WO2012057229A1 - カーボンナノチューブの製造方法 - Google Patents
カーボンナノチューブの製造方法 Download PDFInfo
- Publication number
- WO2012057229A1 WO2012057229A1 PCT/JP2011/074720 JP2011074720W WO2012057229A1 WO 2012057229 A1 WO2012057229 A1 WO 2012057229A1 JP 2011074720 W JP2011074720 W JP 2011074720W WO 2012057229 A1 WO2012057229 A1 WO 2012057229A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon nanotubes
- catalyst
- acetylene
- carbon
- support
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/745—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B1/00—Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B1/00—Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
- B82B1/005—Constitution or structural means for improving the physical properties of a device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
- B82B3/0009—Forming specific nanostructures
- B82B3/0038—Manufacturing processes for forming specific nanostructures not provided for in groups B82B3/0014 - B82B3/0033
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C11/00—Aliphatic unsaturated hydrocarbons
- C07C11/22—Aliphatic unsaturated hydrocarbons containing carbon-to-carbon triple bonds
- C07C11/24—Acetylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
Definitions
- the present invention relates to a method for producing carbon nanotubes.
- Carbon nanotubes have a structure in which a graphene sheet is wound into a cylindrical shape and have a one-dimensional structure with a very large aspect ratio (see Non-Patent Document 1). Carbon nanotubes are known to have excellent mechanical strength and flexibility, semiconducting and metallic conductivity, and very stable chemical properties.
- a method for producing a carbon nanotube an arc discharge method, a laser evaporation method, a chemical vapor deposition method (hereinafter referred to as a CVD (Chemical Vapor Deposition) method), and the like have been reported.
- the CVD method is a synthesis method attracting attention as a synthesis method suitable for mass synthesis, continuous synthesis, and high purity (see, for example, Non-Patent Document 2).
- single-walled carbon nanotubes (hereinafter referred to as “SWCNT”) exhibit metallic properties and semiconducting properties depending on how they are wound and their diameter, and are expected to be applied to electrical and electronic devices.
- SWCNT single-walled carbon nanotubes
- a catalytic CVD method for growing nanotubes (for example, see Non-Patent Document 3) has become the mainstream.
- This catalytic CVD method uses metal nanoparticles as a catalyst. Then, while supplying a gaseous carbon source, the carbon source is pyrolyzed at a high temperature to grow nanotubes from the catalyst metal nanoparticles.
- acetylene When acetylene is used as a carbon source in the catalytic CVD method, if the acetylene is in a low concentration, the carbon nanotubes can grow but are not suitable for mass production due to the small amount of raw material supply, and long carbon nanotubes can be obtained. Takes time. On the other hand, when the concentration of acetylene is high, the carbonization of the catalyst is promoted and the growth of the carbon nanotubes is stopped, so that long carbon nanotubes cannot be obtained.
- a method of adding a small amount of water is known as a means of suppressing carbonization deactivation of the catalyst, it is necessary to strictly control the amount of water added and the catalyst deactivation when the concentration of acetylene is increased. There is a problem of insufficient suppression.
- the present invention has been made based on the above-described technical background, and even when acetylene is supplied at a high concentration, catalyst deactivation can be effectively suppressed, and long carbon nanotubes are efficiently produced. It is an object of the present invention to provide a method for producing a carbon nanotube, which can be performed.
- the present invention synthesizes carbon nanotubes on a heated support disposed in a reactor using acetylene and a catalyst for producing carbon nanotubes from acetylene.
- a method for producing carbon nanotubes comprising: synthesizing carbon nanotubes on a support by circulating a raw material gas composed of acetylene, carbon dioxide, and an inert gas on a support carrying a catalyst.
- the partial pressure of acetylene is 1.33 ⁇ 10 1 to 1.33 ⁇ 10 4 Pa
- the partial pressure of carbon dioxide is 1.33 ⁇ 10 1 to 1.33 ⁇ 10 4 Pa.
- the partial pressure ratio of acetylene and carbon dioxide is 0.1 to 10.
- this production method by using a raw material gas composed of acetylene, carbon dioxide and an inert gas, by controlling the partial pressure of acetylene and carbon dioxide in the raw material gas and the partial pressure ratio thereof within the above range. Even when acetylene is supplied at a high concentration, catalyst deactivation can be effectively suppressed, and long carbon nanotubes can be produced efficiently.
- the present inventors infer the reason why these effects are obtained as follows. That is, it is considered that the growth stop of carbon nanotubes during CVD is caused by coarsening due to Ostwald ripening of the catalyst particles.
- the addition of carbon dioxide is considered to suppress the surface diffusion of catalyst atoms and prevent the catalyst particles from becoming coarse, and as a result, stable and long carbon nanotubes can be obtained.
- carbon dioxide can be supplied at a high concentration unlike water, so there is no need to control a trace amount, and even when acetylene is at a high concentration, Catalyst deactivation can be effectively suppressed, and conditions suitable for mass production can be provided.
- the partial pressure of acetylene is 6.67 ⁇ 10 1 to 6.67 ⁇ 10 3 Pa
- the partial pressure of carbon dioxide is 6.67 ⁇ 10 1 to It is preferable that it is 6.67 ⁇ 10 3 Pa.
- the synthesis time of the carbon nanotube is 1 minute or longer in the synthesis step.
- the synthesis time of the carbon nanotube is 1 minute or longer in the synthesis step.
- the support is a powder, bead, honeycomb, porous, fiber, tube, wire, mesh, lattice, sponge, plate, or layer. It is preferable that the structure has one shape selected from the following. When the support has such a shape, it can be applied to various reactor forms in carbon nanotube production methods such as a substrate method and a fluidized bed method.
- Carbon nanotube refers to a fine structure having a structure in which a graphene sheet is wound into a cylindrical shape.
- the “support” is a structure for holding a catalyst, a catalyst carrier (carrier layer) (specific examples will be described later), etc. in the reactor, and is made of a solid material.
- the catalyst can be supported, for example, by gasifying the catalyst raw material and bringing the gas raw material into contact with the support. Alternatively, the catalyst can be supported on the support by attaching the catalyst raw material onto the support and subjecting it to heat treatment.
- Catalyst is supported on a support and means a general catalyst.
- the “catalyst” functions to mediate, promote, and improve the efficiency of carbon nanotube synthesis, whereby carbon nanotubes are synthesized from acetylene.
- carbon nanotubes are synthesized by the action of the “catalyst”.
- Catalyst means a material having a role of taking in acetylene and discharging carbon nanotubes.
- “catalyst” means a nanoparticle having a size on the order of nanometers.
- Catalyst carrier (carrier layer) is a material to which catalyst nanoparticles are attached.
- the “catalyst support” is formed on a support on which a metal nanoparticle catalyst is supported. The support can also serve as a catalyst carrier.
- Synthesis of carbon nanotubes means that carbon grows while forming a tubular structure on the catalyst. “Growth of carbon nanotubes” is used as a synonym for the synthesis of carbon nanotubes.
- Source gas refers to a mixed gas composed of acetylene, carbon dioxide, and an inert gas (carrier gas).
- a “reactor” is a device in which a support is arranged, and a supply pipe for supplying a gas flow of a catalyst carrier raw material, a catalyst raw material, a raw material gas containing acetylene, a carrier gas, a separation gas, etc.
- the sealing device is connected to a discharge pipe for discharging the synthesized gas flow.
- a carbon nanotube production method capable of effectively suppressing catalyst deactivation even when acetylene is supplied at a high concentration and capable of efficiently producing long carbon nanotubes. Can do.
- FIG. 1 is a schematic view showing an outline of a production apparatus according to a method for producing carbon nanotubes of an embodiment of the present invention.
- FIG. 2 is a view showing the appearance of the carbon nanotubes generated on the substrate.
- the method for producing carbon nanotubes of the present invention is to produce carbon nanotubes by circulating a raw material gas on a support.
- main elements constituting the carbon nanotube production method of the present invention will be described for each element.
- the method for producing a carbon nanotube of the present invention uses acetylene and a catalyst for producing carbon nanotubes from acetylene, and synthesizes carbon nanotubes on a heated support disposed in a reactor. It is a manufacturing method of a nanotube.
- This production method includes a synthesis step of synthesizing carbon nanotubes on a support by circulating a source gas composed of acetylene, carbon dioxide and an inert gas on the support on which a catalyst is supported.
- the partial pressure of acetylene is 1.33 ⁇ 10 1 to 1.33 ⁇ 10 4 Pa
- the partial pressure of carbon dioxide is 1.33 ⁇ 10 1 to 1.33 ⁇ 10 4 Pa
- the partial pressure of acetylene is 6.67 ⁇ 10 1 to 6.67 ⁇ 10 3 Pa
- the partial pressure of carbon dioxide is 6.67 ⁇ 10 1 to 6.67 ⁇ 10 3 Pa.
- the partial pressure ratio of acetylene and carbon dioxide is 0.1 to 10. Accordingly, long (for example, 300 ⁇ m or more) carbon nanotubes can be grown at high speed.
- reaction temperature temperature of the support
- reaction temperature temperature of the support
- the preferable upper limit of the temperature at the time of CNT growth is set to 1000 ° C. is intended to be equal to or lower than the temperature at which acetylene is thermally decomposed to become soot.
- the preferable lower limit of the temperature of the support is set to 500 ° C. from the viewpoint of maintaining the activity of the catalyst and synthesizing the carbon nanotubes more efficiently.
- the carbon nanotubes are preferably synthesized for 1 minute or longer, more preferably 1 to 100 minutes.
- the reaction time varies depending on the purpose of the length of the carbon nanotube. If the synthesis time is long, a long carbon nanotube can be synthesized. This synthesis time is determined by the kind of material and the required length of the carbon nanotube, and is not limited to the above-mentioned value.
- the support it is preferable to use ceramics for the material because it has good heat resistance, corrosion resistance, chemical resistance, mechanical strength characteristics, and the like.
- a known oxide-based, nitride-based, silicon carbide-based ceramic containing one or more elements selected from O, N, C, Si, Al, Zr, and Mg is used for the support Good.
- the support is not limited to ceramics, but may be a metal material made of a metal or alloy containing one or more elements selected from W, Ta, Mo, Ti, Al, Fe, Co, and Ni. Carbon may also be used.
- the heating of the support can be performed by means of directly or indirectly heating the support.
- carbon nanotubes are synthesized by a thermal CVD method.
- This thermal CVD method is a method of vaporizing a gas or liquid raw material and forming a thin film in the vapor phase of the vapor or by a chemical reaction on the substrate surface.
- the present invention heats the support to raise the temperature of the catalyst, and supplies the raw material gas containing acetylene to synthesize the carbon nanotubes.
- This heating method may synthesize carbon nanotubes by heating the entire reactor in a heating furnace. Moreover, you may synthesize
- the catalyst support (support layer) preferably contains one or more elements selected from Si, Al, Mg, Zr, Ti, O, N, C, Mo, Ta and W.
- the catalyst carrier may be formed of an oxide such as SiO 2 , Al 2 O 3 or MgO, a nitride such as Si 3 N 4 or AlN, or a carbide such as SiC.
- a complex oxide of Al 2 O 3 —SiO 2 is preferable.
- the catalyst preferably contains one or more elements selected from V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, W and Au as components.
- the catalyst is formed on the above-described catalyst carrier (carrier layer) or a support that also serves as the catalyst carrier.
- the catalyst preferably has a diameter of 0.4 nm to 15 nm.
- the catalyst is preferably Fe or Co.
- the catalyst carrier is Al 2 O 3 and the catalyst is Fe from the viewpoint of productivity of carbon nanotubes. Further, from the viewpoint of efficiently obtaining carbon nanotubes having a small diameter, it is preferable that the catalyst carrier is Al 2 O 3 and the catalyst is Co.
- the source gas is composed of acetylene, carbon dioxide and a carrier gas. Acetylene is fed into the reactor in a gaseous state.
- the carrier gas nitrogen, argon, or the like that does not affect the production of carbon nanotubes can be suitably used, and hydrogen or the like may be used.
- the thermal CVD method is performed by allowing the source gas to flow on the support at a pressure of preferably 1.013 ⁇ 10 3 Pa (0.01 atm) to 1.013 ⁇ 10 6 Pa (10 atm). Specifically, by insufflation a material gas to the catalyst described above from 1.013 ⁇ 10 3 Pa (0.01 atm) at 1.013 ⁇ 10 6 Pa (10 atm), the synthesis of carbon nanotubes .
- the partial pressure of the acetylene is 1.33 ⁇ 10 1 ⁇ 1.33 ⁇ 10 4 Pa (0.1 ⁇ 100Torr), the partial pressure of carbon dioxide 1.33 ⁇ 10 1 ⁇ 1.33 ⁇ 10 4 Pa (0.1 to 100 Torr).
- the partial pressure of acetylene is 6.67 ⁇ 10 1 to 6.67 ⁇ 10 3 Pa (0.5 to 50 Torr)
- the partial pressure of carbon dioxide is 6.67 ⁇ 10 1 to 6.67 ⁇ 10. 3 Pa (0.5 to 50 Torr).
- the partial pressure ratio of acetylene to carbon dioxide is 0.1 to 10, preferably 0.15 to 4.0, preferably 0.15 to 0.7. More preferably.
- the diameter of the synthesized carbon nanotube is preferably 0.4 nm or more and 10 nm or less.
- the diameter of the carbon nanotube is determined by the type and size of the catalyst, and is not limited to this value.
- the length of the carbon nanotube is determined by the synthesis time. For applications that require short carbon nanotubes, the synthesis time is shortened. For applications that require long carbon nanotubes, increase the synthesis time.
- the carbon nanotube may be a single-walled one or may be composed of a plurality of layers.
- the carbon nanotubes are preferably composed of one to ten layers.
- the carbon nanotube production method of the present invention can produce carbon nanotubes having various structures, but is suitable for the production of SWCNTs.
- carbon nanotubes having various structures can be produced by controlling the size and components of the catalyst.
- FIG. 1 is a schematic view showing an apparatus for producing carbon nanotubes when the present invention is performed by a thermal CVD method.
- the reactor 21 is composed of a horizontal cylinder whose one end is closed, and is provided with a raw material gas supply pipe 25 communicating from the outside to the inside of the container.
- a heater 24 is installed around the reactor 21.
- the support substrate 23 carrying the catalyst is placed on the quartz boat 22 and disposed in the reactor 21.
- powder, bead-like, honeycomb-like, porous-like, fiber-like, tube-like, wire-like, mesh-like, lattice-like, sponge-like or layer-like ones may be used as the support for supporting the catalyst. Can be used.
- a carrier material and a catalyst material are supported on the support substrate 23 by sputtering or the like.
- the support can also have a carrier function, and in this case, it is not always necessary to carry the carrier.
- the support substrate 23 is placed in the reactor 21 and heated to a predetermined temperature under a carrier gas flow.
- Example 1 A first embodiment of the present invention will be described. Here, a quartz substrate was used as the substrate (support), and the catalyst was formed by sputtering on the substrate.
- a known combinatorial technique was used. That is, Al was inclinedly supported on the substrate, and then the chamber was opened to the air. Thereafter, Fe was inclined and supported from the direction orthogonal to Al, and a library of Al and Fe was produced.
- the film thickness of Al was distributed such that both end portions with a substrate width of 15 mm were 60 nm to 1 nm, and the film thickness of Fe was distributed between 4 nm and 0.1 nm at both end portions with a substrate width of 15 mm.
- the substrate carrying the catalyst in this way was placed in the reactor shown in FIG.
- the reaction temperature was 800 ° C.
- a source gas at normal pressure was supplied to the reactor with 1.2 Torr acetylene / 7.6 Torr carbon dioxide / argon balance.
- the reaction time was 30 minutes.
- the length of the produced carbon nanotubes was measured with a ruler, and the results are shown in Table 1.
- the appearance of the produced carbon nanotube is shown in FIG.
- FIG. 2 shows the growth height of the carbon nanotubes taken from the side of the carbon nanotubes perpendicular to the tilt direction of Fe.
- the height of the highest growth region (Fe catalyst film thickness of 0.6 nm region) is 3.5 mm. Grew up.
- Examples 2 to 7 Carbon nanotubes of Examples 2 to 7 were produced in the same manner as in Example 1 except that the partial pressures of acetylene and carbon dioxide were changed as shown in Table 1. Table 1 shows the lengths of the produced carbon nanotubes.
- Comparative Examples 1 to 4 An attempt was made to produce the carbon nanotubes of Comparative Examples 1 to 4 in the same manner as in Example 1 except that the partial pressures of acetylene and carbon dioxide were changed as shown in Table 1. It was not possible to observe.
- the carbon nanotube production method of the present invention enables mass production of long carbon nanotubes, and can greatly reduce the production cost. Therefore, the carbon nanotubes produced in the present invention can be used for transparent electrodes, semiconductor thin films, electrode materials for lithium ion batteries, electrode materials for fuel cells, electrode materials for electric double layer capacitors, filler materials for composite polymers, electron emission guns. Application to field emission displays, microscope probes, gas storage materials, etc. is attracting attention. In particular, the use of single-walled carbon nanotubes produced in the present invention is focused on application to transparent electrodes, electrode materials for lithium ion batteries, electrode materials for electric double layer capacitors, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
本発明の明細書、請求の範囲で用いる用語を定義する。
「カーボンナノチューブ」は、グラフェンシートを筒状に巻いた構造を有した、微細な構造物をいう。
本発明のカーボンナノチューブの製造方法は、アセチレンと、アセチレンからカーボンナノチューブを生成するための触媒と、を使用して、反応器中に配置された加熱状態の支持体上にカーボンナノチューブを合成するカーボンナノチューブの製造方法である。この製造方法は、アセチレン、二酸化炭素及び不活性ガスからなる原料ガスを、触媒を担持させた支持体上に流通させることで、支持体上にカーボンナノチューブを合成させる合成工程を有する。
また、本発明のカーボンナノチューブの製造方法では、CNT成長時の温度(=反応温度=支持体の温度)を500℃以上1000℃以下に保持した状態で行うことが好ましい。より好ましくは700℃以上900℃以下で行うのが好ましい。CNT成長時の温度の好ましい上限を1000℃としたのは、アセチレンが熱分解して煤になる温度以下にすることを意図している。また、支持体の温度の好ましい下限を500℃としたのは、触媒が活性を保持し、カーボンナノチューブをより効率的に合成する観点からである。
上記合成工程において、カーボンナノチューブの合成を1分間以上行うことが好ましく、1~100分間行うことがより好ましい。反応時間は、カーボンナノチューブの長さをどの程度にするかの目的に応じて変わる。合成時間が長ければ、長いカーボンナノチューブの合成ができる。この合成時間は、材料の種類、必要なカーボンナノチューブの長さによって、決定されるものであり、上述の値に限定されるものではない。
支持体は、耐熱性、耐腐食性、耐薬品性、機械的強度特性等がよい理由から、セラミックスを材料に用いることが好ましい。支持体には、O、N、C、Si、Al、Zr、及びMgの中から選択される1以上の元素を含む公知の酸化物系、窒化物系、炭化ケイ素系等のセラミックスを用いるとよい。しかしながら、支持体はセラミックスに限定されるものではなく、W、Ta、Mo、Ti、Al、Fe、Co、及びNiの中から選択される1以上の元素を含む金属又は合金からなる金属素材や、炭素を用いてもよい。
触媒担体(担体層)は、好ましくはSi、Al、Mg、Zr、Ti、O、N、C、Mo、Ta及びWの中から選択される1以上の元素を含む。例えば、触媒担体は、SiO2、Al2O3やMgO等の酸化物、Si3N4やAlN等の窒化物、SiC等の炭化物で形成されているとよい。特にAl2O3-SiO2の複合酸化物が好ましい。
原料ガスは、アセチレン、二酸化炭素及びキャリアガスからなる。アセチレンは、反応器内に、気体状態で供給される。キャリアガスは、カーボンナノチューブの生成に影響を与えない窒素及びアルゴン等を好適に使用することができ、また水素等を用いてもよい。
合成されたカーボンナノチューブの直径は、0.4nm以上10nm以下であるとよい。カーボンナノチューブの直径は、触媒の種類、その大きさによって決定されるものであり、この値に限定されるものではない。カーボンナノチューブの長さは、合成時間によって決定されるものであり、短いカーボンナノチューブを必要とする用途の場合は、合成時間を短くする。長いカーボンナノチューブを必要とする用途の場合は、合成時間を長くする。
支持体基板23に、スパッタ法等により担体原料及び触媒原料を担持する。支持体に担体の機能も持たせることも可能であり、その際には担体を担持する必要は必ずしもない。次に、支持体基板23を反応器21内に設置し、キャリアガス流通下で所定の温度まで加熱する。
上記のように加熱された、触媒が担持された支持体基板23上に原料ガス供給管25を通じてアセチレンを含む原料ガスを流通すると、支持体基板23上にカーボンナノチューブを合成することができる。
本発明の実施例1を説明する。ここでは、基板(支持体)として石英基板を用い、触媒は該基板上にスパッタ成膜した。
アセチレン及び二酸化炭素の分圧を表1に示すように変更したこと以外は実施例1と同様にして、実施例2~7のカーボンナノチューブを製造した。生成したカーボンナノチューブの長さをそれぞれ表1に示した。
アセチレン及び二酸化炭素の分圧を表1に示すように変更したこと以外は実施例1と同様にして、比較例1~4のカーボンナノチューブを製造しようと試みたが、カーボンナノチューブの生成を目視で観察することはできなかった。
Claims (4)
- アセチレンと、該アセチレンからカーボンナノチューブを生成するための触媒と、を使用して、反応器中に配置された加熱状態の支持体上に前記カーボンナノチューブを合成するカーボンナノチューブの製造方法であって、
前記アセチレン、二酸化炭素及び不活性ガスからなる原料ガスを、前記触媒を担持させた前記支持体上に流通させることで、前記支持体上に前記カーボンナノチューブを合成させる合成工程を有し、
前記原料ガスにおいて、前記アセチレンの分圧が1.33×101~1.33×104Paであり、前記二酸化炭素の分圧が1.33×101~1.33×104Paであり、且つ、前記アセチレンと前記二酸化炭素との分圧比(アセチレン/二酸化炭素)が0.1~10である、カーボンナノチューブの製造方法。 - 前記原料ガスにおいて、前記アセチレンの分圧が6.67×101~6.67×103Paであり、前記二酸化炭素の分圧が6.67×101~6.67×103Paであることを特徴とする、請求項1に記載のカーボンナノチューブの製造方法。
- 前記合成工程において、前記カーボンナノチューブの合成を1分間以上行う、請求項1又は2に記載のカーボンナノチューブの製造方法。
- 前記支持体が、粉末状、ビーズ状、ハニカム状、多孔質状、ファイバー状、チューブ状、ワイヤー状、網状、格子状、スポンジ状、板状及び層状の中から選択される一つの形状を有する構造物である、請求項1~3のいずれか一項に記載のカーボンナノチューブの製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2815678A CA2815678C (en) | 2010-10-26 | 2011-10-26 | Process for production of carbon nanotube |
US13/881,732 US9096435B2 (en) | 2010-10-26 | 2011-10-26 | Process for production of carbon nanotube |
EP11836362.1A EP2634138B1 (en) | 2010-10-26 | 2011-10-26 | Process for production of carbon nanotubes |
CN2011800489830A CN103153849A (zh) | 2010-10-26 | 2011-10-26 | 碳纳米管的制造方法 |
JP2012540917A JP6202359B2 (ja) | 2010-10-26 | 2011-10-26 | カーボンナノチューブの製造方法 |
KR1020137012277A KR101936447B1 (ko) | 2010-10-26 | 2011-10-26 | 카본 나노 튜브의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010239584 | 2010-10-26 | ||
JP2010-239584 | 2010-10-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012057229A1 true WO2012057229A1 (ja) | 2012-05-03 |
Family
ID=45993934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/074720 WO2012057229A1 (ja) | 2010-10-26 | 2011-10-26 | カーボンナノチューブの製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9096435B2 (ja) |
EP (1) | EP2634138B1 (ja) |
JP (2) | JP6202359B2 (ja) |
KR (1) | KR101936447B1 (ja) |
CN (1) | CN103153849A (ja) |
CA (1) | CA2815678C (ja) |
WO (1) | WO2012057229A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013191247A1 (ja) * | 2012-06-22 | 2013-12-27 | 国立大学法人東京大学 | カーボンナノチューブ合成用炭素含有金属触媒粒子及びその製造方法、並びに、触媒担持支持体、カーボンナノチューブの製造方法 |
KR20150035752A (ko) * | 2012-06-22 | 2015-04-07 | 고쿠리츠다이가쿠호징 도쿄다이가쿠 | 카본 나노튜브 및 그 제조방법 |
JP2016108175A (ja) * | 2014-12-04 | 2016-06-20 | 日立化成株式会社 | カーボンナノチューブの製造方法 |
KR20200138211A (ko) | 2018-03-30 | 2020-12-09 | 니폰 제온 가부시키가이샤 | 분리 회수 방법 |
US10954128B2 (en) | 2016-02-27 | 2021-03-23 | Waseda University | Method of producing fibrous carbon nanostructures |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108840346B (zh) * | 2018-07-26 | 2021-12-10 | 塔里木大学 | 一种立式微波反应器制备蛭石碳纳米管复合材料的方法 |
CN110858651B (zh) * | 2018-08-24 | 2021-04-02 | 清华大学 | 碳纳米管复合结构及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002201013A (ja) * | 2000-12-28 | 2002-07-16 | Shimadzu Corp | 微細中空状炭素とその製造方法 |
JP2006315891A (ja) * | 2005-05-11 | 2006-11-24 | Japan Steel Works Ltd:The | 低級炭化水素の直接分解による機能性ナノ炭素及び水素の製造方法 |
WO2010076885A1 (ja) * | 2008-12-30 | 2010-07-08 | 独立行政法人産業技術総合研究所 | 単層カーボンナノチューブ配向集合体、バルク状単層カーボンナノチューブ配向集合体、粉体状単層カーボンナノチューブ配向集合体、およびその製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1207185C (zh) | 2000-09-26 | 2005-06-22 | 天津南开戈德集团有限公司 | 碳纳米管的制备方法 |
JP2010229013A (ja) * | 2009-03-27 | 2010-10-14 | Chube Univ | カーボン膜の作製方法およびカーボン膜 |
-
2011
- 2011-10-26 US US13/881,732 patent/US9096435B2/en not_active Expired - Fee Related
- 2011-10-26 JP JP2012540917A patent/JP6202359B2/ja not_active Expired - Fee Related
- 2011-10-26 EP EP11836362.1A patent/EP2634138B1/en not_active Not-in-force
- 2011-10-26 CN CN2011800489830A patent/CN103153849A/zh active Pending
- 2011-10-26 WO PCT/JP2011/074720 patent/WO2012057229A1/ja active Application Filing
- 2011-10-26 KR KR1020137012277A patent/KR101936447B1/ko active IP Right Grant
- 2011-10-26 CA CA2815678A patent/CA2815678C/en not_active Expired - Fee Related
-
2016
- 2016-07-25 JP JP2016145474A patent/JP2017019718A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002201013A (ja) * | 2000-12-28 | 2002-07-16 | Shimadzu Corp | 微細中空状炭素とその製造方法 |
JP2006315891A (ja) * | 2005-05-11 | 2006-11-24 | Japan Steel Works Ltd:The | 低級炭化水素の直接分解による機能性ナノ炭素及び水素の製造方法 |
WO2010076885A1 (ja) * | 2008-12-30 | 2010-07-08 | 独立行政法人産業技術総合研究所 | 単層カーボンナノチューブ配向集合体、バルク状単層カーボンナノチューブ配向集合体、粉体状単層カーボンナノチューブ配向集合体、およびその製造方法 |
Non-Patent Citations (3)
Title |
---|
FUTABA D.N. ET AL.: "General Rules Governing the Highly Efficient Growth of Carbon Nanotubes", ADVANCED MATERIALS, vol. 21, no. 47, 18 December 2009 (2009-12-18), pages 4811 - 4815, XP055085360 * |
MAGREZ A. ET AL.: "Evidence of an Equimolar C2H2-C02 Reaction in the Synthesis of Carbon Nanotubes", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 46, 2007, pages 441 - 444, XP055085361 * |
See also references of EP2634138A4 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013191247A1 (ja) * | 2012-06-22 | 2013-12-27 | 国立大学法人東京大学 | カーボンナノチューブ合成用炭素含有金属触媒粒子及びその製造方法、並びに、触媒担持支持体、カーボンナノチューブの製造方法 |
KR20150035752A (ko) * | 2012-06-22 | 2015-04-07 | 고쿠리츠다이가쿠호징 도쿄다이가쿠 | 카본 나노튜브 및 그 제조방법 |
JPWO2013191247A1 (ja) * | 2012-06-22 | 2016-05-26 | 国立大学法人 東京大学 | カーボンナノチューブ合成用炭素含有金属触媒粒子及びその製造方法、並びに、触媒担持支持体、カーボンナノチューブの製造方法 |
US10357765B2 (en) | 2012-06-22 | 2019-07-23 | The University Of Tokyo | Carbon-containing metal catalyst particles for carbon nanotube synthesis and method of producing the same, catalyst carrier support, and method of producing carbon nanotubes |
KR102164225B1 (ko) | 2012-06-22 | 2020-10-12 | 히타치가세이가부시끼가이샤 | 카본 나노튜브 및 그 제조방법 |
JP2016108175A (ja) * | 2014-12-04 | 2016-06-20 | 日立化成株式会社 | カーボンナノチューブの製造方法 |
US10954128B2 (en) | 2016-02-27 | 2021-03-23 | Waseda University | Method of producing fibrous carbon nanostructures |
KR20200138211A (ko) | 2018-03-30 | 2020-12-09 | 니폰 제온 가부시키가이샤 | 분리 회수 방법 |
US11186488B2 (en) | 2018-03-30 | 2021-11-30 | Zeon Corporation | Separation and recovery method |
Also Published As
Publication number | Publication date |
---|---|
KR20140009180A (ko) | 2014-01-22 |
JP6202359B2 (ja) | 2017-09-27 |
EP2634138A1 (en) | 2013-09-04 |
CA2815678A1 (en) | 2012-05-03 |
JP2017019718A (ja) | 2017-01-26 |
KR101936447B1 (ko) | 2019-01-08 |
JPWO2012057229A1 (ja) | 2014-05-12 |
CN103153849A (zh) | 2013-06-12 |
US9096435B2 (en) | 2015-08-04 |
US20130287674A1 (en) | 2013-10-31 |
CA2815678C (en) | 2019-02-12 |
EP2634138B1 (en) | 2018-01-10 |
EP2634138A4 (en) | 2014-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5549984B2 (ja) | 高比表面積のカーボンナノチューブ集合体の製造方法 | |
JP5447367B2 (ja) | カーボンナノチューブの製造方法及びカーボンナノチューブ製造装置 | |
Mubarak et al. | An overview on methods for the production of carbon nanotubes | |
JP2017019718A (ja) | カーボンナノチューブの製造方法 | |
KR101785593B1 (ko) | 카본 나노튜브 및 수소의 동시 제조 방법, 및, 카본 나노튜브 및 수소의 동시 제조 장치 | |
JP5608952B2 (ja) | カーボンナノチューブの製造装置および製造方法 | |
JP6492598B2 (ja) | カーボンナノチューブの製造方法 | |
JP3913583B2 (ja) | カーボンナノチューブの製造方法 | |
JP6338219B2 (ja) | カーボンナノチューブの製造方法 | |
JP2004083293A (ja) | フラーレンを用いたカーボンナノチューブの製造方法 | |
Maruyama | Carbon nanotube growth mechanisms | |
JP6095173B2 (ja) | カーボンナノチューブ合成用炭素含有金属触媒粒子の製造方法、及びカーボンナノチューブの製造方法 | |
JP5549983B2 (ja) | 高比表面積のカーボンナノチューブ集合体の製造方法 | |
KR101158056B1 (ko) | 촉매 화학기상증착법에 의한 탄소나노튜브 합성방법 및 그 장치 | |
Barney | Fabrication Techniques for Growing Carbon Nanotubes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180048983.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11836362 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012540917 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2815678 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011836362 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137012277 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13881732 Country of ref document: US |