WO2012114022A1 - Echangeur thermique incorpore dans une paroi d'un aeronef - Google Patents

Echangeur thermique incorpore dans une paroi d'un aeronef Download PDF

Info

Publication number
WO2012114022A1
WO2012114022A1 PCT/FR2012/050340 FR2012050340W WO2012114022A1 WO 2012114022 A1 WO2012114022 A1 WO 2012114022A1 FR 2012050340 W FR2012050340 W FR 2012050340W WO 2012114022 A1 WO2012114022 A1 WO 2012114022A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
aircraft
ribs
aircraft according
heat transfer
Prior art date
Application number
PCT/FR2012/050340
Other languages
English (en)
Inventor
Bernard Guering
Yves Durand
Original Assignee
Airbus Operations Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Operations Sas filed Critical Airbus Operations Sas
Priority to CN201280009946.3A priority Critical patent/CN103402873B/zh
Priority to EP20120709923 priority patent/EP2678224B1/fr
Publication of WO2012114022A1 publication Critical patent/WO2012114022A1/fr
Priority to US13/970,867 priority patent/US9446850B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D13/08Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned the air being heated or cooled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0614Environmental Control Systems with subsystems for cooling avionics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0674Environmental Control Systems comprising liquid subsystems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2225/00Reinforcing means
    • F28F2225/04Reinforcing means for conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency

Definitions

  • the present invention relates to a heat exchanger incorporated in a wall of an aircraft.
  • the fuselage of an aircraft comprises a structure mainly providing the force recovery function on which is reported an envelope giving the aircraft its aerodynamic properties.
  • the structure comprises beams, frames, rails, stiffeners or the like, assembled together. These elements may be metallic and / or composite material.
  • the envelope is in the form of a juxtaposition of panels or complete sections of metal sheets connected to the structure by riveting or any suitable means. Alternatively, these panels may be of composite material.
  • FIGS. 1 and 2 an aircraft is shown at 10 and different zones such as a front landing gear compartment 12 in which the landing gear 12 before landing in flight can be accommodated, a front cargo hold 14 in which are arranged equipment and electrical systems 16 followed by a hold cargo said 18.
  • the forward gear box 12 and the technical compartment 14 are disposed at the front tip of the aircraft under the cockpit.
  • the cargo hold 18 is arranged under the passenger cabin.
  • Some areas of the aircraft are thermally insulated from the outside of the fuselage and pressurized such as for example bunkers 14 and 18, the cockpit or passenger cabin while others are not as per
  • the temperature of the air present inside the train compartment can go down to -50 ° C in flight and be at a temperature close to the air temperature present at the outside of the fuselage.
  • the air present in said box of the train can be subjected to flows with speeds much lower than those of the air present outside the fuselage.
  • the fore train box 12 is part of the aircraft structure. It comprises two side walls 20, one of which is shown in section in FIG. 4, a bottom connecting the upper edges of the side walls and a front wall and a rear wall respectively connecting the front edges and the rear edges of the side walls.
  • the frames of the aircraft structure disposed at the nose gear box do not extend over the entire periphery of the fuselage and include a cutout to allow the passage of the landing gear. Thus, these frames are connected to the lower edges of the side walls 20 of the train box.
  • the walls of the box front 12 include many reinforcements at their faces.
  • the outer face 22 of the side walls 20 comprises stiffeners 24 oriented in a direction substantially perpendicular to the planes of the frames.
  • the aircraft comprises many elements such as electrical equipment and systems 16 present in the prior art hold 14 which produce heat and it is necessary to cool.
  • air taken from the cargo hold 18 is blown into the electrical equipment and systems 16.
  • This air, which carries them through, is heated to be conveyed to one or more exchangers 26.
  • a conduit network 28 for fresh air is provided between the cargo hold 18 and the electrical equipment and systems 16 and a network of ducts 30 for the heated air is provided between the equipment and electrical systems 16 and the exchanger 26.
  • the heat exchangers 26 are arranged in one or more ducts 32 in which they flow from the air that is taken outside the fuselage via at least one air intake 34 and which is rejected outside the fuselage via at least one air outlet 36.
  • the shapes and / or dimensions of the inputs 34 and the outputs 36 are optimized.
  • document F -2.915.7333 describes a mobile output grid.
  • the present invention provides an alternative or a complement to the thermal transfer devices to the outside of the aircraft of the prior art.
  • the subject of the invention is an aircraft comprising at least one wall delimiting a first zone of the thermally insulated aircraft from the outside of the aircraft and a second zone contained in the non-thermally insulated aircraft with respect to the outside of the aircraft and a heat exchanger in which circulates a heat transfer fluid, characterized in that said wall comprises at least one conduit in which circulates the heat transfer fluid so as to perform the function of heat exchanger.
  • FIG. 1 is a side view of the front of an aircraft schematically illustrating a cooling device according to the prior art
  • FIG. 2 is a perspective view illustrating elements present in a prior art hold according to the prior art
  • FIG. 3 is a diagram illustrating a heat dissipation device according to the prior art
  • FIG. 4 is a section of a side wall of a landing gear bay according to the prior art
  • FIG. 5 is a side view of the front of an aircraft schematically illustrating a cooling device according to the invention
  • FIG. 6 is a perspective view illustrating an optimized arrangement of elements present in a forward cargo hold; technique according to the invention
  • FIG. 7 is a perspective view of a box of a train according to a first point of view situated outside the aircraft
  • FIG. 8 is a perspective view of a box of a train according to another point of view situated inside the aircraft,
  • FIG. 9 is a section of a wall of a landing gear compartment according to the invention.
  • FIG. 10 is a side view of a wall of a landing gear compartment according to the invention illustrating a circuit provided for a heat transfer fluid
  • FIG. 11 is a section illustrating a detail of the circuit of FIG. 10
  • FIG. 12A is a section illustrating another variant of the circuit provided for a heat transfer fluid integrated in a wall of a landing gear compartment;
  • FIG. 5 shows the front of an aircraft 50 comprising a landing block 52 capable of containing a landing gear 54, a technical cargo hold 56 in which are disposed furniture 58 containing electrical equipment and cargo berth 60 separated by a partition of the technical cargo hold 56.
  • Some areas of the aircraft are thermally insulated from the outside of the fuselage and pressurized, such as bunkers 56 and 60, the cockpit or passenger cabin, while others are not, such as the 52.
  • the temperature of the air inside the train compartment can drop to -50 ° C in flight and be at a temperature close to the temperature of the air present outside the fuselage.
  • the air present in said train compartment is subjected to flows with speeds much lower than those of the air present outside the fuselage and does not generate heating at the walls of the box of train.
  • furniture means any form of container, such as a cabinet, a chest, a housing, able to contain particularly electrical equipment.
  • the furniture 58 are arranged in the technical crown bore so as to release a single central volume.
  • This solution provides a privileged access to the front of furniture 58 and better segregation of critical equipment (the main equipment and redundant equipment being diametrically opposed).
  • This arrangement also makes it possible to provide compartments under the floor clear in the central part in which electrical equipment can be arranged.
  • the cleared central space can be used for other purposes, such as for example as a room fitted for the crew.
  • electrical equipment constitutes a hot source 62 that it is necessary to cool or maintain in a temperature range.
  • heat source 62 is understood to mean any device (for example an exchanger) or any fluid (for example passenger cabin air) which must be cooled or maintained within a given temperature range by means of to a cooling device.
  • a cooling device comprises at least a first heat exchanger ensuring the heat transfer between the heat source 62 and a heat transfer fluid and at least a second heat exchanger ensuring the heat transfer between the coolant and the air present at the heat exchanger. outside the aircraft or in an area of the aircraft not thermally insulated from the outside, generally not pressurized.
  • the device comprises a duct network 64.
  • the coolant is a liquid. This choice of heat transfer fluid reduces the passage section of the ducts 64 which tends to reduce the on-board weight.
  • the duct network 64, the first exchanger are not more described because they are known to those skilled in the art.
  • the duct network is designed based in particular on the location of the heat sources to be cooled.
  • the first heat exchanger is adapted according to the heat source and the coolant. For example, it may be in the form of a coil.
  • the function of the second exchanger is provided by at least one wall forming a partition between a zone I of the thermally insulated aircraft from the outside and a zone E contained in the aircraft not thermally insulated by report outside the aircraft.
  • the wall comprises at least one duct in which circulates the heat transfer fluid. This wall generally delimits a pressurized zone of a non-pressurized zone. Therefore, it has mechanical characteristics enabling it to withstand possibly a small deformation at the pressure difference from one face to the other.
  • the second heat exchanger comprises a conduit in which circulates the coolant defined by a wall, one side of which is in contact with the coolant and the other side of which is in contact with the air present in the non-thermally insulated zone.
  • This solution makes it possible to optimize the heat transfer in that a single wall separates the coolant and the air present in the non-insulated area.
  • the distance separating the coolant and the air is less than 20 mm, or even less than 3 mm.
  • this wall does not constitute an aerodynamic surface, so that it is possible for the duct or ducts to protrude from the face of the wall in contact with the air present in the zone E which is not thermally insulated. in order to increase the exchange surface between the coolant and the air.
  • the air present inside the aircraft in an uninsulated area is not subjected to flows with high speeds and causes no heating at the flow surface.
  • each duct is delimited in part by at least one rib provided to enhance the mechanical strength of the wall.
  • the same piece such as a rib provides two functions, namely a structural strength function and a thermal function.
  • the forward gear box 52 comprises two side walls 66, 66 ', one of which is shown in section in FIG. 9, the upper edges of the side walls 66, 66' being connected by a wall forming a bottom 68 and the front and rear edges being respectively connected by a front wall 70 and a rear wall 72.
  • the lower edges of the side walls 66, 66 'of the landing gear compartment are connected to frames 74 ( only part of which is shown) forming part of the structure of the aircraft.
  • At least one wall of the gear box 52 acts as a second heat exchanger and comprises at least one duct 76 in which circulates a coolant 78 comprising a face 80 in contact with the coolant 78 and another face 82 in contact with the air present in an uninsulated area namely the housing defined by the landing gear in which the landing gear is arranged.
  • This solution also makes it possible to reduce the fatigue stresses due to the effects of expansion because the temperature differences between the phases on the ground and in flight are less important. It also makes it possible to obtain automatic defrosting of certain elements integrated in the landing gear compartment, such as, for example, articulation bearings.
  • At least one of the side walls 66, 66 ' is used as a heat exchanger.
  • the wall 66 comprises at its outer face 84 ribs 86.
  • the ribs 86 are arranged in pairs, the ribs 86 of the same pair being separated by a small distance of the order of a few centimeters less than the distance between two ribs of different pairs, the ribs 86 of the same pair forming the walls of a conduit provided for the heat transfer fluid. So unlike the ribs of the prior art which had only a reinforcing function, the ribs 86 have a function of reinforcement and delimitation of a conduit.
  • the side wall 66 comprises for each pair of ribs 86 a cap 88 which connects the ends of the two ribs 86 so as to define a duct 76 with said ribs 86 and the side wall.
  • the side wall is integral and made by machining preferably at high speed given the small thickness of the ribs 86.
  • the caps 88 may be secured to the ribs by friction welding.
  • the hollow structure formed by a pair of ribs and a cap provides better mechanical strength than an isolated rib so that it is possible to reduce the height of the ribs or reduce the number.
  • the side wall 66 comprises a plurality of conduits 76 parallel to each other and parallel to the lower edge of said wall.
  • Each duct 76 is closed at its ends by transverse partitions 90 connecting the two ribs delimiting the duct 76.
  • the conduits 76 are connected by U-shaped connectors 92.
  • the conduits 76 are connected to form a coil as shown in FIG.
  • a U-shaped connection is in the form of a thin bent tube.
  • the side wall 66 comprises, for each end of U-shaped fittings, a through-hole 94 with at one end a sleeve 96 into which the end of the U-shaped fitting can be fitted.
  • the ribs 86 have a curved shape so as to delimit a conical zone 98 whistle (the diameter being greater at the wall 66 at the ends of the ribs) to the right of each through hole 94 to limit the local pressure drops.
  • Seals may be provided to provide a seal between the U-shaped fittings and the sidewall.
  • the invention is not limited to this form of connection.
  • the U-shaped connections could be integrated into the side wall and obtained by machining like the ribs 86.
  • the same side wall may comprise one or more zones, each zone comprising conduits 76 parallel to one another and interconnected by U-shaped connectors.
  • the different zones may be connected by connection means in the form of ducts provided at the level of the internal face of the side wall.
  • the same box of the train may comprise several walls incorporating ducts 76.
  • these ducts may be interconnected so as to form a single circuit or some may be separated from one another so as to create several separate circuits.
  • the implantation of the ducts 76 will be based particularly on the singularities present on the wall and the mechanical forces taken up by said wall.
  • the invention is not limited to this embodiment of the conduits.
  • FIGS. 12A and 12B may be envisaged to form conduits at the outer face of a wall.
  • a duct may be delimited by a stiffener with an omega section added and fixed by any appropriate means on the outer face of the wall.
  • the conduit is in the form of a tube connected to the end of a section with a T-section whose head is plated and fixed by any suitable means on the outer face of a wall.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Duct Arrangements (AREA)

Abstract

L'objet de l ' invention est un aéronef comprenant au moins une paroi (66) délimitant une première zone (I) de l'aéronef isolée thermiquement de l'extérieur de l'aéronef et une seconde zone (E) contenue dans l'aéronef non isolée thermiquement par rapport à l'extérieur de l'aéronef et un échangeur thermique dans lequel circule un fluide caloporteur, caractérisé en ce que ladite paroi (66) comprend au moins un conduit (76) dans lequel circule le fluide caloporteur de manière à assurer la fonction d'échangeur thermique.

Description

ECHANGEUR THERMIQUE INCORPORE DANS UNE PAROI D'UN AERONEF
La présente invention se rapporte à un échangeur thermique incorporé dans une paroi d'un aéronef.
De manière connue, le fuselage d'un aéronef comprend une structure assurant principalement la fonction de reprise des efforts sur laquelle est rapportée une enveloppe conférant à l'aéronef ses propriétés aérodynamiques. Ainsi, en vol, des écoulements d'air s'écoulent au niveau de la face extérieure du fuselage.
La structure comprend des poutres, des cadres, des lisses, des raidisseurs ou autres, assemblés entre eux. Ces éléments peuvent être métalliques et/ou en matériau composite. En parallèle, l'enveloppe se présente sous la forme d'une juxtaposition de panneaux ou tronçons complets de tôles métalliques reliés à la structure par rivetage ou tous moyens appropriés. En variante, ces panneaux peuvent être en matériau composite.
Sur les figures 1 et 2, on a représenté en 10 un aéronef et différentes zones comme une case de train avant 12 dans laquelle est susceptible d'être logé le train d'atterrissage avant 12 en vol, une soute avant technique 14 dans laquelle sont disposés des équipements et des systèmes électriques 16 suivie d'une soute dite cargo 18. La case de train avant 12 et la soute technique 14 sont disposées au niveau de la pointe avant de l'aéronef sous la cabine de pilotage. Dans le cas d'un avion destiné au transport de passagers, la soute cargo 18 est disposée sous la cabine des passagers.
Certaines zones de l'aéronef sont isolées thermiquement de l'extérieur du fuselage et pressurisées comme par exemple les soutes 14 et 18, la cabine de pilotage ou la cabine des passagers alors que d'autres ne le sont pas comme par exemple la case de train avant 12. Ainsi, la température de l'air présent à l'intérieur de la case de train peut descendre à - 50°C en vol et être à une température proche de la température de l'air présent à l'extérieur du fuselage. L'air présent dans ladite case de train peut être soumis à des écoulements avec des vitesses nettement inférieures à celles de l'air présent à l'extérieur du fuselage.
La case de train avant 12 fait partie de la structure de l'aéronef. Elle comprend deux parois latérales 20 dont une est représentée en coupe sur la figure 4, un fond reliant les bords supérieurs des parois latérales et une paroi avant et une paroi arrière reliant respectivement les bords avants et les bords arrières des parois latérales. Les cadres de la structure de l'aéronef disposés au niveau de la case de train avant ne s'étendent pas sur toute la périphérie du fuselage et comprennent une découpe pour permettre le passage du train d'atterrissage. Ainsi, ces cadres sont reliés aux bords inférieurs des parois latérales 20 de la case de train. Pour assurer la reprise des efforts, les parois de la case de train avant 12 comprennent de nombreux renforts au niveau de leurs faces. Ainsi, comme illustré sur la figure 4, la face externe 22 des parois latérales 20 comprend des raidisseurs 24 orientés selon une direction sensiblement perpendiculaire aux plans des cadres.
Selon un autre aspect, l'aéronef comprend de nombreux éléments comme par exemple des équipements et systèmes électriques 16 présents dans la soute avant technique 14 qui produisent de la chaleur et qu'il est nécessaire de refroidir.
Comme illustré de manière schématique sur la figure 1, dans le cas des équipements et systèmes électriques 16, de l'air prélevé dans la soute cargo 18 est insufflé dans les équipements et systèmes électriques 16. Cet air qui en les ^ra^ersan^ se réchauffe est aspiré pour être acheminé jusqu'à un ou plusieurs échangeur(s) 26. Selon un mode de réalisation, un réseau de conduits 28 pour l'air frais est prévu entre la soute cargo 18 et les équipements et systèmes électriques 16 et un réseau de conduits 30 pour l'air réchauffé est prévu entre les équipements et systèmes électriques 16 et l'échangeur 26.
Comme illustré sur la figure 3, les échangeurs 26 sont disposés dans un ou des conduit(s) 32 dans le(s)quel(s) s'écoule de l'air qui est prélevé à l'extérieur du fuselage via au moins une entrée d'air 34 et qui est rejeté à l'extérieur du fuselage via au moins une sortie d'air 36.
Le fait de capter l'air via l'entrée 34 et de le rejet via la sortie 36 engendre des perturbations sur le plan aérodynamique qui augmentent la traînée de l'aéronef et sa consommation énergétique. Par conséquent, il est nécessaire de minimiser ces perturbations.
Or, les besoins de refroidissement dans un aéronef tendent à augmenter sensiblement. Cette augmentation des besoins de refroidissement induit plusieurs inconvénients, à savoir l'augmentation des perturbations aérodynamiques du fait de l'augmentation des débits d'air prélevé et rejeté, l'augmentation de la masse embarquée en raison de l'augmentation du nombre et/ou des dimensions des conduits 28, 30 et 32 et des échangeurs 26.
Pour limiter les perturbations aérodynamiques, les formes et/ou les dimensions des entrées 34 et des sorties 36 sont optimisées. A titre d'exemple, le document F -2.915.7333 décrit une grille de sortie mobile.
Afin de limiter ces perturbations, d'autres solutions ont été développées pour transférer la chaleur dans les réservoirs de carburant ou dans la motorisation en utilisant le carburant comme fluide caloporteur. A titre d'exemple, le document FR-2.936.224 décrit un système permettant les réjections thermiques au niveau de la motorisation. Toutefois, les réservoirs ou les motorisations ont des capacités d'absorption de la chaleur limitées qui ne sont pas suffisantes et inférieures aux besoins de l'aéronef. En complément ou de manière alternative, d'autres documents décrivent l'utilisation du fuselage pour dissiper la chaleur. A cet effet, des conduits sont disposés à proximité de la surface intérieure du fuselage pour assurer le transfert thermique du fluide caloporteur circulant dans les conduits vers la peau du fuselage puis de la peau du fuselage vers l'environnement extérieur de l'aéronef. Cette solution n'est pas pleinement satisfaisante car l'efficacité du transfert thermique du fluide caloporteur vers l'environnement extérieur de l'aéronef dépend de l'efficacité d'un premier transfert thermique entre le fluide caloporteur et la peau du fuselage et d'un second transfert thermique entre la peau du fuselage et l'environnement extérieur.
La paroi du conduit véhiculant le fluide caloporteur n'étant pas directement en contact avec l'environnement extérieur, le transfert thermique n'est pas optimal et dépend essentiellement de la surface de contact entre les parois des conduits et la peau du fuselage. De plus, ce transfert thermique est également impacté par les vitesses importantes des écoulements d'air à l'extérieur du fuselage de l'aéronef qui peuvent provoquer des échauffements importants en raison du frottement de l'air sur le fuselage.
La présente invention propose une alternative ou un complément aux dispositifs de transfert thermique vers l'extérieur de l'aéronef de l'art antérieur.
A cet effet, l'invention a pour objet un aéronef comprenant au moins une paroi délimitant une première zone de l'aéronef isolée thermiquement de l'extérieur de l'aéronef et une seconde zone contenue dans l'aéronef non isolée thermiquement par rapport à l'extérieur de l'aéronef et un échangeur thermique dans lequel circule un fluide caloporteur, caractérisé en ce que ladite paroi comprend au moins un conduit dans lequel circule le fluide caloporteur de manière à assurer la fonction d'échangeur thermique. D'autres caractéristiques et avantages ressortiront de la description qui va suivre de l ' invention, description donnée à titre d'exemple uniquement, en regard des dessins annexés sur lesquels :
- la figure 1 est une vue latérale de l'avant d'un aéronef illustrant de manière schématique un dispositif de refroidissement selon l'art antérieur,
- la figure 2 est une vue en perspective illustrant des éléments présents dans une soute avant technique selon l'art antérieur,
- la figure 3 est un schéma illustrant un dispositif de dissipation thermique selon l'art antérieur,
- la figure 4 est une coupe d'une paroi latérale d'une case de train selon l'art antérieur,
- la figure 5 est une vue latérale de l'avant d'un aéronef illustrant de manière schématique un dispositif de refroidissement selon l'invention, - la figure 6 est une vue en perspective illustrant un agencement optimisé d'éléments présents dans une soute avant technique selon l'invention,
- la figure 7 est une vue en perspective d'une case de train selon un premier point de vue situé à l'extérieur de l'aéronef,
- la figure 8 est une vue en perspective d'une case de train selon un autre point de vue situé à l'intérieur de l'aéronef,
- la figure 9 est une coupe d'une paroi d'une case de train selon l'invention,
- la figure 10 est une vue latérale d'une paroi d'une case de train selon l'invention illustrant un circuit prévu pour un fluide caloporteur,
- la figure 11 est une coupe illustrant un détail du circuit de la figure 10, - la figure 12A est une coupe illustrant une autre variante du circuit prévu pour un fluide caloporteur intégré dans une paroi d'une case de train, et
- la figure 12B est une coupe illustrant une autre variante du circuit prévu pour un fluide caloporteur intégré dans une paroi d'une case de train. Sur la figure 5, on a représen é l'avant d'un aéronef 50 comportant une case de train 52 apte à contenir un train d'atterrissage 54, une soute technique 56 dans laquelle sont disposés des meubles 58 contenant des équipements électriques et une soute cargo 60 séparée par une cloison de la soute technique 56.
Certaines zones de l'aéronef sont isolées thermiquement de l'extérieur du fuselage et pressurisées comme par exemple les soutes 56 et 60, la cabine de pilotage ou la cabine des passagers alors que d'autres ne le sont pas comme par exemple la case de train avant 52. Ainsi, la température de l'air présent à l'intérieur de la case de train peut descendre à - 50°C en vol et être à une température proche de la température de l'air présent à l'extérieur du fuselage. De plus, l'air présent dans ladite case de train est soumis à des écoulements avec des vitesses nettement inférieures à celles de l'air présent à l'extérieur du fuselage et n'engendre pas d'échauffement au niveau des parois de la case de train.
Pour la suite de la description, on entend par meuble toute forme de contenant, comme par exemple une armoire, un coffre, un boîtier, apte à contenir des équipements notamment électriques.
De préférence, les meubles 58 sont disposés dans la soute technique en couronne de manière à dégager un volume unique central. Cette solution permet d'offrir un accès privilégié aux faces avant des meubles 58 et une meilleure ségrégation des équipements critiques (l'équipement principal et l'équipement redondant étant diamétralement opposés). Cet agencement permet également de prévoir des compartiments sous le plancher dégagé en partie centrale dans lesquels peuvent être disposés des équipements électriques.
Enfin, selon un autre avantage, en dehors des phases de maintenance, l'espace central dégagé peut être utilisé à d'autres fins, comme par exemple en tant que pièce aménagée pour l'équipage. Selon un autre aspect, un équipement électrique constitue une source chaude 62 qu'il est nécessaire de refroidir ou de maintenir dans une plage de températures. Pour la suite de la description, on entend par source de chaleur 62 tous dispositifs (par exemple un échangeur) ou tout fluide (par exemple l'air de la cabine des passagers) qui doit être refroidi ou maintenu dans une plage de températures donnée grâce à un dispositif de refroidissement.
De manière connue, un dispositif de refroidissement comprend au moins un premier échangeur assurant le transfert thermique entre la source de chaleur 62 et un fluide caloporteur et au moins un second échangeur thermique assurant le transfert thermique entre le fluide caloporteur et l'air présent à l'extérieur de l'aéronef ou dans une zone de l'aéronef non isolée thermiquement par rapport à l'extérieur, généralement non pressurisée.
Pour assurer le transfert du fluide caloporteur du premier échangeur vers le second échangeur, le dispositif comprend un réseau de conduits 64.
Selon un mode de réalisation privilégié, le fluide caloporteur est un liquide. Ce choix de fluide caloporteur permet de réduire la section de passage des conduits 64 ce qui tend à diminuer la masse embarquée.
Le réseau de conduits 64, le premier échangeur ne sont pas plus décrits car ils sont connus de l'homme du métier. Ainsi, le réseau de conduits est conçu en fonction notamment de l'implantation des sources de chaleur à refroidir. En parallèle, le premier échangeur est adapté en fonction de la source de chaleur et du fluide caloporteur. A titre d'exemple, il peut se présenter sous la forme d'un serpentin.
Selon une caractéristique de l'invention, la fonction de second échangeur est assurée par au moins une paroi formant une cloison entre une zone I de l'aéronef isolée thermiquement de l'extérieur et une zone E contenue dans l'aéronef non isolée thermiquement par rapport à l'extérieur de l'aéronef. A cet effet, la paroi comprend au moins un conduit dans lequel circule le fluide caloporteur. Cette paroi délimite généralemen une zone pressurisée d'une zone non pressurisé. Par conséquent, elle possède des caractéristiques mécaniques lui permettant de résister avec éventuellement une faible déformation à la différence de pression d'une face à l'autre.
De préférence, le second échangeur comprend un conduit dans lequel circule le fluide caloporteur délimité par une paroi dont une face est en contact avec le fluide caloporteur et dont l'autre face est en contact avec l'air présent dans la zone non isolée thermiquement.
Cette solution permet d'optimiser le transfert thermique dans la mesure où une seule paroi sépare le fluide caloporteur et l'air présent dans la zone non isolée. Ainsi, il est possible que la distance séparant le fluide caloporteur et l'air soit nférieure à 20 mm, voire nférieure à 3 mm.
Selon un autre avantage, cette paroi ne constitue pas une surface aérodynamique si bien qu'il est possible que le ou les conduits soient en saillie par rapport à la face de la paroi en contact avec l'air présent dans la zone E non isolée thermiquement afin d'augmenter la surface d'échange entre le fluide caloporteur et l'air.
Selon un autre avantage, contrairement à l'air situé à l'extérieur de l'aéronef, l'air présent à l'intérieur de l'aéronef dans une zone non isolée n'est pas soumis à des écoulements avec des vitesses élevés et ne provoque aucun échauff ement au niveau de la surface d'écoulement.
Avantageusement, chaque conduit est délimité en partie par au moins une nervure prévue pour renforcer la résistance mécanique de la paroi. Ainsi, une même pièce telle qu'une nervure permet d'assurer deux fonctions à savoir une fonction de résistance structurale et une fonction thermique.
Selon un mode de réalisation illustré sur les figures 7 à 9, la case de train avant 52 comprend deux parois latérales 66, 66' dont une est représentée en coupe sur la figure 9, les bords supérieurs des parois latérales 66, 66' étant reliés par une paroi formant un fond 68 et les bords avant et arrière étant reliés respectivement par une paroi avant 70 et une paroi arrière 72. Les bords inférieurs des parois latérales 66, 66' de la case de train sont reliés à des cadres 74 (dont seulement une partie est représentée) formant une partie de la structure de l'aéronef.
Avantageusement, au moins une paroi de la case de train 52 assure la fonction de second échangeur et comprend au moins un conduit 76 dans lequel circule un fluide caloporteur 78 comprenant une face 80 en contact avec le fluide caloporteur 78 et une autre face 82 en contact avec l'air présent dans une zone non isolée à savoir le logement délimité par la case de train dans lequel est disposé le train d'atterrissage.
Cette solution permet également de réduire les contraintes de fatigue dues aux effets de dilatation car les écarts de température entre les phases au sol et en vol sont moins importants. Elle permet également d'obtenir un dégivrage automatique de certains éléments intégrés dans la case de train comme par exemple des paliers d'articulation.
De préférence, au moins l'une des parois latérales 66, 66' est utilisée comme échangeur thermique.
Pour la suite de la description, seule l'une des parois latérales 66 est décrite. Bien entendu ce mode de réalisation peut être dupliqué au niveau de l'autre paroi latérale 66' et/ou aux autres parois de la case de train.
Selon un mode de réalisation, la paroi 66 comprend au niveau de sa face externe 84 des nervures 86. Les nervures 86 sont agencées par paire, les nervures 86 d'une même paire étant séparées d'une faible distance de l'ordre de quelques centimètres nettement Inférieure à la distance séparant deux nervures de paires différentes, les nervures 86 d'une même paire formant les parois d'un conduit prévu pour le fluide caloporteur. Ainsi, contrairement aux nervures de l'art antérieur qui n'avaient qu'une fonction de renfort, les nervures 86 ont une fonction de renfort et de délimitation d'un conduit.
Pour fermer le conduit, la paroi latérale 66 comprend pour chaque paire de nervures 86 un chapeau 88 qui relie les extrémités des deux nervures 86 de manière à délimiter un conduit 76 avec lesdites nervures 86 et la paroi latérale. Selon un mode de réalisation, la paroi latérale est monobloc et réalisée par usinage de préférence à grande vitesse compte tenu de la faible épaisseur des nervures 86. Les chapeaux 88 peuvent être solidarisés aux nervures par soudage par friction.
Selon un autre avantage, la structure creuse formée par une paire de nervures et un chapeau offre une meilleure résistance mécanique qu'une nervure isolée si bien qu'il est possible de réduire la hauteur des nervures ou d'en réduire le nombre.
Comme illustré sur la figure 10, la paroi latérale 66 comprend plusieurs conduits 76 parallèles entre eux et parallèles au bord inférieur de ladite paroi. Chaque conduit 76 est obturé à ses extrémités par des cloisons transversales 90 reliant les deux nervures délimitant le conduit 76.
Les conduits 76 sont reliés par des raccords en U 92. Les conduits 76 sont reliés de manière à former un serpentin comme illustré sur la figure 10.
Ces raccords en U 92 sont prévus au niveau de la face interne de la paroi latérale 66.
Selon un mode de réalisation, un raccord en U se présente sous la forme d'un tube cintré de faible épaisseur.
Comme illustré sur la figure 11, la paroi latérale 66 comprend pour chaque extrémité des raccords en U un trou traversant 94 avec à une extrémité un manchon 96 dans lequel peut s'emboiter l'extrémité du raccord en U. A l'opposé, les nervures 86 ont une forme courbe de manière à délimiter une zone de forme conique 98 en sifflet (le diamètre étant plus important au niveau de la paroi 66 qu'au niveau des extrémités des nervures) au droit de chaque trou traversant 94 pour limiter les pertes de charge locale. Des joints d'étanchéité peuvent être prévus pour assurer I etanchéité entre les raccords en U et la paroi latérale. L'invention n'est pas limitée à cette forme de raccord. Ainsi, les raccords en U pourraient être intégrés dans la paroi latérale et obtenus par usinage comme les nervures 86.
Une même paroi latérale peut comprendre une ou plusieurs zones, chaque zone comprenant des conduits 76 parallèles entre eux et reliés entre eux par des raccords en U. Les différentes zones peuvent être reliées par des moyens de connexion sous forme de conduits prévus au niveau de la face interne de la paroi latérale.
Selon un autre aspect, une même case de train peut comprendre plusieurs parois intégrant des conduits 76. Selon les cas, ces conduits peuvent être reliés entre eux de manière à former un unique circuit ou certains peuvent être séparés d'autres de manière à créer plusieurs circuits distincts.
L'implantation des conduits 76 se fera en fonction notamment des singularités présentes sur la paroi et des efforts mécaniques repris par ladite paroi.
Selon un autre point, l'invention n'est pas limitée à ce mode de réalisation des conduits. A titre d'exemple, d'autres alternatives illustrées sur les figures 12A et 12B peuvent être envisagées pour former des conduits au niveau de la face externe d'une paroi. Ainsi, sur la figure 12A, un conduit peut être délimité par un raidisseur avec une section en Oméga rapporté et fixé par tous moyens appropriés sur la face externe de la paroi. Sur la figure 12B, le conduit se présente sous la forme d'un tube relié à l'extrémité d'un profilé avec une section en T dont la tête est plaquée et fixée par tous moyens appropriés sur la face externe d'une paroi.

Claims

REVENDICATIONS
1. Aéronef comprenant au moins une paroi (66) délimitant une première zone (I) de l'aéronef isolée thermiquement de l'extérieur de l'aéronef et une seconde zone (E) contenue dans l'aéronef non isolée thermiquement par rapport à l'extérieur de l'aéronef et un échangeur thermique dans lequel circule un fluide caloporteur, caractérisé en ce que ladite paroi (66) comprend au moins un conduit (76) dans lequel circule le fluide caloporteur de manière à assurer la fonction d'échangeur thermique.
2. Aéronef selon la revendication 1, caractérisé en ce que le conduit (76) est délimité par au moins une nervure (86) renforçant la résistance mécanique de la paroi (66).
3. Aéronef selon la revendication 1 ou 2, caractérisé en ce que le conduit (76) dans lequel circule le fluide caloporteur est délimité par une paroi dont une face est en contact avec le fluide caloporteur et dont l'autre face est en contact avec l'air présent dans la seconde (E) zone non isolée thermiquement.
4. Aéronef selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le conduit (76) est en saillie par rapport à la face de la paroi (66) en contact avec la seconde zone (E) non isolée thermiquement afin d'augmenter la surface d'échange entre le fluide caloporteur et l'air.
5. Aéronef selon l'une quelconque des revendications précédentes, caractérisé en ce que la paroi (66) est une paroi ou une partie d'une paroi délimitant une case de train (52).
6. Aéronef selon la revendication 5, caractérisé en ce que la paroi (66) délimitant la case de train (52) comprend au niveau de sa face externe (84) des nervures (86) agencées par paire, un chapeau (88) pour chaque paire reliant les extrémités des nervures (86) de manière à délimiter avec les nervures (86) et la paroi (66) un conduit (76).
7. Aéronef selon la revendication 6, caractérisé en ce que les nervures (86) sont parallèles au bord inférieur de la paroi (66).
8. Aéronef selon la revendication 6 ou 7, caractérisé en ce que chaque conduit (76) est obturé à ses extrémités par des cloisons transversales (90) reliant les deux nervures (86) délimitant le conduit (76), les conduits (76) étant reliés entre eux par des raccords (92) de manière à former un circuit.
9. Aéronef selon la revendication 8, caractérisé en ce que les raccords (92) sont prévus au niveau de la face interne de la paroi (66).
10. Aéronef selon la revendication 9, caractérisé en ce que la paroi (66) comprend pour chaque extrémité des raccords un trou traversant (94), les nervures (86) ayant une forme courbe de manière à délimiter une zone de forme conique (98) au droit de chaque trou traversant (94) pour limiter les pertes de charge locale.
11. Aéronef selon l'une quelconque des revendications précédentes, caractérisé en ce que le fluide caloporteur est un liquide.
PCT/FR2012/050340 2011-02-22 2012-02-17 Echangeur thermique incorpore dans une paroi d'un aeronef WO2012114022A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280009946.3A CN103402873B (zh) 2011-02-22 2012-02-17 结合到航空器的壁的热交换器
EP20120709923 EP2678224B1 (fr) 2011-02-22 2012-02-17 Echangeur thermique incorpore dans une paroi d'un aeronef
US13/970,867 US9446850B2 (en) 2011-02-22 2013-08-20 Heat exchanger incorporated into a wall of an aircraft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1151429 2011-02-22
FR1151429A FR2971763B1 (fr) 2011-02-22 2011-02-22 Echangeur thermique incorpore dans une paroi d'un aeronef

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/970,867 Continuation US9446850B2 (en) 2011-02-22 2013-08-20 Heat exchanger incorporated into a wall of an aircraft

Publications (1)

Publication Number Publication Date
WO2012114022A1 true WO2012114022A1 (fr) 2012-08-30

Family

ID=45873161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/050340 WO2012114022A1 (fr) 2011-02-22 2012-02-17 Echangeur thermique incorpore dans une paroi d'un aeronef

Country Status (5)

Country Link
US (1) US9446850B2 (fr)
EP (1) EP2678224B1 (fr)
CN (1) CN103402873B (fr)
FR (1) FR2971763B1 (fr)
WO (1) WO2012114022A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013149936A1 (fr) * 2012-04-05 2013-10-10 Airbus Operations Gmbh Échangeur de chaleur de peau externe de navire et procédé pour fabriquer un échangeur de chaleur de peau externe de navire
FR3000016B1 (fr) * 2012-12-21 2016-01-15 Airbus Operations Sas Partie avant d'aeronef a case de train amelioree
JP6447630B2 (ja) * 2014-08-13 2019-01-09 株式会社Ihi 航空機の電子機器を冷却する冷却装置
FR3028133B1 (fr) * 2014-11-04 2018-02-16 Safran Electrical & Power Baie avionique
JP6535167B2 (ja) * 2015-01-21 2019-06-26 三菱航空機株式会社 航空機、および胴体の冷却構造
FR3037565B1 (fr) * 2015-06-22 2019-01-25 Safran Aircraft Engines Aeronef equipe d'un dispositif generateur de chaleur
US10173780B2 (en) * 2016-01-26 2019-01-08 The Boeing Company Aircraft liquid heat exchanger anti-icing system
FR3070036A1 (fr) * 2017-08-08 2019-02-15 Airbus Operations Aeronef comprenant un dispositif de conditionnement d'air positionne dans la pointe avant de l'aeronef
FR3072360A1 (fr) * 2017-10-17 2019-04-19 Airbus Operations Toit de case de train d'atterrissage pour aeronef comportant une cloison arriere inclinee
CN109606612A (zh) * 2018-12-28 2019-04-12 中国电子科技集团公司电子科学研究院 特种无人机结构功能一体化舱段和特种无人机
ES2959029T3 (es) 2019-02-26 2024-02-19 Bae Systems Plc Sistema de gestión térmica
EP3702285A1 (fr) * 2019-02-26 2020-09-02 BAE SYSTEMS plc Système de gestion thermique
US11713126B2 (en) * 2019-08-12 2023-08-01 The Boeing Company Aircraft air conditioning pack assembly and method of assembling

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4819720A (en) * 1984-11-09 1989-04-11 Mcdonnell Douglas Corporation Skin heat exchanger
US5112010A (en) * 1990-06-18 1992-05-12 Honeywell Inc. Air dryer using ambient cold
FR2915733A1 (fr) 2007-05-04 2008-11-07 Airbus France Sas Dispositif de sortie d'air mobile pour un aeronef
WO2009146843A1 (fr) * 2008-06-03 2009-12-10 Airbus Operations Gmbh Système et procédé de refroidissement d'un dispositif soumis à une charge thermique dans un véhicule, notamment un aéronef
WO2010012684A1 (fr) * 2008-07-31 2010-02-04 Airbus Operations Gmbh Élément caloporteur pour l’enveloppe extérieure d’un aéronef
FR2936224A1 (fr) 2008-09-25 2010-03-26 Airbus France Systeme de gestion des flux thermiques d'un aeronef.

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3776305A (en) * 1972-02-22 1973-12-04 United Aircraft Prod Heat transfer system
US5107920A (en) * 1990-03-30 1992-04-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Heat exchanger with oscillating flow
US5086622A (en) * 1990-08-17 1992-02-11 United Technologies Corporation Environmental control system condensing cycle
US20010047862A1 (en) * 1995-04-13 2001-12-06 Anderson Alexander F. Carbon/carbon heat exchanger and manufacturing method
US5599217A (en) * 1995-11-08 1997-02-04 Ferrante; Joseph Rapid cooling system for liquid-cooled engines
GB9804784D0 (en) * 1998-03-06 1998-04-29 Rolls Royce Plc Environmental control system
GB0008897D0 (en) * 2000-04-12 2000-05-31 Cheiros Technology Ltd Improvements relating to heat transfer
JP2002089934A (ja) * 2000-09-20 2002-03-27 Fujitsu General Ltd 空気調和機
US6845630B2 (en) * 2001-02-16 2005-01-25 Hamilton Sundstrand Corporation Electric power and cooling system for an aircraft
US6402812B1 (en) * 2001-04-25 2002-06-11 Sikorsky Aircraft Corporation Filtered environmental control system
US6796527B1 (en) * 2001-09-20 2004-09-28 Hamilton Sundstrand Corporation Integrated air turbine driven system for providing aircraft environmental control
FR2850742B1 (fr) * 2003-01-30 2005-09-23 Snecma Propulsion Solide Panneau de refroidissement actif en materiau composite thermostructural et procede pour sa fabrication
US7044214B2 (en) * 2003-01-30 2006-05-16 Honeywell International, Inc. Aircraft ground support air conditioning unit with cooling air flow control doors
US7007501B2 (en) * 2003-08-15 2006-03-07 The Boeing Company System, apparatus, and method for passive and active refrigeration of at least one enclosure
JP4258363B2 (ja) * 2003-02-20 2009-04-30 三菱電機株式会社 冷凍空調装置、冷凍空調装置の運転方法
US7140426B2 (en) * 2003-08-29 2006-11-28 Plascore, Inc. Radiant panel
US7341050B2 (en) * 2004-10-19 2008-03-11 Joon Tae Yi Charge air cooler having refrigerant coils and method for cooling charge air
US20060157234A1 (en) * 2005-01-14 2006-07-20 Honeywell International Inc. Microchannel heat exchanger fabricated by wire electro-discharge machining
EP2000751B1 (fr) * 2006-03-27 2019-09-18 Mitsubishi Electric Corporation Dispositif de climatisation frigorifique
US8776952B2 (en) * 2006-05-11 2014-07-15 United Technologies Corporation Thermal management system for turbofan engines
US8099966B2 (en) * 2006-10-18 2012-01-24 Textron Innovations Inc. System and method for controlling an environment in an aircraft using a vortex cooler
US7784528B2 (en) * 2006-12-27 2010-08-31 General Electric Company Heat exchanger system having manifolds structurally integrated with a duct
FR2914365B1 (fr) * 2007-03-28 2012-05-18 Airbus France Systeme de refroidissement et de regulation en temperature d'equipements d'un ensemble propulsif d'aeronef.
US8950468B2 (en) * 2007-05-11 2015-02-10 The Boeing Company Cooling system for aerospace vehicle components
DE102007032306A1 (de) * 2007-07-11 2009-01-22 Airbus Deutschland Gmbh Klimatisierungssystem für Flugzeugkabinen
US8171986B2 (en) * 2008-04-02 2012-05-08 Northrop Grumman Systems Corporation Foam metal heat exchanger system
DE102008025960B4 (de) * 2008-05-30 2010-10-07 Airbus Deutschland Gmbh System zur Ventilation eines Flugzeugbereichs
DE102009031880A1 (de) * 2009-07-06 2011-01-20 Airbus Operations Gmbh Kühlkonzept für ein Brennstoffzellen-Notstromsystem
US8590603B2 (en) * 2009-12-08 2013-11-26 Hamilton Sundstrand Corporation Heat exchanger insulation gap
US20110132570A1 (en) * 2009-12-08 2011-06-09 Wilmot George E Compound geometry heat exchanger fin
US8640469B2 (en) * 2011-08-08 2014-02-04 The Boeing Company Aircraft supplemental liquid cooler and method
DE102011118078A1 (de) * 2011-11-04 2013-05-08 Airbus Operations Gmbh Wärmetauscher, Kühlsystem sowie Verfahren zum Betreiben eines Wärmetauschers und eines Kühlsystems
WO2013149936A1 (fr) * 2012-04-05 2013-10-10 Airbus Operations Gmbh Échangeur de chaleur de peau externe de navire et procédé pour fabriquer un échangeur de chaleur de peau externe de navire
US20150151842A1 (en) * 2012-07-20 2015-06-04 Sell Gmbh Cooling concept cold air shower
US9873511B2 (en) * 2012-09-24 2018-01-23 Hamilton Sundstrand Corporation Primary heat exchanger crossover bypass manifold
EP2712806B1 (fr) * 2012-09-28 2016-05-11 Airbus Operations GmbH Une partition pour véhicule
US9272777B2 (en) * 2012-10-26 2016-03-01 Textron Innovations Inc. Helicopter gearbox auxiliary cooling system
JP5532153B1 (ja) * 2013-01-10 2014-06-25 ダイキン工業株式会社 空気調和システム
US9561857B2 (en) * 2013-02-06 2017-02-07 Raytheon Company Aircraft thermal management system for cooling using expendable coolants
US20150065023A1 (en) * 2013-09-03 2015-03-05 Hamilton Sundstrand Corporation Intercompressor bleed turbo compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4819720A (en) * 1984-11-09 1989-04-11 Mcdonnell Douglas Corporation Skin heat exchanger
US5112010A (en) * 1990-06-18 1992-05-12 Honeywell Inc. Air dryer using ambient cold
FR2915733A1 (fr) 2007-05-04 2008-11-07 Airbus France Sas Dispositif de sortie d'air mobile pour un aeronef
WO2009146843A1 (fr) * 2008-06-03 2009-12-10 Airbus Operations Gmbh Système et procédé de refroidissement d'un dispositif soumis à une charge thermique dans un véhicule, notamment un aéronef
WO2010012684A1 (fr) * 2008-07-31 2010-02-04 Airbus Operations Gmbh Élément caloporteur pour l’enveloppe extérieure d’un aéronef
FR2936224A1 (fr) 2008-09-25 2010-03-26 Airbus France Systeme de gestion des flux thermiques d'un aeronef.

Also Published As

Publication number Publication date
US9446850B2 (en) 2016-09-20
FR2971763B1 (fr) 2013-03-15
CN103402873A (zh) 2013-11-20
CN103402873B (zh) 2015-09-09
US20130333857A1 (en) 2013-12-19
EP2678224B1 (fr) 2015-05-06
FR2971763A1 (fr) 2012-08-24
EP2678224A1 (fr) 2014-01-01

Similar Documents

Publication Publication Date Title
EP2678224B1 (fr) Echangeur thermique incorpore dans une paroi d'un aeronef
US10059435B2 (en) Low drag skin heat exchanger
US7806365B2 (en) Long endurance hydrogen powered vehicle
US10618636B2 (en) Heat exchanger for laminar-flow aircraft
EP2051905B1 (fr) Cône arriere d'un avion
EP2574552B1 (fr) Système de ventilation et circuits de soufflage et d'extraction d'air d'un tel système, ainsi que baie avionique d'aéronef
FR3072649B1 (fr) Systeme de protection contre le givre pour nacelle de moteur d'aeronef
FR2936224A1 (fr) Systeme de gestion des flux thermiques d'un aeronef.
EP2815979B1 (fr) Système de chauffage de l'habitacle d'un aéronef muni d'un échangeur thermique annulaire autour de la tuyère d'échappement
FR3083521A1 (fr) Aéronef
FR2995589A1 (fr) Panneau de carrosserie pour vehicule de transport comprenant un dispositif d'echange thermique et vehicule de transport comprenant un tel panneau de carrosserie
US11673682B2 (en) Vehicle heat exchanger system including an inflatable member operable to press a cooling tube
JP6305904B2 (ja) 輸送機関用除湿システム及びその組立方法
CN104487757A (zh) 用于诸如航空器之类的乘客运输工具上的氢的可移除存储
EP3557176B1 (fr) Échangeur de chaleur pour atténuer la formation de glace sur un aéronef
EP3640140A1 (fr) Nacelle de moteur d'aéronef comprenant un système de protection contre le givre
FR3020798A1 (fr) Ensemble propulsif pour aeronef comprenant un conduit formant barriere thermique integre au caisson de la structure rigide du mat d'accrochage
US5794888A (en) System for removing incident heat from aircraft during flight
EP3521590B1 (fr) Système de refroidissement d air moteur à deux étages de refroidissement et comprenant au moins un échangeur cylindrique
FR2951701A1 (fr) Ensemble moteur pour aeronef comprenant un bord d'attaque de mat d'accrochage chauffe par un liquide caloporteur a effet anti-givrage
FR3072421B1 (fr) Levre d'entree d'air d'un moteur d'aeronef comportant un systeme de degivrage
EP3581781B1 (fr) Systeme de propulsion d'un aeronef comportant une structure interieure fixe presentant une fente d'evacuation
JP7205969B2 (ja) 外板冷却システム
US20240166358A1 (en) System and method for generating electrical energy from thermal waste energy and removing thermal waste energy in an aircraft
EP4370854A1 (fr) Pylône de suspension d'un moteur d'aéronef équipé d'un échangeur de refroidissement à contre-courant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12709923

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012709923

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE