WO2012086505A1 - Method for producing β-sialon - Google Patents

Method for producing β-sialon Download PDF

Info

Publication number
WO2012086505A1
WO2012086505A1 PCT/JP2011/079008 JP2011079008W WO2012086505A1 WO 2012086505 A1 WO2012086505 A1 WO 2012086505A1 JP 2011079008 W JP2011079008 W JP 2011079008W WO 2012086505 A1 WO2012086505 A1 WO 2012086505A1
Authority
WO
WIPO (PCT)
Prior art keywords
sialon
acid
treatment step
powder
producing
Prior art date
Application number
PCT/JP2011/079008
Other languages
French (fr)
Japanese (ja)
Inventor
市川 恒希
慶太 小林
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Publication of WO2012086505A1 publication Critical patent/WO2012086505A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides

Definitions

  • the present invention relates to a method for producing ⁇ -sialon used as a phosphor, and more particularly to a method for producing Eu 2+ -activated ⁇ -sialon excellent in luminous efficiency.
  • ⁇ -type sialon is a solid solution of ⁇ -type silicon nitride in which Al is substituted at the Si position and O is substituted at the N position. Since there are two formula atoms in the unit cell (unit cell), the general formula is expressed as Si 6-z Al z O z N 8-z . Here, 0 ⁇ z ⁇ 4.2 and the solid solution range is very wide, but the molar ratio of (Si, Al) / (N, O) needs to be maintained at 3/4.
  • the phosphor When Eu 2+ is contained in the ⁇ -sialon crystal, the phosphor is excited by ultraviolet to blue light and emits green light of 520 to 560 nm, and can be used as a green light emitting component of a light emitting device such as a white LED.
  • This Eu 2+ activated ⁇ -sialon has a relatively sharp emission spectrum among the phosphors activated by Eu 2+ , and particularly for the back of liquid crystal display panels that require blue, green and red narrow-band emission. It is a phosphor suitable for a green light emitting component of a light source.
  • raw materials such as silicon nitride, silicon oxide, aluminum nitride, aluminum oxide, and europium are mixed in a predetermined molar ratio and fired in a nitrogen atmosphere. The method is used.
  • the baked Eu 2+ -activated ⁇ -sialon powder is subjected to post-treatment such as heat treatment or acid treatment to increase the purity of the crystals.
  • post-treatment such as heat treatment or acid treatment to increase the purity of the crystals.
  • the low crystalline portion in the powder is further destabilized by performing heat treatment in a temperature range of 1300 to 1500 ° C., and subsequently, at a temperature of 60 ° C. or higher using a mixed acid of hydrofluoric acid and nitric acid. It has been proposed to remove the destabilized phase by heating and acid treatment (Patent Document 1).
  • Patent Document 1 specifically describes that the acid treatment was performed at 75 ° C. (Examples 1 to 4 and Comparative Examples 1 to 4).
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a method for producing ⁇ -sialon having higher luminous efficiency.
  • the gist of the present invention is as follows.
  • the method for producing ⁇ -sialon according to the present invention by performing acid treatment under a specific temperature condition, non-luminescence absorption in the fluorescence emission wavelength region is reduced, and as a result, the ⁇ -sialon has increased luminous efficiency.
  • a phosphor can be obtained.
  • the method for producing ⁇ -sialon according to the present invention comprises calcining ⁇ -sialon powder (firing step), heat-treating the obtained powder (heat treatment step), and further performing acid treatment under a specific temperature condition (acid treatment step). )
  • firing step calcining ⁇ -sialon powder
  • heat treatment step heat-treating the obtained powder
  • acid treatment step further performing acid treatment under a specific temperature condition
  • the firing step in the present invention does not simply refer to the step of heating the raw material mixture, but the entire process up to the post-treatment of ⁇ -sialon, that is, the raw materials are mixed, fired, and fired as necessary. It includes a plurality of steps until the subsequent powder aggregate is pulverized and classified.
  • the baking method of ⁇ -sialon that can be used in the present invention is not particularly limited, and an example thereof will be described below.
  • the Si source of the raw material mixture metal powder containing at least Si can be used.
  • the metal powder containing Si include Si alloys containing other metals in addition to metal Si.
  • inorganic substances such as silicon nitride and sialon powder can be added simultaneously.
  • the Al source of the raw material mixture a metal or an inorganic compound containing Al can be used.
  • metal Al, Al alloy, aluminum nitride, aluminum oxide, etc. can be mentioned.
  • the Eu supply source include Eu metal, alloys containing Eu, nitrides, oxides, carbonates, and the like. Considering the availability of raw materials and the like, the raw material mixture is preferably a mixture of silicon nitride powder, aluminum nitride powder, aluminum oxide powder, and europium oxide powder.
  • the phosphor is synthesized by firing the raw material mixture in a temperature range of 1200 ° C. or higher and 2200 ° C. or lower in a nitrogen-containing atmosphere.
  • the nitrogen-containing atmosphere is nitrogen gas or a gas containing nitrogen atoms in the molecule, and can be mixed with other gases as necessary.
  • the metal Si in the raw material is nitrided to become Si 3 N 4 , and this reacts with the Al-containing raw material and Eu-containing raw material to produce the ⁇ -type sialon phosphor.
  • the nitrogen atmosphere is preferably a gas atmosphere in a pressure range of 0.1 MPa to 100 MPa. More preferably, it is 0.1 MPa or more and 1 MPa or less.
  • the nitrogen gas atmosphere is lower than 0.1 MPa, the raw material is likely to be thermally decomposed, which is not preferable.
  • 1 MPa is sufficient to suppress decomposition, and if it exceeds 100 MPa, a special apparatus is required, which is not suitable for industrial production.
  • the powder aggregate obtained by firing is firmly fixed, it is pulverized by a pulverizer usually used in factories such as a ball mill and a jet mill.
  • a pulverizer usually used in factories such as a ball mill and a jet mill.
  • ball milling makes it easy to control the particle size.
  • the balls and pots used at this time are preferably made of a silicon nitride sintered body or a sialon sintered body. Particularly preferably, a ceramic sintered body having the same composition as the phosphor used as the product is preferable.
  • the pulverization is performed until the average particle size becomes 5 ⁇ m or less.
  • the average particle size is particularly preferably 20 nm or more and 5 ⁇ m or less.
  • the average particle size exceeds 5 ⁇ m, the fluidity of the powder and the dispersibility in the resin are deteriorated, and when the light emitting device is formed in combination with the light emitting element, the light emission intensity becomes uneven depending on the part.
  • the thickness is less than 20 nm, the operability for handling the powder is deteriorated. If the desired particle size cannot be obtained only by grinding, classification can be combined. As a classification method, sieving, air classification, precipitation in a liquid, or the like can be used.
  • heat treatment is performed. It is effective to perform the heat treatment in an atmosphere that does not contain nitrogen and oxygen as constituent elements of ⁇ -sialon as much as possible. Typically, a rare gas atmosphere such as argon is selected.
  • the heat treatment temperature is preferably in the range of 1300 ° C to 1700 ° C, more preferably in the range of 1400 ° C to 1500 ° C. If it is 1300 degreeC or more, the low crystalline part can be destabilized, and if it is 1700 degreeC or less, decomposition
  • the temperature holding time is not particularly limited, but is preferably 3 to 15 hours, more preferably 6 to 10 hours, in order to sufficiently achieve destabilization.
  • the mixed acid in the present invention refers to a mixture of inorganic acids such as hydrochloric acid, nitric acid, hydrofluoric acid, sulfuric acid or a diluted solution thereof, and 50% hydrofluoric acid and 70% nitric acid are mixed 1: 1. Or a dilution thereof is preferred.
  • Reaction heat is generated when ⁇ -sialon is suspended in mixed acid.
  • the reaction heat tends to change depending on the amount of ⁇ -sialon input. For this reason, if a small amount of ⁇ -sialon is treated using a large amount of mixed acid, the heat of reaction remains almost negligible.
  • the temperature rise of the suspension due to reaction heat cannot be ignored.
  • the present inventors diligently studied the relationship between the suspension peak temperature and the diffuse reflectance by changing the amount of ⁇ -sialon added, and the suspension peak temperature during acid treatment was within a predetermined range. It has been found that by controlling so that the diffuse reflectance of the phosphor is improved, the luminous efficiency can be improved as a result.
  • the peak temperature of the suspension composed of the mixed acid and ⁇ -sialon during the acid treatment is controlled to be in the range of 90 ° C. to 100 ° C., preferably 92 ° C. to 98 ° C. When the peak temperature is less than 90 ° C. or higher than 100 ° C., the diffuse reflectance tends to be low.
  • the temperature adjusting means include, for example, heating around the container containing the suspension with a carbon heater, circulating the cooling water around the container, etc., but are not limited thereto. Absent. However, when the peak temperature falls within a predetermined temperature range due to the heat of reaction accompanying the input amount of ⁇ -sialon, it is not necessary to artificially adjust the temperature.
  • the above-mentioned raw materials were mixed using a V-type mixer (S-3 manufactured by Tsutsui Rika Kikai Co., Ltd.), and then passed through a sieve having an opening of 250 ⁇ m to remove agglomerates, thereby obtaining a raw material mixed powder.
  • V-type mixer S-3 manufactured by Tsutsui Rika Kikai Co., Ltd.
  • the raw material mixed powder is fired by filling the raw material mixed powder into a cylindrical boron nitride container (N-1 grade manufactured by Denki Kagaku Kogyo Co., Ltd.) with a lid and pressurizing 0.9 MPa in an electric furnace equipped with a carbon heater. Firing was performed at 2000 ° C. for 10 hours in a nitrogen atmosphere.
  • the green lump obtained by firing is roughly crushed using an alumina mortar until it passes through a sieve with an opening of 150 ⁇ m, and then classified with a sieve with an opening of 45 ⁇ m to obtain Eu 2+ activated ⁇ -sialon. It was.
  • ⁇ Heat treatment process The ⁇ -sialon after the firing step is filled in a cylindrical boron nitride vessel with a lid (N-1 grade, manufactured by Denki Kagaku Kogyo Co., Ltd.) and 1500 ° C. in an argon atmosphere at atmospheric pressure in an electric furnace equipped with a carbon heater. For 7 hours.
  • the ⁇ -sialon after the heat treatment step was cooled under the following conditions in an electric furnace in the heat treatment step. Cooling rate: From 1450 ° C to 1200 ° C, 10 ° C / min. From 1200 ° C to 500 ° C, 1 ° C / min. From 500 ° C to room temperature, the gas in the furnace is cooled by forced convection with a fan.
  • ⁇ Acid treatment process 150 ml of pure water was added to 50 ml of a 1: 1 mixed acid of 50% hydrofluoric acid and 70% nitric acid and heated to 75 ° C. To this, 180 g of ⁇ -sialon cooled to room temperature was added and suspended, and the suspension was stirred for 60 minutes. The peak temperature of the suspension during stirring was 80 ° C. Next, the suspension is cooled to room temperature, allowed to stand, the supernatant is removed, distilled water is further added, stirred, allowed to stand, and decantation to remove the supernatant is performed. Repeated until neutral. Then, it filtered and dried and obtained beta type sialon of comparative example 1.
  • the diffuse reflectance of the ⁇ -type sialon of Comparative Example 1 was examined.
  • the diffuse reflectance means that the higher the numerical value, the less light is absorbed by the phosphor, and the higher the luminous efficiency of the phosphor.
  • the diffuse reflectance was measured with a device in which an integrating sphere device (ISV-469) was attached to an ultraviolet-visible spectrophotometer (V-550) manufactured by JASCO Corporation. Baseline correction was performed with a standard reflector (Spectralon), a solid sample holder filled with ⁇ -sialon was set, and the diffuse reflectance measured in the wavelength range of 700 to 800 nm was 92.7%.
  • the conditions for the acid treatment step and the results are shown in Table 1.
  • Example 1 As shown in Table 1, the production method of ⁇ -sialon of Example 1 is a comparative example except that the amount of ⁇ -sialon to be added to the mixed acid is 240 g and the peak temperature in the acid treatment step is 90 ° C. 1 is the same manufacturing method. The average diffuse reflectance of the obtained ⁇ -sialon at a wavelength of 700 to 800 nm was 94.5%.
  • Examples 2 to 4, Comparative Examples 2 and 3 As shown in Table 1, Examples 2 to 4 and Comparative Examples 2 and 3 were produced in the same manner as in Comparative Example 1 except that the amount of ⁇ -sialon added and the peak temperature in the acid treatment step were changed. is there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

The present invention provides a method for producing a β-sialon having improved luminous efficiency due to exhibiting improved diffused reflectance, wherein the β-sialon is represented by the general formula Si6-zAlzOzN8-z (0 < z < 4.2), contains Eu2+ in the form of a solid solution as a light-emitting center and has an emission peak in the wavelength range 520 to 560 nm when excited by blue light. The production method is characterized by having a heat treatment step in which a powder obtained by firing a raw material is heated to a temperature of not lower than 1300°C and not higher than 1700°C and, following the heat treatment step, an acid treatment step in which the powder is suspended in a mixed acid, in which the peak temperature of the suspension liquid in the acid treatment step is controlled within the range of not lower than 90°C and not higher than 100°C.

Description

β型サイアロンの製造方法Method for producing β-sialon
 本発明は、蛍光体として利用されるβ型サイアロンの製造方法、特に発光効率に優れたEu2+付活β型サイアロンの製造方法に関する。 The present invention relates to a method for producing β-sialon used as a phosphor, and more particularly to a method for producing Eu 2+ -activated β-sialon excellent in luminous efficiency.
 β型サイアロンは、β型窒化ケイ素の固溶体であり、β型窒化ケイ素結晶のSi位置にAlが、N位置にOが置換固溶したものである。単位胞(単位格子)に2式量の原子が存在するので、一般式はSi6-zAl8-zと表される。ここで、0<z<4.2であり、固溶範囲は非常に広いが、(Si、Al)/(N、O)のモル比は3/4を維持する必要がある。 β-type sialon is a solid solution of β-type silicon nitride in which Al is substituted at the Si position and O is substituted at the N position. Since there are two formula atoms in the unit cell (unit cell), the general formula is expressed as Si 6-z Al z O z N 8-z . Here, 0 <z <4.2 and the solid solution range is very wide, but the molar ratio of (Si, Al) / (N, O) needs to be maintained at 3/4.
 β型サイアロンの結晶内にEu2+を含有させると、紫外から青色の光で励起され、520~560nmの緑色発光を示す蛍光体となり、白色LED等の発光装置の緑色発光成分として使用できる。このEu2+付活β型サイアロンは、Eu2+で付活される蛍光体の中でも、発光スペクトルが比較的シャープであり、特に青、緑、赤の狭帯域発光が要求される液晶ディスプレイパネルのバックライト光源の緑色発光成分に好適な蛍光体である。 When Eu 2+ is contained in the β-sialon crystal, the phosphor is excited by ultraviolet to blue light and emits green light of 520 to 560 nm, and can be used as a green light emitting component of a light emitting device such as a white LED. This Eu 2+ activated β-sialon has a relatively sharp emission spectrum among the phosphors activated by Eu 2+ , and particularly for the back of liquid crystal display panels that require blue, green and red narrow-band emission. It is a phosphor suitable for a green light emitting component of a light source.
 Eu2+付活β型サイアロンの一般的な製造方法としては、例えば、原料である窒化ケイ素、酸化ケイ素、窒化アルミニウム、酸化アルミニウム、酸化ユーロピウムを所定のモル比に混合し、窒素雰囲気中において焼成する方法が用いられている。 As a general method for producing Eu 2+ -activated β-sialon, for example, raw materials such as silicon nitride, silicon oxide, aluminum nitride, aluminum oxide, and europium are mixed in a predetermined molar ratio and fired in a nitrogen atmosphere. The method is used.
 さらに、蛍光特性を改善することを目的として、焼成されたEu2+付活β型サイアロン粉末に熱処理や酸処理等の後処理を行うことにより、結晶を高純度化することが知られている。例えば、1300~1500℃の温度範囲で熱処理を行うことにより粉体中の低結晶性部分をさらに不安定化し、続いて、フッ化水素酸と硝酸との混酸を用いて60℃以上の温度で加熱して酸処理を行うことにより不安定化相を除去することが提案されている(特許文献1)。特に、特許文献1では、酸処理を75℃で行ったことが具体的に記載されている(実施例1~4及び比較例1~4)。 Furthermore, for the purpose of improving the fluorescence characteristics, it is known that the baked Eu 2+ -activated β-sialon powder is subjected to post-treatment such as heat treatment or acid treatment to increase the purity of the crystals. For example, the low crystalline portion in the powder is further destabilized by performing heat treatment in a temperature range of 1300 to 1500 ° C., and subsequently, at a temperature of 60 ° C. or higher using a mixed acid of hydrofluoric acid and nitric acid. It has been proposed to remove the destabilized phase by heating and acid treatment (Patent Document 1). In particular, Patent Document 1 specifically describes that the acid treatment was performed at 75 ° C. (Examples 1 to 4 and Comparative Examples 1 to 4).
 しかしながら、蛍光体分野では、発光効率をさらに向上させることが依然として求められている。 However, in the phosphor field, it is still required to further improve the luminous efficiency.
特開2010-241995号公報JP 2010-241995 A
 本発明は、前記事情に鑑みてなされたものであり、より高い発光効率を有するβ型サイアロンの製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for producing β-sialon having higher luminous efficiency.
 本発明者らは、鋭意研究を重ねた結果、焼成によって得られたβ型サイアロンの酸処理工程において、酸とβ型サイアロン粉体とからなる懸濁液の温度の最高値(以下、「ピーク温度」と言う)を所定の範囲内に制御することによって、発光効率を向上できることを予想外に見出し、本発明を完成するに至った。 As a result of extensive research, the present inventors have conducted research on the maximum temperature of a suspension composed of an acid and β-sialon powder (hereinafter, “peak” in the acid treatment step of β-sialon obtained by firing. It has been unexpectedly found that the luminous efficiency can be improved by controlling the "temperature") within a predetermined range, and the present invention has been completed.
 すなわち本発明は、以下を要旨とするものである。
(1)一般式:Si6-zAl8-z(0<z<4.2)で示され、発光中心としてEu2+が固溶され、青色光で励起した場合に波長520~560nmの範囲に発光ピークを有するβ型サイアロンの製造方法であって、
原料を焼成して得られた粉体を1300℃以上1700℃以下の温度範囲で加熱する熱処理工程と、
熱処理後の粉体を混酸に懸濁させる酸処理工程とを有し、
酸処理工程における懸濁液のピーク温度を90℃以上100℃以下の範囲に制御する
β型サイアロンの製造方法。
That is, the gist of the present invention is as follows.
(1) General formula: Si 6-z Al z O z N 8-z (0 <z <4.2), Eu 2+ is dissolved as a light emission center, and wavelength is 520 when excited by blue light. A method for producing β-sialon having an emission peak in the range of ˜560 nm,
A heat treatment step of heating the powder obtained by firing the raw material in a temperature range of 1300 ° C. to 1700 ° C .;
An acid treatment step of suspending the powder after heat treatment in a mixed acid,
A method for producing β-sialon, wherein the peak temperature of the suspension in the acid treatment step is controlled in the range of 90 ° C or higher and 100 ° C or lower.
(2)酸処理工程における懸濁液のピーク温度を92℃以上98℃以下に制御する(1)のβ型サイアロンの製造方法。
(3)混酸が50%フッ化水素酸と70%硝酸とを1:1に混合したものまたはその希釈液である(1)または(2)のβ型サイアロンの製造方法。
(2) The method for producing β-sialon according to (1), wherein the peak temperature of the suspension in the acid treatment step is controlled to 92 ° C. or higher and 98 ° C. or lower.
(3) The method for producing β-sialon according to (1) or (2), wherein the mixed acid is a mixture of 50% hydrofluoric acid and 70% nitric acid in a 1: 1 ratio or a diluted solution thereof.
 本発明に係るβ型サイアロンの製造方法によれば、特定の温度条件下で酸処理を行うことにより、蛍光発光波長域の非発光吸収が低減され、結果的に発光効率が増大したβ型サイアロン蛍光体を得ることができる。 According to the method for producing β-sialon according to the present invention, by performing acid treatment under a specific temperature condition, non-luminescence absorption in the fluorescence emission wavelength region is reduced, and as a result, the β-sialon has increased luminous efficiency. A phosphor can be obtained.
 本発明に係るβ型サイアロンの製造方法は、β型サイアロン粉末を焼成し(焼成工程)、得られた粉末を熱処理し(熱処理工程)、さらに特定の温度条件下で酸処理する(酸処理工程)ことを含む。以下、各工程について説明する。 The method for producing β-sialon according to the present invention comprises calcining β-sialon powder (firing step), heat-treating the obtained powder (heat treatment step), and further performing acid treatment under a specific temperature condition (acid treatment step). ) Hereinafter, each step will be described.
<焼成工程>
 本発明における焼成工程とは、単に原料混合物を加熱する工程のみを指すのではなく、β型サイアロンの後処理を行う前までの全行程、すなわち原料を混合し、焼成し、必要に応じて焼成後の粉体凝集体を粉砕し、分級するまでの複数の工程を含む。本発明に使用できるβ型サイアロンの焼成方法は特に限定されるものではなく、以下はその一例について説明する。
<Baking process>
The firing step in the present invention does not simply refer to the step of heating the raw material mixture, but the entire process up to the post-treatment of β-sialon, that is, the raw materials are mixed, fired, and fired as necessary. It includes a plurality of steps until the subsequent powder aggregate is pulverized and classified. The baking method of β-sialon that can be used in the present invention is not particularly limited, and an example thereof will be described below.
 原料混合物のSi源としては、少なくともSiを含有する金属粉末を用いることができる。Siを含有する金属粉末としては、金属Siの他に他の金属を含むSi合金を挙げることができる。Si源として、金属粉末に加えて、窒化ケイ素、サイアロン粉末などの無機物質を同時に添加することができる。原料混合物のAl源としては、Alを含有する金属あるいは無機化合物を用いることができる。例えば、金属Al、Al合金、窒化アルミニウム、酸化アルミニウムなどを挙げることができる。Euの供給源としては、Euの金属、Euを含む合金、窒化物、酸化物、炭酸塩などを挙げることができる。原料の入手のしやすさ等を考慮すると、原料混合物としては、窒化ケイ素粉末と、窒化アルミニウム粉末と、酸化アルミニウム粉末と、酸化ユーロピウム粉末との混合物が好ましい。 As the Si source of the raw material mixture, metal powder containing at least Si can be used. Examples of the metal powder containing Si include Si alloys containing other metals in addition to metal Si. As the Si source, in addition to the metal powder, inorganic substances such as silicon nitride and sialon powder can be added simultaneously. As the Al source of the raw material mixture, a metal or an inorganic compound containing Al can be used. For example, metal Al, Al alloy, aluminum nitride, aluminum oxide, etc. can be mentioned. Examples of the Eu supply source include Eu metal, alloys containing Eu, nitrides, oxides, carbonates, and the like. Considering the availability of raw materials and the like, the raw material mixture is preferably a mixture of silicon nitride powder, aluminum nitride powder, aluminum oxide powder, and europium oxide powder.
 次いで、原料混合物を、窒素含有雰囲気中において1200℃以上2200℃以下の温度範囲で焼成することにより蛍光体を合成する。窒素含有雰囲気とは、窒素ガス、または分子中に窒素原子を含むガスであり、必要に応じて他のガスとの混合とすることができる。これらの雰囲気中で加熱することにより、原料中の金属Siが窒化されてSiとなり、これとAl含有原料、Eu含有原料が反応して、上記β型サイアロン蛍光体が生成する。 Next, the phosphor is synthesized by firing the raw material mixture in a temperature range of 1200 ° C. or higher and 2200 ° C. or lower in a nitrogen-containing atmosphere. The nitrogen-containing atmosphere is nitrogen gas or a gas containing nitrogen atoms in the molecule, and can be mixed with other gases as necessary. By heating in these atmospheres, the metal Si in the raw material is nitrided to become Si 3 N 4 , and this reacts with the Al-containing raw material and Eu-containing raw material to produce the β-type sialon phosphor.
 蛍光体を焼成する工程では、窒素雰囲気は0.1MPa以上100MPa以下の圧力範囲のガス雰囲気がよい。より好ましくは、0.1MPa以上1MPa以下がよい。窒素ガス雰囲気が0.1MPaより低いと、原料が熱分解し易くなるのであまり好ましくない。一方、分解の抑制は1MPaあれば十分であり、100MPa以上となると特殊な装置が必要となり、工業生産に向かない。 In the step of firing the phosphor, the nitrogen atmosphere is preferably a gas atmosphere in a pressure range of 0.1 MPa to 100 MPa. More preferably, it is 0.1 MPa or more and 1 MPa or less. When the nitrogen gas atmosphere is lower than 0.1 MPa, the raw material is likely to be thermally decomposed, which is not preferable. On the other hand, 1 MPa is sufficient to suppress decomposition, and if it exceeds 100 MPa, a special apparatus is required, which is not suitable for industrial production.
 焼成して得られた粉体凝集体が固く固着している場合は、例えばボールミル、ジェットミル等の工場的に通常用いられる粉砕機により粉砕する。なかでも、ボールミル粉砕は粒径の制御が容易である。このとき使用するボールおよびポットは、窒化ケイ素焼結体またはサイアロン焼結体製が好ましい。特に好ましくは、製品となる蛍光体と同組成のセラミックス焼結体製が好ましい。粉砕は平均粒径5μm以下となるまで施す。特に好ましくは平均粒径20nm以上5μm以下である。平均粒径が5μmを超えると粉体の流動性と樹脂への分散性が悪くなり、発光素子と組み合わせて発光装置を形成する際に部位により発光強度が不均一になる。20nm未満となると、粉体を取り扱う操作性が悪くなる。粉砕だけで目的の粒径が得られない場合は、分級を組み合わせることができる。分級の手法としては、篩い分け、風力分級、液体中での沈殿法などを用いることができる。 When the powder aggregate obtained by firing is firmly fixed, it is pulverized by a pulverizer usually used in factories such as a ball mill and a jet mill. Among these, ball milling makes it easy to control the particle size. The balls and pots used at this time are preferably made of a silicon nitride sintered body or a sialon sintered body. Particularly preferably, a ceramic sintered body having the same composition as the phosphor used as the product is preferable. The pulverization is performed until the average particle size becomes 5 μm or less. The average particle size is particularly preferably 20 nm or more and 5 μm or less. When the average particle size exceeds 5 μm, the fluidity of the powder and the dispersibility in the resin are deteriorated, and when the light emitting device is formed in combination with the light emitting element, the light emission intensity becomes uneven depending on the part. When the thickness is less than 20 nm, the operability for handling the powder is deteriorated. If the desired particle size cannot be obtained only by grinding, classification can be combined. As a classification method, sieving, air classification, precipitation in a liquid, or the like can be used.
<熱処理工程>
 上述の方法により合成されたβ型サイアロン中の低結晶性部分を更に不安定化するために、熱処理を行う。熱処理は、β型サイアロンの構成元素である窒素と酸素を極力含まない雰囲気下で行うことが有効であり、典型的にはアルゴン等の希ガス雰囲気が選択される。
<Heat treatment process>
In order to further destabilize the low crystalline portion in β-sialon synthesized by the above method, heat treatment is performed. It is effective to perform the heat treatment in an atmosphere that does not contain nitrogen and oxygen as constituent elements of β-sialon as much as possible. Typically, a rare gas atmosphere such as argon is selected.
 熱処理温度は、1300℃~1700℃の範囲、さらには1400℃~1500℃の範囲が好ましい。1300℃以上であれば、低結晶性部の不安定化が可能であり、1700℃以下であれば、β型サイアロンの分解を抑制できる。当該温度の保持時間は、特に限定されるものではないが、不安定化を十分に達成するために、3~15時間、さらには6~10時間が好ましい。 The heat treatment temperature is preferably in the range of 1300 ° C to 1700 ° C, more preferably in the range of 1400 ° C to 1500 ° C. If it is 1300 degreeC or more, the low crystalline part can be destabilized, and if it is 1700 degreeC or less, decomposition | disassembly of (beta) -sialon can be suppressed. The temperature holding time is not particularly limited, but is preferably 3 to 15 hours, more preferably 6 to 10 hours, in order to sufficiently achieve destabilization.
<酸処理工程>
 次いで、上述の方法により得られたβ型サイアロンを、不安定化相を除去するために酸処理する。
<Acid treatment process>
Next, the β-sialon obtained by the above-described method is acid-treated to remove the destabilizing phase.
 酸処理には、混酸を用いる。本発明における混酸とは、塩酸、硝酸、フッ化水素酸、硫酸等の無機酸を混合したものまたはその希釈液をいい、50%フッ化水素酸と70%硝酸とを1:1に混合したものまたはその希釈液が好ましい。 Mixed acid is used for acid treatment. The mixed acid in the present invention refers to a mixture of inorganic acids such as hydrochloric acid, nitric acid, hydrofluoric acid, sulfuric acid or a diluted solution thereof, and 50% hydrofluoric acid and 70% nitric acid are mixed 1: 1. Or a dilution thereof is preferred.
 混酸にβ型サイアロンを懸濁すると反応熱が発生する。反応熱は、β型サイアロンの投入量に応じて変化する傾向がある。このため、多量の混酸を用いて少量のβ型サイアロンを処理する場合であれば、反応熱はほぼ無視できる程度に留まる。しかし、工業的規模で多量のβ型サイアロンを処理する場合には、反応熱による懸濁液の温度上昇は無視できなくなる。本発明者らは、β型サイアロンの投入量を変えて懸濁液のピーク温度と拡散反射率との関係について鋭意検討したところ、酸処理中における懸濁液のピーク温度が所定の範囲内となるように制御することによって、蛍光体の拡散反射率が改善され、結果的に発光効率を向上できることを見出した。 Reaction heat is generated when β-sialon is suspended in mixed acid. The reaction heat tends to change depending on the amount of β-sialon input. For this reason, if a small amount of β-sialon is treated using a large amount of mixed acid, the heat of reaction remains almost negligible. However, when a large amount of β-sialon is processed on an industrial scale, the temperature rise of the suspension due to reaction heat cannot be ignored. The present inventors diligently studied the relationship between the suspension peak temperature and the diffuse reflectance by changing the amount of β-sialon added, and the suspension peak temperature during acid treatment was within a predetermined range. It has been found that by controlling so that the diffuse reflectance of the phosphor is improved, the luminous efficiency can be improved as a result.
 酸処理中における混酸とβ型サイアロンとからなる懸濁液のピーク温度は、90℃以上100℃以下、好ましくは92℃以上98℃以下の範囲となるように制御する。ピーク温度が90℃未満、もしくは100℃よりも高いと、拡散反射率が低くなる傾向がある。 The peak temperature of the suspension composed of the mixed acid and β-sialon during the acid treatment is controlled to be in the range of 90 ° C. to 100 ° C., preferably 92 ° C. to 98 ° C. When the peak temperature is less than 90 ° C. or higher than 100 ° C., the diffuse reflectance tends to be low.
 ピーク温度が所定の温度範囲に満たない場合、もしくは超過する場合には、公知の手段を用いて温度調節を行う必要がある。温度調節手段としては、例えば、懸濁液を収容した容器の周りをカーボンヒーターで加熱したり、容器の周りに冷却水を循環させたりすることなどが挙げられるが、これらに限定されるものではない。もっとも、β型サイアロンの投入量に伴う反応熱によってピーク温度が所定の温度範囲内となる場合には、人為的に温度調節を行わなくてもよい。 When the peak temperature is less than or exceeds the predetermined temperature range, it is necessary to adjust the temperature using a known means. Examples of the temperature adjusting means include, for example, heating around the container containing the suspension with a carbon heater, circulating the cooling water around the container, etc., but are not limited thereto. Absent. However, when the peak temperature falls within a predetermined temperature range due to the heat of reaction accompanying the input amount of β-sialon, it is not necessary to artificially adjust the temperature.
 以下、本発明に係る実施例を、比較例と対比しつつ、詳細に説明する。 Hereinafter, examples according to the present invention will be described in detail while comparing with comparative examples.
(比較例1)
<焼成工程>
 β型サイアロンの原料として、α型窒化ケイ素粉末(宇部興産株式会社製SN-E10グレード)95.64質量%、窒化アルミニウム粉末(トクヤマ株式会社製Fグレード)3.35質量%、酸化アルミニウム粉末(住友化学株式会社製AKP-30グレード)0.18質量%、酸化ユーロピウム粉末(信越化学株式会社製RUグレード)0.84質量%を用いた。
(Comparative Example 1)
<Baking process>
As raw materials for β-type sialon, α-type silicon nitride powder (SN-E10 grade manufactured by Ube Industries, Ltd.) 95.64% by mass, aluminum nitride powder (F grade manufactured by Tokuyama Co., Ltd.) 3.35% by mass, aluminum oxide powder ( Sumitomo Chemical Co., Ltd. AKP-30 grade) 0.18 mass%, europium oxide powder (Shin-Etsu Chemical RU grade) 0.84 mass% was used.
 この原料の配合比は、β型サイアロンの一般式:Si6-zAl8-zで窒化ケイ素粉末と窒化アルミニウム粉末の不純物酸素がそれぞれ二酸化ケイ素及び酸化アルミニウムと仮定して、z=0.24となるものである。 The mixing ratio of the raw materials is as follows, assuming that the impurity oxygen in the silicon nitride powder and the aluminum nitride powder is silicon dioxide and aluminum oxide, respectively, in the general formula of β-sialon: Si 6-z Al z O z N 8- z. = 0.24.
 上述の原料を、V型混合機(筒井理化学器械社製S-3)を用いて混合した後、目開き250μmの篩を全通させ凝集を取り除き、原料混合粉末を得た。 The above-mentioned raw materials were mixed using a V-type mixer (S-3 manufactured by Tsutsui Rika Kikai Co., Ltd.), and then passed through a sieve having an opening of 250 μm to remove agglomerates, thereby obtaining a raw material mixed powder.
 この原料混合粉末の焼成は、原料混合粉末を蓋付きの円筒型窒化ホウ素製容器(電気化学工業社製N-1グレード)に充填し、カーボンヒーターを具備する電気炉で0.9MPaの加圧窒素雰囲気中、2000℃で10時間焼成した。焼成によって得られた緑色の塊状物を、アルミナ乳鉢を用いて目開き150μmの篩を全通するまで粗砕した後、目開き45μmの篩で分級を行い、Eu2+付活β型サイアロンを得た。 The raw material mixed powder is fired by filling the raw material mixed powder into a cylindrical boron nitride container (N-1 grade manufactured by Denki Kagaku Kogyo Co., Ltd.) with a lid and pressurizing 0.9 MPa in an electric furnace equipped with a carbon heater. Firing was performed at 2000 ° C. for 10 hours in a nitrogen atmosphere. The green lump obtained by firing is roughly crushed using an alumina mortar until it passes through a sieve with an opening of 150 μm, and then classified with a sieve with an opening of 45 μm to obtain Eu 2+ activated β-sialon. It was.
<熱処理工程>
 焼成工程後のβ型サイアロンを、蓋付きの円筒型窒化ホウ素製容器(電気化学工業社製N-1グレード)に充填し、カーボンヒーターを具備する電気炉で大気圧のアルゴン雰囲気中、1500℃で7時間保持した。
<Heat treatment process>
The β-sialon after the firing step is filled in a cylindrical boron nitride vessel with a lid (N-1 grade, manufactured by Denki Kagaku Kogyo Co., Ltd.) and 1500 ° C. in an argon atmosphere at atmospheric pressure in an electric furnace equipped with a carbon heater. For 7 hours.
 熱処理工程後のβ型サイアロンを、熱処理工程での電気炉内で、次の条件で冷却した。
冷却速度:
 1450℃から1200℃までは10℃/分
 1200℃から500℃までは1℃/分
 500℃から室温までは、炉内のガスをファンにより強制対流させるガスファン冷却
The β-sialon after the heat treatment step was cooled under the following conditions in an electric furnace in the heat treatment step.
Cooling rate:
From 1450 ° C to 1200 ° C, 10 ° C / min. From 1200 ° C to 500 ° C, 1 ° C / min. From 500 ° C to room temperature, the gas in the furnace is cooled by forced convection with a fan.
<酸処理工程>
 50%フッ化水素酸と70%硝酸の1:1混酸50mlに純水150mlを加えて、75℃に加熱した。これに、室温まで冷却したβ型サイアロンを180g投入して懸濁し、懸濁液を60分間攪拌した。攪拌中の懸濁液のピーク温度は80℃であった。次いで、懸濁液を室温まで冷却し、静置し、上澄液を除去し、更に蒸留水を加え、撹拌し、静置し、上澄液を除去するデカンテーションを懸濁液のpHが中性になるまで繰り返し行った。その後、ろ過、乾燥して比較例1のβ型サイアロンを得た。
<Acid treatment process>
150 ml of pure water was added to 50 ml of a 1: 1 mixed acid of 50% hydrofluoric acid and 70% nitric acid and heated to 75 ° C. To this, 180 g of β-sialon cooled to room temperature was added and suspended, and the suspension was stirred for 60 minutes. The peak temperature of the suspension during stirring was 80 ° C. Next, the suspension is cooled to room temperature, allowed to stand, the supernatant is removed, distilled water is further added, stirred, allowed to stand, and decantation to remove the supernatant is performed. Repeated until neutral. Then, it filtered and dried and obtained beta type sialon of comparative example 1.
<評価>
 比較例1のβ型サイアロンについて、拡散反射率を調べた。拡散反射率は、数値が高いほど蛍光体による光の吸収が少なく、蛍光体の発光効率が高いことを意味する。
 拡散反射率は、日本分光社製紫外可視分光光度計(V-550)に積分球装置(ISV-469)を取り付けた装置で測定した。標準反射板(スペクトラロン)でベースライン補正を行い、β型サイアロンを充填した固体試料ホルダーをセットし、700~800nmの波長範囲で測定した拡散反射率は92.7%であった。酸処理工程の条件及びその結果を表1に示す。
<Evaluation>
The diffuse reflectance of the β-type sialon of Comparative Example 1 was examined. The diffuse reflectance means that the higher the numerical value, the less light is absorbed by the phosphor, and the higher the luminous efficiency of the phosphor.
The diffuse reflectance was measured with a device in which an integrating sphere device (ISV-469) was attached to an ultraviolet-visible spectrophotometer (V-550) manufactured by JASCO Corporation. Baseline correction was performed with a standard reflector (Spectralon), a solid sample holder filled with β-sialon was set, and the diffuse reflectance measured in the wavelength range of 700 to 800 nm was 92.7%. The conditions for the acid treatment step and the results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例1)
 実施例1のβ型サイアロンの製造方法は、表1に示すように、混酸に投入するβ型サイアロンの投入量を240gとし、酸処理工程でのピーク温度を90℃にしたこと以外は比較例1と同じ製造方法である。得られたβ型サイアロンの波長700~800nmの平均拡散反射率は、94.5%であった。
Example 1
As shown in Table 1, the production method of β-sialon of Example 1 is a comparative example except that the amount of β-sialon to be added to the mixed acid is 240 g and the peak temperature in the acid treatment step is 90 ° C. 1 is the same manufacturing method. The average diffuse reflectance of the obtained β-sialon at a wavelength of 700 to 800 nm was 94.5%.
(実施例2~4、比較例2及び3)
 実施例2~4、比較例2及び3は、表1に示すように、β型サイアロンの投入量と酸処理工程でのピーク温度を変更したこと以外は、比較例1と同様の製造方法である。
(Examples 2 to 4, Comparative Examples 2 and 3)
As shown in Table 1, Examples 2 to 4 and Comparative Examples 2 and 3 were produced in the same manner as in Comparative Example 1 except that the amount of β-sialon added and the peak temperature in the acid treatment step were changed. is there.
 表1に示すように、酸処理工程におけるピーク温度を90℃から100℃の範囲、より好ましくは92℃から98℃の範囲に制御することにより、高い拡散反射率、ひいては高い発光効率の蛍光体を得ることができた。 As shown in Table 1, by controlling the peak temperature in the acid treatment step in the range of 90 ° C. to 100 ° C., more preferably in the range of 92 ° C. to 98 ° C., a phosphor with high diffuse reflectance and consequently high luminous efficiency. Could get.

Claims (3)

  1. 一般式:Si6-zAl8-z(0<z<4.2)で示され、発光中心としてEu2+が固溶され、青色光で励起した場合に波長520~560nmの範囲に発光ピークを有するβ型サイアロンの製造方法であって、
    原料を焼成して得られた粉体を1300℃以上1700℃以下の温度範囲で加熱する熱処理工程と、
    熱処理後の粉体を混酸に懸濁させる酸処理工程とを有し、
    酸処理工程における懸濁液のピーク温度を90℃以上100℃以下の範囲に制御する
    β型サイアロンの製造方法。
    General formula: Si 6-z Al z O z N 8-z (0 <z <4.2), Eu 2+ as a luminescence center is solid-solved, and when excited with blue light, has a wavelength of 520 to 560 nm A method for producing β-sialon having an emission peak in the range,
    A heat treatment step of heating the powder obtained by firing the raw material in a temperature range of 1300 ° C. to 1700 ° C .;
    An acid treatment step of suspending the powder after heat treatment in a mixed acid,
    A method for producing β-sialon, wherein the peak temperature of the suspension in the acid treatment step is controlled in the range of 90 ° C or higher and 100 ° C or lower.
  2. 酸処理工程における懸濁液のピーク温度を92℃以上98℃以下に制御する請求項1記載のβ型サイアロンの製造方法。 The method for producing β-sialon according to claim 1, wherein the peak temperature of the suspension in the acid treatment step is controlled to 92 ° C or higher and 98 ° C or lower.
  3. 混酸が50%フッ化水素酸と70%硝酸とを1:1に混合したものまたはその希釈液である請求項1または2に記載のβ型サイアロンの製造方法。 The method for producing β-sialon according to claim 1 or 2, wherein the mixed acid is a mixture of 50% hydrofluoric acid and 70% nitric acid in a 1: 1 ratio or a diluted solution thereof.
PCT/JP2011/079008 2010-12-20 2011-12-15 Method for producing β-sialon WO2012086505A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010283542 2010-12-20
JP2010-283542 2010-12-20

Publications (1)

Publication Number Publication Date
WO2012086505A1 true WO2012086505A1 (en) 2012-06-28

Family

ID=46313781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079008 WO2012086505A1 (en) 2010-12-20 2011-12-15 Method for producing β-sialon

Country Status (3)

Country Link
CN (1) CN102559178A (en)
TW (1) TW201233780A (en)
WO (1) WO2012086505A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018135406A (en) * 2017-02-20 2018-08-30 デンカ株式会社 Phosphor, light-emitting device, and method for producing phosphor
JP2018150487A (en) * 2017-03-15 2018-09-27 デンカ株式会社 Production method of phosphor, phosphor, light-emitting element and light-emitting device
JP2020002245A (en) * 2018-06-27 2020-01-09 日亜化学工業株式会社 METHOD FOR PRODUCING β-SIALON PHOSPHOR
WO2022080097A1 (en) * 2020-10-14 2022-04-21 デンカ株式会社 EUROPIUM-ACTIVATED β-TYPE SIALON PHOSPHOR

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102766459A (en) * 2012-07-12 2012-11-07 复旦大学 Post-treatment method of fluorescent powder for lamp

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255885A (en) * 2004-03-12 2005-09-22 National Institute For Materials Science Phosphor and its manufacturing method
JP2010241995A (en) * 2009-04-08 2010-10-28 Denki Kagaku Kogyo Kk beta-TYPE SIALON PHOSPHOR, METHOD FOR PRODUCING THE SAME AND APPLICATION OF THE SAME
WO2010143590A1 (en) * 2009-06-09 2010-12-16 電気化学工業株式会社 Β-sialon phosphor, use thereof and method for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255885A (en) * 2004-03-12 2005-09-22 National Institute For Materials Science Phosphor and its manufacturing method
JP2010241995A (en) * 2009-04-08 2010-10-28 Denki Kagaku Kogyo Kk beta-TYPE SIALON PHOSPHOR, METHOD FOR PRODUCING THE SAME AND APPLICATION OF THE SAME
WO2010143590A1 (en) * 2009-06-09 2010-12-16 電気化学工業株式会社 Β-sialon phosphor, use thereof and method for producing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018135406A (en) * 2017-02-20 2018-08-30 デンカ株式会社 Phosphor, light-emitting device, and method for producing phosphor
JP2018150487A (en) * 2017-03-15 2018-09-27 デンカ株式会社 Production method of phosphor, phosphor, light-emitting element and light-emitting device
JP2020002245A (en) * 2018-06-27 2020-01-09 日亜化学工業株式会社 METHOD FOR PRODUCING β-SIALON PHOSPHOR
JP2021169629A (en) * 2018-06-27 2021-10-28 日亜化学工業株式会社 Method for producing β-sialon phosphor
US11560514B2 (en) 2018-06-27 2023-01-24 Nichia Corporation Method for producing β-sialon fluorescent material
WO2022080097A1 (en) * 2020-10-14 2022-04-21 デンカ株式会社 EUROPIUM-ACTIVATED β-TYPE SIALON PHOSPHOR

Also Published As

Publication number Publication date
TW201233780A (en) 2012-08-16
CN102559178A (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP5910498B2 (en) Silicon nitride powder for silicon nitride phosphor, CaAlSiN3 phosphor, Sr2Si5N8 phosphor, (Sr, Ca) AlSiN3 phosphor and La3Si6N11 phosphor using the same, and method for producing the same
JP4894048B2 (en) Phosphor and production method thereof
JP5969391B2 (en) Phosphor, light emitting device and use thereof
JP4813577B2 (en) Method for producing β-sialon phosphor
WO2011142228A1 (en) METHOD FOR PRODUCING β-SIALON, β-SIALON, AND PRODUCT USING SAME
WO2012046288A1 (en) β-SIALON PHOSPHOR, METHOD FOR PRODUCING SAME, AND USE OF SAME
KR101725857B1 (en) Process for production of -sialon
KR102059385B1 (en) Method for producing phosphor
WO2012086505A1 (en) Method for producing β-sialon
WO2018092696A1 (en) Red-emitting phosphor, light-emitting member, and light-emitting device
TWI440697B (en) Method for producing β-sialon
WO2020209147A1 (en) Surface-coated fluorescent particles, production method for surface-coated fluorescent particles, and light-emitting device
WO2020209148A1 (en) Surface-coated fluorescent particles, production method for surface-coated fluorescent particles, and light-emitting device
JP5388699B2 (en) α-type sialon phosphor and light-emitting device using the same
JP5912580B2 (en) Phosphor, production method thereof and use thereof
JP2008045080A (en) Method for producing inorganic compound
JP5558787B2 (en) Method for producing β-sialon
WO2012032818A1 (en) Method for producing eu-doped β-sialon
JP2019026657A (en) Fluophor, manufacturing method therefor, light-emitting element using the same, and silicon nitride powder for manufacturing fluophor
JP2017179187A (en) Red phosphor and light emitting device
JP6715774B2 (en) Phosphor and its application
WO2012032824A1 (en) Β-sialon, light-emitting device and β-sialon production method
JP6902368B2 (en) Manufacturing method of red phosphor
JP2018150487A (en) Production method of phosphor, phosphor, light-emitting element and light-emitting device
JP7282757B2 (en) Red phosphor and light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11850061

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP