WO2013000263A1 - 一种聚酰亚胺超级电容器及其制备方法 - Google Patents

一种聚酰亚胺超级电容器及其制备方法 Download PDF

Info

Publication number
WO2013000263A1
WO2013000263A1 PCT/CN2011/085102 CN2011085102W WO2013000263A1 WO 2013000263 A1 WO2013000263 A1 WO 2013000263A1 CN 2011085102 W CN2011085102 W CN 2011085102W WO 2013000263 A1 WO2013000263 A1 WO 2013000263A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
positive
supercapacitor
negative electrode
capacitor
Prior art date
Application number
PCT/CN2011/085102
Other languages
English (en)
French (fr)
Inventor
吕晓义
李晓燕
王�琦
桑玉贵
匡晓明
任金生
Original Assignee
深圳市惠程电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市惠程电气股份有限公司 filed Critical 深圳市惠程电气股份有限公司
Publication of WO2013000263A1 publication Critical patent/WO2013000263A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to the field of capacitors, and in particular to a polyimide supercapacitor.
  • Supercapacitor is a new type of electrochemical energy storage device between traditional capacitors and batteries. It has higher energy density than traditional capacitors, and its electrostatic capacity can reach tens of thousands of terahertz; it is higher than battery. Its power density and long cycle life make it a combination of traditional capacitors and batteries. It is a promising chemical power source. It has the characteristics of high specific capacity, high power, long life, wide working temperature limit and maintenance-free.
  • supercapacitors can be divided into three categories: electric double layer capacitors (EDLC), Faraday quasi-capacitor supercapacitors and hybrid supercapacitors, in which electric double layer capacitors are mainly formed by electrode Z electrolyte interface charge separation.
  • EDLC electric double layer capacitors
  • Faraday quasi-capacitor supercapacitors Faraday quasi-capacitor supercapacitors
  • hybrid supercapacitors in which electric double layer capacitors are mainly formed by electrode Z electrolyte interface charge separation.
  • the electric double layer is used to realize the storage of charge and energy;
  • the Faraday quasi-capacitor supercapacitor mainly realizes the storage of charge and energy by means of the Faraday "quasi-capacitance" generated by the rapid redox reaction on the electrode surface;
  • the hybrid supercapacitor is a
  • the non-polarized electrode of the battery such as nickel hydroxide
  • the polarized electrode of the electric double layer capacitor such as activated carbon
  • Supercapacitors can be divided into three kinds of supercapacitors: inorganic electrolyte, organic electrolyte and polymer electrolyte.
  • the inorganic electrolytes are mostly used in high concentration of acidic (such as H 2 S0 4 ) or alkaline (such as KOH) aqueous solutions. Neutral aqueous electrolytes are less used; organic electrolytes generally use a quaternary ammonium salt or a lithium salt and a high-conductivity organic solvent (such as acetonitrile) to form a mixed electrolyte, while polymer electrolytes are now only in the laboratory stage, still No commercial products emerged.
  • inorganic electrolytes are mostly used in high concentration of acidic (such as H 2 S0 4 ) or alkaline (such as KOH) aqueous solutions.
  • Neutral aqueous electrolytes are less used; organic electrolytes generally use a quaternary ammonium salt or a lithium salt and a high-conductivity organic solvent
  • LiMn 2 _ x M x 0 4 is used for the positive electrode and activated carbon is used for the negative electrode, and the specific energy of the supercapacitor is up to 50 Wh/Kg (calculated based on the total mass of the positive and negative active materials).
  • the energy density and power density of such organic hybrid supercapacitors are not ideal, the electrochemical stability is poor, the thermal stability is poor, and the operating temperature range is small, and the cycle life of the capacitor battery is short, which cannot meet the requirements for capacitor batteries.
  • the object of the present invention is to provide a polyimide supercapacitor which adopts a porous carbon material to prepare a large capacity, high power, long cycle life, no pollution, high safety, and maintenance-free super. Capacitor.
  • Another object of the present invention is to provide a method of preparing a polyimide supercapacitor in conjunction with the polyimide supercapacitor of the present invention.
  • a polyimide supercapacitor comprising a container casing, an electrolyte and a battery core, wherein the battery core is sequentially wound or stacked in the order of a polyimide separator, a positive electrode sheet, a polyimide separator, and a negative electrode sheet.
  • the positive electrode sheet and the negative electrode sheet are made by attaching the positive and negative electrode pastes to the current collector, and the positive and negative electrode sheets are respectively connected to the guide pins, and the guide pins are pierced from the container casing, the positive and negative electrodes.
  • the slurry consists of the following components in terms of mass percentage: porous carbon material 15% - 45%, conductive agent 0.5% - 10%, adhesive 1% - 15%, solvent 30% - 70%.
  • the positive and negative electrode pastes have a viscosity in the range of 1500 cps to 8500 cps, a solid content ranging from 20% to 60%, and a pH of 6-10.
  • the porous material is porous carbon material acetylene black, activated carbon, conductive carbon black, natural graphite, artificial graphite, activated carbon fiber, carbon cloth, carbon nanotube, hard carbon, carbon aerogel, one or two of graphite crucible Description
  • the conductive agent used in the present invention is one or a mixture of two or more kinds of conductive carbon black, conductive graphite, SP-Li, Ketjen black, and carbon nanotubes.
  • the polyimide separator of the present invention has a thickness of 5 to 70 ⁇ m, preferably 20 to 40 ⁇ m; and has a porosity of 50 to 95%, preferably 90 to 95%.
  • the solvent may be deionized water or an organic solution, and is selected according to the compatibility of the above components.
  • the electrolyte is an organic electrolyte, wherein the electrolyte is lithium tetrafluoroborate, tetraethylammonium tetrafluoroborate, tetradecyltetrafluoroborate, tetrapropyltetrafluoroborate, tetrabutyltetrafluoroborate , trimethylethyltetrafluoroborate, diethyl dimethyltetrafluoroborate, N-ethyl-N-decylpyrrolidine tetrafluoroborate, lithium hexafluorophosphate, tetraethyl hexafluorophosphate, tetraterpene Hexafluorophosphoric acid amine, tetrapropyl hexafluorophosphoric acid amine, tetrabutyl
  • a method for preparing a polyimide supercapacitor comprising the steps of:
  • the positive and negative electrode sheets are prepared into a battery core by a polyimide diaphragm in a winding or superimposing manner, and the polyimide diaphragm is insulated to separate the pole pieces;
  • Liquid-filled package The positive and negative electrodes in the battery are inserted into the shell, and the guide pins are respectively connected, the guide pins are pierced from the container casing, and then the electrolyte is injected and sealed to obtain a polyimide supercapacitor.
  • the current collector described in the present invention is one of a stainless steel foil, a stainless steel mesh, an aluminum foil, an aluminum mesh, a nickel foil, and a foamed nickel.
  • the polyimide supercapacitor of the present invention can be made into a capacitor packaged in an aluminum casing or a capacitor in a flexible film package.
  • the polyimide supercapacitor prepared by the invention has an energy density of >5.6 11/13 ⁇ 4, a power density of >650 ( ⁇ /13 ⁇ 4, and the heat resistance is greatly improved, and the cycle
  • the polyimide supercapacitor of the invention has good electrochemical stability and thermal stability, and has a wide temperature range, and can be applied to electric vehicles, electric tools, hybrid vehicles, solar energy storage and the like.
  • FIG. 1 is a schematic view of a polyimide supercapacitor mechanism of the present invention. detailed description
  • the polyimide supercapacitor of the present invention comprises a container case 1, an electrolyte and an electric cell, and the cell is in accordance with a polyimide separator 5, a positive electrode sheet 2, and a polyimide separator 4.
  • the negative electrode sheets 3 are sequentially wound or stacked and packaged in the container casing 1, wherein the positive electrode sheets 2 and the negative electrode sheets 3 are formed by attaching positive and negative electrode pastes to the current collector, and the positive and negative electrode sheets are respectively connected to the guide pins.
  • the positive and negative electrode slurries are composed of the following components in terms of mass percentage: porous carbon material 15% - 45%, conductive agent 0.5 %-10%, adhesive 1%-15%, solvent 30%-70%.
  • a method for preparing a polyamidene supercapacitor comprising the steps of:
  • the positive and negative electrode sheets are prepared into a battery core by a polyimide diaphragm in a winding or superimposing manner, and the polyimide diaphragm is insulated to separate the pole pieces;
  • Liquid-filled package The positive and negative electrodes in the battery are inserted into the shell, and the guide pins are respectively connected, the guide pins are pierced from the container casing, and then the electrolyte is injected and sealed to obtain a polyimide supercapacitor.
  • pole piece Mixing activated carbon, conductive carbon black, adhesive and deionized water with a total mass of 1000g in a ratio of 45:10:15:30 by mass, and adjusting it in a vacuum mixer.
  • the slurry has a viscosity of 8500 cps, and the slurry is uniformly coated on an aluminum foil, and then dried at 90-100 ° C, dried, rolled, cooled, and cut, and the positive electrode is cut to a length of 98 mm. 12.5mm wide, the negative pole is cut to 115mm long, 12.5mm wide, and its areal density is 90m 2 /g
  • a polyimide film having a thickness of 20 ⁇ m is used, and the film is stacked and wound in the order of the polyimide film, the positive electrode sheet, the polyimide film, and the negative electrode sheet.
  • Supercapacitor performance test After performance, the performance is tested, 150mA is charged to 2.7V, and then discharged to 0.1V with a constant current of 150mA, cycled 10 times, the discharge capacity obtained after 10 times is 3.3F, and the specific energy is 2.0wh/kg. The specific power is 4600w/kg.
  • the capacitor is placed in a high-temperature impact box, heated to 185 ° C at 5 ° C / min, and thermostated for 2 hours, the appearance of the product does not change, the capacity and ESR value change does not exceed 5%, indicating that the product has good high temperature resistance performance. After the capacitor is discharged through the 150mA charge and discharge cycle for 10,000 times, it is placed Description
  • a polyimide separator having a thickness of 25 ⁇ m is used, and the positive electrode sheet, the polyimide separator, and the negative electrode sheet are sequentially stacked and wound into a roll in the order of the polyimide separator.
  • Liquid-filled package The above-mentioned battery core is placed in an aluminum container case with a diameter of 12.5 mm and a height of 25 mm, and an electrolyte is injected therein.
  • the solute in the electrolyte is tetraethylammonium tetrafluoroborate, the solvent is acetonitrile, and electrolysis
  • the concentration of the liquid is 2mol/L, and after sealing, it is formed in a conventional manner, and the aluminum package polyimide super capacitor is obtained.
  • Supercapacitor performance test After performance, the performance is tested. 500mA is charged to 2.7V, and then discharged to 0.1V with a constant current of 500mA. The cycle is 10 times. After 10 times, the discharge capacity is 10.0F and the specific energy is 2.4wh/kg. The specific power is 6000w/kg. The capacitor is placed in a high-temperature impact box, heated to 185 ° C at 5 ° C / min, and thermostated for 2 hours, the appearance of the product does not change, the capacity and ESR value changes not more than 3%, indicating that the product has good resistance High temperature performance. After discharging the capacitor for 10,000 cycles, the discharge capacity of the capacitor dropped by 7%.
  • the positive electrode is cut to 625 mm long and 44 mm wide, and the negative electrode is cut to be 660 mm long and 44 mm wide, and the areal density is 100 m 2 /g.
  • Performance test of supercapacitor After performance, the performance is tested, 5000mA is charged to 2.7V, and then discharged to 0.1V with a constant current of 5000mA, cycle 10 times, the discharge capacity obtained after 10 times is 100F, and the specific energy is 3.9wh/kg. The power is 6108w/kg.
  • the capacitor is placed in a high-temperature impact box, heated to 185 ° C at 5 ° C / min, and thermostated for 2 hours, the appearance of the product does not change, the capacity and ESR value change does not exceed 5%, indicating that the product has good high temperature resistance performance. After the capacitor was discharged through 5000 mA for 10,000 cycles, its discharge capacity decreased by 8.5%.
  • a polyimide separator having a thickness of 35 ⁇ m is used, and the positive electrode sheet, the polyimide separator, and the negative electrode sheet are sequentially stacked and wound into a roll in the order of the polyimide separator.
  • Liquid-filled package The above-mentioned battery core is placed in an aluminum container case having a diameter of 35 mm and a height of 61 mm, and an electrolyte is injected therein.
  • the electrolyte shield is tetraethylammonium tetrafluoroborate, and the solvent is acetonitrile.
  • the concentration of the solution was 3 mol/L, and after sealing, it was formed in a conventional manner to obtain an aluminum-packaged polyimide supercapacitor.
  • Supercapacitor performance test After performance, the performance is tested. 20A is charged to 2.7V, and then discharged to 0.1V with a constant current of 20A. The cycle is 10 times. After 10 times, the discharge capacity is 350F and the specific energy is 3.45 wh/kg. The power is 5600w/kg.
  • the capacitor is placed in a high-temperature impact box, heated to 185 ° C at 5 ° C / min, and thermostated for 2 hours, the appearance of the product does not change, its capacity and ESR value does not change more than 5%, indicating that the product has good high temperature resistance performance. After the capacitor has been charged and discharged for 20 times through 20A, its discharge capacity does not decrease by more than 8%.
  • a polyimide separator with a thickness of 35 ⁇ m is used, and 18 positive electrodes and polyimide separators are sequentially stacked in the order of a polyimide separator, a positive electrode sheet, a polyimide separator, and a negative electrode sheet. 19 negative electrodes.
  • Supercapacitor performance test After performance, the performance is tested. 60A is charged to 2.7V, and then discharged to 0.1V with a constant current of 60A. The cycle is 10 times. After 10 times, the discharge capacity is 1200F and the specific energy is 5.2wh/kg. The power is 5800w/kg. The capacitor is placed in a high temperature impact box and heated to 5 ° C / min to Description
  • the appearance of the product does not change, and the change in capacity and ESR value does not exceed 5%, indicating that the product has good high temperature resistance.
  • the capacitor is discharged through the 60A charge and discharge cycle for 10,000 times, its discharge capacity does not decrease by more than 10%.
  • pole pieces Mixing activated carbon, conductive graphite, PVDF, NMP (N-methylpyrrolidone) with a total mass of 2000g, in a mass ratio of 15:10:15:60, in a vacuum mixer
  • the slurry was adjusted to a homogenous hook, and the viscosity of the slurry was 2000 cps.
  • the slurry was uniformly coated on an aluminum foil, then dried at 130-140 ° C, crushed, cooled, and cut.
  • the positive electrode was cut to 1700 mm long and 48 mm wide, and the negative electrode was cut to 1750 mm long and 48 mm wide, and its areal density was 90 m 2 /g.
  • a polyimide separator having a thickness of 35 ⁇ m is used, and the positive electrode sheet, the polyimide separator, and the negative electrode sheet are sequentially stacked and wound into a roll in the order of the polyimide separator.
  • Supercapacitor performance test After performance, the performance is tested. 20A is charged to 2.7V, and then discharged to 0.1V with a constant current of 20A. The cycle is 10 times. After 10 times, the discharge capacity is 400F and the specific energy is 3.75 wh/kg. The power is 6600w/kg.
  • the capacitor is placed in a high-temperature impact box, heated to 185 ° C at 5 ° C / min, and thermostated for 2 hours, the appearance of the product does not change, its capacity and ESR value does not change more than 5%, indicating that the product has good high temperature resistance performance. After the capacitor was charged and discharged for 20 times through 20A, its discharge capacity decreased by 8%.
  • NMP was mixed at a mass ratio of 45:5:10:40, and a uniform slurry was adjusted in a vacuum mixer to have a slurry viscosity of 8500 cps.
  • the slurry was uniformly coated on an aluminum foil, and then dried, rolled, and cut at 130-140 °C.
  • the positive electrode is cut to 100* 154*0.130mm, and the negative electrode is cut to 100* 154*0.0130mm, and its areal density is 90m 2 /g.
  • a polyimide separator with a thickness of 35 ⁇ m is used, and 18 positive electrodes and a polyimide film are laminated in this order according to the polyimide separator, the positive electrode sheet, the polyimide separator and the negative electrode sheet. 19 negative electrodes.
  • Supercapacitor performance test After performance, the performance is tested. 60A is charged to 2.7V, and then discharged to 0.1V with 60A constant current. The cycle is 10 times. After 10 times, the discharge capacity is 1300F and the specific energy is 5.6wh/kg. The power is 6500w/kg.
  • the capacitor is placed in a high-temperature impact box, heated to 185 ° C at 5 ° C / min, and thermostated for 2 hours, the appearance of the product does not change, its capacity and ESR value does not change more than 5%, indicating that the product has good high temperature resistance performance. After the capacitor was charged and discharged for 60 times through 60A, its discharge capacity decreased by 8%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本发明具体涉及一种聚酰亚胺超级电容器。本发明的聚酰亚胺超级电容器,包括容器壳体,电解液和电芯,所述电芯按照聚酰亚胺隔膜、正极片、聚酰亚胺隔膜、负极片的顺序依次卷绕或叠放封装在容器壳体内,正极片和负极片通过正、负极浆料附着在集流体上制成,正、负极片分别连有导针,导针从容器壳体内穿出,所述正、负极浆料由按质量百分比计的以下组分组成:多孔炭材料15%-45%,导电剂0.5%-10%,胶黏剂1%-15%,溶剂30%-70%。本发聚酰亚胺超级电容器其能量密度>5.6wh/kg,功率密度>6500w/kg;并且其电化学稳定性及热稳定性好,使用温度范围广,可用在电动工具、混合动力汽车、太阳能储能等领域。

Description

说 明 书 一种聚酰亚胺超级电容器及其制备方法
技术领域
本发明涉及电容器领域, 具体涉及一种聚酰亚胺超级电容器。
背景技术
超级电容器是介于传统电容器与电池之间的一种新型电化学储能器件, 它 相比传统电容器有着更高的能量密度, 静电容量能达千法拉至万法拉级; 相比 电池有着更高的功率密度和超长的循环寿命, 因此它结合了传统电容器与电池 的优点, 是一种应用前景广阔的化学电源。 它具有比容量高、 功率大、 寿命长, 工作温限宽、 免维护等特点。
按照储能原理的不同, 超级电容器可以分为三类: 双电层电容器(EDLC ), 法拉第准电容超级电容器和混合型超级电容器, 其中双电层电容器主要是利用 电极 Z电解质界面电荷分离所形成的双电层来实现电荷和能量的储存; 法拉第准 电容超级电容器主要是借助电极表面快速的氧化还原反应所产生的法拉第 "准 电容" 来实现电荷和能量的储存; 而混合型超级电容器是一极采用电池的非极 化电极(如氢氧化镍), 另一极采用双电层电容器的极化电极(如活性炭), 这 种混合型的设计可以大幅度提高超级电容器的能量密度。
超级电容器按电解质分可分为无机电解质、 有机电解质、 聚合物电解质三 种超级电容器, 其中无机电解质应用较多的为高浓度的酸性(如 H2S04 )或碱性 (如 KOH ) 的水溶液, 中性水溶液电解质应用的较少; 有机电解质则一般采用 季胺盐或锂盐与高电导率的有机溶剂 (如乙腈) 组成混合电解液, 而聚合物电 解质如今只停留在实验室阶段, 尚无商业化产品的出现。 说 明 书
在申请号为 200510110461.5的专利中, 正极采用 LiMn2_xMx04, 负极采用 活性炭, 该超级电容器的比能量最高可达 50Wh/Kg (基于正、 负极活性物质总 质量计算的)。 但是, 此类有机混合型超级电容器的能量密度与功率密度都不理 想, 电化学稳定性差、 热稳定性差以及使用温度范围小, 电容电池循环寿命短, 不能满足目前人们对于电容电池有要求。
发明内容
为了克服现有技术的不足, 本发明的目的在于提供一种聚酰亚胺超级电容 器, 采用多孔炭材料, 制备大容量、 高功率、 循环寿命长、 无污染、 高安全性, 免维护的超级电容器。
本发明的另一目的是配合本发明的聚酰亚胺超级电容器提供一种聚酰亚胺 超级电容器的制备方法。
为了实现上述目的, 本发明所釆用的技术方案如下:
一种聚酰亚胺超级电容器, 包括容器壳体, 电解液和电芯, 所述电芯按照 聚酰亚胺隔膜、 正极片、 聚酰亚胺隔膜、 负极片的顺序依次卷绕或叠放封装在 容器壳体内, 其中正极片和负极片通过将正、 负极浆料附着在集流体上制成, 正、 负极片分别连接导针, 导针从容器壳体内穿出, 所述正、 负极浆料由按质 量百分比计的以下组分组成: 多孔炭材料 15%-45% , 导电剂 0.5%- 10% , 胶黏剂 1%-15%, 溶剂 30%-70%。
所述正、 负极浆料粘度范围为 1500cps-8500cps, 固含量范围为 20%-60%, PH值为 6-10。
所述多孔材料为多孔碳材料乙炔黑, 活性炭, 导电炭黑, 天然石墨, 人工 石墨, 活性碳纤维, 碳布, 碳纳米管, 硬碳, 碳气凝胶, 石墨浠中的一种或两 说 明 书
种以上混合。
本发明中所采用的导电剂为导电炭黑、 导电石墨、 SP-Li、 科琴黑、 碳纳米 管中的一种或两种以上混合。
本发明中所述聚酰亚胺隔膜的厚度为 5-70 μ m, 优选的为 20-40 μ m; 其孔 隙率为 50-95%, 优选的为 90-95%。
所述的溶剂可以是去离子水或有机溶液, 根据上述组分的相溶性进行选择。 所述电解液为有机电解液, 其中的电解质为为四氟硼酸锂、 四氟硼酸四乙 基胺、 四曱基四氟硼酸胺、 四丙基四氟硼酸胺、 四丁基四氟硼酸胺、 三甲基乙 基四氟硼酸胺、 二乙基二甲基四氟硼酸胺、 N-乙基- N-曱基吡咯烷四氟硼酸胺、 六氟磷酸锂、 四乙基六氟磷酸胺、 四曱基六氟磷酸胺、 四丙基六氟磷酸胺、 四 丁基六氟磷酸胺、 三曱基乙基六氟磷酸胺、 三乙基曱基六氟磷酸胺、 二乙基二 曱基六氟磷酸胺中的一种或多种任意结合; 其中有机溶剂为碳酸乙烯酯、 碳酸 丙烯酯、 γ -丁内酯、 碳酸二曱酯、 碳酸二乙酯、 碳酸丁烯酯、 碳酸甲乙酯、 碳 酸曱丙酯、 亚硫酸乙烯酯、 亚硫酸丙烯酯、 乙酸乙酯、 乙腈中的一种或两种以 上混合, 电解质的浓度为 0.3mol/L-4mol/L。
一种聚酰亚胺超级电容器的制备方法, 其包括以下步骤:
( 1 )极片的制备: 将多孔碳材料、 导电剂、 胶黏剂、 溶剂按比例混合均匀, 制备成粘度为的 1500cps-8500cps电极浆料后, 涂覆在导集流体上, 经供干、 碾 压、 分切、 制片, 得到正、 负极片;
( 2 ) 电芯的制备: 将正、 负极片用聚酰亚胺隔膜按照卷绕或叠加的方式制 备成电芯, 聚酰亚胺隔膜绝缘隔开极片;
( 3 ) 注液封装: 将电芯中的正、 负极片入壳, 并分别连接导针, 导针从容 器壳体穿出, 然后注入电解液, 密封, 得到聚酰亚胺超级电容器。 说 明 书
本发明中所述的集流体为不锈钢箔、 不锈钢网、 铝箔、 铝网、 镍箔和泡沫 镍中的一种。
本发明的聚酰亚胺超级电容器可以制成铝壳包装的电容器也可以制成塑膜 软包装的电容器。
相比现有技术, 本发明的有益效果在于: 本发明所制备的聚酰亚胺超级电 容器其能量密度>5.6 11/1¾, 功率密度>650(^/1¾, 其耐热性能大大提高, 循环性 能优良; 并且本发明的聚酰亚胺超级电容器电化学稳定性及热稳定性好, 使用 温度范围广, 可应用在电动汽车、 电动工具、 混合动力汽车、 太阳能储能等领 域。
下面结合附图和具体实施方式对本发明作进一步详细说明。
附图说明
图 1 为本发明的聚酰亚胺超级电容器机构示意图。 具体实施方式
如图 1所示, 本发明的聚酰亚胺超级电容器, 包括容器壳体 1, 电解液和电 芯, 所述电芯按照聚酰亚胺隔膜 5、 正极片 2、 聚酰亚胺隔膜 4、 负极片 3的顺 序卷绕或叠放封装在容器壳体 1 内, 其中正极片 2和负极片 3通过将正、 负极 浆料附着在集流体上制成, 正、 负极片分别连接导针 6和导针 7, 导针 6和导针 7从容器壳体内穿出, 所述正、 负极浆料由按质量百分比计的以下組分组成: 多 孔炭材料 15%-45%, 导电剂 0.5%- 10%, 胶黏剂 1%-15%, 溶剂 30%-70%。
一种聚酖亚胺超级电容器的制备方法, 其包括以下步骤:
( 1 )极片的制备: 将多孔碳材料、 导电剂、 胶黏剂、 溶剂按比例混合均匀, 说 明 书
制备成具粘度为的 1500cps-8500cps电极浆料后, 涂覆在导集流体上, 经烘干、 碾压、 分切、 制片, 得到正、 负极片;
( 2 ) 电芯的制备: 将正、 负极片用聚酰亚胺隔膜按照卷绕或叠加的方式制 备成电芯, 聚酰亚胺隔膜绝缘隔开极片;
( 3 ) 注液封装: 将电芯中的正、 负极片入壳, 并分别连接导针, 导针从容 器壳体穿出, 然后注入电解液, 密封, 得到聚酰亚胺超级电容器。
实施例 1:
( 1 )极片的制作: 将总质量为 1000g的活性炭、 导电炭黑、 胶黏剂、 去离 子水按质量比为 45: 10: 15: 30的比例混合, 在真空搅拌机中调成均匀的的浆 料, 浆料的粘度为 8500cps,将该浆料均勾地涂覆在铝箔上, 然后在 90-100°C下洪 干、 碾压、 冷却后裁切, 正极裁切为 98mm长、 12.5mm宽, 负极裁切为 115mm 长、 12.5mm宽, 其面密度为 90m2/g
( 2 ) 电芯的制备: 选用厚度为 20um的聚酰亚胺隔膜, 按照聚酰亚胺隔膜、 正极片、 聚酰亚胺隔膜、 负极片的顺序依次叠加卷绕成卷。
( 3 )注液封装: 将上述电芯放入直径为 10mm、 高度为 20mm的铝制容器壳 体内, 并注入电解液, 电解液中溶质为四氟硼酸四乙基胺, 溶剂为乙腈, 电解 液的浓度为 0.3mol/L, 密封后按照常规方式化成, 得到铝包装聚酰亚胺超级电容 哭
超级电容器性能检测: 化成后进行性能检测, 150mA充电至 2.7V, 再以 150mA恒流放电至 0.1V, 循环 10次, 10次后得到的放电容量为 3.3F,比能量为 2.0wh/kg , 比功率为 4600w/kg。 电容器置于高温冲击箱中, 以 5°C/min升温至 185°C ,并且恒温 2小时,产品外观无任何变化,其容量和 ESR值的变化不超过 5%, 说明产品具有良好的耐高温性能。 电容器经过 150mA充放循环 10000次后, 其放 说 明 书
电容量下降 8%。
实施例 2:
( 1 ) 极片的制作: 将总质量为 1000g的活性炭、 导电炭黑、 导电剂、 去离 子水按质量比为 15: 10: 15: 60的比例混合, 在真空搅拌机中调成均匀的的浆 料, 浆料的粘度为 1500cps,将该浆料均勾地涂覆在铝箔上, 然后在 90-100°C下烘 干、 碾压、 冷却后裁切, 正极裁切为 190mm长、 17.5mm宽, 负极裁切为 210mm 长、 17.5mm宽, 其面密度为 92m2/g。
( 2 ) 电芯的制备: 选用厚度为 25μηι的聚酰亚胺隔膜, 按照聚酰亚胺隔膜, 正极片、 聚酰亚胺隔膜、 负极片的顺序依次叠加卷绕成卷。
( 3 ) 注液封装: 将上述电芯放入直径为 12.5mm、 高度为 25mm铝制容器壳 体内, 并注入电解液, 电解液中溶质为四氟硼酸四乙基胺, 溶剂为乙腈, 电解 液的浓度为 2mol/L, 密封后按照常规方式化成, 得到铝包装聚酰亚胺超级电容 哭
超级电容器性能检测: 化成后进行性能检测, 500mA充电至 2.7V, 再以 500mA恒流放电至 0.1V, 循环 10次, 10次后得到的放电容量为 10.0F,比能量为 2.4wh/kg , 比功率为 6000w/kg。 电容器置于高温沖击箱中, 以 5°C/min升温至 185°C,并且恒温 2小时,产品外观无任何变化,其容量和 ESR值的变化不超过 3%, 说明产品具有良好的耐高温性能。 电容器经过 500mA充放循环 10000次后, 其放 电容量下降 7%。
实施例 3:
( 1 ) 极片的制作: 将总盾量为 lOOOg的活性炭、 导电石墨、 胶黏剂、 去离 子水按质量比为 30: 5: 10: 55的比例混合, 在真空搅拌机中调成均匀的的浆料, 浆料的粘度为 5500cps,将该浆料均勾地涂覆在铝箔上, 然后在 90-100 °C下烘干、 说 明 书
碾压、冷却后裁切,正极裁切为 625mm长、 44mm宽,负极裁切为 660mm长、 44mm 宽, 其面密度为 100m2/g。
( 2 ) 电芯的制备: 选用厚度为 35μηι的聚酰亚胺隔膜, 按照将聚酰亚胺隔 膜、 正极片、 聚酰亚胺隔膜、 负极片的顺序依次叠加卷绕成卷。
( 3 ) 注液封装: 将上述电芯放入直径为 22mm、 高度为 56mm的铝制容器 壳体内, 并注入电解液, 电解液中溶质为四氟硼酸四乙基胺, 溶剂为乙腈, 电 解液的浓度为 4mol/L, 密封后按照常规方式化成, 得到聚酰亚胺超级电容器。
超级电容器性能检测: 化成后进行性能检测, 5000mA充电至 2.7V, 再以 5000mA恒流放电至 0.1 V, 循环 10次, 10次后得到的放电容量为 100F,比能量 为 3.9wh/kg, 比功率为 6108w/kg。 电容器置于高温冲击箱中, 以 5°C/min升温 至 185°C , 并且恒温 2小时, 产品外观无任何变化, 其容量和 ESR值的变化不 超过 5%,说明产品具有良好的耐高温性能。电容器经过 5000mA充放循环 10000 次后, 其放电容量下降 8.5%。
实施例 4:
( 1 ) 极片的制作: 将总质量为 2000g的活性炭、 科琴黑、 胶黏剂、 去离子 按质量比为 15: 5: 10: 70的比例混合, 在真空搅拌机中调成均匀的的浆料, 浆料的粘度为 1500cps,将该浆料均匀地涂覆在铝箔上, 然后在 90-100 °C下烘干、 碾压、 冷却后裁切, 正极裁切为 1700mm长、 48mm宽, 负极裁切为 1750mm长、 48mm宽, 其面密度为 90m2/g。
( 2 ) 电芯的制备: 选用厚度为 35μηι的聚酰亚胺隔膜, 按照聚酰亚胺隔膜, 正极片、 聚酰亚胺隔膜、 负极片的顺序依次叠加卷绕成卷。
( 3 ) 注液封装: 将上述电芯放入直径为 35mm、 高度为 61mm的铝制容器 壳体内, 并注入电解液, 电解液中溶盾为四氟硼酸四乙基胺, 溶剂为乙腈, 电 说 明 书
解液的浓度为 3mol/L, 密封后按照常规方式化成, 得到铝包装聚酰亚胺超级电 容器。
超级电容器性能检测: 化成后进行性能检测, 20A充电至 2.7V, 再以 20A 恒流放电至 0.1V , 循环 10次, 10次后得到的放电容量为 350F , 比能量为 3.45wh/kg, 比功率为 5600w/kg。 电容器置于高温冲击箱中, 以 5°C/min升温至 185°C , 并且恒温 2小时, 产品外观无任何变化, 其容量和 ESR值的变化不超过 5%, 说明产品具有良好的耐高温性能。 电容器经过 20A充放循环 10000次后, 其放电容量下降不超过 8%。
实施例 5:
( 1 ) 极片的制作: 将总质量为 2000g的活性炭、 科琴黑、 胶黏剂、 去离子 水按质量比为 45: 5: 10: 40的比例混合, 在真空搅拌机中调成均匀的的浆料, 浆料的粘度为 7500cps,将该浆料均勾地涂覆在铝箔上, 然后在 90-100 °C下烘干、 碾压、 冷却后裁切, 正极裁切为 100*154*0.130mm, 负 极裁切为 100*154*0.0130mm, 其面密度为 90m2/g。
( 2 ) 电芯的制备: 选用厚度为 35μηι的聚酰亚胺隔膜, 按照聚酰亚胺隔膜, 正极片、 聚酰亚胺隔膜、 负极片的顺序依次叠加正极 18片、 聚酰亚胺隔膜、 负 极 19片。
( 3 ) 注液封装: 将上述电芯放入封装在铝塑膜容器壳体内, 并注入电解 液, 电解液中溶质为四氟硼酸四乙基胺, 溶剂为乙腈, 电解液的浓度为 3mol/L, 密封后按照常规方式化成, 得到塑膜软包装聚酰亚胺超级电容器。
超级电容器性能检测: 化成后进行性能检测, 60A充电至 2.7V, 再以 60A 恒流放电至 0.1V , 循环 10次, 10次后得到的放电容量为 1200F,比能量为 5.2wh/kg, 比功率为 5800w/kg。 电容器置于高温冲击箱中, 以 5°C/min升温至 说 明 书
185°C , 并且恒温 2小时, 产品外观无任何变化, 其容量和 ESR值的变化不超过 5%, 说明产品具有良好的耐高温性能。 电容器经过 60A充放循环 10000次后, 其放电容量下降不超过 10%。
实施例 6:
( 1 ) 极片的制作: 将总质量为 2000g的活性炭、 导电石墨、 胶 *剂 PVDF, NMP ( N甲基吡咯烷酮)、 质量比为 15: 10: 15: 60的比例混合, 在真空搅拌机 中调成均勾的浆料, 浆料的粘度为 2000cps, 将该浆料均勾地涂覆在铝箔上, 然 后在 130-140°C下烘干、 碾压、 冷却后裁切。 正极裁切为 1700mm长、 48mm宽, 负极裁切为 1750mm长、 48mm宽, 其面密度为 90m2/g。
( 2 ) 电芯的制备: 选用厚度为 35μηι的聚酰亚胺隔膜, 按照聚酰亚胺隔膜, 正极片、 聚酰亚胺隔膜、 负极片的顺序依次叠加卷绕成卷。
( 3 ) 注液封装: 将上述电芯放入直径为 35mm、 高度为 61mm的铝制容器 壳体内, 并注入电解液, 电解液中溶质为四氟硼酸四乙基胺, 溶剂为乙腈, 电 解液的浓度为 3mol/L, 密封后按照常规方式化成, 得到铝包装聚酰亚胺超级电 容器。
超级电容器性能检测: 化成后进行性能检测, 20A充电至 2.7V, 再以 20A 恒流放电至 0.1V, 循环 10次, 10次后得到的放电容量为 400F,比能量为 3.75wh/kg, 比功率为 6600w/kg。 电容器置于高温冲击箱中, 以 5°C/min升温至 185°C , 并且恒温 2小时, 产品外观无任何变化, 其容量和 ESR值的变化不超过 5%, 说明产品具有良好的耐高温性能。 电容器经过 20A充放循环 10000次后, 其放电容量下降 8%。
实施例 7:
( 1 ) 极片的制作: 将总质量为 2000g的活性炭, 碳纳米管、 胶黏剂 PVDF, 说 明 书
NMP按照质量比为 45: 5: 10: 40的比例混合, 在真空搅拌机中调成均匀的浆料, 浆料粘度为 8500cps。 将该浆料均勾地涂覆在铝箔上, 然后在 130-140°C下烘干、 碾压、 裁切。 正极裁切为 100* 154*0.130mm, 负极裁切为 100* 154*0.0130mm, 其面密度为 90m2/g。
( 2 ) 电芯的制备: 选用厚度为 35μηι的聚酰亚胺隔膜, 按照聚酰亚胺隔膜, 正极片、 聚酰亚胺隔膜、 负极片的顺序依次叠加正极 18片、 聚酖亚胺隔膜、 负 极 19片。
( 3 ) 注液封装: 将上述电芯放入封装在铝塑膜容器壳体内, 并注入电解 液, 电解液中溶质为四氟硼酸四乙基胺, 溶剂为乙腈, 电解液的浓度为 3mol/L, 密封后按照常规方式化成, 得到塑膜软包装聚酰亚胺超级电容器。
超级电容器性能检测: 化成后进行性能检测, 60A充电至 2.7V, 再以 60A 恒流放电至 0.1V , 循环 10次, 10次后得到的放电容量为 1300F,比能量为 5.6wh/kg, 比功率为 6500w/kg。 电容器置于高温冲击箱中, 以 5°C/min升温至 185°C , 并且恒温 2小时, 产品外观无任何变化, 其容量和 ESR值的变化不超过 5%, 说明产品具有良好的耐高温性能。 电容器经过 60A充放循环 10000次后, 其放电容量下降 8%。
上述实施例仅为本发明的优选实施方式, 不能以此来限定本发明的保护范 围, 本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均 属于本发明的保护范围。

Claims

权 利 要 求 书
1. 一种聚酰亚胺超级电容器, 包括容器壳体, 电解液和电芯, 其特征在于: 所述电芯按照聚酖亚胺隔膜、 正极片、 聚酖亚胺隔膜、 负极片的顺序依次卷绕 或叠放封装在容器壳体内, 其中正极片和负极片通过将正、 负极浆料附着在集 流体上制成, 正、 负极片分别连接导针, 导针从容器壳体内穿出, 所述正、 负 极浆料由按质量百分比计的以下组分组成: 多孔炭材料 15%-45% , 导电剂 0.5%- 10%, 胶黏剂 1%-15%, 溶剂 30%-70%„
2. 根据权利要求 1所述的聚酖亚胺超级电容器, 其特征在于: 所述正、负 极浆料粘度范围为 1500cps-8500cps, 固含量范围为 20%-60%, PH值为 6-10。
3. 根据权利要求 1所述的聚酰亚胺超级电容器, 其特征在于: 所述多孔材 料为多孔碳材料乙炔黑, 活性炭, 导电炭黑, 天然石墨, 人工石墨, 活性碳纤 维, 碳布, 碳纳米管, 硬碳, 碳气凝胶, 石墨烯中的一种或两种以上混合。
4. 根据权利要求 1所述的聚酰亚胺超级电容器, 其特征在于: 所述导电剂 为导电炭黑、 导电石墨、 科琴黑、 碳纳米管中的一种或两种以上混合。
5. 根据权利要求 1所述的聚酰亚胺超级电容器, 其特征在于: 所述聚酰亚 胺隔膜的厚度为 5-70 μ ηι, 孔隙率为 50-95%。
6. 根据权利要求 1所述的聚酰亚胺超级电容器, 其特征在于: 所述电解液 为有机电解液, 其中电解质为四氟硼酸锂、 四氟硼酸四乙基胺、 四曱基四氟硼 酸胺、 四丙基四氟硼酸胺、 四丁基四氟硼酸胺、 三曱基乙基四氟硼酸胺、 二乙 基二曱基四氟硼酸胺、 Ν-乙基- Ν-甲基吡咯烷四氟硼酸胺、 六氟磷酸锂、 四乙基 六氟磷酸胺、 四甲基六氟磷酸胺、 四丙基六氟磷酸胺、 四丁基六氟磷酸胺、 三 曱基乙基六氟磷酸胺、 三乙基曱基六氟磷酸胺、 二乙基二曱基六氟磷酸胺中的 一种或两种以上混合; 其中溶剂为碳酸乙烯酯、 碳酸丙烯酯、 γ -丁内酯、 碳酸 二曱酯、 碳酸二乙酯、 碳酸丁烯酯、 碳酸曱乙酯、 碳酸曱丙酯、 亚硫酸乙烯酯, 权 利 要 求 书
亚石克酸丙烯酯、 乙酸乙酯、 乙腈中的一种或两种以上混合, 电解质的浓度为
Figure imgf000014_0001
7. 如权利要求 1所述的聚酰亚胺超級电容器的制备方法, 其特征在于: 其包括以下步骤:
( 1 )极片的制备: 将多孔碳材料、 导电剂、 胶黏剂、 溶剂按比例混合均匀, 制备成粘度为的 1500cps-8500cps电极浆料之后, 涂覆在集流体上, 经烘干、 碾 压、 分切、 制片, 得到正、 负极片;
( 2 ) 电芯的制备: 将正、 负极片用聚酰亚胺隔膜按照卷绕或叠加的方式制 备成电芯, 聚酰亚胺隔膜绝缘隔开极片;
( 3 ) 注液封装: 将电芯中的正、 负极片入壳, 并分别连接导针, 导针从容 器壳体穿出, 然后注入有机电解液, 密封, 得到聚酰亚胺超级电容器。
8. 根据权利要求 7所述的聚酰亚胺超级电容器的制备方法, 其特征在于: 所述集流体为不锈钢箔、 不锈钢网、 铝箔、 铝网、 镍箔和泡沫镍中的一种。
9. 根据权利要求 7所述的聚酰亚胺超级电容器的制备方法, 其特征在于: 所述聚跣亚胺超级电容器为铝包装电容器或塑膜软包装电容器。
PCT/CN2011/085102 2011-06-30 2011-12-31 一种聚酰亚胺超级电容器及其制备方法 WO2013000263A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110182180A CN102306549A (zh) 2011-06-30 2011-06-30 一种聚酰亚胺超级电容器及其制备方法
CN201110182180.6 2011-06-30

Publications (1)

Publication Number Publication Date
WO2013000263A1 true WO2013000263A1 (zh) 2013-01-03

Family

ID=45380393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/085102 WO2013000263A1 (zh) 2011-06-30 2011-12-31 一种聚酰亚胺超级电容器及其制备方法

Country Status (2)

Country Link
CN (1) CN102306549A (zh)
WO (1) WO2013000263A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543473A (zh) * 2012-02-08 2012-07-04 黑龙江大学 石墨烯与导电炭黑复合材料对电极的制备方法
EP2831896B1 (en) * 2012-03-27 2021-02-17 CPS Technology Holdings LLC Lead-acid battery including capacitor electrode with surface-modified additives
CN102543484A (zh) * 2012-03-28 2012-07-04 长沙海密特新能源科技有限公司 一种大功率软包装超级电容器极片其制造方法
CN103523771A (zh) * 2012-07-03 2014-01-22 海洋王照明科技股份有限公司 石墨烯及其活化方法与超级电容器
WO2016073430A1 (en) * 2014-11-03 2016-05-12 Sachem, Inc. Electrolytic compositions base on mixed alkyl quartenary ammonium or phosphonium salts for electric energy storage and generation devices
CN104979102A (zh) * 2015-07-08 2015-10-14 深圳新宙邦科技股份有限公司 一种电解液溶质、电解液及超级电容器
CN105244178A (zh) * 2015-10-28 2016-01-13 王彦博 一种超级电容器及其制备方法
CN110349755A (zh) * 2019-07-09 2019-10-18 南通江海储能技术有限公司 一种卷绕式超级电容器
CN111261422A (zh) * 2020-01-20 2020-06-09 宁波瞬能科技有限公司 一种钠离子电容器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165522A (ja) * 2004-11-15 2006-06-22 Japan Pionics Co Ltd 電極シート及びそれを用いた電気二重層キャパシタ
CN101013632A (zh) * 2007-02-06 2007-08-08 上海奥威科技开发有限公司 一种超级电容器用负极制造方法
CN101180691A (zh) * 2005-04-12 2008-05-14 住友化学株式会社 双电层电容器
CN101213626A (zh) * 2005-12-21 2008-07-02 昭和电工株式会社 电双层电容器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101346788A (zh) * 2005-12-28 2009-01-14 杜邦帝人先进纸有限公司 非水电容器及其制备方法
CN101165828A (zh) * 2007-08-29 2008-04-23 李青海 一种扣式电化学电容器及其制造方法
CN101174510B (zh) * 2007-10-25 2010-08-11 宁波富达电器有限公司 一种用于制备超级电容器的导电涂料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165522A (ja) * 2004-11-15 2006-06-22 Japan Pionics Co Ltd 電極シート及びそれを用いた電気二重層キャパシタ
CN101180691A (zh) * 2005-04-12 2008-05-14 住友化学株式会社 双电层电容器
CN101213626A (zh) * 2005-12-21 2008-07-02 昭和电工株式会社 电双层电容器
CN101013632A (zh) * 2007-02-06 2007-08-08 上海奥威科技开发有限公司 一种超级电容器用负极制造方法

Also Published As

Publication number Publication date
CN102306549A (zh) 2012-01-04

Similar Documents

Publication Publication Date Title
WO2013000263A1 (zh) 一种聚酰亚胺超级电容器及其制备方法
CN101847513B (zh) 一种长寿命负极片的制备工艺及使用该负极片的电容电池
CN102290245B (zh) 一种聚酰亚胺电容电池及其制作方法
CN101562078B (zh) 超级电容器的制备方法
CN100590761C (zh) 一种超级电容电池的制造方法
CN102800841B (zh) 负极片、锂离子电池及其制备方法
CN107331888A (zh) 一种含有硅碳材料负极片的锂离子电池及其制备方法
CN102201604A (zh) 一种电容电池电芯及其制作方法
US20130155577A1 (en) Capacitor cell with high-specific-energy organic system
CN104347880A (zh) 可快充的锂离子电池
JPWO2006118120A1 (ja) 蓄電デバイス用負極活物質
CN104078246A (zh) 一种锂离子电池电容器
CN103682454B (zh) 一种采用钛酸锂负极的锂离子电池制备方法
CN101562079A (zh) 超级电容器
CN103258655A (zh) 一种电场活化型超级电容器的制备方法
JP2008252013A (ja) リチウムイオンキャパシタ
CN101409154B (zh) 有机混合型超级电容器
CN105761944B (zh) 一种混合超级电容器用复合正极片及其制备方法、混合超级电容器
JP2010109080A (ja) 蓄電素子用電極体の製造方法および蓄電素子用電極体ならびに非水系リチウム型蓄電素子
JPWO2012127991A1 (ja) 蓄電デバイス
CN102332604A (zh) 一种高功率锂离子电池
KR101138522B1 (ko) 전극 구조체 및 이를 구비하는 리튬 이온 캐패시터
CN107958790A (zh) 超级锂离子电容器及其制备方法
JP6487841B2 (ja) 蓄電デバイス
CN108630450A (zh) 一种用于超级电容器的负极片和超级电容器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11868738

Country of ref document: EP

Kind code of ref document: A1