WO2012165138A1 - Mirror actuator and beam irradiation device - Google Patents

Mirror actuator and beam irradiation device Download PDF

Info

Publication number
WO2012165138A1
WO2012165138A1 PCT/JP2012/062444 JP2012062444W WO2012165138A1 WO 2012165138 A1 WO2012165138 A1 WO 2012165138A1 JP 2012062444 W JP2012062444 W JP 2012062444W WO 2012165138 A1 WO2012165138 A1 WO 2012165138A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
unit frame
terminal
mirror actuator
suspension
Prior art date
Application number
PCT/JP2012/062444
Other languages
French (fr)
Japanese (ja)
Inventor
山田 真人
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012165138A1 publication Critical patent/WO2012165138A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1822Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors comprising means for aligning the optical axis
    • G02B7/1827Motorised alignment
    • G02B7/1828Motorised alignment using magnetic means

Definitions

  • the present invention relates to a mirror actuator that rotates a mirror about two axes as a rotation axis, and a beam irradiation apparatus equipped with this mirror actuator.
  • a laser radar is mounted on a domestic passenger car or the like in order to increase safety during traveling.
  • a laser radar scans a laser beam within a target area and detects the presence or absence of an obstacle at each scan position from the presence or absence of reflected light at each scan position. Further, the distance to the obstacle is detected based on the required time from the laser beam irradiation timing to the reflected light reception timing at each scan position.
  • the laser radar is provided with an actuator for scanning the laser beam in the target area.
  • a mirror actuator that rotates a mirror about two axes as rotation axes can be used (Patent Document 1).
  • laser light is incident on the mirror from an oblique direction.
  • the mirror is rotated in the horizontal direction and the vertical direction using the two axes as rotation axes, the laser light is oscillated in the horizontal direction and the vertical direction in the target area.
  • a gap in a direction parallel to the rotation axis is provided between the movable part that holds the mirror and the support part that supports the movable part via the rotation axis.
  • the present invention has been made in view of such a problem, and provides a mirror actuator capable of suppressing the collision of a movable portion with respect to a support portion, and capable of realizing a smooth operation, and a beam irradiation apparatus equipped with the mirror actuator. For the purpose. *
  • the first aspect of the present invention relates to a mirror actuator.
  • the mirror actuator which concerns on a 1st aspect connects the support part, the movable part hold
  • the movable part is supported by the support part so as to be displaceable in a direction parallel to the rotation axis.
  • the mirror actuator further includes urging means for urging the movable part in a direction parallel to the rotation axis and causing the movable part to abut against the support part.
  • a beam irradiation apparatus includes the mirror actuator according to the first aspect, and a laser light source that supplies laser light to a mirror of the mirror actuator.
  • the present invention it is possible to provide a mirror actuator that can suppress the collision of the movable part with the support part and can realize a smooth operation, and a beam irradiation apparatus equipped with this mirror actuator.
  • FIG. 1 is an exploded perspective view of a mirror actuator 1 according to the present embodiment.
  • the mirror actuator 1 includes a mirror unit 10, a magnet unit 20, and a servo unit 30.
  • the mirror unit 10 includes a mirror unit frame 11, pan coil mounting plates 12 and 13, suspension wire fixing substrates 14a, 14b and 15, suspension wires 16a to 16d, and a support shaft 17. And an LED 18 and a mirror 19.
  • the mirror unit frame 11 is made of a frame member having a rectangular outline when viewed from the front.
  • the mirror unit frame 11 is provided with two tilt coil mounting portions 11a on the left and right side surfaces, respectively.
  • the tilt coil mounting portion 11a on each side surface is disposed at a position symmetrical in the vertical direction from the center of each side surface.
  • a tilt coil 11b is wound and fixed to each of the four tilt coil mounting portions 11a.
  • the mirror unit frame 11 is formed with shaft holes 11c arranged on the left and right and grooves 11e arranged on the top and bottom.
  • the shaft hole 11c is disposed at the center position of the left and right side surfaces, and the groove 11e extends to the center position of the upper and lower side surfaces.
  • a bearing 11d is attached to each of the shaft holes 11c from the left and right.
  • Openings 11j are formed in the upper and lower positions of the shaft hole 11c on the left and right inner surfaces of the mirror unit frame 11, respectively. Each of these four openings 11j penetrates the tilt coil mounting portion 11a from the inner surface.
  • a magnetic body 40 is attached to the left inner side surface of the mirror unit frame 11. The configuration of the magnetic body 40 will be described later with reference to FIG.
  • the bottom surface of the mirror unit frame 11 has a comb-like shape, two wire holes 11f for passing the suspension wires 16a and 16b, two wire holes 11g for passing the suspension wires 16c and 16d, and will be described later.
  • Three wire holes 11h for passing the suspension wires 26a to 26c and three wire holes 11i for passing the suspension wires 26d to 26f are formed.
  • the wire holes 11h and 11i are formed to be slightly larger than the diameters of the suspension wires 26a to 26f in order to fix the suspension wires 26a to 26f by being inclined obliquely backward. As a result, the suspension wires 26a to 26f can be curved in a direction away from the mirror 19.
  • the pan coil mounting plate 12 has two pan coil mounting portions 12a, two wire holes 12c for passing the suspension wires 16a and 16b, two wire holes 12d for passing the suspension wires 16c and 16d, and the support shaft 17 A shaft hole 12e is provided for passing through.
  • the wire hole 12c is formed so as to be linearly aligned with the wire hole 11f in the vertical direction
  • the wire hole 12d is formed so as to be linearly aligned with the wire hole 11g in the vertical direction.
  • Two pan coils 12b are wound and fixed to the two pan coil mounting portions 12a, respectively.
  • the pan coil mounting plate 13 is provided with a shaft hole 13c through which the two pan coil mounting portions 13a and the support shaft 17 are passed. Two pan coils 13b are wound and fixed to the pan coil mounting portion 13a.
  • the suspension wire fixing substrates 14a and 14b are respectively formed with two terminal holes 14c for passing the suspension wires 16a and 16b and two terminal holes 14d for passing the suspension wires 16c and 16d (FIG. 2). (See (b)). At the positions of the terminal holes 14c and 14d, as will be described later, the pan coils 12b and 13b and the lead wires for supplying current to the LED 18 are electrically connected to the suspension wires 16a to 16d with solder or the like.
  • the suspension wire fixing substrates 14a and 14b are fixedly bonded to the pan coil mounting plate 12 so that the two terminal holes 14c and 14d and the wire holes 12c and 12d are aligned.
  • the suspension wire fixing substrate 15 has two terminal holes 15a for passing the suspension wires 16a and 16b, two terminal holes 15b for passing the suspension wires 16c and 16d, and 3 for passing the suspension wires 26a to 26c.
  • Three terminal holes 15d and three terminal holes 15d are formed to allow the suspension wires 26d to 26f (see FIG. 1) to pass therethrough.
  • the three terminal holes 15c and 15d are formed to be slightly larger than the diameters of the suspension wires 26a to 26f in order to stretch the suspension wires 26a to 26f in a curved shape, similarly to the wire holes 11h and 11i.
  • the suspension wire fixing substrate 15 is formed with circuit patterns P1 and P2 that electrically connect the two terminal holes 15a and two of the three terminal holes 15c. .
  • the suspension wire fixing substrate 15 is formed with circuit patterns P3 and P4 that electrically connect the two terminal holes 15b and two of the three terminal holes 15d.
  • the suspension wire fixing substrate 15 includes a terminal hole 15a and a wire hole 11f, a terminal hole 15b and a wire hole 11g, a terminal hole 15c and a wire hole 11h, and a terminal hole 15d and a wire hole 11i. They are fixed to the mirror unit frame 11 so as to be aligned with each other.
  • the suspension wires 16a to 16d are made of phosphor bronze, beryllium copper, etc., and have excellent conductivity and spring properties.
  • the suspension wires 16a to 16d have a circular cross section.
  • the suspension wires 16a to 16d have the same shape and characteristics as each other, and as will be described later, to supply a stable load when supplying current to the pan coils 12b and 13b and the LED 18 and rotating the mirror 19 in the Pan direction. Used.
  • the support shaft 17 has a hole 17a for inserting the LED board fixing arm 18b, holes 17b and 17c for passing a lead wire for electrically connecting the pan coil 13b and the LED 18, and a step portion for fitting the mirror 19. 17d is formed. Further, the inside of the support shaft 17 is hollow in order to pass a conducting wire that electrically connects the pan coil 13b and the LED 18.
  • the support shaft 17 is used as a rotation shaft that rotates the mirror 19 in the Pan direction, as will be described later.
  • the LED 18 is a diffusion type (wide directional type) and can diffuse light over a wide range. As will be described later, the diffused light from the LED 18 is used to detect the scanning position within the target region of the scanning laser light.
  • the LED 18 is attached to the LED substrate 18a.
  • the LED substrate 18 a is attached to the hole 17 a of the support shaft 17 after being bonded to the LED substrate fixing arm 18 b.
  • suspension wires 16a and 16b are passed through the terminal holes 15a of the suspension wire fixing substrate 15 through the two terminal holes 14c of the suspension wire fixing substrate 14a, the two wire holes 12c, and the two wire holes 11f.
  • suspension wires 16c and 16d are passed through the terminal holes 15b of the suspension wire fixing substrate 15 through the two terminal holes 14d of the suspension wire fixing substrate 14b, the two wire holes 12d, and the two wire holes 11g. Is done.
  • the suspension wires 16a to 16d are soldered to the suspension wire fixing substrates 14a, 14b, and 15 together with the pan coils 12b and 13b and a conductive wire for supplying current to the LED 18, respectively.
  • the mirror 19 can rotate around the support shaft 17 in the Pan direction.
  • the suspension wire fixing substrates 14a and 14b rotate in the Pan direction as the mirror 19 rotates in the Pan direction.
  • the assembled mirror unit 10 is accommodated in the opening of the magnet unit frame 21. A method for supplying current using the suspension wire will be described separately with reference to FIG.
  • the magnet unit 20 includes a magnet unit frame 21, eight pan magnets 22, eight tilt magnets 23, two support shafts 24, a suspension wire fixing substrate 25, and suspension wires 26a to 26f.
  • the magnet unit frame 21 provided with the protective cover 27 is composed of a frame member having a rectangular outline when viewed from the front.
  • a shaft hole 21 a for passing the support shaft 24 and a screw hole 21 b for fixing the support shaft 24 are formed in the center of the left and right side surfaces of the magnet unit frame 21.
  • Two screw holes 21 c for fixing the suspension wire fixing substrate 25 are formed on the upper surface of the magnet unit frame 21.
  • FIG. 3 is a perspective view of the magnet unit frame 21 as seen from the rear side.
  • eight pan magnets 22 are attached to the upper and lower inner surfaces of magnet unit frame 21.
  • eight tilt magnets 23 are attached to the left and right inner surfaces of the magnet unit frame 21.
  • cylindrical bases 24 d are respectively formed at the roots of the two support shafts 24.
  • Two screw holes 24b are formed in a plate-like portion following the base 24d.
  • the two support shafts 24 are fitted into the bearings 11d of the mirror unit frame 11 through the shaft holes 21a formed in the magnet unit frame 21 with the poly slider washer 24a attached.
  • the polyslider washer 24a and the columnar pedestal 24d formed at the base of the support shaft 24 are inserted into the shaft hole 21a.
  • the two screws 24c are screwed into the two screw holes 21b of the magnet unit frame 21 through the two screw holes 24b.
  • the support shaft 24 is used as a rotation shaft that rotates the mirror 19 in the tilt direction, as will be described later.
  • the suspension wire fixing substrate 25 is formed with two screw holes 25a and three terminal holes 25c and 25d for passing the suspension wires 26a to 26f.
  • the three terminal holes 25c and 25d are formed slightly larger than the diameter of the suspension wires 26a to 26f in order to stretch the suspension wires 26a to 26f in a curved shape.
  • the suspension wire fixing substrate 25 is formed with a circuit pattern for supplying signals to the terminal holes 25c and 25d.
  • the suspension wires 26a to 26f are made of phosphor bronze, beryllium copper, etc., and have excellent conductivity and spring properties.
  • the suspension wires 26a to 26f have a circular cross section.
  • the suspension wires 26a to 26f have the same shape and characteristics as each other. As will be described later, the suspension wires 26a to 26f have a stable load when the current is supplied to the tilt coil 11b, the pan coils 12b and 13b and the LED 18, and the mirror 19 is rotated in the tilt direction. Used to give
  • the suspension wire fixing substrate 25 is attached to the upper surface of the magnet unit frame 21.
  • the two screws 25b are screwed into the two screw holes 21c through the two screw holes 25a.
  • the suspension wire fixing substrate 25 is fixed to the magnet unit frame 21.
  • suspension wires 26a to 26c are connected to the terminal holes 15c of the suspension wire fixing substrate 15 through the three terminal holes 25c of the suspension wire fixing substrate 25 and the three wire holes 11h of the mirror unit frame 11 (FIG. ))).
  • suspension wires 26d to 26f are connected to the three terminal holes 15d of the suspension wire fixing substrate 15 via the three terminal holes 25d of the suspension wire fixing substrate 25 and the three wire holes 11i of the mirror unit frame 11. 2 (a)).
  • suspension wires 26a to 26f are soldered to the suspension wire fixing substrates 15 and 25 together with the tilt coil 11b, the pan coils 12b and 13b, and the lead wires for supplying current to the LED 18, respectively.
  • the suspension wires 26a to 26f are stretched in a curved shape in a direction away from the mirror 19. That is, the upper ends of the suspension wires 26a to 26f are fixed to the terminal holes 25c and 25d so as to be inclined backward as they are separated from the terminal holes 25c and 25d.
  • the lower ends of the suspension wires 26a to 26f are fixed to the wire holes 11h, 11i and the terminal holes 15b, 15c so as to incline backward as they are separated from the wire holes 11h, 11i and the terminal holes 15b, 15c.
  • the structure shown in FIG. 4 is completed.
  • the mirror unit frame 11 can be rotated in the tilt direction around the support shaft 24.
  • the suspension wire fixing substrate 15 rotates in the tilt direction as the mirror unit frame 11 rotates in the tilt direction.
  • FIG. 4 is a perspective view of the structure in a state where the mirror unit 10 is attached to the magnet unit 20.
  • FIG. 4A is a perspective view of the structure viewed from the front direction of FIG. 1
  • FIG. 4B is a perspective view of the structure viewed from the rear direction of FIG.
  • both ends of suspension wire 16a are connected to one inside two terminal holes 14c and one inside two terminal holes 15a, respectively.
  • both ends of the suspension wire 16c are connected to one inside the two terminal holes 14d and one inside the two terminal holes 15b.
  • Both ends of the suspension wire 16b are connected to one outside the two terminal holes 14c and one outside the two terminal holes 15a.
  • both ends of the suspension wire 16d are connected to one outside the two terminal holes 14d and one outside the two terminal holes 15b.
  • Both ends of the suspension wire 26a are connected to one inside the three terminal holes 25c and one inside the three terminal holes 15c.
  • both ends of the suspension wire 26d are connected to one inside the three terminal holes 25d and one inside the three terminal holes 15d.
  • Both ends of the suspension wire 26b are connected to one center of the three terminal holes 25c and one center of the three terminal holes 15c.
  • both ends of the suspension wire 26e are connected to one center of the three terminal holes 25d and one center of the three terminal holes 15d.
  • Both ends of the suspension wire 26c are connected to one outside of the three terminal holes 25c and one outside of the three terminal holes 15c.
  • both ends of the suspension wire 26f are connected to one outside of the three terminal holes 25d and one outside of the three terminal holes 15d.
  • 25e is a terminal.
  • a drive signal for driving the mirror 19 in the Pan direction and the tilt direction and a drive signal for lighting the LED 18 are supplied via the terminal 25e.
  • Each terminal 25e is connected to one of the terminal holes 25c, 25d via a circuit pattern on the suspension wire fixing substrate 25, respectively.
  • the servo unit 30 includes a servo unit frame 31, a pinhole mounting bracket 32, a pinhole plate 33, a PSD substrate 34, and a PSD 35.
  • the servo unit frame 31 is made of a frame member having a rectangular outline when viewed from the front. Two screw holes 31 a for fixing the pinhole mounting bracket 32 are formed on the left and right side surfaces of the servo unit frame 31.
  • the front end of the upper and lower inner surfaces of the servo unit frame 31 is formed with four flanges protruding inside the servo unit frame 31, and the four flanges are respectively formed with screw holes 31c. Yes.
  • four flanges projecting inward of the servo unit frame 31 are formed, and screw holes 31e are respectively formed on these four flanges. ing.
  • Two screw holes 32 a are formed on the left and right side surfaces of the pinhole mounting bracket 32.
  • two screw holes 32b for fixing the pinhole plate 33 and an opening 32c for guiding the servo light emitted from the LED 18 to the PSD 35 through the pinhole 33a are provided on the back surface of the pinhole mounting bracket 32. Is formed.
  • the pinhole plate 33 is formed with a pinhole 33a and two screw holes 33b.
  • the pinhole 33a allows a part of the diffused light emitted from the LED 18 to pass through.
  • the PSD board 34 is formed with four screw holes 34 a for fixing the PSD board 34 to the servo unit frame 31.
  • a PSD 35 is mounted on the PSD substrate 34. The PSD 35 outputs a signal corresponding to the light receiving position of the servo light.
  • the pinhole plate 33 is applied to the back surface of the pinhole mounting bracket 32.
  • the two screws 33c are screwed into the two screw holes 32b through the two screw holes 33b.
  • the pinhole plate 33 is fixed to the pinhole mounting bracket 32.
  • the pinhole mounting bracket 32 is accommodated in the servo unit frame 31.
  • the four screw holes 31a and the four screw holes 32a are combined, and the four screws 31b from the left and right are respectively screwed into the screw holes 31a and the screw holes 32a.
  • the pinhole mounting bracket 32 is fixed to the servo unit frame 31.
  • FIG. 5A is a perspective view of the assembled servo unit 30 as viewed from the front
  • FIG. 5B is a perspective view of the assembled servo unit 30 as viewed from the rear.
  • FIG. 6A is a perspective view of the mirror actuator 1 viewed from the front
  • FIG. 6B is a perspective view of the mirror actuator 1 viewed from the rear.
  • FIG. 7 is a diagram showing the relationship of force action when the mirror 19 rotates.
  • the pan coil mounting plate 12 the suspension wire fixing substrates 14a and 14b, the suspension wire fixing substrate 15, the suspension wire fixing substrate 25, the mirror unit frame 11, the support shaft 17, and the support shaft are shown. Only the mirror 24, the mirror 19, the suspension wires 16a to 16d, and the suspension wires 26a to 26f are shown.
  • FIG. 7A shows an initial state of the mirror actuator 1.
  • the mirror 19 is configured such that when no current is applied to the tilt coil 11b and the pan coils 12b and 13b, the mirror surface of the mirror 19 is positioned at a position perpendicular to the front-rear direction in FIG.
  • the position of the mirror 19 in this state is referred to as a “neutral position”.
  • the suspension wires 26a to 26f are stretched so as to have a curved shape in a direction away from the mirror 19 in order to provide a margin necessary for the rotation of the mirror unit frame 11 in the tilt direction. In this state, no force is applied to the movable part from the suspension wires 16a to 16d and the suspension wires 26a to 26f, so that no rotational force is generated with respect to the mirror 19.
  • FIG. 7B is a diagram showing a state when the mirror actuator 1 is driven in the Pan direction.
  • the eight pan magnets 22 (see FIG. 3) apply a current to the pan coils 12b and 13b (see FIG. 2 (a)), thereby generating rotational power about the support shaft 17 on the pan coil mounting plates 12 and 13. So the arrangement and polarity are adjusted. Therefore, when a current is applied to the pan coils 12b and 13b, the support shaft 17 is rotated together with the pan coil mounting plates 12 and 13 by the electromagnetic driving force generated in the pan coils 12b and 13b, so that the mirror 19 is rotated about the support shaft 17 as an axis. Rotate.
  • the rotation direction of the mirror 19 about the support shaft 17 is referred to as the Pan direction.
  • the suspension wire fixing substrates 14a and 14b mounted on the pan coil mounting plate 13 are rotated integrally therewith.
  • the suspension wire fixing substrate 15 is fixed to the mirror unit frame 11 and remains in the state shown in FIG.
  • the suspension wires 16a and 16b and the suspension wires 16c and 16d are each positioned at a twisted position about the support shaft 17 while being pulled in the longitudinal direction. Therefore, due to the spring properties of the suspension wires 16a to 16d, a moment in the direction opposite to the rotation direction of the mirror 19 around the support shaft 17 is generated.
  • This moment is a predetermined value that can be calculated by the spring constants of the suspension wires 16a to 16d and the rotational position of the mirror 19 about the support shaft 17.
  • a moment in the opposite direction is always generated. Therefore, when the application of current to the pan coils 12b and 13b is stopped, the mirror 19 is shown in FIG. Returned to neutral position.
  • FIG. 7C is a diagram showing a state when the mirror actuator 1 is driven in the tilt direction.
  • the eight tilt magnets 23 (see FIG. 3) are arranged so that turning force about the support shaft 24 is generated in the mirror unit frame 11 by applying a current to the tilt coil 11b (see FIG. 2A). And the polarity is adjusted. Therefore, when a current is applied to the tilt coil 11b, the mirror unit frame 11 rotates about the support shaft 24 by the electromagnetic driving force generated in the tilt coil 11b, and the mirror 19 rotates integrally with the mirror unit frame 11. To do.
  • the rotation direction of the mirror 19 around the support shaft 24 is referred to as a tilt direction.
  • the suspension wire fixing substrates 14a and 14b attached to the mirror unit frame 11 and the suspension wire fixing substrate 15 are integrally rotated.
  • the suspension wire fixing substrate 25 is fixed to the magnet unit frame 21 and remains in the state shown in FIG.
  • the suspension wires 26a to 26f are deformed from the state shown in FIG. 7A, and a restoring force for restoring the state shown in FIG. 7A is generated in the suspension wires 26a to 26f. Therefore, the restoring force generates a moment in the direction opposite to the tilt direction of the mirror unit frame 11 around the support shaft 24 in the tilt direction.
  • This moment is a predetermined value that can be calculated by the spring constants of the suspension wires 26a to 26f and the rotational position of the mirror unit frame 11 around the support shaft 24.
  • a moment in the opposite direction is always generated. Therefore, when the application of the current to the tilt coil 11b is stopped, the mirror unit frame 11 is shown in FIG. ) Is returned to the neutral position. Therefore, when the mirror 19 is rotated in the Pan direction and the Tilt direction, a certain drag due to the spring property of the suspension wire is generated at each rotation position.
  • the mirror 19 can be stably rotated by adjusting the driving force for rotating the mirror 19 according to the drag. When no current is applied, the mirror 19 is positioned in the neutral position due to the spring property of the suspension wire. For this reason, it can prevent that a mirror is located in an indefinite rotation position by disturbances, such as a vibration.
  • FIG. 8 is a diagram showing a method of supplying power to the LED 18, the tilt coil 11b, and the pan coils 12b and 13b using the suspension wires 16a to 16d and the suspension wires 26a to 26f.
  • the mirror unit frame 11, pan coil mounting plates 12 and 13, pan coils 12b and 13b, tilt coil 11b, suspension wire fixing substrates 14a and 14b, suspension wire fixing substrate 15, and suspension Only the wires 16a to 16d, the support shaft 17, the LED 18, the magnet unit frame 21, the suspension wire fixing substrate 25, and the suspension wires 26a to 26f are shown.
  • the suspension wires 16a to 16d and the suspension wires 26a to 26f are illustrated. Are omitted except those necessary for supplying the current to each part.
  • FIG. 8A is a diagram showing a method for supplying power to the LED 18.
  • One of the three terminal holes 25c is connected to the outflow terminal of the servo LED drive circuit 302 (see FIG. 14) through the terminal 25e (see FIG. 4A).
  • a circuit pattern is formed so that one of the holes 25d is connected to the inflow terminal of the servo LED drive circuit 302 (see FIG. 14) via the terminal 25e.
  • one of the three terminal holes 15c is connected to one of the two terminal holes 15a, and one of the two terminal holes 15b is connected to one of the three terminal holes 15d.
  • a circuit pattern is formed as described above.
  • the + terminal of the LED 18 is electrically connected to a terminal hole 14c and a conductor via a cavity formed in the support shaft 17 and a hole 17b. Further, the negative terminal of the LED 18 is electrically connected to the terminal hole 14d by a conducting wire through a hole formed in the support shaft 17 and a hole 17b.
  • the current output from the outflow terminal of the servo LED driving circuit 302 reaches the terminal hole 14c through the suspension wire 26a, the terminal hole 15c, the terminal hole 15a, and the suspension wire 16a connected to the terminal hole 25c. To do. And an electric current is input into + terminal of LED18 through the conducting wire connected to the terminal hole 14c. After reaching the LED 18, the current passes through the lead connected to the negative terminal of the LED 18 and reaches the terminal hole 14d. Thereafter, the current passes through the suspension wire 16c, the terminal hole 15b, the terminal hole 15d, and the suspension wire 26d to reach the terminal hole 25d, and is output from the terminal hole 25d to the inflow terminal of the servo LED drive circuit 302 (see FIG. 14). . Thereby, a current is supplied to the LED 18.
  • FIG. 8B is a diagram illustrating a method of feeding power to the pan coils 12b and 13b.
  • One of the three terminal holes 25c is connected to the suspension wire fixing substrate 25 via a terminal 25e (see FIG. 4A) and an outflow terminal for Pan driving of the actuator driving circuit 303 (see FIG. 14).
  • a circuit pattern is formed so that one of the three terminal holes 25d is connected to the inflow terminal for Pan driving of the actuator driving circuit 303 (see FIG. 14) via the terminal 25e.
  • one of the three terminal holes 15c is connected to one of the two terminal holes 15a, and one of the two terminal holes 15b is connected to one of the three terminal holes 15d.
  • a circuit pattern is formed as described above.
  • Each of the two pan coils 12b has one end electrically connected to the terminal hole 14c and the other end electrically connected to the terminal hole 14d.
  • the two pan coils 13b are electrically connected to the terminal hole 14c through a cavity formed in the support shaft 17 and holes 17b and 17c, respectively, and the other end is provided in the support shaft 17.
  • the current output from the Pan driving outflow terminal of the actuator driving circuit 303 passes through the suspension wire 26b, the terminal hole 15c, the terminal hole 15a, and the suspension wire 16b connected to the terminal hole 25c, and passes through the terminal hole. 14c is reached.
  • the current is input to one end of the pan coils 12b and 13b in parallel. After flowing through the pan coils 12b and 13b, the currents merge at the terminal holes 14d. Thereafter, the current passes through the suspension wire 16d, the terminal hole 15b, the terminal hole 15d, and the suspension wire 26e to reach the terminal hole 25d, and from the terminal hole 25d to the inflow terminal for Pan driving of the actuator driving circuit 303 (see FIG. 14). Is output. Thereby, a current is supplied to the pan coils 12b and 13b.
  • FIG. 8C is a diagram showing a method of feeding power to the tilt coil 11b.
  • the suspension wire fixing substrate 25 is connected to one of the three terminal holes 25c via a terminal 25e (see FIG. 4A) and an outflow terminal for driving Tilt of the actuator drive circuit 303 (see FIG. 14).
  • a circuit pattern is formed so that one of the two terminal holes 25d is connected to the tilt driving outflow terminal of the actuator driving circuit 303 (see FIG. 14) via the terminal 25e.
  • the suspension wire fixing substrate 15 is formed with a circuit pattern so that one of the three terminal holes 15c is connected to one of the two terminal holes 15d.
  • Each of the four tilt coils 11b has one end electrically connected to the terminal hole 15c and the other end electrically connected to the terminal hole 15d.
  • the current output from the tilt driving outflow terminal of the actuator driving circuit 303 passes through the suspension wire 26b, the terminal hole 15c, the terminal hole 15a, and the suspension wire 16b connected to the terminal hole 25c, and passes through the terminal hole. 14c is reached.
  • the current is input to one end of the pan coils 12b and 13b in parallel. After flowing through the pan coils 12b and 13b, the currents merge at the terminal holes 14d. Thereafter, the current passes through the suspension wire 16d, the terminal hole 15b, the terminal hole 15d, and the suspension wire 26e to reach the terminal hole 25d. From the terminal hole 25d, an inflow terminal for Tilt drive of the actuator drive circuit 303 (see FIG. 14). Is output. Thereby, a current is supplied to the pan coils 12b and 13b.
  • the LED 18 and the pan coil can be used without applying an unstable load to the mirror unit frame 11 and the support shaft 17 without using an external cable or harness.
  • Current can be supplied to 12b and 13b and the tilt coil 11b.
  • FIG. 9A is a perspective view of a state in which the magnetic body 40 is attached to the mirror actuator 1
  • FIG. 9B is a diagram illustrating the configuration of the magnetic body 40.
  • the protective cover 27 is removed for convenience.
  • the magnetic body 40 is a rectangular thin plate made of a magnetic material.
  • a circular hole 41 is formed at the center, and a rectangular opening 42 is formed above and below.
  • the upper and lower openings 42 and the opening formed on the left inner surface of the mirror unit frame 11 are formed.
  • 11j substantially matches.
  • the magnetic body 40 is bonded and fixed to the left inner surface of the mirror unit frame 11 so that the hole 41 is aligned with the shaft hole 11c and the opening 42 is approximately aligned with the corresponding opening 11j.
  • the end of the support shaft 24 is fitted in the hole 41.
  • the upper and lower openings 42 of the magnetic body 40 are positioned at positions substantially corresponding to the tilt magnet 23, respectively.
  • FIG. 10 is a diagram for explaining the support state of the mirror unit frame 11. In the figure, the protective cover 27 is removed for convenience.
  • L1 is the distance between the left and right pedestals 24d. That is, the distance from the top surface of the left pedestal 24d to the top surface of the right pedestal 24d is L1.
  • L2 is the width dimension in the left-right direction of the mirror unit 10 (mirror unit frame 11). In the present embodiment, L1> L2 is set. Therefore, the mirror unit frame 11 can be rotated around the support shaft 24 and can be displaced in the left-right direction along the support shaft 24.
  • the top surfaces of the left and right pedestals 24d are strongly opposed to the left and right side surfaces of the mirror unit frame 11 via the polyslider washer 24a. It can avoid being pressed. As a result, the rotation of the mirror 19 in the tilt direction about the support shaft 24 is stabilized.
  • the left and right side surfaces of the mirror unit frame 11 may collide with the pedestal 24d when the mirror actuator 1 is driven. Can happen. Due to this collision, noise is generated, and there is a possibility that the characteristics of the mirror actuator 1 itself are deteriorated.
  • the magnetic body 40 is installed on the mirror unit frame 11 in order to solve such a problem.
  • FIG. 11 is a diagram for explaining the action of the magnetic body 40.
  • FIG. 11A is an enlarged view of a portion surrounded by a dotted line in FIG.
  • the magnetic body 40 is installed only on the left inner surface of the mirror unit frame 11 and is not installed on the right inner surface of the mirror unit frame 11. Since the magnetic body 40 is disposed at a position corresponding to the tilt magnet 23, the magnetic body 40 is attracted to the tilt magnet 23 as indicated by a broken line arrow in FIG. By this attracting force, the entire mirror unit frame 11 is biased in the left direction, and the left side surface of the mirror unit frame 11 is lightly pressed against the top surface of the base 24d via the polyslider washer 24a. Thereby, when the mirror actuator 1 is driven, the mirror unit frame 11 can be prevented from being displaced left and right, and the left and right side surfaces of the mirror unit frame 11 can be prevented from colliding with the base 24d. As a result, it is possible to suppress the generation of noise and the deterioration of the characteristics of the mirror actuator 1 itself.
  • the magnetic force acting between the magnetic body 40 and the tilt magnet 23 is such that the left side surface of the mirror unit frame 11 is not pressed too strongly against the pedestal 24d, and the mirror unit frame 11 moves left and right when the mirror actuator 1 is driven. It is adjusted so as to be strong enough to prevent displacement. If the magnetic force acting between the magnetic body 40 and the tilt magnet 23 is excessively large, the left side surface of the mirror unit frame 11 is strongly pressed against the pedestal 24d, and the operation of the mirror unit frame 11 in the tilt direction may become unstable. Conversely, if the magnetic force is too small, the mirror unit frame 11 is displaced left and right when the mirror actuator 1 is driven, and noise may be generated and the characteristics of the mirror actuator 1 itself may be deteriorated.
  • a rectangular opening 42 is provided in the magnetic body 40 as shown in FIGS.
  • the position and size of the opening 42 are adjusted so that the magnetic force acting between the magnetic body 40 and the tilt magnet 23 has the above strength.
  • the opening 42 is provided in the magnetic body 40.
  • the opening 42 may not be provided.
  • the material and size of the magnetic body 40 may be changed.
  • the magnetic body 40 is installed on the left inner surface of the mirror unit frame 11, but instead, the magnetic body 40 may be installed on the right inner surface of the mirror unit frame 11. .
  • magnetic bodies may be attached to the inner side surfaces of the left and right sides of the mirror unit frame 11, respectively.
  • the left magnetic force acting on the left magnetic body and the right magnetic force acting on the right magnetic body are imbalanced so that the mirror unit frame 11 is biased to either the left or right.
  • the materials, sizes, and shapes of the left and right magnetic bodies are adjusted.
  • each part is adjusted so that the distances between the opposing tilt magnets 23 are all the same.
  • the suspension wires 26a to 26f are vertically moved as shown in FIG. Each part is adjusted to be linear in the direction.
  • FIG. 12 is a diagram showing a configuration of the optical system in a state where the mirror actuator 1 is mounted.
  • reference numeral 500 denotes a base that supports the optical system. On the upper surface of the base 500, the mirror actuator 1, the laser light source 101, and the beam shaping lens 102 are arranged.
  • the laser light source 101 is mounted on a circuit board 101 a for a laser light source disposed on the upper surface of the base 500.
  • the laser light emitted from the laser light source 101 is subjected to horizontal and vertical convergence effects by the beam shaping lens 102 and shaped into a predetermined shape in the target area.
  • the laser light that has passed through the beam shaping lens 102 enters the mirror 19 of the mirror actuator 1 and is reflected by the mirror 19 toward the target area.
  • the mirror 19 is driven by the mirror actuator 1, the laser beam is scanned in the target area.
  • the scanning laser light from the beam shaping lens 102 is incident on the mirror surface of the mirror 19 at an incident angle of 45 degrees in the horizontal direction. Arranged to do. That is, when the mirror 19 is in the neutral position, the mirror surface of the mirror 19 is parallel to the vertical direction, and the scanning laser light is incident on the mirror surface at an incident angle of 45 degrees in the horizontal direction.
  • FIG. 13A is a partial plan view when the base 500 is viewed from the upper surface side.
  • FIG. 13A shows only a partial sectional view of the mirror actuator 1 and the laser light source 101.
  • the mirror actuator 1 includes an LED 18, a pinhole mounting bracket 32, a pinhole plate 33, a PSD substrate 34, and a PSD 35.
  • the LED 18, PSD 35, and pinhole 33a are arranged so that the LED 18 faces the pinhole 33a of the pinhole plate 33 and the center of the PSD 35 when the mirror 19 of the mirror actuator 1 is in the neutral position. That is, when the mirror 19 is in the neutral position, the pinhole plate 33 and the PSD 35 are arranged so that the servo light emitted from the LED 18 and passing through the pinhole 33a is perpendicularly incident on the center of the PSD 35. Further, the pinhole plate 33 is disposed at a position closer to the PSD 35 than an intermediate position between the LED 18 and the PSD 35.
  • a part of the servo light emitted so as to diffuse from the LED 18 passes through the pinhole 33a and is received by the PSD 35.
  • Servo light that has entered the region other than the pinhole 33 a is shielded by the pinhole plate 33.
  • the PSD 35 outputs a current signal corresponding to the light receiving position of the servo light.
  • the optical path of the light passing through the pinhole 33a out of the diffused light (servo light) of the LED 18 is from LP1 to LP2. And displace.
  • the irradiation position of the servo light on the PSD 35 changes, and the position detection signal output from the PSD 35 changes.
  • the light emission position of the servo light from the LED 18 and the servo light incident position on the light receiving surface of the PSD 35 correspond one-to-one. Therefore, the scanning position of the scanning laser beam in the target area can be detected based on the incident position of the servo light detected by the PSD 35.
  • FIG. 14 is a diagram showing a circuit configuration of the laser radar.
  • the laser radar includes a scanning unit 100, a light receiving unit 200, a PSD signal processing circuit 301, a servo LED driving circuit 302, an actuator driving circuit 303, a scan LD driving circuit 304, and a PD signal processing circuit 305. And a DSP 306.
  • the scanning unit 100 includes a scanning optical system shown in FIG. 12 and a servo optical system shown in FIG. 14 shows only the laser light source 101, the mirror actuator 1, the LED 18, and the PSD 35 as a configuration of the scanning unit 100 for convenience.
  • the light receiving unit 200 includes a band pass filter 201 that transmits only light in the wavelength band of the laser light emitted from the laser light source 101, a light receiving lens 202 that condenses the scanning laser light reflected from the target region, A photodetector 203 that receives the scanned laser beam is provided.
  • the PSD signal processing circuit 301 generates a position detection signal corresponding to the light receiving position from the output signal from the PSD 35 and outputs the position detection signal to the DSP 306.
  • the servo LED drive circuit 302 supplies a drive signal to the LED 18 based on the signal from the DSP 306. Specifically, a constant output servo light is output from the LED 18 when the scanning unit 100 is in operation.
  • Actuator drive circuit 303 drives mirror actuator 1 based on a signal from DSP 306. Specifically, a drive signal for scanning the scanning laser light along a predetermined trajectory in the target area is supplied to the mirror actuator 1.
  • the scan LD drive circuit 304 supplies a drive signal to the laser light source 101 based on a signal from the DSP 306. Specifically, the laser light source 101 emits pulses at the timing when the scanning position of the scanning laser light reaches a predetermined position in the target area.
  • PD signal processing circuit 305 amplifies and digitizes the signal from photodetector 203 and supplies it to DSP 306.
  • the DSP 306 detects the scanning position of the scanning laser light in the target area based on the position detection signal input from the PSD signal processing circuit 301, and performs drive control of the mirror actuator 1, drive control of the laser light source 101, and the like. Execute. Further, the DSP 306 determines whether there is an obstacle at the irradiation position of the scanning laser light in the target area based on the signal input from the PD signal processing circuit 305, and simultaneously outputs from the laser light source 101. The distance to the obstacle is measured based on the time difference between the irradiation timing of the scanning laser beam and the reception timing of the reflected light from the target area received by the photodetector 203.
  • the left side surface of the mirror unit frame 11 is lightly pressed against the top surface of the base 24d via the polyslider washer 24a by the magnetic force acting between the magnetic body 40 and the tilt magnet 23. Therefore, when the mirror actuator 1 is driven, the mirror unit frame 11 can be prevented from being displaced left and right, and the left and right side surfaces of the mirror unit frame 11 can be prevented from colliding with the pedestal 24d. As a result, it is possible to suppress the generation of noise and the deterioration of the characteristics of the mirror actuator 1 itself.
  • the polyslider washer 24a is interposed between the left side surface of the mirror unit frame 11 and the pedestal 24d, the left side surface of the mirror unit frame 11 is thus pressed against the pedestal 24d.
  • the mirror unit frame 11 can be smoothly rotated about the support shaft 24 as an axis.
  • the tilt magnet 23 that applies a magnetic field to the tilt coil 11b is used as means for applying a force to the mirror unit frame 11, the mirror unit frame 11 is urged. Therefore, the configuration for this can be simplified.
  • the support shaft 17 can also be displaced in the vertical direction with respect to the mirror unit frame 11.
  • a means for urging the support shaft 17 in a direction parallel to the support shaft 17 can be considered for the support shaft 17 as in the above embodiment.
  • the mirror actuator 1 is installed so that the vertical direction in FIG. 10 is the vertical direction.
  • the support shaft 17 is urged downward by the gravity acting on the support shaft 17 and a member (mirror 19 or the like) attached to the support shaft 17, and is pressed against the mirror unit frame 11.
  • no urging means is arranged for the support shaft 17.
  • an urging means can be arranged for the support shaft 17 as well.
  • a configuration in which a magnetic member is attached to the lower portion of the support shaft 17 and the support shaft 17 is urged downward by a magnetic force acting between the magnetic member and the lower pan magnet 22 can be used.
  • the mirror 19 when the mirror 19 is rotated in the Pan direction and the Tilt direction, a constant and stable drag due to the spring property of the suspension wire is generated at each rotation position. Therefore, the mirror 19 can be stably rotated by adjusting the driving force for rotating the mirror 19 according to the drag. Further, when no current is applied, the mirror 19 is positioned at the neutral position due to the spring property of the suspension wire, so that it is possible to prevent the mirror from being positioned at an indefinite rotational position due to disturbance such as vibration.
  • the movable part since the current is supplied to the movable part through the suspension wires 26a to 26f, the circuit pattern of the suspension wire fixed substrate 25, and the suspension wires 16a to 16d, the movable part is unstable.
  • the current can be supplied to the LED 18, the pan coils 12b and 13b, and the tilt coil 11b without using a cable or a harness that may cause a load.
  • the suspension wires 26a to 26f and the suspension wires 16a to 16d are arranged so as to be aligned with the support shaft 17, that is, substantially parallel to the support shaft 17, the mirror 19
  • the amount of bending of the suspension wires 26a to 26f and the suspension wires 16a to 16d during rotation can be reduced, and the rotation of the mirror 19 can be performed from the suspension wires 26a to 26f and the suspension wires 16a to 16d when the mirror 19 rotates. It is possible to prevent a large force from being applied.
  • the end portions of the suspension wires 26a to 26f and the suspension wires 16a to 16d are positioned near the bottom surface of the mirror unit frame 11, the corresponding suspension wires can be easily connected by the circuit pattern of the flat suspension wire fixing substrate 25. can do.
  • the ends of the suspension wires 26a to 26f and the suspension wires 16a to 16d are soldered to the suspension wire fixing substrate 25, and the ends are fixed and the electrical connection between the suspension wires is performed. It can be performed.
  • the suspension wires 26a to 26f are arranged so as to be uniformly bent in the direction away from the mirror 19 in a state where the mirror is in the neutral position. Even when the mirror 19 rotates in the tilt direction from the neutral position, the suspension wires 26a to 26f are uniformly deformed in a direction approaching or separating from the mirror 19. As described above, by restricting the deformation direction of the suspension wires 26a to 26f to one direction, it is possible to stabilize the drag generated in the suspension wires 26a to 26f when the mirror 19 is rotated in the tilt direction. It can be driven stably.
  • suspension wires 16a to 16d, suspension wires 26a to 26f are used, but the number of suspension wires is not limited to this.
  • suspension wires that are not used for power feeding may be further arranged.
  • the suspension wires 26b and 26e may be omitted and a total of eight suspension wires may be disposed.
  • a suspension wire having a circular cross section is used.
  • a suspension wire having a square cross section instead of this, a suspension wire having a square cross section, a leaf spring, or the like may be used.
  • the cross-sectional shape of the suspension wire is a square shape or a flat plate shape, the bending direction of the suspension wire can be limited to one direction. This makes it easier to bend the suspension wire uniformly in the same direction when the mirror 19 rotates in the tilt direction. For this reason, the drag force generated in the suspension wire can be stabilized, and thus the mirror 19 can be driven stably.
  • the suspension wires 26a to 26f are formed of a flat plate-shaped flexible member having a predetermined length, width, and thickness, the width direction of the flexible member is allowed to be the left-right direction in FIG. A flexible member is disposed. This makes it easy to bend the suspension wire uniformly in the front-rear direction when the mirror 19 rotates in the tilt direction.
  • the suspension wires 26a to 26f are configured in this manner, the mirror unit frame 11 is difficult to be displaced in the left-right direction. Therefore, in combination with the action of the tilt magnet 23 and the magnetic body 40, the mirror unit frame in the left-right direction. The displacement of the frame 11 can be further suppressed.
  • the suspension wires 26a to 26f do not necessarily have to have a square shape or a flat plate shape over the entire length. For example, in some regions such as only the central portion.
  • the suspension wires 26a to 26f may be square or flat.
  • any member may be used in place of the suspension wire as long as it is a member that gives a stable drag to the movable part and has conductivity.
  • the diffusion type (wide-directional type) LED 18 is used as the light source for diffusing the servo light.
  • a non-diffusion type LED may be used. In this case, you may make it arrange
  • the rotation angle of the mirror 19 is detected by the LED 18 driven integrally with the mirror 19, the pinhole plate 33 disposed in the mirror actuator 1, and the PSD 35.
  • the present invention is not limited to this, and the rotation angle of the mirror may be detected by a semiconductor laser and PSD installed in the base 500. That is, the laser beam emitted from the semiconductor laser and reflected by the mirror 19 may be received by the PSD. Alternatively, laser light emitted from the semiconductor laser and transmitted through a transmission plate that is driven integrally with the mirror 19 may be received by the PSD.
  • the ends of the suspension wires 26a to 26f are fixed to the suspension wire fixing substrate 15.
  • the suspension wire fixing substrate 15 is omitted, and the ends of the suspension wires 26a to 26f are It may be fixed only to the wire holes 11f to 11i.
  • a circuit pattern for connecting the suspension wires 26a, 26b, 26d, and 26e and the suspension wires 16a to 16d may be formed on the bottom surface of the mirror unit frame 11.
  • the mirror actuator 1 is configured such that the mirror unit frame 11 rotates in the tilt direction, and the mirror 19 rotates in the pan direction with respect to the mirror unit frame 11.
  • the mirror actuator 1 may be configured such that the unit frame 11 rotates in the Pan direction, and the mirror 19 rotates in the Tilt direction with respect to the mirror unit frame 11.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

[Problem] To provide: a mirror actuator configured so that a movable section can be prevented from colliding with a support section to enable the smooth operation of the mirror actuator; and a beam irradiation device having the mirror actuator installed therein. [Solution] A mirror actuator (1) comprises a magnet unit frame (21), a mirror unit frame (11) which holds a mirror (19) and which is pivotably supported by the magnet unit frame (21) through a support shaft (24), and suspension wires (26a-26f) which connect the magnet unit frame (21) and the mirror unit frame (11) and which have flexibility. The mirror unit frame (11) is supported by a support section so that the mirror unit frame (11) can be displaced in the direction parallel to the support shaft (24). The mirror unit frame (11) is pressed against a base (24d) by a magnetic force acting between a tilt magnet (23) and a magnetic body (40).

Description

ミラーアクチュエータおよびビーム照射装置Mirror actuator and beam irradiation device
 本発明は、2つの軸を回動軸としてミラーを回動させるミラーアクチュエータ、および、このミラーアクチュエータを搭載したビーム照射装置に関する。 The present invention relates to a mirror actuator that rotates a mirror about two axes as a rotation axis, and a beam irradiation apparatus equipped with this mirror actuator.
 近年、走行時の安全性を高めるために、レーザレーダが、家庭用乗用車等に搭載されている。一般に、レーザレーダは、レーザ光を目標領域内でスキャンさせ、各スキャン位置における反射光の有無から、各スキャン位置における障害物の有無を検出する。さらに、各スキャン位置におけるレーザ光の照射タイミングから反射光の受光タイミングまでの所要時間をもとに、障害物までの距離が検出される。レーザレーダには、目標領域においてレーザ光を走査させるためのアクチュエータが配されている。 In recent years, a laser radar is mounted on a domestic passenger car or the like in order to increase safety during traveling. In general, a laser radar scans a laser beam within a target area and detects the presence or absence of an obstacle at each scan position from the presence or absence of reflected light at each scan position. Further, the distance to the obstacle is detected based on the required time from the laser beam irradiation timing to the reflected light reception timing at each scan position. The laser radar is provided with an actuator for scanning the laser beam in the target area.
 かかるアクチュエータとして、たとえば、2つの軸を回動軸としてミラーを回動させるミラーアクチュエータを用いることができる(特許文献1)。このミラーアクチュエータでは、レーザ光が、斜め方向からミラーに入射される。2つの軸を回動軸としてミラーが水平方向と鉛直方向に回動されると、目標領域内においてレーザ光が水平方向と鉛直方向に振られる。 As such an actuator, for example, a mirror actuator that rotates a mirror about two axes as rotation axes can be used (Patent Document 1). In this mirror actuator, laser light is incident on the mirror from an oblique direction. When the mirror is rotated in the horizontal direction and the vertical direction using the two axes as rotation axes, the laser light is oscillated in the horizontal direction and the vertical direction in the target area.
特開2008-281339号公報JP 2008-281339 A
 上記ミラーアクチュエータでは、ミラーを保持する可動部と、回動軸を介して可動部を支持する支持部との間に、回動軸に平行な方向の隙間が設けられている。これにより、支持部が熱等により変形した場合にも、支持部が可動部に強く押しつけられることを回避できる。よって、可動部の回動が安定なものとなる。 In the above mirror actuator, a gap in a direction parallel to the rotation axis is provided between the movable part that holds the mirror and the support part that supports the movable part via the rotation axis. Thereby, even when the support portion is deformed by heat or the like, it can be avoided that the support portion is strongly pressed against the movable portion. Therefore, the rotation of the movable part becomes stable.
 しかし、このような隙間を設けることにより、ミラーの駆動時に、ミラーの回動に伴って可動部が支持部の方向に移動して支持部に衝突するとの問題が生じる。レーザレーダでは、ミラーが高速かつ短周期で回動する。このため、ミラー駆動時には、短周期で支持部に対する可動部の衝突が繰り返される。かかる衝突が繰り返されると、騒音が発生する。
また、アクチュエータに小さな衝撃が繰り返し掛かるため、アクチュエータの特性に劣化が生じる惧れもある。
However, providing such a gap causes a problem that when the mirror is driven, the movable part moves in the direction of the support part and collides with the support part as the mirror rotates. In laser radar, the mirror rotates at a high speed and in a short cycle. For this reason, when the mirror is driven, the collision of the movable part with the support part is repeated in a short cycle. When such a collision is repeated, noise is generated.
In addition, since small impacts are repeatedly applied to the actuator, the actuator characteristics may be deteriorated.
 本発明は、かかる課題に鑑みてなされたものであり、支持部に対する可動部の衝突を抑制でき、もって、円滑な動作を実現可能なミラーアクチュエータおよびこのミラーアクチュエータを搭載したビーム照射装置を提供することを目的とする。  The present invention has been made in view of such a problem, and provides a mirror actuator capable of suppressing the collision of a movable portion with respect to a support portion, and capable of realizing a smooth operation, and a beam irradiation apparatus equipped with the mirror actuator. For the purpose. *
 本発明の第1の態様は、ミラーアクチュエータに関する。第1の態様に係るミラーアクチュエータは、支持部と、ミラーを保持すると共に回動軸を介して前記支持部に回動可能に支持された可動部と、前記支持部と前記可動部とを連結すると共に可撓性を有する弾性部材と、を備える。前記可動部は、前記回動軸に平行な方向に変位可能に前記支持部に支持される。ミラーアクチュエータは、前記可動部を前記回動軸に平行な方向に付勢して、前記可動部を前記支持部に当接させる付勢手段をさらに備える。 The first aspect of the present invention relates to a mirror actuator. The mirror actuator which concerns on a 1st aspect connects the support part, the movable part hold | maintained at the said support part via the rotating shaft so that rotation is possible, and the said support part and the said movable part are connected. And an elastic member having flexibility. The movable part is supported by the support part so as to be displaceable in a direction parallel to the rotation axis. The mirror actuator further includes urging means for urging the movable part in a direction parallel to the rotation axis and causing the movable part to abut against the support part.
 本発明の第2の態様はビーム照射装置に関する。第2の態様に係るビーム照射装置は上記第1の態様に係るミラーアクチュエータと、前記ミラーアクチュエータのミラーにレーザ光を供給するレーザ光源と、を備える。 The second aspect of the present invention relates to a beam irradiation apparatus. A beam irradiation apparatus according to a second aspect includes the mirror actuator according to the first aspect, and a laser light source that supplies laser light to a mirror of the mirror actuator.
 本発明によれば、支持部に対する可動部の衝突を抑制でき、もって、円滑な動作を実現可能なミラーアクチュエータおよびこのミラーアクチュエータを搭載したビーム照射装置を提供することができる。 According to the present invention, it is possible to provide a mirror actuator that can suppress the collision of the movable part with the support part and can realize a smooth operation, and a beam irradiation apparatus equipped with this mirror actuator.
 本発明の効果ないし意義は、以下に示す実施の形態の説明により更に明らかとなろう。ただし、以下に示す実施の形態は、あくまでも、本発明を実施化する際の一つの例示であって、本発明は、以下の実施の形態に記載されたものに何ら制限されるものではない。 The effect or significance of the present invention will become more apparent from the following description of embodiments. However, the embodiment described below is merely an example when the present invention is implemented, and the present invention is not limited to what is described in the following embodiment.
実施の形態に係るミラーアクチュエータの分解斜視図を示す図である。It is a figure which shows the disassembled perspective view of the mirror actuator which concerns on embodiment. 実施の形態に係るミラーアクチュエータの組立過程を示す図である。It is a figure which shows the assembly process of the mirror actuator which concerns on embodiment. 実施の形態に係るミラーアクチュエータの組立過程を示す図である。It is a figure which shows the assembly process of the mirror actuator which concerns on embodiment. 実施の形態に係るミラーアクチュエータの組立過程を示す図である。It is a figure which shows the assembly process of the mirror actuator which concerns on embodiment. 実施の形態に係るミラーアクチュエータの組立過程を示す図である。It is a figure which shows the assembly process of the mirror actuator which concerns on embodiment. 実施の形態に係るミラーアクチュエータの組立過程を示す図である。It is a figure which shows the assembly process of the mirror actuator which concerns on embodiment. 実施の形態に係るミラーアクチュエータの回動時の作用を示す図である。It is a figure which shows the effect | action at the time of rotation of the mirror actuator which concerns on embodiment. 実施の形態に係るミラーアクチュエータの給電方法を示す図である。It is a figure which shows the electric power feeding method of the mirror actuator which concerns on embodiment. 実施の形態に係るミラーアクチュエータに磁性体を取り付けた状態を示す図である。It is a figure which shows the state which attached the magnetic body to the mirror actuator which concerns on embodiment. 実施の形態に係るミラーユニットフレームの寸法を説明する図である。It is a figure explaining the dimension of the mirror unit frame which concerns on embodiment. 実施の形態に係るミラーアクチュエータの磁石と磁性体の作用関係を説明する図である。It is a figure explaining the action | operation relationship of the magnet and magnetic body of the mirror actuator which concerns on embodiment. 実施の形態に係るビーム照射装置の構成を示す図である。It is a figure which shows the structure of the beam irradiation apparatus which concerns on embodiment. 実施の形態に係るサーボ光学系の構成および作用を説明する図である。It is a figure explaining the structure and effect | action of the servo optical system which concerns on embodiment. 実施の形態に係るレーザレーダの回路構成を示す図である。It is a figure which shows the circuit structure of the laser radar which concerns on embodiment.
 図1は、本実施の形態に係るミラーアクチュエータ1の分解斜視図を示す図である。ミラーアクチュエータ1は、ミラーユニット10と、マグネットユニット20と、サーボユニット30を備えている。 FIG. 1 is an exploded perspective view of a mirror actuator 1 according to the present embodiment. The mirror actuator 1 includes a mirror unit 10, a magnet unit 20, and a servo unit 30.
 図2(a)を参照して、ミラーユニット10は、ミラーユニットフレーム11と、パンコイル装着板12、13と、サスペンションワイヤー固定基板14a、14b、15と、サスペンションワイヤー16a~16dと、支軸17と、LED18と、ミラー19とを備えている。 Referring to FIG. 2A, the mirror unit 10 includes a mirror unit frame 11, pan coil mounting plates 12 and 13, suspension wire fixing substrates 14a, 14b and 15, suspension wires 16a to 16d, and a support shaft 17. And an LED 18 and a mirror 19.
 ミラーユニットフレーム11は、正面視において長方形の輪郭の枠部材からなっている。ミラーユニットフレーム11には、左右の側面にそれぞれ2つのチルトコイル装着部11aが設けられている。各側面のチルトコイル装着部11aは、各側面の中心から上下方向に対称な位置に配置されている。これら4つのチルトコイル装着部11aには、それぞれ、チルトコイル11bが巻回され固着される。 The mirror unit frame 11 is made of a frame member having a rectangular outline when viewed from the front. The mirror unit frame 11 is provided with two tilt coil mounting portions 11a on the left and right side surfaces, respectively. The tilt coil mounting portion 11a on each side surface is disposed at a position symmetrical in the vertical direction from the center of each side surface. A tilt coil 11b is wound and fixed to each of the four tilt coil mounting portions 11a.
 また、ミラーユニットフレーム11には、左右に並ぶ軸孔11cと、上下に並ぶ溝11eが形成されている。軸孔11cは、左右の側面の中心位置に配置され、溝11eは上下の側面の中心位置まで延びている。軸孔11cには、それぞれ、左右から軸受け11dが取り付けられる。 Also, the mirror unit frame 11 is formed with shaft holes 11c arranged on the left and right and grooves 11e arranged on the top and bottom. The shaft hole 11c is disposed at the center position of the left and right side surfaces, and the groove 11e extends to the center position of the upper and lower side surfaces. A bearing 11d is attached to each of the shaft holes 11c from the left and right.
 ミラーユニットフレーム11の左右の内側面には、それぞれ、軸孔11cの上下の位置に開口11jが形成されている。これら4つの開口11jは、それぞれ、内側面からチルトコイル装着部11aを貫通している。 Openings 11j are formed in the upper and lower positions of the shaft hole 11c on the left and right inner surfaces of the mirror unit frame 11, respectively. Each of these four openings 11j penetrates the tilt coil mounting portion 11a from the inner surface.
 なお、ミラーユニットフレーム11の左内側側面には、磁性体40が取り付けられる。磁性体40の構成については、追って、図9を参照して説明する。 A magnetic body 40 is attached to the left inner side surface of the mirror unit frame 11. The configuration of the magnetic body 40 will be described later with reference to FIG.
 ミラーユニットフレーム11の底面は、櫛歯状となっており、サスペンションワイヤー16a、16bを通すための2つのワイヤー孔11fと、サスペンションワイヤー16c、16dを通すための2つのワイヤー孔11gと、後述するサスペンションワイヤー26a~26cを通すための3つのワイヤー孔11hと、サスペンションワイヤー26d~26fを通すための3つのワイヤー孔11iが形成されている。なお、ワイヤー孔11h、11iは、サスペンションワイヤー26a~26fを斜め後方向に傾けて固定するために、サスペンションワイヤー26a~26fの径よりもやや大きく形成されている。これにより、サスペンションワイヤー26a~26fを、ミラー19から離れる方向に曲線状に張ることができる。 The bottom surface of the mirror unit frame 11 has a comb-like shape, two wire holes 11f for passing the suspension wires 16a and 16b, two wire holes 11g for passing the suspension wires 16c and 16d, and will be described later. Three wire holes 11h for passing the suspension wires 26a to 26c and three wire holes 11i for passing the suspension wires 26d to 26f are formed. The wire holes 11h and 11i are formed to be slightly larger than the diameters of the suspension wires 26a to 26f in order to fix the suspension wires 26a to 26f by being inclined obliquely backward. As a result, the suspension wires 26a to 26f can be curved in a direction away from the mirror 19.
 パンコイル装着板12には、2つのパンコイル装着部12aと、サスペンションワイヤー16a、16bを通すための2つのワイヤー孔12cと、サスペンションワイヤー16c、16dを通すための2つのワイヤー孔12dと、支軸17を通すための軸孔12eが設けられている。ワイヤー孔12cは、ワイヤー孔11fと上下方向に直線状に並ぶように形成されており、ワイヤー孔12dは、ワイヤー孔11gと上下方向に直線状に並ぶように形成されている。2つのパンコイル装着部12aには、それぞれ、2つのパンコイル12bが巻回され固着される。また、パンコイル装着板13には、2つのパンコイル装着部13aと支軸17を通すための軸孔13cが設けられている。パンコイル装着部13aには、2つのパンコイル13bが巻回され固着される。 The pan coil mounting plate 12 has two pan coil mounting portions 12a, two wire holes 12c for passing the suspension wires 16a and 16b, two wire holes 12d for passing the suspension wires 16c and 16d, and the support shaft 17 A shaft hole 12e is provided for passing through. The wire hole 12c is formed so as to be linearly aligned with the wire hole 11f in the vertical direction, and the wire hole 12d is formed so as to be linearly aligned with the wire hole 11g in the vertical direction. Two pan coils 12b are wound and fixed to the two pan coil mounting portions 12a, respectively. Further, the pan coil mounting plate 13 is provided with a shaft hole 13c through which the two pan coil mounting portions 13a and the support shaft 17 are passed. Two pan coils 13b are wound and fixed to the pan coil mounting portion 13a.
 サスペンションワイヤー固定基板14a、14bには、それぞれ、サスペンションワイヤー16a、16bを通すための2つの端子穴14cと、サスペンションワイヤー16c、16dを通すための2つの端子穴14dが形成されている(図2(b)参照)。端子穴14c、14dの位置において、後述のように、パンコイル12b、13bと、LED18に電流を供給するための導線が、サスペンションワイヤー16a~16dに半田等で電気的に接続される。サスペンションワイヤー固定基板14a、14bは、2つの端子穴14c、14dとワイヤー孔12c、12dが整合するように、パンコイル装着板12に接着して固定される。 The suspension wire fixing substrates 14a and 14b are respectively formed with two terminal holes 14c for passing the suspension wires 16a and 16b and two terminal holes 14d for passing the suspension wires 16c and 16d (FIG. 2). (See (b)). At the positions of the terminal holes 14c and 14d, as will be described later, the pan coils 12b and 13b and the lead wires for supplying current to the LED 18 are electrically connected to the suspension wires 16a to 16d with solder or the like. The suspension wire fixing substrates 14a and 14b are fixedly bonded to the pan coil mounting plate 12 so that the two terminal holes 14c and 14d and the wire holes 12c and 12d are aligned.
 サスペンションワイヤー固定基板15には、サスペンションワイヤー16a、16bを通すための2つの端子穴15aと、サスペンションワイヤー16c、16dを通すための2つの端子穴15bと、サスペンションワイヤー26a~26cを通すための3つの端子穴15cと、サスペンションワイヤー26d~26f(図1参照)を通すため3つの端子穴15dが形成されている。なお、3つの端子穴15c、15dは、ワイヤー孔11h、11iと同様に、サスペンションワイヤー26a~26fを曲線状に張るために、サスペンションワイヤー26a~26fの径よりもやや大きく形成されている。 The suspension wire fixing substrate 15 has two terminal holes 15a for passing the suspension wires 16a and 16b, two terminal holes 15b for passing the suspension wires 16c and 16d, and 3 for passing the suspension wires 26a to 26c. Three terminal holes 15d and three terminal holes 15d are formed to allow the suspension wires 26d to 26f (see FIG. 1) to pass therethrough. The three terminal holes 15c and 15d are formed to be slightly larger than the diameters of the suspension wires 26a to 26f in order to stretch the suspension wires 26a to 26f in a curved shape, similarly to the wire holes 11h and 11i.
 図2(c)を参照して、サスペンションワイヤー固定基板15には、2つの端子穴15aと3つの端子穴15cのうちの2つとを電気的に接続する回路パターンP1、P2が形成されている。また、サスペンションワイヤー固定基板15には、2つの端子穴15bと3つの端子穴15dのうちの2つとを電気的に接続する回路パターンP3、P4が形成されている。これらの端子穴と、各端子穴に通されたサスペンションワイヤー16a~16dおよびサスペンションワイヤー26a、26b、26d、26eとを半田付けすることにより、サスペンションワイヤー16a~16dと、サスペンションワイヤー26a、26b、26d、26eとが、上記回路パターンを介して、電気的に接続される。3つの端子穴15cの残り一つと、3つの端子穴15dの残り一つの位置において、後述のように、左右のチルトコイル11bと、サスペンションワイヤー26c、26fとが、半田等で電気的に接続される。 Referring to FIG. 2C, the suspension wire fixing substrate 15 is formed with circuit patterns P1 and P2 that electrically connect the two terminal holes 15a and two of the three terminal holes 15c. . The suspension wire fixing substrate 15 is formed with circuit patterns P3 and P4 that electrically connect the two terminal holes 15b and two of the three terminal holes 15d. By soldering these terminal holes and the suspension wires 16a to 16d and the suspension wires 26a, 26b, 26d, and 26e passed through the terminal holes, the suspension wires 16a to 16d and the suspension wires 26a, 26b, and 26d , 26e are electrically connected to each other through the circuit pattern. At the remaining one of the three terminal holes 15c and the remaining one of the three terminal holes 15d, the left and right tilt coils 11b and the suspension wires 26c and 26f are electrically connected with solder or the like as will be described later. The
 図2(a)に戻り、サスペンションワイヤー固定基板15は、端子穴15aとワイヤー孔11f、端子穴15bとワイヤー孔11g、端子穴15cとワイヤー孔11h、および、端子穴15dとワイヤー孔11iが、それぞれ互いに整合するように、ミラーユニットフレーム11に接着して固定される。 Returning to FIG. 2A, the suspension wire fixing substrate 15 includes a terminal hole 15a and a wire hole 11f, a terminal hole 15b and a wire hole 11g, a terminal hole 15c and a wire hole 11h, and a terminal hole 15d and a wire hole 11i. They are fixed to the mirror unit frame 11 so as to be aligned with each other.
 サスペンションワイヤー16a~16dは、りん青銅、ベリリウム銅等からなり、導電性に優れ、ばね性を有する。サスペンションワイヤー16a~16dは、断面が円形状となっている。サスペンションワイヤー16a~16dは、互いに同じ形状および特性を持ち、後述するように、パンコイル12b、13bとLED18への電流供給と、ミラー19のPan方向の回動時において、安定した負荷を与えるために利用される。 The suspension wires 16a to 16d are made of phosphor bronze, beryllium copper, etc., and have excellent conductivity and spring properties. The suspension wires 16a to 16d have a circular cross section. The suspension wires 16a to 16d have the same shape and characteristics as each other, and as will be described later, to supply a stable load when supplying current to the pan coils 12b and 13b and the LED 18 and rotating the mirror 19 in the Pan direction. Used.
 支軸17には、LED基板固定アーム18bを挿入するための孔17aと、パンコイル13bとLED18を電気的に接続する導線を通すための孔17b、17cと、ミラー19を嵌め込むための段部17dが形成されている。また、支軸17内は、パンコイル13bとLED18を電気的に接続する導線を通すため、空洞となっている。なお、支軸17は、後述するように、ミラー19をPan方向に回動させる回転軸として利用される。 The support shaft 17 has a hole 17a for inserting the LED board fixing arm 18b, holes 17b and 17c for passing a lead wire for electrically connecting the pan coil 13b and the LED 18, and a step portion for fitting the mirror 19. 17d is formed. Further, the inside of the support shaft 17 is hollow in order to pass a conducting wire that electrically connects the pan coil 13b and the LED 18. The support shaft 17 is used as a rotation shaft that rotates the mirror 19 in the Pan direction, as will be described later.
 LED18は、拡散タイプ(広指向タイプ)であり、広い範囲に光を拡散させることができる。LED18からの拡散光は、後述するように、走査用のレーザ光の目標領域内での走査位置を検出するために利用される。LED18は、LED基板18aに取り付けられている。LED基板18aは、LED基板固定アーム18bに接着された後、支軸17の孔17aに取り付けられる。 The LED 18 is a diffusion type (wide directional type) and can diffuse light over a wide range. As will be described later, the diffused light from the LED 18 is used to detect the scanning position within the target region of the scanning laser light. The LED 18 is attached to the LED substrate 18a. The LED substrate 18 a is attached to the hole 17 a of the support shaft 17 after being bonded to the LED substrate fixing arm 18 b.
 ミラーユニット10の組立時には、支軸17にミラー19が嵌め込まれた後、支軸17の両端の軸に軸受け17e、ポリスライダーワッシャ17fが取り付けられる。そして、この状態で、2つの軸受け17eが、ミラーユニットフレーム11に形成された溝11eに嵌め込まれる。さらに、上下からパンコイル装着板12の軸孔12eとパンコイル装着板13の軸孔13cが、支軸17に通され、支軸17に接着固定される。 When the mirror unit 10 is assembled, after the mirror 19 is fitted on the support shaft 17, bearings 17e and polyslider washers 17f are attached to the shafts at both ends of the support shaft 17. In this state, the two bearings 17 e are fitted into the grooves 11 e formed in the mirror unit frame 11. Further, the shaft hole 12e of the pan coil mounting plate 12 and the shaft hole 13c of the pan coil mounting plate 13 are passed through the support shaft 17 from the upper and lower sides, and are bonded and fixed to the support shaft 17.
 その後、サスペンションワイヤー16a、16bが、サスペンションワイヤー固定基板14aの2つの端子穴14cと、2つのワイヤー孔12cと、2つのワイヤー孔11fを介して、サスペンションワイヤー固定基板15の端子穴15aに通される。同様に、サスペンションワイヤー16c、16dが、サスペンションワイヤー固定基板14bの2つの端子穴14dと、2つのワイヤー孔12dと、2つのワイヤー孔11gを介して、サスペンションワイヤー固定基板15の端子穴15bに通される。サスペンションワイヤー16a~16dは、それぞれ、パンコイル12b、13bと、LED18に電流を供給するための導線とともにサスペンションワイヤー固定基板14a、14b、15に半田付けられる。 Thereafter, the suspension wires 16a and 16b are passed through the terminal holes 15a of the suspension wire fixing substrate 15 through the two terminal holes 14c of the suspension wire fixing substrate 14a, the two wire holes 12c, and the two wire holes 11f. The Similarly, the suspension wires 16c and 16d are passed through the terminal holes 15b of the suspension wire fixing substrate 15 through the two terminal holes 14d of the suspension wire fixing substrate 14b, the two wire holes 12d, and the two wire holes 11g. Is done. The suspension wires 16a to 16d are soldered to the suspension wire fixing substrates 14a, 14b, and 15 together with the pan coils 12b and 13b and a conductive wire for supplying current to the LED 18, respectively.
 これにより、図1に示すように、ミラーユニット10の組立が完了する。この状態で、ミラー19は、支軸17の周りにPan方向に回動可能となる。なお、サスペンションワイヤー固定基板14a、14bは、ミラー19のPan方向の回動に伴って、Pan方向に回動する。組み立てられたミラーユニット10は、マグネットユニットフレーム21の開口に収容される。なお、サスペンションワイヤーを用いた電流の供給方法については、別途、図8を参照して、説明する。 This completes the assembly of the mirror unit 10 as shown in FIG. In this state, the mirror 19 can rotate around the support shaft 17 in the Pan direction. The suspension wire fixing substrates 14a and 14b rotate in the Pan direction as the mirror 19 rotates in the Pan direction. The assembled mirror unit 10 is accommodated in the opening of the magnet unit frame 21. A method for supplying current using the suspension wire will be described separately with reference to FIG.
 図1に戻り、マグネットユニット20は、マグネットユニットフレーム21と、8つのパンマグネット22と、8つのチルトマグネット23と、2つの支軸24と、サスペンションワイヤー固定基板25と、サスペンションワイヤー26a~26fと、保護カバー27とを備えているマグネットユニットフレーム21は、正面視において長方形の輪郭の枠部材からなっている。マグネットユニットフレーム21の左右の側面の中央には、支軸24を通すための軸孔21aと、支軸24を固定するためのネジ穴21bが形成されている。マグネットユニットフレーム21の上面には、サスペンションワイヤー固定基板25を固定するための2つのネジ穴21cが形成されている。また、マグネットユニットフレーム21の上下の内側面の前端には、マグネットユニットフレーム21の内側に突出した4つの鍔部が形成され、これら4つの鍔部には、保護カバー27を固定するためのネジ穴21dが形成されている。さらに、マグネットユニットフレーム21の上下の内側面の後端には、マグネットユニットフレーム21の内側に突出した4つの鍔部が形成され、これら4つの鍔部には、サーボユニットフレーム31を固定するためのネジ穴21eが形成されている。 Returning to FIG. 1, the magnet unit 20 includes a magnet unit frame 21, eight pan magnets 22, eight tilt magnets 23, two support shafts 24, a suspension wire fixing substrate 25, and suspension wires 26a to 26f. The magnet unit frame 21 provided with the protective cover 27 is composed of a frame member having a rectangular outline when viewed from the front. A shaft hole 21 a for passing the support shaft 24 and a screw hole 21 b for fixing the support shaft 24 are formed in the center of the left and right side surfaces of the magnet unit frame 21. Two screw holes 21 c for fixing the suspension wire fixing substrate 25 are formed on the upper surface of the magnet unit frame 21. In addition, at the front ends of the upper and lower inner side surfaces of the magnet unit frame 21, four flange portions protruding inside the magnet unit frame 21 are formed, and screws for fixing the protective cover 27 are formed on these four flange portions. A hole 21d is formed. Furthermore, at the rear end of the upper and lower inner side surfaces of the magnet unit frame 21, four flanges projecting inside the magnet unit frame 21 are formed, and the servo unit frame 31 is fixed to these four flanges. The screw hole 21e is formed.
 図3は、マグネットユニットフレーム21を後側から見た斜視図である。図3を参照して、8つのパンマグネット22がマグネットユニットフレーム21の上下の内側面に取り付けられる。さらに、8つのチルトマグネット23がマグネットユニットフレーム21の左右の内側面に取り付けられる。 FIG. 3 is a perspective view of the magnet unit frame 21 as seen from the rear side. Referring to FIG. 3, eight pan magnets 22 are attached to the upper and lower inner surfaces of magnet unit frame 21. Further, eight tilt magnets 23 are attached to the left and right inner surfaces of the magnet unit frame 21.
 図1に戻り、2つの支軸24の根本には、それぞれ、円柱状の台座24dが形成されている。台座24dに続く板状の部分に2つのネジ孔24bが形成されている。2つの支軸24は、ポリスライダーワッシャ24aが取り付けられた状態で、マグネットユニットフレーム21に形成された軸孔21aを介して、ミラーユニットフレーム11の軸受け11dに嵌め込まれる。このとき、ポリスライダーワッシャ24aと、支軸24の根元に形成された円柱状の台座24dが、軸孔21aに挿入される。この状態で、2つのネジ孔24bを介して2つのネジ24cがマグネットユニットフレーム21の2つのネジ穴21bに螺着される。これにより、2つの支軸24がマグネットユニットフレーム21に固着される。なお、支軸24は、後述するように、ミラー19をTilt方向に回動させる回転軸とし
て利用される。
Returning to FIG. 1, cylindrical bases 24 d are respectively formed at the roots of the two support shafts 24. Two screw holes 24b are formed in a plate-like portion following the base 24d. The two support shafts 24 are fitted into the bearings 11d of the mirror unit frame 11 through the shaft holes 21a formed in the magnet unit frame 21 with the poly slider washer 24a attached. At this time, the polyslider washer 24a and the columnar pedestal 24d formed at the base of the support shaft 24 are inserted into the shaft hole 21a. In this state, the two screws 24c are screwed into the two screw holes 21b of the magnet unit frame 21 through the two screw holes 24b. Thereby, the two support shafts 24 are fixed to the magnet unit frame 21. The support shaft 24 is used as a rotation shaft that rotates the mirror 19 in the tilt direction, as will be described later.
 サスペンションワイヤー固定基板25には、2つのネジ孔25aと、サスペンションワイヤー26a~26fを通すための3つの端子穴25c、25dが形成されている。なお、3つの端子穴25c、25dは、サスペンションワイヤー26a~26fを曲線状に張るために、サスペンションワイヤー26a~26fの径よりもやや大きく形成されている。サスペンションワイヤー固定基板25には、端子穴25c、25dに信号を供給するための回路パターンが形成されている。 The suspension wire fixing substrate 25 is formed with two screw holes 25a and three terminal holes 25c and 25d for passing the suspension wires 26a to 26f. The three terminal holes 25c and 25d are formed slightly larger than the diameter of the suspension wires 26a to 26f in order to stretch the suspension wires 26a to 26f in a curved shape. The suspension wire fixing substrate 25 is formed with a circuit pattern for supplying signals to the terminal holes 25c and 25d.
 サスペンションワイヤー26a~26fは、りん青銅、ベリリウム銅等からなり、導電性に優れ、ばね性を有する。サスペンションワイヤー26a~26fは、断面が円形状となっている。サスペンションワイヤー26a~26fは、互いに同じ形状および特性を持ち、後述するように、チルトコイル11bとパンコイル12b、13bとLED18への電流供給と、ミラー19のTilt方向の回動時において、安定した負荷を与えるために利用される。 The suspension wires 26a to 26f are made of phosphor bronze, beryllium copper, etc., and have excellent conductivity and spring properties. The suspension wires 26a to 26f have a circular cross section. The suspension wires 26a to 26f have the same shape and characteristics as each other. As will be described later, the suspension wires 26a to 26f have a stable load when the current is supplied to the tilt coil 11b, the pan coils 12b and 13b and the LED 18, and the mirror 19 is rotated in the tilt direction. Used to give
 マグネットユニット20の組立時には、サスペンションワイヤー固定基板25が、マグネットユニットフレーム21の上面に取り付けられる。この状態で、2つのネジ孔25aを介して、2つのネジ25bを2つのネジ穴21cに螺着する。これにより、サスペンションワイヤー固定基板25がマグネットユニットフレーム21に固着される。 When the magnet unit 20 is assembled, the suspension wire fixing substrate 25 is attached to the upper surface of the magnet unit frame 21. In this state, the two screws 25b are screwed into the two screw holes 21c through the two screw holes 25a. Thereby, the suspension wire fixing substrate 25 is fixed to the magnet unit frame 21.
 その後、サスペンションワイヤー26a~26cが、サスペンションワイヤー固定基板25の3つの端子穴25cと、ミラーユニットフレーム11の3つのワイヤー孔11hを介して、サスペンションワイヤー固定基板15の端子穴15c(図2(a)参照)に通される。同様に、サスペンションワイヤー26d~26fが、サスペンションワイヤー固定基板25の3つの端子穴25dと、ミラーユニットフレーム11の3つのワイヤー孔11iを介して、サスペンションワイヤー固定基板15の3つの端子穴15d(図2(a)参照)に通される。 Thereafter, the suspension wires 26a to 26c are connected to the terminal holes 15c of the suspension wire fixing substrate 15 through the three terminal holes 25c of the suspension wire fixing substrate 25 and the three wire holes 11h of the mirror unit frame 11 (FIG. ))). Similarly, the suspension wires 26d to 26f are connected to the three terminal holes 15d of the suspension wire fixing substrate 15 via the three terminal holes 25d of the suspension wire fixing substrate 25 and the three wire holes 11i of the mirror unit frame 11. 2 (a)).
 しかる後、サスペンションワイヤー26a~26fは、それぞれ、チルトコイル11bと、パンコイル12b、13bと、LED18に電流を供給するための導線とともに、サスペンションワイヤー固定基板15、25に半田付けられる。なお、サスペンションワイヤー26a~26fは、ミラー19から離れる方向に曲線状に張られる。すなわち、サスペンションワイヤー26a~26fの上端部は、端子穴25c、25dから離れるに従って後ろ方向に傾くように端子穴25c、25dに固定される。また、サスペンションワイヤー26a~26fの下端部は、ワイヤー孔11h、11iおよび端子穴15b、15cから離れるに従って後ろ方向に傾くようにワイヤー孔11h、11iおよび端子穴15b、15c固定される。これにより、図4に示す構成体が完成する。この状態で、ミラーユニットフレーム11は、支軸24の周りにTilt方向に回動可能となる。なお、サスペンションワイヤー固定基板15は、ミラーユニットフレーム11のTilt方向の回動に伴って、Tilt方向に回動する。 Thereafter, the suspension wires 26a to 26f are soldered to the suspension wire fixing substrates 15 and 25 together with the tilt coil 11b, the pan coils 12b and 13b, and the lead wires for supplying current to the LED 18, respectively. The suspension wires 26a to 26f are stretched in a curved shape in a direction away from the mirror 19. That is, the upper ends of the suspension wires 26a to 26f are fixed to the terminal holes 25c and 25d so as to be inclined backward as they are separated from the terminal holes 25c and 25d. Further, the lower ends of the suspension wires 26a to 26f are fixed to the wire holes 11h, 11i and the terminal holes 15b, 15c so as to incline backward as they are separated from the wire holes 11h, 11i and the terminal holes 15b, 15c. Thereby, the structure shown in FIG. 4 is completed. In this state, the mirror unit frame 11 can be rotated in the tilt direction around the support shaft 24. The suspension wire fixing substrate 15 rotates in the tilt direction as the mirror unit frame 11 rotates in the tilt direction.
 図4は、ミラーユニット10がマグネットユニット20に取り付けられた状態の構成体の斜視図である。図4(a)は、この構成体を図1の前方向から見た斜視図であり、図4(b)は、この構成体を図1の後方向から見た斜視図である。 FIG. 4 is a perspective view of the structure in a state where the mirror unit 10 is attached to the magnet unit 20. FIG. 4A is a perspective view of the structure viewed from the front direction of FIG. 1, and FIG. 4B is a perspective view of the structure viewed from the rear direction of FIG.
 図4(b)を参照して、サスペンションワイヤー16aの両端は、それぞれ、2つの端子穴14cの内側の1つと、2つの端子穴15aの内側の1つに接続されている。同様に、サスペンションワイヤー16cの両端は、2つの端子穴14dの内側の1つと、2つの端子穴15bの内側の1つに接続されている。 Referring to FIG. 4 (b), both ends of suspension wire 16a are connected to one inside two terminal holes 14c and one inside two terminal holes 15a, respectively. Similarly, both ends of the suspension wire 16c are connected to one inside the two terminal holes 14d and one inside the two terminal holes 15b.
 サスペンションワイヤー16bの両端は、2つの端子穴14cの外側の1つと、2つの端子穴15aの外側の1つに接続されている。同様に、サスペンションワイヤー16dの両端は、2つの端子穴14dの外側の1つと、2つの端子穴15bの外側の1つに接続されている。 Both ends of the suspension wire 16b are connected to one outside the two terminal holes 14c and one outside the two terminal holes 15a. Similarly, both ends of the suspension wire 16d are connected to one outside the two terminal holes 14d and one outside the two terminal holes 15b.
 サスペンションワイヤー26aの両端は、3つの端子穴25cの内側の1つと、3つの端子穴15cの内側の1つに接続されている。同様に、サスペンションワイヤー26dの両端は、3つの端子穴25dの内側の1つと、3つの端子穴15dの内側の1つに接続されている。 Both ends of the suspension wire 26a are connected to one inside the three terminal holes 25c and one inside the three terminal holes 15c. Similarly, both ends of the suspension wire 26d are connected to one inside the three terminal holes 25d and one inside the three terminal holes 15d.
 サスペンションワイヤー26bの両端は、3つの端子穴25cの中央の1つと、3つの端子穴15cの中央の1つに接続されている。同様に、サスペンションワイヤー26eの両端は、3つの端子穴25dの中央の1つと、3つの端子穴15dの中央の1つに接続されている。 Both ends of the suspension wire 26b are connected to one center of the three terminal holes 25c and one center of the three terminal holes 15c. Similarly, both ends of the suspension wire 26e are connected to one center of the three terminal holes 25d and one center of the three terminal holes 15d.
 サスペンションワイヤー26cの両端は、3つの端子穴25cの外側の1つと、3つの端子穴15cの外側の1つと接続されている。同様に、サスペンションワイヤー26fの両端は、3つの端子穴25dの外側の1つと、3つの端子穴15dの外側の1つに接続されている。 Both ends of the suspension wire 26c are connected to one outside of the three terminal holes 25c and one outside of the three terminal holes 15c. Similarly, both ends of the suspension wire 26f are connected to one outside of the three terminal holes 25d and one outside of the three terminal holes 15d.
 なお、図4(a)において、25eは、端子である。端子25eを介して、ミラー19をPan方向とチルト方向に駆動するための駆動信号と、LED18を点灯するための駆動信号が供給される。各端子25eは、それぞれ、端子穴25c、25dの何れかと、サスペンションワイヤー固定基板25上の回路パターンを介して接続されている。 In FIG. 4A, 25e is a terminal. A drive signal for driving the mirror 19 in the Pan direction and the tilt direction and a drive signal for lighting the LED 18 are supplied via the terminal 25e. Each terminal 25e is connected to one of the terminal holes 25c, 25d via a circuit pattern on the suspension wire fixing substrate 25, respectively.
 図1に戻り、サーボユニット30は、サーボユニットフレーム31と、ピンホール取り付け金具32と、ピンホール板33と、PSD基板34と、PSD35とを備えている。 1, the servo unit 30 includes a servo unit frame 31, a pinhole mounting bracket 32, a pinhole plate 33, a PSD substrate 34, and a PSD 35.
 サーボユニットフレーム31は、正面視において長方形の輪郭の枠部材からなっている。サーボユニットフレーム31の左右の側面には、ピンホール取り付け金具32を固定するための2つのネジ孔31aが形成されている。また、サーボユニットフレーム31の上下の内側面の前端には、サーボユニットフレーム31の内側に突出した4つの鍔部が形成され、これら4つの鍔部には、それぞれ、ネジ孔31cが形成されている。さらに、サーボユニットフレーム31の左右の内側面の後端には、サーボユニットフレーム31の内側に突出した4つの鍔部が形成され、これら4つの鍔部には、それぞれ、ネジ穴31eが形成されている。 The servo unit frame 31 is made of a frame member having a rectangular outline when viewed from the front. Two screw holes 31 a for fixing the pinhole mounting bracket 32 are formed on the left and right side surfaces of the servo unit frame 31. The front end of the upper and lower inner surfaces of the servo unit frame 31 is formed with four flanges protruding inside the servo unit frame 31, and the four flanges are respectively formed with screw holes 31c. Yes. Further, at the rear ends of the left and right inner surfaces of the servo unit frame 31, four flanges projecting inward of the servo unit frame 31 are formed, and screw holes 31e are respectively formed on these four flanges. ing.
 ピンホール取り付け金具32の左右の側面には、2つのネジ穴32aが形成されている。また、ピンホール取り付け金具32の背面には、ピンホール板33を固定するための2つのネジ穴32bと、LED18から出射されたサーボ光をピンホール33aを介してPSD35に導くための開口32cが形成されている。 Two screw holes 32 a are formed on the left and right side surfaces of the pinhole mounting bracket 32. In addition, two screw holes 32b for fixing the pinhole plate 33 and an opening 32c for guiding the servo light emitted from the LED 18 to the PSD 35 through the pinhole 33a are provided on the back surface of the pinhole mounting bracket 32. Is formed.
 ピンホール板33には、ピンホール33aと、2つのネジ孔33bが形成されている。ピンホール33aは、LED18から出射された拡散光のうち、一部の光を通過させる。 The pinhole plate 33 is formed with a pinhole 33a and two screw holes 33b. The pinhole 33a allows a part of the diffused light emitted from the LED 18 to pass through.
 PSD基板34には、PSD基板34をサーボユニットフレーム31に固定するための4つのネジ孔34aが形成されている。PSD基板34には、PSD35が装着されている。PSD35は、サーボ光の受光位置に応じた信号を出力する。 The PSD board 34 is formed with four screw holes 34 a for fixing the PSD board 34 to the servo unit frame 31. A PSD 35 is mounted on the PSD substrate 34. The PSD 35 outputs a signal corresponding to the light receiving position of the servo light.
 サーボユニット30の組立時には、ピンホール板33が、ピンホール取り付け金具32の背面に当てられる。この状態で、2つのネジ孔33bを介して2つのネジ33cを2つのネジ穴32bに螺着する。これにより、ピンホール板33がピンホール取り付け金具32に固着される。 When the servo unit 30 is assembled, the pinhole plate 33 is applied to the back surface of the pinhole mounting bracket 32. In this state, the two screws 33c are screwed into the two screw holes 32b through the two screw holes 33b. As a result, the pinhole plate 33 is fixed to the pinhole mounting bracket 32.
 次に、ピンホール取り付け金具32が、サーボユニットフレーム31内に収容される。この状態で、4つのネジ孔31aと4つのネジ穴32aとが合わされ、左右から4つのネジ31bをそれぞれネジ孔31aとネジ穴32aに螺着する。これにより、ピンホール取り付け金具32が、サーボユニットフレーム31に固着される。 Next, the pinhole mounting bracket 32 is accommodated in the servo unit frame 31. In this state, the four screw holes 31a and the four screw holes 32a are combined, and the four screws 31b from the left and right are respectively screwed into the screw holes 31a and the screw holes 32a. As a result, the pinhole mounting bracket 32 is fixed to the servo unit frame 31.
 さらに、PSD基板34が、サーボユニットフレーム31の背部に当てられる。この状態で、4つのネジ孔34aを介して4つのネジ34bを4つのネジ穴31eに螺着する。これにより、PSD基板34が、サーボユニットフレーム31に固着される。こうして、図5に示すサーボユニット30が完成する。図5(a)は、組み立てられたサーボユニット30を前方から見た斜視図、図5(b)は、組み立てられたサーボユニット30を後方から見た斜視図である。 Furthermore, the PSD substrate 34 is applied to the back of the servo unit frame 31. In this state, the four screws 34b are screwed into the four screw holes 31e through the four screw holes 34a. As a result, the PSD substrate 34 is fixed to the servo unit frame 31. Thus, the servo unit 30 shown in FIG. 5 is completed. 5A is a perspective view of the assembled servo unit 30 as viewed from the front, and FIG. 5B is a perspective view of the assembled servo unit 30 as viewed from the rear.
 こうしてサーボユニット30が組み立てられた後、サーボユニット30が、図4に示す構成体の背部に当てられる。この状態で、サーボユニットフレーム31の4つのネジ孔31cを介して、後方から4つのネジ31dをマグネットユニットフレーム21の4つのネジ穴21eに螺着する。これにより、サーボユニット30が図4に示す構成体に固着される。こうして、図6に示すように、ミラーアクチュエータ1の組立が完了する。図6(a)は、ミラーアクチュエータ1を前方から見た斜視図、図6(b)は、ミラーアクチュエータ1を後方から見た斜視図である。 After the servo unit 30 is assembled in this way, the servo unit 30 is applied to the back of the structure shown in FIG. In this state, the four screws 31 d are screwed into the four screw holes 21 e of the magnet unit frame 21 from the rear through the four screw holes 31 c of the servo unit frame 31. Thereby, the servo unit 30 is fixed to the structure shown in FIG. Thus, the assembly of the mirror actuator 1 is completed as shown in FIG. 6A is a perspective view of the mirror actuator 1 viewed from the front, and FIG. 6B is a perspective view of the mirror actuator 1 viewed from the rear.
 図7は、ミラー19の回動時における力作用の関係を示す図である。なお、図7では、便宜上、パンコイル装着板12と、サスペンションワイヤー固定基板14a、14bと、サスペンションワイヤー固定基板15と、サスペンションワイヤー固定基板25と、ミラーユニットフレーム11と、支軸17と、支軸24と、ミラー19と、サスペンションワイヤー16a~16dと、サスペンションワイヤー26a~26fのみが図示されている。 FIG. 7 is a diagram showing the relationship of force action when the mirror 19 rotates. In FIG. 7, for the sake of convenience, the pan coil mounting plate 12, the suspension wire fixing substrates 14a and 14b, the suspension wire fixing substrate 15, the suspension wire fixing substrate 25, the mirror unit frame 11, the support shaft 17, and the support shaft are shown. Only the mirror 24, the mirror 19, the suspension wires 16a to 16d, and the suspension wires 26a to 26f are shown.
 図7(a)は、ミラーアクチュエータ1の初期状態を示す図である。ミラー19は、チルトコイル11b、パンコイル12b、13bに電流の印加がされてないとき、ミラー19のミラー面が図1の前後方向に垂直となる位置に位置づけられるよう構成されている。この状態のミラー19の位置を、以下、「中立位置」という。なお、サスペンションワイヤー26a~26fは、ミラーユニットフレーム11のTilt方向の回動に必要な余裕を持たせるために、ミラー19から離れる方向に曲線状となるように張られている。この状態において、サスペンションワイヤー16a~16dとサスペンションワイヤー26a~26fから可動部に力が付加されず、このため、ミラー19に対する回動力は発生していない。 FIG. 7A shows an initial state of the mirror actuator 1. The mirror 19 is configured such that when no current is applied to the tilt coil 11b and the pan coils 12b and 13b, the mirror surface of the mirror 19 is positioned at a position perpendicular to the front-rear direction in FIG. Hereinafter, the position of the mirror 19 in this state is referred to as a “neutral position”. The suspension wires 26a to 26f are stretched so as to have a curved shape in a direction away from the mirror 19 in order to provide a margin necessary for the rotation of the mirror unit frame 11 in the tilt direction. In this state, no force is applied to the movable part from the suspension wires 16a to 16d and the suspension wires 26a to 26f, so that no rotational force is generated with respect to the mirror 19.
 図7(b)は、ミラーアクチュエータ1をPan方向に駆動させたときの状態を示す図である。8つのパンマグネット22(図3参照)は、パンコイル12b、13b(図2(a)参照)に電流を印加することにより、パンコイル装着板12、13に支軸17を軸とする回動力が生じるよう、配置および極性が調整されている。したがって、パンコイル12b、13bに電流を印加すると、パンコイル12b、13bに生じる電磁駆動力によってパンコイル装着板12、13とともに支軸17が回動し、これにより、ミラー19が、支軸17を軸として回動する。支軸17を軸とするミラー19の回動方向をPan方向という。 FIG. 7B is a diagram showing a state when the mirror actuator 1 is driven in the Pan direction. The eight pan magnets 22 (see FIG. 3) apply a current to the pan coils 12b and 13b (see FIG. 2 (a)), thereby generating rotational power about the support shaft 17 on the pan coil mounting plates 12 and 13. So the arrangement and polarity are adjusted. Therefore, when a current is applied to the pan coils 12b and 13b, the support shaft 17 is rotated together with the pan coil mounting plates 12 and 13 by the electromagnetic driving force generated in the pan coils 12b and 13b, so that the mirror 19 is rotated about the support shaft 17 as an axis. Rotate. The rotation direction of the mirror 19 about the support shaft 17 is referred to as the Pan direction.
 ミラー19が支軸17を軸として回動すると、これに伴って、パンコイル装着板13に装着されたサスペンションワイヤー固定基板14a、14bが一体的に回動する。一方、サスペンションワイヤー固定基板15は、ミラーユニットフレーム11に固定されており、図7(a)の状態のままである。これにより、サスペンションワイヤー16a、16bと、サスペンションワイヤー16c、16dは、それぞれ、長手方向に引っ張られながら、支軸17を中心として、ねじれの位置に位置づけられる。したがって、サスペンションワイヤー16a~16dのばね性により、支軸17を中心とした、ミラー19のPan方向の回動方向と逆向きのモーメントが発生する。このモーメントは、サスペンションワイヤー16a~16dのばね定数と支軸17を中心としたミラー19の回動位置とによって算出可能な所定の値となる。このように、ミラー19がPan方向に回動した状態では、常に逆向きのモーメントが発生するため、パンコイル12b、13bへの電流の印加を中止すると、ミラー19は、図7(a)に示す中立位置に戻される。 When the mirror 19 is rotated about the support shaft 17, the suspension wire fixing substrates 14a and 14b mounted on the pan coil mounting plate 13 are rotated integrally therewith. On the other hand, the suspension wire fixing substrate 15 is fixed to the mirror unit frame 11 and remains in the state shown in FIG. As a result, the suspension wires 16a and 16b and the suspension wires 16c and 16d are each positioned at a twisted position about the support shaft 17 while being pulled in the longitudinal direction. Therefore, due to the spring properties of the suspension wires 16a to 16d, a moment in the direction opposite to the rotation direction of the mirror 19 around the support shaft 17 is generated. This moment is a predetermined value that can be calculated by the spring constants of the suspension wires 16a to 16d and the rotational position of the mirror 19 about the support shaft 17. Thus, when the mirror 19 is rotated in the Pan direction, a moment in the opposite direction is always generated. Therefore, when the application of current to the pan coils 12b and 13b is stopped, the mirror 19 is shown in FIG. Returned to neutral position.
 図7(c)は、ミラーアクチュエータ1をTilt方向に駆動させたときの状態を示す図である。8つのチルトマグネット23(図3参照)は、チルトコイル11b(図2(a)参照)に電流を印加することにより、ミラーユニットフレーム11に支軸24を軸とする回動力が生じるよう、配置および極性が調整されている。したがって、チルトコイル11bに電流を印加すると、チルトコイル11bに生じる電磁駆動力によって、ミラーユニットフレーム11が、支軸24を軸として回動し、ミラーユニットフレーム11と一体的にミラー19が回動する。支軸24を軸とするミラー19の回動方向をTilt方向という。 FIG. 7C is a diagram showing a state when the mirror actuator 1 is driven in the tilt direction. The eight tilt magnets 23 (see FIG. 3) are arranged so that turning force about the support shaft 24 is generated in the mirror unit frame 11 by applying a current to the tilt coil 11b (see FIG. 2A). And the polarity is adjusted. Therefore, when a current is applied to the tilt coil 11b, the mirror unit frame 11 rotates about the support shaft 24 by the electromagnetic driving force generated in the tilt coil 11b, and the mirror 19 rotates integrally with the mirror unit frame 11. To do. The rotation direction of the mirror 19 around the support shaft 24 is referred to as a tilt direction.
 ミラーユニットフレーム11が支軸24を軸として回動すると、これに伴って、ミラーユニットフレーム11に装着されたサスペンションワイヤー固定基板14a、14bと、サスペンションワイヤー固定基板15が一体的に回動する。一方、サスペンションワイヤー固定基板25は、マグネットユニットフレーム21に固定されており、図7(a)の状態のままである。これにより、サスペンションワイヤー26a~26fは、図7(a)の状態から変形し、図7(a)の状態に復元する復元力がサスペンションワイヤー26a~26fに生じる。したがって、この復元力により、支軸24を中心とした、ミラーユニットフレーム11のTilt方向の回動方向と逆向きのモーメントが発生する。このモーメントは、サスペンションワイヤー26a~26fのばね定数と支軸24を中心としたミラーユニットフレーム11の回動位置とによって算出可能な所定の値となる。このように、ミラーユニットフレーム11がTilt方向に回動した状態では、常に逆向きのモーメントが発生するため、チルトコイル11bへの電流の印加を中止すると、ミラーユニットフレーム11は、図7(a)に示す中立位置に戻される。したがって、ミラー19をPan方向およびTilt方向に回動させると、各回動位置において、サスペンションワイヤーのばね性による一定の抗力が生じる。この抗力に応じて、ミラー19を回動させるための駆動力を調整することにより、安定してミラー19を回動させることができる。また、電流を印加しない場合、サスペンションワイヤーのばね性により、ミラー19が中立位置に位置づけられる。このため、振動等の外乱により、ミラーが不定な回動位置に位置づけられることを防ぐことができる。 When the mirror unit frame 11 is rotated about the support shaft 24, the suspension wire fixing substrates 14a and 14b attached to the mirror unit frame 11 and the suspension wire fixing substrate 15 are integrally rotated. On the other hand, the suspension wire fixing substrate 25 is fixed to the magnet unit frame 21 and remains in the state shown in FIG. As a result, the suspension wires 26a to 26f are deformed from the state shown in FIG. 7A, and a restoring force for restoring the state shown in FIG. 7A is generated in the suspension wires 26a to 26f. Therefore, the restoring force generates a moment in the direction opposite to the tilt direction of the mirror unit frame 11 around the support shaft 24 in the tilt direction. This moment is a predetermined value that can be calculated by the spring constants of the suspension wires 26a to 26f and the rotational position of the mirror unit frame 11 around the support shaft 24. As described above, when the mirror unit frame 11 is rotated in the tilt direction, a moment in the opposite direction is always generated. Therefore, when the application of the current to the tilt coil 11b is stopped, the mirror unit frame 11 is shown in FIG. ) Is returned to the neutral position. Therefore, when the mirror 19 is rotated in the Pan direction and the Tilt direction, a certain drag due to the spring property of the suspension wire is generated at each rotation position. The mirror 19 can be stably rotated by adjusting the driving force for rotating the mirror 19 according to the drag. When no current is applied, the mirror 19 is positioned in the neutral position due to the spring property of the suspension wire. For this reason, it can prevent that a mirror is located in an indefinite rotation position by disturbances, such as a vibration.
 図8は、サスペンションワイヤー16a~16dとサスペンションワイヤー26a~26fを用いて、LED18と、チルトコイル11bと、パンコイル12b、13bへ給電する方法を示す図である。なお、図8では、便宜上、ミラーユニットフレーム11と、パンコイル装着板12、13と、パンコイル12b、13bと、チルトコイル11bと、サスペンションワイヤー固定基板14a、14bと、サスペンションワイヤー固定基板15と、サスペンションワイヤー16a~16dと、支軸17と、LED18と、マグネットユニットフレーム21と、サスペンションワイヤー固定基板25と、サスペンションワイヤー26a~26fのみが図示されており、サスペンションワイヤー16a~16dとサスペンションワイヤー26a~26fは、各部に対する電流の供給に必要なもの以外は省略されている。 FIG. 8 is a diagram showing a method of supplying power to the LED 18, the tilt coil 11b, and the pan coils 12b and 13b using the suspension wires 16a to 16d and the suspension wires 26a to 26f. In FIG. 8, for convenience, the mirror unit frame 11, pan coil mounting plates 12 and 13, pan coils 12b and 13b, tilt coil 11b, suspension wire fixing substrates 14a and 14b, suspension wire fixing substrate 15, and suspension Only the wires 16a to 16d, the support shaft 17, the LED 18, the magnet unit frame 21, the suspension wire fixing substrate 25, and the suspension wires 26a to 26f are shown. The suspension wires 16a to 16d and the suspension wires 26a to 26f are illustrated. Are omitted except those necessary for supplying the current to each part.
 図8(a)は、LED18への給電方法を示す図である。 FIG. 8A is a diagram showing a method for supplying power to the LED 18.
 サスペンションワイヤー固定基板25には、3つの端子穴25cのうち1つが端子25e(図4(a)参照)を介してサーボLED駆動回路302(図14参照)の流出端子に接続され、3つの端子穴25dのうち1つが端子25eを介してサーボLED駆動回路302(図14参照)の流入端子と接続されるように、回路パターンが形成されている。また、サスペンションワイヤー固定基板15には、3つの端子穴15cのうち1つが2つの端子穴15aのうち1つと接続され、2つの端子穴15bのうち1つが3つの端子穴15dのうち1つと接続されるよう回路パターンが形成されている。LED18の+端子は、支軸17内に形成された空洞と孔17bを介して端子穴14cと導線によって電気的に接続されている。また、LED18の-端子は、支軸17内に形成された空洞と孔17bを介して、端子穴14dと導線によって電気的に接続されている。 One of the three terminal holes 25c is connected to the outflow terminal of the servo LED drive circuit 302 (see FIG. 14) through the terminal 25e (see FIG. 4A). A circuit pattern is formed so that one of the holes 25d is connected to the inflow terminal of the servo LED drive circuit 302 (see FIG. 14) via the terminal 25e. In addition, one of the three terminal holes 15c is connected to one of the two terminal holes 15a, and one of the two terminal holes 15b is connected to one of the three terminal holes 15d. A circuit pattern is formed as described above. The + terminal of the LED 18 is electrically connected to a terminal hole 14c and a conductor via a cavity formed in the support shaft 17 and a hole 17b. Further, the negative terminal of the LED 18 is electrically connected to the terminal hole 14d by a conducting wire through a hole formed in the support shaft 17 and a hole 17b.
 サーボLED駆動回路302(図14参照)の流出端子から出力された電流は、端子穴25cに接続されたサスペンションワイヤー26a、端子穴15c、端子穴15a、サスペンションワイヤー16aを通り、端子穴14cに到達する。そして、電流は、端子穴14cに接続された導線を介してLED18の+端子に入力される。LED18に到達した後、電流は、LED18の-端子に接続された導線を通り、端子穴14dに到達する。その後、電流は、サスペンションワイヤー16c、端子穴15b、端子穴15d、サスペンションワイヤー26dを通って端子穴25dに至り、端子穴25dからサーボLED駆動回路302(図14参照)の流入端子へ出力される。これにより、LED18に対して、電流が供給される。 The current output from the outflow terminal of the servo LED driving circuit 302 (see FIG. 14) reaches the terminal hole 14c through the suspension wire 26a, the terminal hole 15c, the terminal hole 15a, and the suspension wire 16a connected to the terminal hole 25c. To do. And an electric current is input into + terminal of LED18 through the conducting wire connected to the terminal hole 14c. After reaching the LED 18, the current passes through the lead connected to the negative terminal of the LED 18 and reaches the terminal hole 14d. Thereafter, the current passes through the suspension wire 16c, the terminal hole 15b, the terminal hole 15d, and the suspension wire 26d to reach the terminal hole 25d, and is output from the terminal hole 25d to the inflow terminal of the servo LED drive circuit 302 (see FIG. 14). . Thereby, a current is supplied to the LED 18.
 図8(b)は、パンコイル12b、13bへの給電方法を示す図である。 FIG. 8B is a diagram illustrating a method of feeding power to the pan coils 12b and 13b.
 サスペンションワイヤー固定基板25には、3つの端子穴25cのうち1つが端子25e(図4(a)参照)を介してアクチュエータ駆動回路303(図14参照)のPan駆動用の流出端子と接続され、3つの端子穴25dのうち1つが端子25eを介してアクチュエータ駆動回路303(図14参照)のPan駆動用の流入端子と接続されるように、回路パターンが形成されている。また、サスペンションワイヤー固定基板15には、3つの端子穴15cのうち1つが2つの端子穴15aのうち1つと接続され、2つの端子穴15bのうち1つが3つの端子穴15dのうち1つと接続されるよう回路パターンが形成されている。 One of the three terminal holes 25c is connected to the suspension wire fixing substrate 25 via a terminal 25e (see FIG. 4A) and an outflow terminal for Pan driving of the actuator driving circuit 303 (see FIG. 14). A circuit pattern is formed so that one of the three terminal holes 25d is connected to the inflow terminal for Pan driving of the actuator driving circuit 303 (see FIG. 14) via the terminal 25e. In addition, one of the three terminal holes 15c is connected to one of the two terminal holes 15a, and one of the two terminal holes 15b is connected to one of the three terminal holes 15d. A circuit pattern is formed as described above.
 2つのパンコイル12bは、それぞれ、一方の端が端子穴14cに電気的に接続され、他方の端が端子穴14dに電気的に接続されている。また、2つのパンコイル13bは、それぞれ、一方の端が支軸17内に形成された空洞と孔17b、17cを介して、端子穴14cに電気的に接続され、他方の端が支軸17内に形成された空洞と孔17b、17cを介して、端子穴14dに電気的に接続されている。 Each of the two pan coils 12b has one end electrically connected to the terminal hole 14c and the other end electrically connected to the terminal hole 14d. The two pan coils 13b are electrically connected to the terminal hole 14c through a cavity formed in the support shaft 17 and holes 17b and 17c, respectively, and the other end is provided in the support shaft 17. Are electrically connected to the terminal hole 14d through the cavities formed therein and the holes 17b and 17c.
 アクチュエータ駆動回路303(図14参照)のPan駆動用の流出端子から出力された電流は、端子穴25cに接続されたサスペンションワイヤー26b、端子穴15c、端子穴15a、サスペンションワイヤー16bを通り、端子穴14cに到達する。そして、電流は、4並列に、パンコイル12b、13bの一方の端に入力される。パンコイル12b、13bを流れた後、電流は、端子穴14dで合流する。その後、電流は、サスペンションワイヤー16d、端子穴15b、端子穴15d、サスペンションワイヤー26eを通って端子穴25dに至り、端子穴25dからアクチュエータ駆動回路303(図14参照)のPan駆動用の流入端子へ出力される。これにより、パンコイル12b、13bに対して、電流が供給される。 The current output from the Pan driving outflow terminal of the actuator driving circuit 303 (see FIG. 14) passes through the suspension wire 26b, the terminal hole 15c, the terminal hole 15a, and the suspension wire 16b connected to the terminal hole 25c, and passes through the terminal hole. 14c is reached. The current is input to one end of the pan coils 12b and 13b in parallel. After flowing through the pan coils 12b and 13b, the currents merge at the terminal holes 14d. Thereafter, the current passes through the suspension wire 16d, the terminal hole 15b, the terminal hole 15d, and the suspension wire 26e to reach the terminal hole 25d, and from the terminal hole 25d to the inflow terminal for Pan driving of the actuator driving circuit 303 (see FIG. 14). Is output. Thereby, a current is supplied to the pan coils 12b and 13b.
 図8(c)は、チルトコイル11bへの給電方法を示す図である。 FIG. 8C is a diagram showing a method of feeding power to the tilt coil 11b.
 サスペンションワイヤー固定基板25は、3つの端子穴25cのうち1つが端子25e(図4(a)参照)を介してアクチュエータ駆動回路303(図14参照)のTilt駆動用の流出端子と接続され、3つの端子穴25dのうち1つが端子25eを介してアクチュエータ駆動回路303(図14参照)のTilt駆動用の流出端子と接続されるように、回路パターンが形成されている。また、サスペンションワイヤー固定基板15は、3つの端子穴15cのうち1つが2つの端子穴15dのうち1つと接続されるよう回路パターンが形成されている。4つのチルトコイル11bは、それぞれ、一方の端が端子穴15cに電気的に接続され、他方の端が端子穴15dに電気的に接続されている。 The suspension wire fixing substrate 25 is connected to one of the three terminal holes 25c via a terminal 25e (see FIG. 4A) and an outflow terminal for driving Tilt of the actuator drive circuit 303 (see FIG. 14). A circuit pattern is formed so that one of the two terminal holes 25d is connected to the tilt driving outflow terminal of the actuator driving circuit 303 (see FIG. 14) via the terminal 25e. The suspension wire fixing substrate 15 is formed with a circuit pattern so that one of the three terminal holes 15c is connected to one of the two terminal holes 15d. Each of the four tilt coils 11b has one end electrically connected to the terminal hole 15c and the other end electrically connected to the terminal hole 15d.
 アクチュエータ駆動回路303(図14参照)のTilt駆動用の流出端子から出力された電流は、端子穴25cに接続されたサスペンションワイヤー26b、端子穴15c、端子穴15a、サスペンションワイヤー16bを通り、端子穴14cに到達する。そして、電流は、4並列に、パンコイル12b、13bの一方の端に入力される。パンコイル12b、13bを流れた後、電流は、端子穴14dで合流する。その後、電流は、スペンションワイヤー16d、端子穴15b、端子穴15d、サスペンションワイヤー26eを通って端子穴25dに至り、端子穴25dからアクチュエータ駆動回路303(図14参照)のTilt駆動用の流入端子へ出力される。これにより、パンコイル12b、13bに対して、電流が供給される。 The current output from the tilt driving outflow terminal of the actuator driving circuit 303 (see FIG. 14) passes through the suspension wire 26b, the terminal hole 15c, the terminal hole 15a, and the suspension wire 16b connected to the terminal hole 25c, and passes through the terminal hole. 14c is reached. The current is input to one end of the pan coils 12b and 13b in parallel. After flowing through the pan coils 12b and 13b, the currents merge at the terminal holes 14d. Thereafter, the current passes through the suspension wire 16d, the terminal hole 15b, the terminal hole 15d, and the suspension wire 26e to reach the terminal hole 25d. From the terminal hole 25d, an inflow terminal for Tilt drive of the actuator drive circuit 303 (see FIG. 14). Is output. Thereby, a current is supplied to the pan coils 12b and 13b.
 このように、サスペンションワイヤーを適切に配置することによって、外部からのケーブルやハーネス等を用いずに、ミラーユニットフレーム11、支軸17に対して不安定な負荷をかけることなく、LED18と、パンコイル12b、13bと、チルトコイル11bに対して電流を供給することができる。 Thus, by appropriately arranging the suspension wire, the LED 18 and the pan coil can be used without applying an unstable load to the mirror unit frame 11 and the support shaft 17 without using an external cable or harness. Current can be supplied to 12b and 13b and the tilt coil 11b.
 図9(a)は、ミラーアクチュエータ1に磁性体40が取り付けられた状態の斜視図である、図9(b)は、磁性体40の構成を示す図である。図9(a)では、便宜上、保護カバー27が外されている。 FIG. 9A is a perspective view of a state in which the magnetic body 40 is attached to the mirror actuator 1, and FIG. 9B is a diagram illustrating the configuration of the magnetic body 40. In FIG. 9A, the protective cover 27 is removed for convenience.
 磁性体40は、磁性材料からなる長方形の薄板であり、中心に円形の孔41 が形成され、上下に四角形の開口42が形成されている。孔41を、ミラーユニットフレーム11の左内側面に形成された軸孔11c(図2(a)参照)に合わせると、上下の開口42と、ミラーユニットフレーム11の左内側面に形成された開口11jとが略整合する。磁性体40は、孔41が軸孔11cに整合し、開口42が対応する開口11jに略整合するように、ミラーユニットフレーム11の左内側面に接着固定される。図9(a)の組み立て状態において、孔41には、支軸24の端部が嵌まり込んでいる。また、磁性体40の上下の開口42は、それぞれ、チルトマグネット23に略対応する位置に位置付けられる。 The magnetic body 40 is a rectangular thin plate made of a magnetic material. A circular hole 41 is formed at the center, and a rectangular opening 42 is formed above and below. When the hole 41 is aligned with the shaft hole 11c (see FIG. 2A) formed on the left inner surface of the mirror unit frame 11, the upper and lower openings 42 and the opening formed on the left inner surface of the mirror unit frame 11 are formed. 11j substantially matches. The magnetic body 40 is bonded and fixed to the left inner surface of the mirror unit frame 11 so that the hole 41 is aligned with the shaft hole 11c and the opening 42 is approximately aligned with the corresponding opening 11j. In the assembled state of FIG. 9A, the end of the support shaft 24 is fitted in the hole 41. In addition, the upper and lower openings 42 of the magnetic body 40 are positioned at positions substantially corresponding to the tilt magnet 23, respectively.
 図10は、ミラーユニットフレーム11の支持状態を説明する図である。同図では、便宜上、保護カバー27が外されている。 FIG. 10 is a diagram for explaining the support state of the mirror unit frame 11. In the figure, the protective cover 27 is removed for convenience.
 図中、L1は、左右の台座24dの間隔である。すなわち、左の台座24dの頂上の面から右の台座24dの頂上の面までの距離がL1である。L2は、ミラーユニット10(ミラーユニットフレーム11)の左右方向の幅の寸法である。本実施の形態では、L1>L2に設定されている。このため、ミラーユニットフレーム11は、支軸24の周りを回動可能であるとともに、支軸24に沿って左右方向に変位可能となっている。 In the figure, L1 is the distance between the left and right pedestals 24d. That is, the distance from the top surface of the left pedestal 24d to the top surface of the right pedestal 24d is L1. L2 is the width dimension in the left-right direction of the mirror unit 10 (mirror unit frame 11). In the present embodiment, L1> L2 is set. Therefore, the mirror unit frame 11 can be rotated around the support shaft 24 and can be displaced in the left-right direction along the support shaft 24.
 これにより、仮に、熱等によりマグネットユニットフレーム21が変形し、L1が縮小したとしても、左右の台座24dの頂上の面が、ポリスライダーワッシャ24aを介してミラーユニットフレーム11の左右の側面に強く押しつけられることを回避できる。その結果、支軸24を軸とするチルト方向のミラー19の回動が安定化する。 Thereby, even if the magnet unit frame 21 is deformed by heat or the like and L1 is reduced, the top surfaces of the left and right pedestals 24d are strongly opposed to the left and right side surfaces of the mirror unit frame 11 via the polyslider washer 24a. It can avoid being pressed. As a result, the rotation of the mirror 19 in the tilt direction about the support shaft 24 is stabilized.
 しかしながら、このように、ミラーユニットフレーム11が、支軸24に沿って左右方向に変位可能である場合、ミラーアクチュエータ1の駆動時に、台座24dにミラーユニットフレーム11の左右の側面が衝突することが起こり得る。この衝突によって、騒音が発生し、さらに、ミラーアクチュエータ1自体の特性に劣化が生じる惧れもある。 However, when the mirror unit frame 11 can be displaced in the left-right direction along the support shaft 24 as described above, the left and right side surfaces of the mirror unit frame 11 may collide with the pedestal 24d when the mirror actuator 1 is driven. Can happen. Due to this collision, noise is generated, and there is a possibility that the characteristics of the mirror actuator 1 itself are deteriorated.
 本実施の形態では、かかる問題を解消するために、ミラーユニットフレーム11に磁性体40が設置されている。 In the present embodiment, the magnetic body 40 is installed on the mirror unit frame 11 in order to solve such a problem.
 図11は、磁性体40による作用を説明する図である。図11(a)は、図11(b)の点線で囲んだ部分の拡大図である。 FIG. 11 is a diagram for explaining the action of the magnetic body 40. FIG. 11A is an enlarged view of a portion surrounded by a dotted line in FIG.
 上記の如く、磁性体40は、ミラーユニットフレーム11の左側の内側面のみに設置され、ミラーユニットフレーム11の右側の内側面には設置されていない。磁性体40は、チルトマグネット23に対応する位置に配置されているため、図11(a)の破線矢印のように、チルトマグネット23に吸着される。この吸着力により、ミラーユニットフレーム11全体が左方向に付勢を受け、ミラーユニットフレーム11の左側面が、ポリスライダーワッシャ24aを介して台座24dの頂上の面に軽く押し付けられる。これにより、ミラーアクチュエータ1の駆動時に、ミラーユニットフレーム11が左右に変位することを防ぐことができ、ミラーユニットフレーム11の左右の側面が台座24dに衝突することを防ぐことができる。その結果、騒音の発生や、ミラーアクチュエータ1自体の特性に劣化が生じることを抑制することができる。 As described above, the magnetic body 40 is installed only on the left inner surface of the mirror unit frame 11 and is not installed on the right inner surface of the mirror unit frame 11. Since the magnetic body 40 is disposed at a position corresponding to the tilt magnet 23, the magnetic body 40 is attracted to the tilt magnet 23 as indicated by a broken line arrow in FIG. By this attracting force, the entire mirror unit frame 11 is biased in the left direction, and the left side surface of the mirror unit frame 11 is lightly pressed against the top surface of the base 24d via the polyslider washer 24a. Thereby, when the mirror actuator 1 is driven, the mirror unit frame 11 can be prevented from being displaced left and right, and the left and right side surfaces of the mirror unit frame 11 can be prevented from colliding with the base 24d. As a result, it is possible to suppress the generation of noise and the deterioration of the characteristics of the mirror actuator 1 itself.
 なお、磁性体40とチルトマグネット23との間に働く磁力は、ミラーユニットフレーム11の左側面が台座24dにあまり強く押し付けられず、且つ、ミラーアクチュエータ1の駆動時に、ミラーユニットフレーム11が左右に変位することを防止できる程度の強さになるように調整される。磁性体40とチルトマグネット23との間に働く磁力が過度に大きいと、ミラーユニットフレーム11の左側面が台座24dに強く押し付けられ、チルト方向におけるミラーユニットフレーム11の動作が不安定となり得る。逆に、かかる磁力が小さすぎると、ミラーアクチュエータ1の駆動時に、ミラーユニットフレーム11が左右に変位し、騒音の発生やミラーアクチュエータ1自体の特性に劣化が生じ得る。 The magnetic force acting between the magnetic body 40 and the tilt magnet 23 is such that the left side surface of the mirror unit frame 11 is not pressed too strongly against the pedestal 24d, and the mirror unit frame 11 moves left and right when the mirror actuator 1 is driven. It is adjusted so as to be strong enough to prevent displacement. If the magnetic force acting between the magnetic body 40 and the tilt magnet 23 is excessively large, the left side surface of the mirror unit frame 11 is strongly pressed against the pedestal 24d, and the operation of the mirror unit frame 11 in the tilt direction may become unstable. Conversely, if the magnetic force is too small, the mirror unit frame 11 is displaced left and right when the mirror actuator 1 is driven, and noise may be generated and the characteristics of the mirror actuator 1 itself may be deteriorated.
 かかる調整のために、本実施の形態では、図9(a)、(b)に示すように、磁性体40に四角形の開口42が設けられている。開口42の位置および大きさは、磁性体40とチルトマグネット23との間に働く磁力が上記のような強さになるように調整されている。 For this adjustment, in the present embodiment, a rectangular opening 42 is provided in the magnetic body 40 as shown in FIGS. The position and size of the opening 42 are adjusted so that the magnetic force acting between the magnetic body 40 and the tilt magnet 23 has the above strength.
 なお、本実施の形態では、磁性体40に開口42を設けたが、磁性体40とチルトマグネット23との間に働く磁力を調整する必要がなければ、開口42が設けられなくても良い。また、開口42を設ける替わりに、磁性体40の材料や、大きさを変えても良い。また、本実施の形態では、ミラーユニットフレーム11の左側の内側面に磁性体40を設置したが、これに代えて、ミラーユニットフレーム11の右側の内側面に磁性体40を設置しても良い。 In the present embodiment, the opening 42 is provided in the magnetic body 40. However, if it is not necessary to adjust the magnetic force acting between the magnetic body 40 and the tilt magnet 23, the opening 42 may not be provided. Further, instead of providing the opening 42, the material and size of the magnetic body 40 may be changed. In the present embodiment, the magnetic body 40 is installed on the left inner surface of the mirror unit frame 11, but instead, the magnetic body 40 may be installed on the right inner surface of the mirror unit frame 11. .
 さらに、ミラーユニットフレーム11の左右両側の内側面にそれぞれ磁性体が取り付けられても良い。ただし、この場合は、ミラーユニットフレーム11が左右何れか一方に付勢されるように、左側の磁性体に働く左方向の磁力と右側の磁性体に働く右方向の磁力とを不均衡にする必要がある。このように磁力を不均衡にするために、左右の磁性体の材料や大きさ、形状が調整される。 Furthermore, magnetic bodies may be attached to the inner side surfaces of the left and right sides of the mirror unit frame 11, respectively. However, in this case, the left magnetic force acting on the left magnetic body and the right magnetic force acting on the right magnetic body are imbalanced so that the mirror unit frame 11 is biased to either the left or right. There is a need. In order to make the magnetic force unbalanced in this way, the materials, sizes, and shapes of the left and right magnetic bodies are adjusted.
 なお、本実施の形態では、上記のように、ミラーユニットフレーム11の左側面がポリスライダーワッシャ24aを介して台座24dの頂上の面に軽く押し付けられた状態において、各チルトコイル11bと、これに対向するチルトマグネット23との間の距離が全て同一となるように、各部の構成が調整されている。また、ミラーユニットフレーム11の左側面がポリスライダーワッシャ24aを介して台座24dの頂上の面に軽く押し付けられた状態において、サスペンションワイヤー26a~26fが、前方から見て、図10のように、上下方向に直線状となるように、各部が調整されている。 In the present embodiment, as described above, in the state where the left side surface of the mirror unit frame 11 is lightly pressed against the top surface of the pedestal 24d via the polyslider washer 24a, The configuration of each part is adjusted so that the distances between the opposing tilt magnets 23 are all the same. When the left side surface of the mirror unit frame 11 is lightly pressed against the top surface of the pedestal 24d through the polyslider washer 24a, the suspension wires 26a to 26f are vertically moved as shown in FIG. Each part is adjusted to be linear in the direction.
 図12は、ミラーアクチュエータ1が装着された状態の光学系の構成を示す図である。 FIG. 12 is a diagram showing a configuration of the optical system in a state where the mirror actuator 1 is mounted.
 図12において、500は、光学系を支持するベースである。ベース500の上面には、ミラーアクチュエータ1と、レーザ光源101と、ビーム整形レンズ102が配置されている。レーザ光源101は、ベース500の上面に配されたレーザ光源用の回路基板101aに装着されている。 In FIG. 12, reference numeral 500 denotes a base that supports the optical system. On the upper surface of the base 500, the mirror actuator 1, the laser light source 101, and the beam shaping lens 102 are arranged. The laser light source 101 is mounted on a circuit board 101 a for a laser light source disposed on the upper surface of the base 500.
 レーザ光源101から出射されたレーザ光は、ビーム整形レンズ102によって水平方向および鉛直方向の収束作用を受け、目標領域において所定の形状に整形される。ビーム整形レンズ102を透過したレーザ光は、ミラーアクチュエータ1のミラー19に入射し、ミラー19によって目標領域に向かって反射される。ミラーアクチュエータ1によってミラー19が駆動されることにより、レーザ光が目標領域内においてスキャンされる。 The laser light emitted from the laser light source 101 is subjected to horizontal and vertical convergence effects by the beam shaping lens 102 and shaped into a predetermined shape in the target area. The laser light that has passed through the beam shaping lens 102 enters the mirror 19 of the mirror actuator 1 and is reflected by the mirror 19 toward the target area. When the mirror 19 is driven by the mirror actuator 1, the laser beam is scanned in the target area.
 ミラーアクチュエータ1は、ミラー19が図7(a)に示した中立位置にあるときに、ビーム整形レンズ102からの走査レーザ光がミラー19のミラー面に対し水平方向において45度の入射角で入射するよう配置されている。すなわち、ミラー19が中立位置にあるとき、ミラー19のミラー面は鉛直方向に対し平行で、且つ、走査レーザ光がミラー面に対し水平方向において45度の入射角で入射する。 In the mirror actuator 1, when the mirror 19 is in the neutral position shown in FIG. 7A, the scanning laser light from the beam shaping lens 102 is incident on the mirror surface of the mirror 19 at an incident angle of 45 degrees in the horizontal direction. Arranged to do. That is, when the mirror 19 is in the neutral position, the mirror surface of the mirror 19 is parallel to the vertical direction, and the scanning laser light is incident on the mirror surface at an incident angle of 45 degrees in the horizontal direction.
 図13(a)は、ベース500を上面側から見たときの一部平面図である。図13(a)には、ミラーアクチュエータ1の一部断面図とレーザ光源101のみが示されている。 FIG. 13A is a partial plan view when the base 500 is viewed from the upper surface side. FIG. 13A shows only a partial sectional view of the mirror actuator 1 and the laser light source 101.
 図示の如く、ミラーアクチュエータ1には、LED18と、ピンホール取り付け金具32と、ピンホール板33と、PSD基板34と、PSD35を有する。 As shown, the mirror actuator 1 includes an LED 18, a pinhole mounting bracket 32, a pinhole plate 33, a PSD substrate 34, and a PSD 35.
 LED18、PSD35およびピンホール33aは、ミラーアクチュエータ1のミラー19が上記中立位置にあるときに、LED18がピンホール板33のピンホール33aとPSD35の中心に向き合うように配置されている。すなわち、ミラー19が中立位置にあるとき、LED18から出射されピンホール33aを通るサーボ光が、PSD35の中心に垂直に入射するよう、ピンホール板33およびPSD35が配置されている。また、ピンホール板33は、LED18とPSD35の中間位置よりもPSD35に近い位置に配置されている。 The LED 18, PSD 35, and pinhole 33a are arranged so that the LED 18 faces the pinhole 33a of the pinhole plate 33 and the center of the PSD 35 when the mirror 19 of the mirror actuator 1 is in the neutral position. That is, when the mirror 19 is in the neutral position, the pinhole plate 33 and the PSD 35 are arranged so that the servo light emitted from the LED 18 and passing through the pinhole 33a is perpendicularly incident on the center of the PSD 35. Further, the pinhole plate 33 is disposed at a position closer to the PSD 35 than an intermediate position between the LED 18 and the PSD 35.
 ここで、LED18から拡散するように発せられたサーボ光は、その一部が、ピンホール33aを通過し、PSD35によって受光される。ピンホール33a以外の領域に入射されたサーボ光は、ピンホール板33によって遮光される。PSD35は、サーボ光の受光位置に応じた電流信号を出力する。 Here, a part of the servo light emitted so as to diffuse from the LED 18 passes through the pinhole 33a and is received by the PSD 35. Servo light that has entered the region other than the pinhole 33 a is shielded by the pinhole plate 33. The PSD 35 outputs a current signal corresponding to the light receiving position of the servo light.
 たとえば、図13(b)のようにミラー19が破線で示す中立位置から矢印方向に回動すると、LED18の拡散光(サーボ光)のうちピンホール33aを通る光の光路は、LP1からLP2へと変位する。その結果、PSD35上におけるサーボ光の照射位置が変化し、PSD35から出力される位置検出信号が変化する。この場合、LED18からのサーボ光の発光位置と、PSD35の受光面上におけるサーボ光の入射位置は一対一に対応する。したがって、PSD35にて検出されるサーボ光の入射位置によって、目標領域における走査レーザ光の走査位置を検出できる。 For example, as shown in FIG. 13B, when the mirror 19 rotates in the direction of the arrow from the neutral position indicated by the broken line, the optical path of the light passing through the pinhole 33a out of the diffused light (servo light) of the LED 18 is from LP1 to LP2. And displace. As a result, the irradiation position of the servo light on the PSD 35 changes, and the position detection signal output from the PSD 35 changes. In this case, the light emission position of the servo light from the LED 18 and the servo light incident position on the light receiving surface of the PSD 35 correspond one-to-one. Therefore, the scanning position of the scanning laser beam in the target area can be detected based on the incident position of the servo light detected by the PSD 35.
 図14は、レーザレーダの回路構成を示す図である。図示の如く、レーザレーダは、走査部100と、受光部200と、PSD信号処理回路301と、サーボLED駆動回路302と、アクチュエータ駆動回路303と、スキャンLD駆動回路304と、PD信号処理回路305と、DSP306を備えている。 FIG. 14 is a diagram showing a circuit configuration of the laser radar. As illustrated, the laser radar includes a scanning unit 100, a light receiving unit 200, a PSD signal processing circuit 301, a servo LED driving circuit 302, an actuator driving circuit 303, a scan LD driving circuit 304, and a PD signal processing circuit 305. And a DSP 306.
 走査部100は、図12に示す走査光学系と、図13(a)に示すサーボ光学系を備えている。なお、図14には、便宜上、走査部100の構成として、レーザ光源101、ミラーアクチュエータ1、LED18およびPSD35のみが図示されている。受光部200は、レーザ光源101から出射されるレーザ光の波長帯域の光のみを透過するバンドパスフィルタ201と、目標領域から反射された走査用レーザ光を集光する受光レンズ202と、集光された走査用レーザ光を受光する光検出器203を備えている。 The scanning unit 100 includes a scanning optical system shown in FIG. 12 and a servo optical system shown in FIG. 14 shows only the laser light source 101, the mirror actuator 1, the LED 18, and the PSD 35 as a configuration of the scanning unit 100 for convenience. The light receiving unit 200 includes a band pass filter 201 that transmits only light in the wavelength band of the laser light emitted from the laser light source 101, a light receiving lens 202 that condenses the scanning laser light reflected from the target region, A photodetector 203 that receives the scanned laser beam is provided.
 PSD信号処理回路301は、PSD35からの出力信号から受光位置に応じた位置検出信号を生成してDSP306に出力する。 The PSD signal processing circuit 301 generates a position detection signal corresponding to the light receiving position from the output signal from the PSD 35 and outputs the position detection signal to the DSP 306.
 サーボLED駆動回路302は、DSP306からの信号をもとに、LED18に駆動信号を供給する。具体的には、走査部100の作動時において、一定出力のサーボ光が、LED18から出力される。 The servo LED drive circuit 302 supplies a drive signal to the LED 18 based on the signal from the DSP 306. Specifically, a constant output servo light is output from the LED 18 when the scanning unit 100 is in operation.
 アクチュエータ駆動回路303は、DSP306からの信号をもとに、ミラーアクチュエータ1を駆動する。具体的には、目標領域において走査用レーザ光を所定の軌道に沿って走査させるための駆動信号がミラーアクチュエータ1に供給される。 Actuator drive circuit 303 drives mirror actuator 1 based on a signal from DSP 306. Specifically, a drive signal for scanning the scanning laser light along a predetermined trajectory in the target area is supplied to the mirror actuator 1.
 スキャンLD駆動回路304は、DSP306からの信号をもとに、レーザ光源101に駆動信号を供給する。具体的には、目標領域内において走査用レーザ光のスキャン位置が所定の位置になったタイミングでレーザ光源101がパルス発光される。 The scan LD drive circuit 304 supplies a drive signal to the laser light source 101 based on a signal from the DSP 306. Specifically, the laser light source 101 emits pulses at the timing when the scanning position of the scanning laser light reaches a predetermined position in the target area.
 PD信号処理回路305は、光検出器203からの信号を増幅およびデジタル化してDSP306に供給する。 PD signal processing circuit 305 amplifies and digitizes the signal from photodetector 203 and supplies it to DSP 306.
 DSP306は、PSD信号処理回路301から入力された位置検出信号をもとに、目標領域における走査用レーザ光の走査位置を検出し、ミラーアクチュエータ1の駆動制御や、レーザ光源101の駆動制御等を実行する。また、DSP306は、PD信号処理回路305から入力される信号にもとづいて、目標領域内の走査用レーザ光の照射位置に障害物が存在するかを判定し、同時に、レーザ光源101から出力される走査用レーザ光の照射タイミングと、光検出器203にて受光される目標領域からの反射光の受光タイミングの間の時間差をもとに、障害物までの距離を測定する。 The DSP 306 detects the scanning position of the scanning laser light in the target area based on the position detection signal input from the PSD signal processing circuit 301, and performs drive control of the mirror actuator 1, drive control of the laser light source 101, and the like. Execute. Further, the DSP 306 determines whether there is an obstacle at the irradiation position of the scanning laser light in the target area based on the signal input from the PD signal processing circuit 305, and simultaneously outputs from the laser light source 101. The distance to the obstacle is measured based on the time difference between the irradiation timing of the scanning laser beam and the reception timing of the reflected light from the target area received by the photodetector 203.
 以上、本実施の形態によれば、磁性体40とチルトマグネット23との間に働く磁力により、ミラーユニットフレーム11の左側面が、ポリスライダーワッシャ24aを介して台座24dの頂上の面に軽く押し付けられるため、ミラーアクチュエータ1の駆動時に、ミラーユニットフレーム11が左右に変位することを防ぐことができ、ミラーユニットフレーム11の左右の側面が台座24dに衝突することを防ぐことができる。その結果、騒音の発生や、ミラーアクチュエータ1自体の特性に劣化が生じることを抑制することができる。 As described above, according to the present embodiment, the left side surface of the mirror unit frame 11 is lightly pressed against the top surface of the base 24d via the polyslider washer 24a by the magnetic force acting between the magnetic body 40 and the tilt magnet 23. Therefore, when the mirror actuator 1 is driven, the mirror unit frame 11 can be prevented from being displaced left and right, and the left and right side surfaces of the mirror unit frame 11 can be prevented from colliding with the pedestal 24d. As a result, it is possible to suppress the generation of noise and the deterioration of the characteristics of the mirror actuator 1 itself.
 また、本実施の形態によれば、ミラーユニットフレーム11の左側面と台座24dとの間にポリスライダーワッシャ24aが介在するため、このようにミラーユニットフレーム11の左側面が台座24dに押し付けられても、支軸24を軸とするミラーユニットフレーム11の回動が円滑に行われ得る。 Further, according to the present embodiment, since the polyslider washer 24a is interposed between the left side surface of the mirror unit frame 11 and the pedestal 24d, the left side surface of the mirror unit frame 11 is thus pressed against the pedestal 24d. In addition, the mirror unit frame 11 can be smoothly rotated about the support shaft 24 as an axis.
 また、本実施の形態によれば、ミラーユニットフレーム11に力を付与するための手段として、チルトコイル11bに磁界を印加するチルトマグネット23が用いられているため、ミラーユニットフレーム11を付勢するための構成を簡素なものとすることができる。 Further, according to the present embodiment, since the tilt magnet 23 that applies a magnetic field to the tilt coil 11b is used as means for applying a force to the mirror unit frame 11, the mirror unit frame 11 is urged. Therefore, the configuration for this can be simplified.
 なお、上記の説明では特に言及されなかったが、本実施の形態では、支軸17もまた、ミラーユニットフレーム11に対して上下方向に変位可能となっている。このため、支軸17についても、上記実施の形態と同様、支軸17に平行な方向に支軸17を付勢する手段が検討され得る。しかしながら、本実施の形態では、図12に示すように、図10の上下方向が鉛直方向となるようにミラーアクチュエータ1が設置される。このため、支軸17は、支軸17および支軸17に装着される部材(ミラー19等)に働く重力により、下方向に付勢され、ミラーユニットフレーム11に押し付けられる。このことから、本実施の形態では、支軸17に対しては、付勢手段が配置されていない。しかしながら、ミラーアクチュエータ1の駆動時に支軸17が上下方向に変位するような場合には、支軸17に対しても、付勢手段が配され得る。この場合、たとえば、支軸17の下部に磁性部材を装着し、この磁性部材と下側のパンマグネット22との間に働く磁力により、支軸17を下方向に付勢する構成が用いられ得る。 Although not particularly mentioned in the above description, in the present embodiment, the support shaft 17 can also be displaced in the vertical direction with respect to the mirror unit frame 11. For this reason, a means for urging the support shaft 17 in a direction parallel to the support shaft 17 can be considered for the support shaft 17 as in the above embodiment. However, in this embodiment, as shown in FIG. 12, the mirror actuator 1 is installed so that the vertical direction in FIG. 10 is the vertical direction. For this reason, the support shaft 17 is urged downward by the gravity acting on the support shaft 17 and a member (mirror 19 or the like) attached to the support shaft 17, and is pressed against the mirror unit frame 11. For this reason, in the present embodiment, no urging means is arranged for the support shaft 17. However, when the support shaft 17 is displaced in the vertical direction when the mirror actuator 1 is driven, an urging means can be arranged for the support shaft 17 as well. In this case, for example, a configuration in which a magnetic member is attached to the lower portion of the support shaft 17 and the support shaft 17 is urged downward by a magnetic force acting between the magnetic member and the lower pan magnet 22 can be used. .
 また、本実施の形態によれば、ミラー19をPan方向およびTilt方向に回動させると、各回動位置において、サスペンションワイヤーのばね性による一定かつ安定な抗力が生じる。したがって、この抗力に応じて、ミラー19を回動させるための駆動力を調整することにより、安定してミラー19を回動させることができる。また、電流を印加しない場合、サスペンションワイヤーのばね性により、ミラー19が中立位置に位置づけられるため、振動等の外乱により、ミラーが不定な回動位置に位置づけられることを防ぐことができる。 Further, according to the present embodiment, when the mirror 19 is rotated in the Pan direction and the Tilt direction, a constant and stable drag due to the spring property of the suspension wire is generated at each rotation position. Therefore, the mirror 19 can be stably rotated by adjusting the driving force for rotating the mirror 19 according to the drag. Further, when no current is applied, the mirror 19 is positioned at the neutral position due to the spring property of the suspension wire, so that it is possible to prevent the mirror from being positioned at an indefinite rotational position due to disturbance such as vibration.
 また、本実施の形態では、サスペンションワイヤー26a~26f、サスペンションワイヤー固定基板25の回路パターン、および、サスペンションワイヤー16a~16dを介して、可動部に電流が供給されるため、可動部に不安定な負荷をかける惧れのあるケーブルやハーネス等を用いずとも、LED18と、パンコイル12b、13bと、チルトコイル11bに対して電流を供給することができる。 In the present embodiment, since the current is supplied to the movable part through the suspension wires 26a to 26f, the circuit pattern of the suspension wire fixed substrate 25, and the suspension wires 16a to 16d, the movable part is unstable. The current can be supplied to the LED 18, the pan coils 12b and 13b, and the tilt coil 11b without using a cable or a harness that may cause a load.
 また、本実施の形態では、支軸17に並ぶように、すなわち、支軸17と略平行となるように、サスペンションワイヤー26a~26fとサスペンションワイヤー16a~16dが配されているため、ミラー19の回動時のサスペンションワイヤー26a~26fとサスペンションワイヤー16a~16dの撓み量を小さくすることができ、ミラー19の回動時に、サスペンションワイヤー26a~26fとサスペンションワイヤー16a~16dから、ミラー19の回動を規制する大きな力が掛るのを防止することができる。また、サスペンションワイヤー26a~26fとサスペンションワイヤー16a~16dの端部がミラーユニットフレーム11の底面近傍に位置付けられるため、平板状のサスペンションワイヤー固定基板25の回路パターンによって、対応するサスペンションワイヤーを容易に接続することができる。 In the present embodiment, since the suspension wires 26a to 26f and the suspension wires 16a to 16d are arranged so as to be aligned with the support shaft 17, that is, substantially parallel to the support shaft 17, the mirror 19 The amount of bending of the suspension wires 26a to 26f and the suspension wires 16a to 16d during rotation can be reduced, and the rotation of the mirror 19 can be performed from the suspension wires 26a to 26f and the suspension wires 16a to 16d when the mirror 19 rotates. It is possible to prevent a large force from being applied. Further, since the end portions of the suspension wires 26a to 26f and the suspension wires 16a to 16d are positioned near the bottom surface of the mirror unit frame 11, the corresponding suspension wires can be easily connected by the circuit pattern of the flat suspension wire fixing substrate 25. can do.
 また、本実施の形態では、サスペンションワイヤー固定基板25にサスペンションワイヤー26a~26fとサスペンションワイヤー16a~16dの端部を半田付けするのみで、当該端部の固定と、サスペンションワイヤー間の電気的な接続を行うことができる。 Further, in the present embodiment, only the ends of the suspension wires 26a to 26f and the suspension wires 16a to 16d are soldered to the suspension wire fixing substrate 25, and the ends are fixed and the electrical connection between the suspension wires is performed. It can be performed.
 また、本実施の形態では、図7(a)に示すように、ミラーが中立位置にある状態において、サスペンションワイヤー26a~26fがミラー19から離れる方向に一様に湾曲するように配置されるため、中立位置からミラー19がチルト方向に回動しても、サスペンションワイヤー26a~26fは、一律に、ミラー19に接近または離間する方向に変形する。このように、サスペンションワイヤー26a~26fの変形方向を一方向に制限することにより、チルト方向におけるミラー19の回動時にサスペンションワイヤー26a~26fに生じる抗力を安定させることができ、よって、ミラー19を安定に駆動することができる。 Further, in this embodiment, as shown in FIG. 7A, the suspension wires 26a to 26f are arranged so as to be uniformly bent in the direction away from the mirror 19 in a state where the mirror is in the neutral position. Even when the mirror 19 rotates in the tilt direction from the neutral position, the suspension wires 26a to 26f are uniformly deformed in a direction approaching or separating from the mirror 19. As described above, by restricting the deformation direction of the suspension wires 26a to 26f to one direction, it is possible to stabilize the drag generated in the suspension wires 26a to 26f when the mirror 19 is rotated in the tilt direction. It can be driven stably.
 以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に何ら制限されるものではなく、また、本発明の実施の形態も上記以外に種々の変更が可能である。 The embodiment of the present invention has been described above. However, the present invention is not limited to the above embodiment, and various modifications other than the above can be made to the embodiment of the present invention.
 たとえば、上記実施の形態では、合計10本のサスペンションワイヤー(サスペンションワイヤー16a~16d、サスペンションワイヤー26a~26f)が用いられたが、サスペンションワイヤーの数がこれに限られるものではない。たとえば、上記実施の形態において、給電に用いられないサスペンションワイヤーをさらに配置しても良い。また、可動部にLED18を配置しない場合は、サスペンションワイヤー26b、26eを省略し、合計8本のサスペンションワイヤーを配置するようにしても良い。 For example, in the above embodiment, a total of 10 suspension wires (suspension wires 16a to 16d, suspension wires 26a to 26f) are used, but the number of suspension wires is not limited to this. For example, in the above embodiment, suspension wires that are not used for power feeding may be further arranged. When the LED 18 is not disposed on the movable part, the suspension wires 26b and 26e may be omitted and a total of eight suspension wires may be disposed.
 また、上記実施の形態では、断面が円形状のサスペンションワイヤーが用いられたが、これに替えて、断面が角形状のサスペンションワイヤーや板ばね等が用いられてもよい。このようにサスペンションワイヤーの断面形状を角形状または平板形状にすると、サスペンションワイヤーの曲がり方向を一方向に制限することができる。これにより、チルト方向におけるミラー19の回動時に、サスペンションワイヤーを同じ方向に一様に湾曲させやすくなる。このため、サスペンションワイヤーに生じる抗力を安定させることができ、よって、ミラー19を安定に駆動することができる。 In the above embodiment, a suspension wire having a circular cross section is used. However, instead of this, a suspension wire having a square cross section, a leaf spring, or the like may be used. Thus, if the cross-sectional shape of the suspension wire is a square shape or a flat plate shape, the bending direction of the suspension wire can be limited to one direction. This makes it easier to bend the suspension wire uniformly in the same direction when the mirror 19 rotates in the tilt direction. For this reason, the drag force generated in the suspension wire can be stabilized, and thus the mirror 19 can be driven stably.
 たとえば、サスペンションワイヤー26a~26fを所定の長さ、幅、厚みを有する平板形状の可撓性部材から構成する場合、可撓性部材の幅方向が、図1の左右方向となるように、可撓性部材が配置される。こうすると、チルト方向におけるミラー19の回動時に、サスペンションワイヤーを前後方向に一様に湾曲させ易くなる。加えて、このようにサスペンションワイヤー26a~26fを構成すると、ミラーユニットフレーム11が左右方向に変位しにくくなるため、チルトマグネット23と磁性体40との作用と相俟って、左右方向におけるミラーユニットフレーム11の変位をさらに抑制することができる。 For example, when the suspension wires 26a to 26f are formed of a flat plate-shaped flexible member having a predetermined length, width, and thickness, the width direction of the flexible member is allowed to be the left-right direction in FIG. A flexible member is disposed. This makes it easy to bend the suspension wire uniformly in the front-rear direction when the mirror 19 rotates in the tilt direction. In addition, when the suspension wires 26a to 26f are configured in this manner, the mirror unit frame 11 is difficult to be displaced in the left-right direction. Therefore, in combination with the action of the tilt magnet 23 and the magnetic body 40, the mirror unit frame in the left-right direction. The displacement of the frame 11 can be further suppressed.
 なお、このようにサスペンションワイヤー26a~26fの形状を変更する場合、必ずしも全長に亘ってサスペンションワイヤー26a~26fを角形状あるいは平板形状にする必要はなく、たとえば中央部分のみ等、一部の領域において、サスペンションワイヤー26a~26fを角形状あるいは平板形状としても良い。 When the shape of the suspension wires 26a to 26f is changed in this way, the suspension wires 26a to 26f do not necessarily have to have a square shape or a flat plate shape over the entire length. For example, in some regions such as only the central portion. The suspension wires 26a to 26f may be square or flat.
 この他、可動部に対して、安定的な抗力を与え、かつ導電性を有する部材であれば、サスペンションワイヤーに替えて、どのような部材を用いてもよい。 Other than this, any member may be used in place of the suspension wire as long as it is a member that gives a stable drag to the movable part and has conductivity.
 また、上記実施の形態では、サーボ光を拡散発光するための光源として、拡散タイプ(広指向タイプ)のLED18が用いられたが、拡散タイプでないLEDが用いられるようにしても良い。この場合、拡散タイプでないLEDの光出射側には、光拡散作用を有する拡散レンズが配置されるようにしても良い。また、拡散タイプでないLEDが、光拡散作用を有するキャップにより覆われるようにしても良い。 In the above embodiment, the diffusion type (wide-directional type) LED 18 is used as the light source for diffusing the servo light. However, a non-diffusion type LED may be used. In this case, you may make it arrange | position the diffuser lens which has a light-diffusion effect | action on the light-projection side of LED which is not a diffusion type. Moreover, you may make it LED which is not a diffusion type covered with the cap which has a light-diffusion effect | action.
 また、上記実施の形態では、ミラー19と一体的に駆動するLED18と、ミラーアクチュエータ1内に配されたピンホール板33と、PSD35によって、ミラー19の回動角度が検出された。しかしながら、これに限らず、ベース500に設置された半導体レーザとPSDによりミラーの回動角度が検出されるようにしても良い。すなわち、かかる半導体レーザから出射されミラー19により反射されたレーザ光が、かかるPSDにて受光されるようにしても良い。または、かかる半導体レーザから出射されミラー19と一体的に駆動する透過板を透過したレーザ光が、かかるPSDにて受光されるようにしても良い。 In the above embodiment, the rotation angle of the mirror 19 is detected by the LED 18 driven integrally with the mirror 19, the pinhole plate 33 disposed in the mirror actuator 1, and the PSD 35. However, the present invention is not limited to this, and the rotation angle of the mirror may be detected by a semiconductor laser and PSD installed in the base 500. That is, the laser beam emitted from the semiconductor laser and reflected by the mirror 19 may be received by the PSD. Alternatively, laser light emitted from the semiconductor laser and transmitted through a transmission plate that is driven integrally with the mirror 19 may be received by the PSD.
 また、上記実施の形態では、サスペンションワイヤー固定基板15に、サスペンションワイヤー26a~26fの端部を固定するようにしたが、サスペンションワイヤー固定基板15を省略し、サスペンションワイヤー26a~26fの端部を、ワイヤー孔11f~11iにのみ固定するようにしても良い。この場合、ミラーユニットフレーム11の底面に、サスペンションワイヤー26a、26b、26d、26eとサスペンションワイヤー16a~16dとを接続するための回路パターンが形成されても良い。 In the above embodiment, the ends of the suspension wires 26a to 26f are fixed to the suspension wire fixing substrate 15. However, the suspension wire fixing substrate 15 is omitted, and the ends of the suspension wires 26a to 26f are It may be fixed only to the wire holes 11f to 11i. In this case, a circuit pattern for connecting the suspension wires 26a, 26b, 26d, and 26e and the suspension wires 16a to 16d may be formed on the bottom surface of the mirror unit frame 11.
 さらに、上記実施の形態では、ミラーユニットフレーム11がTilt方向に回動し、このミラーユニットフレーム11に対してミラー19がPan方向に回動するように、ミラーアクチュエータ1が構成されたが、ミラーユニットフレーム11がPan方向に回動し、このミラーユニットフレーム11に対してミラー19がTilt方向に回動するように、ミラーアクチュエータ1が構成されても良い。 Further, in the above embodiment, the mirror actuator 1 is configured such that the mirror unit frame 11 rotates in the tilt direction, and the mirror 19 rotates in the pan direction with respect to the mirror unit frame 11. The mirror actuator 1 may be configured such that the unit frame 11 rotates in the Pan direction, and the mirror 19 rotates in the Tilt direction with respect to the mirror unit frame 11.
 この他、本発明の実施の形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。 In addition, the embodiment of the present invention can be variously modified as appropriate within the scope of the technical idea shown in the claims.
   1 … ミラーアクチュエータ
  11 … ミラーユニットフレーム(可動部)
  11b… チルトコイル(コイル)
  19 … ミラー
  21 … マグネットユニットフレーム(支持部)
  23 … チルトマグネット(磁石)
  24 … 支軸(回動軸)
  24a … ポリスライダーワッシャ(摺接部材)
  24d … 台座(支持部)
  26a~26f … サスペンションワイヤー(弾性部材)
  40 … 磁性体
1 ... Mirror actuator 11 ... Mirror unit frame (movable part)
11b ... Tilt coil (coil)
19 ... Mirror 21 ... Magnet unit frame (supporting part)
23 ... Tilt magnet (magnet)
24 ... Support shaft (rotating shaft)
24a: Polyslider washer (sliding contact member)
24d: Pedestal (supporting part)
26a to 26f: Suspension wire (elastic member)
40 ... Magnetic material

Claims (6)

  1.  支持部と
     ミラーを保持すると共に回動軸を介して前記支持部に回動可能に支持された可動部と、
     前記支持部と前記可動部とを連結すると共に可撓性を有する弾性部材と、
    を備え、
     前記可動部は、前記回動軸に平行な方向に変位可能に前記支持部に支持され、
     前記可動部を前記回動軸に平行な方向に付勢して、前記可動部を前記支持部に当接させる付勢手段をさらに備える、
    ことを特徴とするミラーアクチュエータ。
    A movable portion that holds the support portion and the mirror and is rotatably supported by the support portion via a rotation shaft;
    An elastic member that connects the support portion and the movable portion and has flexibility;
    With
    The movable part is supported by the support part so as to be displaceable in a direction parallel to the rotation axis,
    Further comprising biasing means for biasing the movable part in a direction parallel to the rotation axis and causing the movable part to contact the support part;
    A mirror actuator characterized by that.
  2.  請求項1に記載のミラーアクチュエータにおいて、
     前記回転軸に配されると共に前記回転軸に平行な方向において前記可動部に対向する摺接部材をさらに備える、
    ことを特徴とするミラーアクチュエータ。
    The mirror actuator according to claim 1, wherein
    A sliding contact member disposed on the rotating shaft and facing the movable portion in a direction parallel to the rotating shaft;
    A mirror actuator characterized by that.
  3.  請求項1または2に記載のミラーアクチュエータにおいて、
     前記回動軸は、前記可動部が鉛直方向に回動可能となるように配置され、
     前記可動部は、前記支持部に対して水平方向に変位可能となっている、
    ことを特徴とするミラーアクチュエータ。
    The mirror actuator according to claim 1 or 2,
    The pivot shaft is arranged such that the movable part can pivot in the vertical direction,
    The movable part is displaceable in a horizontal direction with respect to the support part.
    A mirror actuator characterized by that.
  4.  請求項1ないし3の何れか一項に記載のミラーアクチュエータにおいて、
     前記可動部に配されたコイルと、
     前記コイルに磁界を印加する磁石と、をさらに備え、
     前記弾性部材は、導電性を有する線材からなっており、前記弾性部材の一端が前記コイルに接続され、前記弾性部材が前記コイルに対する駆動信号の供給経路となっている、
    ことを特徴とするミラーアクチュエータ。
    The mirror actuator according to any one of claims 1 to 3,
    A coil disposed on the movable part;
    A magnet for applying a magnetic field to the coil,
    The elastic member is made of a conductive wire, one end of the elastic member is connected to the coil, and the elastic member serves as a drive signal supply path to the coil.
    A mirror actuator characterized by that.
  5.  請求項4に記載のミラーアクチュエータにおいて、
     前記コイルと前記磁石が、前記回動軸に平行な方向に向き合うように配置され、
     前記付勢手段は、前記磁石と、前記可動部に配置された磁性部材とを有し、
     前記磁石と前記磁性部材との間の磁力によって、前記可動部が前記回動軸に平行な方向に付勢されるように、前記磁性部材が前記可動部に配置されている、
    ことを特徴とするミラーアクチュエータ。
    The mirror actuator according to claim 4, wherein
    The coil and the magnet are arranged to face each other in a direction parallel to the rotation axis,
    The biasing means includes the magnet and a magnetic member disposed on the movable part,
    The magnetic member is disposed on the movable portion so that the movable portion is biased in a direction parallel to the rotation axis by the magnetic force between the magnet and the magnetic member.
    A mirror actuator characterized by that.
  6.  請求項1ないし5に何れか一項に記載のミラーアクチュエータと、
     前記ミラーアクチュエータのミラーにレーザ光を供給するレーザ光源と、を備える、
    ことを特徴とするビーム照射装置。
     
    A mirror actuator according to any one of claims 1 to 5;
    A laser light source for supplying a laser beam to a mirror of the mirror actuator,
    A beam irradiation apparatus characterized by that.
PCT/JP2012/062444 2011-05-27 2012-05-16 Mirror actuator and beam irradiation device WO2012165138A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011119782A JP2014157015A (en) 2011-05-27 2011-05-27 Mirror actuator and beam irradiation device
JP2011-119782 2011-05-27

Publications (1)

Publication Number Publication Date
WO2012165138A1 true WO2012165138A1 (en) 2012-12-06

Family

ID=47259001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062444 WO2012165138A1 (en) 2011-05-27 2012-05-16 Mirror actuator and beam irradiation device

Country Status (2)

Country Link
JP (1) JP2014157015A (en)
WO (1) WO2012165138A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017187603A (en) * 2016-04-05 2017-10-12 ミツミ電機株式会社 Uniaxial rotation actuator
JP2017194319A (en) * 2016-04-19 2017-10-26 ミツミ電機株式会社 Spectroscope and measuring device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002244071A (en) * 2001-02-14 2002-08-28 Denso Corp Reflector fixture
JP2003043405A (en) * 2001-08-02 2003-02-13 Hitachi Via Mechanics Ltd Scanner
JP2006119420A (en) * 2004-10-22 2006-05-11 Denso Corp Optical scanner
JP2009063513A (en) * 2007-09-07 2009-03-26 Sanyo Electric Co Ltd Mirror actuator and beam irradiating device
JP2009281999A (en) * 2007-08-07 2009-12-03 Sanyo Electric Co Ltd Optical mechanism member mechanism for laser radar
JP2011002672A (en) * 2009-06-19 2011-01-06 Sanyo Electric Co Ltd Mirror actuator and beam irradiation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002244071A (en) * 2001-02-14 2002-08-28 Denso Corp Reflector fixture
JP2003043405A (en) * 2001-08-02 2003-02-13 Hitachi Via Mechanics Ltd Scanner
JP2006119420A (en) * 2004-10-22 2006-05-11 Denso Corp Optical scanner
JP2009281999A (en) * 2007-08-07 2009-12-03 Sanyo Electric Co Ltd Optical mechanism member mechanism for laser radar
JP2009063513A (en) * 2007-09-07 2009-03-26 Sanyo Electric Co Ltd Mirror actuator and beam irradiating device
JP2011002672A (en) * 2009-06-19 2011-01-06 Sanyo Electric Co Ltd Mirror actuator and beam irradiation device

Also Published As

Publication number Publication date
JP2014157015A (en) 2014-08-28

Similar Documents

Publication Publication Date Title
WO2013080625A1 (en) Mirror actuator, beam irradiation device, and laser radar
US7440202B2 (en) Lens drive apparatus
US8432594B2 (en) Mirror actuator and beam irradiation device
JP2008224408A (en) Beam irradiation device
JP2012159330A (en) Laser radar
JPWO2012144341A1 (en) Laser radar
JP2008225285A (en) Beam radiation apparatus
JP2011186422A (en) Beam irradiation device
JP2012145905A (en) Mirror actuator and beam irradiation device
WO2013080626A1 (en) Mirror actuator, beam irradiation device, and laser radar
WO2012165138A1 (en) Mirror actuator and beam irradiation device
JP2011002672A (en) Mirror actuator and beam irradiation device
JP2014145671A (en) Laser radar
JP2013130531A (en) Laser radar
JP2015125109A (en) Laser radar and beam irradiation device
US6879747B2 (en) Galvanometer mirror and optical switching device using the same
US7155081B2 (en) Two-dimensional optical deflector
JP2013130422A (en) Laser radar
JP2011047833A (en) Beam irradiation apparatus
JP2016180832A (en) Mirror tilt actuator and optical transmission/reception antenna
JP2005156976A5 (en)
WO2000050950A1 (en) Planar optical scanner and its mounting structure
US20110182071A1 (en) Beam irradiation device and semiconductor laser device
JPWO2018150889A1 (en) Light source device and light projecting device
JP2011047832A (en) Beam irradiation apparatus and laser radar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12793600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP