WO2012096028A1 - Method for manufacturing thin film, and apparatus for manufacturing thin film - Google Patents

Method for manufacturing thin film, and apparatus for manufacturing thin film Download PDF

Info

Publication number
WO2012096028A1
WO2012096028A1 PCT/JP2011/070155 JP2011070155W WO2012096028A1 WO 2012096028 A1 WO2012096028 A1 WO 2012096028A1 JP 2011070155 W JP2011070155 W JP 2011070155W WO 2012096028 A1 WO2012096028 A1 WO 2012096028A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
thin film
processed
liquid material
temperature
Prior art date
Application number
PCT/JP2011/070155
Other languages
French (fr)
Japanese (ja)
Inventor
格 無類井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012096028A1 publication Critical patent/WO2012096028A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • C03C17/253Coating containing SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1258Spray pyrolysis
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1291Process of deposition of the inorganic material by heating of the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0218Pretreatment, e.g. heating the substrate
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/112Deposition methods from solutions or suspensions by spraying

Definitions

  • the present invention relates to a thin film manufacturing method and a thin film manufacturing apparatus.
  • a chemical vapor deposition method As a method for producing a thin film on the surface of a substrate to be treated, a chemical vapor deposition method is widely known.
  • the vapor phase growth method include a method performed in a vacuum system such as a thermal CVD method and a plasma CVD method, and a droplet spray method performed in a non-vacuum system such as a mist CVD method and a spray CVD method. .
  • the droplet spraying method has attracted attention in recent years because the apparatus configuration is simple and the process is simple as compared with the thermal CVD method and the plasma CVD method.
  • a liquid material containing a thin film raw material is formed into droplets having a particle size of about several ⁇ m to several tens of ⁇ m, and sprayed onto the surface of the substrate to be processed.
  • the thin film material attached to the surface of the film is grown by crystal growth. That is, in the droplet spraying method, a thin film is formed by chemically reacting the raw material of the thin film sprayed on the surface of the substrate to be processed using the thermal energy of the substrate to be processed.
  • temperature control of the surface of the substrate to be processed is important. In particular, when forming a transparent conductive film which is one of the thin films, stricter temperature control is required. The reason is as follows.
  • the transparent conductive film can be used as, for example, an electrode on the light-receiving surface side of a thin film solar cell.
  • an electrode in addition to transparency, conductivity (low resistance), surface shape It is important to satisfy the characteristics such as.
  • the electrical conductivity of the transparent conductive film tends to require an electrical conductivity of about 20 ⁇ / ⁇ or less in terms of sheet resistance.
  • by adding a dopant to the transparent conductive film to increase the carrier concentration of the transparent conductive film, or by increasing the carrier mobility by increasing the crystallinity of the metal oxide constituting the transparent conductive film The necessary electrical conductivity is imparted.
  • a texture structure such as a concavo-convex structure. Since the surface of the transparent conductive film has a texture structure, the light that has passed through the transparent conductive film can be scattered by the texture structure. Therefore, the light that has passed through the transparent conductive film is efficiently contained in the film that has a photoelectric conversion effect. Can be trapped in. Such a degree of scattering of transmitted light can be expressed by a haze ratio, but the electrode on the light receiving side generally tends to require a haze ratio of about 5% or more.
  • the haze rate is a percentage of a value obtained by dividing the diffuse transmittance when a light beam is incident on the measurement object by the total transmittance.
  • the allowable range of the surface temperature of the substrate is narrow. For this reason, not only the temperature control of the substrate when manufacturing a thin film by the droplet spraying method is important, but also a strict temperature control is required when manufacturing a transparent conductive film.
  • the thermal energy of the substrate to be processed is reduced due to the collision of the gas with the substrate to be processed. Tend to occur.
  • the solvent contained in the liquid material evaporates on the surface of the substrate to be processed, and the thermal energy of the substrate to be processed tends to decrease.
  • the surface temperature of the substrate to be processed tends to decrease as the film forming process proceeds, and it is difficult to keep the surface temperature of the substrate to be processed constant.
  • Patent Document 1 As a conventional technique, there is a technique of improving film quality by suppressing temperature drop of a substrate to be processed by intermittently performing droplet spraying on the entire surface of the substrate to be processed instead of continuously.
  • Patent Document 1 Japanese Patent Document 1
  • a good quality film cannot be obtained because the particle size of the droplets varies every time spraying is started.
  • the tact time is extended and the productivity of the thin film is lowered as compared with the case where spraying is continuously performed.
  • a shutter is disposed between the droplet to be sprayed and the substrate to be processed, and the droplet is sprayed on the surface of the substrate to be processed by opening and closing the shutter while continuously performing the spraying of the droplet.
  • a technique for suppressing the temperature drop of the substrate to be processed by intermittently attaching is low, and the apparatus configuration is complicated.
  • the substrate to be processed when the substrate to be processed has a certain length such as a substrate, the substrate to be processed is sent out in a certain direction to the area where the liquid material is sprayed.
  • a feeding method is used in which a thin film is formed in order from one end side to the other end side of the surface of the substrate (for example, Patent Document 2).
  • the conventional delivery method in order to produce a thin film having a desired thickness, it is necessary to deliver the substrate to be processed into a region where the liquid material is sprayed at a relatively low speed. In this case, droplets are sprayed on the surface of the substrate to be processed in a continuous long time, and as a result, the temperature of the surface of the substrate to be processed is lowered. For this reason, the conventional delivery method has a problem that it becomes impossible to manufacture a thin film having desired characteristics due to a decrease in the temperature of the surface of the substrate to be processed.
  • an object of the present invention is to provide a thin film manufacturing method and a thin film manufacturing apparatus capable of suppressing a temperature decrease of a substrate to be processed without decreasing productivity in a droplet spraying method. To do.
  • a first aspect of the present invention includes a step of heating a substrate to be processed and a step of spraying a liquid material toward the surface of the substrate to be processed.
  • This is a thin film manufacturing method in which a thin film is formed by reciprocating relatively in the surface direction and changing the position where the liquid material is sprayed on the surface of the substrate to be processed.
  • the reciprocation is continuously performed once or more in the spraying step.
  • the temperature difference between the maximum temperature and the minimum temperature of the surface of the substrate to be processed in the spraying step is preferably 70 ° C. or less.
  • the substrate to be processed is reciprocated in the spraying step.
  • the thin film manufacturing method it is preferable to form a thin film having a texture structure on the surface as the thin film.
  • the thin film manufacturing method it is preferable to form a transparent conductive film as the thin film.
  • a second aspect of the present invention is a thin film manufacturing apparatus for spraying a liquid material onto the surface of a substrate to be processed while reciprocating the heated substrate to be processed to form a thin film on the surface of the substrate to be processed.
  • a processing unit a holding unit installed in the processing chamber for holding the substrate to be processed, a heating unit installed in the processing chamber for heating the substrate to be processed, and a holding unit in the processing chamber
  • a spray unit for spraying a liquid material on the surface of the substrate to be treated; a moving unit for reciprocating the holding unit relative to the spray unit in the surface direction of the substrate to be treated; And a control unit for controlling the reciprocating speed of the holding unit.
  • control unit controls the speed of the reciprocating movement so that the reciprocating movement is continuously performed one or more times in order to form the thin film.
  • control unit may control the reciprocating speed so that the temperature difference of the surface of the substrate to be processed is 70 ° C. or less when the liquid material is sprayed onto the surface of the substrate to be processed. preferable.
  • the present invention it is possible to provide a thin film manufacturing method and a thin film manufacturing apparatus capable of suppressing a decrease in temperature of a substrate without reducing productivity in the droplet spraying method.
  • FIG. 1 It is a schematic diagram of the thin film manufacturing apparatus of this Embodiment.
  • (A) to (C) are diagrams showing the relationship between the spray region of the liquid material and the position of the substrate. It is a figure which shows the positional relationship of the base
  • FIG. 1 the schematic diagram of the thin film manufacturing apparatus of this Embodiment is shown.
  • the thin film manufacturing apparatus 100 in FIG. 1 sprays a liquid material on the surface of the substrate W while reciprocating the substrate W that is a heated substrate to be processed, and forms a thin film on the surface of the substrate W. It is.
  • a thin film manufacturing apparatus 100 includes a processing chamber 1, in which a holding unit 2 for holding a substrate W, a heating unit 3 for heating the substrate W, and a substrate W are provided.
  • a spray unit 4 for spraying the liquid material, a moving unit 5 for reciprocating the holding unit 2, and a control unit 6 for controlling the reciprocating speed are arranged.
  • the processing chamber 1 only needs to be able to protect the substrate W loaded therein from external factors such as dust, and does not need to have high sealing properties unlike the processing chamber used in the thermal CVD method. Further, the processing chamber 1 may be provided with a piping line, a valve, and the like connected to the gas supply unit so that the gas in the inside thereof can be replaced.
  • the holding unit 2 can hold the substrate W placed on the placement surface 2a.
  • the configuration of the holding unit 2 is not particularly limited.
  • the holding unit 2 can be configured to adsorb the substrate W on the placement surface 2a from the back side of the substrate W.
  • a thin film is formed on the surface of the substrate W exposed upward in the drawing.
  • the heating unit 3 may be disposed at a position where the substrate W can be heated. For example, as shown in FIG. 1, the heating efficiency of the footprint and the substrate W can be improved by being incorporated in the holding unit 2.
  • the heating unit 3 for example, a hot plate, a hot wire, or the like can be used.
  • the spray unit 4 is arranged above the holding unit 2 and can spray the liquid material downward in the figure.
  • the structure of the spray unit 4 is not specifically limited, For example, as shown in FIG. 1, the two-fluid spray type nozzle 7 can be used suitably. Although three nozzles 7 are shown in FIG. 1, the number is not particularly limited, and can be changed as appropriate according to, for example, the spray amount necessary for film formation, the spray region, and the like.
  • Piping lines 1L and 2L are respectively connected to the nozzle 7.
  • the piping line 1L is a piping line for supplying the gas discharged from the gas supply unit 8 to the nozzle 7, and the piping line 2L is a liquid.
  • This is a pipe for supplying the liquid material supplied from the supply unit 9 to the nozzle 7.
  • the nozzle 7 can spray the liquid material in the form of particulate droplets having a small particle diameter by ejecting from the ejection port in a state where the gas and the liquid material are mixed.
  • region where a droplet is sprayed is shown with a dotted line. When the substrate W is located in the spray region surrounded by the dotted line, the droplets adhere to the surface of the substrate W.
  • the moving unit 5 only needs to be configured to reciprocate the holding unit 2 in the direction of the surface of the substrate W indicated by an arrow in the drawing.
  • the moving unit 5 may be provided below the holding unit 2.
  • the drive shaft 10 fixed in the process chamber 1 may be slidably inserted so that the movement direction of the movement unit 5 may not shake with respect to the surface direction.
  • the direction of the reciprocating movement of the moving unit 5 is the surface direction of the substrate W.
  • the shape of the substrate W is a strip
  • it is preferably the longitudinal direction of the surface direction of the substrate W.
  • it is a substantially square, it is preferable that it is the direction of at least any one side.
  • the reciprocating direction is preferably perpendicular to the spraying direction (the direction from the top to the bottom in FIG. 1).
  • the control unit 6 controls the speed of the reciprocating movement of the moving unit 5. Specifically, the control unit 6 can control the stroke of the reciprocating movement, the moving speed, the number of reciprocations, and the like.
  • the ejection unit 4 may be controlled by the control unit 6. Although the control of the ejection unit 4 may be performed by another control unit (not shown), the footprint of the processing chamber 1 is improved by controlling the ejection unit 4 and the moving unit 5 by the control unit 6.
  • the holding unit 2 holds the substrate W carried into the processing chamber 1 on the placement surface 2 a of the holding unit 2. Then, the heating unit 3 heats the substrate W held by the holding unit 2 so that the surface temperature of the substrate W becomes a predetermined temperature.
  • the surface temperature of the substrate W can be detected, for example, by providing a detector such as a thermocouple in the holding unit 2 so as to contact the substrate W directly or indirectly.
  • the spray unit 4 ejects the liquid material as particulate droplets from a predetermined ejection direction, for example, from the nozzle 7 downward in the figure.
  • a predetermined ejection direction for example, from the nozzle 7 downward in the figure.
  • the gas is supplied from the gas supply unit 8 to the nozzle 7 through the piping line 1L
  • the liquid material stored in the liquid supply unit 9 is sucked into the piping line 2L.
  • gas and a liquid material are mixed, and a particulate liquid material is sprayed with gas from the jet nozzle of the nozzle 7.
  • FIG. The sprayed liquid material is diffused downward in the figure of the nozzle 7.
  • control unit 6 moves the moving unit 5 from the position shown in FIG. 1 to the right in the figure, and then moves it again to the position shown in FIG. This reciprocal movement will be described with reference to FIGS.
  • FIGS. 2A to 2C are diagrams showing the positional relationship between the spray region of the liquid material and the substrate W, and show the state when the processing chamber 1 is looked down from above.
  • a region surrounded by a dotted line in the figure is a spray region of the liquid material, and indicates a region where droplets can adhere to the surface of the substrate W when the surface of the substrate W enters the spray region. Accordingly, the ejection unit 4 is positioned above the space surrounded by the dotted line.
  • L indicates a reciprocating stroke.
  • the moving unit 5 In the film forming operation of the thin film manufacturing apparatus 100, when the moving unit 5 is located at the position shown in FIG. 1 as shown in FIG. 2A, the substrate W held by the holding unit 3 on the moving unit 5 and Since it does not overlap with the spray region, the substrate W is not exposed to the liquid material.
  • the moving unit 5 moves to the right side in FIG. 1 under the control of the control unit 6, as shown in FIG. 2B, the holding unit 2 and the substrate W held by the holding unit 2 are also on the right side in FIG. Will be moved to. By this movement, the substrate W is caused to enter the spray region, so that the surface of the substrate W is exposed to the liquid material.
  • the control unit 6 continues to move the moving unit 5 to the right side in the figure and moves it to the position shown in FIG.
  • the substrate W enters the spray region and passes through the spray region, whereby the liquid material adheres to the entire surface of the substrate W. Subsequently, the moving unit 5 moves from the position shown in FIG. 2C to the position shown in FIG. 2A under the control of the control unit 6. By this return path, the substrate W enters the spray area from the opposite side to the forward path and passes through the spray area.
  • the moving unit 5 moves in order to the positions of FIGS. 2 (A), 2 (C), and 2 (A), and by the reciprocating movement of the holding unit 2 associated therewith,
  • the substrate W can pass through the spray region twice.
  • the control unit 6 is configured so that the amount of spray of the liquid material, the moving speed of the moving unit 5, and the like so that the film forming process is completed while the reciprocating movement is continuously performed at least once.
  • the stroke of the reciprocating movement of the moving unit 5 is controlled.
  • the liquid material can be sprayed from the spray unit 4 while the substrate W is heated by the heating unit 3. Further, the liquid material can be deposited discontinuously on the entire surface of the substrate W by the reciprocating movement of the moving unit 5 by the control unit 6. When the liquid material adheres to the surface of the substrate W that has entered the spray region, the substrate W is continuously heated by the heating unit 3 while being moved by the moving unit 5. When the solvent in the solvent evaporates and the solute crystallizes, a thin film using the solute as a raw material can be produced.
  • the film forming process A by the thin film manufacturing apparatus 100 is compared with the film forming process B by the conventional delivery method.
  • the liquid material spray amount (ml / second), the liquid material spray region, and the surface size of the substrate W are the same, and the substrate W in the film forming process A is reciprocated. It is assumed that the speed is twice the sending speed of the substrate W in the film forming process B.
  • the film formation of the thin film is completed by passing the substrate W twice through the spray region, and in the film forming process B, the substrate W is passed through the spray region 1 / the speed of the film forming process A.
  • the film formation is completed by passing the film once at a double speed.
  • the temperature of W 1 is lowered by spraying the liquid material in the forward path, but the temperature of W 1 is increased during the time required to move the stroke L, so that the surface temperature is recovered in the return path. In this state, the liquid material is sprayed.
  • the holding unit 2 is reciprocated at least once (n times) to perform the film formation process, thereby continuously with respect to an arbitrary point W 1 on the substrate W.
  • the amount of liquid material sprayed can be (1 / 2n) times that of the conventional delivery method, and the time during which the surface of W 1 is not exposed to the liquid material during reciprocation In the meantime, the surface temperature of W 1 can be raised. Therefore, according to the present embodiment, it is possible to suppress the temperature drop of the substrate surface caused by the spraying of the liquid material in the forward path and the backward path with respect to the conventional delivery method, and further, during the reciprocation, the substrate surface The temperature can be increased.
  • the temperature difference between the maximum temperature and the minimum temperature of the surface of the substrate W during the film forming process can be reduced, so that the droplet spraying method also has desired characteristics.
  • a thin film can be manufactured easily.
  • the tact time required for the film forming process is set to be equal to that of the conventional sending method by making the reciprocating movement speed 2n times the conventional sending speed. Since it can be the same, productivity is not reduced. Further, since the amount of the liquid material adhering to the surface of the substrate W when passing through the spray region once is reduced, the degree of decrease in the temperature of the substrate due to passing through the spray region once becomes small.
  • the temperature difference between the maximum temperature and the minimum temperature of the surface of the substrate W can be reduced to suppress a decrease in the temperature of the substrate W.
  • Film formation under suitable temperature conditions corresponding to the characteristics of the thin film becomes possible. For this reason, for example, a transparent conductive film having a narrow temperature range allowed in the film forming process can be easily manufactured.
  • the temperature difference on the surface of the substrate W when the liquid material is sprayed onto the surface of the substrate W is adjusted by adjusting the number of reciprocating movements required for the film forming process.
  • the temperature can be set at or below 40.degree.
  • the liquid material ejection direction and the reciprocating direction of the holding unit 2 are perpendicular to each other. In this case, droplets of the liquid material can be uniformly attached to the surface of the substrate W.
  • the reciprocating stroke is a stroke that can take a state in which the entire surface of the substrate W is located outside the spraying region, on either the left or right side of the spraying region. Preferably there is.
  • control unit 6 controls the reciprocation speed so that the number of reciprocations necessary for the thin film forming process is two times or more.
  • the temperature difference on the surface of the substrate W during the film forming process is further reduced.
  • the substrate W is heated.
  • the transparent conductive film is composed of a crystal of a metal oxide such as tin, zinc, indium, cadmium, strontium, or titanium.
  • the temperature of the substrate W during the film formation process is at least 450 ° C. or higher. Is preferred.
  • the substrate W is preferably heated so that the surface temperature becomes 470 ° C. or higher.
  • the surface temperature is heated to 500 ° C. or higher.
  • the liquid material in the step of spraying the liquid material toward the surface of the substrate to be processed, the liquid material is sprayed in the form of particulate droplets toward the surface of the substrate W.
  • the liquid material contains a raw material for the transparent conductive film and a solvent.
  • the liquid material may contain a dopant that is doped into the transparent conductive film.
  • a raw material for the transparent conductive film it is common to use a metal chloride of a metal constituting the transparent conductive film that is a metal oxide.
  • concentration of the metal chloride in a liquid material shall be 0.1 mol / L or more and 3 mol / L or less on the property.
  • a solution obtained by dissolving stannic chloride and antimony trichloride in a solvent such as water can be used as the liquid material.
  • a solution in which tin tetrachloride and indium trichloride are dissolved in a solvent such as water can be used as the liquid material.
  • spraying the liquid material with a gas whose volume has been expanded spraying can be performed in a state where the particle diameters of the droplets are made more uniform. For example, air can be used as the gas.
  • the temperature of the substrate W reaches a predetermined temperature, and the liquid material is ejected toward the substrate W.
  • the front-rear relationship between the timing of starting the heating step and the timing of starting the ejecting step is not particularly limited, and at least the surface of the substrate W is heated when droplets adhere to the substrate W. Just do it.
  • the position of the liquid material sprayed on the surface of the substrate W is changed by reciprocating the substrate W relative to the surface of the substrate W. Specifically, when the substrate W reciprocates along the surface direction of the substrate W, a liquid material spraying area is present in the middle of the reciprocating path so that the liquid material with respect to the surface of the substrate W can be obtained.
  • the sprayed position can be varied. Thereby, a transparent conductive film can be formed on the surface of the substrate W.
  • the substrate W located outside the spray region of the liquid material is the substrate W. Moves to the right side in the drawing (the longitudinal direction of the substrate W in FIG. 2) and passes through the spray region (see FIGS. 2B and 2C). Subsequently, the substrate W changes its direction of movement, moves to the left side in the figure, which is the surface direction of the substrate W, and moves to the position shown in FIG. 2A while passing through the spray region again.
  • the substrate W is moved from the position of FIG. 2A to FIG. 2C, and is again moved to the position of FIG. 2A, whereby the substrate W and the position of the substrate W of FIG.
  • the spray region between the position of the substrate W in (C) can pass once each in the forward path and the return path.
  • the liquid material adheres to the surface of the substrate W.
  • the liquid material in the liquid material attached to the surface of the substrate W As the solvent evaporates and the solute crystallizes, a transparent conductive film is formed on the surface of the substrate W.
  • the substrate W can pass through the spray region at least twice by moving the substrate W back and forth in the film forming process.
  • the liquid material adheres to the surface of the substrate W when passing through the spray region, as described above, the amount of the liquid material sprayed continuously can be reduced as compared with the conventional delivery method.
  • the temperature drop of the substrate surface caused by the spraying of the liquid material can be suppressed, and the temperature of the substrate surface can be raised during the reciprocating movement.
  • the temperature difference between the maximum temperature and the minimum temperature of the surface of the substrate W during the film forming process can be reduced, so that the droplet spraying method also has desired characteristics.
  • a thin film can be manufactured easily.
  • the tact time required for the film forming process is set to be equal to that of the conventional sending method by making the reciprocating movement speed 2n times the conventional sending speed. Since it can be the same, productivity is not reduced. It should be noted that the film formation time required to form a film having a predetermined thickness on the substrate W having a predetermined size can be determined from the amount of the liquid material sprayed per unit time.
  • the temperature difference between the maximum temperature and the minimum temperature on the surface of the substrate W can be reduced to suppress a decrease in the temperature of the substrate W. It is possible to form a film under the suitable temperature conditions. For this reason, for example, a film having a texture structure with a narrow temperature range allowed in the film forming process, for example, a transparent conductive film can be easily manufactured.
  • the number of reciprocating movements of the substrate W during the spraying process is preferably one or more, and the surface of the substrate W during the spraying process is adjusted by adjusting the number of reciprocating movements.
  • the temperature difference between the maximum temperature and the minimum temperature can be set to 70 ° C. or lower, and further can be set to 40 ° C. or lower. For this reason, according to the manufacturing method of the thin film of this Embodiment, a transparent conductive film can be manufactured more suitably.
  • the substrate W and the transparent conductive film are suppressed in order to prevent the alkali component of the substrate W from diffusing into the transparent conductive film.
  • a barrier layer is a layer made of a crystal such as aluminum oxide or zinc oxide, it can be suitably manufactured by the method for manufacturing a thin film according to the above-described embodiment, similarly to the transparent conductive film. In this case, the barrier layer and the transparent conductive film can be continuously produced by switching the composition of the liquid material to be sprayed.
  • the barrier layer is manufactured by the thin film manufacturing method of the present embodiment, the decrease in the substrate surface temperature due to the spraying of the material can be reduced in the barrier layer film forming step, so that the temperature condition with little variation is achieved. Therefore, a barrier layer having a uniform film thickness and uniform barrier characteristics can be formed.
  • the spray region may be reciprocated with respect to the fixed substrate W.
  • the ejection direction of the liquid material (the direction from the upper side of the paper in FIG. 2 toward the back side of the paper) is constant, and the position of the spray region moves.
  • the larger the size of the substrate W the greater the effect of suppressing the temperature drop of the surface of the substrate W. This is because when a large-sized substrate W is reciprocated, the reciprocating stroke and the time required for reciprocating movement become long. Therefore, when an arbitrary point on the substrate W is viewed, the time during which the liquid material is not sprayed becomes long. In particular, it is possible to secure a sufficient time for the surface temperature of the substrate W, which has been lowered by spraying the liquid material, to recover. This can be said to be suitable for the recent trend of increasing the size of devices manufactured by stacking thin films represented by thin film solar cells.
  • Example 1 In this example, the above-described manufacturing method was performed using the thin film manufacturing apparatus 100 to manufacture a transparent conductive film on the surface of the glass substrate. Below, the specific manufacturing method of a transparent conductive film is demonstrated.
  • a substrate W and a liquid material were prepared.
  • the substrate W a glass substrate having a length ⁇ width of 100 mm ⁇ 100 mm was prepared.
  • the liquid material solvent was a mixed solution of water, hydrochloric acid, and methanol.
  • the prepared glass substrate was carried into the processing chamber 1, held in the holding unit 2, and the prepared aqueous solution was accommodated in the liquid supply unit 9.
  • the gas supply unit 8 accommodated compressed air.
  • the glass substrate was heated by the heating unit 3 consisting of a hot plate.
  • the heating unit 3 consisting of a hot plate.
  • the surface temperature of the glass substrate rose to about 500 ° C.
  • the temperature of the surface of a glass substrate was measured with the thermocouple affixed on the edge of the surface of the glass substrate.
  • the liquid material was ejected in the form of particles together with the gas from the nozzle 7 downward in the figure.
  • variety with respect to the reciprocation direction of a glass substrate was 80 mm.
  • region exceeded 100 mm.
  • the ejection direction of the liquid material from the nozzle 7 and the reciprocating direction of the glass substrate are orthogonal to each other.
  • the control unit 6 controlled the reciprocating speed of the moving unit 5 to 15 mm / second and the reciprocating stroke to 180 mm, and the holding unit 2 was reciprocated for 180 seconds. Therefore, in this film forming process, the glass substrate has reciprocated 7.5 times.
  • the positional relationship between the glass substrate and the spray area in this reciprocal movement will be described with reference to FIG. 3.
  • the glass substrate moves from the position on the left side in the figure toward the right side in the forward path, and the entire surface of the glass substrate moves through the spray area.
  • the moving direction is switched to the opposite direction, and subsequently, the entire surface of the surface passes through the spray region in the return path.
  • the spray unit 4 continuously sprayed the droplet material, and the heating unit 3 continued to heat the glass substrate at a constant temperature (540 ° C.). Further, the temperature of the surface of the glass substrate during the film forming process was continuously measured by the thermocouple.
  • the glass substrate after the film forming process was taken out of the processing chamber 1 and the haze ratio and the sheet resistance were measured.
  • the haze ratio was measured using a commercially available haze meter (C light source), and the sheet resistance was measured using a 4-probe method (JIS K7194). The results are shown in Table 1.
  • Example 2 A transparent conductive film made of fluorine-doped tin oxide was formed by the same method as in Example 1 except that the reciprocating speed of the moving unit 5 was set to 150 mm / second. Therefore, in this film forming process, the glass substrate has reciprocated 75 times.
  • a transparent conductive film made of fluorine-doped tin oxide was formed by a conventional delivery method. Specifically, in the thin film manufacturing apparatus 100, after changing the moving unit 5 so as to move only in the right direction in FIG. 1, the moving speed of the moving unit 5 was controlled to 1 mm / second by the control unit 6. Therefore, in this film forming process, the glass substrate is only moved once from the left position shown in FIG. 3 to the right position. Other than that, a transparent conductive film was formed in the same manner as in Example 1.
  • FIG. 4 shows changes with time in the temperature of the surface of the substrate measured in each film forming process.
  • the dotted line indicates the change with time of the glass substrate surface temperature during the film formation process in Example 1
  • the solid line indicates the change with time of the glass substrate surface temperature during the film formation process in Example 2
  • the alternate long and short dash line These show the time-dependent change during the film-forming process of the surface temperature of the glass substrate in the comparative example 1.
  • Example 1 the transparent conductive film had a haze ratio of 5% and a sheet resistance of 9 ⁇ / ⁇ . Therefore, in Example 1, the transparent conductive film provided with the haze rate (5% or more) calculated
  • Example 1 the minimum temperature of the substrate while the liquid material was sprayed was 430 ° C. Therefore, the temperature difference between the maximum temperature and the minimum temperature of the substrate during the film forming process in Example 1 is 70 ° C.
  • Comparative Example 1 it was found that the surface temperature of the substrate decreased to about 400 ° C. while the liquid material was sprayed, and the temperature difference was 100 ° C. This is considered to be because the surface of the glass substrate is continuously exposed to the liquid material.
  • Example 1 As described above, by comparing Example 1 and Comparative Example 1, when the temperature difference between the maximum temperature and the minimum temperature of the surface of the substrate during the film forming process is 70 ° C. (Example 1), the thin film It turned out that a transparent conductive film suitable as an electrode of a solar cell can be manufactured.
  • Example 2 the haze ratio of the transparent conductive film was 13%, and the sheet resistance was 15 ⁇ / ⁇ . Therefore, in Example 2, the transparent conductive film provided with the haze rate and sheet resistance which are calculated
  • Example 2 it was found that the minimum temperature of the substrate while the liquid material was sprayed was 460 ° C. Therefore, the temperature difference between the maximum temperature and the minimum temperature of the substrate during the film forming process in Example 2 is 40 ° C.
  • the glass substrate was reciprocated at a movement speed faster than that in Example 1. By comparing Example 1 and Example 2, the speed of reciprocation was increased, and It was found that a transparent conductive film with higher characteristics can be produced by reducing the temperature difference between the maximum temperature and the minimum temperature of the substrate during film processing.
  • the present invention can be widely used for the production of a thin film on the surface of a substrate, and can be particularly suitably used for the production of a transparent conductive film and a barrier layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ceramic Engineering (AREA)
  • Chemically Coating (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Photovoltaic Devices (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

Provided is a method for manufacturing a thin film, which includes: a step of heating a base material to be processed (W); and a step of spraying a liquid material toward the surface of the base material to be processed (W). In the spraying step, the base material to be processed (W) is relatively reciprocated in the surface direction of the base material to be processed (W), and a thin film is formed, while changing the position where the liquid material is sprayed, said position being on the surface of the base material to be processed (W).

Description

薄膜の製造方法および薄膜製造装置Thin film manufacturing method and thin film manufacturing apparatus
 本発明は、薄膜の製造方法および薄膜製造装置に関する。 The present invention relates to a thin film manufacturing method and a thin film manufacturing apparatus.
 被処理基体の表面への薄膜の製造方法として、気相成長(Chemical Vapor Deposition)法が広く知られている。気相成長法としては、たとえば、熱CVD法やプラズマCVD法のような真空系で行なわれる方法や、ミストCVD法やスプレーCVD法のような非真空系で行なわれる液滴噴霧法などがある。液滴噴霧法は、熱CVD法やプラズマCVD法に比べて、装置構成が単純でプロセスも簡便であるため、近年注目されている方法である。 As a method for producing a thin film on the surface of a substrate to be treated, a chemical vapor deposition method is widely known. Examples of the vapor phase growth method include a method performed in a vacuum system such as a thermal CVD method and a plasma CVD method, and a droplet spray method performed in a non-vacuum system such as a mist CVD method and a spray CVD method. . The droplet spraying method has attracted attention in recent years because the apparatus configuration is simple and the process is simple as compared with the thermal CVD method and the plasma CVD method.
 具体的には、液滴噴霧法は、薄膜の原料を含む液体材料を数μm~数10μm程度の粒径の液滴にして、加熱されている被処理基体の表面に噴霧し、被処理基体の表面に付着した薄膜の原料を結晶成長させて薄膜を成膜する方法である。すなわち、液滴噴霧法では、被処理基体の表面に噴霧された薄膜の原料を、被処理基体の熱エネルギーを用いて化学反応させることによって薄膜が成膜される。このため、液滴噴霧法を用いて所望の薄膜を成膜するためには、被処理基体の表面の温度管理が重要となる。中でも、薄膜の1つである透明導電膜を成膜する際には、より厳しい温度管理が必要となる。その理由は以下の通りである。 Specifically, in the droplet spraying method, a liquid material containing a thin film raw material is formed into droplets having a particle size of about several μm to several tens of μm, and sprayed onto the surface of the substrate to be processed. In this method, the thin film material attached to the surface of the film is grown by crystal growth. That is, in the droplet spraying method, a thin film is formed by chemically reacting the raw material of the thin film sprayed on the surface of the substrate to be processed using the thermal energy of the substrate to be processed. For this reason, in order to form a desired thin film using the droplet spraying method, temperature control of the surface of the substrate to be processed is important. In particular, when forming a transparent conductive film which is one of the thin films, stricter temperature control is required. The reason is as follows.
 透明導電膜は、たとえば、薄膜太陽電池の受光面側の電極として用いることができるが、該電極として好適であるためには、透明性の他に、伝導性(低抵抗性)、表面形状性などの特性を満たすことが重要である。具体的には、透明導電膜の電気伝導性としては、シート抵抗で約20Ω/□以下の電気伝導性が求められる傾向にある。この求めに対応し、透明導電膜にドーパントを添加して透明導電膜のキャリア濃度を上げたり、透明導電膜を構成する金属酸化物の結晶性を高くしてキャリア移動度を上げたりすることによって、必要な電気伝導性を付与することが行なわれている。 The transparent conductive film can be used as, for example, an electrode on the light-receiving surface side of a thin film solar cell. In order to be suitable as the electrode, in addition to transparency, conductivity (low resistance), surface shape It is important to satisfy the characteristics such as. Specifically, the electrical conductivity of the transparent conductive film tends to require an electrical conductivity of about 20 Ω / □ or less in terms of sheet resistance. In response to this demand, by adding a dopant to the transparent conductive film to increase the carrier concentration of the transparent conductive film, or by increasing the carrier mobility by increasing the crystallinity of the metal oxide constituting the transparent conductive film The necessary electrical conductivity is imparted.
 また、透明導電膜に好適な表面形状性として、凹凸構造などのテクスチャ構造がある。透明導電膜の表面がテクスチャ構造を有することにより、透明導電膜を通過した光をテクスチャ構造で散乱させることができるため、透明導電膜を通過した光を、光電変換作用を伴う膜内に効率的に閉じ込めることができる。このような透過光の散乱の程度はヘイズ率によって表すことができるが、受光側の電極としては、一般的に、約5%以上のヘイズ率が求められる傾向にある。なお、ヘイズ率とは、光線を測定対象物に入射した際の拡散透過率を全透過率で割った値の百分率である。 Also, as a surface shape suitable for the transparent conductive film, there is a texture structure such as a concavo-convex structure. Since the surface of the transparent conductive film has a texture structure, the light that has passed through the transparent conductive film can be scattered by the texture structure. Therefore, the light that has passed through the transparent conductive film is efficiently contained in the film that has a photoelectric conversion effect. Can be trapped in. Such a degree of scattering of transmitted light can be expressed by a haze ratio, but the electrode on the light receiving side generally tends to require a haze ratio of about 5% or more. The haze rate is a percentage of a value obtained by dividing the diffuse transmittance when a light beam is incident on the measurement object by the total transmittance.
 しかしながら、液滴噴霧法において、たとえば、被処理基体を高温にした状態で透明導電膜を成膜した場合、結晶成長が促進されて透明導電膜表面の凹凸化が促進される一方で、ドーパントが揮発することによってドーパントの透明導電膜への取り込み効率が低下し、結果的に電気伝導性が低下する場合がある。これに対し、電気伝導性の低下を防ぐために、被処理基体を低温にした状態で透明導電膜を成膜した場合には、結晶成長が緩やかになることによって凹凸化が抑制され、結果的に表面形状性の低下に繋がる。 However, in the droplet spraying method, for example, when a transparent conductive film is formed with the substrate to be processed at a high temperature, the crystal growth is promoted and the unevenness of the surface of the transparent conductive film is promoted. Volatilization reduces the efficiency of incorporation of the dopant into the transparent conductive film, resulting in a decrease in electrical conductivity. On the other hand, in order to prevent a decrease in electrical conductivity, when a transparent conductive film is formed with the substrate to be processed at a low temperature, unevenness is suppressed by slowing the crystal growth, and as a result. This leads to a decrease in surface shape.
 したがって、好適な電気伝導性と表面形状性とを有する透明導電膜を液滴噴霧法によって製造する場合に、許容される基板の表面温度の範囲は狭い。このため、液滴噴霧法によって薄膜を製造する際の基板の温度管理が重要であることはもちろん、透明導電膜を製造する際には、特に厳しい温度管理が必要となる。 Therefore, when a transparent conductive film having suitable electrical conductivity and surface shape is produced by the droplet spraying method, the allowable range of the surface temperature of the substrate is narrow. For this reason, not only the temperature control of the substrate when manufacturing a thin film by the droplet spraying method is important, but also a strict temperature control is required when manufacturing a transparent conductive film.
特開平2-199803号公報Japanese Patent Laid-Open No. 2-199803 特開平3-90579号公報Japanese Patent Laid-Open No. 3-90579
 しかしながら、液滴噴霧法において、液体材料は、ガスを混入させた状態で被処理基体に噴霧されるため、被処理基体にガスが衝突することに起因して、被処理基体の熱エネルギーの低下が生じる傾向にある。また、液体材料に含まれる溶媒が被処理基体の表面上で蒸発することによっても、被処理基体の熱エネルギーの低下が生じる傾向にある。このため、液滴噴霧法において、被処理基体の表面の温度は成膜処理が進むに連れて低下する傾向にあり、被処理基体の表面温度を一定に保つことは困難な傾向にある。 However, in the droplet spraying method, since the liquid material is sprayed onto the substrate to be processed in a state where gas is mixed, the thermal energy of the substrate to be processed is reduced due to the collision of the gas with the substrate to be processed. Tend to occur. In addition, the solvent contained in the liquid material evaporates on the surface of the substrate to be processed, and the thermal energy of the substrate to be processed tends to decrease. For this reason, in the droplet spraying method, the surface temperature of the substrate to be processed tends to decrease as the film forming process proceeds, and it is difficult to keep the surface temperature of the substrate to be processed constant.
 従来技術として、被処理基体の表面全体への液滴の噴霧自体を連続的に行わずに断続的に行うことで、被処理基体の温度低下を抑制させて膜質の向上を図るといった手法がある(たとえば、特許文献1)。しかしながら、液滴の噴霧自体を断続的に行う方法では、噴霧開始毎に液滴の粒径にばらつきが生じるために、良質な膜が得られないという問題がある。さらに、噴霧を連続的に行う場合に比べてタクトタイムが延び、薄膜の生産性が低下するという問題がある。 As a conventional technique, there is a technique of improving film quality by suppressing temperature drop of a substrate to be processed by intermittently performing droplet spraying on the entire surface of the substrate to be processed instead of continuously. (For example, Patent Document 1). However, in the method of intermittently spraying the droplets themselves, there is a problem that a good quality film cannot be obtained because the particle size of the droplets varies every time spraying is started. Furthermore, there is a problem that the tact time is extended and the productivity of the thin film is lowered as compared with the case where spraying is continuously performed.
 また、従来技術として、噴霧される液滴と被処理基体との間にシャッターを配置し、液滴の噴霧自体は連続的に行ないながら、シャッターの開閉によって被処理基体の表面への液滴の付着を断続的にして、被処理基体の温度低下を抑制する手法がある。しかしながら、この手法では、液滴の利用効率が低く、装置構成なども複雑化する。 Further, as a conventional technique, a shutter is disposed between the droplet to be sprayed and the substrate to be processed, and the droplet is sprayed on the surface of the substrate to be processed by opening and closing the shutter while continuously performing the spraying of the droplet. There is a technique for suppressing the temperature drop of the substrate to be processed by intermittently attaching. However, with this method, the use efficiency of liquid droplets is low, and the apparatus configuration is complicated.
 また、液滴噴霧法において、被処理基体が基板のような一定の長さを有する形状の場合、液体材料が噴霧されている領域に対して被処理基体を一定の方向に送り出しながら、被処理基体の表面の一端側から他端側に順に薄膜を形成する送り出し方法が用いられている(たとえば、特許文献2)。 In addition, in the droplet spraying method, when the substrate to be processed has a certain length such as a substrate, the substrate to be processed is sent out in a certain direction to the area where the liquid material is sprayed. A feeding method is used in which a thin film is formed in order from one end side to the other end side of the surface of the substrate (for example, Patent Document 2).
 しかしながら、上記の送り出し方法では、所望の厚さを有する薄膜を製造するためには、比較的小さい速度で液体材料の噴霧されている領域内に被処理基体を送り出す必要がある。この場合、連続する長い時間に被処理基体の表面に液滴が噴霧されることになり、結果的に、被処理基体の表面の温度が低下する。このため、従来の送り出し方法では、被処理基体の表面の温度の低下により、所望の特性を有する薄膜を製造することができなくなるという問題がある。 However, in the above-described delivery method, in order to produce a thin film having a desired thickness, it is necessary to deliver the substrate to be processed into a region where the liquid material is sprayed at a relatively low speed. In this case, droplets are sprayed on the surface of the substrate to be processed in a continuous long time, and as a result, the temperature of the surface of the substrate to be processed is lowered. For this reason, the conventional delivery method has a problem that it becomes impossible to manufacture a thin film having desired characteristics due to a decrease in the temperature of the surface of the substrate to be processed.
 そこで、本発明は、液滴噴霧法において、生産性を低下させることなく、被処理基体の温度低下を抑制することを可能とする、薄膜の製造方法および薄膜製造装置を提供することを目的とする。 Accordingly, an object of the present invention is to provide a thin film manufacturing method and a thin film manufacturing apparatus capable of suppressing a temperature decrease of a substrate to be processed without decreasing productivity in a droplet spraying method. To do.
 本発明の第1の態様は、被処理基体を加熱する工程と、被処理基体の表面に向けて液体材料を噴霧する工程と、を含み、噴霧する工程において、被処理基体を被処理基体の表面方向に相対的に往復移動させて、被処理基体の表面における液体材料の噴霧される位置を変動させながら薄膜を成膜する、薄膜の製造方法である。 A first aspect of the present invention includes a step of heating a substrate to be processed and a step of spraying a liquid material toward the surface of the substrate to be processed. This is a thin film manufacturing method in which a thin film is formed by reciprocating relatively in the surface direction and changing the position where the liquid material is sprayed on the surface of the substrate to be processed.
 上記薄膜の製造方法において、噴霧する工程において、往復移動を連続して1回以上行なうことが好ましい。 In the thin film manufacturing method, it is preferable that the reciprocation is continuously performed once or more in the spraying step.
 上記薄膜の製造方法において、噴霧する工程における被処理基体の表面の最高温度と最低温度との温度差が70℃以下であることが好ましい。 In the method for producing a thin film, the temperature difference between the maximum temperature and the minimum temperature of the surface of the substrate to be processed in the spraying step is preferably 70 ° C. or less.
 上記薄膜の製造方法において、噴霧する工程において、被処理基体を往復移動させることが好ましい。 In the thin film manufacturing method, it is preferable that the substrate to be processed is reciprocated in the spraying step.
 上記薄膜の製造方法において、薄膜として、表面にテクスチャ構造を有する薄膜を成膜することが好ましい。 In the thin film manufacturing method, it is preferable to form a thin film having a texture structure on the surface as the thin film.
 上記薄膜の製造方法において、薄膜として、透明導電膜を成膜することが好ましい。上記薄膜の製造方法において、薄膜として、バリア層を成膜することが好ましい。 In the thin film manufacturing method, it is preferable to form a transparent conductive film as the thin film. In the thin film manufacturing method, it is preferable to form a barrier layer as the thin film.
 本発明の第2の態様は、加熱した被処理基体を往復移動させながら被処理基体の表面に液体材料を噴霧して、被処理基体の表面に薄膜を成膜するための薄膜製造装置であって、処理室と、処理室内に設置され、被処理基体を保持するための保持ユニットと、処理室内に設置され、被処理基体を加熱するための加熱ユニットと、処理室内であって保持部の上方に設置され、被処理基体の表面に液体材料を噴霧するための噴霧ユニットと、保持ユニットを、噴霧ユニットに対して被処理基体の表面方向に相対的に往復移動させるための移動ユニットと、保持ユニットの往復移動の速度を制御するための制御ユニットと、を備えた薄膜製造装置である。 A second aspect of the present invention is a thin film manufacturing apparatus for spraying a liquid material onto the surface of a substrate to be processed while reciprocating the heated substrate to be processed to form a thin film on the surface of the substrate to be processed. A processing unit, a holding unit installed in the processing chamber for holding the substrate to be processed, a heating unit installed in the processing chamber for heating the substrate to be processed, and a holding unit in the processing chamber A spray unit for spraying a liquid material on the surface of the substrate to be treated; a moving unit for reciprocating the holding unit relative to the spray unit in the surface direction of the substrate to be treated; And a control unit for controlling the reciprocating speed of the holding unit.
 上記薄膜製造装置において、制御ユニットは、薄膜を成膜するために、往復移動が連続して1回以上行なわれるように往復移動の速度を制御することが好ましい。 In the thin film manufacturing apparatus, it is preferable that the control unit controls the speed of the reciprocating movement so that the reciprocating movement is continuously performed one or more times in order to form the thin film.
 上記薄膜製造装置において、制御ユニットは、被処理基体の表面への液体材料の噴霧時における、被処理基体の表面の温度差が70℃以下となるように、往復移動の速度を制御することが好ましい。 In the thin film manufacturing apparatus, the control unit may control the reciprocating speed so that the temperature difference of the surface of the substrate to be processed is 70 ° C. or less when the liquid material is sprayed onto the surface of the substrate to be processed. preferable.
 本発明によれば、液滴噴霧法において、生産性を低下させることなく、基体の温度低下を抑制することを可能とした薄膜の製造方法および薄膜製造装置を提供することができる。 According to the present invention, it is possible to provide a thin film manufacturing method and a thin film manufacturing apparatus capable of suppressing a decrease in temperature of a substrate without reducing productivity in the droplet spraying method.
本実施の形態の薄膜製造装置の模式図である。It is a schematic diagram of the thin film manufacturing apparatus of this Embodiment. (A)~(C)のそれぞれは、液体材料の噴霧領域と基体の位置との関係を示す図である。(A) to (C) are diagrams showing the relationship between the spray region of the liquid material and the position of the substrate. 実施例1、2における往復移動時の基体と噴霧領域との位置関係を示す図である。It is a figure which shows the positional relationship of the base | substrate and spray area | region at the time of reciprocation in Example 1,2. 実施例1、2および比較例1の結果を示すグラフである。3 is a graph showing the results of Examples 1 and 2 and Comparative Example 1.
 以下、図面を参照しながら、本発明に係る薄膜の製造方法および薄膜製造装置の実施の形態を説明する。以下の実施の形態は一例であり、本発明の範囲内で種々の実施の形態での実施が可能である。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。 Embodiments of a thin film manufacturing method and a thin film manufacturing apparatus according to the present invention will be described below with reference to the drawings. The following embodiments are merely examples, and various embodiments can be implemented within the scope of the present invention. In the drawings of the present invention, the same reference numerals represent the same or corresponding parts.
 <薄膜製造装置>
 図1に、本実施の形態の薄膜製造装置の模式図を示す。図1の薄膜製造装置100は、加熱した被処理基体である基板Wを往復移動させながら基板Wの表面に液体材料を噴霧して、基板Wの表面に薄膜を成膜するための薄膜製造装置である。
<Thin film manufacturing equipment>
In FIG. 1, the schematic diagram of the thin film manufacturing apparatus of this Embodiment is shown. The thin film manufacturing apparatus 100 in FIG. 1 sprays a liquid material on the surface of the substrate W while reciprocating the substrate W that is a heated substrate to be processed, and forms a thin film on the surface of the substrate W. It is.
 まず、図1を参照しながら、薄膜製造装置100の構成を説明する。
 図1において、薄膜製造装置100は、処理室1を備え、処理室1内には、基板Wを保持するための保持ユニット2と、基板Wを加熱するための加熱ユニット3と、基板Wに液体材料を噴霧するための噴霧ユニット4と、保持ユニット2を往復移動させるための移動ユニット5と、往復移動の速度を制御するための制御ユニット6とが配置されている。
First, the configuration of the thin film manufacturing apparatus 100 will be described with reference to FIG.
In FIG. 1, a thin film manufacturing apparatus 100 includes a processing chamber 1, in which a holding unit 2 for holding a substrate W, a heating unit 3 for heating the substrate W, and a substrate W are provided. A spray unit 4 for spraying the liquid material, a moving unit 5 for reciprocating the holding unit 2, and a control unit 6 for controlling the reciprocating speed are arranged.
 処理室1は、内部に搬入された基板Wを埃などの外的要因から保護可能であればよく、熱CVD法に用いられる処理室のように、高い密閉性を有する必要はない。また、処理室1は、その内部のガス置換が可能なように、ガス供給部と接続される配管ライン、バルブなどを備えていてもよい。 The processing chamber 1 only needs to be able to protect the substrate W loaded therein from external factors such as dust, and does not need to have high sealing properties unlike the processing chamber used in the thermal CVD method. Further, the processing chamber 1 may be provided with a piping line, a valve, and the like connected to the gas supply unit so that the gas in the inside thereof can be replaced.
 保持ユニット2は、載置面2a上に載置される基板Wを保持することができる。保持ユニット2の構成は特に限定されず、たとえば、載置面2a上の基板Wを、基板Wの裏面側から吸着するような構成とすることができる。なお、本実施の形態において、基板Wのうちの図中上方に露出する表面に薄膜が成膜される。 The holding unit 2 can hold the substrate W placed on the placement surface 2a. The configuration of the holding unit 2 is not particularly limited. For example, the holding unit 2 can be configured to adsorb the substrate W on the placement surface 2a from the back side of the substrate W. In the present embodiment, a thin film is formed on the surface of the substrate W exposed upward in the drawing.
 加熱ユニット3は、基板Wを加熱可能な位置に配置されていればよい。たとえば、図1に示すように、保持ユニット2に内蔵されることにより、フットプリントや基板Wの加熱効率を向上させることができる。加熱ユニット3としては、たとえば、ホットプレート、熱線などを用いることができる。 The heating unit 3 may be disposed at a position where the substrate W can be heated. For example, as shown in FIG. 1, the heating efficiency of the footprint and the substrate W can be improved by being incorporated in the holding unit 2. As the heating unit 3, for example, a hot plate, a hot wire, or the like can be used.
 噴霧ユニット4は、保持ユニット2の上方に配置されており、図中下方に向けて液体材料を噴霧することができる。噴霧ユニット4の構成は特に限定されないが、たとえば、図1に示すように、2流体スプレー式のノズル7を好適に用いることができる。なお、図1には、3つのノズル7を示すが、この数は特に限定されず、たとえば、成膜に必要な噴霧量、噴霧領域などに応じて適宜変更することができる。 The spray unit 4 is arranged above the holding unit 2 and can spray the liquid material downward in the figure. Although the structure of the spray unit 4 is not specifically limited, For example, as shown in FIG. 1, the two-fluid spray type nozzle 7 can be used suitably. Although three nozzles 7 are shown in FIG. 1, the number is not particularly limited, and can be changed as appropriate according to, for example, the spray amount necessary for film formation, the spray region, and the like.
 ノズル7には、配管ライン1L,2Lがそれぞれ接続されており、配管ライン1Lは、気体供給部8から排出される気体をノズル7に供給するための配管ラインであり、配管ライン2Lは、液体供給部9から供給される液体材料をノズル7に供給するための配管である。ノズル7は、気体と液体材料とを混合させた状態で噴出口から噴出させることにより、液体材料を粒径の小さい粒子状の液滴にして噴霧することができる。なお、図1に、液滴が噴霧される噴霧領域を点線で示す。この点線で囲まれる噴霧領域に基板Wが位置する場合に、基板Wの表面に液滴が付着することになる。 Piping lines 1L and 2L are respectively connected to the nozzle 7. The piping line 1L is a piping line for supplying the gas discharged from the gas supply unit 8 to the nozzle 7, and the piping line 2L is a liquid. This is a pipe for supplying the liquid material supplied from the supply unit 9 to the nozzle 7. The nozzle 7 can spray the liquid material in the form of particulate droplets having a small particle diameter by ejecting from the ejection port in a state where the gas and the liquid material are mixed. In addition, in FIG. 1, the spray area | region where a droplet is sprayed is shown with a dotted line. When the substrate W is located in the spray region surrounded by the dotted line, the droplets adhere to the surface of the substrate W.
 移動ユニット5は、保持ユニット2を図中矢印に示す基板Wの表面方向に往復移動可能な構成であればよく、たとえば、図1に示すように、保持ユニット2の下部に設けられてもよい。また、移動ユニット5は、移動ユニット5の移動方向が表面方向に対してぶれることのないように、処理室1内に固定される駆動軸10が摺動可能に挿通されていてもよい。 The moving unit 5 only needs to be configured to reciprocate the holding unit 2 in the direction of the surface of the substrate W indicated by an arrow in the drawing. For example, as shown in FIG. 1, the moving unit 5 may be provided below the holding unit 2. . Moreover, the drive shaft 10 fixed in the process chamber 1 may be slidably inserted so that the movement direction of the movement unit 5 may not shake with respect to the surface direction.
 移動ユニット5の往復移動の方向は、基板Wの表面方向であるが、たとえば、基板Wの形状が帯状である場合には、基板Wの表面方向のうちの長手方向であることが好ましい。また、略正方形である場合には、少なくともいずれか1辺の方向であることが好ましい。さらに、往復移動の方向は、噴霧方向(図1中の上方から下方に向かう方向)に垂直であることが好ましい。 The direction of the reciprocating movement of the moving unit 5 is the surface direction of the substrate W. For example, when the shape of the substrate W is a strip, it is preferably the longitudinal direction of the surface direction of the substrate W. Moreover, when it is a substantially square, it is preferable that it is the direction of at least any one side. Furthermore, the reciprocating direction is preferably perpendicular to the spraying direction (the direction from the top to the bottom in FIG. 1).
 制御ユニット6は、移動ユニット5の往復移動の速度を制御する。具体的には、制御ユニット6は、往復移動のストローク、移動速度、往復回数などを制御することができる。また、噴出ユニット4の制御を制御ユニット6によって行なってもよい。噴出ユニット4の制御を他の不図示の制御ユニットによって行っても良いが、制御ユニット6によって噴出ユニット4と移動ユニット5との制御を行なうことにより、処理室1のフットプリントが向上する。 The control unit 6 controls the speed of the reciprocating movement of the moving unit 5. Specifically, the control unit 6 can control the stroke of the reciprocating movement, the moving speed, the number of reciprocations, and the like. The ejection unit 4 may be controlled by the control unit 6. Although the control of the ejection unit 4 may be performed by another control unit (not shown), the footprint of the processing chamber 1 is improved by controlling the ejection unit 4 and the moving unit 5 by the control unit 6.
 次に、図1を参照しながら、薄膜製造装置100の成膜動作について説明する。
 薄膜製造装置100において、保持ユニット2は、処理室1内に搬入された基板Wを、保持ユニット2の載置面2a上に保持する。そして、加熱ユニット3は、保持ユニット2に保持される基板Wを、基板Wの表面温度が所定の温度となるように加熱する。基板Wの表面温度の検出は、たとえば、基板Wに直接的にまたは間接的に接するように、保持ユニット2に熱電対などの検出器を設けることによって検出することができる。
Next, the film forming operation of the thin film manufacturing apparatus 100 will be described with reference to FIG.
In the thin film manufacturing apparatus 100, the holding unit 2 holds the substrate W carried into the processing chamber 1 on the placement surface 2 a of the holding unit 2. Then, the heating unit 3 heats the substrate W held by the holding unit 2 so that the surface temperature of the substrate W becomes a predetermined temperature. The surface temperature of the substrate W can be detected, for example, by providing a detector such as a thermocouple in the holding unit 2 so as to contact the substrate W directly or indirectly.
 一方、噴霧ユニット4は、所定の噴出方向、たとえば、ノズル7から図中下方に向けて液体材料を粒子状の液滴にして噴出する。具体的には、気体供給部8から配管ライン1Lを通ってノズル7にガスが供給されることにより、液体供給部9に収容されている液体材料が配管ライン2L中に吸い上げられる。そして、ノズル7において、ガスと液体材料とが混合されることによって、ノズル7の噴出口から粒子状の液体材料をガスと共に噴霧する。噴霧された液体材料は、ノズル7の図中下方に向けて拡散される。 On the other hand, the spray unit 4 ejects the liquid material as particulate droplets from a predetermined ejection direction, for example, from the nozzle 7 downward in the figure. Specifically, when the gas is supplied from the gas supply unit 8 to the nozzle 7 through the piping line 1L, the liquid material stored in the liquid supply unit 9 is sucked into the piping line 2L. And in the nozzle 7, gas and a liquid material are mixed, and a particulate liquid material is sprayed with gas from the jet nozzle of the nozzle 7. FIG. The sprayed liquid material is diffused downward in the figure of the nozzle 7.
 他方、制御ユニット6は、移動ユニット5を図1に示される位置から図中右方向に移動させた後、再度図1に示される位置に移動させる。この往復移動について、図2(A)~(C)を用いて説明する。 On the other hand, the control unit 6 moves the moving unit 5 from the position shown in FIG. 1 to the right in the figure, and then moves it again to the position shown in FIG. This reciprocal movement will be described with reference to FIGS.
 図2(A)~(C)のそれぞれは、液体材料の噴霧領域と基板Wとの位置関係を示す図であって、処理室1内を上方から俯瞰した場合の状態を示している。図中点線で囲む領域は、液体材料の噴霧領域であって、基板Wの表面が噴霧領域に進入した場合に、基板Wの表面に液滴が付着し得る領域を示している。したがって、点線で囲む領域の紙面上方には、噴出ユニット4が位置している構成となる。また、図中Lは往復移動のストロークを示している。 2A to 2C are diagrams showing the positional relationship between the spray region of the liquid material and the substrate W, and show the state when the processing chamber 1 is looked down from above. A region surrounded by a dotted line in the figure is a spray region of the liquid material, and indicates a region where droplets can adhere to the surface of the substrate W when the surface of the substrate W enters the spray region. Accordingly, the ejection unit 4 is positioned above the space surrounded by the dotted line. In the figure, L indicates a reciprocating stroke.
 薄膜製造装置100の成膜動作において、図2(A)に示すように、移動ユニット5が図1に示す位置に位置してる場合、移動ユニット5上の保持ユニット3に保持される基板Wと噴霧領域とは重なっていないため、基板Wは液体材料に曝されない。制御ユニット6の制御によって移動ユニット5が図1中の右側に移動することによって、図2(B)に示すように、保持ユニット2および保持ユニット2に保持される基板Wも図1中の右側に移動することになる。この移動により、基板Wは噴霧領域に進入させられるため、基板Wの表面は液体材料に曝されることになる。そして、制御ユニット6は引き続き移動ユニット5を図中右側に移動させて、図2(C)に示す位置に移動させる。以上の往路により、基板Wは噴霧領域に進入して、該噴霧領域を通過することになり、これにより、基板Wの表面の全体に液体材料が付着する。そして、引き続き、移動ユニット5は、制御ユニット6の制御により、図2(C)の位置から図2(A)の位置まで移動する。この復路により、基板Wは噴霧領域に往路と反対側から進入して該噴霧領域を通過することになる。 In the film forming operation of the thin film manufacturing apparatus 100, when the moving unit 5 is located at the position shown in FIG. 1 as shown in FIG. 2A, the substrate W held by the holding unit 3 on the moving unit 5 and Since it does not overlap with the spray region, the substrate W is not exposed to the liquid material. When the moving unit 5 moves to the right side in FIG. 1 under the control of the control unit 6, as shown in FIG. 2B, the holding unit 2 and the substrate W held by the holding unit 2 are also on the right side in FIG. Will be moved to. By this movement, the substrate W is caused to enter the spray region, so that the surface of the substrate W is exposed to the liquid material. Then, the control unit 6 continues to move the moving unit 5 to the right side in the figure and moves it to the position shown in FIG. Through the above-described outward path, the substrate W enters the spray region and passes through the spray region, whereby the liquid material adheres to the entire surface of the substrate W. Subsequently, the moving unit 5 moves from the position shown in FIG. 2C to the position shown in FIG. 2A under the control of the control unit 6. By this return path, the substrate W enters the spray area from the opposite side to the forward path and passes through the spray area.
 すなわち、制御ユニット6の制御によって、移動ユニット5が図2(A)、図2(C)、図2(A)の位置に順に移動し、これに伴う保持ユニット2の1回の往復移動によって、基板Wは噴霧領域を2回通過することができる。なお、上記の動作において、制御ユニット6は、この往復移動が少なくとも1回以上連続して行われる間に、成膜処理が完了するように、液体材料の噴霧量、移動ユニット5の移動速度、移動ユニット5の往復移動のストロークなどを制御する。 That is, by the control of the control unit 6, the moving unit 5 moves in order to the positions of FIGS. 2 (A), 2 (C), and 2 (A), and by the reciprocating movement of the holding unit 2 associated therewith, The substrate W can pass through the spray region twice. In the above operation, the control unit 6 is configured so that the amount of spray of the liquid material, the moving speed of the moving unit 5, and the like so that the film forming process is completed while the reciprocating movement is continuously performed at least once. The stroke of the reciprocating movement of the moving unit 5 is controlled.
 上述の薄膜製造装置100の動作によれば、加熱ユニット3によって基板Wを加熱しながら、噴霧ユニット4から液体材料を噴霧することができる。さらに、制御ユニット6による移動ユニット5の往復移動により、基板Wの表面全体に対し、不連続に液体材料を付着させることができる。噴霧領域に進入した基板Wの表面に液体材料が付着する際、基板Wは移動ユニット5によって移動させられながら加熱ユニット3によって継続的に加熱されているため、基板Wの表面に付着した液体材料中の溶媒が蒸発し、溶質が結晶化することによって溶質を原料とする薄膜を製造することができる。 According to the operation of the thin film manufacturing apparatus 100 described above, the liquid material can be sprayed from the spray unit 4 while the substrate W is heated by the heating unit 3. Further, the liquid material can be deposited discontinuously on the entire surface of the substrate W by the reciprocating movement of the moving unit 5 by the control unit 6. When the liquid material adheres to the surface of the substrate W that has entered the spray region, the substrate W is continuously heated by the heating unit 3 while being moved by the moving unit 5. When the solvent in the solvent evaporates and the solute crystallizes, a thin film using the solute as a raw material can be produced.
 ここで、本発明の効果の理解を容易とするために、薄膜製造装置100による成膜処理Aと、従来の送り出し方法による成膜処理Bとを比較する。成膜処理Aおよび成膜処理Bにおいて、液体材料噴霧量(ml/秒)、液体材料の噴霧領域、基板Wの表面のサイズは同一と仮定し、成膜処理Aにおける基板Wの往復移動の速度が成膜処理Bにおける基板Wの送り出し速度の2倍と仮定する。すなわち、成膜処理Aでは、噴霧領域に基板Wを2回通過させることによって薄膜の成膜が完了し、成膜処理Bでは、噴霧領域に基板Wを成膜処理Aの通過速度の1/2倍の速度で1回通過させることによって薄膜の成膜が完了することになる。 Here, in order to facilitate understanding of the effects of the present invention, the film forming process A by the thin film manufacturing apparatus 100 is compared with the film forming process B by the conventional delivery method. In the film forming process A and the film forming process B, it is assumed that the liquid material spray amount (ml / second), the liquid material spray region, and the surface size of the substrate W are the same, and the substrate W in the film forming process A is reciprocated. It is assumed that the speed is twice the sending speed of the substrate W in the film forming process B. That is, in the film forming process A, the film formation of the thin film is completed by passing the substrate W twice through the spray region, and in the film forming process B, the substrate W is passed through the spray region 1 / the speed of the film forming process A. The film formation is completed by passing the film once at a double speed.
 上記仮定において、基板表面の任意の一点(W1)に関して言えば、成膜処理Bでは、薄膜の成膜に必要な液体材料の所定量の全量が、連続した時間、たとえば2T秒間で噴霧されるのに対し、成膜処理Aによれば、往路と復路とのそれぞれで、上記全量の半分量が断続的にT秒間ずつ噴霧されることになる。さらに、成膜処理Aでは、往路において液体材料がW1に噴霧されるタイミングと、復路において液体材料がW1に噴霧された直前との間には、W1が往復移動のストロークLを移動するのに要する時間が存在する。このため、往路において液体材料が噴霧されることによって、W1の温度は低下するが、ストロークLを移動するのに要する時間の間にW1の温度は上昇するため、復路において表面温度を回復した状態で、液体材料が噴霧されることになる。 In the above assumption, regarding an arbitrary point (W 1 ) on the substrate surface, in the film forming process B, a predetermined amount of the liquid material necessary for forming the thin film is sprayed in a continuous time, for example, 2 T seconds. On the other hand, according to the film forming process A, half of the total amount is intermittently sprayed for T seconds in each of the outward path and the return path. Further, in the film forming process A, W 1 moves a reciprocating stroke L between the timing when the liquid material is sprayed on W 1 in the forward path and immediately before the liquid material is sprayed on W 1 on the return path. There is time to do. For this reason, the temperature of W 1 is lowered by spraying the liquid material in the forward path, but the temperature of W 1 is increased during the time required to move the stroke L, so that the surface temperature is recovered in the return path. In this state, the liquid material is sprayed.
 すなわち、本実施の形態によれば、成膜処理中に保持ユニット2を1回以上(n回)往復移動させて成膜処理を行なうことにより、基板Wの任意の点W1に対して連続的に液体材料が噴霧される量を、従来の送り出し方法と比較して(1/2n)倍にすることができ、さらに、往復移動の間に、W1の表面が液体材料に曝されない時間が存在するため、その間にW1の表面温度を上昇させることができる。したがって、本実施の形態によれば、従来の送り出し方法に対し、往路および復路での液体材料の噴霧によって生じる基板表面の温度低下を抑制することができ、さらに、往復移動の間に、基板表面の温度を上昇させることができる。 That is, according to the present embodiment, during the film formation process, the holding unit 2 is reciprocated at least once (n times) to perform the film formation process, thereby continuously with respect to an arbitrary point W 1 on the substrate W. The amount of liquid material sprayed can be (1 / 2n) times that of the conventional delivery method, and the time during which the surface of W 1 is not exposed to the liquid material during reciprocation In the meantime, the surface temperature of W 1 can be raised. Therefore, according to the present embodiment, it is possible to suppress the temperature drop of the substrate surface caused by the spraying of the liquid material in the forward path and the backward path with respect to the conventional delivery method, and further, during the reciprocation, the substrate surface The temperature can be increased.
 このため、本実施の形態によれば、成膜処理中の基板Wの表面の最高温度と最低温度との温度差を小さくすることができるため、液滴噴霧法においても、所望の特性を有する薄膜を容易に製造することができる。また、n回の往復移動で成膜処理を完了する場合に、往復移動の速度を、従来の送り出し速度の2n倍にすることによって、成膜処理に必要なタクトタイムは、従来の送り出し方法と同じにできるため、生産性を低下させることもない。また、1回の噴霧領域の通過時に基板Wの表面に付着する液体材料の量も減るため、噴霧領域を1回通過することによる基板の温度の低下の程度は小さくなる。 For this reason, according to the present embodiment, the temperature difference between the maximum temperature and the minimum temperature of the surface of the substrate W during the film forming process can be reduced, so that the droplet spraying method also has desired characteristics. A thin film can be manufactured easily. In addition, when the film forming process is completed by n reciprocating movements, the tact time required for the film forming process is set to be equal to that of the conventional sending method by making the reciprocating movement speed 2n times the conventional sending speed. Since it can be the same, productivity is not reduced. Further, since the amount of the liquid material adhering to the surface of the substrate W when passing through the spray region once is reduced, the degree of decrease in the temperature of the substrate due to passing through the spray region once becomes small.
 本実施の形態の薄膜製造装置100によれば、上述のように、基板Wの表面の最高温度と最低温度との温度差を小くして基板Wの温度の低下を抑制することができるため、薄膜の特性に対応した好適な温度条件下での成膜が可能となる。このため、たとえば、成膜処理において許容される温度範囲の狭い透明導電膜を容易に製造することができる。 According to the thin film manufacturing apparatus 100 of the present embodiment, as described above, the temperature difference between the maximum temperature and the minimum temperature of the surface of the substrate W can be reduced to suppress a decrease in the temperature of the substrate W. Film formation under suitable temperature conditions corresponding to the characteristics of the thin film becomes possible. For this reason, for example, a transparent conductive film having a narrow temperature range allowed in the film forming process can be easily manufactured.
 また、上記のような薄膜製造装置100によれば、成膜処理に要する往復移動の回数を調節することにより、基板Wの表面への液体材料の噴霧時における基板Wの表面の温度差を70℃以下にすることができ、さらには40℃以下にすることができる。 Further, according to the thin film manufacturing apparatus 100 as described above, the temperature difference on the surface of the substrate W when the liquid material is sprayed onto the surface of the substrate W is adjusted by adjusting the number of reciprocating movements required for the film forming process. The temperature can be set at or below 40.degree.
 また、薄膜製造装置100において、液体材料の噴出方向と、保持ユニット2の往復移動の方向とは直行していることが好ましい。この場合、液体材料の液滴を基板Wの表面に均一に付着させることができる。 In the thin film manufacturing apparatus 100, it is preferable that the liquid material ejection direction and the reciprocating direction of the holding unit 2 are perpendicular to each other. In this case, droplets of the liquid material can be uniformly attached to the surface of the substrate W.
 また、往復移動のストロークは、図2(A)~(C)に示すように、噴霧領域の左右のいずれにおいても、基板Wの表面全体が噴霧領域の外に位置する状態を取り得るストロークであることが好ましい。 In addition, as shown in FIGS. 2A to 2C, the reciprocating stroke is a stroke that can take a state in which the entire surface of the substrate W is located outside the spraying region, on either the left or right side of the spraying region. Preferably there is.
 なお、上記実施の形態では、往復移動が1回の場合について説明したが、制御ユニット6が薄膜の成膜処理に必要な往復移動の回数が2回以上となるように往復移動速度を制御することによって、成膜処理時の基板Wの表面の温度差がさらに小さくなることはいうまでもない。 In the above-described embodiment, the case where the reciprocation is performed once has been described. However, the control unit 6 controls the reciprocation speed so that the number of reciprocations necessary for the thin film forming process is two times or more. Thus, it goes without saying that the temperature difference on the surface of the substrate W during the film forming process is further reduced.
 <薄膜の製造方法>
 次に、本実施の形態に係る薄膜の製造方法について説明する。ここでは、薄膜太陽電池の受光側の電極に利用される透明導電膜の製造方法について説明する。
<Method for producing thin film>
Next, the manufacturing method of the thin film which concerns on this Embodiment is demonstrated. Here, the manufacturing method of the transparent conductive film utilized for the electrode of the light-receiving side of a thin film solar cell is demonstrated.
 まず、被処理基体を加熱する工程において、基体Wが加熱される。透明導電膜は、スズ、亜鉛、インジウム、カドミウム、ストロンチウム、チタンなどの金属酸化物の結晶から構成されるが、この場合、成膜処理中の基板Wの温度は、少なくとも450℃以上であることが好ましい。このため、本工程において、基板Wは、表面の温度が470℃以上となるように加熱されることが好ましい。さらには、液体材料の噴霧による表面の温度の低下を考慮し、表面の温度が500℃以上となるように加熱されることが好ましい。 First, in the step of heating the substrate to be processed, the substrate W is heated. The transparent conductive film is composed of a crystal of a metal oxide such as tin, zinc, indium, cadmium, strontium, or titanium. In this case, the temperature of the substrate W during the film formation process is at least 450 ° C. or higher. Is preferred. For this reason, in this step, the substrate W is preferably heated so that the surface temperature becomes 470 ° C. or higher. Furthermore, in consideration of a decrease in the surface temperature due to the spraying of the liquid material, it is preferable that the surface temperature is heated to 500 ° C. or higher.
 一方、被処理基体の表面に向けて液体材料を噴霧する工程において、基体Wの表面に向けて、液体材料が粒子状の液滴の形状で噴霧される。液体材料には、透明導電膜の原料と溶媒とが含有されている。また、液体材料は、透明導電膜にドープされるドーパントを含有していもよい。透明導電膜の原料としては、金属酸化物である透明導電膜を構成する金属の金属塩化物を用いることが一般的である。なお、液体材料中における金属塩化物の濃度は、その性質上、0.1mol/L以上3mol/L以下とするのが好ましい。 On the other hand, in the step of spraying the liquid material toward the surface of the substrate to be processed, the liquid material is sprayed in the form of particulate droplets toward the surface of the substrate W. The liquid material contains a raw material for the transparent conductive film and a solvent. Moreover, the liquid material may contain a dopant that is doped into the transparent conductive film. As a raw material for the transparent conductive film, it is common to use a metal chloride of a metal constituting the transparent conductive film that is a metal oxide. In addition, it is preferable that the density | concentration of the metal chloride in a liquid material shall be 0.1 mol / L or more and 3 mol / L or less on the property.
 具体的には、たとえば、アンチモンドープ酸化スズからなる透明導電膜を製造する場合には、水などの溶媒に塩化第二スズと三塩化アンチモンを溶解した溶液を液体材料とすることができる。また、たとえば、スズドープ酸化インジウムからなる透明導電膜を製造する場合には、水などの溶媒に四塩化スズと三塩化インジウムを溶解した溶液を液体材料とすることができる。また、液体材料に体積を膨張させたガスを混入させて噴霧させることにより、液滴の粒径をより均一にした状態での噴霧が可能となる。ガスとしては、たとえば空気を用いることができる。 Specifically, for example, when producing a transparent conductive film made of antimony-doped tin oxide, a solution obtained by dissolving stannic chloride and antimony trichloride in a solvent such as water can be used as the liquid material. For example, when manufacturing a transparent conductive film made of tin-doped indium oxide, a solution in which tin tetrachloride and indium trichloride are dissolved in a solvent such as water can be used as the liquid material. In addition, by spraying the liquid material with a gas whose volume has been expanded, spraying can be performed in a state where the particle diameters of the droplets are made more uniform. For example, air can be used as the gas.
 上記工程により、基板Wの温度が所定の温度に到達するとともに、液体材料が基板Wに向けて噴出されることになる。なお、加熱する工程を開始するタイミングと、噴出する工程を開始するタイミングとの前後関係は、特に制限されず、少なくとも、基板Wに液滴が付着する際に、基板Wの表面が加熱されていればよい。 Through the above process, the temperature of the substrate W reaches a predetermined temperature, and the liquid material is ejected toward the substrate W. Note that the front-rear relationship between the timing of starting the heating step and the timing of starting the ejecting step is not particularly limited, and at least the surface of the substrate W is heated when droplets adhere to the substrate W. Just do it.
 そして、上記噴霧する工程において、基板Wを基板Wの表面方向に相対的に往復移動させて、基板Wの表面に対する液体材料の噴霧される位置を変動させる。具体的には、基板Wが基板Wの表面方向に沿って往復移動する際に、その往復移動の経路の途中に液体材料の噴霧領域が存在していることにより、基板Wの表面に対する液体材料の噴霧される位置を変動させることができる。これにより、基板Wの表面に透明導電膜を成膜することができる。 In the spraying step, the position of the liquid material sprayed on the surface of the substrate W is changed by reciprocating the substrate W relative to the surface of the substrate W. Specifically, when the substrate W reciprocates along the surface direction of the substrate W, a liquid material spraying area is present in the middle of the reciprocating path so that the liquid material with respect to the surface of the substrate W can be obtained. The sprayed position can be varied. Thereby, a transparent conductive film can be formed on the surface of the substrate W.
 上記の往復移動について図2(A)~(C)を参照しながら説明すると、上記噴霧する工程において、液体材料の噴霧領域外に位置する基板W(図2(A)参照)は、基板Wの表面方向である図中右側(図2において、基板Wの長手方向)に移動し、噴霧領域を通過する(図2(B)および(C)参照)。そして、引き続き、基板Wは、移動の向きを変えて、基板Wの表面方向である図中左側に移動し、再度噴霧領域を通過しながら図2(A)に示す位置に移動する。 The reciprocal movement will be described with reference to FIGS. 2A to 2C. In the spraying step, the substrate W (see FIG. 2A) located outside the spray region of the liquid material is the substrate W. Moves to the right side in the drawing (the longitudinal direction of the substrate W in FIG. 2) and passes through the spray region (see FIGS. 2B and 2C). Subsequently, the substrate W changes its direction of movement, moves to the left side in the figure, which is the surface direction of the substrate W, and moves to the position shown in FIG. 2A while passing through the spray region again.
 基板Wが図2(A)の位置から図2(C)に移動し、再び図2(A)の位置に移動することにより、基板Wは図2(A)の基板Wの位置と図2(C)の基板Wの位置との間にある噴霧領域を、往路と復路で1回ずつ通過することができる。基板Wが噴霧領域を通過することによって、基板Wの表面に液体材料が付着するが、このとき、基板Wは継続的に加熱され続けているため、基板Wの表面に付着した液体材料中の溶媒が蒸発し、溶質が結晶化することによって基板Wの表面に透明導電膜が成膜される。 The substrate W is moved from the position of FIG. 2A to FIG. 2C, and is again moved to the position of FIG. 2A, whereby the substrate W and the position of the substrate W of FIG. The spray region between the position of the substrate W in (C) can pass once each in the forward path and the return path. When the substrate W passes through the spray region, the liquid material adheres to the surface of the substrate W. At this time, since the substrate W is continuously heated, the liquid material in the liquid material attached to the surface of the substrate W As the solvent evaporates and the solute crystallizes, a transparent conductive film is formed on the surface of the substrate W.
 上述した本実施の形態の薄膜の製造方法によれば、成膜処理において基板Wを往復移動させることにより、基板Wは少なくとも2回以上噴霧領域を通過することができる。噴霧領域の通過時に基板Wの表面に液体材料が付着するが、上述したように、従来の送り出し方法と比べて、連続的に噴霧される液体材料の量を減らすことがでるため、往路および復路での液体材料の噴霧によって生じる基板表面の温度低下を抑制することができ、さらに、往復移動の間に、基板表面の温度を上昇させることができる。 According to the thin film manufacturing method of the present embodiment described above, the substrate W can pass through the spray region at least twice by moving the substrate W back and forth in the film forming process. Although the liquid material adheres to the surface of the substrate W when passing through the spray region, as described above, the amount of the liquid material sprayed continuously can be reduced as compared with the conventional delivery method. The temperature drop of the substrate surface caused by the spraying of the liquid material can be suppressed, and the temperature of the substrate surface can be raised during the reciprocating movement.
 このため、本実施の形態によれば、成膜処理中の基板Wの表面の最高温度と最低温度との温度差を小さくすることができるため、液滴噴霧法においても、所望の特性を有する薄膜を容易に製造することができる。また、n回の往復移動で成膜処理を完了する場合に、往復移動の速度を、従来の送り出し速度の2n倍にすることによって、成膜処理に必要なタクトタイムは、従来の送り出し方法と同じにできるため、生産性を低下させることもない。なお、単位時間に噴霧される液体材料の量から、所定の寸法の基板Wに所定の厚さの成膜を行うために必要な成膜時間を決定することができる。 For this reason, according to the present embodiment, the temperature difference between the maximum temperature and the minimum temperature of the surface of the substrate W during the film forming process can be reduced, so that the droplet spraying method also has desired characteristics. A thin film can be manufactured easily. In addition, when the film forming process is completed by n reciprocating movements, the tact time required for the film forming process is set to be equal to that of the conventional sending method by making the reciprocating movement speed 2n times the conventional sending speed. Since it can be the same, productivity is not reduced. It should be noted that the film formation time required to form a film having a predetermined thickness on the substrate W having a predetermined size can be determined from the amount of the liquid material sprayed per unit time.
 本実施の形態によれば、上述のように、基板Wの表面の最高温度と最低温度との温度差を小くして基板Wの温度の低下を抑制することができるため、薄膜の特性に対応した好適な温度条件下での成膜が可能となる。このため、たとえば、成膜処理において許容される温度範囲の狭い、テクスチャ構造を有する膜、たとえば、透明導電膜を容易に製造することができる。 According to the present embodiment, as described above, the temperature difference between the maximum temperature and the minimum temperature on the surface of the substrate W can be reduced to suppress a decrease in the temperature of the substrate W. It is possible to form a film under the suitable temperature conditions. For this reason, for example, a film having a texture structure with a narrow temperature range allowed in the film forming process, for example, a transparent conductive film can be easily manufactured.
 また、本実施の形態によれば、噴霧工程中における基板Wの往復移動の回数を1回以上とすることが好ましく、往復移動の回数を調節することによって、噴霧工程中における基板Wの表面の最高温度と最低温度との温度差を70℃以下にすることができ、さらには40℃以下にすることもできる。このため、本実施の形態の薄膜の製造方法によれば、より好適に透明導電膜を製造することができる。 Further, according to the present embodiment, the number of reciprocating movements of the substrate W during the spraying process is preferably one or more, and the surface of the substrate W during the spraying process is adjusted by adjusting the number of reciprocating movements. The temperature difference between the maximum temperature and the minimum temperature can be set to 70 ° C. or lower, and further can be set to 40 ° C. or lower. For this reason, according to the manufacturing method of the thin film of this Embodiment, a transparent conductive film can be manufactured more suitably.
 また、薄膜太陽電池において、基板Wとしてアルカリ金属を含むソーダライムガラスなどを用いる場合には、基板Wのアルカリ成分が透明導電膜に拡散されるのを抑制するために、基板Wと透明導電膜との間にバリア層を設けることが好ましい。バリア層は、酸化アルミニウム、酸化亜鉛などの結晶からなる層であるため、透明導電膜と同様に、上述の本実施の形態に係る薄膜の製造方法によって好適に製造することができる。この場合には、噴霧する液体材料の組成を切り替えることにより、バリア層と透明導電膜とを連続して製造することもできる。特に、バリア層を本実施の形態の薄膜の製造方法によって製造することにより、バリア層の成膜工程において、材料の噴霧による基板表面温度の低下を低減することができるため、ばらつきの少ない温度条件下での成膜が可能となり、もって、均一な膜厚および均一なバリア特性のバリア層を形成できる。 In addition, when using soda lime glass containing an alkali metal as the substrate W in the thin film solar cell, the substrate W and the transparent conductive film are suppressed in order to prevent the alkali component of the substrate W from diffusing into the transparent conductive film. It is preferable to provide a barrier layer between them. Since the barrier layer is a layer made of a crystal such as aluminum oxide or zinc oxide, it can be suitably manufactured by the method for manufacturing a thin film according to the above-described embodiment, similarly to the transparent conductive film. In this case, the barrier layer and the transparent conductive film can be continuously produced by switching the composition of the liquid material to be sprayed. In particular, since the barrier layer is manufactured by the thin film manufacturing method of the present embodiment, the decrease in the substrate surface temperature due to the spraying of the material can be reduced in the barrier layer film forming step, so that the temperature condition with little variation is achieved. Therefore, a barrier layer having a uniform film thickness and uniform barrier characteristics can be formed.
 なお、本実施の形態において、固定された噴霧領域に対して基板Wを往復移動させる場合について説明したが、固定された基板Wに対して噴霧領域を往復移動させてもよい。この場合、液体材料の噴出方向(図2中の紙面上方から紙面裏面側に向かう方向)は一定で、噴霧領域の位置が移動することになる。ただし、噴霧領域を移動させることにより、液滴の拡散が不均一になる場合を考慮すると、基板Wを往復移動させることがより好ましい。 In the present embodiment, the case where the substrate W is reciprocated with respect to the fixed spray region has been described, but the spray region may be reciprocated with respect to the fixed substrate W. In this case, the ejection direction of the liquid material (the direction from the upper side of the paper in FIG. 2 toward the back side of the paper) is constant, and the position of the spray region moves. However, it is more preferable to reciprocate the substrate W in consideration of the case where the dispersion of the droplets becomes non-uniform by moving the spray region.
 以上詳述した本発明において、基板Wのサイズが大きい程、基板Wの表面の温度の低下を抑制する効果が大きい。これはサイズの大きい基板Wを往復移動させると、往復移動のストロークや往復移動に要する時間は長くなるため、基板Wの任意の一点について見た場合、液体材料が噴霧されない時間が長くなり、結果的に、液体材料の噴霧によって低下した基板Wの表面の温度が回復する時間を十分に確保することができるためである。これは、薄膜太陽電池に代表される薄膜の積層によって製造されるデバイスの大型化という近年の流れに適していると言える。 In the present invention described in detail above, the larger the size of the substrate W, the greater the effect of suppressing the temperature drop of the surface of the substrate W. This is because when a large-sized substrate W is reciprocated, the reciprocating stroke and the time required for reciprocating movement become long. Therefore, when an arbitrary point on the substrate W is viewed, the time during which the liquid material is not sprayed becomes long. In particular, it is possible to secure a sufficient time for the surface temperature of the substrate W, which has been lowered by spraying the liquid material, to recover. This can be said to be suitable for the recent trend of increasing the size of devices manufactured by stacking thin films represented by thin film solar cells.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 <実施例1>
 本実施例において、薄膜製造装置100を用いて上述の製造方法を実施し、ガラス基板の表面に透明導電膜を製造した。以下に、透明導電膜の具体的な製造方法について説明する。
<Example 1>
In this example, the above-described manufacturing method was performed using the thin film manufacturing apparatus 100 to manufacture a transparent conductive film on the surface of the glass substrate. Below, the specific manufacturing method of a transparent conductive film is demonstrated.
 まず、成膜処理に先立って、基板Wおよび液体材料を準備した。基板Wとしては、縦×横が100mm×100mmのガラス基板を準備した。透明導電膜として、フッ素ドープ酸化スズを成膜するべく、液体材料としては、塩化第二スズおよびフッ化アンモニウムをそれぞれ0.9mol/Lおよび0.1mol/Lずつ含有する液体材料を準備した。なお、液体材料の溶媒は、水と塩酸とメタノールとの混合溶液とした。そして、準備したガラス基板を処理室1内に搬入し、保持ユニット2に保持させ、液体供給部9内に準備した水溶液を収容させた。なお、気体供給部8には圧縮空気を収容させた。 First, prior to the film formation process, a substrate W and a liquid material were prepared. As the substrate W, a glass substrate having a length × width of 100 mm × 100 mm was prepared. In order to form fluorine-doped tin oxide as a transparent conductive film, liquid materials containing stannic chloride and ammonium fluoride at 0.9 mol / L and 0.1 mol / L, respectively, were prepared. The liquid material solvent was a mixed solution of water, hydrochloric acid, and methanol. Then, the prepared glass substrate was carried into the processing chamber 1, held in the holding unit 2, and the prepared aqueous solution was accommodated in the liquid supply unit 9. The gas supply unit 8 accommodated compressed air.
 次に、ホットプレートからなる加熱ユニット3によってガラス基板を加熱した。このとき、ホットプレートの設定温度を540℃にしてガラス基板を加熱したところ、ガラス基板の表面の温度は500℃程度まで上昇した。なお、ガラス基板の表面の温度は、ガラス基板の表面の端に貼り付けた熱電対によって測定した。 Next, the glass substrate was heated by the heating unit 3 consisting of a hot plate. At this time, when the glass substrate was heated at a set temperature of the hot plate of 540 ° C., the surface temperature of the glass substrate rose to about 500 ° C. In addition, the temperature of the surface of a glass substrate was measured with the thermocouple affixed on the edge of the surface of the glass substrate.
 また、一方で、噴霧ユニット4において、ノズル7から図中下方に向けて、ガスとともに液体材料を粒子状にして噴出した。液体材料が噴霧される噴霧領域について、ガラス基板の往復移動方向に対する幅は80mmであった。なお、噴霧領域のガラス基板の往復移動方向に直交する幅は、100mmを超えていた。なお、本実施例において、ノズル7からの液体材料の噴出方向とガラス基板の往復移動方向は直交する関係であった。 On the other hand, in the spray unit 4, the liquid material was ejected in the form of particles together with the gas from the nozzle 7 downward in the figure. About the spray area | region where a liquid material is sprayed, the width | variety with respect to the reciprocation direction of a glass substrate was 80 mm. In addition, the width | variety orthogonal to the reciprocating direction of the glass substrate of a spray area | region exceeded 100 mm. In the present embodiment, the ejection direction of the liquid material from the nozzle 7 and the reciprocating direction of the glass substrate are orthogonal to each other.
 そして、制御ユニット6により、移動ユニット5の往復移動の速度を15mm/秒、往復移動のストロークを180mmに制御して、保持ユニット2を180秒間往復移動させた。したがって、本成膜処理において、ガラス基板は7.5回往復移動したことになる。 Then, the control unit 6 controlled the reciprocating speed of the moving unit 5 to 15 mm / second and the reciprocating stroke to 180 mm, and the holding unit 2 was reciprocated for 180 seconds. Therefore, in this film forming process, the glass substrate has reciprocated 7.5 times.
 この往復移動におけるガラス基板と噴霧領域との位置関係を図3を用いて説明すると、ガラス基板は、往路において、図中左側の位置から右側に向けて移動し、その表面の全面が噴霧領域を通過した直後、移動方向が反対に切り替えられ、引き続き、復路において、その表面の全面が噴霧領域を通過することになる。 The positional relationship between the glass substrate and the spray area in this reciprocal movement will be described with reference to FIG. 3. The glass substrate moves from the position on the left side in the figure toward the right side in the forward path, and the entire surface of the glass substrate moves through the spray area. Immediately after passing, the moving direction is switched to the opposite direction, and subsequently, the entire surface of the surface passes through the spray region in the return path.
 なお、ガラス基板が往復移動する180秒間の間、噴霧ユニット4は液滴材料を継続的に噴霧し、加熱ユニット3はガラス基板を継続的に一定の温度(540℃)で加熱し続けた。また、成膜処理中のガラス基板の表面の温度を上記熱電対によって継続的に測定した。 Note that during the 180 seconds during which the glass substrate reciprocated, the spray unit 4 continuously sprayed the droplet material, and the heating unit 3 continued to heat the glass substrate at a constant temperature (540 ° C.). Further, the temperature of the surface of the glass substrate during the film forming process was continuously measured by the thermocouple.
 成膜処理が終了した後、成膜処理後のガラス基板を処理室1から搬出し、ヘイズ率およびシート抵抗を測定した。なお、ヘイズ率は、市販のヘイズメータ(C光源)を用いて測定し、シート抵抗は、4探針法(JIS K7194)を用いて測定した。結果を表1に示す。 After completion of the film forming process, the glass substrate after the film forming process was taken out of the processing chamber 1 and the haze ratio and the sheet resistance were measured. The haze ratio was measured using a commercially available haze meter (C light source), and the sheet resistance was measured using a 4-probe method (JIS K7194). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <実施例2>
 移動ユニット5の往復速度を150mm/秒とした以外は、実施例1と同様の方法により、フッ素ドープ酸化スズからなる透明導電膜を成膜した。したがって、本成膜処理において、ガラス基板は75回往復移動したことになる。
<Example 2>
A transparent conductive film made of fluorine-doped tin oxide was formed by the same method as in Example 1 except that the reciprocating speed of the moving unit 5 was set to 150 mm / second. Therefore, in this film forming process, the glass substrate has reciprocated 75 times.
 成膜処理が終了した後、成膜処理後のガラス基板を処理室1から搬出し、上記と同様の方法により、ヘイズ率およびシート抵抗を測定した。結果を表1に示す。 After completion of the film forming process, the glass substrate after the film forming process was taken out of the processing chamber 1, and the haze ratio and the sheet resistance were measured by the same method as described above. The results are shown in Table 1.
 <比較例1>
 従来の送り出し方法によって、フッ素ドープ酸化スズからなる透明導電膜を成膜した。具体的には、薄膜製造装置100において、移動ユニット5が図1中の右方向にしか移動しないように変更した後、制御ユニット6により、移動ユニット5の移動速度を1mm/秒に制御した。したがって、本成膜処理において、ガラス基板は、図3に示す左側の位置から右側の位置への移動を一度行なったのみである。なお、それ以外は、実施例1と同様の方法により、透明導電膜を成膜した。
<Comparative Example 1>
A transparent conductive film made of fluorine-doped tin oxide was formed by a conventional delivery method. Specifically, in the thin film manufacturing apparatus 100, after changing the moving unit 5 so as to move only in the right direction in FIG. 1, the moving speed of the moving unit 5 was controlled to 1 mm / second by the control unit 6. Therefore, in this film forming process, the glass substrate is only moved once from the left position shown in FIG. 3 to the right position. Other than that, a transparent conductive film was formed in the same manner as in Example 1.
 成膜処理が終了した後、成膜処理後のガラス基板を処理室1から搬出し、上記と同様の方法により、ヘイズ率およびシート抵抗を測定した。結果を表1に示す。 After completion of the film forming process, the glass substrate after the film forming process was taken out of the processing chamber 1, and the haze ratio and the sheet resistance were measured by the same method as described above. The results are shown in Table 1.
 各成膜処理において測定された基板の表面の温度の経時変化を図4に示す。図4において、点線は実施例1におけるガラス基板の表面温度の成膜処理中の経時変化を示し、実線は実施例2におけるガラス基板の表面温度の成膜処理中の経時変化を示し、一点鎖線は比較例1におけるガラス基板の表面温度の成膜処理中の経時変化を示している。なお、横軸の経時時間(秒)について、経時時間の120秒目が、ガラス基板の往復移動または送り出しが開始されたときに該当し、経時時間300秒目が往復移動または送り出しが終了したときに該当する。 FIG. 4 shows changes with time in the temperature of the surface of the substrate measured in each film forming process. In FIG. 4, the dotted line indicates the change with time of the glass substrate surface temperature during the film formation process in Example 1, the solid line indicates the change with time of the glass substrate surface temperature during the film formation process in Example 2, and the alternate long and short dash line These show the time-dependent change during the film-forming process of the surface temperature of the glass substrate in the comparative example 1. FIG. Regarding the elapsed time (seconds) on the horizontal axis, the 120th of the elapsed time corresponds to the time when the reciprocating movement or delivery of the glass substrate is started, and the time of the 300th time elapsed when the reciprocating movement or delivery is completed. It corresponds to.
 表1を参照し、実施例1において、透明導電膜のヘイズ率は5%であり、シート抵抗は9Ω/□であった。したがって、実施例1において、薄膜太陽電池の受光側の電極として求められるヘイズ率(5%以上)とシート抵抗(20Ω/□以下)とを備える透明導電膜を製造することができた。これに対し、比較例1において、透明導電膜のヘイズ率は15%であり、シート抵抗は150Ω/□であった。 Referring to Table 1, in Example 1, the transparent conductive film had a haze ratio of 5% and a sheet resistance of 9Ω / □. Therefore, in Example 1, the transparent conductive film provided with the haze rate (5% or more) calculated | required as an electrode of the light reception side of a thin film solar cell and sheet resistance (20 ohms / square or less) was able to be manufactured. On the other hand, in Comparative Example 1, the haze ratio of the transparent conductive film was 15%, and the sheet resistance was 150Ω / □.
 図4を参照すれば、実施例1において、液体材料が噴霧されている間の基板の最低温度は430℃であることがわかった。したがって、実施例1における成膜処理中の基板の最高温度と最低温度との温度差は70℃である。一方、比較例1において、基板の表面温度は液体材料が噴霧されている間に、基板の表面温度は約400℃程度にまで低下しており、温度差は100℃であることがわかった。これは、ガラス基板の表面が継続的に液体材料に曝され続けるためであると考えられる。 Referring to FIG. 4, it was found that in Example 1, the minimum temperature of the substrate while the liquid material was sprayed was 430 ° C. Therefore, the temperature difference between the maximum temperature and the minimum temperature of the substrate during the film forming process in Example 1 is 70 ° C. On the other hand, in Comparative Example 1, it was found that the surface temperature of the substrate decreased to about 400 ° C. while the liquid material was sprayed, and the temperature difference was 100 ° C. This is considered to be because the surface of the glass substrate is continuously exposed to the liquid material.
 ここで、一般的に、基板を高温にした状態で透明導電膜を成膜した場合、ヘイズ率が高くなるとともにシート抵抗が低下する傾向にあり、基板を低温にした状態で透明導電膜を成膜した場合、ヘイズ率が低くなるとともにシート抵抗が増加する傾向にある。しかしながら、実施例1と比較例1とを比較すると、図4より、比較例1の透明導電膜のほうが、実施例1の透明導電膜よりも基板を低温にした状態で成膜されているにも関わらず、極めて高いシート抵抗を有する結果となっている。この理由は明確ではないが、ガラス基板の温度が400℃程度、さらにそれ以下の温度の場合には結晶成長が十分でないために、シート抵抗が増大するものと考えられる。 Here, generally, when a transparent conductive film is formed with the substrate at a high temperature, the haze ratio tends to increase and the sheet resistance tends to decrease, and the transparent conductive film is formed with the substrate at a low temperature. When the film is formed, the haze ratio decreases and the sheet resistance tends to increase. However, comparing Example 1 with Comparative Example 1, it can be seen from FIG. 4 that the transparent conductive film of Comparative Example 1 is formed with the substrate at a lower temperature than the transparent conductive film of Example 1. Nevertheless, the result is a very high sheet resistance. The reason for this is not clear, but it is considered that the sheet resistance increases because the crystal growth is not sufficient when the temperature of the glass substrate is about 400 ° C. or lower.
 以上のように、実施例1と比較例1とを比較することにより、成膜処理中の基板の表面の最高温度と最低温度の温度差が70℃の場合(実施例1)には、薄膜太陽電池の電極として好適な透明導電膜を製造することができることがわかった。 As described above, by comparing Example 1 and Comparative Example 1, when the temperature difference between the maximum temperature and the minimum temperature of the surface of the substrate during the film forming process is 70 ° C. (Example 1), the thin film It turned out that a transparent conductive film suitable as an electrode of a solar cell can be manufactured.
 また、表1を参照し、実施例2において、透明導電膜のヘイズ率は13%であり、シート抵抗は15Ω/□であった。したがって、実施例2において、薄膜太陽電池の受光側の電極として求められるヘイズ率とシート抵抗とを備える透明導電膜を製造することができた。 Further, referring to Table 1, in Example 2, the haze ratio of the transparent conductive film was 13%, and the sheet resistance was 15Ω / □. Therefore, in Example 2, the transparent conductive film provided with the haze rate and sheet resistance which are calculated | required as the electrode of the light reception side of a thin film solar cell was able to be manufactured.
 図4を参照すれば、実施例2において、液体材料が噴霧されている間の基板の最低温度は460℃であることがわかった。したがって、実施例2における成膜処理中の基板の最高温度と最低温度との温度差は40℃である。実施例2は、実施例1よりも早い移動速度でガラス基板を往復移動させたものであるが、実施例1と実施例2とを比較することにより、往復移動の速度を大きくして、成膜処理中の基板の最高温度と最低温度との温度差を小さくすることにより、さらに特性の高い透明導電膜を製造できることがわかった。 Referring to FIG. 4, in Example 2, it was found that the minimum temperature of the substrate while the liquid material was sprayed was 460 ° C. Therefore, the temperature difference between the maximum temperature and the minimum temperature of the substrate during the film forming process in Example 2 is 40 ° C. In Example 2, the glass substrate was reciprocated at a movement speed faster than that in Example 1. By comparing Example 1 and Example 2, the speed of reciprocation was increased, and It was found that a transparent conductive film with higher characteristics can be produced by reducing the temperature difference between the maximum temperature and the minimum temperature of the substrate during film processing.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明は、基体の表面への薄膜の製造に広く利用でき、特に、透明導電膜やバリア層の製造に好適に利用できる。 The present invention can be widely used for the production of a thin film on the surface of a substrate, and can be particularly suitably used for the production of a transparent conductive film and a barrier layer.
 1 処理室、2 保持ユニット、3 加熱ユニット、4 噴霧ユニット、5 移動ユニット、6 制御ユニット、7 ノズル、8 気体供給部、9 液体供給部、10 駆動軸、1L,2L 配管ライン、100 薄膜製造装置。 1 treatment chamber, 2 holding unit, 3 heating unit, 4 spraying unit, 5 moving unit, 6 control unit, 7 nozzle, 8 gas supply unit, 9 liquid supply unit, 10 drive shaft, 1L, 2L piping line, 100 thin film manufacturing apparatus.

Claims (10)

  1.  被処理基体(W)を加熱する工程と、
     前記被処理基体(W)の表面に向けて液体材料を噴霧する工程と、を含み、
     前記噴霧する工程において、
     前記被処理基体(W)を前記被処理基体(W)の前記表面方向に相対的に往復移動させて、前記被処理基体(W)の前記表面における前記液体材料の噴霧される位置を変動させながら薄膜を成膜する、薄膜の製造方法。
    Heating the substrate to be processed (W);
    Spraying a liquid material toward the surface of the substrate to be treated (W),
    In the spraying step,
    The position of the liquid material sprayed on the surface of the substrate to be processed (W) is changed by reciprocating the substrate to be processed (W) relative to the surface of the substrate to be processed (W). A method of manufacturing a thin film while forming a thin film.
  2.  前記噴霧する工程において、前記往復移動を連続して1回以上行なう、請求項1に記載の薄膜の製造方法。 The method for producing a thin film according to claim 1, wherein in the step of spraying, the reciprocation is continuously performed once or more.
  3.  前記噴霧する工程における前記被処理基体(W)の前記表面の最高温度と最低温度との温度差が70℃以下である、請求項1または2に記載の薄膜の製造方法。 The method for producing a thin film according to claim 1 or 2, wherein a temperature difference between the maximum temperature and the minimum temperature of the surface of the substrate to be processed (W) in the spraying step is 70 ° C or less.
  4.  前記噴霧する工程において、前記被処理基体(W)を往復移動させる、請求項1に記載の薄膜の製造方法。 The method for producing a thin film according to claim 1, wherein the substrate to be treated (W) is reciprocated in the spraying step.
  5.  前記薄膜として、表面にテクスチャ構造を有する薄膜を成膜する、請求項1に記載の薄膜の製造方法。 The method for producing a thin film according to claim 1, wherein a thin film having a texture structure on the surface is formed as the thin film.
  6.  前記薄膜として、透明導電膜を成膜する、請求項1に記載の薄膜の製造方法。 The method for producing a thin film according to claim 1, wherein a transparent conductive film is formed as the thin film.
  7.  前記薄膜として、バリア層を成膜する、請求項1に記載の薄膜の製造方法。 The method for producing a thin film according to claim 1, wherein a barrier layer is formed as the thin film.
  8.  加熱した被処理基体(W)を往復移動させながら前記被処理基体(W)の表面に液体材料を噴霧して、前記被処理基体(W)の前記表面に薄膜を成膜するための薄膜製造装置(100)であって、
     処理室(1)と、
     前記処理室(1)内に設置され、前記被処理基体(W)を保持するための保持ユニット(2)と、
     前記処理室(1)内に設置され、前記被処理基体(W)を加熱するための加熱ユニット(3)と、
     前記処理室(1)内であって前記保持ユニット(2)の上方に設置され、前記被処理基体(W)の前記表面に前記液体材料を噴霧するための噴霧ユニット(4)と、
     前記保持ユニット(2)を、前記噴霧ユニット(4)に対して前記被処理基体(W)の表面方向に相対的に往復移動させるための移動ユニット(5)と、
     前記保持ユニット(2)の前記往復移動の速度を制御するための制御ユニット(6)と、を備えた薄膜製造装置(100)。
    Manufacturing a thin film for forming a thin film on the surface of the substrate to be processed (W) by spraying a liquid material on the surface of the substrate to be processed (W) while reciprocating the heated substrate to be processed (W) An apparatus (100) comprising:
    Processing chamber (1);
    A holding unit (2) installed in the processing chamber (1) for holding the substrate to be processed (W);
    A heating unit (3) installed in the processing chamber (1) for heating the substrate to be processed (W);
    A spray unit (4) installed in the processing chamber (1) and above the holding unit (2), for spraying the liquid material onto the surface of the substrate to be processed (W);
    A moving unit (5) for reciprocating the holding unit (2) relative to the spray unit (4) in the surface direction of the substrate to be treated (W);
    A thin film manufacturing apparatus (100) comprising: a control unit (6) for controlling the speed of the reciprocating movement of the holding unit (2).
  9.  前記制御ユニット(6)は、前記薄膜を成膜するために、前記往復移動が連続して1回以上行なわれるように前記往復移動の速度を制御する請求項8に記載の薄膜製造装置(100)。 The thin film manufacturing apparatus (100) according to claim 8, wherein the control unit (6) controls the speed of the reciprocating movement so that the reciprocating movement is continuously performed once or more in order to form the thin film. ).
  10.  前記制御ユニット(6)は、前記被処理基体(W)の前記表面への前記液体材料の噴霧時における、前記被処理基体(W)の表面の温度差が70℃以下となるように、前記往復移動の速度を制御することを特徴とする、請求項8または9に記載の薄膜製造装置(100)。 The control unit (6) is configured so that a temperature difference of the surface of the substrate to be processed (W) is 70 ° C. or less when the liquid material is sprayed on the surface of the substrate to be processed (W). 10. The thin film manufacturing apparatus (100) according to claim 8 or 9, wherein the reciprocating speed is controlled.
PCT/JP2011/070155 2011-01-14 2011-09-05 Method for manufacturing thin film, and apparatus for manufacturing thin film WO2012096028A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011006067A JP5015331B2 (en) 2011-01-14 2011-01-14 Thin film manufacturing method and thin film manufacturing apparatus
JP2011-006067 2011-01-14

Publications (1)

Publication Number Publication Date
WO2012096028A1 true WO2012096028A1 (en) 2012-07-19

Family

ID=46506945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070155 WO2012096028A1 (en) 2011-01-14 2011-09-05 Method for manufacturing thin film, and apparatus for manufacturing thin film

Country Status (2)

Country Link
JP (1) JP5015331B2 (en)
WO (1) WO2012096028A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7280751B2 (en) * 2019-06-05 2023-05-24 東芝三菱電機産業システム株式会社 Deposition method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167263A (en) * 1987-12-24 1989-06-30 Nippon Sheet Glass Co Ltd Production of heat ray reflecting glass
JPH08257479A (en) * 1994-12-28 1996-10-08 Ntn Corp Coating method of rotor for rotary machine
JP2007077435A (en) * 2005-09-13 2007-03-29 Fujikura Ltd Film deposition system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167263A (en) * 1987-12-24 1989-06-30 Nippon Sheet Glass Co Ltd Production of heat ray reflecting glass
JPH08257479A (en) * 1994-12-28 1996-10-08 Ntn Corp Coating method of rotor for rotary machine
JP2007077435A (en) * 2005-09-13 2007-03-29 Fujikura Ltd Film deposition system

Also Published As

Publication number Publication date
JP5015331B2 (en) 2012-08-29
JP2012144800A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
KR101018738B1 (en) Film forming apparatus
KR101756215B1 (en) Method for producing a coated item by means of texture etching
US8932898B2 (en) Deposition and post-processing techniques for transparent conductive films
JP2013509352A (en) Conductive metal oxide film and photovoltaic device
JP6269990B2 (en) Laminate and method for producing the same
AU2009316769A1 (en) Conductive film formation on glass
JP5015331B2 (en) Thin film manufacturing method and thin film manufacturing apparatus
KR20170020602A (en) A far infrared ray heating element
JP5073843B1 (en) Method for forming transparent conductive film
KR20110014290A (en) Manufacturing equipments of f-dopped tin oxide film
JP2005116391A (en) Apparatus of manufacturing substrate for transparent electrode
JP4708130B2 (en) Film forming apparatus and method for producing transparent conductive film
WO2012098731A1 (en) Transparent conductive film and film formation method therefor
KR101279610B1 (en) Thin film deposition method of the hard substrates and the transparent conductive substrate
JP2008119634A (en) Film forming apparatus
KR101289017B1 (en) Thin film manufacturing apparatus with rotary plate
JP4969787B2 (en) Film forming apparatus and film forming method
JP2008094647A (en) Film deposition apparatus
JP4509900B2 (en) Deposition equipment
JP2008229536A (en) Film deposition system
JP2014005502A (en) Thin film deposition method
JP2013030611A (en) Deposition method of thin film for solar cell, thin film for solar cell deposited by deposition method, and deposition device for thin film for solar cell
JP2009110792A (en) Method of forming of conductive film and method of manufacturing photoelectric conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11855534

Country of ref document: EP

Kind code of ref document: A1