WO2012039462A1 - セルロース溶液の製造方法、セルロース析出体の製造方法、セルロースの糖化方法、セルロース溶液、及びセルロース析出体 - Google Patents

セルロース溶液の製造方法、セルロース析出体の製造方法、セルロースの糖化方法、セルロース溶液、及びセルロース析出体 Download PDF

Info

Publication number
WO2012039462A1
WO2012039462A1 PCT/JP2011/071648 JP2011071648W WO2012039462A1 WO 2012039462 A1 WO2012039462 A1 WO 2012039462A1 JP 2011071648 W JP2011071648 W JP 2011071648W WO 2012039462 A1 WO2012039462 A1 WO 2012039462A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
solution
aqueous solution
precipitate
producing
Prior art date
Application number
PCT/JP2011/071648
Other languages
English (en)
French (fr)
Inventor
中村 健治
誠司 檜垣
愛実 八塚
和夫 土山
岩根 和良
正樹 ▲高▼尾
Original Assignee
愛媛県
積水化学工業株式会社
日本環境設計株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛媛県, 積水化学工業株式会社, 日本環境設計株式会社 filed Critical 愛媛県
Priority to CN201180036192.6A priority Critical patent/CN103140502B/zh
Priority to EP11826907.5A priority patent/EP2620454B1/en
Priority to CA2802221A priority patent/CA2802221A1/en
Priority to US13/703,125 priority patent/US9522991B2/en
Publication of WO2012039462A1 publication Critical patent/WO2012039462A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B1/00Preparatory treatment of cellulose for making derivatives thereof, e.g. pre-treatment, pre-soaking, activation
    • C08B1/003Preparation of cellulose solutions, i.e. dopes, with different possible solvents, e.g. ionic liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C1/00Pretreatment of the finely-divided materials before digesting
    • D21C1/08Pretreatment of the finely-divided materials before digesting with oxygen-generating compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/02Pulping cellulose-containing materials with inorganic bases or alkaline reacting compounds, e.g. sulfate processes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/02Pulping cellulose-containing materials with inorganic bases or alkaline reacting compounds, e.g. sulfate processes
    • D21C3/028Pulping cellulose-containing materials with inorganic bases or alkaline reacting compounds, e.g. sulfate processes in presence of O3
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
    • D21C5/02Working-up waste paper
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2201/00Pretreatment of cellulosic or lignocellulosic material for subsequent enzymatic treatment or hydrolysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2203/00Fermentation products obtained from optionally pretreated or hydrolyzed cellulosic or lignocellulosic material as the carbon source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/64Paper recycling

Definitions

  • the present invention relates to a method for producing a cellulose solution, a method for producing a cellulose precipitate, a method for saccharifying cellulose, a cellulose solution, and a cellulose precipitate. More specifically, a cellulose solution production method, a cellulose precipitate production method, a cellulose saccharification method, and a cellulose solution, which are subjected to ozone treatment and alkali treatment on cellulose-containing materials such as cellulose-containing fiber products and product waste thereof. And a cellulose precipitate.
  • This application claims priority based on Japanese Patent Application No. 2010-214124 for which it applied to Japan on September 24, 2010, and uses the content here.
  • Cellulose is a polysaccharide in which 50 to 1000 or more glucoses are connected by ⁇ -glycoside bonds, and is also a main component of so-called woody biomass such as wood pulp or cotton.
  • saccharides obtained by hydrolyzing cellulose, especially water-soluble oligosaccharides such as glucose have been actively studied as a raw material for producing bioethanol by alcohol fermentation (see Patent Document 1).
  • cellulose is insoluble in water and hardly dissolved in an alkaline aqueous solution.
  • solvents that can dissolve cellulose are known.
  • a sodium salt of cellulose is formed.
  • carbon disulfide it becomes sodium cellulose xanthate and becomes a colloidal dispersion solution called viscose.
  • a spun viscose rayon is formed by extruding viscose into sulfuric acid.
  • Cellulose constituting viscose rayon has the same chemical composition as natural cellulose.
  • cellulose is soluble in a copper ammonia solution. By extruding this into an acidic aqueous solution, copper ammonia rayon can be spun (see Patent Document 2).
  • the conventional method for producing a cellulose solution uses a carbon disulfide or copper ammonia solution, it requires treatment of the waste liquid or the like, and has a problem of high environmental load. Moreover, when it is necessary to prevent these chemical substances from remaining in the obtained regenerated cellulose (rayon), a rinsing treatment using a large amount of water is also necessary.
  • This invention is made
  • the cellulose-containing material is subjected to an ozone treatment in which the cellulose-containing material and ozone are brought into contact with each other.
  • the materials at least cellulose is dissolved in the alkaline aqueous solution.
  • the method for producing a cellulose solution according to a second aspect of the present invention is characterized in that, in the first aspect, a dry treatment is performed after the ozone treatment to obtain the treated product.
  • the method for producing a cellulose solution according to the third aspect of the present invention is characterized in that, in the first or second aspect, the temperature of the drying treatment is 50 to 160 ° C.
  • the ozone concentration is 1 to 300 mg / L
  • the time for the ozone treatment is Is 1 to 300 minutes.
  • the method for producing a cellulose solution according to a fifth aspect of the present invention is the method for producing a cellulose solution according to any one of the first to fourth aspects, wherein the alkali treatment is performed within a temperature range of ⁇ 10 ° C. to 50 ° C.
  • the treated product is contacted with the alkaline aqueous solution of ⁇ 10 N in a time range of 0.1 to 60 minutes.
  • the cellulose solution according to the sixth aspect of the present invention is obtained by the production method according to any one of the first to fifth aspects.
  • a method for producing a cellulose precipitate comprising adjusting a cellulose solution obtained by the production method according to any one of the first to fifth aspects to a pH of 7 or less to obtain cellulose. It is characterized by being obtained by precipitation.
  • the cellulose precipitate according to the eighth aspect of the present invention is obtained by the production method according to the seventh aspect.
  • the cellulose saccharification method according to the ninth aspect of the present invention is a water-soluble product by performing an enzyme treatment in which the cellulose precipitate obtained by the production method according to the seventh aspect is brought into contact with an aqueous solution containing a cellulose-degrading enzyme. An aqueous solution containing a functional oligosaccharide or glucose is obtained.
  • the present invention relates to the following.
  • (1) Among the cellulose-containing materials in contact with the ozone by performing an ozone treatment in which the cellulose-containing material and ozone are brought into contact with each other, and performing an alkali treatment in which the obtained treated product is brought into contact with an alkaline aqueous solution.
  • a method for producing a cellulose solution comprising dissolving at least cellulose in the alkaline aqueous solution.
  • the alkali treatment includes bringing the treatment product into contact with the alkaline aqueous solution of 0.1 to 10N in a temperature range of ⁇ 10 ° C. to 50 ° C. for a time range of 0.1 to 60 minutes.
  • (10) The method for producing a cellulose precipitate according to (9), wherein the acidic aqueous solution has a pH of 1.0 to 6.9 and a concentration of 1 to 50 wt%.
  • (11) A cellulose precipitate obtained by the production method according to any one of (8) to (10).
  • (12) A water-soluble oligosaccharide or a water-soluble oligosaccharide can be obtained by performing an enzyme treatment in which the cellulose precipitate obtained by the production method according to any one of (8) to (10) is contacted with an aqueous solution containing a cellulose-degrading enzyme.
  • a method for saccharifying cellulose comprising obtaining an aqueous solution containing glucose.
  • the method for producing a cellulose solution of the present invention by subjecting a cellulose-containing material as a raw material to ozone treatment and alkali treatment, the cellulose crystal part (cellulose crystal) in the raw material is modified to improve hydrophilicity. Can be made. As a result, the cellulose in the raw material can be easily dissolved in the alkaline aqueous solution.
  • the cellulose solution of the present invention has a chemical composition different from that of known viscose.
  • Viscose is a cellulose derivative solution containing sulfur atoms derived from carbon disulfide required in the process.
  • the cellulose solution of the present invention does not contain sulfur atoms. For this reason, industrial use is possible as a cellulose solution with comparatively little environmental impact.
  • a cellulose precipitate composed of highly pure cellulose can be obtained. This is because even when impurities are contained in the raw material cellulose solution, the cellulose can be preferentially precipitated by adjusting the cellulose solution to pH 7 or lower.
  • the cellulose precipitate of the present invention since cellulose is once dissolved, fibers at the micro level of cellulose can be relatively easily loosened. For this reason, it is suitable as a raw material for the saccharification method of cellulose, and the conversion rate of cellulose into glucose can be improved.
  • the hydrolysis rate of cellulose by the subsequent enzyme treatment can be improved by using the cellulose precipitate as a raw material without requiring high-temperature and high-pressure pretreatment.
  • the enzyme treatment by subjecting cellulose to hydrolysis under mild conditions, the desired product water-soluble oligosaccharide or glucose can be obtained with high purity without generating a saccharide hyperdegradation product. it can.
  • the obtained high-purity water-soluble oligosaccharide or glucose is useful as a raw material for ethanol fermentation or lactic acid fermentation.
  • the present invention will be described in detail below.
  • the method for producing a cellulose solution of the present invention includes performing an ozone treatment in which a cellulose-containing material and ozone are brought into contact, performing an alkali treatment in which the obtained treated product is brought into contact with an alkaline aqueous solution, and at least the cellulose-containing material. In this method, cellulose is dissolved in the alkaline aqueous solution.
  • the method for producing a cellulose solution of the present invention may further include an auxiliary treatment other than the above treatment.
  • the cellulose-containing material in the present invention is preferably a cellulose-containing fiber and more preferably a fiber containing cotton because the effects of the present invention can be sufficiently obtained.
  • the cellulose-containing fiber is not particularly limited as long as it is a fibrous material containing cellulose.
  • cotton, hemp (linax, flax, manila hemp, zaiza hemp, kenaf hemp used as a fiber for clothing, etc. Etc.), tencel, rayon, cuvula, etc., paper products such as copy paper, wrapping paper, or cardboard, etc. are mentioned as suitable cellulose-containing fibers.
  • the fiber of the clothing or the like may be a fiber blended with a synthetic fiber such as polyester or a fiber not containing cellulose such as silk.
  • the form of the cellulose-containing fiber is not particularly limited, and cellulose-containing fibers processed into a cotton shape, a thread shape, a rope shape, a cloth shape, a flat surface, a solid shape, or the like can be used. Among these, from the viewpoint of easy handling, a net shape or a cloth shape is preferable.
  • the viewpoint of improving the purity of the cellulose solution to manufacture is so preferable that the cellulose content rate in the said cellulose containing material is high.
  • the cellulose content is preferably 0.1-30 wt%, more preferably 0.1-20 wt%, and even more preferably 0.1-10 wt%.
  • the ozone in the present invention is not particularly limited as long as ozone can be brought into contact with the cellulose-containing material.
  • gaseous ozone (ozone gas) or an ozone solution is preferable, and an ozone solution that is easy to handle is more preferable.
  • Ozone gas can be generated by irradiating air with ultraviolet rays or performing silent discharge in oxygen.
  • ozone gas may be supplied from a known ozone generator.
  • the ozone gas can be used as a mixed gas of air and ozone.
  • the solvent for the ozone solution is not particularly limited as long as it is a solvent capable of dissolving ozone, but water is preferable because it reduces environmental burden and facilitates waste liquid treatment. That is, ozone water is preferred as the ozone solution in the present invention.
  • the ozone water can be supplied from a known ozone water generator using water electrolysis or the like.
  • the method for bringing the cellulose-containing material into contact with the ozone is not particularly limited.
  • a method in which ozone gas or an ozone solution is blown into and contacted with the pulverized cellulose-containing material a method in which the cellulose-containing material is immersed in the ozone solution, or a place where the cellulose-containing material is left standing, The method of making it pass and let it contact is mentioned.
  • the method of immersing the cellulose-containing material in the ozone solution and bringing it into contact with the ozone solution is preferable because the structure of the facility becomes easy.
  • there is a method of performing the ozone treatment by putting the cellulose-containing material into an ozone-resistant basket, and immersing and shaking the basket in the ozone solution.
  • the concentration of ozone in the ozone gas or ozone solution brought into contact with the cellulose-containing material is preferably 1 to 300 mg / L, more preferably 20 to 250 mg / L, and further preferably 40 to 200 mg / L.
  • the hydrogen bond of the cellulose in the cellulose in a cellulose containing material can be weakened as it is more than the lower limit of the said range. When it is below the upper limit of the above range, it is possible to suppress the decomposition of the ⁇ - (1,4) -glycoside bond (main chain) of cellulose in the cellulose-containing material.
  • the temperature at which the cellulose-containing material is brought into contact with the ozone is preferably ⁇ 10 to 50 ° C., more preferably ⁇ 5 to 40 ° C., and further preferably 0 to 30 ° C.
  • the cellulose crystals in the cellulose in the cellulose-containing material can be sufficiently modified, and the subsequent alkali treatment can be more effectively performed.
  • the treatment time for bringing the cellulose-containing material into contact with the ozone can usually be performed within 48 hours.
  • the treatment time range of the ozone treatment is preferably from 0.1 minute to 300 minutes, more preferably from 1 minute to 200 minutes, and further preferably from 5 minutes to 100 minutes.
  • the cellulose crystals in the cellulose in the cellulose-containing material are sufficiently modified, and the subsequent alkali treatment can be more effectively performed.
  • the property of the cellulose-containing material contained in the treated product obtained by the ozone treatment may be slightly white before and after the ozone treatment, but hardly changes.
  • the cellulose in the cellulose-containing material usually has a crystalline part and an amorphous part.
  • the crystal part is generally considered to be composed of microfibrils in which cellulose molecular chains are bundled in parallel by hydrogen bonds.
  • the processed material obtained by further drying-processing the cellulose containing material obtained by the said ozone treatment for the below-mentioned alkali treatment. Drying is preferably carried out until there is no change in weight of the cellulose-containing material due to evaporation of moisture.
  • the solubility of the treated product during the alkali treatment can be remarkably enhanced. The reason for this is presumed that since the drying treatment promotes the decomposition of the cellulose crystals in the cellulose-containing material, the dissolution in the subsequent alkali treatment can be promoted.
  • the method for the drying treatment is not particularly limited as long as the method can dry the cellulose-containing material that has undergone the ozone treatment.
  • a method of drying by blowing warm air or a method of drying by a heat dryer can be used.
  • the heat drying method is preferable.
  • the temperature for the drying treatment is preferably in the range of 50 to 160 ° C., more preferably in the range of 100 to 140 ° C.
  • the cellulose-containing material that has undergone the ozone treatment can be dried in a short time, and there is little risk of scorching. If it is less than the lower limit of the above range, the cellulose-containing material is difficult to dry, the drying time becomes long, and there is a risk of becoming a bottleneck in the production process. If it exceeds the upper limit of the above range, the cellulose-containing material may be burnt.
  • the time of the drying process is determined by the amount of the cellulose-containing material that is dried at a time.
  • the drying treatment is preferably performed until there is no change in weight of the cellulose-containing material due to evaporation of moisture.
  • the pressure during the drying treatment is preferably normal pressure because the treatment apparatus becomes easy.
  • the alkaline aqueous solution in the alkaline treatment of the present invention is an alkaline aqueous solution capable of dissolving at least cellulose (cellulose molecular chain) among the treated products (cellulose-containing materials that have undergone ozone treatment or cellulose-containing materials that have undergone ozone treatment and drying treatment). If it is, it will not be restrict
  • an aqueous solution containing sodium hydroxide, aqueous ammonia, or an aqueous solution containing calcium hydroxide can be used. Among these, an aqueous solution containing sodium hydroxide is preferable.
  • sodium hydroxide By using sodium hydroxide, cellulose can be made into a cellulose sodium salt adsorbed with sodium ions. As a result, aggregation and hydrogen bonding of the cellulose can be suppressed, and the solubility of the cellulose in an alkaline aqueous solution can be improved.
  • the method for bringing the treated product into contact with the alkaline aqueous solution is not particularly limited.
  • a method of immersing the treated product in the alkaline aqueous solution and bringing it into contact may be adopted.
  • there is a method of performing the alkali treatment by placing the treated product in an alkali-resistant basket, immersing the basket in the alkaline aqueous solution, and shaking it.
  • the concentration (normality) is preferably 0.1 to 10N, and more preferably 1 to 5N.
  • the said processed material can fully be melt
  • the temperature at which the treated product is brought into contact with the aqueous alkali solution is preferably ⁇ 10 to 50 ° C., more preferably ⁇ 5 to 30 ° C.
  • the said processed material can fully be melt
  • the treatment time when the treated product and the aqueous alkali solution are contacted can be usually within 48 hours, preferably 0.1 to 60 minutes, preferably 1 to 30 minutes. Further preferred.
  • the said processed material can fully be melt
  • a cellulose solution in which at least cellulose is dissolved in the treated product is obtained. If the cellulose-containing material contains substances that are inherently insoluble in the alkaline aqueous solution, they may not be dissolved by the alkaline treatment. These insoluble components are preferably removed by a known method such as filter filtration or centrifugation.
  • the cellulose solution of the present invention is a solution in which cellulose or cellulose salt is dissolved in the alkaline aqueous solution.
  • the cellulose salt include a salt of a monovalent cation such as a sodium salt, potassium salt, or lithium salt of cellulose, or a salt of a divalent cation such as a magnesium salt of cellulose or a calcium salt.
  • a sodium salt or a calcium salt is preferable from the viewpoint of the price of chemicals.
  • the cellulose salt is usually formed by adsorption of cations in the alkaline aqueous solution used for the alkali treatment onto cellulose.
  • a cellulose salt may be formed with the salts derived from the cellulose-containing material.
  • the properties of the cellulose solution of the present invention are as follows.
  • the degree of polymerization of cellulose molecular chains is 50 to 50,000.
  • the solubility of the treated product containing cellulose when using an alkaline solution (4N aqueous sodium hydroxide) as a solvent is 1.0 to 100% by mass.
  • the viscosity of the cellulose solution in the solubility range is 0.001 to 1000 Pa ⁇ s.
  • the concentration of cellulose in the cellulose solution is 0.1 to 30% by mass, preferably 0.1 to 20% by mass, and more preferably 0.1 to 10% by mass.
  • the cellulose solution of the present invention exhibits a transparent light yellow color because cellulose is dissolved in an alkaline aqueous solution.
  • the solution becomes cloudy.
  • the cause of white turbidity indicates that the crystalline components of cellulose are dispersed in the alkaline aqueous solution without being dissolved.
  • Such a cloudy cellulose suspension is clearly distinguished from the cellulose solution of the present invention.
  • the method for producing a cellulose precipitate of the present invention is a method obtained by precipitating cellulose by adjusting the cellulose solution of the present invention to pH 7 or lower.
  • the pH range of the cellulose solution is preferably 1.0 to 6.9, more preferably 1.0 to 5.0, and 1.0. More preferably, ⁇ 3.0.
  • Various methods can be applied as a method for precipitating cellulose by adjusting the cellulose solution to pH 7 or lower.
  • the following method is mentioned.
  • -An acid such as hydrochloric acid is added to the cellulose solution.
  • -The said cellulose solution is dripped or extruded in acid solutions, such as hydrochloric acid.
  • acid solutions such as hydrochloric acid.
  • the method of extruding the cellulose solution into an acid solution such as hydrochloric acid is preferable from the viewpoint that existing rayon production equipment can be utilized.
  • a cellulose precipitate can be obtained by extruding the cellulose solution into an acidic solution.
  • the pH range of the acidic solution is preferably 1.0 to 6.9, more preferably 1.0 to 5.0, and still more preferably 1.0 to 3.0.
  • the concentration range of the acidic solution is preferably 1 to 50 wt%, more preferably 1 to 30 wt%, and even more preferably 1 to 20 wt%.
  • acidic aqueous solution is mentioned, for example, Specifically, 4N hydrochloric acid is mentioned.
  • the concentration of the cellulose solution is not particularly limited, and may be adjusted to a range of 1 to 80% by mass, for example.
  • a cellulose precipitate spun into a filament can be obtained by a method in which the cellulose aqueous solution is ejected into the acidic aqueous solution from a narrow hole (for example, a diameter of 1 mm to 10 mm). Moreover, the cellulose deposit formed in the film form can be obtained by ejecting similarly from an elongate hole (for example, 1 mm long ⁇ 300 mm wide). Furthermore, a spherical (or lump or dumpling) cellulose precipitate can be obtained by setting the amount of the cellulose solution added dropwise in the acidic aqueous solution to, for example, 0.05 to 0.5 ml. These cellulose precipitates can be obtained as cellulose precipitates in which cellulose fibers are relatively easily loosened or have high water absorption by appropriately adjusting the pressure during extrusion and the concentration of the cellulose solution.
  • the cellulose in the cellulose solution is preferentially used in the acidic aqueous solution. It can be deposited to leave the impurities dissolved. That is, in the course of precipitation, the cellulose purity of the cellulose precipitate may be increased.
  • the cellulose in the cellulose solution forms a salt with a cation
  • the cellulose and the cation forming the salt are dissociated in the acidic aqueous solution. That is, cellulose is precipitated by treating the cellulose salt with the acidic aqueous solution.
  • the obtained cellulose precipitate is preferably washed with pure water or the like to remove acid components and impurities.
  • the cellulose precipitate of the present invention is a precipitate obtained by the above-described method for producing a cellulose precipitate according to the present invention.
  • the cellulose constituting the cellulose precipitate is once dissolved in the cellulose solution. For this reason, the dispersibility in aqueous solution is high, and it is suitable as a raw material in the cellulose saccharification method mentioned later.
  • the cellulose saccharification method of the present invention is a method for obtaining an aqueous solution containing a water-soluble oligosaccharide or glucose by performing an enzyme treatment in which the cellulose precipitate of the present invention is contacted with an aqueous solution containing a cellulose-degrading enzyme.
  • Cellulolytic enzymes produce glucose by hydrolyzing the ⁇ - (1,4) -glycosidic bonds of cellulose molecules. In order to cause this hydrolysis reaction, the enzyme needs to be adsorbed at a predetermined position of the cellulose molecular chain.
  • part of the cellulose molecular chain in the substrate constitutes a cellulose crystal (crystal part), and in this crystal part, the cellulose enzyme is prevented from adsorbing at a predetermined position. It is done. As a result, the efficiency of hydrolyzing the crystal part of cellulose as a raw material is reduced.
  • the cellulose precipitate does not contain impurities that inhibit the saccharification reaction as much as possible. That is, the higher the cellulose content of the cellulose precipitate, the better.
  • the cellulose content of the cellulose precipitate is preferably 50 to 100 wt%, more preferably 60 to 100 wt%, and further preferably 80 to 100 wt%.
  • the pH of the cellulose precipitate is preferably adjusted to be close to the optimum pH of the cellulolytic enzyme used.
  • the cellulose precipitate is preferably washed with water or an acidic aqueous solution.
  • a method of immersing and washing the cellulose precipitate in deionized water and / or an acidic aqueous solution may be employed. It may be washed by passing an acidic aqueous solution.
  • the acidic aqueous solution is not particularly limited as long as it does not inhibit the subsequent enzyme reaction.
  • an acetate buffer, a citrate buffer, or a phosphate buffer is preferable, and an acetate buffer is particularly preferable.
  • the pH range of the acidic aqueous solution may be in the vicinity of the optimum pH of the cellulolytic enzyme to be used and does not inhibit the subsequent enzyme reaction, preferably pH 2.0 to pH 6.9, preferably pH 3.0 to pH 6.9 is more preferable, and pH 4.0 to pH 6.0 is even more preferable.
  • a pH within this range is preferable because the pH of the aqueous solution contained in the washed cellulose precipitate can be adjusted to the optimum pH (generally pH 4 to 6) for the subsequent enzyme reaction. What is necessary is just to adjust the density
  • the method for bringing the cellulose precipitate washed with the water and / or the acidic aqueous solution into contact with the aqueous solution containing the cellulolytic enzyme is not particularly limited.
  • a method in which the cellulose precipitate is immersed in an aqueous solution containing a cellulose-degrading enzyme may be employed, or the aqueous solution containing the cellulose-degrading enzyme is allowed to flow through when the cellulose precipitate is left standing. May be contacted.
  • the enzyme treatment is performed by putting the cellulose precipitate in a basket and immersing the basket in an aqueous solution containing the cellulose-degrading enzyme.
  • the cellulose-degrading enzyme is not particularly limited as long as it is an enzyme that can hydrolyze cellulose to produce water-soluble oligosaccharides or glucose, and a known cellulose-degrading enzyme (cellulase) may be used in a predetermined amount.
  • the water-soluble oligosaccharide refers to a water-soluble cellooligosaccharide having a molecular structure in which about 2 to 6 molecules of glucose are condensed and connected.
  • cellulolytic enzymes include cellulase SS (manufactured by Nagase ChemteX Corp.), Meicelase (manufactured by Meiji Seika Co., Ltd.) or Enchiron (manufactured by Toto Kasei Kogyo Co., Ltd.), among which cellulase SS is preferable.
  • the enzyme activity of cellulase SS is 1600 CUN / g.
  • the aqueous solution containing the cellulolytic enzyme contains a pH buffer for stabilizing the pH.
  • the pH of the aqueous solution is preferably around the optimum pH of the cellulolytic enzyme (the pH at which the enzyme activity increases).
  • acetate buffer, citrate buffer, phosphate buffer, or the like is preferably used, and acetate buffer is particularly preferred.
  • the temperature at which the cellulose precipitate is brought into contact with the aqueous solution containing the cellulolytic enzyme is preferably around the optimum temperature of the cellulolytic enzyme (temperature at which the enzyme activity increases).
  • the optimum temperature is in the range of 10 to 80 ° C., more preferably 40 to 70 ° C., and further preferably 50 to 65 ° C.
  • the pH when the cellulose precipitate is brought into contact with the aqueous solution containing the cellulose-degrading enzyme is preferably 3 to 8, more preferably 4 to 7, and still more preferably 5 to 6.
  • the treatment time range when contacting the cellulose precipitate and the aqueous solution containing the cellulolytic enzyme can be performed within 14 days as long as the enzyme concentration, pH, and temperature are appropriate. .
  • the reaction rate is highest for 1 day after the start of the reaction, then gradually decreases after 2-6 days, and after 10 days from the start of the reaction, the reaction is almost stopped and the cellulose contained in the cellulose precipitate The conversion rate to glucose tends to reach a peak.
  • the conversion rate means the ratio of the mass of the saccharide obtained by the saccharification reaction to the mass of the cellulose contained in the cellulose precipitate.
  • the saccharide refers to the water-soluble oligosaccharide or glucose.
  • cellulose saccharification method of the present invention since hydrolysis of cellulose is performed under relatively mild conditions using an enzyme, saccharides with high purity can be obtained.
  • the produced saccharide is dissolved in an aqueous solution containing the cellulolytic enzyme.
  • the method for obtaining the saccharide by collecting it from the aqueous solution is not particularly limited, and may be performed by a known method such as chromatography.
  • Example 1 100 g of cotton yarn containing cellulose was contacted with 50 mg / L of ozone water for 60 minutes ⁇ 3 times, followed by drying at 130 ° C. for 1 hour to remove ozone. 5 g of the obtained processed product and 200 g of 4N sodium hydroxide aqueous solution were mixed in a glass beaker (300 mL) and contacted at 25 ° C. for 30 minutes. As a result of the experiment, it was visually confirmed that the treated product was completely dissolved. The obtained cellulose solution was transparent and light yellow.
  • Example 2 100 mg of cotton yarn containing cellulose is blown into contact with 200 mg / L of ozone gas (mixed gas with air) for 10 minutes, then dried at 130 ° C. for 1 hour to remove ozone. It was. 5 g of the obtained treated product and 200 g of 4N sodium hydroxide aqueous solution were mixed in a glass beaker (300 mL) and contacted at 25 ° C. for 60 minutes. As a result of the experiment, it was visually confirmed that the treated product was completely dissolved. The obtained cellulose solution was transparent and light yellow.
  • Example 3 When the cellulose solution obtained in Example 2 was extruded from a syringe needle tip into a hydrochloric acid bath having a pH of 1.0, a filamentous cellulose precipitate having a diameter of about 0.1 mm and a length of about 1 m was obtained.
  • Comparative Example 1 It carried out similarly to Example 1 except having changed ozone water into ion-exchange water. That is, only the alkali treatment was performed without performing the ozone treatment. As a result of the experiment, it was visually confirmed that cellulose did not dissolve. The aqueous sodium hydroxide solution after the alkali treatment was a cloudy solution.
  • Example 4 The cellulose precipitate obtained in Example 3 was immersed in deionized water and left for 8 hours. Among the cellulose precipitates washed with water, an amount corresponding to 0.5 g in terms of dry weight was divided, and a sodium acetate buffer solution (pH 5.0) was added thereto to obtain Sample A (pH 5.0). Subsequently, 0.2 ml of cellulase SS (manufactured by Nagase ChemteX Corporation; activity 1600 CUN / g or more), which is a cellulose-degrading enzyme, is added to sample A to bring the cellulose precipitate into contact with the enzyme, and shaking with a shaker is performed. And kept at 40 ° C.
  • cellulase SS manufactured by Nagase ChemteX Corporation; activity 1600 CUN / g or more
  • glucose conversion rate mass of produced glucose / mass of cellulose precipitate (0.5 g) ”Was calculated.
  • the result is shown by a plot of “ ⁇ ” in FIG.
  • the saccharification rate described in FIG. 1 is synonymous with the glucose conversion rate.
  • Comparative Example 3 >> 5 g of cotton yarn containing cellulose was sufficiently washed with deionized water, and an amount corresponding to 0.5 g in terms of dry weight was separated, and this was used as a substrate, and the enzyme treatment was performed in the same manner as in Example 4. .
  • the glucose conversion rate was 11% after 1 day, 2% after 13 days, and 28% after 3 days. The result is shown by a plot of “*” in FIG.
  • Example 4 according to the present invention has a significantly higher glucose conversion rate than Comparative Examples 2 and 3. This result is thought to be due in part to the fact that the surface area of the cellulose precipitate was increased compared to the cotton yarn, so that the water absorption was enhanced.
  • the cellulose solution production method, cellulose precipitate production method, cellulose saccharification method, cellulose solution, and cellulose precipitate of the present invention can be widely used for producing saccharides from cellulose-containing materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Saccharide Compounds (AREA)

Abstract

 本発明は、セルロース含有物とオゾンとを接触させるオゾン処理を行うこと、及び得られた処理物とアルカリ水溶液とを接触させるアルカリ処理を行うことにより、前記オゾンと接触した前記セルロース含有物のうち、少なくともセルロースを、前記アルカリ水溶液に溶解させることを含む、セルロース溶液の製造方法に関する。本発明によれば、より簡便な方法でセルロースを溶解することができるセルロース溶液の製造方法、前記セルロース溶液からセルロースを回収することができるセルロース析出体の製造方法、及び、前記セルロース析出体を使用するセルロースの糖化方法を提供できる。

Description

セルロース溶液の製造方法、セルロース析出体の製造方法、セルロースの糖化方法、セルロース溶液、及びセルロース析出体
 本発明は、セルロース溶液の製造方法、セルロース析出体の製造方法、セルロースの糖化方法、セルロース溶液、及びセルロース析出体に関する。より詳しくは、セルロース含有繊維製品やそれらの製品屑等のセルロース含有物にオゾン処理及びアルカリ処理を施す、セルロース溶液の製造方法、セルロース析出体の製造方法、及びセルロースの糖化方法、並びに、セルロース溶液及びセルロース析出体に関する。
 本願は、2010年9月24日に日本に出願された、特願2010-214124号に基づき優先権を主張し、その内容をここに援用する。
 セルロースは50~1000個以上のグルコースがβ-グリコシド結合でつながった多糖類であり、木材パルプ、又は綿等のいわゆる木質系バイオマスの主成分でもある。セルロースを加水分解することによって得られる糖類、特にグルコース等の水溶性オリゴ糖は、アルコール発酵によるバイオエタノール製造の原料として実用化研究が近年盛んである(特許文献1参照)。
 通常、セルロースは水に不溶であり、アルカリ水溶液にもほとんど溶解しない。しかし、セルロースを溶解できる溶媒がいくつか知られている。例えば、セルロースを水酸化ナトリウム水溶液で処理すると、セルロースのナトリウム塩が形成される。これを二硫化炭素と混合すると、セルロースキサントゲン酸ナトリウムとなって、ビスコースと呼ばれるコロイド分散系溶液となる。ビスコースを硫酸中に押出すことによって、紡糸されたビスコースレーヨンが形成される。ビスコースレーヨンを構成するセルロースは、天然のセルロースと化学的組成は同じである。
 また、銅アンモニア溶液に対してもセルロースは可溶である。これを酸性水溶液に押出すことによって、銅アンモニアレーヨンを紡糸することができる(特許文献2参照)。
 従来のセルロース溶液の製造方法は、二硫化炭素又は銅アンモニア溶液を使用するため、その廃液等の処理が必要であり、環境負荷が高いという問題がある。また、得られる再生セルロース(レーヨン)中に、これらの化学物質が残留することを防ぐ必要がある場合、多量の水を使用した濯ぎ処理も必要となる。
特開2001-95594号公報 特開2008-280635号公報
 本発明は、上記事情に鑑みてなされたものであり、より簡便な方法でセルロースを溶解することができる、セルロース溶液の製造方法及び前記セルロース溶液の提供を課題とする。また、本発明は、前記セルロース溶液からセルロースを回収することができる、セルロース析出体の製造方法及び前記セルロース析出体の提供を課題とする。さらに、本発明は、前記セルロース析出体を使用する、セルロースの糖化方法の提供を課題とする。
 本発明の第1の態様のセルロース溶液の製造方法は、セルロース含有物とオゾンとを接触させるオゾン処理を行い、得られた処理物とアルカリ水溶液とを接触させるアルカリ処理を行って、前記セルロース含有物のうち、少なくともセルロースを、前記アルカリ水溶液に溶解させることを特徴とする。
 本発明の第2の態様のセルロース溶液の製造方法は、前記第1の態様において、前記オゾン処理後に乾燥処理を行い、前記処理物を得ることを特徴とする。
 本発明の第3の態様のセルロース溶液の製造方法は、前記第1又は第2の態様において、前記乾燥処理の温度が、50~160℃であることを特徴とする。
 本発明の第4の態様のセルロース溶液の製造方法は、前記第1~第3の態様のいずれか1つの態様において、前記オゾンの濃度が1~300mg/Lであり、且つ前記オゾン処理の時間が1~300分間であることを特徴とする。
 本発明の第5の態様のセルロース溶液の製造方法は、前記第1~第4の態様のいずれか1つの態様において、前記アルカリ処理において、-10℃~50℃の温度範囲で、0.1~10Nの前記アルカリ水溶液に、前記処理物を、0.1~60分間の時間範囲で接触させることを特徴とする。
 本発明の第6の態様のセルロース溶液は、前記第1~第5の態様いずれか1つの態様に記載の製造方法によって得られたものである。
 本発明の第7の態様のセルロース析出体の製造方法は、前記第1~第5の態様のいずれか1つの態様に記載の製造方法によって得られたセルロース溶液をpH7以下に調整して、セルロースを析出して得ることを特徴とする。
 本発明の第8の態様のセルロース析出体は、前記第7の態様に記載の製造方法によって得られたものである。
 本発明の第9の態様のセルロースの糖化方法は、前記第7の態様に記載の製造方法によって得られたセルロース析出体とセルロース分解酵素を含む水溶液とを接触させる酵素処理を行うことにより、水溶性オリゴ糖又はグルコースを含む水溶液を得ることを特徴とする。
 すなわち、本発明は以下に関する。
(1)セルロース含有物とオゾンとを接触させるオゾン処理を行うこと、及び
得られた処理物とアルカリ水溶液とを接触させるアルカリ処理を行うことにより、前記オゾンと接触した前記セルロース含有物のうち、少なくともセルロースを、前記アルカリ水溶液に溶解させることを含む、セルロース溶液の製造方法。
(2)前記アルカリ処理の前に、前記オゾンと接触した前記セルロース含有物の乾燥処理を行うことにより、前記処理物を得ることをさらに含む、(1)に記載のセルロース溶液の製造方法。
(3)前記乾燥処理の温度が、50~160℃である、(1)又は(2)に記載のセルロース溶液の製造方法。
(4)前記オゾンの濃度が1~300mg/Lであり、且つ前記オゾン処理の時間が1~300分間である、(1)~(3)のいずれか一項に記載のセルロース溶液の製造方法。
(5)前記アルカリ処理が、-10℃~50℃の温度範囲で、0.1~10Nの前記アルカリ水溶液に、前記処理物を、0.1~60分間の時間範囲で接触させることを含む、(1)~(4)のいずれか一項に記載のセルロース溶液の製造方法。
(6)前記アルカリ水溶液が水酸化ナトリウム水溶液である、(1)~(5)のいずれか一項に記載のセルロース溶液の製造方法。
(7)(1)~(6)のいずれか一項に記載の製造方法によって得られたセルロース溶液。
(8)(1)~(7)のいずれか一項に記載の製造方法によって得られたセルロース溶液をpH7以下に調整して、セルロースを析出して得ることを含む、セルロース析出体の製造方法。
(9)(1)~(7)のいずれか一項に記載の製造方法によって得られたセルロース溶液を酸性水溶液中に押出すことを含む、セルロース析出体の製造方法。
(10)前記酸性水溶液のpHが1.0~6.9であり、且つ濃度が1~50wt%である、(9)に記載のセルロース析出体の製造方法。
(11)(8)~(10)のいずれか一項に記載の製造方法によって得られたセルロース析出体。
(12)(8)~(10)のいずれか一項に記載の製造方法によって得られたセルロース析出体とセルロース分解酵素を含む水溶液とを接触させる酵素処理を行うことにより、水溶性オリゴ糖又はグルコースを含む水溶液を得ることを含むセルロースの糖化方法。
 本発明のセルロース溶液の製造方法によれば、原料であるセルロース含有物に、オゾン処理及びアルカリ処理を施すことにより、原料中のセルロースの結晶部分(セルロース結晶)を改質して親水性を向上させることができる。この結果、原料中のセルロースを容易に、アルカリ水溶液に溶解できる。
 本発明のセルロース溶液は、既知のビスコースとは化学的組成が異なる。ビスコースは、製法過程で要する二硫化炭素由来の硫黄原子を含むセルロース誘導体の溶液である。一方、本発明のセルロース溶液は、硫黄原子を含まない。このため、比較的環境負荷の少ないセルロース溶液として、工業的な利用が可能である。
 本発明のセルロース析出体の製造方法によれば、純度の高いセルロースからなるセルロース析出体を得ることができる。原料であるセルロース溶液に不純物が含まれる場合であっても、前記セルロース溶液をpH7以下とすることによって、セルロースを優先的に析出させることができるからである。
 本発明のセルロース析出体は、セルロースが一度溶解しているのでセルロースのミクロレベルでの繊維が、比較的ほぐれ易い状態となり得る。このため、セルロースの糖化方法の原料として好適であり、セルロースのグルコースへの転換率を向上することができる。
 また、本発明のセルロース溶液をpH7以下の溶液に押出すことによって、紡糸された糸状のセルロース析出体や、フィルム状や球状のセルロース析出体を得ることも可能である。
 本発明のセルロースの糖化方法によれば、高温高圧の前処理を必要とせず、前記セルロース析出体を原料とすることによって、後段の酵素処理によるセルロースの加水分解速度を向上させることができる。また、前記酵素処理では、穏和な条件下でセルロースの加水分解を行うことにより、糖類の過分解物を発生させず、目的の生成物である水溶性オリゴ糖又はグルコースを高純度で得ることができる。得られた高純度の水溶性オリゴ糖又はグルコースは、エタノール発酵や乳酸発酵等の原料として有用である。
酵素処理におけるグルコース転換率の経時変化を示すグラフ
 以下、本発明について詳しく説明する。
<セルロース溶液の製造方法>
 本発明のセルロース溶液の製造方法は、セルロース含有物とオゾンとを接触させるオゾン処理を行い、得られた処理物とアルカリ水溶液とを接触させるアルカリ処理を行って、前記セルロース含有物のうち、少なくともセルロースを、前記アルカリ水溶液に溶解させる方法である。
 本発明のセルロース溶液の製造方法は、前記処理以外の、補助的な処理をさらに含んでいても良い。
<<オゾン処理>>
 本発明におけるセルロース含有物としては、本発明の効果が十分に得られることから、セルロース含有繊維が好ましく、綿を含有する繊維がより好ましい。
 前記セルロース含有繊維としては、セルロースを含有する繊維状の物であれば特に限定されず、例えば、衣料品等の繊維として用いられている綿、麻(苧麻、亜麻、マニラ麻、ザイザル麻、ケナフ麻等)、テンセル、レーヨン、又はキュブラ等や、コピー紙や包装紙、又は段ボール等の紙製品等が好適なセルロース含有繊維として挙げられる。また、前記衣料品等の繊維として、ポリエステル等の合成繊維やシルク等のセルロースを含有していない繊維と混紡された繊維であってもよい。
 これらのなかでは、不純物を含まないため、綿が好ましい。
 前記セルロース含有繊維の形態は特に制限されず、綿状、糸状、綱状、布状、平面又は立体状等に加工されたセルロース含有繊維を用いることができる。
 これらのなかでは、取り扱いが容易である点から、網状又は布状が好ましい。 
 また、製造するセルロース溶液の純度を高める観点から、前記セルロース含有物中のセルロース含有率は高いほど好ましい。
 セルロース含有率は0.1~30wt%が好ましく、0.1~20wt%がより好ましく、0.1~10wt%がさらに好ましい。
 本発明におけるオゾンとしては、セルロース含有物にオゾンを接触させられる状態であれば特に制限されない。例えば気体のオゾン(オゾンガス)又はオゾン溶液が好ましく、取り扱いが容易なオゾン溶液がより好ましい。
 オゾンガスは、空気に紫外線を照射したり、酸素中に無声放電を行ったりすることによって発生させることができる。本発明においてオゾンガスを使用する場合、公知のオゾン発生機からオゾンガスを供給すればよい。前記オゾンガスは、空気とオゾンとの混合ガスとして用いることができる。
 前記オゾン溶液の溶媒としては、オゾンを溶解できる溶媒であれば特に制限されないが、環境負荷の低減や、廃液処理が容易であることから、水が好適である。
 すなわち、本発明におけるオゾン溶液としては、オゾン水が好ましい。オゾン水は、水の電気分解等を利用した公知のオゾン水生成装置から供給できる。
 前記オゾン処理において、前記セルロース含有物と前記オゾンとを接触させる方法は、特に制限されない。例えば、粉砕したセルロース含有物にオゾンガス又はオゾン溶液を吹き込んで接触させる方法、前記セルロース含有物を前記オゾン溶液に浸漬して接触させる方法、又は前記セルロース含有物を静置したところに、前記オゾン溶液を通液させて接触させる方法、等が挙げられる。これらのなかでは、設備の構造が容易になる点から、前記セルロース含有物を前記オゾン溶液に浸漬して接触させる方法が好ましい。
 より具体的な例として、オゾン耐性のカゴに前記セルロース含有物を入れて、そのカゴを前記オゾン溶液中に浸漬して揺り動かすことにより前記オゾン処理を行う方法が挙げられる。
 セルロース含有物に接触させるオゾンガス又はオゾン溶液中の、オゾンの濃度としては、1~300mg/Lが好ましく、20~250mg/Lがより好ましく、40~200mg/Lがさらに好ましい。
 上記範囲の下限値以上であると、セルロース含有物におけるセルロース中のセルロースの水素結合を弱めることができる。上記範囲の上限値以下であると、セルロース含有物中のセルロースのβ-(1,4)-グリコシド結合(主鎖)が分解されることを抑制できる。
 前記オゾン処理において、前記セルロース含有物と前記オゾンとを接触させる際の温度は、-10~50℃が好ましく、-5~40℃がより好ましく、0~30℃がさらに好ましい。
 上記範囲の下限値以上及び上限値以下であると、前記セルロース含有物におけるセルロース中のセルロース結晶の改質を充分に行い、後段のアルカリ処理をより効果的に行うことができる。
 前記オゾン処理において、前記セルロース含有物と前記オゾンとを接触させる際の処理時間は、通常48時間以内で行うことができる。前記オゾン処理の処理時間の範囲は、0.1分間~300分間が好ましく、1分間~200分間がより好ましく、5分間~100分間がさらに好ましい。
 上記範囲の下限値以上及び上限値以内であると、前記セルロース含有物におけるセルロース中のセルロース結晶の改質を充分に行い、後段のアルカリ処理をより効果的に行うことができる。
 前記オゾン処理によって得られる処理物に含まれるセルロース含有物の性状は、前記オゾン処理の前後で、若干白色を呈する場合もあるが、ほとんど変化しない。
 前記セルロース含有物におけるセルロースは、通常、結晶部分と非結晶部分とを有する。結晶部分は、セルロース分子鎖どうしが水素結合で平行に束ねられたミクロフィブリルから構成されていると、一般に考えられている。
 前記オゾン処理では、オゾンの酸化力を利用して、水酸基の酸化により、水素結合が低下したと考えられる。その結果、後段のアルカリ処理において、セルロース分子鎖とアルカリの接触が充分行われて、アルカリ処理による溶解の効率を向上できる。
 本発明のセルロース溶液の製造方法において、前記オゾン処理で得られたセルロース含有物をさらに乾燥処理して得られた処理物を、後述のアルカリ処理に用いることが好ましい。
 乾燥は、水分の蒸発にともなう前記セルロース含有物の重量変化がなくなるまで行うことが好ましい。
 前記乾燥処理を行うことによって、アルカリ処理時の処理物の溶解性を格段に高めることができる。この理由は、乾燥処理がセルロース含有物中のセルロース結晶の分解を促進するため、後段のアルカリ処理における溶解が促進できると推測される。
 前記乾燥処理の方法としては、前記オゾン処理を経たセルロース含有物を乾燥できる方法であれば特に制限されない。例えば、温風を吹き込んで乾燥する方法や、加熱乾燥機によって乾燥させる方法が挙げられる。乾燥する方法の中でも、加熱乾燥の方法が好ましい。
 前記乾燥処理の温度は、50~160℃の範囲が好ましく、100~140℃の範囲がより好ましい。乾燥処理の温度が前記範囲内であると、オゾン処理を経たセルロース含有物を短時間で乾燥させることができ、焦げが生じる恐れも少ない。
 上記範囲の下限値未満であると、前記セルロース含有物が乾燥しにくく、乾燥時間が長くなり、製造工程のボトルネックとなる恐れがある。
 上記範囲の上限値超であると、前記セルロース含有物に焦げが生じる恐れがある。
 乾燥処理の時間は、一度に乾燥させる前記セルロース含有物の量によって決定される。乾燥処理は、水分の蒸発にともなう前記セルロース含有物の重量変化がなくなるまで行うことが好ましい。
 乾燥処理時の圧力は、処理装置が容易となることから、常圧が好ましい。
<<アルカリ処理>>
 本発明のアルカリ処理におけるアルカリ水溶液としては、前記処理物(オゾン処理を経たセルロース含有物、又はオゾン処理及び乾燥処理を経たセルロース含有物)のうち、少なくともセルロース(セルロース分子鎖)を溶解できるアルカリ水溶液であれば特に制限されない。例えば、水酸化ナトリウムを含む水溶液、アンモニア水、又は水酸化カルシウムを含む水溶液等が挙げられる。
 これらのなかでも、水酸化ナトリウムを含む水溶液が好ましい。水酸化ナトリウムを用いることにより、セルロースを、ナトリウムイオンが吸着したセルロースナトリウム塩とすることができる。その結果、当該セルロースの凝集や水素結合を抑制して、当該セルロースのアルカリ水溶液に対する溶解性を向上できる。
 前記アルカリ処理において、前記処理物と前記アルカリ水溶液とを接触させる方法は特に制限されない。例えば、前記処理物を前記アルカリ水溶液に浸漬して接触させる方法を採用しても良い。より具体的な例として、アルカリ耐性のカゴに前記処理物を入れて、そのカゴを前記アルカリ水溶液中に浸漬して揺り動かすことにより前記アルカリ処理を行う方法が挙げられる。
 前記アルカリ処理において、アルカリ水溶液が水酸化ナトリウム水溶液である場合には、その濃度(規定度)は、0.1~10Nが好ましく、1~5Nがより好ましい。
 上記範囲の下限値以上及び上限値以下であると、前記処理物を充分に溶解することができる。
 前記アルカリ処理において、前記処理物と前記アルカリ水溶液とを接触させる際の温度は、-10~50℃が好ましく、-5~30℃がさらに好ましい。
 上記範囲の下限値以上及び上限値以下であると、前記処理物を充分に溶解することができる。
 前記アルカリ処理において、前記処理物と前記アルカリ水溶液とを接触させる際の処理時間の範囲は、通常48時間以内で行うことができ、0.1分間~60分間が好ましく、1分間~30分間がさらに好ましい。
 上記範囲の下限値以上及び上限値以内であると、前記処理物を充分に溶解することができる。
 前記アルカリ処理によって、前記処理物のうち、少なくともセルロースを溶解したセルロース溶液が得られる。
 前記セルロース含有物中に、アルカリ水溶液に本来的に不溶な物質が含まれていた場合は、それらは前記アルカリ処理によっても溶解しない場合がある。これらの不溶成分は、フィルターろ過や遠心分離等の公知の方法によって、除去することが好ましい。
<<セルロース溶液>>
 本発明のセルロース溶液は、セルロース又はセルロース塩が、前記アルカリ水溶液中に溶解した溶液である。
 前記セルロース塩としては、セルロースのナトリウム塩、カリウム塩、又はリチウム塩等の一価カチオンの塩、若しくはセルロースのマグネシウム塩、又はカルシウム塩等の二価カチオンの塩が挙げられる。 これらのなかでは、薬品の価格の点からナトリウム塩又はカルシウム塩が好ましい。
 前記セルロース塩は、通常、前記アルカリ処理に用いたアルカリ水溶液中のカチオンがセルロースに吸着することによって形成される。また、前記セルロース含有物由来の塩類によって、セルロース塩が形成されてもよい。
 本発明のセルロース溶液の性状は、以下の通りである。
・ セルロース分子鎖の重合度は、50~50,000である。
・ アルカリ溶液(4N水酸化ナトリウム水溶液)を溶媒としたときの、前記セルロースを含む前記処理物の溶解度は、1.0~100質量%である。
・ 前記溶解度の範囲における、当該セルロース溶液の粘度は、0.001~1000Pa・sである。
・ セルロース溶液における、セルロースの濃度は、0.1~30質量%であり、0.1~20質量%が好ましく、0.1~10質量%がより好ましい。
 本発明のセルロース溶液は、セルロースがアルカリ水溶液に溶解しているため、透明な薄い黄色を呈する。一方、前記オゾン処理を経ていないセルロースをアルカリ水溶液に分散させた場合、白濁した溶液となる。白濁の原因は、アルカリ水溶液中にセルロースの結晶成分が溶解せずに分散していることを示している。このような白濁したセルロースの懸濁液は、本発明のセルロース溶液とは明確に区別される。
<<セルロース析出体の製造方法>>
 本発明のセルロース析出体の製造方法は、本発明のセルロース溶液をpH7以下に調整することによって、セルロースを析出して得る方法である。
 本発明のセルロース析出体の製造方法によってセルロースを析出させる際の、前記セルロース溶液のpHの範囲は、1.0~6.9が好ましく、1.0~5.0がより好ましく、1.0~3.0がさらに好ましい。
 前記セルロース溶液をpH7以下に調整することによって、セルロースを析出して得る方法としては、種々の方法が適用できる。
 例えば、下記の方法が挙げられる。
・ 塩酸等の酸を、前記セルロース溶液に添加する。
・ 塩酸等の酸溶液中に、前記セルロース溶液を滴下する、又は押出す。
・ 塩酸等の酸溶液に対して、前記セルロース溶液を透析する。
 これらのなかでは、既存のレーヨン製造設備を活用できる点から、塩酸等の酸溶液中に前記セルロース溶液を押出す方法が好ましい。
 より具体的には、例えば前記セルロース溶液を酸性溶液中に押出すことによって、セルロース析出体を得ることができる。
 前記酸性溶液のpHの範囲は、1.0~6.9が好ましく、1.0~5.0がより好ましく、1.0~3.0がさらに好ましい。前記酸性溶液の濃度の範囲は、1~50wt%が好ましく、1~30wt%がより好ましく、1~20wt%がさらに好ましい。
 前記酸性溶液としては、例えば酸性水溶液が挙げられ、具体的には4N塩酸が挙げられる。
 前記セルロース溶液の濃度は特に制限されず、例えば1~80質量%の範囲に調整すればよい。
 前記押出す方法として、細い孔(例えば口径1mm~10mm)から前記酸性水溶液中に前記セルロース水溶液を噴出する方法によって、糸状に紡糸されたセルロース析出体を得ることができる。また細長い孔(例えばたて1mm×よこ300mm)から、同様に噴出することによって、フィルム状に形成されたセルロース析出体を得ることができる。さらに、前記酸性水溶液中に前記セルロース溶液を例えば1回の滴下量を0.05~0.5mlとすることによって、球状(又は塊状、若しくは団子状)のセルロース析出体を得ることができる。
 これらのセルロース析出体は、押出し時の圧力やセルロース溶液濃度を適宜調整することによって、セルロース繊維が比較的ほぐれ易い又は吸水性が高いセルロース析出体として得ることも可能である。
 前記セルロース溶液中にセルロース以外の不純物が混入している場合であっても、前記不純物が前記酸性水溶液に可溶性の物質であるならば、当該セルロース溶液中のセルロースを優先的に当該酸性水溶液中で析出させて、当該不純物を溶解したままにすることができる。すなわち、析出の過程で、セルロース析出体のセルロース純度を高めることができる場合がある。
 例えば、セルロース溶液中のセルロースがカチオンとの塩を形成している場合、前記酸性水溶液中で前記塩を形成しているセルロースとカチオンが解離する。つまり、セルロース塩を前記酸性水溶液で処理することにより、セルロースが析出する。
 得られたセルロース析出体は、純水等で洗浄して酸成分や不純物を除去することが好ましい。
<<セルロース析出体>>
 本発明のセルロース析出体は、前述の本発明にかかるセルロース析出体の製造方法によって得られた析出体である。
 当該セルロース析出体を構成するセルロースは、一度セルロース溶液中で溶解している。このため、水溶液中の分散性が高く、後述のセルロース糖化方法における原料として好適である。
<<セルロースの糖化方法>>
 本発明のセルロースの糖化方法は、本発明のセルロース析出体とセルロース分解酵素を含む水溶液とを接触させる酵素処理を行うことにより、水溶性オリゴ糖又はグルコースを含む水溶液を得る方法である。
 セルロース分解酵素は、セルロース分子のβ-(1,4)-グリコシド結合を加水分解することによってグルコースを生成する。この加水分解反応を起こすためには、酵素がセルロース分子鎖の所定の位置に吸着する必要がある。
 一般のセルロースを基質とした場合、基質中のセルロース分子鎖の一部はセルロース結晶(結晶部分)を構成しているため、この結晶部分においては、セルロース酵素は所定の位置に吸着することが妨げられる。この結果、原料であるセルロースのうち、結晶部分を加水分解する効率が落ちてしまう。
 前記セルロース析出体には、セルロースから糖類への転換率を高める観点から、糖化反応を阻害するような不純物はなるべく含まれていない方が好ましい。すなわち、前記セルロース析出体のセルロース含有率は高いほど好ましい。
 前記セルロース析出体のセルロース含有率は、50~100wt%が好ましく、60~100wt%がより好ましく、80~100wt%がさらに好ましい。
 前記セルロース析出体のpHは、使用するセルロース分解酵素の至適pH付近に調整しておくことが好ましい。例えば、前記セルロース析出体を水又は酸性水溶液で洗浄しておくことが好ましい。その方法としては、例えば、前記セルロース析出体を脱イオン水及び/又は酸性水溶液に浸漬して洗浄する方法を採用しても良いし、前記セルロース析出体を静置したところに、脱イオン水及び/又は酸性水溶液を通液させて洗浄しても良い。より具体的な例として、カゴに前記セルロース析出体を入れて、そのカゴを脱イオン水及び/又は酸性水溶液中に浸漬して揺り動かし、適宜、前記脱イオン水及び/又は酸性水溶液を交換する方法が挙げられる。
 前記酸性水溶液は、後段の酵素反応を阻害しない溶液であれば特に制限されず、例えば酢酸緩衝液、クエン酸緩衝液、又はリン酸緩衝液等が好適であり、酢酸緩衝液が特に好適である。
 前記酸性水溶液のpHの範囲は、使用するセルロース分解酵素の至適pH付近であって、後段の酵素反応を阻害しない範囲であればよく、pH2.0~pH6.9が好ましく、pH3.0~pH6.9がより好ましく、pH4.0~pH6.0がさらに好ましい。
 この範囲のpHであると、洗浄したセルロース析出体に含まれる水溶液のpHを、後段の酵素反応の至適pH(一般にpH4~6)に合わせることができるので好ましい。
 前記酸性水溶液の濃度は適宜調整すればよい。
 前記水及び/又は酸性水溶液で洗浄したセルロース析出体とセルロース分解酵素を含む水溶液とを接触させる方法は特に制限されない。例えば、前記セルロース析出体をセルロース分解酵素を含む水溶液に浸漬して接触させる方法を採用しても良いし、前記セルロース析出体を静置したところに、前記セルロース分解酵素を含む水溶液を通液させて接触させても良い。より具体的な例として、カゴに前記セルロース析出体を入れて、そのカゴを前記セルロース分解酵素を含む水溶液中に浸漬して揺り動かすことにより前記酵素処理を行う方法が挙げられる。
 前記セルロース分解酵素としては、セルロースを加水分解して水溶性オリゴ糖又はグルコースを生成できる酵素であれば特に制限されず、公知のセルロース分解酵素(セルラーゼ)を所定の量で用いればよい。ここで、前記水溶性オリゴ糖は、2~6分子程度のグルコースが縮合してつながった分子構造を有する水溶性のセロオリゴ糖をいう。
 公知のセルロース分解酵素としては、セルラーゼSS(ナガセケムテックス株式会社製)、メイセラーゼ(明治製菓株式会社製)又はエンチロン(洛東化成工業株式会社製)等が挙げられ、これらのなかではセルラーゼSSが好ましい。
 例えば、セルラーゼSSの酵素活性は1600CUN/gである。
 前記セルロース分解酵素を含む水溶液には、pHを安定させるためのpH緩衝剤を含ませることが好ましい。前記水溶液のpHとしては、前記セルロース分解酵素の至適pH(酵素活性が高くなるpH)付近であることが望ましい。一般に、前記至適pHは酸性~中性であることが多いので、酢酸緩衝液、クエン酸緩衝液、又はリン酸緩衝液等が好適に用いられ、酢酸緩衝液が特に好適である。
 前記酵素処理において、前記セルロース析出体と前記セルロース分解酵素を含む水溶液とを接触させる際の温度は、前記セルロース分解酵素の至適温度(酵素活性が高くなる温度)付近であることが望ましい。一般には、前記至適温度は10~80℃の範囲であり、40~70℃がより好ましく、50~65℃がさらに好ましい。
 前記酵素処理において、前記セルロース析出体と前記セルロース分解酵素を含む水溶液とを接触させる際のpHは、3~8が好ましく、4~7がより好ましく、5~6がさらに好ましい。
 前記酵素処理において、前記セルロース析出体と前記セルロース分解酵素を含む水溶液とを接触させる際の処理時間の範囲は、適切な酵素濃度、pH、及び温度であれば、14日間以内で行うことができる。多くの場合、反応開始後1日間が最も反応速度が高く、その後2~6日間で反応速度が徐々に低下し、反応開始10日後以降では反応がほぼ停止してセルロース析出体に含まれるセルロースのグルコースへの転換率が頭打ちになる傾向がある。
 ここで、前記転換率とは、セルロース析出体に含まれるセルロースの質量に対する、糖化反応により得られた糖類の質量の割合をいう。前記糖類とは、前記水溶性オリゴ糖又はグルコースをいう。
 本発明のセルロース糖化方法では、セルロースの加水分解を酵素を用いて比較的穏やかな条件で行うため、純度の高い糖類を得ることができる。生成した前記糖類は前記セルロース分解酵素を含む水溶液中に溶解している。前記糖類を前記水溶液から回収して得る方法は特に制限されず、クロマトグラフィー等の公知の方法で行えばよい。
 次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されない。
<<実施例1>>
 セルロース含有物である綿糸100gに、50mg/Lのオゾン水を60分間×3回接触させたのち、130℃で1時間の乾燥処理を行うことによって乾燥して、オゾンを除いた。
 得られた処理物5gと、4Nの水酸化ナトリウム水溶液200gとをガラス製ビーカー(300mL)で混合して、25℃で30分間、接触させた。
 実験の結果、前記処理物が完全に溶解したことを目視確認した。得られたセルロース溶液は透明な薄黄色であった。
<<実施例2>>
 セルロース含有物である綿糸100gに、200mg/Lのオゾンガス(空気との混合ガス)を10分間吹き込んで接触させたのち、130℃で1時間の乾燥処理を行うことによって乾燥して、オゾンを除いた。
 得られた処理物5gと、4Nの水酸化ナトリウム水溶液200gとをガラス製ビーカー(300mL)で混合して、25℃で60分間、接触させた。
 実験の結果、前記処理物が完全に溶解したことを目視確認した。得られたセルロース溶液は透明な薄黄色であった。
<<実施例3>>
 実施例2で得られたセルロース溶液を、シリンジ針先から、pH1.0の塩酸浴に、押し出したところ、φ0.1mm×長さ1m程度の糸状のセルロース析出体が得られた。
<<比較例1>>
 オゾン水をイオン交換水に変更した以外は、実施例1と同様に行った。つまり、オゾン処理は行わずに、アルカリ処理のみを行った。
 実験の結果、セルロースは溶解しないことを目視確認した。アルカリ処理後の水酸化ナトリウム水溶液は白濁液であった。
<<実施例4>>
 実施例3で得られたセルロース析出体を 、脱イオン水に浸漬して8時間放置した。水で洗浄したセルロース析出体のうち乾燥重量換算で0.5gに相当する量を取り分けて、これに酢酸ナトリウム緩衝液(pH5.0)を加えて、試料A(pH5.0)とした。
 つづいて、セルロース分解酵素であるセルラーゼSS(ナガセケムテックス株式会社製;活性1600CUN/g以上)0.2mlを試料Aに添加してセルロース析出体と酵素とを接触させ、シェーカーによる振とうは行わずに静置して、40℃で維持した。
 この酵素処理の開始後、所定日数経過後における反応液に含まれるグルコース量をHPLCにより測定し、「グルコース転換率(質量%)=生成したグルコースの質量/セルロース析出体の質量(0.5g)」の計算を行った。
 実験の結果、グルコース転換率は1日後=32%、2日後=49%、3日後=72%となった 。その結果を図1において、「○」のプロットで示す。
 図1に記載の糖化率は前記グルコース転換率と同義である。
<<比較例2>>
 比較例1の白濁液をフィルターろ過して得たろ過物を脱イオン水で充分に洗浄して、セルロース析出体の代わりに使用した他は、実施例4と同様に行った。
 実験の結果、グルコース転換率は1日後=28%、2日後=44%、3日後=58%となった 。その結果を図1において、「□」のプロットで示す。
<<比較例3>>
 セルロース含有物である綿糸5gを、脱イオン水で充分に洗浄して、乾燥重量換算で0.5gに相当する量を取り分けて、これを基質として、実施例4と同様に酵素処理を行った。
 実験の結果、グルコース転換率は1日後=11%、2日後=13%、3日後=28%となった 。その結果を図1において、「*」のプロットで示す。
 以上の結果から、本発明に係る実施例4は、比較例2~3よりも、グルコース転換率が顕著に高いことが確認された。この結果は、セルロース析出体の表面積が、綿糸よりも増えたため、吸水性が高められたことが一因であると考えられる。
 本発明のセルロース溶液の製造方法、セルロース析出体の製造方法、セルロースの糖化方法、セルロース溶液、及びセルロース析出体は、セルロース含有物から糖類を製造するために広く利用することが可能である。

Claims (12)

  1.  セルロース含有物とオゾンとを接触させるオゾン処理を行うこと、及び
    得られた処理物とアルカリ水溶液とを接触させるアルカリ処理を行うことにより、前記オゾンと接触した前記セルロース含有物のうち、少なくともセルロースを、前記アルカリ水溶液に溶解させることを含む、セルロース溶液の製造方法。
  2.  前記アルカリ処理の前に、前記オゾンと接触した前記セルロース含有物の乾燥処理を行うことにより、前記処理物を得ることをさらに含む、請求項1に記載のセルロース溶液の製造方法。
  3.  前記乾燥処理の温度が、50~160℃である、請求項1又は2に記載のセルロース溶液の製造方法。
  4.  前記オゾンの濃度が1~300mg/Lであり、且つ前記オゾン処理の時間が1~300分間である、請求項1~3のいずれか一項に記載のセルロース溶液の製造方法。
  5.  前記アルカリ処理が、-10℃~50℃の温度範囲で、0.1~10Nの前記アルカリ水溶液に、前記処理物を、0.1~60分間の時間範囲で接触させることを含む、請求項1~4のいずれか一項に記載のセルロース溶液の製造方法。
  6.  前記アルカリ水溶液が水酸化ナトリウム水溶液である、請求項1~5のいずれか一項に記載のセルロース溶液の製造方法。
  7.  請求項1~6のいずれか一項に記載の製造方法によって得られたセルロース溶液。
  8.  請求項1~7のいずれか一項に記載の製造方法によって得られたセルロース溶液をpH7以下に調整して、セルロースを析出して得ることを含む、セルロース析出体の製造方法。
  9.  請求項1~7のいずれか一項に記載の製造方法によって得られたセルロース溶液を酸性水溶液中に押出すことを含む、セルロース析出体の製造方法。
  10.  前記酸性水溶液のpHが1.0~6.9であり、且つ濃度が1~50wt%である、請求項9に記載のセルロース析出体の製造方法。
  11.  請求項8~10のいずれか一項に記載の製造方法によって得られたセルロース析出体。
  12.  請求項8~10のいずれか一項に記載の製造方法によって得られたセルロース析出体とセルロース分解酵素を含む水溶液とを接触させる酵素処理を行うことにより、水溶性オリゴ糖又はグルコースを含む水溶液を得ることを含むセルロースの糖化方法。
PCT/JP2011/071648 2010-09-24 2011-09-22 セルロース溶液の製造方法、セルロース析出体の製造方法、セルロースの糖化方法、セルロース溶液、及びセルロース析出体 WO2012039462A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180036192.6A CN103140502B (zh) 2010-09-24 2011-09-22 纤维素溶液的制造方法、纤维素析出物的制造方法、纤维素的糖化方法、纤维素溶液、及纤维素析出物
EP11826907.5A EP2620454B1 (en) 2010-09-24 2011-09-22 Cellulose solution manufacturing method, cellulose precipitate manufacturing method, cellulose saccharification method, cellulose solution, and cellulose precipitate
CA2802221A CA2802221A1 (en) 2010-09-24 2011-09-22 Cellulose solution manufacturing method, cellulose precipitate manufacturing method, cellulose saccharification method, cellulose solution, and cellulose precipitate
US13/703,125 US9522991B2 (en) 2010-09-24 2011-09-22 Cellulose solution manufacturing method, cellulose precipitate manufacturing method, cellulose saccharification method, cellulose solution, and cellulose precipitate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010214124A JP5822101B2 (ja) 2010-08-04 2010-09-24 セルロース溶液の製造方法、セルロース析出体の製造方法、及びセルロースの糖化方法
JP2010-214124 2010-09-24

Publications (1)

Publication Number Publication Date
WO2012039462A1 true WO2012039462A1 (ja) 2012-03-29

Family

ID=45873945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071648 WO2012039462A1 (ja) 2010-09-24 2011-09-22 セルロース溶液の製造方法、セルロース析出体の製造方法、セルロースの糖化方法、セルロース溶液、及びセルロース析出体

Country Status (6)

Country Link
US (1) US9522991B2 (ja)
EP (1) EP2620454B1 (ja)
JP (1) JP5822101B2 (ja)
CN (1) CN103140502B (ja)
CA (1) CA2802221A1 (ja)
WO (1) WO2012039462A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013124265A1 (en) * 2012-02-20 2013-08-29 Renewcell Lux S.À.R.L Regeneration of cellulose

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103387618B (zh) * 2013-08-23 2015-08-19 唐山三友集团兴达化纤有限公司 植物纤维素的氧化降解方法
MX2017012913A (es) 2015-04-10 2018-06-06 Comet Biorefining Inc Metodos y composiciones para el tratamiento de biomasa celulosica y productos producidos por estos.
JP7351856B2 (ja) 2018-05-10 2023-09-27 コメット バイオリファイニング インコーポレイテッド グルコース及びヘミセルロースを含む組成物並びにその使用
JP7170989B2 (ja) * 2018-10-24 2022-11-15 国立大学法人東京工業大学 酵素固定化用担体および固定化酵素
CN114072553B (zh) * 2019-07-03 2024-03-05 福塔穆拉化工英国有限公司 提取方法
JP7395132B2 (ja) * 2019-09-27 2023-12-11 愛媛県 水性塗料と陶磁器類と絵付け方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293901A (ja) * 1991-03-22 1992-10-19 Shin Etsu Chem Co Ltd 白色度の改善されたセルロース誘導体の製造方法
JPH09316101A (ja) * 1996-05-31 1997-12-09 Asahi Chem Ind Co Ltd セルロース溶液の調製方法
JP2001095594A (ja) 1999-09-30 2001-04-10 Meiji Seika Kaisha Ltd グルコース及びセロオリゴ糖の製造方法
JP2008280635A (ja) 2007-05-09 2008-11-20 Asahi Kasei Fibers Corp セルロース溶液
JP2009203454A (ja) * 2008-01-31 2009-09-10 Toyota Central R&D Labs Inc イオン液体を利用したセルロース分解産物の生産方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947201A (ja) * 1982-09-13 1984-03-16 Res Assoc Petroleum Alternat Dev<Rapad> セルロ−ス性物質の前処理方法
US8236535B2 (en) * 2008-04-30 2012-08-07 Xyleco, Inc. Processing biomass
FR2937656B1 (fr) 2008-10-24 2010-11-19 Arkema France Procede de fabrication de pate a papier
US20100159522A1 (en) 2008-12-19 2010-06-24 E.I. De Pont De Nemours And Company Organosolv and ozone treatment of biomass to enhance enzymatic saccharification
WO2010080489A1 (en) * 2008-12-19 2010-07-15 E. I. Du Pont De Nemours And Company Ozone treatment of biomass to enhance enzymatic saccharification
CN101649570B (zh) * 2009-09-01 2011-02-09 陕西科技大学 一种麦草纤维素的低污染制备工艺
CN101649569B (zh) * 2009-09-01 2011-05-18 陕西科技大学 一种低污染麦草微晶纤维素的制备工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293901A (ja) * 1991-03-22 1992-10-19 Shin Etsu Chem Co Ltd 白色度の改善されたセルロース誘導体の製造方法
JPH09316101A (ja) * 1996-05-31 1997-12-09 Asahi Chem Ind Co Ltd セルロース溶液の調製方法
JP2001095594A (ja) 1999-09-30 2001-04-10 Meiji Seika Kaisha Ltd グルコース及びセロオリゴ糖の製造方法
JP2008280635A (ja) 2007-05-09 2008-11-20 Asahi Kasei Fibers Corp セルロース溶液
JP2009203454A (ja) * 2008-01-31 2009-09-10 Toyota Central R&D Labs Inc イオン液体を利用したセルロース分解産物の生産方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013124265A1 (en) * 2012-02-20 2013-08-29 Renewcell Lux S.À.R.L Regeneration of cellulose
US9751955B2 (en) 2012-02-20 2017-09-05 Re:Newcell Ab Regeneration of cellulose

Also Published As

Publication number Publication date
JP2012052081A (ja) 2012-03-15
CN103140502A (zh) 2013-06-05
EP2620454A4 (en) 2014-12-24
US9522991B2 (en) 2016-12-20
EP2620454A1 (en) 2013-07-31
CN103140502B (zh) 2016-01-13
JP5822101B2 (ja) 2015-11-24
EP2620454B1 (en) 2017-06-28
CA2802221A1 (en) 2012-03-29
US20130177948A1 (en) 2013-07-11

Similar Documents

Publication Publication Date Title
WO2012039462A1 (ja) セルロース溶液の製造方法、セルロース析出体の製造方法、セルロースの糖化方法、セルロース溶液、及びセルロース析出体
DK2984127T3 (en) Polysaccharide films and process for their preparation
Borysiak et al. X-ray diffraction study of pine wood treated with NaOH
JP5206947B2 (ja) 微細繊維状セルロース系物質及びその製造方法
JP4707743B2 (ja) ミクロフィブリル状多糖の調製方法
JP2015101694A (ja) セルロースナノファイバー分散体及びセルロース修飾体、ならびに製造方法
JP2015527465A (ja) ヘミセルロースを除去する方法
CN112675679A (zh) 除臭剂
Rezanezhad et al. Isolation of nanocellulose from rice waste via ultrasonication
CN113145080A (zh) Tempo氧化综纤维素-壳聚糖吸附材料的制备方法、制得的吸附材料及应用
JP5733654B2 (ja) セルロースの糖化方法
JP5987223B2 (ja) セルロース溶液の製造方法、セルロースの製造方法、セルロースの糖化方法
SaifulAzry et al. Effects of Polymorph Transformation via Mercerisation on Microcrystalline Cellulose Fibres and Isolation of Nanocrystalline Cellulose Fibres.
CN110791829B (zh) 一种纳米抗菌纤维的制备方法及其应用
WO2016024047A1 (en) Method for treating cellulose and alkali solutions obtained from the treatment of cellulose
Visanko Functionalized nanocelluloses and their use in barrier and membrane thin films
Masruchin et al. Manipulation of surface carboxyl content on TEMPO-oxidized cellulose fibrils
CN110330569A (zh) 一种高取代度氧化纤维素的制备方法
CA3040351A1 (en) Spherical cellulose nanoparticles and process for preparation thereof
Femina et al. Extraction of Cellulose
JPH09268201A (ja) 酢酸セルロースの製造方法
Elanthikkal et al. Cellulose Whisker‐Based Green Polymer Composites
KR100496242B1 (ko) 가교 키토산섬유 및 제조방법.
CN117364266A (zh) 一种莲藕渣纤维素纳米纤维及其制备方法
CN1587283A (zh) 聚丁二酰亚胺交联改性甲壳素材料的制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180036192.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826907

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2802221

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2011826907

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011826907

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13703125

Country of ref document: US