magnet body 30 can be stably supported and can be more straightened. It becomes possible to do.
  • the positioning of the magnet body 30 in the longitudinal direction is not performed as “center alignment” in which the planned cutting surface is positioned at the center position between the protrusions 51 arranged in front and back of the magnet body 30.
  • the cleaving part can be set by “end alignment” that positions the front and rear ends as a reference. For this reason, the freedom degree of a cleaving location can be improved significantly.
  • the magnet body 30 is placed on the pair of protrusions 51 disposed in the lower mold 50, and the blade 61 of the upper mold 60 is placed between the pair of protrusions 51.
  • the magnet body 30 is cleaved by being lowered toward the upper surface and being brought into contact with the upper portion of the magnet body 30 and pressing.
  • This field pole magnet body manufacturing apparatus can be moved up and down between the pair of protrusions 51 of the lower mold 50, the upper end faces the lower surface of the magnet body 30, and the cleaving part descends as the magnet body 30 is cleaved.
  • a suction device (suction means) 80 that has a lifting and lowering member 81 that descends along with it and rises at the end of the cleaving and pushes back the cleaving portion, and sucks and discharges crushed powder generated by the cleaving of the magnet body 30 from the upper end opening of the lifting and lowering member 81 Nozzle 83).
  • the pulverized powder (contamination) generated at the time of cleaving the magnet body 30 is lowered with the lowering of the cleaving portion accompanying cleaving of the magnet body 30, and is lifted at the end of cleaving and having a lifting member 81 that pushes back the cleaving portion.
  • the suction nozzle 83 as means, the crushed powder can be sucked and discharged without leakage following the movement of the cleaved portion, and the crushed powder is applied to the upper surface of the protrusion 51 of the lower mold 50 and the lower surface of the magnet body 30. It can suppress adhering.
  • the crushed powder is not caught between the magnet body 30 and the magnet body 30 is not supported in a state of floating from the protrusion 51 of the lower mold 50.
  • the occurrence of abnormal cracking of the magnet body 30 can be prevented, and the surface accuracy of the split section can be improved.
  • the elevating member 81 is lowered along with the lowering of the fractured surface due to the cleaving of the magnet body 30, thereby preventing damage and damage to the magnet body 30, particularly the fractured surface. it can. Further, since the lifting member 81 is present at the cleaving portion, it is possible to prevent the cleaved magnet piece 31 from falling between the pair of protrusions 51.
  • the pair of protrusions 51 of the lower mold 50 are formed in convex shapes 53 and 54 whose tip portions that contact the magnet body 30 have a mountain-shaped cross section. In this way, by forming the tip of the protrusion 51 in the convex shapes 53 and 54, the contact between the magnet body 30 and the protrusion 51 of the lower mold 50 is not a surface contact but a line contact. it can. For this reason, by reducing the contact area between the two, the amount of crushed powder (contamination) intervening between the contact surfaces can be reduced, and the magnet body 30 can be stably supported and can be more straightened. It becomes possible to do.
  • the lower mold 50 is supported by the supporting protrusions 51 and the supporting protrusions 51 that are arranged outside the pair of protrusions 51 at predetermined intervals and support the magnet body 30 before cleaving.
  • a positioning device (positioning means) 70 that sequentially pushes and positions the distal end side of the magnet body 30 onto the pair of protrusions 51. Further, on the rear end side of the magnet body 30 from which the magnet body 30 has been pushed out by the positioning device 70, a positioning apparatus that cleans the upper surface of the supporting protrusion 51 or the upper surface of the pair of protrusions 51 with the gas blown out.
  • An air nozzle 91 is provided as a cleaning means provided in 70.
  • the air nozzle 91 blows air onto the upper surface of the protruding ridge 51 exposed to the upper side when the magnet body 30 is sent, and cleans the exposed upper surface of the protruding ridge 51 to obtain a crushed powder. Suppresses adhesion and deposition. For this reason, in the state in which the last cleaved surface of the magnet body 30 is cleaved and the magnet piece 31 is carried out from above the lower mold 50 by the positioning device 70, the upper surface of all the protrusions 51 of the lower mold 50 is removed. The crushed powder is blown away, so that there is no adhesion / deposition.
  • FIG. 8 is a schematic block diagram which shows the magnet body cleaving apparatus which is a manufacturing apparatus of the magnetic body for field poles in 2nd Embodiment.
  • type through-hole is added to the structure of 1st Embodiment.
  • symbol is attached
  • the pair of protrusions 51 disposed before and after the through hole 52 of the lower mold 50 that supports the magnet body 30 are vertically penetrated so as to blow out the air. 55 is provided. Then, air is supplied to the air outlet 55 so as to blow out air from the upper surface of the ridge 51. For this reason, an air supply device 57 is connected to the air outlet 55 via a pipe 56.
  • Other configurations are the same as those of the first embodiment.
  • the air blown out from the air outlet 55 flows between the upper surface of the ridge portion 51 and the lower surface of the magnet body 30 placed on the ridge portion 51, and flows back and forth.
  • the crushed powder (contamination) adhering to the part 51 is blown off and discharged out of the mold.
  • the suction device 80 attached to the elevating member 81 disposed in the through hole 52 sucks the crushed powder blown to the through hole 52 side and discharges it outside the mold.
  • the magnet body 30 can be set as the state which does not have a foreign material between the contact surfaces of the magnet body 30 and a pair of protrusion part 51, can support the magnet body 30 stably in a favorable contact state, and the magnet body 30
  • the magnetic body 30 can prevent abnormal cracking at the time of cleaving and can be cleaved straight.
  • the upper ends of the pair of protrusions 51 are formed flat and are in surface contact with the magnet body 30, but the second example of the first embodiment (FIGS. 6 and 7).
  • the shape of the upper end of the ridge 51 can be formed in the convex shapes 53 and 54 so as to be in line contact with the magnet body 30.
  • the pair of protrusions 51 of the lower mold 50 has a gas blown out from the tip portion that contacts the magnet body 30. For this reason, it can be set as the state which does not have a foreign material between the contact surfaces of the magnet body 30 and a pair of protrusion part 51, can support the magnet body 30 stably in a favorable contact state, and the magnet body 30
  • the magnetic body 30 can prevent abnormal cracking at the time of cleaving and can be cleaved straight.
  • FIG. 9 is a schematic block diagram which shows the magnet body cleaving apparatus which is a manufacturing apparatus of the magnetic body for field poles in 3rd Embodiment.
  • the field pole magnet body manufacturing apparatus in the third embodiment is different from the field pole magnet body manufacturing apparatus in the first embodiment in the structure of the suction device 80.
  • the suction device 80 is not provided with a lifting member and is fixed to the base 88. Even in this configuration, the suction device 80 can suck the pulverized powder generated when the magnet body 30 is cleaved and discharge it to the outside of the mold.
  • FIG. 10 is a schematic block diagram which shows the magnet body cleaving apparatus which is a manufacturing apparatus of the magnetic body for field poles in 4th Embodiment.
  • the field pole magnet body manufacturing apparatus in the fourth embodiment is different from the field pole magnet body manufacturing apparatus in the first embodiment in that a blower 100 is provided instead of the suction device 80.
  • the blower 100 blows away and removes the crushed powder generated when the magnet body 30 is cleaved by blowing strong air from the blowout port.
  • the magnet body 30 is cleaved by three-point bending between the blade 61 of the upper mold 60 and the pair of protrusions 51 of the lower mold 50.
  • the magnet body 30 can be cleaved even if it has a structure without one side of the ridges.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Mining & Mineral Resources (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

 界磁極用磁石体の製造装置は、回転電機に配設される界磁極用磁石体を構成する磁石片を、磁石体を割断して製造する。この製造装置は、磁石体を載置する支持部と、磁石体を挟んで支持部と反対側に設けられ、磁石体に接触して押圧することにより磁石体を割断する割断部と、磁石体の割断により生ずる破砕粉末を除去する粉末除去部とを備える。

Description

界磁極用磁石体の製造装置およびその製造方法
 本発明は、永久磁石埋込型回転電機のロータコアに配設される界磁極用磁石体の製造装置およびその製造方法に関する。
 永久磁石埋込型回転電機のロータコアに配設される界磁極用磁石体を割断分割して、その表面積を小さくすることにより、作用する磁界の変動により発生する渦電流を低減させる技術が知られている。これにより、渦電流に伴う界磁極用磁石体の発熱を抑制し、不可逆な熱減磁を防止している(JP2009-142081A参照)。
 JP2009-142081Aに記載の技術では、樹脂を充填した、ロータスロットと同寸法および同形状の内空を有する容器内に、予め割断の目安となる切り欠きを設けた界磁極用磁石体を挿入する。そして、界磁極用磁石体を容器内で磁石片に割断して、割断と同時に磁石片間に樹脂を浸透させるようにしている。
 ところで、界磁極用磁石体を磁石片に割断した場合に、磁石片の割断面が割断予定面からずれたり二叉状となる異常割れにより、割断面精度が悪化する場合がある。これは、割断時に下型の一対の支持部若しくは上型のブレードが界磁極用磁石体に片当りして生ずるものと推定される。ブレード若しくは下型の一対の支持部が界磁極用磁石体に片当りする要因としては、下型の一対の支持部と脆性材である界磁極用磁石体との間に、割断時に生ずる微粉末などの異物が噛み込まれて、下型に対して界磁極用磁石体が異物により浮いた状態で支持されることに起因すると推定することができる。
 本発明は、上記問題点に鑑みてなされたもので、割断面精度の向上に好適な回転電機のロータコアに配設される界磁極用磁石体の製造装置およびその製造方法を提供することを目的とする。
 一実施形態における界磁極用磁石体の製造装置は、回転電機に配設される界磁極用磁石体を構成する磁石片を、磁石体を割断して製造する。この界磁極用磁石体の製造装置は、磁石体を載置する支持部と、磁石体を挟んで支持部と反対側に設けられ、磁石体に接触して押圧することにより磁石体を割断する割断部と、磁石体の割断により生ずる破砕粉末を除去する粉末除去部とを備える。
 本発明の実施形態、本発明の利点については、添付された図面とともに以下に詳細に説明される。
図1は、本実施形態における界磁極用磁石体の製造装置によって製造された磁石体を適用した永久磁石型電動機の主要部の構成を示す概略構成図である。 図2は、磁石体の構成を示す構成図である。 図3は、第1実施形態における界磁極用磁石体の製造装置の概略構成図である。 図4は、図3に示す界磁極用磁石体の製造装置の要部拡大図である。 図5は、昇降部材の構成を示す断面図である。 図6は、下型の突条部の変形構造例を示す図である。 図7は、下型の突条部の別の変形構造例を示す図である。 図8は、第2実施形態における界磁極用磁石体の製造装置の概略構成図である。 図9は、第3実施形態における界磁極用磁石体の製造装置の概略構成図である。 図10は、第4実施形態における界磁極用磁石体の製造装置の概略構成図である。 図11は、一対の突条部のうちの片側が無い界磁極用磁石体の製造装置の概略構成図である。 図12は、磁石体の割断時における異常割れ状態を説明する説明図である。
 先ず、回転電機のロータコアに配設される界磁極用磁石体について説明する。
 図1は、本実施形態における界磁極用磁石体の製造装置によって製造された磁石体を適用した永久磁石型電動機の主要部の構成を示す概略構成図である。図1において、左側の図は、永久磁石型電動機の断面図であり、右側の図は、側面図である。図1において、永久磁石埋込型回転電機A(以下、単に「回転電機」という)は、図示しないケーシングの一部を構成する円環形のステータ10と、このステータ10と同軸的に配置された円柱形のロータ20とを備える。
 ステータ10は、ステータコア11と、複数のコイル12とを備える。複数のコイル12は、ステータコア11に軸心Oを中心とした同一円周上に等角度間隔で形成されるスロット13に収設される。
 ロータ20は、ロータコア21と、ロータコア21と一体的に回転する回転軸23と、複数の界磁極用磁石体30とを備える。複数の界磁極用磁石体30は、軸心Oを中心とした同一円周上に等角度間隔で形成されるスロット22に収設される。
 ロータ20のスロット22に収設される界磁極用磁石体30は、図2に示すように、界磁極用磁石体30を割断分割した複数の磁石片31の集合体として構成される。より具体的には、界磁極用磁石体30は、複数の磁石片31の割断面同士を樹脂32により接着することにより、一列に整列した磁石片31の集合体として構成される。樹脂32は、例えば200℃程度の耐熱性能を備えるものが使用され、隣接する磁石片31同士を電気的に絶縁する。このため、作用する磁界の変動により発生する渦電流を個々の磁石片31内に留めることにより低減させ、渦電流に伴う界磁極用磁石体30の発熱を抑制し、不可逆な熱減磁を防止する。
 界磁極用磁石体30を複数の磁石片31に割断するために、界磁極用磁石体30の割断しようとする部位(割断予定面)に、予め切り欠き溝33を形成することが有効である。以下では、切り欠き溝33が形成されている界磁極用磁石体30について説明するが、この切り欠き溝33は必要不可欠なものではない。すなわち、切り欠き溝33を設けなくとも割断できる場合には、界磁極用磁石体30に切り欠き溝33を設けないようにしてもよい。切り欠き溝33は、表面からの深さが深いほど、また、切り欠き溝33の先端の尖りが鋭いほど、磁石片31として割断した場合の割断面の平面度が向上する。
 切り欠き溝33の形成方法としては、界磁極用磁石体30の成形型に設けた溝形成用の突条により界磁極用磁石体30の成形工程で設ける方法、ダイサー等の機械加工による方法、レーザビーム照射による方法等がある。
 以下、永久磁石埋込型回転電機Aに用いる界磁極用磁石体30の製造装置およびその製造方法を各実施形態に基づいて説明する。
 (第1実施形態)
 図3は、第1実施形態における界磁極用磁石体の製造装置である磁石体割断装置を示す概略構成図であり、図4は、磁石割断装置の要部の拡大図である。界磁極用磁石体(以下では、単に「磁石体」という)30の磁石割断装置40は、磁石体30を複数の磁石片31に割断するものであり、磁石体30を支持案内する下型50と、位置決めされた磁石体30にブレード61を押し当てることで割断する上型60と、からなる金型を備える。また、磁石割断装置40は、下型50に支持された磁石体30を順次移動させて割断位置に位置決めする位置決め装置70と、割断時に発生する破砕粉末(コンタミとも称される)を吸引排出する吸引装置80と、を備える。
 磁石体30を支持案内する下型50は、上面に複数の突条部51を備えて、この突条部51の上面において磁石体30を下方から支持する。また、下型50は、上型60のブレード61に対応する位置において、下方に開放する貫通穴52を備え、この貫通穴52内に吸引装置80を装備して備える。
 上型60は、位置決めされた磁石体30を割断するためのブレード61と、割断時に磁石体30が跳ね上がることを抑制する磁石跳ね上り防止クランプ62と、を備える。ブレード61は、磁石体30に向かう尖った刃先を磁石体30の幅方向に配置して備え、上型60により下降されることにより、磁石体30の割断予定面に刃先を当接させつつ押下げて、下型50の貫通穴52の前後の一対の突条部51との間で3点曲げにより折曲げて、磁石体30を割断する。磁石跳ね上り防止クランプ62は、基部が上型60に固定された板ばねにより形成され、磁石体30をそのばね作用により下型50に押付けて、割断された磁石体30(特に先端側の磁石片31)が跳ね上がることを抑制する。
 位置決め装置70は、磁石体30の後端に当接して磁石体30を押圧するプッシャ71と、磁石体30の前端に当接して磁石体30をホールドするホルダー72と、を備える。プッシャ71は、磁石体30を押出すサーボモータを備え、割断動作が実行される毎に、磁石体30を切り欠き溝33により設定された所定長さの1ピッチ分だけ押出す動作を繰返す。これにより、磁石体30の割断予定面が順次位置決めされる。
 ホルダー72は、プッシャ71により1ピッチ分だけ押出される度に、磁石体30の前端に接触して磁石体30に制動力を加えて、磁石体30がプッシャ71により押出された移動量を超えて移動することを抑制し、磁石体30の位置決め精度を向上させるよう作用する。このため、ホルダー72は、磁石体30の割断時には、磁石体30の前端への接触を解除して、磁石体30から割断された前端側磁石片31の移動を許容するようにしている。
 プッシャ71には、下型50に向かう下向きの清掃手段としての吹出しノズル91が設けられている。吹出しノズル91は、空気供給源92から供給される空気を噴出する。ノズル91より吹出された空気は、磁石体30を支持する下型50の突条部51上面に堆積する破砕粉末(コンタミとも称される)を金型外へ吹き飛ばすように作用する。
 図5は、吸引装置80の一部の拡大図である。吸引装置80は、図5に示すように、下型50の貫通穴52内に昇降自在に挿入された昇降部材81を備える。昇降部材81は、下部に配置したばね等の弾性体82により上方に移動するよう付勢され、下部に設けた鍔部が下型50に係合することにより、その上端面が下型50の突条部51の上面と略同一高さとなる初期位置に位置決めされている。昇降部材81の初期位置においては、その上面が磁石体30の下面に、接触若しくは若干の隙間をもって臨んでいる。また、磁石体30の割断時においては、ブレード61により磁石体30が押下げられて下降するため、昇降部材81も磁石体30の割断部分の下端により弾性体82に抗して押下げられて下降する。そして、割断終了によりブレード61が上昇し、磁石体30の割断部分が上昇復帰するにつれて、弾性体82により初期位置に上昇復帰して、割断された磁石片31を上型60の突条部51上に押し戻す。
 昇降部材81は、上下方向に貫通する複数の開口よりなる吸引ノズル83を備え、これらの開口には配管ホース84が接続され、配管ホース84を介して吸引機85に接続されている。吸引ノズル83、配管ホース84、吸引機85は、吸引装置80を構成する。このため、吸引装置80は、開口の上部から空気が吸引され、磁石体30の割断時に発生して、昇降部材81の上部に堆積したり飛散する破砕粉末を吸引して、金型の外部へ排出するよう作用する。
 以上の構成になる磁石体割断装置においては、下型50の突条部51上に磁石体30が載置され、位置決め装置70のプッシャ71とホルダー72とにより磁石体30の最初の割断予定面が、昇降部材81と上型60のブレード61との間に位置決めされる。
 磁石体30の位置決め後に、ホルダー72の磁石体30への接触が解除され、次いで、上型60が下降される。上型60に設けられている磁石跳ね上り防止クランプ62が磁石体30の上面に接触して、磁石体30を弾性的に下型50の突条部51に押圧して、磁石体30を移動しないように保持する。
 上型60の更なる下降により、ブレード61の先端(下端)が磁石体30の割断予定面に当接して、下型50の貫通穴52の前後の一対の突条部51との間で3点曲げにより押下げて磁石体30を割断する。昇降部材81は、ブレード61により押下げられて下降する磁石体30の割断部分の下端により押下げられて、弾性体82に抗して下降する。同時に、磁石体30は、磁石跳ね上り防止クランプ62により跳ね上がることを抑制される。
 磁石体30の割断時に発生する破砕粉末は、昇降部材81の上部に堆積したり飛散することなく、吸引ノズル83の開口から空気と共に開口内に吸引され、排出される。このため、下型50の突条部51の上面や磁石体30の下面に破砕粉末が付着することが抑制される。
 このため、磁石体30の割断時に発生する破砕粉末が、下型50の突条部51の上面に付着したり堆積することにより、磁石体30との間に噛み込まれて、下型50の突条部51から磁石体30が浮いた状態で支持されることがない。もし、下型50の突条部51と磁石体30との間に破砕粉末が噛み込まれて、図12に示すように、下型50の突条部51から浮いた状態で磁石体30が支持される場合には、破砕粉末としての異物により、磁石体30の割断時に異常割れを生ずる。即ち、異物により磁石体30には、割断時に正当に生ずる磁石体30長手方向の張力1の他に、異物により磁石体30幅方向にも異常な張力2が発生する。この異常な張力2は、磁石体30を長手方向に沿って折曲げる作用を発生させ、図中の破線で示すように、磁石体30を長手方向にも割断させて、磁石体30に異常割れを発生させることとなり、割断面の面精度を低下させる。このように、下型50の突条部51から浮いた状態で磁石体30が支持されて、磁石体30に異常割れを引き起こす破砕粉末(コンタミ)の大きさは、20μm以上である。
 しかしながら、本実施形態の磁石体割断装置においては、破砕粉末が昇降部材81の吸引ノズル83の開口から空気と共に開口内に吸引され排出されて、下型50の突条部51の上面に付着したり堆積することを防止する。このため、破砕粉末が磁石体30との間に噛み込まれて下型50の突条部51から磁石体30が浮いた状態で支持されることがない。このため、上記した磁石体30の異常割れの発生を防止することができ、割断面の面精度を向上させることができる。
 割断後に上型60と共にブレード61が上昇され、磁石体30の割断部分が上昇復帰するにつれて、昇降部材81も弾性体82により初期位置に上昇復帰して、割断された磁石片31を押し戻す。上型60が初期位置に復帰すると、上型60に設けられている磁石跳ね上り防止クランプ62も磁石体30の上面への接触を解除して、磁石体30の保持を解除する。磁石体30から割断された先端の磁石片31は、次工程で図示しない搬送装置により搬送され、割断順に整列されて、接着剤を介して接着されて一体化される。
 次いで、位置決め装置70のプッシャ71により磁石体30を1ピッチ分だけ押出すと共に、ホルダー72により磁石体30の前端に接触して磁石体30に制動力を加えて、磁石体30の次の割断予定面を、昇降部材81と上型60のブレード61との間に、位置決めする。
 そして、上型60の下降により、前記したと同様に磁石体30を割断し、位置決め装置70により磁石体30を1ピッチ分だけ移動させる動作が繰返される。この動作中において、位置決め装置70のプッシャ71に設けられている清掃手段としてのエアーノズル91は、磁石体30が送られて上方に露出している突条部51の上面に空気を吹付けて、露出している突条部51上面を清掃して、破砕粉末が付着・堆積することを抑制する。このため、磁石体30の最後の割断予定面が割断されて、磁石片31が位置決め装置70のプッシャ71により下型50上から搬出された状態においては、下型50の全ての突条部51の上面から破砕粉末が吹き払われて、付着・堆積がない状態とすることができる。
 以上の磁石体割断装置においては、磁石体30の割断作動が実行される下型50の一対の突条部51の間に、昇降部材81の吸引ノズル83を配置する構成を備える。このため、磁石体30の割断時に発生する破砕粉末(コンタミ)を吸引ノズル83により吸引して排出することができる。従って、下型50の突条部51の上面や磁石体30の下面に破砕粉末が付着することを抑制することができる。
 このため、破砕粉末が磁石体30との間に噛み込まれて下型50の突条部51から磁石体30が浮いた状態で支持されることがない。このため、上記した磁石体30の異常割れの発生を防止することができ、割断面の面精度を向上させることができる。
 しかも、吸引ノズル83を備える昇降部材81は、磁石体30の割断時に、磁石体30の割断による割断面の下降と同期して下降されることで、磁石体30、特に割断面に対する破損や傷付を防止することができる。また、昇降部材81が割断部位に在ることで、割断した磁石片31が一対の突条部51の間に落下することも防止することができる。
 図6及び図7はそれぞれ、下型50の突条部51の変形構造例を示す図である。図6及び図7では、下型50の磁石体30に接触する突条部51の上端形状を平面状から凸形状に変更して、磁石体30の幅方向に線接触させる形状を示している。より具体的には、図6に示す突条部51においては、その先端部を断面が山形となる凸形状53に形成することで、磁石体30の幅方向に線接触する。また、図7に示す突条部51においては、その先端部を断面が円弧状となる凸形状54に形成することで、磁石体30の幅方向に線接触する。
 このように、突条部51の先端部を凸形状53,54に形成することにより、磁石体30と下型50の突条部51との接触を面接触ではなく、線接触とすることができる。このため、上記両者間の接触面積が小さくなることで、接触面間に介在する破砕粉末(コンタミ)量を減少させて、磁石体30を安定して支持することができ、より一層真っ直ぐに割断することが可能となる。その結果、磁石体30の長手方向の位置決めを、割断予定面がその前後に配列されている突条部51間の中央位置になるよう位置決めする「中央合わせ」とすることなく、磁石体30の前後端を基準として位置決めする「端部合わせ」で割断箇所を設定できる。このため、割断箇所の自由度を大幅に向上することができる。
 本実施形態においては、以下に記載する効果を奏することができる。
 (A)界磁極用磁石体の製造装置は、下型50に配置された一対の突条部51に磁石体30を載置して、上型60のブレード61を一対の突条部51間に向けて下降させて磁石体30の上部に接触させて押圧することにより、磁石体30を割断する。この界磁極用磁石体の製造装置は、下型50の一対の突条部51間において昇降可能であり、上端が磁石体30の下面に臨み、磁石体30の割断に伴う割断部位の下降に伴って下降し、割断終了時に上昇して割断部位を押し戻す昇降部材81を有し、昇降部材81の上端開口より磁石体30の割断により生ずる破砕粉末を吸引排出する吸引装置(吸引手段)80(ノズル83)を備える。
 従って、磁石体30の割断時に発生する破砕粉末(コンタミ)を、磁石体30の割断に伴う割断部位の下降に伴って下降し、割断終了時に上昇して割断部位を押し戻す昇降部材81を有する吸引手段としての吸引ノズル83により、割断部位の移動に追従して洩れなく破砕粉末を吸引して排出することができ、下型50の突条部51の上面や磁石体30の下面に破砕粉末が付着することを抑制することができる。このため、破砕粉末が磁石体30との間に噛み込まれて、下型50の突条部51から磁石体30が浮いた状態で支持されることがない。結果として、上記した磁石体30の異常割れの発生を防止することができ、割断面の面精度を向上させることができる。
 また、昇降部材81は、磁石体30の割断時に、磁石体30の割断による割断面の下降に伴って下降されることで、磁石体30、特に割断面に対する破損や傷付を防止することができる。また、昇降部材81が割断部位に在ることで、割断した磁石片31が一対の突条部51の間に落下することも防止することができる。
 (B)下型50の一対の突条部51は、磁石体30に接触する先端部が断面山形となる凸形状53,54に形成されている。このように、突条部51の先端部を凸形状53,54に形成することにより、磁石体30と下型50の突条部51との接触を面接触ではなく、線接触とすることができる。このため、上記両者間の接触面積が小さくなることで、接触面間に介在する破砕粉末(コンタミ)量を減少させて、磁石体30を安定して支持することができ、より一層真っ直ぐに割断することが可能となる。
 (C)下型50は、一対の突条部51の外側に所定間隔毎に配列されて割断前の磁石体30を支持する支持用突条部51と、支持用突条部51に支持された磁石体30の先端側を一対の突条部51上に順次押出して位置決めする位置決め装置(位置決め手段)70と、を備える。更に、位置決め装置70により磁石体30が押出された磁石体30の後端側において、上方に露出する支持用突条部51または一対の突条部51の上面を吹出す気体により清掃する位置決め装置70に設けられた清掃手段としてのエアーノズル91を備える。
 このため、エアーノズル91は、磁石体30が送られて上方に露出している突条部51の上面に空気を吹付けて、露出している突条部51上面を清掃して、破砕粉末が付着・堆積することを抑制する。このため、磁石体30の最後の割断予定面が割断されて、磁石片31が位置決め装置70により下型50上から搬出された状態においては、下型50の全ての突条部51の上面から破砕粉末が吹き払われて、付着・堆積がない状態とすることができる。
 (第2実施形態)
 図8は、第2実施形態における界磁極用磁石体の製造装置である磁石体割断装置を示す概略構成図である。本実施形態においては、下型の貫通孔の前後に配置された一対の突条部の上面に空気を吹出す構成を第1実施形態の構成に追加したものである。なお、第1実施形態における製造装置と同一の構造には同一符号を付して、その説明を省略ないし簡略化する。
 図8に示す第2実施形態の磁石体割断装置においては、磁石体30を支持する下型50の貫通孔52の前後に配置される一対の突条部51を上下に貫通させて空気吹出し口55を設けている。そして、この空気吹出し口55に空気を供給して、突条部51の上面から空気を吹出すようにしたものである。このため、空気吹出し口55には、配管56を介して空気供給装置57を接続している。その他の構成は、第1実施形態と同様である。
 空気吹出し口55から吹出された空気は、突条部51の上面と突条部51に載置されている磁石体30の下面との間を通ってその前後に流れ、磁石体30及び突条部51に付着した破砕粉末(コンタミ)を吹き飛ばして金型外へ排出させる。貫通穴52内に配置された昇降部材81に付設された吸引装置80は、貫通穴52側に吹き飛ばされた破砕粉末を吸引して金型外へ排出する。このため、磁石体30と一対の突条部51との接触面間に異物が無い状態とすることができ、良好な接触状態で磁石体30を安定して支持することができ、磁石体30の割断時に磁石体30が異常割れを防止して、真っ直ぐに割断することができる。
 図8では、一対の突条部51の上端が平坦に形成されて磁石体30に対して面接触するよう構成しているが、第1実施形態の第2実施例(図6,図7)のように、突条部51の上端の形状を凸形状53,54に形成して、磁石体30と線接触するように構成することもできる。磁石体30と突条部51とが線接触するようにすると、本実施形態の上記した効果をより一層向上させることができる。
 本実施形態においては、第1実施形態における効果(A)~(C)に加えて、以下に記載した効果を奏することができる。
 (D)下型50の一対の突条部51は、磁石体30に接触する先端部より気体が吹出されている。このため、磁石体30と一対の突条部51との接触面間に異物が無い状態とすることができ、良好な接触状態で磁石体30を安定して支持することができ、磁石体30の割断時に磁石体30が異常割れを防止して、真っ直ぐに割断することができる。
 (第3実施形態)
 図9は、第3実施形態における界磁極用磁石体の製造装置である磁石体割断装置を示す概略構成図である。第3実施形態における界磁極用磁石体の製造装置が第1実施形態における界磁極用磁石体の製造装置と異なるのは、吸引装置80の構造である。すなわち、本実施形態において、吸引装置80は、昇降部材を備えておらず、土台88に固定されている。この構成においても、吸引装置80は、磁石体30の割断時に発生する破砕粉末を吸引して、金型の外部へ排出することができる。
 (第4実施形態)
 図10は、第4実施形態における界磁極用磁石体の製造装置である磁石体割断装置を示す概略構成図である。第4実施形態における界磁極用磁石体の製造装置が第1実施形態における界磁極用磁石体の製造装置と異なるのは、吸引装置80の代わりに、ブロワー100が設けられていることである。ブロワー100は、吹き出し口より強力な風を吹き出すことにより、磁石体30の割断時に発生する破砕粉末を吹き飛ばし、除去する。
 なお、第1実施形態では、上型60のブレード61と、下型50の一対の突条部51との間で3点曲げにより磁石体30を割断したが、図11に示すように、一対の突条部のうちの片側が無い構造であっても、磁石体30を割断することができる。
 本願は、2011年7月27日に日本国特許庁に出願された特願2011-164245に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (9)

  1.  回転電機に配設される界磁極用磁石体を構成する磁石片を、磁石体を割断して製造する界磁極用磁石体の製造装置であって、
     前記磁石体を載置する支持部と、
     前記磁石体を挟んで前記支持部と反対側に設けられ、前記磁石体に接触して押圧することにより前記磁石体を割断する割断部と、
     前記磁石体の割断により生ずる破砕粉末を除去する粉末除去部と、
    を備える界磁極用磁石体の製造装置。
  2.  請求項1に記載の界磁極用磁石体の製造装置において、
     前記支持部は、一対の突条部であり、
     前記一対の突条部間において昇降可能に配置され、上端が前記磁石体の下面に臨み、前記磁石体の割断に伴う割断部位の下降に伴って下降すると共に、割断終了時に上昇して割断部位を押し戻す昇降部をさらに備える、界磁極用磁石体の製造装置。
  3.  請求項2に記載の界磁極用磁石体の製造装置において、
     前記一対の突条部は、前記磁石体に接触する先端部が断面山形となる凸形状に形成されている界磁極用磁石体の製造装置。
  4.  請求項2または請求項3に記載の界磁極用磁石体の製造装置において、
     前記一対の突条部は、前記磁石体に接触する先端部より気体が吹出される界磁極用磁石体の製造装置。
  5.  請求項2から請求項4のいずれか一つに記載の界磁極用磁石体の製造装置において、
     前記一対の突条部の外側に所定間隔毎に配列されて割断前の磁石体を支持する支持用突条部と、
     前記支持用突条部に支持された磁石体の先端側を前記一対の突条部上に順次押出して位置決めする位置決め部と、
     前記位置決め部により磁石体が押出された磁石体の後端側において上方に露出する支持用突条部または前記一対の突条部の上面を、吹出す気体により清掃する清掃部と、
    をさらに備える界磁極用磁石体の製造装置。
  6.  回転電機に配設される界磁極用磁石体を構成する磁石片を、磁石体を割断して製造する界磁極用磁石体の製造方法であって、
     前記磁石体を支持部に載置するステップと、
     前記磁石体を挟んで前記支持部と反対側から、前記磁石体に接触して押圧することにより前記磁石体を割断するステップと、
     前記磁石体の割断により生ずる破砕粉末を除去するステップと、
    を含む界磁極用磁石体の製造方法。
  7.  請求項6に記載の界磁極用磁石体の製造方法において、
     前記支持部は一対の突条部であり、
     前記下型の一対の突条部間において昇降可能に配置された昇降部材の上端を割断前の磁石体の下面に臨ませるステップと、
     前記磁石体の割断に伴う割断部位の下降に伴って前記昇降部材を下降させるステップと、
     割断終了時に前記昇降部材を上昇させて割断された磁石体を割断前の位置に押し戻すステップと、
    をさらに含む界磁極用磁石体の製造方法。
  8.  請求項7に記載の界磁極用磁石体の製造方法において、
     前記一対の突条部は、磁石体に接触する先端部より気体が吹出されている界磁極用磁石体の製造方法。
  9.  請求項7または請求項8に記載の界磁極用磁石体の製造方法において、
     割断前の磁石体は、前記一対の突条部の外側に所定間隔毎に配列されている支持用突条部によって支持され、
     前記支持用突条部に支持された磁石体の先端側を前記一対の突条部上に順次押出して位置決めするステップと、
     前記磁石体が押出された磁石体の後端側において上方に露出する支持用突条部または一対の突条部の上面を、吹出す気体により清掃するステップと、
    をさらに含む界磁極用磁石体の製造方法。
      

      
PCT/JP2012/065769 2011-07-27 2012-06-20 界磁極用磁石体の製造装置およびその製造方法 WO2013015047A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/234,746 US9796150B2 (en) 2011-07-27 2012-06-20 Apparatus and method for manufacturing field-pole magnet
CA2842889A CA2842889C (en) 2011-07-27 2012-06-20 Apparatus and method for manufacturing field-pole magnet
CN201280033307.0A CN103650304B (zh) 2011-07-27 2012-06-20 励磁磁极用磁体的制造装置及其制造方法
AU2012288174A AU2012288174B2 (en) 2011-07-27 2012-06-20 Device for producing field-pole magnet and method for producing same
EP12817482.8A EP2738922B1 (en) 2011-07-27 2012-06-20 Device for producing field-pole magnet and method for producing same
KR1020147001705A KR101607409B1 (ko) 2011-07-27 2012-06-20 계자극용 자석체의 제조 장치 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011164245 2011-07-27
JP2011-164245 2011-07-27

Publications (1)

Publication Number Publication Date
WO2013015047A1 true WO2013015047A1 (ja) 2013-01-31

Family

ID=47600906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065769 WO2013015047A1 (ja) 2011-07-27 2012-06-20 界磁極用磁石体の製造装置およびその製造方法

Country Status (8)

Country Link
US (1) US9796150B2 (ja)
EP (1) EP2738922B1 (ja)
JP (1) JP5621932B2 (ja)
KR (1) KR101607409B1 (ja)
CN (1) CN103650304B (ja)
AU (1) AU2012288174B2 (ja)
CA (1) CA2842889C (ja)
WO (1) WO2013015047A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014199734A1 (ja) * 2013-06-13 2014-12-18 日産自動車株式会社 磁石割断装置
EP2899859A4 (en) * 2012-09-21 2015-09-23 Nissan Motor DEVICE FOR MANUFACTURING A CRAWLING MAGNET
EP3057207A4 (en) * 2013-10-09 2016-09-14 Nissan Motor METHOD AND DEVICE FOR PRODUCING MAGNETIC PARTS FOR CONFIGURING A FIELD MAGNET FOR ARRANGEMENT IN A ROTATION MACHINE
JP2016178289A (ja) * 2015-03-18 2016-10-06 日立金属株式会社 R−t−b系焼結磁石の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5929153B2 (ja) * 2011-12-14 2016-06-01 日産自動車株式会社 界磁極用磁石体の製造装置およびその製造方法
JP6675601B1 (ja) * 2018-11-30 2020-04-01 コネクトオール株式会社 積層コアの製造方法、接着剤塗布装置及び積層コアの製造装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334103A (ja) * 1986-07-29 1988-02-13 松下電器産業株式会社 基板分割装置
JP2004145337A (ja) * 2002-10-22 2004-05-20 Lg Philips Lcd Co Ltd 液晶表示パネルの切断装置
JP2008244222A (ja) * 2007-03-28 2008-10-09 Laser Solutions Co Ltd 板材分割装置及び板材分割方法
JP2010259231A (ja) * 2009-04-24 2010-11-11 Nissan Motor Co Ltd 界磁極用永久磁石及びその製造方法並びに界磁極用永久磁石を備える永久磁石型回転電機
WO2011013209A1 (ja) * 2009-07-29 2011-02-03 トヨタ自動車株式会社 磁石取扱装置及び磁石取扱方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7127802B1 (en) * 1997-11-21 2006-10-31 Fonar Corporation Method of fabricating a composite plate
DE60038849D1 (de) * 1999-07-15 2008-06-26 Hitachi Metals Ltd Verfahren zum Abbau eines Magnetfeldgenerators
JP5037138B2 (ja) * 2005-01-05 2012-09-26 Thk株式会社 ワークのブレイク方法及び装置、スクライブ及びブレイク方法、並びにブレイク機能付きスクライブ装置
JP4497198B2 (ja) 2007-12-06 2010-07-07 トヨタ自動車株式会社 永久磁石とその製造方法、およびロータとipmモータ
US8510933B2 (en) * 2008-10-02 2013-08-20 Nissan Motor Co., Ltd. Method of manufacturing a field pole magnet
JP5454999B2 (ja) 2008-12-16 2014-03-26 三星ダイヤモンド工業株式会社 塵埃吸引方法及び塵埃吸引装置
JP5407512B2 (ja) * 2009-04-15 2014-02-05 日産自動車株式会社 界磁極用磁石体の製造装置、その製造方法、及び永久磁石型電動機
WO2011004490A1 (ja) * 2009-07-10 2011-01-13 トヨタ自動車株式会社 磁石割断装置及び磁石の割断方法
JP5614096B2 (ja) * 2010-05-19 2014-10-29 日産自動車株式会社 回転電機のロータコアに埋込まれる永久磁石およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334103A (ja) * 1986-07-29 1988-02-13 松下電器産業株式会社 基板分割装置
JP2004145337A (ja) * 2002-10-22 2004-05-20 Lg Philips Lcd Co Ltd 液晶表示パネルの切断装置
JP2008244222A (ja) * 2007-03-28 2008-10-09 Laser Solutions Co Ltd 板材分割装置及び板材分割方法
JP2010259231A (ja) * 2009-04-24 2010-11-11 Nissan Motor Co Ltd 界磁極用永久磁石及びその製造方法並びに界磁極用永久磁石を備える永久磁石型回転電機
WO2011013209A1 (ja) * 2009-07-29 2011-02-03 トヨタ自動車株式会社 磁石取扱装置及び磁石取扱方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2738922A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2899859A4 (en) * 2012-09-21 2015-09-23 Nissan Motor DEVICE FOR MANUFACTURING A CRAWLING MAGNET
US9779871B2 (en) 2012-09-21 2017-10-03 Nissan Motor Co., Ltd. Manufacturing device for cleft magnet
WO2014199734A1 (ja) * 2013-06-13 2014-12-18 日産自動車株式会社 磁石割断装置
CN105264754A (zh) * 2013-06-13 2016-01-20 日产自动车株式会社 磁体割断装置
JP5999263B2 (ja) * 2013-06-13 2016-09-28 日産自動車株式会社 磁石割断装置
CN105264754B (zh) * 2013-06-13 2017-10-27 日产自动车株式会社 磁体割断装置
EP3057207A4 (en) * 2013-10-09 2016-09-14 Nissan Motor METHOD AND DEVICE FOR PRODUCING MAGNETIC PARTS FOR CONFIGURING A FIELD MAGNET FOR ARRANGEMENT IN A ROTATION MACHINE
US10279504B2 (en) 2013-10-09 2019-05-07 Nissan Motor Co., Ltd. Manufacture method and manufacturing device for manufacturing magnet piece constituting magnet body for field pole disposed on rotating electric machine
JP2016178289A (ja) * 2015-03-18 2016-10-06 日立金属株式会社 R−t−b系焼結磁石の製造方法

Also Published As

Publication number Publication date
EP2738922B1 (en) 2020-03-25
AU2012288174B2 (en) 2015-05-21
CN103650304A (zh) 2014-03-19
CN103650304B (zh) 2016-01-20
JPWO2013015047A1 (ja) 2015-02-23
CA2842889C (en) 2017-07-18
AU2012288174A1 (en) 2014-01-16
CA2842889A1 (en) 2013-01-31
EP2738922A4 (en) 2014-12-31
US9796150B2 (en) 2017-10-24
EP2738922A1 (en) 2014-06-04
US20140144337A1 (en) 2014-05-29
KR20140025592A (ko) 2014-03-04
KR101607409B1 (ko) 2016-03-29
JP5621932B2 (ja) 2014-11-12

Similar Documents

Publication Publication Date Title
JP5621932B2 (ja) 界磁極用磁石体の製造装置およびその製造方法
JP5850152B2 (ja) 界磁極用磁石体を構成する磁石片の製造装置及びその製造方法
JP6393019B2 (ja) 界磁極用磁石体の製造装置およびその製造方法
JP5999263B2 (ja) 磁石割断装置
EP3041114B1 (en) Cutting method and cutting device for manufacturing magnet piece constituting magnet body for field pole to be arranged in rotary electric machine
US9779871B2 (en) Manufacturing device for cleft magnet
EP3057207B1 (en) Method and device for manufacturing magnet pieces configuring a field pole magnet to be arranged in a rotary machine
JP5935257B2 (ja) 界磁極用磁石体の製造装置およびその製造方法
WO2013125513A1 (ja) 界磁極用磁石体を構成する磁石片の製造方法および製造装置
JP5935378B2 (ja) 界磁極用磁石体を構成する磁石片の製造装置
JP2013183519A (ja) 回転電機に配設される界磁極用磁石体を構成する磁石片を、永久磁石体を割断して製造する割断方法及び割断装置
KR20200112655A (ko) 취성 재료 기판의 브레이크 장치 및 브레이크 방법
TWI816709B (zh) 劃線輪、固持器單元及劃線方法
JP5994447B2 (ja) 界磁極用磁石体を構成する磁石片の製造装置及びその製造方法
JP2013179755A (ja) 界磁極用磁石体を構成する磁石片の製造方法
CN105312696A (zh) 陀螺转子铁芯中心孔的加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817482

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013525631

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012288174

Country of ref document: AU

Date of ref document: 20120620

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147001705

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2842889

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14234746

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE