WO2012160319A1 - Accelerateur de prise de ciment - Google Patents

Accelerateur de prise de ciment Download PDF

Info

Publication number
WO2012160319A1
WO2012160319A1 PCT/FR2012/051172 FR2012051172W WO2012160319A1 WO 2012160319 A1 WO2012160319 A1 WO 2012160319A1 FR 2012051172 W FR2012051172 W FR 2012051172W WO 2012160319 A1 WO2012160319 A1 WO 2012160319A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium
cement
silicate
weight
hydraulic binder
Prior art date
Application number
PCT/FR2012/051172
Other languages
English (en)
Inventor
Joumana YAMMINE
Charlotte Famy
Original Assignee
Saint-Gobain Weber
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Weber filed Critical Saint-Gobain Weber
Priority to EP12731060.5A priority Critical patent/EP2714612B1/fr
Priority to ES12731060T priority patent/ES2745743T3/es
Publication of WO2012160319A1 publication Critical patent/WO2012160319A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B12/00Cements not provided for in groups C04B7/00 - C04B11/00
    • C04B12/04Alkali metal or ammonium silicate cements ; Alkyl silicate cements; Silica sol cements; Soluble silicate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • C04B22/062Oxides, Hydroxides of the alkali or alkaline-earth metals
    • C04B22/064Oxides, Hydroxides of the alkali or alkaline-earth metals of the alkaline-earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/12Acids or salts thereof containing halogen in the anion
    • C04B22/124Chlorides of ammonium or of the alkali or alkaline earth metals, e.g. calcium chloride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • C04B40/0042Powdery mixtures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/42Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells
    • C09K8/46Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement
    • C09K8/467Compositions for cementing, e.g. for cementing casings into boreholes; Compositions for plugging, e.g. for killing wells containing inorganic binders, e.g. Portland cement containing additives for specific purposes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00043Anhydrous mixtures

Definitions

  • the present invention relates to a new accelerator for setting a cement, a hydraulic binder comprising a cement and this accelerator, as well as the building materials obtained from this hydraulic binder such as a concrete or a mortar or a paste.
  • Cement has the particularity when it is mixed with water to set and harden - even underwater - by anhydrous compound dissolution and hydrate precipitation processes.
  • the cement particles dissolve on the surface and release ionic species, which react with each other to form hydrates, in particular silicate and calcium hydrates, which precipitate in the interstitial solution and cause the hardening of the material.
  • ionic species which react with each other to form hydrates, in particular silicate and calcium hydrates, which precipitate in the interstitial solution and cause the hardening of the material.
  • two successive phenomena occur during the evolution of the cement paste: setting and hardening.
  • the anhydrous particles of the cement turn into gels and then precipitates of hydrated microcrystals whose composition varies according to the concentrations of the chemical species released by the particles.
  • the thickening of the paste is caused by the rapid growth of microcrystals or hydrate precipitates.
  • the beginning of setting is therefore measured by the time that elapses between the moment of mixing and the precise moment when the paste thickens and becomes more viscous at the same time as it warms up by release of energy.
  • the end of the setting corresponds to the moment when the dough ceases to be deformable and turns into a rigid material.
  • Curing follows the setting phenomenon and corresponds to the period during which hydration continues.
  • the resistance of the material, still low at the end of the setting will increase throughout the hardening, quickly at the beginning, then more and more slowly.
  • the strength of the cementitious material generally continues to grow for a very long time, but the value of the 28-day strength remains a conventional reference value for Portland cements.
  • the setting or hardening accelerators can be in the form of an aqueous solution, an aqueous suspension, or powder.
  • an accelerator in liquid form is not possible.
  • the accelerator of the present invention is in the form of a powder, so that it can be mixed with dry cement. It is not necessary to solubilize the accelerator previously in the water, and it is not necessary to wet the cement before adding the accelerator. The preparation of the mortar or concrete is considerably simplified.
  • Accelerating the setting and / or hardening of a cement can be achieved by various means, such as heat treatment, the use of chemical accelerators or greater fineness of the cement. Chemical acceleration can usually be achieved in two ways: by adding chemical compounds that react with the cement particles, or by incorporating crystallization seeds into the cement when mixing or grinding the cement.
  • calcium chloride is known as a hardening accelerator for Portland cements and composite cements. It is added at a rate of 2% by weight of cement and up to 3% for other blend cements and pozzolanic binders.
  • Other accelerators in the form of powder which dissolve in water are: alkaline carbonates and alkaline earth carbonates such as calcium carbonate (FR 2810314); alkali silicates such as sodium silicate (US 2005/0268818), potassium silicate or lithium silicate; potassium alums; alkaline sulphates and alkaline earth sulphates; alkaline nitrates and alkaline earth nitrates; alkaline and alkaline earth nitrites; hydroxide salts of alkali, alkaline earth and metal; chloride salts, calcium formate and aluminum salts; alkali and alkaline earth thiocyanates; alkali, alkaline earth and metal sulphates; alkaline, alkaline-earth and metallic sulphites.
  • the second type of accelerator consists of crystallization seeds such as hydrated calcium silicate seeds (abbreviated HSC) that are mixed with the cement at the time of mixing (FR 1 213 645 and FR 1 276 696). Crystallization seeds trigger crystalline precipitation: they cause and direct the crystallizations so as to accelerate the hardening and to increase the resistances.
  • HSC hydrated calcium silicate seeds
  • Several modes of preparation of calcium silicate seeds have been proposed. Thus, a low density calcium silicate hydrate that can be added to the cement in powder form has been described in US 2002/0166479. Hydrated calcium silicate germs of very small particle size have also been proposed in the form of aqueous suspensions (FR 2 708 592 and WO2010 / 26155).
  • CSH seeds produced ex-situ are subject to carbonation problems and can disintegrate by giving a silica gel and CaCO 3 as a result of carbonation.
  • Alkanolamines, sodium silicates, lime, carbonates, and sodium aluminate have already been used as setting accelerators, in particular in Application FR 2 091 340.
  • the present invention relates to a hydraulic hydraulic binder in pulverulent form consisting of a cement, at least one calcium salt soluble in water, and at least one silicate compound selected from sodium silicate, sodium metasilicate, potassium silicate, potassium metasilicate, lithium silicate, lithium metasilicate and mixtures thereof.
  • the mixture of silicate compound and calcium salt according to the invention is used to accelerate the setting and / or hardening of a cement.
  • the calcium salt may represent from 0.1 to 10% by dry weight, preferably from 0.5 to 7% by dry weight, and more preferably from 1 to 7%, for example from 2 to 7% by dry weight. the weight of the cement.
  • the calcium salt content may range from 0.1 to 3.5% by dry weight, preferably from 0.5 to 3.5% by dry weight, for example from 1.5 to 3.5%, and from more preferably from 1.5 to 3.0% by dry weight of the cement weight.
  • the calcium salt is calcium chloride
  • its content be less than 0.6% by dry weight of the weight of the cement.
  • calcium chloride has the disadvantage of being hygroscopic and cause corrosion of metal reinforcement if it is present: too much in a concrete or mortar.
  • weight percent expressions as used in this application include bounds, where "x% to y%” is equivalent to "ranging from x% to y%". According to one embodiment of the invention, each range of values can be expressed excluding its terminals.
  • the silicate compound may represent from 0.1 to 10% by dry weight, preferably from 0.5 to 5%, more preferably from 1.5 to 6%, more preferably from 2 to 5% by dry weight of the weight. cement.
  • the content of the silicate compound can range from 0.1 to 3.5% by dry weight, preferably from 0.5 to 3.5%, for example from 1.5 to 3.5%, and more preferably from 1 to 3.5% by weight. , 5 to 3.0% by dry weight of the cement weight.
  • the sum of the percentages of the silicate compounds corresponds to the percentages given above with reference to a single silicate compound.
  • the hydraulic binder contains several calcium salts
  • the sum of the percentages of the calcium salts corresponds to the percentages given above with reference to a single calcium salt.
  • the present invention relates to a hydraulic binder in pulverulent form comprising or consisting of a cement, at least one calcium salt soluble in water, and at least one silicate compound chosen from silicate of sodium, sodium metasilicate, potassium silicate, potassium metasilicate, lithium silicate, lithium metasilicate and mixtures thereof,
  • the silicate compound representing from 0.1 to 3.5% by dry weight of the weight of the cement
  • the calcium salt representing from 0.1 to 3.5% by dry weight of the weight of the cement.
  • the term "from 0.1 to 3.5% by weight” as used in the preceding paragraph is preferably inclusive, but the terminals may be excluded.
  • the hydraulic binder may contain other compounds than the cement, the silicate compound and the calcium salt.
  • the second case the presence of other compounds in the binder is excluded.
  • silicate compound and of calcium salt greater than 3.5% by weight relative to the weight of the cement may cause a decrease in mechanical strength performance, especially in the long term. Amounts of silicate compound and calcium salt less than 0.1% do not allow to observe a sufficient setting acceleration.
  • the binder consists of cement, calcium salt and silicate, in the contents described above, any other additive accelerator not being necessary to obtain an improved setting time.
  • the calcium salt and the silicate salt form hydrated calcium silicate (C-S-H) seeds in the interstitial solution of the cement.
  • the accelerator in the form of a mixture of powders added to the dry cement before mixing, or in the mixing water, makes it possible very rapidly to synthesize in situ hydrated calcium silicate seeds which act as nuclei and as a support for growth to other new HSCs formed, which accelerates the germination and hydration kinetics of cement.
  • One of the two powders is a calcium salt providing calcium ions, and the other is a silicate supplying SiO (OH) 3 " silicate species, when these two powders are mixed simultaneously in a premix of cementitious powdery materials.
  • a mortar formulation they presumably produce CSH-type hydrates in situ in the cement matrix during rapid mixing of the powders in the basic medium.
  • the interstitial solution of the cement makes it possible to have a fast nucleation of CSH. Nucleation also improves the kinetics of development of the final mechanical properties of the hardened hydrated material derived from the cement.
  • calcium hydroxide is liberated in sufficient quantity 6 to 8 hours after the beginning of the reaction of water on the C 3 S phases of the cement and participates in the pozzoulanic reaction.
  • calcium hydroxide is available much earlier by the incorporation of a calcium salt, so that HSC seeds are formed more rapidly.
  • setting accelerator within the meaning of the invention covers a compound which improves the setting and / or hardening of a cement, and which consists of a mixture of at least two solid compounds.
  • the calcium salt is advantageously soluble in water and dissolves rapidly in water.
  • rapid dissolution is meant the dissolution in water of at least 90% by weight of the calcium compound introduced at a concentration of 2 g / l, at a temperature of 20 ° C., in a duration of less than 30 minutes. preferably in less than 10 minutes, more preferably in less than 5 minutes without stirring.
  • the complete dissolution of the calcium salt can be ascertained by conductimetry measurements of the aqueous solution.
  • the calcium salt may be chosen from organic salts of calcium carboxylic acids such as calcium formate, calcium acetate, calcium citrate, calcium lactate, calcium gluconate, calcium tartrate, calcium oxalate, calcium propionate, calcium stearate; inorganic calcium salts such as calcium chloride, calcium bromide, calcium fluoride, calcium iodide, calcium chlorate, calcium iodate, calcium phosphate, calcium nitrate, calcium calcium nitrite, calcium hypochloride, calcium bicarbonate, calcium sulfide, calcium oxide, calcium hydroxide, and mixtures thereof.
  • organic salts of calcium carboxylic acids such as calcium formate, calcium acetate, calcium citrate, calcium lactate, calcium gluconate, calcium tartrate, calcium oxalate, calcium propionate, calcium stearate
  • inorganic calcium salts such as calcium chloride, calcium bromide, calcium fluoride, calcium iodide, calcium chlorate, calcium iodate, calcium phosphate,
  • the calcium salt may be chosen from calcium formate, calcium acetate, calcium citrate, calcium lactate, calcium gluconate, calcium tartrate, calcium oxalate and calcium propionate.
  • the invention relates to a hydraulic binder in pulverulent form comprising a cement, at least one water-soluble calcium salt, and at least one silicate compound,
  • the calcium salt being chosen from calcium formate, calcium acetate, calcium citrate, calcium lactate, calcium gluconate, calcium tartrate, calcium oxalate, calcium propionate, calcium stearate, calcium bromide, calcium fluoride, calcium iodide, calcium chlorate, calcium iodate, calcium phosphate, calcium nitrate, calcium nitrite, hypochloride calcium, calcium bicarbonate, calcium sulphide, calcium oxide, calcium hydroxide and mixtures thereof,
  • the silicate compound being chosen from sodium silicate, sodium metasilicate, potassium silicate, potassium metasilicate, lithium silicate, lithium metasilicate and mixtures thereof,
  • the silicate compound representing from 2 to 5% by dry weight of the weight of the cement
  • the calcium salt representing from 2 to 7% by dry weight of the weight of the cement.
  • Calcium hydroxide is preferred as the calcium salt.
  • calcium nitrate or calcium hydroxide is preferred as the calcium salt.
  • the granulometry of the calcium salt is advantageously between 20 and 1000 microns.
  • the silicate compound may be chosen from sodium silicate (or sodium silicate), sodium metasilicate, potassium silicate, potassium metasilicate, lithium silicate, lithium metasilicate and mixtures thereof. Its particle size is advantageously between 20 and 1000 microns.
  • Silicates are distinguished from sodium metasilicates by their content of Na 2 0: sodium silicate contains up to 35% Na 2 0 whereas sodium metasilicate contains about 50% Na 2 0.
  • the silicate compound can be selected from commercial references
  • the calcium salt is calcium hydroxide
  • the silicate compound is sodium silicate or sodium metasilicate.
  • the amount of accelerator, which corresponds to the sum of the amounts of silicate and calcium salt, will be chosen according to the temperature at which it is desired to mix, the desired level of resistance or setting speed, and the type of cement used.
  • the mass ratio between the calcium salt and the silicate compound is preferably between 0.2 and 2.
  • the mass ratio between the calcium hydroxide and the silicate is advantageously between 0.2 and 2, preferably between 1.1 and 1.8.
  • the mass ratio between the calcium chloride and the silicate is advantageously between 0.4 and 2.
  • the mass ratio between the calcium nitrate and the alkali silicate is advantageously between 0.4 and 2.
  • cement means a cement chosen from Portland cements, Portland mixed cements, aluminous cements, sulpho-aluminous cements, natural quick-drying cements, magnesium cements, a pozzolan, or a binary, ternary or quaternary mixture comprising one of these different types of cement.
  • a composite cement comprises a Portland cement and one or more alternative materials such as siliceous and calcic fly ash, blast furnace slag, natural pozzolana, calcined synthetic, silica fume, calcareous filler or calcined schist, or metakaolin.
  • Pozzolans are compounds of the aluminosilicate or siliceous or calcium alumino-silicate type such as calcined clays, natural or calcined natural pozzolans, natural or calcined volcanic ash, kaolin, metakaolin, fly ash from thermal power plants, biomass fly ash, silica fumes, quartz flours, rice husk ashes, blast furnace slags, fully amorphous compounds such as soda-lime crushed high silica, glass powders natural or calcined volcanic ash.
  • the cement according to the invention advantageously comprises Portland cement or a mixing cement.
  • the Portland cement is selected from at least one of the following cements: Portland cement CEM I 52.5 N and R (EN 197-1: 2000), and Portland cement CEM I 42.5 N and R (EN 197-1: 2000), Portland cement CEM I 32.5 N and R, and a CEM II, III type mix cement , IV or V.
  • the blast furnace cement typically consists of a blend of 36 to 95% by weight of ground granulated blast furnace slags with Portland cement clinker: it is identified as CEM III / A-B-C grade cement.
  • the cement according to the invention preferably has a particle size of less than 100 ⁇ m. Its D50 (maximum size of 50% by volume of the cement particles) is less than 50 ⁇ m, preferably 30 ⁇ m and more preferably of the order of 5 to 20 ⁇ m.
  • the cement according to the invention may have an absolute density greater than or equal to 2.6 g / cm 3 , and generally an absolute density of less than or equal to 3.2 g / cm 3 .
  • the setting of the cement of the invention caused by the accelerator described above is exothermic.
  • the start time can therefore be determined by isothermal calorimetry.
  • the isothermal calorimetry curve gives the heat flux released by the exothermic hydration reaction of the cement. The greater the kinetics of the reaction and the heat released, the more the cement is activated.
  • On an isothermal calorimetry chart the onset of setting will result in a minimum of the curve to 1-2 hours, and the effect of a setting accelerator will result in translating the curve to a shorter time, while the effect of a hardening accelerator will result independently of the value of this abscissa, by an increase in the slope of the curve after the start of setting.
  • a second subject of the invention relates to a building material obtained from the previously described cement such as a concrete, a mortar, a pre-mixed mortar, a prefabricated element, a brick, a plate, a block or a panel coating. Concretes, mortars, pre-mixed mortars such as tiling adhesives, or building elements, obtained from the cement of the invention have a shorter setting time.
  • the cement according to the invention can advantageously be used, for example, in the following applications: ready-to-use concretes, common concretes, high-performance concretes, tile adhesives, smoothing and leveling plasters, coatings coatings, coatings and coatings for insulation complexes, repair mortars, facade coatings, waterproofing coatings, screeds, floor tiles and prefabricated elements (such as a concrete block or plate).
  • the invention aims in particular mortars or concretes obtained with the cement described above whose compressive strength is of the order of 8 and 18 MPa at 48 hours for Portland cement CEM I 42.5 respectively Normal and Reactive type; and from 18 to 28 MPa at 48 hours for a Portland CEM I 52.5 cement respectively of the Normal and Reactive type, measured according to the EN 196-1 standard.
  • the invention relates to other types of applications such as tile adhesives whose adhesion resistance values are between 0.5 and IMPa.
  • the hydraulic binders according to the invention can also be advantageously incorporated in any type of premixed mortar, such as fixing mortars, and more particularly grouting mortars, adhesive mortars, adhesives and more particularly adhesives for tiling or ceramic tile.
  • the hydraulic binder according to the present invention when mixed with sand, gravel, gravel, polymers and / or other organic additives, also makes it possible to prepare adhesive mortars and adhesives for bonding building construction materials.
  • the mounting mortar addition of one or more binders according to the invention, aggregates, additives and / or adjuvants, is used for the assembly of masonry elements. It can be intended for application with thick or thin joints.
  • the premixed mortars or concretes according to the invention may also be mortars or concretes for screeds, and more generally any type of mortar for soil which integrates in particular smoothing coatings. It may also be coatings type shotcrete.
  • the premixed mortars or concretes according to the invention may also be repair mortars which have an important role for the structures. They allow the restoration of concrete or its partial replacement.
  • injection mortars are fluids intended for filling cracks or cavities. These are generally applied by injection under pressure.
  • the premixed mortars or concretes according to the invention may advantageously be facade mortars such as leveling mortars, sub-coatings, monolayers, organic facing mortars and waterproofing and sealing compositions.
  • the patching mortars according to the invention are advantageously used for finishing a support (wall, floor, ceiling, etc.) in order to obtain a flat and smooth surface.
  • the undercoated mortars according to the invention advantageously make it possible to produce at least one intermediate layer of a "multilayer" coating system.
  • Monolayer mortars are applied in a layer that can perform waterproofing and decorative functions.
  • the waterproofing and waterproofing mortars according to the present invention are characterized by their resistance to rainwater, making them excellent weatherproofing products, they are therefore mortars of choice for application on the roof. the facades of the buildings.
  • the premixed mortars according to the invention can also be any type of plaster, as well as plaster, for work indoors or outdoors.
  • the pre-mixed concretes or mortars according to the invention are ready for use and advantageously used for covering the facades, to successfully install prefabricated element, tiling or paneling, and generally to build and maintain any type of building structure.
  • the panels or planks according to the invention will ideally be from 3 to 25 mm thick. They may preferably be made by mixing the hydraulic binder of the invention with aggregates, fillers or the like, followed by a curing step and then a cutting step.
  • the accelerator or the hydraulic binder according to the invention can be used for the production of prefabricated elements and for concretes produced on construction sites. It can also be used for the hardening of cement suspensions used for sealing and stabilizing rocks, broken floors and ground.
  • the accelerator can be used in a process of dry spraying or wet spraying of a mortar or concrete.
  • the concrete or mortar compositions according to the invention may also comprise adjuvants such as plasticizers or superplasticizers, for example products based on polycarboxylic acids and preferably polycarboxylic ethers, lignosulphonates, polynaphthalenulphonates, superplasticizers based on melamines, polyacrylates and / or vinyl copolymers, typically in contents of less than or equal to 5% by total weight of the dry weight of the cement. They may also include polymers such as cellulose ethers.
  • the building materials containing the cement according to the invention may comprise anti-foaming agents, surfactants, hydrophobic agents, surfactants, plasticizers or superplasticizers, water retenters, air entrainers, surfactants and / or inhibitors of corrosion, typically in contents less than or equal to 5% by total weight of the construction material, in particular a concrete or a mortar.
  • the third subject of the present invention is a process for the preparation of a building material as described above consisting of: 1) dry blending the cement, the calcium salt, the silicate compound, optionally aggregates and adjuvants, and to 2) moisturize the cement by adding mixing water.
  • the aggregates added to the mixture depend on the nature of the material that is desired. It is usually gravel, gravel, sand dolomitic nature or limestone or siliceous or silico-limestone of different granulometries.
  • the new accelerating agent according to the invention can be used under usual conditions of temperature and pressure (a temperature not exceeding 100 ° C., most often less than 70 ° C., of the order of 20 ° -30 ° C. , and a pressure of the order of magnitude of the atmospheric pressure).
  • the weight ratio between the weight of mixing water and the dry weight of cement is generally between 0.30 and 0.50 depending on the concrete or mortar application. For certain monolayer mortar type materials, the ratio of mixing water to cement is approximately 1.8.
  • the cement and the accelerator which have been premixed in the concrete mixing plant are stripped.
  • the accelerator can also be added to the truck before the start or on the way, or even on the site just before pouring concrete.
  • the accelerator is preferably added to the dry cement before mixing
  • the invention also relates to the use of the silicate compound and the calcium salt described above as accelerator for setting a cement, or as an accelerator for setting and hardening a cement.
  • the invention also relates to the use of the accelerator mixture for setting acceleration and possibly hardening of a mortar or concrete.
  • the accelerator can be added to cement, mortar or concrete, dry or tempered, at the factory or on site.
  • the supply can be carried out in the mixer, in the feed pump, the feed pipe, the pre-moistening nozzle, the spray nozzle of the mortar or concrete.
  • the accelerator can also be added directly to the dry mix by means of a mixer.
  • the accelerator content relative to the cement is at least 1% by dry weight relative to the weight of the cement.
  • the invention relates to a setting accelerator containing a silicate and a calcium salt making it possible to accelerate the setting of a cement in such a way that the setting time is at most 11 hours, preferably at most 10 hours, preferably between 6 and 10 hours.
  • the setting time can be measured by an isothermal calorimetry method by measuring the heat released by the material over time, the zero time corresponding to the addition of mixing water.
  • the setting time corresponds for example to the point of inflection of the curve representing the heat released by amount of hydrated cementitious paste (J / g of paste), as a function of time.
  • the setting of the cement of the invention can be further accelerated by an external supply of heat (for example by high temperature steaming in the case of prefabricated concrete).
  • a cement was prepared by mixing in a mixer
  • the mixer used is a Heidolph equipped with a variable speed drive and a rotating blade.
  • the setting time of the reference corresponds to the setting time of the previously prepared mixing cement to which no accelerator has been added. Then 40g of water was added to the powder mixture, the whole was mixed at a rotation speed of 300 rpm for 30 seconds, the time to obtain a homogeneous paste, then at a rotation speed of 2050 rpm for 1 min 30 sec to knead the dough. b) Measurement of setting time
  • the paste obtained is introduced into a hermetically sealed ampoule.
  • the latter is introduced into a TAM Air isothermal calorimeter, regulated at 20 ° C, with a hermetically sealed reference ampoule containing only water.
  • the mass of water contained in the reference bulb is obtained by a calculation which takes into account the balance of enthalpies related to the exothermic reactions of the cement mixture.
  • the introduction of the ampoule into the isothermal calorimeter can cause a loss of heat and energy balance calorimeter which generates a first peak at the time of introduction of the bulb and which represents a measuring artifact.
  • Silica fume used is commercially available from the company Elkem: its d50 is less than 5 microns and Blaine fineness is between 10 000 and 35 000 cm 2 / g. Table 2
  • the calorimetry graph reproduced in FIG. 2 makes it possible to determine the setting time corresponding to the point of inflexion of the heat curve (in Joules relative to the mass of dough).
  • silicate not in accordance with the silicate of the invention such as a silica fume in combination with a soluble calcium salt does not make it possible to obtain an accelerating effect as high as that obtained with the silicate of the invention ( see Comparative Examples E, F and G).
  • composition containing 30% Mikrover and 70% Portland cement (Reference) is represented by a smooth line.
  • composition containing 30% of Mikrover, 70% of Portland cement with the mixture of accelerators 1.5% Ca (OH) 2 + 1.5% Na 2 SiO 3 (example 1A) is represented by " ⁇ ".
  • composition containing 30% of Mikrover, 70% of Portland cement with the mixture of accelerators 3% Ca (OH) 2 + 3% Na 2 SiO 3 (example 1B) is represented by " ⁇ ".
  • the accelerator composition that has been used is shown in Tables 3 and 4.
  • Standardized sand was added to the powder mixture of the cement and the accelerator at the rate of 450 g of cement per 1350 g of standardized Leucate sand (EN-196-1).
  • the powder mixture was kneaded with a Rayneri apparatus equipped with a stainless steel drummer having the dimensions as well as speeds (small with rotation of 140 min 1 and large with rotations of 285 min -1 ) normalized.
  • the mortars were set up with a shock device (table) in molds containing three horizontal compartments allowing the simultaneous preparation of three prismatic test pieces with a cross section of 40 x 40 x 160 mm.
  • test pieces were stored for 24 hours in a humid atmosphere (relative humidity greater than 90%), then demolded and then stored in hermetically sealed plastic bags (and not in water, contrary to the specifications of the standard).
  • test machine After day and day of ripening, the specimens were subjected to the bending / compression test on a standard hydraulic press according to EN-196-1.
  • the test machine provides a load increase of 50 N / s ⁇ 10 N / s by flexion and 2400 N / s ⁇ 200 N / s by compression.
  • the test machine gives a resistance value with an accuracy error of less than or equal to ⁇ 1.0% of the recorded load.
  • test specimen was broken into two bending halves (2 support rollers, 100 mm spacing, one loading roller), and the compression test was performed on each half.
  • the witness is the mortar to which no accelerator has been added.
  • Comparative Examples 6, 7, 8 and 9 show that the simultaneous addition of silica fume with calcium nitrate causes a degradation of the short-term mechanical strengths (1 and 2 days) compared to the control, unlike the sample Ex.2A according to the invention.
  • the slower dissolution kinetics of silica fume compared to that of sodium silicate is involved.
  • the late addition of silicate species in the long term in combination with the available calcium ions results in a long-term mechanical gain, but insufficient in the short term.
  • Ex.2A sample according to the present invention does not show a degradation of the long-term mechanical strengths in comparison with the control formula (see Table 3).
  • Comparative Example Comp 12 shows that the addition of silica fume to lime generates a short-term mechanical gain, but this remains less than in ⁇ 2 ⁇ with the addition of sodium silicate combined with lime.
  • the examples according to the present invention show a synergistic effect compared to the addition of a single compound in the same mass proportions at 1 and 2 days and also a maintenance or a long-term improvement in mechanical performance (56 days) compared to the control sample.
  • the samples tested in accordance with the present invention make it possible to have both good performance in the short term (1 or 2 days) and in the longer term (56 days).
  • a cement was prepared by mixing 70% by weight of a cement of
  • the combination of a particular silicate compound and lime reduces the setting time regardless of the type of filler added to the cement (fine quartz, calcareous filler or slag), and whatever the substitution rate of Portiand Ultracem cement by a 30%, 50%, 70% and 80% milk.
  • the setting time is measured at the inflection point of the heat evolution curve in FIG. 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

La présente invention se rapporte à un nouvel accélérateur de prise de ciment composé de silicate de sodium et d'un sel de calcium.

Description

ACCELERATEUR DE PRISE DE CIMENT
La présente invention concerne un nouvel accélérateur de prise d'un ciment, un liant hydraulique comprenant un ciment et cet accélérateur, ainsi que les matériaux de construction obtenus à partir de ce liant hydraulique tel qu'un béton ou un mortier ou une pâte.
Le ciment présente la particularité quand il est mélangé à de l'eau de faire prise et de durcir - même sous l'eau - par des processus de dissolution des composés anhydres et de précipitation d'hydrates. En présence d'eau, les particules de ciment se dissolvent en surface et libèrent des espèces ioniques, lesquelles réagissent entre elles pour former des hydrates, notamment des hydrates de silicate et de calcium, qui précipitent dans la solution interstitielle et provoquent le durcissement du matériau. Plus précisément, deux phénomènes successifs se produisent au cours de l'évolution de la pâte de ciment: la prise et le durcissement.
Dès le mélange du ciment avec l'eau appelée eau de gâchage, les particules anhydres du ciment se transforment en gels puis en précipités de microcristaux hydratés dont la composition varie en fonction des concentrations des espèces chimiques relarguées par les particules. Généralement une à deux heures après le début du gâchage, on observe une augmentation brusque de la viscosité accompagnée d'un dégagement de chaleur, qui caractérise le début de prise. L'épaississement de la pâte est provoqué par l'accroissement rapide de microcristaux ou de précipités d'hydrates. Le début de prise se mesure donc par le temps qui s'écoule entre le moment du gâchage et le moment précis où la pâte s'épaissit et devient plus visqueuse en même temps qu'elle s'échauffe par libération d'énergie. La fin de la prise correspond au moment où la pâte cesse d'être déformable et se transforme en un matériau rigide.
Le durcissement fait suite au phénomène de prise et correspond à la période pendant laquelle l'hydratation se poursuit. La résistance du matériau, encore faible à la fin de la prise, va augmenter tout au long du durcissement, rapidement au début, puis de plus en plus lentement. La résistance mécanique du matériau cimentaire continue généralement de croître pendant une très longue période, mais la valeur de la résistance à 28 jours reste une valeur de référence conventionnelle pour les ciments Portland.
YAMMINE Joumana; FAMY Charlotte Les accélérateurs de prise ou de durcissement peuvent être sous forme de solution aqueuse, de suspension aqueuse, ou de poudre. Cependant, dans certaines applications, et notamment pour les mortiers de réparation ou les produits vendus en batch sec, l'emploi d'un accélérateur sous forme liquide n'est pas possible. L'accélérateur de la présente invention est sous forme de poudre, si bien qu'il peut être mélangé au ciment à sec. II n'est pas nécessaire de solubiliser l'accélérateur préalablement dans l'eau, et il n'est pas nécessaire de mouiller le ciment avant d'ajouter l'accélérateur. La préparation du mortier ou du béton s'en trouve considérablement simplifiée.
L'accélération de la prise et/ou du durcissement d'un ciment peut être obtenue par différents moyens, tels qu'un traitement thermique, l'utilisation d'accélérateurs chimiques ou une plus grande finesse du ciment. L'accélération chimique peut être généralement réalisée de deux façons : par addition de composés chimiques qui réagissent avec les particules de ciment, ou par incorporation de germes de cristallisation dans le ciment au moment du gâchage ou du broyage du ciment.
Le chlorure de calcium est par exemple connu comme accélérateur de durcissement des ciments de Portland et des ciments composés. Il est ajouté à raison de 2 % par rapport au poids du ciment et jusqu'à 3 % pour d'autres ciments de mélanges et des liants pouzzolaniques. D'autres accélérateurs sous forme de poudre qui se dissolvent dans l'eau sont: les carbonates alcalins et carbonates d'alcalino-terreux tels que le carbonate de calcium (FR 2810314); les silicates alcalins comme le silicate de sodium (US 2005/0268818), le silicate de potassium ou le silicate de lithium; les aluns de potassium; les sulfates d'alcalins et sulfates d'alcalino-terreux; les nitrates d'alcalins et les nitrates d'alcalino-terreux; les nitrites alcalins et alcalino-terreux; les sels d'hydroxydes d'alcalins, d'alcalino-terreux et métalliques; les sels de chlorure, les sels de formiate de calcium et d'aluminium; les thiocyanates alcalins et alcalino-terreux; les sulfates alcalins, alcalino-terreux et métalliques; les sulfites alcalins, alcalino-terreux et métalliques. L'utilisation d'un hydroxyde de calcium de faible granulométrie comme accélérateur de prise a par exemple été décrite dans le document WO 2006/111225.
Le second type d'accélérateur est constitué de germes de cristallisation comme les germes de silicates de calcium hydratés (en abrégé C-S-H) que l'on mélange au ciment au moment du gâchage (FR 1 213 645 et FR 1 276 696). Les germes de cristallisation déclenchent une précipitation cristalline: ils provoquent et orientent les cristallisations de manière à accélérer le durcissement et à accroître les résistances. Plusieurs modes de préparation de germes de silicate de calcium ont été proposés. Ainsi, un hydrate de silicate de calcium de faible densité qui peut être ajouté au ciment sous forme de poudre a été décrit dans le document US 2002/0166479. Des germes de silicates de calcium hydratés de très faible granulométrie ont été également proposés sous forme de suspensions aqueuses (FR 2 708 592 et WO2010/26155). Mais ces germes sont instables, si bien qu'il devient nécessaire de les stabiliser par un polymère, ce qui en augmente le coût. Au surplus, les germes de C-S-H fabriqués ex-situ sont soumis à des problèmes de carbonatation et peuvent se désintégrer en donnant un gel de silice et du CaC03 du fait de la carbonatation.
Une troisième façon de provoquer l'accélération d'un ciment a été récemment proposée par Parker et al. (US 2009/0277357) en mettant en présence deux types de silices finement divisées et de la chaux vive ou hydratée, pour former des germes de cristallisation dans le système cimentaire pendant la prise. Cependant, un tel système ne produit pas une accélération de prise suffisante.
Il existe donc un besoin de proposer un accélérateur de prise d'un ciment qui provoque une meilleure accélération de la prise que les accélérateurs de l'art antérieur, qui soit stable, sous forme solide et peu coûteux.
Les alcanolamines, les silicates de sodium, la chaux, les carbonates, et l'aluminate de sodium ont déjà été utilisés comme accélérateurs de prise, notamment dans la demande FR 2 091 340.
L'association d'un silicate tel que le métasilicate de sodium, et d'un sel de calcium tel que le chlorure de calcium ou l'hydroxyde de calcium a déjà été proposé pour promouvoir la formation de silicate de calcium hydratés ou pour accélérer la prise de fibres de laine de roche (FR 2 559 146 et US 2 945 769).
Dans le cadre de la présente invention, il a été découvert de façon surprenante que l'association d'un sel de calcium et d'un silicate dans des proportions particulières provoque une accélération synergique de la prise du ciment, si bien que les effets de la combinaison des deux composés est bien supérieure à la simple somme des effets de chacun d'eux pris séparément. Il a en outre été découvert, qu'à des teneurs en sel de calcium et en silicate plus faibles que celles préconisées dans l'art antérieur, une amélioration des résistances du ciment à court terme se produit sans dégradation de ses propriétés à long terme.
La présente invention concerne un liant hydraulique hydraulique sous forme pulvérulente constitué d'un ciment, d'au moins un sel de calcium soluble dans l'eau, et d'au moins un composé silicate choisi parmi le silicate de sodium, le métasilicate de sodium, le silicate de potassium, le métasilicate de potassium, le silicate de lithium, le métasilicate de lithium et leurs mélanges.
Le mélange de composé de silicate et de sel de calcium selon l'invention est utilisé pour accélérer la prise et/ou le durcissement d'un ciment.
Le sel de calcium peut représenter de 0,1 à 10% en poids sec, de préférence de 0,5 à 7% en poids sec, et de préférence encore de 1 à 7%, par exemple de 2 à 7% en poids sec du poids du ciment.
La teneur du sel de calcium peut aller de 0,1 à 3,5% en poids sec, de préférence de 0,5 à 3,5% en poids sec, par exemple de 1,5 à 3,5%, et de préférence encore de 1,5 à 3,0% en poids sec du poids du ciment.
Lorsque le sel de calcium est le chlorure de calcium, on préfère que sa teneur soit inférieure à 0,6% en poids sec du poids du ciment. En effet, le chlorure de calcium présente l'inconvénient d'être hygroscopique et de provoquer la corrosion d'armatures métalliques s'il est présent: en trop grande quantité dans un béton ou un mortier.
Les expressions de pourcentages en poids tel qu'elles sont utilisées dans la présente demande comprennent les bornes, « de x% à y% » étant équivalent à « allant de x% à y% ». Selon un mode de mise en œuvre de l'invention, chacune de plages de valeurs peut être exprimée en excluant ses bornes.
Le composé silicate peut représenter de 0,1 à 10% en poids sec, de préférence de 0,5 à 5%, de préférence encore de 1,5 à 6%, de préférence encore de 2 à 5% en poids sec du poids du ciment.
La teneur du composé silicate peut aller de 0,1 à 3,5% en poids sec, de préférence de 0,5 à 3,5%, par exemple de 1,5 à 3,5%, et de préférence encore de 1,5 à 3,0% en poids sec du poids du ciment.
Lorsque le liant hydraulique contient plusieurs composés silicate, la somme des pourcentages des composés silicate correspond aux pourcentages donnés précédemment en référence à un seul composé silicate. De même, lorsque le liant hydraulique contient plusieurs sels de calcium, la somme des pourcentages des sels de calcium correspond aux pourcentages donnés précédemment en référence à un seul sel de calcium.
Selon un de ses aspects, la présente invention porte sur un liant hydraulique sous forme pulvérulente comprenant ou constitué d'un ciment, d'au moins un sel de calcium soluble dans l'eau, et d'au moins un composé silicate choisi parmi le silicate de sodium, le métasilicate de sodium, le silicate de potassium, le métasilicate de potassium, le silicate de lithium, le métasilicate de lithium et leurs mélanges,
- le composé silicate représentant de 0,1 à 3,5% en poids sec du poids du ciment, et
- le sel de calcium représentant de 0,1 à 3,5% en poids sec du poids du ciment. L'expression « de 0,1 à 3,5% en poids » telle qu'elle est utilisée dans le paragraphe précèdent s'entend de préférence bornes incluses, mais les bornes peuvent être exclues.
Le terme « comprenant » n'a pas le même sens que le terme « constitué de ». Dans le premier cas, le liant hydraulique peut contenir d'autres composés que le ciment, le composé de silicate et le sel de calcium. Dans le deuxième cas, la présence d'autres composés dans le liant est exclue.
Des teneurs en composé silicate et en sel de calcium supérieures à 3,5% en poids par rapport au poids du ciment peuvent provoquer une diminution de performance de résistance mécanique, notamment à long terme. Des quantités en composé silicate et en sel de calcium inférieures à 0,1% ne permettent pas d'observer une accélération de prise suffisante.
Selon un mode de réalisation de l'invention, le liant est constitué du ciment, du sel de calcium et du silicate, dans les teneurs décrites précédemment, tout autre additif accélérateur n'étant pas nécessaire pour obtenir un temps de prise amélioré.
Dans l'expression « en poids sec du poids du ciment », on calcule le pourcentage par rapport au poids du ciment sec dépourvu de tout additif et d'eau. Le mot ciment est utilisé au sens strict.
Sans être lié par aucune théorie, on pense que le sel de calcium et le sel de silicate forment des germes de silicate de calcium hydraté (C-S-H) dans la solution interstitielle du ciment. L'accélérateur sous forme d'un mélange de poudres ajouté au ciment à sec avant le gâchage, ou dans l'eau de gâchage, permet de synthétiser très rapidement in situ des germes de silicates de calcium hydratés qui agissent comme nuclei et comme support de croissance à d'autres nouveaux C-S-H formés, ce qui accélère la germination et la cinétique d'hydratation du ciment.
L'une des deux poudres est un sel de calcium apportant des ions calcium, et l'autre est un silicate apportant des espèces silicatées SiO(OH)3 ". Lorsque ces deux poudres sont mélangées simultanément dans un pré-mélange de matériaux pulvérulents cimentaires constituant une formulation de mortier, ils produisent vraisemblablement lors du gâchage des hydrates purs de type C-S-H in situ dans la matrice cimentaire. La solubilisation rapide de ces poudres dans le milieu basique de la solution interstitielle du ciment permet d'avoir une nucléation rapide de C-S-H. La nucléation améliore aussi la cinétique de développement des propriétés mécaniques finales du matériau hydraté durci dérivant du ciment. Dans un ciment classique, de l'hydroxyde de calcium est libéré en quantité suffisante 6 à 8 heures après le début de la réaction de l'eau sur les phases C3S du ciment et participe à la réaction pouzzoulanique. Dans le cadre de la présente invention, l'hydroxyde de calcium est disponible beaucoup plus tôt grâce à l'incorporation d'un sel de calcium, si bien que des germes de C-S-H se forment plus rapidement.
Le terme « accélérateur de prise » au sens de l'invention couvre un composé qui améliore la prise et/ou le durcissement d'un ciment, et qui est constitué du mélange d'au moins deux composés solides.
Le sel de calcium est avantageusement soluble dans l'eau et se dissout rapidement dans l'eau. On entend par dissolution rapide, la dissolution dans l'eau d'au moins 90% en poids du composé de calcium introduit à une concentration de 2 g/1, à une température de 20°C, en une durée de moins de 30 minutes, de préférence en moins de 10 minutes, de préférence encore en moins de 5 minutes, sans agitation. La dissolution complète du sel de calcium peut être constatée par des mesures de conductimétrie de la solution aqueuse.
Le sel de calcium peut être choisi parmi les sels organiques d'acides carboxyliques de calcium tels que le formiate de calcium, l'acétate de calcium, le citrate de calcium, le lactate de calcium, le gluconate de calcium, le tartrate de calcium, l'oxalate de calcium, le propionate de calcium, le stéarate de calcium; les sels inorganiques de calcium tels que le chlorure de calcium, le bromure de calcium, le fluorure de calcium, l'iodure de calcium, le chlorate de calcium, l'iodate de calcium, le phosphate de calcium, le nitrate de calcium , le nitrite de calcium, l'hypochlorure de calcium, le bicarbonate de calcium, le sulfure de calcium, l'oxyde de calcium, l'hydroxyde de calcium et leurs mélanges.
Le sel de calcium peut être choisi parmi le formiate de calcium, l'acétate de calcium, le citrate de calcium, le lactate de calcium, le gluconate de calcium, le tartrate de calcium, l'oxalate de calcium, le propionate de calcium, le stéarate de calcium, le bromure de calcium, le fluorure de calcium, l'iodure de calcium, le chlorate de calcium, l'iodate de calcium, le phosphate de calcium, le nitrate de calcium, le nitrite de calcium, l'hypochlorure de calcium, le bicarbonate de calcium, le sulfure de calcium, l'oxyde de calcium, l'hydroxyde de calcium et leurs mélanges. Selon un autre de ses aspects, l'invention porte sur un liant hydraulique sous forme pulvérulente comprenant un ciment, au moins un sel de calcium soluble dans l'eau, et au moins un composé silicate,
- le sel de calcium étant choisi parmi le formiate de calcium, l'acétate de calcium, le citrate de calcium, le lactate de calcium, le gluconate de calcium, le tartrate de calcium, l'oxalate de calcium, le propionate de calcium, le stéarate de calcium, le bromure de calcium, le fluorure de calcium, l'iodure de calcium, le chlorate de calcium, l'iodate de calcium, le phosphate de calcium, le nitrate de calcium, le nitrite de calcium, l'hypochlorure de calcium, le bicarbonate de calcium, le sulfure de calcium, l'oxyde de calcium, l'hydroxyde de calcium et leurs mélanges,
- le composé silicate étant choisi parmi le silicate de sodium, le métasilicate de sodium, le silicate de potassium, le métasilicate de potassium, le silicate de lithium, le métasilicate de lithium et leurs mélanges,
- le composé silicate représentant de 2 à 5% en poids sec du poids du ciment, et - le sel de calcium représentant de 2 à 7% en poids sec du poids du ciment.
On préfère l'hydroxyde de calcium comme sel de calcium.
Les caractéristiques qui ont été décrites en rapport avec le premier aspect de l'invention s'appliquent à ce deuxième aspect.
Dans le cadre de la présente invention, on préfère le nitrate de calcium ou l'hydroxyde de calcium, comme sel de calcium.
La granulométrie du sel de calcium est avantageusement comprise entre 20 et 1000 microns.
Le composé silicate peut être choisi parmi le silicate de sodium (ou silicate de soude), le métasilicate de sodium, le silicate de potassium, le métasilicate de potassium, le silicate de lithium, le métasilicate de lithium et leurs mélanges. Sa granulométrie est avantageusement comprise entre 20 et 1000 microns.
On distingue les silicates des métasilicates de sodium par leur teneur en Na20 : le silicate de sodium contient jusqu'à 35% de Na20 tandis que le métasilicate de sodium contient environ 50% de Na20.
Le composé silicate peut être choisi parmi les références commerciales
Fischer Scientific, Cupanon® TR et Cupanon® Di de la société Van Baerle, et SS® 22 de la société PQ Corporation,
Selon un mode de réalisation, le sel de calcium est l'hydroxyde de calcium, et le composé de silicate est le silicate de sodium ou le métasilicate de sodium. La quantité d'accélérateur, qui correspond à la somme des quantités de silicate et sel de calcium, sera choisie en fonction de la température à laquelle on souhaite réaliser le gâchage, du niveau de résistance ou de vitesse de prise souhaitée, et du type de ciment utilisé.
Le ratio massique entre le sel de calcium et le composé silicate est de préférence compris entre 0,2 et 2.
Selon un mode de mise en œuvre, le ratio massique entre l'hydroxyde de calcium et le silicate est avantageusement compris entre 0,2 et 2, de préférence entre 1,1 et 1,8. Le ratio massique entre le chlorure de calcium et le silicate est avantageusement compris entre 0,4 et 2. Enfin, le ratio massique entre le nitrate de calcium et le silicate alcalin est avantageusement compris entre 0,4 et 2.
On entend par « ciment » au sens de l'invention, un ciment choisi parmi les ciments de Portland, les ciments Portland de mélange, les ciments alumineux, les ciments sulfo-alumineux, les ciments prompts naturels, les ciments magnésiens, une pouzzolane, ou un mélange binaire, ternaire ou quaternaire comprenant l'un de ces différents types de ciments.
Selon la norme EN 197-1, un ciment composé comprend un ciment Portland et un ou plusieurs matériaux alternatifs tels qu'une cendre volante siliceuse et calcique, un laitier de haut-fourneau, une pouzzolane naturelle, synthétique calcinée, une fumée de silice, un filler calcaire ou un schiste calciné, ou un métakaolin.
Les pouzzolanes sont des composés du type alumino-silicates ou siliceux ou calcium alumino-silicates comme les argiles calcinées, les pouzzolanes naturelles ou synthétiques calcinées, les cendres volcaniques naturelles ou calcinées, les kaolins, les métakaolins, les cendres volantes de centrales thermiques, les cendres volantes de biomasse, les fumées de silice, les farines de quartz, les cendres de cosse de riz, les laitiers de hauts-fourneaux, les composés totalement amorphes comme des verres sodo-calciques broyés à haute teneur en silice, les poudres de verre, les cendres volcaniques naturelles ou calcinées.
Le ciment selon l'invention comprend avantageusement du ciment de Portland ou un ciment de mélange.
Par « ciment Portland ou ciment de mélange», on désigne indifféremment tout ciment défini selon la norme EN 197-1 :2000. Toutes les combinaisons des ciments cités dans la norme EN 197-1:2000 sont également possibles pour préparer le ciment de l'invention. De préférence, le ciment Portland est sélectionné parmi au moins l'un des ciments suivants : un ciment Portland CEM I 52.5 N et R (norme EN 197-1:2000), et un ciment Portland CEM I 42.5 N et R (norme EN 197-1:2000), ciment Portland CEM I 32.5 N et R, et un ciment de mélange de type CEM II, III, IV ou V.
Le ciment de haut-fourneau consiste généralement en un mélange de 36 à 95% en poids de laitiers de hauts-fourneaux granulés broyés avec du clinker de ciment Portland: il est identifié sous la dénomination de ciment de classe CEM III/A- B-C.
Le ciment selon l'invention a de préférence une taille de particule inférieure à 100 pm. Son D50 (taille maximale de 50% en volume des particules de ciment) est inférieur à 50 pm, de préférence à 30 pm et de façon plus privilégiée de l'ordre de 5 à 20 pm. Le ciment selon l'invention peut avoir une masse volumique absolue supérieure ou égale à 2,6 g/cm3, et généralement une masse volumique absolue inférieure ou égale à 3,2 g/cm3.
La prise du ciment de l'invention provoquée par l'accélérateur décrit plus haut est exothermique. Le temps de début de prise peut donc être déterminé par calorimétrie isotherme. La courbe de calorimétrie isotherme donne le flux de chaleur dégagé par la réaction exothermique d'hydratation du ciment. Plus la cinétique de la réaction et la chaleur dégagée sont importants, plus le ciment est activé. Sur un diagramme de calorimétrie isotherme, le début de prise se traduira par un minimum de la courbe vers 1-2 heures, et l'effet d'un accélérateur de prise aura pour résultat de translater la courbe vers un temps plus court, tandis que l'effet d'un accélérateur de durcissement se traduira indépendamment de la valeur de cette abscisse, par un accroissement de la pente de la courbe après le début de prise.
Un deuxième objet de l'invention porte sur un matériau de construction obtenu à partir du ciment décrit précédemment tel qu'un béton, un mortier, un mortier pré-mélangé, un élément préfabriqué, une brique, une plaque, un bloc ou un panneau de revêtement. Les bétons, les mortiers, les mortiers pré-mélangés tels que les adhésifs pour carrelage, ou les éléments de construction, obtenus à partir du ciment de l'invention ont un temps de prise plus court.
Le ciment selon l'invention peut avantageusement être utilisé par exemple dans les applications suivantes : les bétons prêts à l'emploi, les bétons courants, les bétons de hautes performances, les colles à carrelage, les enduits de lissage et de ragréage, les enduits monocouches, les enduits de revêtements, les colles et enduits pour complexes isolants, les mortiers de réparation, les enduits de façade, les revêtements d'étanchéité, les chapes, les dallages pour sol et les éléments préfabriqués (comme un parpaing ou une plaque).
L'invention vise en particulier des mortiers ou des bétons obtenus avec le ciment décrit précédemment dont la résistance en compression est de l'ordre de 8 et 18 MPa à 48 heures pour un ciment Portland CEM I 42.5 respectivement du type Normal et Réactif ; et de 18 et 28 MPa à 48 heures pour un ciment Portland CEM I 52.5 respectivement du type Normal et Réactif, mesurées selon la norme EN 196-1. L'invention vise d'autres types d'applications comme les colles à carrelage dont les valeurs de résistance à l'adhérence sont comprises entre 0,5 et IMPa.
Les liants hydrauliques selon l'invention peuvent également être avantageusement incorporés dans tout type de mortier pré-mélangé, tels que des mortiers de fixation, et plus particulièrement des mortiers de jointoiement, des mortiers colles, des adhésifs et plus particulièrement des adhésifs pour carrelage ou carreau de céramique.
Le liant hydraulique selon la présente invention pris en mélange avec du sable, des gravillons, du gravier, des polymères et/ou d'autres additifs organiques, permettent également de préparer des mortier-colles et des adhésifs pour coller des matériaux de constructions du bâtiment. Pour sa part, le mortier de montage, addition d'un ou de plusieurs liants selon l'invention, de granulats, d'additifs et/ou d'adjuvants, est utilisé pour l'assemblage d'éléments de maçonnerie. Il peut être destiné à l'application à joints épais ou minces. Les mortiers ou bétons pré-mélangés selon l'invention peuvent également être des mortiers ou bétons pour chapes, et plus généralement tout type de mortier pour sol qui intègre notamment des enduits de lissage. Il peut également s'agir d'enduits du type béton projeté. Les mortiers ou bétons pré-mélangés selon l'invention peuvent aussi être des mortiers de réparation qui ont un rôle important pour les ouvrages. Ils permettent la remise en état de béton ou son remplacement partiel. On citera par exemple, des mortiers d'injection qui sont des fluides destinés aux comblements de fissures ou de cavités. Ces derniers sont généralement appliqués par injection sous pression. Les mortiers ou bétons pré-mélangés selon l'invention peuvent avantageusement être des mortiers de façade tels que des mortiers de ragréage, des sous-enduits, des monocouches, des mortiers de parements organiques et des compositions d'imperméabilisation et d'étanchéité. Les mortiers de ragréage selon l'invention sont avantageusement utilisés pour la finition d'un support (mur, sol, plafond, etc.) afin d'obtenir une surface plane et lisse. Les mortiers de sous-enduits selon l'invention permettent avantageusement de réaliser au moins une couche intermédiaire d'un système d'enduit "multicouches".
Les mortiers monocouches s'appliquent en une couche qui peut remplir des fonctions d'imperméabilisation et de décoration. Les mortiers d'imperméabilisation et d'étanchéité selon la présente invention se caractérisent par leur résistance à l'eau de pluie, ce qui en fait d'excellents produits de protection contre les intempéries, ils sont donc des mortiers de choix pour une application sur les façades des bâtiments. Les mortiers pré-mélangés selon l'invention peuvent également être tout type d'enduit, ainsi que des crépis, pour un travail en intérieur ou en extérieur.
Typiquement les bétons ou mortiers pré-mélangés selon l'invention sont prêts à l'emploi et son avantageusement utilisés pour habiller les façades, pour réussir la pose d'élément préfabriqué, du carrelage ou encore de panneau de revêtement, et de manière générale pour construire et entretenir tout type d'ouvrage du bâtiment. Les panneaux ou planches de revêtement selon l'invention seront idéalement d'une épaisseur de 3 à 25 mm. Ils pourront de préférence être fabriqués par un mélange du liant hydraulique de l'invention avec des granulats, des charges ou autres, suivi d'une étape de durcissement puis d'une étape de découpe.
L'accélérateur ou le liant hydraulique selon l'invention peut être utilisé pour la réalisation d'éléments préfabriqués et pour les bétons réalisés sur les chantiers. II peut également être utilisé pour le durcissement des suspensions de ciment utilisées pour l'étanchement et la stabilisation des roches, des sols désagrégés et des terrains. L'accélérateur peut être utilisé dans un procédé de projection à sec ou de projection humide d'un mortier ou d'un béton.
Les compositions de béton ou mortier selon l'invention peuvent également comprendre des adjuvants tels que des plastifiants ou superplastifiants, par exemple des produits à base d'acides polycarboxyliques et de préférence d'éthers polycarboxyliques, des lignosulphonates, des polynaphtalènessulphonates, des superplastifiants à base de mélamines, des polyacrylates et/ou des copolymères vinyliques, typiquement dans des teneurs inférieures ou égale à 5% en poids total du poids sec du ciment. Elles peuvent également comprendre des polymères tels que des éthers de cellulose.
De même, les matériaux de construction contenant le ciment selon l'invention peuvent comprendre des agents anti-moussants, des surfactants, des agents hydrophobes, des tensioactifs, des plastifiants ou superplastifiants, des rétenteurs d'eau, des entraîneurs d'air, des agents de surface et/ou des inhibiteurs de corrosion, typiquement dans des teneurs inférieures ou égales à 5% en poids total du matériau de construction, notamment un béton ou un mortier.
La présente invention a pour troisième objet un procédé de préparation d'un matériau de construction tel que décrit précédemment consistant à : 1) mélanger à sec le ciment, le sel de calcium, le composé de silicate, éventuellement des granulats et des adjuvants, et à 2) hydrater le ciment en ajoutant de l'eau de gâchage. Les granulats ajoutés au mélange dépendent de la nature du matériau que l'on souhaite obtenir. Il s'agit généralement de graviers, de gravillons, de sables de nature dolomitique ou calcaire ou siliceuse ou silico-calcaire de différentes granulométries.
Le nouvel agent accélérateur selon l'invention peut être utilisé dans des conditions habituelles de températures et de pression (une température n'excédant pas 100 °C, le plus souvent inférieure à 70 °C, de l'ordre de 20-30°C, et une pression de l'ordre de grandeur de la pression atmosphérique).
Le rapport massique entre le poids d'eau de gâchage et le poids sec de ciment est compris en général entre 0,30 et 0,50 en fonction de l'application béton ou mortier. Pour certains matériaux du type mortiers monocouches, le ratio entre l'eau de gâchage et le ciment est environ de 1,8.
Selon un mode de préparation, on gâche le ciment et l'accélérateur qui ont été préalablement mélangés dans la centrale à béton. L'accélérateur peut aussi être ajouté au niveau du camion toupie avant le départ ou en cours de chemin, ou même sur le chantier juste avant le coulage du béton. L'accélérateur est de préférence ajouté au ciment à sec avant le gâchage
L'invention concerne également l'utilisation du composé silicate et du sel de calcium décrit précédemment en tant qu'accélérateur de prise d'un ciment, ou en tant qu'accélérateur de prise et de durcissement d'un ciment. L'invention concerne également l'utilisation du mélange accélérateur pour l'accélération de prise et éventuellement de durcissement d'un mortier ou d'un béton.
L'accélérateur peut, être ajouté au ciment, au mortier ou au béton, sec ou gâché, en usine ou bien sur le chantier. L'apport peut s'effectuer dans le mélangeur, dans la pompe d'alimentation, la conduite d'alimentation, la buse de préhumidification, la buse de projection du mortier ou béton. L'accélérateur peut aussi être ajouté directement dans le mélange sec au moyen d'un mélangeur. Généralement, au cours de cette utilisation, la teneur en accélérateur par rapport au ciment est d'au moins 1 % en poids sec par rapport au poids du ciment. Enfin, l'invention concerne un accélérateur de prise contenant un silicate et un sel de calcium permettant d'accélérer la prise d'un ciment de telle façon que le temps de prise est d'au plus 11 heures, de préférence d'au plus 10 heures, de préférence compris entre 6 et 10 heures. Le temps de prise peut être mesuré par une méthode de calorimétrie isotherme par la mesure de la chaleur dégagée par le matériau au cours du temps, le temps zéro correspondant à l'ajout d'eau de gâchage. Le temps de prise correspond par exemple au point d'inflexion de la courbe représentant la chaleur dégagée par quantité de pâte cimentaire hydratée (J/g de pâte), en fonction du temps.
La prise du ciment de l'invention peut être en outre accélérée par un apport externe de chaleur (par exemple par étuvage à haute température dans le cas des bétons préfabriqués).
La présente invention et ses avantages sont illustrés pas les exemples qui suivent.
Exemple 1 : Accélération de prise d'un ciment a) Préparation du liant
On a préparé un ciment en mélangeant dans un malaxeur
- en poids d'un ciment Portland (CEM I) de référence Ciment Ultracem CEM I 52.5N CE CP2 NF fourni par la Société Calcia de d50=20 m et de finesse Blaine égale à 3590cm 2/g, et
- 30% en poids de poudre de verre sodo-calcique commercialisée par la société Poraver sous le nom commercial Mikrover® de d50=20pm.
Le malaxeur utilisé est un Heidolph équipé d'un variateur de vitesse et d'une pâle de rotation.
Ensuite, on a mélangé à sec dans un bol une quantité de 100g de ciment de mélange préparé précédemment avec le mélange accélérateur de l'invention ou un seul des composés du mélange, de façon à obtenir une bonne homogénéité des poudres. La quantité et la composition du mélange accélérateur ou du composé sont détaillées dans les tableaux 1 et 2 ci-dessous. Le pourcentage de l'accélérateur ou du composé est en masse par rapport à la masse de ciment préparé précédemment.
Le temps de prise de la référence correspond au temps de prise du ciment de mélange préparé précédemment auquel aucun accélérateur n'a été ajouté. Ensuite 40g d'eau ont été ajoutés au mélange de poudres, l'ensemble a subi un mélange à une vitesse de rotation de 300 tours/min durant 30 secondes, le temps d'obtenir une pâte homogène, puis à une vitesse de rotation de 2050 tours/min pendant 1 min 30 sec pour malaxer la pâte. b) Mesure du temps de prise
La pâte obtenue est introduite dans une ampoule scellée hermétiquement. Cette dernière est introduite dans un calorimètre isotherme TAM Air, régulé à 20°C, doté d'une ampoule de référence scellée hermétiquement contenant uniquement de l'eau. La masse d'eau contenue dans l'ampoule de référence est obtenue par un calcul qui prend en considération l'équilibre des enthalpies liées aux réactions exothermiques du mélange cimentaire. L'introduction de l'ampoule dans le calorimètre isotherme peut engendrer une perte d'équilibre thermique et énergétique du calorimètre ce qui engendre un premier pic au moment de l'introduction de l'ampoule et qui représente un artefact de mesure.
Tableau 1
Figure imgf000015_0001
1 La fumée de silice utilisée est disponible dans le commerce auprès de la société Elkem : son d50 est inférieur à 5 microns et sa finesse Blaine est comprise entre 10000 et 35000 cm2/g. Tableau 2
Figure imgf000016_0001
Le graphe de calorimétrie reproduit en Figure 2 permet de déterminer le temps de prise qui correspond au point: d'inflexion de la courbe de chaleur (en Joules par rapport à la masse de pâte).
On observe que l'ajout simultané de silicate de sodium (Na2Si03) et de sel de calcium soluble rapidement contribue grandement à l'accélération de la diffusion et de l'hydratation du ciment. En effet, l'ajout combiné d'un composé silicate avec un sel de calcium dans les exemples 1A, 1B, 1C et 1D donne un temps de prise plus court que l'ajout de l'un des composés seul selon les exemples comparatifs A, B, C et D. Il y a donc un effet synergique résultant du mélange combiné des deux composés.
Une autre source de silicate non conforme au silicate de l'invention telle qu'une fumée de silice en combinaison avec un sel de calcium soluble ne permet pas d'obtenir un effet accélérateur aussi élevé que celui obtenu avec le silicate de l'invention (voir les exemples comparatifs E, F et G).
Les courbes de flux de chaleurs (W/g pâte) du ciment seul (Référence) et du ciment auquel ont été ajoutés le mélange accélérateur composé de silicate de sodium et de chaux (exemples 1A et 113) sont représentées sur la Figure 1.
Les courbes de chaleurs dégagées (J/g pâte) du ciment seul (Référence) et du ciment auquel ont été ajoutés le mélange accélérateur composé de silicate de sodium et de chaux (exemples 1A et 113) sont représentées sur la Figure 2.
Dans les figures 1 et 2 :
- la composition contenant 30% de Mikrover et 70% de ciment Portland (Référence) est représentée par un trait lisse. - la composition contenant 30% de Mikrover, 70% de ciment Portland avec le mélange d'accélérateurs 1,5% Ca(OH)2 + 1,5% Na2Si03(exemple 1A) est représentée par des «□ ».
- la composition contenant 30% de Mikrover, 70% de ciment Portland avec le mélange d'accélérateurs 3% Ca(OH)2 + 3% Na2Si03(exemple 1B) est représentée par des « Δ ».
Exemple 2 : Mortiers a) Préparation de mortiers
On a préparé un mortier constitué de 2/3 de sable normalisé EN 196-1 (d5o=0,08 - 2 mm) et de 1/3 du liant hydraulique obtenu avec le ciment décrit dans l'exemple 1, selon le protocole de l'exemple 1, en faisant varier la composition de l'accélérateur utilisé. La composition des accélérateurs qui ont été utilisés est reportée dans les tableaux 3 et 4.
Le sable normalisé a été ajouté au mélange pulvérulent du ciment et de l'accélérateur à raison de 450 g de ciment pour 1350 g de sable normalisé Leucate (EN-196-1). Le mélange de poudres a été malaxé avec un appareil Rayneri équipé d'un batteur en acier inoxydable ayant les dimensions ainsi que des vitesses (petites avec rotation de 140 min 1 et grandes avec des rotations de 285 min"1) normalisées.
L'ensemble des matériaux pulvérulents a été mélangé à l'état sec durant 15 secondes. Ensuite, 225 mL d'eau ont été ajoutés durant le malaxage pour obtenir un rapport massique eau/ciment = 0,5. Le tout a été mélangé à la petite vitesse durant 30secondes, puis à grande vitesse durant 60secondes. b) Essais de résistance en compression
Des essais de résistance en compression ont été effectués selon la norme EN-196-1 sur ces mortiers.
Après malaxage mécanique, les mortiers ont été mis en place avec un appareil à choc (table) dans des moules contenant trois compartiments horizontaux permettant la préparation simultanée de trois éprouvettes prismatiques de section transversale de 40 x 40 x 160 mm.
Les éprouvettes ont été conservées pendant 24 heures en atmosphère humide (humidité relative supérieure à 90 %), puis démoulées et ensuite conservées dans des sacs plastiques hermétiquement scellés (et non pas dans l'eau, contrairement aux spécifications de la norme).
Après ljour et Zjoursde maturation, les éprouvettes ont été soumises à l'essai de flexion/compression sur une presse hydraulique normalisée selon la norme EN-196-1. La machine d'essai fournit une augmentation de charge de 50 N/s ± 10 N/s par flexion et 2 400 N/s ± 200 N/s par compression. La machine d'essai donne une valeur de résistance avec une erreur de justesse inférieure ou égale à ± 1,0 % de la charge enregistrée.
L'éprouvette a été brisée en deux moitiés par flexion (2 rouleaux d'appuis, espacement de 100 mm, un rouleau de chargement), et l'essai de compression a été réalisé sur chaque moitié.
Les valeurs de résistances en compression mesurées pour chacun des mortiers préparés précédemment après 1 jour et après 2 jours de maturation sont reportées dans les tableaux 3, 4 et 5.
Le témoin correspond au mortier auquel aucun accélérateur n'a été ajouté.
Tableau 3
Figure imgf000018_0001
Les essais réalisés à titre comparatifs et regroupés dans le tableau 3 montrent que l'ajout de sels de calcium tels que la chaux avec le silicate de sodium à des teneurs supérieures à 3% permet d'obtenir de très bonnes résistances mécaniques à court terme mais que celles-ci sont dégradées à long terme (56 jours). Tableau 4
Figure imgf000019_0002
Dans le tableau 4, les exemples comparatifs 6, 7, 8 et 9 montrent que l'ajout simultané de fumée de silice avec le nitrate de calcium engendre une dégradation des résistances mécaniques à court terme (1 et 2 jours) par rapport au témoin, contrairement à l'échantillon Ex.2A selon l'invention. La cinétique de dissolution plus lente de la fumée de silice en comparaison à celle du silicate de sodium est en cause. L'apport tardif des espèces silicatées à long terme en combinaison avec les ions calcium disponibles se traduit par un gain mécanique à long terme, mais insuffisant à court terme.
Toutefois, l'échantillon Ex.2A selon la présente invention ne montre pas de dégradation des résistances mécaniques à long terme en comparaison avec la formule témoin (voir tableau 3).
Tableau 5
Figure imgf000019_0001
Figure imgf000020_0001
Dans le tableau 5, l'exemple comparatif Comp 12 montre que l'ajout de fumée de silice à la chaux engendre un gain mécanique à court terme mais celui-ci reste moindre que dans ΓΕχ2Β avec l'ajout de silicate de sodium combiné à la chaux.
Tableau 6
Figure imgf000021_0001
Les exemples selon la présente invention (combinaison du silicate de sodium avec un sel de calcium) montrent un effet synergique par rapport à l'ajout d'un seul composé dans les mêmes proportions massiques à 1 et à 2 jours et également un maintien, voire une amélioration des performances mécaniques à long terme (56 jours) par rapport à l'échantillon témoin.
Les échantillons testés conformes à la présente invention permettent d'avoir à la fois de bonnes performances à court terme (1 ou 2 jours) et à plus long terme (56 jours).
Exemple 3 : Accélération de ciments de mélange
On a préparé un ciment en mélangeant 70% en poids d'un ciment de
Portland (CEM I) et 30% en poids d'une charge que l'on fait varier.
On a ajouté au ciment de mélange préparé précédemment 1,5% en poids de Ca(OH)2 et 1,5% en poids de Na2Si03 par rapport à la masse de ciment.
On ajoute ensuite de l'eau au liant hydraulique sec constitué du mélange pulvérulent ciment-accélérateur dans une proportion massique eau/ciment=0,4 dans les conditions décrites dans l'exemple 1.
Le laitier est tel que son d50= 30pm et sa finesse Blaine est égale à 4500 cm2/g- Tableau 6
Figure imgf000022_0001
La combinaison d'un composé silicate particulier et de chaux réduit le temps de prise quel que soit le type de charge ajoutée au ciment (quartz fin, filler calcaire ou laitier), et quel que soit le taux de substitution du ciment Portiand Ultracem par un laitier à 30%, 50%, 70% et 80%.
Les courbes de flux de chaleurs (W/g pâte) du ciment seul (exemple comparatif 3C) et du ciment auquel a été ajouté le mélange accélérateur composé de silicate et de chaux (exemple 3C) sont représentées sur la Figure 3.
Les courbes de chaleurs dégagées (J/g pâte) du ciment seul (exemple comparatif 3C) et du ciment auquel a été ajouté le mélange accélérateur composé de silicate et de chaux (exemple 3C) sont représentées sur la Figure 4.
Dans les figures 3 et 4 :
- les courbes correspondant au ciment contenant 30% de laitier et 70% de ciment Portiand, sans accélérateur sont représentées par des « + ».
- les courbes correspondant au ciment contenant 30% de laitier et 70% de ciment Portiand avec un accélérateur selon l'invention sont représentées par des « o ».
Le temps de prise est mesuré au point d'inflexion de la courbe de dégagement de chaleur sur la figure 4.

Claims

REVENDICATIONS
1. Liant hydraulique sous forme pulvérulente constitué d'un ciment, d'au moins un sel de calcium soluble dans l'eau, et d'au moins un composé silicate choisi parmi le silicate de sodium, le métasilicate de sodium, le silicate de potassium, le métasilicate de potassium, le silicate de lithium, le métasilicate de lithium et leurs mélanges,
- le composé silicate représentant de 0,1 à 3,5% en poids sec du poids du ciment, et
- le sel de calcium représentant de 0,1 à 3,5% en poids sec du poids du ciment.
2. Liant hydraulique selon la revendication 1, caractérisée en ce que le sel de calcium est choisi parmi le formiate de calcium, l'acétate de calcium, le citrate de calcium, le lactate de calcium, le gluconate de calcium, le tartrate de calcium, l'oxalate de calcium, le propionate de calcium, le stéarate de calcium, le chlorure de calcium, le bromure de calcium, le fluorure de calcium, l'iodure de calcium, le chlorate de calcium, l'iodate de calcium, le phosphate de calcium, le nitrate de calcium, le nitrite de calcium, l'hypochlorure de calcium, le bicarbonate de calcium, le sulfure de calcium, l'oxyde de calcium, l'hydroxyde de calcium et leurs mélanges.
3. Liant hydraulique selon la revendication 1 ou 2, caractérisé en ce que le sel de calcium est choisi parmi l'hydroxyde de calcium, le nitrate de calcium et leurs mélanges.
4. Liant hydraulique selon l'une des revendications précédentes, caractérisé en ce que le sel de calcium est l'hydroxyde de calcium, et le composé de silicate est le silicate de sodium ou le métasilicate de sodium.
5. Liant hydraulique selon l'une des revendications précédentes, caractérisé en ce que le ratio massique entre le sel de calcium et le composé silicate est de préférence compris entre 0,2 et 2.
6. Liant hydraulique selon l'une des revendications précédentes, caractérisé en ce que la granulométrie du sel de calcium est avantageusement comprise entre 20 et 1000 microns.
7. Liant hydraulique selon l'une des revendications précédentes, caractérisé en ce que la granulométrie du composé silicate est comprise entre 20 et 1000 microns.
8. Liant hydraulique selon l'une des revendications précédentes, caractérisé en ce que le composé silicate représente de 1,5 à 3,5% en poids sec du poids du ciment.
9. Liant hydraulique selon l'une des revendications précédentes, caractérisé en ce que le sel de calcium représente de 1,5 à 3,5% en poids sec du poids du ciment.
10. Liant hydraulique selon l'une des revendications précédentes, caractérisé en ce que le sel de calcium représente de 1,5 à 3,0% en poids sec du poids du ciment, et que le composé silicate représente de 1,5 à 3,0% en poids sec du poids du ciment.
11. Liant hydraulique selon l'une des revendications précédentes, caractérisé en ce que le ciment est choisi parmi les ciments de Portiand, les ciments Portiand de mélange, les ciments alumineux, les ciments sulfo-alumineux, les ciments prompts naturels, les ciments magnésiens, une pouzzolane, ou un mélange binaire, ternaire ou quaternaire comprenant l'un de ces différents types de ciments.
12. Utilisation d'un composé silicate choisi parmi le silicate de sodium, le métasilicate de sodium, le silicate de potassium, le métasilicate de potassium, le silicate de lithium, le métasilicate de lithium et leurs mélanges et d'un sel de calcium soluble dans l'eau, comme accélérateur de prise d'un ciment, notamment pour obtenir un temps de prise inférieur à 11 heures,
- le composé silicate représentant de 0,1 à 3,5% en poids sec du poids du ciment, et
- le sel de calcium représentant de 0,1 à 3,5% en poids sec du poids du ciment.
13. Matériau de construction renfermant un liant hydraulique selon l'une des revendications 1 à 11, tel qu'un béton, un mortier, un mortier pré-mélangé, un enduit, une colle, un élément préfabriqué, une brique, une plaque, un bloc ou un panneau de revêtement.
14. Procédé de préparation d'un matériau de construction, qui comprend - le mélange à sec d'un ciment, d'un composé silicate choisi parmi le silicate de sodium, le métasilicate de sodium, le silicate de potassium, le métasilicate de potassium, le silicate de lithium, le métasilicate de lithium et leurs mélanges, et d'un sel de calcium soluble dans l'eau, le composé silicate représentant de 0,1 à 3,5% en poids sec du poids du ciment, et le sel de calcium représentant de 0,1 à 3,5% en poids sec du poids du ciment, puis
- l'ajout d'eau de gâchage dans une proportion massique comprise entre 0,30 et 1,8 par rapport au poids sec du mélange de ciment, de composé silicate et de sel de calcium.
PCT/FR2012/051172 2011-05-26 2012-05-24 Accelerateur de prise de ciment WO2012160319A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12731060.5A EP2714612B1 (fr) 2011-05-26 2012-05-24 Liant hydraulique comprenant un accélérateur, son utilisation et procédé de préparation d'un matériau de construction
ES12731060T ES2745743T3 (es) 2011-05-26 2012-05-24 Aglutinante hidráulico que comprende un acelerador, su utilización y procedimiento de preparación de un material de construcción

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1154584 2011-05-26
FR1154584 2011-05-26

Publications (1)

Publication Number Publication Date
WO2012160319A1 true WO2012160319A1 (fr) 2012-11-29

Family

ID=46420376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/051172 WO2012160319A1 (fr) 2011-05-26 2012-05-24 Accelerateur de prise de ciment

Country Status (4)

Country Link
EP (1) EP2714612B1 (fr)
ES (1) ES2745743T3 (fr)
PT (1) PT2714612T (fr)
WO (1) WO2012160319A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014114782A1 (fr) * 2013-01-25 2014-07-31 Basf Se Composition d'accélérateur de durcissement
CN104402009A (zh) * 2014-10-29 2015-03-11 上海建工集团股份有限公司 一种水化硅酸钙凝胶溶液早强剂及其制备方法
WO2016169981A1 (fr) 2015-04-21 2016-10-27 Basf Se Procédé de fabrication d'un accélérateur de durcissement sous forme de poudre comprenant un hydrate de silicate de calcium
US10800703B1 (en) 2018-10-26 2020-10-13 The United States Of America As Represented By The Secretary Of The Air Force Cementitious material
CN113583642A (zh) * 2021-08-30 2021-11-02 卫辉市化工有限公司 油井水泥用改性纳米二氧化硅早强促凝剂、制备方法及其应用
US11746051B2 (en) 2020-01-24 2023-09-05 Permabase Building Products, Llc Cement board with water-resistant additive

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR539577A (fr) * 1920-08-30 1922-06-28 Procédé pour rendre les masses de ciment, de béton et de mortier appropriées à l'exécution des travaux d'étanchement, installations d'assèchement, constructions hydrauliques et entreprises analogues
GB606153A (en) * 1943-01-13 1948-08-06 Henry Avellan Method of producing a solidifying medium for concrete
FR1213645A (fr) 1958-09-23 1960-04-01 Procédé d'activation et d'amplification, par utilisation combinée, des performances propres à certains accélérateurs de durcissement des liants hydrauliques
US2945769A (en) 1957-08-08 1960-07-19 Bj Service Inc Cement composition
FR1276696A (fr) 1960-11-10 1961-11-24 Procédé de fabrication de germes cristallins pour l'accélération du dureissementdes liants hydrauliques
FR1427942A (fr) * 1964-12-22 1966-02-11 Great Lakes Carbon Corp Procédé de conversion des boues de forage en mortiers destinés à cimenter des puits de pétrole et de gaz naturels
FR2091340A5 (fr) 1970-05-12 1972-01-14 Sika Ag
DE2232240A1 (de) * 1971-07-02 1973-01-18 Rhone Progil Beschleuniger fuer das abbinden und aushaerten von portlandzementen und anderen tricalciumsilicatreichen zementen
US4482379A (en) * 1983-10-03 1984-11-13 Hughes Tool Company Cold set cement composition and method
FR2559146A1 (fr) 1984-02-06 1985-08-09 Hoechst France Composition destinee a la confection de revetements isolants a prise rapide, dans le domaine du batiment
EP0189928A2 (fr) * 1985-02-01 1986-08-06 -CB-Marner GmbH Mortier prêt à l'emploi, transportable hydromécaniquement
FR2708592A1 (fr) 1993-07-29 1995-02-10 Lafarge Coppee Agent accélérateur de prise et du durcissement des liants hydrauliques siliciques.
FR2810314A1 (fr) 2000-06-20 2001-12-21 Lafarge Aluminates Liant rapide pour beton autocompactant, utilisation et applications d'un tel liant
US20020166479A1 (en) 2001-03-05 2002-11-14 Chongjun Jiang Low density accelerant and strength enhancing additive for cementitious products and methods of using same
US20050268818A1 (en) 2001-10-31 2005-12-08 Colavito Dominick M Method, composition and apparatus for controlled concrete
WO2006111225A1 (fr) 2005-04-19 2006-10-26 Construction Research & Technology Gmbh Liant hydraulique
US20080202752A1 (en) * 2007-02-26 2008-08-28 Bj Services Company Low density, high yield cement slurry formulation and method of using the same
US20090277357A1 (en) 2007-08-27 2009-11-12 Frank Parker Mineral Binder and Process for Producing Same
WO2010026155A1 (fr) 2008-09-02 2010-03-11 Construction Research & Technology Gmbh Composition d'un accélérateur de durcissement contenant un plastifiant

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2336723A (en) * 1941-03-11 1943-12-14 John V Drummond Concrete, cement, and the like, and the process of making the same
US4050948A (en) * 1976-03-23 1977-09-27 Bj-Hughes Inc. Method of making lightweight cement slurries and their uses

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR539577A (fr) * 1920-08-30 1922-06-28 Procédé pour rendre les masses de ciment, de béton et de mortier appropriées à l'exécution des travaux d'étanchement, installations d'assèchement, constructions hydrauliques et entreprises analogues
GB606153A (en) * 1943-01-13 1948-08-06 Henry Avellan Method of producing a solidifying medium for concrete
US2945769A (en) 1957-08-08 1960-07-19 Bj Service Inc Cement composition
FR1213645A (fr) 1958-09-23 1960-04-01 Procédé d'activation et d'amplification, par utilisation combinée, des performances propres à certains accélérateurs de durcissement des liants hydrauliques
FR1276696A (fr) 1960-11-10 1961-11-24 Procédé de fabrication de germes cristallins pour l'accélération du dureissementdes liants hydrauliques
FR1427942A (fr) * 1964-12-22 1966-02-11 Great Lakes Carbon Corp Procédé de conversion des boues de forage en mortiers destinés à cimenter des puits de pétrole et de gaz naturels
FR2091340A5 (fr) 1970-05-12 1972-01-14 Sika Ag
DE2232240A1 (de) * 1971-07-02 1973-01-18 Rhone Progil Beschleuniger fuer das abbinden und aushaerten von portlandzementen und anderen tricalciumsilicatreichen zementen
US4482379A (en) * 1983-10-03 1984-11-13 Hughes Tool Company Cold set cement composition and method
FR2559146A1 (fr) 1984-02-06 1985-08-09 Hoechst France Composition destinee a la confection de revetements isolants a prise rapide, dans le domaine du batiment
EP0189928A2 (fr) * 1985-02-01 1986-08-06 -CB-Marner GmbH Mortier prêt à l'emploi, transportable hydromécaniquement
FR2708592A1 (fr) 1993-07-29 1995-02-10 Lafarge Coppee Agent accélérateur de prise et du durcissement des liants hydrauliques siliciques.
FR2810314A1 (fr) 2000-06-20 2001-12-21 Lafarge Aluminates Liant rapide pour beton autocompactant, utilisation et applications d'un tel liant
US20020166479A1 (en) 2001-03-05 2002-11-14 Chongjun Jiang Low density accelerant and strength enhancing additive for cementitious products and methods of using same
US20050268818A1 (en) 2001-10-31 2005-12-08 Colavito Dominick M Method, composition and apparatus for controlled concrete
WO2006111225A1 (fr) 2005-04-19 2006-10-26 Construction Research & Technology Gmbh Liant hydraulique
US20080202752A1 (en) * 2007-02-26 2008-08-28 Bj Services Company Low density, high yield cement slurry formulation and method of using the same
US20090277357A1 (en) 2007-08-27 2009-11-12 Frank Parker Mineral Binder and Process for Producing Same
WO2010026155A1 (fr) 2008-09-02 2010-03-11 Construction Research & Technology Gmbh Composition d'un accélérateur de durcissement contenant un plastifiant

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014114782A1 (fr) * 2013-01-25 2014-07-31 Basf Se Composition d'accélérateur de durcissement
US9598315B2 (en) 2013-01-25 2017-03-21 Basf Se Hardening accelerator composition
CN104402009A (zh) * 2014-10-29 2015-03-11 上海建工集团股份有限公司 一种水化硅酸钙凝胶溶液早强剂及其制备方法
CN104402009B (zh) * 2014-10-29 2017-02-15 上海建工集团股份有限公司 一种水化硅酸钙凝胶溶液早强剂及其抽滤制备方法
WO2016169981A1 (fr) 2015-04-21 2016-10-27 Basf Se Procédé de fabrication d'un accélérateur de durcissement sous forme de poudre comprenant un hydrate de silicate de calcium
US10144673B2 (en) 2015-04-21 2018-12-04 Basf Se Method for producing a calcium silicate hydrate-comprising hardening accelerator in powder form
US10800703B1 (en) 2018-10-26 2020-10-13 The United States Of America As Represented By The Secretary Of The Air Force Cementitious material
US11746051B2 (en) 2020-01-24 2023-09-05 Permabase Building Products, Llc Cement board with water-resistant additive
CN113583642A (zh) * 2021-08-30 2021-11-02 卫辉市化工有限公司 油井水泥用改性纳米二氧化硅早强促凝剂、制备方法及其应用

Also Published As

Publication number Publication date
EP2714612A1 (fr) 2014-04-09
ES2745743T3 (es) 2020-03-03
EP2714612B1 (fr) 2019-07-17
PT2714612T (pt) 2019-10-30

Similar Documents

Publication Publication Date Title
EP2496533B1 (fr) Liants pour materiaux de construction
EP2714612B1 (fr) Liant hydraulique comprenant un accélérateur, son utilisation et procédé de préparation d'un matériau de construction
EP0711259B1 (fr) Agent accelerateur de prise et du durcissement des liants hydrauliques siliciques
EP2822912B1 (fr) Utilisation d'au moins un polymere superabsorbant -psa- (b), dans une composition seche a base de liant mineral et destinee a la preparation d'une formulation humide durcissable pour le batiment
EP2523922B9 (fr) Enduit isolant a base de xerogel de silice
EP2467349B1 (fr) Ciment geopolymerique et son utilisation
EP2576478B1 (fr) Liant hydraulique ou mortier a volume stable
WO2016102867A1 (fr) Liant a base de compose minéral solide riche en oxyde alcalino-terreux avec activateurs phosphatés
EP3535227B1 (fr) Composition de construction seche projetable en voie humide a l'aide d'une pompe a vis et comprenant un liant et une charge biosourcee - preparation et applications d'une telle composition
EP3371127A1 (fr) Composition de construction seche projetable en voie humide a l'aide d'une pompe a vis et comprenant un liant et une charge biosourcee - preparation et applications d'une telle composition
MXPA06014916A (es) Composicion y aplicacion de cemento de fosfato espreable novedoso que se une a styrofoam.
EP3442929A1 (fr) Composition de mortier fortement allege et isolant thermique
EP3383820B1 (fr) Enduit interieur en pate comprenant un système bi-composant et procede d'application
WO2011086133A1 (fr) Adjuvant moussant pour la preparation de mousses minerales d'enduits, de mortiers et betons, mousses ainsi obtenues et produits durcis issus de ces mousses
WO2012127066A1 (fr) Composition cimentaire seche pour la preparation d'une formulation humide d'enduit, de mortier ou de beton sans efflorescence
EP2935144A1 (fr) Composition de béton ou mortier allégé comprenant une mousse aqueuse
FR3001727A1 (fr) Liant hydraulique
FR3084357A1 (fr) Liant contenant une argile.
FR2746792A1 (fr) Enduits monocouche d'impermeabilisation
WO2017013376A1 (fr) Procede de preparation d'un béton ou mortier allegé contenant de la glycerine
FR2892116A1 (fr) Procede de preparation d'une composition a base de sulfate de calcium resistante a l'eau.
EP1032545A1 (fr) Agent modificateur d'hydratation pour mortier ou beton a retrait limite
WO2018220287A1 (fr) Enduit interieur en pate, procede d'application et dispositif de melange et de projection de l'enduit
RU2278086C2 (ru) Сухая штукатурная смесь

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12731060

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012731060

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE