WO2012035844A1 - シリコーンゴム組成物 - Google Patents

シリコーンゴム組成物 Download PDF

Info

Publication number
WO2012035844A1
WO2012035844A1 PCT/JP2011/064470 JP2011064470W WO2012035844A1 WO 2012035844 A1 WO2012035844 A1 WO 2012035844A1 JP 2011064470 W JP2011064470 W JP 2011064470W WO 2012035844 A1 WO2012035844 A1 WO 2012035844A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone rubber
rubber composition
mass
antioxidant
group
Prior art date
Application number
PCT/JP2011/064470
Other languages
English (en)
French (fr)
Inventor
弘昌 小濱
誠人 大西
祐輝 相馬
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to EP11824856.6A priority Critical patent/EP2617774B1/en
Priority to CN201180044297.6A priority patent/CN103108920B/zh
Priority to JP2012533897A priority patent/JP5770736B2/ja
Publication of WO2012035844A1 publication Critical patent/WO2012035844A1/ja
Priority to US13/801,168 priority patent/US9523001B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B5/00Packaging individual articles in containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, jars
    • B65B5/04Packaging single articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1545Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes

Definitions

  • the present invention relates to a silicone rubber composition. More specifically, the present invention relates to a silicone rubber composition that can be suitably used for a medical instrument in which radiation sterilization is performed.
  • Silicone rubber is widely used as an elastic material and fiber material in medical devices.
  • Patent Document 1 discloses a medical tube introduction tool (introducer) used when a long medical member such as a catheter or a guide wire is introduced into a living body.
  • the introducer includes a cylindrical main body, a cap provided at one end of the main body, and a valve body that is positioned on a passage in the cylinder of the main body and fixed between the main body and the cap. Have.
  • the valve body has a slit at the center thereof, and the slit is in an open state when a catheter or the like is inserted into the main body, and in a closed state when the catheter is removed, thereby preventing blood from flowing out.
  • the valve body that needs to be opened and closed flexibly with insertion and removal of a catheter or the like is composed of an elastic material that is flexible and has an appropriate strength, and the elastic material has low toxicity to the living body. Silicone rubber is widely adopted.
  • ⁇ Medical devices such as those described above require sterilization that kills or removes microorganisms present on or inside the device prior to use.
  • the sterilization method include radiation sterilization such as ⁇ -ray sterilization and electron beam sterilization, ethylene oxide gas sterilization, and high-pressure steam sterilization (autoclave sterilization). Of these, radiation sterilization is preferred because the treatment time is short, continuous treatment is possible, and post-treatment is unnecessary.
  • an object of the present invention is to provide means for suppressing the curing of silicone rubber.
  • the present inventors have conducted intensive research to solve the above problems. In the process, it was found that the curing of the silicone rubber can be effectively suppressed by adding an antioxidant, and the present invention has been completed.
  • the silicone rubber composition of the present invention is characterized in that an antioxidant is dispersed in at least a part of the silicone rubber.
  • the present invention also provides a silicone rubber composition
  • a silicone rubber composition comprising a step of mixing a silicone rubber precursor and an antioxidant and curing the resulting mixture; or a step of infiltrating the silicone rubber into a liquid antioxidant.
  • a method for manufacturing a product is provided.
  • the present invention also includes a step of incorporating the silicone rubber composition obtained by the above production method into a medical device, a step of sealing and packaging the obtained medical device, and a step of irradiating the sealed medical device with radiation.
  • a method for manufacturing a medical device is provided.
  • the silicone rubber composition of this embodiment is characterized in that an antioxidant is dispersed in at least a part of the silicone rubber.
  • the present inventors have obtained a remarkable curing inhibiting effect by adding an antioxidant to the silicone rubber, and the physical properties of the addition by addition of the antioxidant.
  • the inventors found that the change was small and completed the present invention based on the findings.
  • the antioxidant is considered to suppress the curing of the silicone rubber by functioning as a radical scavenger in the silicone rubber.
  • silicone rubber is not particularly limited as long as it is a polysiloxane having a crosslinked structure and rubber-like properties.
  • silicone rubber is produced by crosslinking polysiloxane, which is a silicone rubber precursor.
  • the silicone rubber according to this embodiment is preferably one obtained by crosslinking a silicone rubber precursor containing an alkenyl group-containing polyorganosiloxane (A) and an organohydrogenpolysiloxane (B).
  • the alkenyl group-containing polyorganosiloxane (A) is also referred to as “polysiloxane (A)”
  • the organohydrogenpolysiloxane (B) is also referred to as “polysiloxane (B)”.
  • the alkenyl group-containing polyorganosiloxane (A) means a polysiloxane having an alkenyl group bonded to a silicon atom.
  • the alkenyl group content is not particularly limited, but is preferably 0.005 mol% or more, more preferably 0.001 to 1 mol%, relative to 1 mol of the polysiloxane (A) molecule. .
  • alkenyl group examples include a vinyl group, an allyl group, a propenyl group, a methallyl group, a butenyl group, and a hexenyl group. Of these, a vinyl group is preferable.
  • the polysiloxane (A) may have a substituent (organo group), for example, a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms, a substituted or unsubstituted group. And an alkoxy group having 1 to 8 carbon atoms, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, and the like.
  • a substituent organo group
  • an alkoxy group having 1 to 8 carbon atoms, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, and the like for example, a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms, a substituted or unsubstituted group.
  • an alkoxy group having 1 to 8 carbon atoms, a substituted or unsubstituted aryl group, a substituted or un
  • alkyl group having 1 to 8 carbon atoms include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, and tert-butyl. Group, hexyl group, octyl group and the like. Of these, a methyl group is preferable.
  • alkoxy group having 1 to 8 carbon atoms examples include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, hexyloxy group and An octyloxy group etc. are mentioned.
  • the aryl group examples include a phenyl group and a methylphenyl group.
  • aralkyl group include a benzyl group, a phenethyl group, and a diphenylmethyl group.
  • Examples of the group that can be substituted with the alkenyl group, alkyl group, alkoxy group, aryl group, or aralkyl group include a halogen atom, an acyl group, an alkyl group, a phenyl group, an alkoxyl group, an amino group, an alkylamino group, A carbonyl group, a cyano group, etc. are mentioned.
  • the polysiloxane (A) may be linear, branched, or cyclic. Moreover, these may be used individually by 1 type and may be used in combination of 2 or more type.
  • the above-mentioned organohydrogenpolysiloxane (B) is a polysiloxane having at least two hydrogen atoms bonded to silicon atoms.
  • the two hydrogen atoms are added to the double bond of the alkenyl group of the polyorganosiloxane (A) to form a crosslinked structure.
  • the polysiloxane (B) may have a substituent (organo group) in addition to a hydrogen atom, and examples of the substituent include the same as those exemplified for the polysiloxane (A).
  • the polysiloxane (B) may be linear, branched, or cyclic. Moreover, these may be used individually by 1 type and may be used in combination of 2 or more type.
  • the ratio of the polysiloxane (A) and the polysiloxane (B) used in the production of the silicone rubber is not particularly limited, but the polysiloxane (B) with respect to 1 mol of alkenyl groups contained in the polysiloxane (A). It is preferable that the hydrogen atoms bonded to the silicon atoms contained in (1) be in a proportion of 0.5 to 3.0 mol.
  • the silicone rubber of this embodiment may further include a catalyst for crosslinking polysiloxane that is a silicone rubber precursor.
  • the catalyst is not particularly limited, but is preferably a platinum-based catalyst. Specifically, platinum black, silica-supported platinum, carbon-supported platinum, chloroplatinic acid, chloroplatinic alcohol solution, platinum / olefin complex, platinum / Alkenylsiloxane complex, platinum / ⁇ -diketone complex, platinum / phosphine complex and the like.
  • the catalyst can be added so as to be about 0.1 to 500 ppm (in terms of Pt) with respect to the total amount of the silicone rubber precursor.
  • an inorganic filler in addition to the above components, can be blended in the silicone rubber for adjusting the hardness, improving heat resistance, and increasing the weight.
  • inorganic fillers generally used for silicone rubber, and examples thereof include fumed silica, precipitated silica, fine powdered silica treated with these, and powders of diatomaceous earth, quartz, clay and the like.
  • the antioxidant has a function of suppressing a crosslinking reaction as a radical scavenger in the silicone rubber composition of the present embodiment.
  • the antioxidant used in this embodiment is not particularly limited, but an antioxidant that can be used as a food additive is preferably used. Specifically, tert-butylhydroxyanisole (hereinafter simply referred to as “BHA”) is used. Vitamin E or a derivative thereof, or a salt thereof (hereinafter also simply referred to as “vitamin E etc.”).
  • tert-butylhydroxyanisole means 2-tert-butyl-4-hydroxyanisole (2BHA) and 3-tert-butyl-, each having 4-hydroxyanisole substituted with one tert-butyl group.
  • 1-substituted product such as 4-hydroxyanisole (3BHA); 2,6-di-tert-butyl-4-hydroxyanisole (2,6-DBHA) in which 2-tert-butyl group is substituted on 4-hydroxyanisole and It is a concept including all disubstituted products such as 3,5-di-tert-butyl-4-hydroxyanisole (3,5-DBHA).
  • Any of these tert-butylhydroxyanisole (s) can be used in the silicone rubber composition of the present embodiment.
  • 3-tert-butyl-4-hydroxyanisole which exhibits a high curing inhibitory effect, is used. It is preferable to use it.
  • vitamin E examples include ⁇ -tocopherol, ⁇ -tocopherol, ⁇ -tocopherol, ⁇ -tocopherol, ⁇ -tocopherol, ⁇ -tocotrienol, ⁇ -tocotrienol, ⁇ -tocotrienol, and ⁇ -tocotrienol. These may be either optically active or racemic. In addition to these tocopherols or tocotrienols, these analogs (such as chroman ring-containing compounds) having an antioxidant effect (antioxidant effect) can also be used as vitamin E in this embodiment.
  • vitamin E derivative examples include acetate ester, nicotinate ester, linoleate ester, and succinate ester of the above vitamin E.
  • the salt of vitamin E or a derivative thereof is not particularly limited as long as it is a physiologically acceptable salt.
  • alkali metal salts such as sodium and potassium, alkaline earth metal salts such as calcium and magnesium, triethanol Organic amine salts such as amine and triethylamine, ammonium salts, and basic amino acid salts such as arginine and lysine are preferably used.
  • these vitamin E etc. may be used individually by 1 type, and may be used in combination of 2 or more type.
  • ⁇ -tocopherol or ⁇ -tocopherol acetate is preferably used, and ⁇ -tocopherol is more preferable from the viewpoint of the antioxidant effect.
  • the content of the antioxidant contained in the silicone rubber composition of the present embodiment is not particularly limited as long as it does not significantly reduce the performance of the silicone rubber composition.
  • the lower limit of the content is preferably 0.1% by mass or more, more preferably 0.125% by mass or more, and further preferably 0% with respect to the total mass of the silicone rubber. .5% by mass or more.
  • the upper limit of the content is preferably 10.0% by mass or less, more preferably 5.0% by mass or less, based on the total mass of the silicone rubber. It is.
  • the silicone rubber of this embodiment is obtained by dispersing the antioxidant in at least a part of the silicone rubber.
  • the form of dispersion is not particularly limited, and the antioxidant may be localized in a part of the silicone rubber (for example, localized on the surface portion of the silicone rubber) or distributed almost uniformly throughout the silicone rubber. May be.
  • the silicone rubber composition is dispersed in a substantially uniform manner (more preferably uniformly) throughout the silicone rubber.
  • the silicone rubber composition of the present embodiment may further contain polydimethylsiloxane (PDMS) (silicone oil) in addition to the antioxidant. That is, the silicone rubber composition according to a preferred embodiment of the present invention is obtained by further dispersing polydimethylsiloxane in at least a part of the silicone rubber.
  • PDMS polydimethylsiloxane
  • the antioxidant is vitamin E or a derivative thereof or a salt thereof
  • PDMS is further dispersed in at least a part of the silicone rubber.
  • PDMS has a function of more effectively suppressing the curing of the silicone rubber and adjusting the viscosity of the silicone rubber.
  • PDMS differs from the above silicone rubber in that it has an uncrosslinked linear structure and dissolves in an organic solvent such as toluene.
  • the expression of the effect of inhibiting curing by PDMS is considered to be due to the following mechanism.
  • PDMS When PDMS is irradiated with radiation, radicals are generated by cleavage of the siloxane bond of PDMS, extraction of methyl groups, extraction of hydrogen atoms on methyl groups, and the like, as with silicone rubber. Then, when the generated radicals are bonded to each other, intramolecular crosslinking or intermolecular crosslinking occurs.
  • the silicone rubber composition contains PDMS, the PDMS competitively inhibits the generation of radicals and the crosslinking reaction in the silicone rubber, so that the curing of the silicone rubber is suppressed.
  • PDMS originally does not have a crosslinked structure like silicone rubber, even if radical generation or crosslinking reaction occurs in PDMS, the hardness of the silicone rubber composition is not so affected.
  • the viscosity (25 ° C.) of PDMS is preferably 10-12500 mm 2 / s, and more preferably 20-1000.
  • the viscosity is a value measured by a method according to ASTM D2515.
  • the PDMS content in the silicone rubber composition of the present embodiment can be appropriately adjusted depending on the hardness of the silicone rubber used.
  • the lower limit of the content is preferably 1.0% by mass or more, more preferably 5.0% by mass or more, based on the total mass of the silicone rubber.
  • the upper limit of the content is preferably 30.0% by mass or less, more preferably 25.0% by mass or less, based on the total mass of the silicone rubber. It is.
  • the silicone rubber composition of the present embodiment may contain various additives in addition to silicone rubber, antioxidant, and PDMS, if necessary, within a range that does not significantly impair the effects of the present invention.
  • additives include cross-linking agents, fillers, ultraviolet absorbers, plasticizers, colorants, antistatic agents, heat stabilizers, antioxidants, light stabilizers, flame retardants, lubricants, antioxidants, and anti-aging agents. Agents, reaction aids, reaction inhibitors, resins and the like.
  • the silicone rubber composition of the present embodiment has been described.
  • the above-described antioxidant is dispersed in another rubber material that is easily cured by radiation sterilization, the curing of the other rubber material is suppressed.
  • other rubber materials include natural rubber, fluorine rubber, butadiene rubber, butyl rubber, ethylene / propylene rubber, and acrylic rubber.
  • the silicone rubber composition of the present embodiment comprises (I) mixing a silicone rubber precursor and an antioxidant and curing the resulting mixture; or (II) infiltrating the silicone rubber into a liquid antioxidant. Can be manufactured.
  • a predetermined amount of a silicone rubber precursor before crosslinking, an antioxidant (for example, BHA or vitamin E), and an additive to be added as necessary is weighed and mixed.
  • an antioxidant for example, BHA or vitamin E
  • an additive to be added as necessary is weighed and mixed.
  • Mix using a machine etc. so that each component is uniformly dispersed.
  • the mixer for example, a mixing roll, a pressure kneader, a roller mill, a Banbury mixer, a two-roll, a three-roll, a homogenizer, a ball mill, a bead mill, and the like are used.
  • the temperature at the time of mixing is not particularly limited, but it is preferably 0-100 ° C. when BHA is used as an antioxidant, and 0-50 ° C. when vitamin E or the like is used as an antioxidant.
  • the crosslinked silicone rubber is infiltrated with a liquid antioxidant (eg, BHA or vitamin E) to introduce the antioxidant into the silicone rubber.
  • a liquid antioxidant eg, BHA or vitamin E
  • the “liquid antioxidant” means an antioxidant that is melted at a temperature equal to or higher than the melting point.
  • An example of a liquid antioxidant is ⁇ -tocopherol, which is a type of vitamin E. Since ⁇ -tocopherol has a melting point of 2.5 to 3.5 ° C. and a boiling point of 200 to 220 ° C., it is a liquid at ordinary temperature.
  • the silicone rubber used in this method it is preferable to use a silicone rubber obtained by mixing a silicone rubber precursor with a necessary additive in advance, and molding and curing.
  • the present method is more advantageous than the method (I) in that the conventional silicone rubber member having the desired shape and physical properties can be used as it is and the antioxidant can be introduced. Then, the silicone rubber is infiltrated into a liquid antioxidant. During the infiltration, it is preferable that the entire silicone rubber is in contact with the antioxidant.
  • the temperature and time of infiltration cannot be generally determined because it is adjusted depending on the size and shape of the silicone rubber. However, when BHA is used as an antioxidant, the temperature is from 1 to 500 ° C. above the melting point of BHA. By carrying out the time, BHA can be effectively introduced into the silicone rubber.
  • vitamin E or the like when used as an antioxidant, vitamin E or the like can be effectively introduced into the silicone rubber by generally performing the treatment at a temperature of 0 to 150 ° C. for 1 to 500 hours.
  • the introduction of the antioxidant is promoted by increasing the temperature of infiltration.
  • the infiltration may be performed in the air (in the presence of oxygen), but may be performed in an inert gas atmosphere such as nitrogen to prevent the antioxidant from being oxidized if necessary.
  • the PDMS addition method when the silicone rubber composition contains PDMS, but (i) a method in which PDMS is added to a silicone rubber precursor and mixed, or (ii) silicone rubber is infiltrated into PDMS. It is preferable that it is the method of making it. More specifically, (i) when adopting a method in which PDMS is added to and mixed with a silicone rubber precursor, in the method (I) above, an antioxidant (for example, BHA or vitamin E) is added to the silicone rubber precursor. PDMS is added to and mixed with the silicone rubber precursor before or after mixing, or simultaneously with mixing of the antioxidant; in the method (II), PDMS is added to the silicone rubber precursor before molding and mixed.
  • an antioxidant for example, BHA or vitamin E
  • an antioxidant for example, BHA or vitamin E.
  • an antioxidant for example, BHA or vitamin E.
  • an antioxidant is mixed with the silicone rubber precursor, and after molding and curing, PDMS is infiltrated;
  • II In the method of (2), PDMS is infiltrated with PDMS before or after infiltration with the antioxidant or simultaneously with infiltration with the antioxidant.
  • the silicone rubber composition can be suitably used as an elastic material for a medical device to be sterilized by radiation because it is less cured by irradiation. Therefore, a medical device containing the silicone rubber composition is also included in the technical scope of the present invention.
  • Examples of medical devices include, but are not limited to, for example, catheters; tubes; introducers used to introduce long members such as catheters and guide wires into living bodies; artificial hearts, blood circuits, artificial dialysis, etc.
  • a body fluid circuit ; an infusion circuit for continuously injecting a drug solution into a living body for a certain period of time; a needle puncture needle to be stabbed with an injection needle; a drug solution bottle cap;
  • silicone rubber compositions are used as, for example, catheter balloons; introducer hemostasis valves; body fluid circuits and infusion circuit packing elastic materials; infusion circuit check valves; O-rings and connectors for various devices. used.
  • a medical instrument having a valve body (hemostatic valve) using the silicone rubber composition has little change in hardness before and after electron beam irradiation, the performance as a valve body is maintained even when electron beam sterilization is performed.
  • the slit is usually stuck by electron beam irradiation, and the piercing resistance of the dilator inserted into the valve body and the insertion resistance of the catheter are increased.
  • the silicone rubber composition of the present embodiment as described above when used, the sticking of the slit is suppressed, and the resistance of a medical instrument such as a dilator or a catheter can be maintained at the same level as when ethylene oxide gas sterilization is performed. Furthermore, since flexibility can be maintained even when electron beam sterilization is performed, leakage of liquid in the valve body can be suppressed to the same extent as when ethylene oxide gas sterilization is performed.
  • the said medical device is manufactured using the method similar to the past except incorporating the silicone rubber composition of this invention in a medical device main body.
  • a method for manufacturing a medical device which further includes a step of sterilizing the medical device by irradiating with radiation.
  • the hermetically packaged medical device is irradiated with radiation.
  • the dose of radiation to be irradiated varies depending on the target product and is not particularly limited, but is 5 to 100 kGy, preferably 10 kGy to 60 kGy.
  • the type of radiation to be irradiated can be electron beam, ⁇ -ray, or X-ray.
  • an electron beam by an electron accelerator and ⁇ rays from cobalt-60 are preferable, and an electron beam is more preferable.
  • the electron accelerator is preferably a medium energy to high energy electron accelerator having an acceleration voltage of 1 MeV or higher in order to enable irradiation to the inside of a medical device having a relatively thick portion.
  • the irradiation atmosphere of ionizing radiation is not particularly limited, but may be performed under an inert atmosphere or air except for air. Further, ionizing radiation may be applied after the medical device is sealed with the packaging material. In this case, the packaging material may be filled with air or an inert gas, or may be in a vacuum state. Although the temperature at the time of irradiation may be any, it is typically performed at room temperature (25 ° C.).
  • Example 1 50 parts by mass of each of agent A and agent B of millable silicone rubber (hardness A35) (MED manufactured by Nusil Technology Co., Ltd.) was previously kneaded and softened at room temperature (25 ° C .; hereinafter the same). 50 parts by mass of agent A: 1.0 part by mass of 3-tert-butyl-4-hydroxyanisole (hereinafter also referred to as “3BHA”) (manufactured by Wako Pure Chemical Industries, Ltd.) (total amount of silicone rubber (agents A and B) 1.0 mass%) was added to the total mass) and mixed at 65 ° C. Then, after cooling to room temperature once, 50 mass parts of B agent was added and mixed further.
  • 3BHA 3-tert-butyl-4-hydroxyanisole
  • the obtained mixture was formed into a sheet having a thickness of 2 mm and cured by heat treatment at 116 ° C. for 10 minutes to prepare a silicone rubber composition.
  • Example 2 A silicone rubber composition was prepared in the same manner as in Example 1 except that the amount of 3BHA added was 2.0 parts by mass (2.0% by mass with respect to the total mass of the silicone rubber).
  • Example 3 A silicone rubber composition was prepared in the same manner as in Example 1 except that the amount of 3BHA added was 3.0 parts by mass (3.0% by mass with respect to the total mass of the silicone rubber).
  • Example 4 A silicone rubber composition was prepared in the same manner as in Example 1 except that the amount of 3BHA added was 4.0 parts by mass (4.0% by mass with respect to the total mass of the silicone rubber).
  • silicone rubber was prepared in the same manner as in Example 1 without adding 3BHA.
  • the obtained silicone rubber piece was put into a glass container, 3BHA was added in an amount sufficient to cover the rubber piece, and the glass container was covered. This was left still in an oven at 65 ° C. for 9 days, and rubber pieces were infiltrated into 3BHA. Thereafter, the rubber piece was taken out and 3BHA on the surface was wiped off to obtain a silicone rubber composition.
  • Example 6 50 parts by mass of agent A and agent B of millable type silicone rubber (hardness A50) (MED manufactured by Nusir Technology) were kneaded at room temperature in advance to be soft. 50 parts by mass of agent A, 0.5 parts by mass of 3BHA (manufactured by Wako Pure Chemical Industries, Ltd.) (0.5% by mass relative to the total mass of silicone rubber (total mass of agent A and agent B)) and polydimethylsiloxane ( 20.0 parts by mass (360 Medical Fluid 100 cSt) (20.0% by mass with respect to the total mass of silicone rubber (total mass of Agent A and Agent B)) manufactured by Dow Corning was added and mixed at 65 ° C. Then, after cooling to room temperature once, 50 mass parts of B agent was added and mixed further.
  • hardness A50 MED manufactured by Nusir Technology
  • the obtained mixture was formed into a sheet having a thickness of 2 mm and cured by heat treatment at 116 ° C. for 10 minutes to prepare a silicone rubber composition.
  • Example 7 A silicone rubber composition was prepared in the same manner as in Example 6 except that the amount of 3BHA added was 1.0 part by mass (1.0% by mass relative to the total mass of the silicone rubber).
  • Example 8 A silicone rubber composition was prepared in the same manner as in Example 6 except that the amount of 3BHA added was 2.0 parts by mass (2.0% by mass with respect to the total mass of the silicone rubber).
  • Example 9 A silicone rubber composition was prepared in the same manner as in Example 6 except that the amount of 3BHA added was 3.0 parts by mass (3.0% by mass with respect to the total mass of the silicone rubber).
  • Example 10 A silicone rubber composition was prepared in the same manner as in Example 6 except that the amount of 3BHA added was 4.0 parts by mass (4.0% by mass relative to the total mass of the silicone rubber).
  • the silicone rubber compositions of Examples 1 to 4 obtained by mixing silicone rubber and 3BHA, and the silicone rubber composition of Example 5 obtained by infiltrating silicone rubber into 3BHA Compared to Comparative Example 1 in which 3BHA was not added, curing by electron beam irradiation was suppressed.
  • the results of Examples 1 to 4 indicate that the effect of suppressing the curing increases as the amount of 3BHA added increases.
  • the change in hardness only by adding 3BHA the change in the hardness of the silicone rubber (catalog value) and the hardness of the silicone rubber composition before the electron beam irradiation) was small.
  • the silicone rubber compositions of Examples 6 to 10 to which polydimethylsiloxane was added in addition to 3BHA were more effectively suppressed by electron beam irradiation than Examples 1 to 5.
  • agent A 1.0 part by mass of ⁇ -tocopherol (manufactured by Wako Pure Chemical Industries, Ltd.) (1.0% by mass relative to the total mass of silicone rubber (total mass of agent A and agent B)) 20.0 parts by mass of dimethylsiloxane (360 Medical Fluid 100cSt, manufactured by Dow Corning) (20.0% by mass with respect to the total mass of silicone rubber (total mass of Agent A and Agent B)) and mixed at room temperature did. Thereafter, 50 parts by mass of B agent was added thereto and further mixed.
  • ⁇ -tocopherol manufactured by Wako Pure Chemical Industries, Ltd.
  • dimethylsiloxane 360 Medical Fluid 100cSt, manufactured by Dow Corning
  • the obtained mixture was formed into a sheet having a thickness of 2 mm and cured by heat treatment at 116 ° C. for 10 minutes to prepare a silicone rubber composition.
  • Example 12 A silicone rubber composition was prepared in the same manner as in Example 11 except that the amount of ⁇ -tocopherol added was 2.0 parts by mass (2.0% by mass relative to the total mass of the silicone rubber).
  • Example 13 A silicone rubber composition was prepared in the same manner as in Example 11 except that the amount of ⁇ -tocopherol added was 3.0 parts by mass (3.0% by mass relative to the total mass of the silicone rubber).
  • Example 14 A silicone rubber composition was prepared in the same manner as in Example 11, except that the amount of ⁇ -tocopherol added was 4.0 parts by mass (4.0% by mass relative to the total mass of the silicone rubber).
  • Example 2 A silicone rubber composition was prepared in the same manner as in Example 11 except that ⁇ -tocopherol was not added (that is, only PDMS was added).
  • the obtained mixture was formed into a sheet having a thickness of 2 mm and cured by heat treatment at 116 ° C. for 10 minutes to prepare a silicone rubber composition.
  • silicone rubber compositions of Examples 11 to 14 in which ⁇ -tocopherol and PDMS were added to the silicone rubber were more easily pulled by electron beam irradiation than Comparative Examples 2 to 4 in which ⁇ -tocopherol or PDMS was not added. It was also shown that the change in elastic modulus was small.
  • Example 15 50 parts by mass of agent A and agent B of millable type silicone rubber (hardness A50) (MED manufactured by Nusir Technology) were kneaded at room temperature in advance to be soft. 50 parts by mass of agent A: 1.0 part by mass of 3BHA (manufactured by Wako Pure Chemical Industries, Ltd.) (1.0% by mass relative to the total mass of silicone rubber (total mass of agent A and agent B)) and polydimethylsiloxane ( 20.0 parts by mass (360 Medical Fluid 100 cSt) (20.0% by mass with respect to the total mass of silicone rubber (total mass of Agent A and Agent B)) manufactured by Dow Corning was added and mixed at 65 ° C. Then, after cooling to room temperature once, 50 mass parts of B agent was added and mixed further.
  • 3BHA manufactured by Wako Pure Chemical Industries, Ltd.
  • polydimethylsiloxane 20.0 parts by mass (360 Medical Fluid 100 cSt) (20.0% by mass with respect to the total mass of silicone rubber (
  • the obtained mixture was formed into a sheet having a thickness of 1.3 mm and cured by heat treatment at 116 ° C. for 10 minutes to prepare a silicone rubber composition. Thereafter, the composition was cut into a circular shape having a diameter of 8.0 mm, and a slit having a length of 4.5 mm and a depth of 0.88 mm was formed so as to pass through the center of the circular sheet. On the other hand, a slit is also formed on the lower surface side in the same length and depth as the upper surface side slit and in a cross shape (the lower surface side slit is perpendicular to the upper surface side slit). Then, a medical valve body was produced.
  • This valve body was incorporated into a sheath of an introducer (manufactured by Terumo Corporation) to obtain a medical instrument (introducer sheath).
  • the introducer sheath was irradiated with an electron beam of 40 kGy at room temperature using a 10 MeV electron accelerator to obtain a sterilized medical instrument (introducer sheath).
  • Example 16 A silicone rubber composition was prepared in the same manner as in Example 15 except that the amount of 3BHA added was 2.0 parts by mass (2.0% by mass with respect to the total mass of the silicone rubber).
  • Example 17 A silicone rubber composition was prepared in the same manner as in Example 15 except that the amount of 3BHA added was 3.0 parts by mass (3.0% by mass with respect to the total mass of the silicone rubber).
  • Example 18 A silicone rubber composition was prepared in the same manner as in Example 15 except that the amount of 3BHA added was 4.0 parts by mass (4.0% by mass with respect to the total mass of the silicone rubber).
  • Example 3 the valve body using the silicone rubber composition of Examples 15 to 18 obtained by mixing 3BHA and PDMS in silicone rubber was compared with Comparative Example 5 in which 3BHA and PDMS were not added. It was shown that the increase in hardness was small and the curing by electron beam irradiation was suppressed. In addition, the results of Examples 15 to 18 indicate that the effect of suppressing the curing increases as the amount of 3BHA added increases.
  • Example 17 in which the hardness did not change before and after the electron beam irradiation was equal to or higher than that of the EOG sterilized product in the piercing resistance of the dilator.
  • Examples 15 and 18 were equivalent to or better than EOG sterilized products in the leak test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

【課題】シリコーンゴムの硬化を抑制する手段を提供する。 【解決手段】本発明のシリコーンゴム組成物は、酸化防止剤が分散されてなる。また、本発明は、シリコーンゴム前駆体と、酸化防止剤とを混合し、得られた混合物を硬化する工程;またはシリコーンゴムを、液体状の酸化防止剤に浸潤させる工程を含む、シリコーンゴム組成物の製造方法を提供する。さらに、本発明は、上記製造方法で得られたシリコーンゴム組成物を医療器具に組み込む工程と、得られた医療器具を密封包装する工程と、密封包装された医療器具に放射線を照射する工程を含む、医療器具の製造方法を提供する。

Description

シリコーンゴム組成物
 本発明はシリコーンゴム組成物に関する。より詳しくは、放射線滅菌が行われる医療器具に好適に使用されうるシリコーンゴム組成物に関する。
 シリコーンゴムは、医療器具において、弾性材料や繊維材料として広く用いられている。
 例えば、特許文献1には、カテーテルやガイドワイヤなどの医療用長尺部材を生体内へ導入するときに使用される医療用管体導入具(イントロデューサ)が開示されている。当該イントロデューサは、筒状をなす本体と、本体の一端に設けられたキャップと、本体の筒内の通路上に位置し、本体とキャップとによって挟持される状態で固定された弁体とを有する。
 弁体は、その中心部にスリットを有し、当該スリットは、カテーテルなどが本体に挿入されたときは開いた状態、抜去されたときは閉じた状態となり、血液の流出を防止する。このように、カテーテルなどの挿入・抜去に伴って柔軟に開閉する必要がある弁体は、しなやかで適度な強度を有する弾性材料から構成され、弾性材料としては生体への毒性が低いなどの理由からシリコーンゴムが広く採用されている。
特公平2-949号公報
 上述のような医療器具は、使用前に、器具の表面または内部に存在する微生物を殺滅または除去する滅菌処理を必要とする。滅菌方法としては、例えば、γ線滅菌や電子線滅菌などの放射線滅菌、エチレンオキシドガス滅菌、および高圧蒸気滅菌(オートクレーブ滅菌)などが挙げられる。このうち、処理時間が短く、連続的な処理が可能で、後処理も不要なことから、放射線滅菌が好適である。
 しかしながら、シリコーンゴムを含む医療器具を放射線滅菌すると、シリコーンゴムが放射線照射により硬化してしまい、所望の弾性が損なわれてしまうという問題を有していた。
 そこで本発明は、シリコーンゴムの硬化を抑制する手段を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を行った。その過程で、酸化防止剤を添加することによって、シリコーンゴムの硬化を効果的に抑制できることを見出し、本発明を完成させた。
 すなわち、本発明のシリコーンゴム組成物は、シリコーンゴムの少なくとも一部に、酸化防止剤が分散されてなる点に特徴を有する。
 また、本発明は、シリコーンゴム前駆体と、酸化防止剤とを混合し、得られた混合物を硬化する工程;またはシリコーンゴムを、液体状の酸化防止剤に浸潤させる工程を含む、シリコーンゴム組成物の製造方法を提供する。
 また、本発明は、上記製造方法で得られたシリコーンゴム組成物を医療器具に組み込む工程と、得られた医療器具を密封包装する工程と、密封包装された医療器具に放射線を照射する工程を含む、医療器具の製造方法を提供する。
 本発明によれば、シリコーンゴムの硬化を抑制することが可能となる。
 以下、本発明の好ましい形態を説明する。
 <シリコーンゴム組成物>
 本形態のシリコーンゴム組成物は、シリコーンゴムの少なくとも一部に、酸化防止剤が分散されてなる点に特徴を有する。
 従来のシリコーンゴムは、γ線や電子線などの放射線の照射により硬化が起こり、弾性(しなやかさ)が失われてしまうという問題点を有していた。これは、以下のようなメカニズムによるものと考えられる。シリコーンゴムに放射線が照射されると、シリコーンゴム中において、シロキサン結合の開裂、ケイ素原子に結合した置換基の引き抜き、ケイ素原子に結合した置換基上の水素原子の引き抜きなどによりラジカルが発生する。そして、生じたラジカル同士が結合することにより、分子内架橋または分子間架橋が起こり、分子の運動が制限され、シリコーンゴムが硬化してしまう。
 本発明者らは、このようなシリコーンゴムの硬化を抑制するための手段を探索した結果、酸化防止剤をシリコーンゴムに添加することにより、著しい硬化抑制効果が得られ、また、添加による物性の変化も小さいことを見出し、当該知見に基づいて本発明を完成させた。酸化防止剤はシリコーンゴム中でラジカル捕捉剤として機能することによって、シリコーンゴムの硬化を抑制するものと考えられる。
 以下、本形態のシリコーンゴム組成物の各構成要素について説明する。
 [シリコーンゴム]
 本形態に係るシリコーンゴムは、架橋構造を有し、ゴム状性質を有するポリシロキサンであれば特に制限はない。通常、シリコーンゴムは、シリコーンゴム前駆体であるポリシロキサンを架橋することによって製造される。
 本形態に係るシリコーンゴムとしては、アルケニル基含有ポリオルガノシロキサン(A)と、オルガノハイドロジェンポリシロキサン(B)とを含むシリコーンゴム前駆体を架橋してなるものであることが好ましい。なお、以下において、アルケニル基含有ポリオルガノシロキサン(A)を「ポリシロキサン(A)」と、オルガノハイドロジェンポリシロキサン(B)を「ポリシロキサン(B)」とも称する。
 上記アルケニル基含有ポリオルガノシロキサン(A)とは、ケイ素原子に結合したアルケニル基を有するポリシロキサンを意味する。アルケニル基の含有量は、特に制限はないが、ポリシロキサン(A)分子1モルに対して、0.005モル%以上であることが好ましく、0.001~1モル%であることがより好ましい。
 アルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、メタアリル基、ブテニル基、およびヘキセニル基などが挙げられる。このうちビニル基であることが好ましい。
 上記ポリシロキサン(A)は、アルケニル基以外にも、置換基(オルガノ基)を有していてもよく、例えば、置換もしくは非置換の炭素原子数1~8個のアルキル基、置換もしくは非置換の炭素原子数1~8個のアルコキシ基、置換もしくは非置換のアリール基、置換もしくは非置換のアラルキル基等が挙げられる。
 炭素原子数1~8個のアルキル基としては、例えば、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ヘキシル基およびオクチル基などが挙げられる。このうち、メチル基であることが好ましい。
 炭素原子数1~8個のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ヘキシルオキシ基およびオクチルオキシ基などが挙げられる。アリール基としては、フェニル基、およびメチルフェニル基などが挙げられる。アラルキル基としては、ベンジル基、フェネチル基、ジフェニルメチル基などが挙げられる。
 また、上記アルケニル基、アルキル基、アルコキシ基、アリール基、またはアラルキル基に置換されうる基としては、例えば、ハロゲン原子、アシル基、アルキル基、フェニル基、アルコキシル基、アミノ基、アルキルアミノ基、カルボニル基、およびシアノ基などが挙げられる。
 なお、ポリシロキサン(A)は、直鎖状、分岐鎖状、または環状のいずれであっても構わない。また、これらは1種のみを単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 上記オルガノハイドロジェンポリシロキサン(B)は、ケイ素原子に結合する水素原子を少なくとも2個有するポリシロキサンである。該水素2個は、ポリオルガノシロキサン(A)のアルケニル基の二重結合に付加し、架橋構造を形成する。
 また、ポリシロキサン(B)は、水素原子以外に置換基(オルガノ基)を有していてもよく、置換基としては、上記ポリシロキサン(A)で例示したものと同様のものが挙げられる。なお、ポリシロキサン(B)は、直鎖状、分岐鎖状、または環状のいずれであっても構わない。また、これらは1種のみを単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 シリコーンゴムを製造する際に使用されるポリシロキサン(A)およびポリシロキサン(B)の割合は特に制限はないが、ポリシロキサン(A)に含まれるアルケニル基1モルに対して、ポリシロキサン(B)に含まれるケイ素原子に結合する水素原子が0.5~3.0モルとなるような割合とすることが好ましい。
 なお、本形態のシリコーンゴムは、シリコーンゴム前駆体であるポリシロキサンを架橋するための触媒をさらに含みうる。触媒は、特に制限はないが、白金系触媒であることが好ましく、具体的には、白金黒、シリカ担持白金、炭素担持白金、塩化白金酸、塩化白金酸アルコール溶液、白金/オレフィン錯体、白金/アルケニルシロキサン錯体、白金/β-ジケトン錯体、白金/ホスフィン錯体などが挙げられる。当該触媒は、シリコーンゴム前駆体の総量に対して、約0.1~500ppm(Pt換算)となるように添加されうる。
 さらに、本形態のシリコーンゴムは、上記成分以外に、シリコーンゴムに硬度調節、耐熱性向上、増量剤のために無機質充填材が配合されうる。無機質充填材はシリコーンゴムに一般に使用される種々のものがあり、フュームドシリカ、沈澱シリカ、またはこれらの表面処理された微粉末シリカその他に珪藻土、石英、クレイ等の粉末が例示される。
 [酸化防止剤]
 酸化防止剤は、本形態のシリコーンゴム組成物において、ラジカル捕捉剤として架橋反応を抑制する機能を有する。
 本形態において使用される酸化防止剤は、特に制限はないが、食品添加物として使用されうる酸化防止剤を用いることが好ましく、具体的には、tert-ブチルヒドロキシアニソール(以下、単に「BHA」とも称する)、ビタミンEもしくはその誘導体またはそれらの塩(以下、単に「ビタミンE等」とも称する)などが挙げられる。
 本明細書において、「tert-ブチルヒドロキシアニソール」とは、4-ヒドロキシアニソールにtert-ブチル基が1つ置換した、2-tert-ブチル-4-ヒドロキシアニソール(2BHA)および3-tert-ブチル-4-ヒドロキシアニソール(3BHA)などの1置換体;4-ヒドロキシアニソールにtert-ブチル基が2つ置換した、2,6-ジ-tert-ブチル-4-ヒドロキシアニソール(2,6-DBHA)および3,5-ジ-tert-ブチル-4-ヒドロキシアニソール(3,5-DBHA)などの2置換体を全て含む概念である。本形態のシリコーンゴム組成物では、これらのtert-ブチルヒドロキシアニソール(類)のうちのいずれも使用可能であるが、このうち、高い硬化抑制効果を示す3-tert-ブチル-4-ヒドロキシアニソールを用いることが好ましい。
 上記ビタミンEとしては、例えば、α-トコフェロール、β-トコフェロール、γ-トコフェロール、δ-トコフェロール、α-トコトリエノール、β-トコトリエノール、γ-トコトリエノール、およびδ-トコトリエノールなどが挙げられる。これらは光学活性体またはラセミ体のいずれであってもよい。また、これらのトコフェロールまたはトコトリエノール以外にも、酸化防止効果(抗酸化効果)を有するこれらの類縁体(クロマン環含有化合物など)も本形態におけるビタミンEとして使用可能である。
 上記ビタミンEの誘導体としては、上記ビタミンEの酢酸エステル体、ニコチン酸エステル体、リノール酸エステル体、およびコハク酸エステル体などが挙げられる。
 上記ビタミンEまたはその誘導体の塩としては、生理的に許容される塩であれば特に制限はなく、例えば、ナトリウム、カリウムなどのアルカリ金属塩、カルシウム、マグネシウムなどのアルカリ土類金属塩、トリエタノールアミンやトリエチルアミンなどの有機アミン塩、アンモニウム塩、アルギニンやリジンなどの塩基性アミノ酸塩などが好ましく使用される。なお、これらのビタミンE等は、1種のみを単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 これらのビタミンE等のうち、酸化防止効果の観点から、α-トコフェロール、または酢酸α-トコフェロールを使用することが好ましく、α-トコフェロールを使用することがより好ましい。
 なお、以上の酸化防止剤は、1種のみが単独で使用されてもよいし、2種以上が併用されても構わない。
 本形態のシリコーンゴム組成物に含まれる上記酸化防止剤の含有量は、シリコーンゴム組成物の性能を著しく低減させない範囲であれば特に制限はない。硬化抑制効果の観点からは、含有量の下限は、シリコーンゴムの全質量に対して、好ましくは0.1質量%以上であり、より好ましくは0.125質量%以上であり、さらに好ましくは0.5質量%以上である。また、シリコーンゴム組成物の物性を維持する観点からは、含有量の上限は、シリコーンゴムの全質量に対して、好ましくは10.0質量%以下であり、より好ましくは5.0質量%以下である。
 本形態のシリコーンゴムは、上記シリコーンゴムの少なくとも一部に上記酸化防止剤が分散されてなる。分散の形態は特に制限はなく、シリコーンゴム中の一部に酸化防止剤が局在化(例えばシリコーンゴムの表面部分に局在化)していてもよいし、シリコーンゴム全体に略均一に分散されていてもよい。シリコーンゴム組成物の硬化抑制効果を高めるためには、シリコーンゴム全体に略均一(より好ましくは均一)に分散されている形態であることが好ましい。
 [ポリジメチルシロキサン]
 本形態のシリコーンゴム組成物は、上記酸化防止剤に加えて、さらにポリジメチルシロキサン(PDMS)(シリコーンオイル)を含みうる。すなわち、本発明の好ましい一形態に係るシリコーンゴム組成物は、シリコーンゴムの少なくとも一部に、ポリジメチルシロキサンがさらに分散されてなる。特に、上記酸化防止剤がビタミンEもしくはその誘導体またはそれらの塩である場合、シリコーンゴムの少なくとも一部に、PDMSがさらに分散されてなることが好ましい。PDMSは、シリコーンゴムの硬化をより効果的に抑制するとともに、シリコーンゴムの粘度を調節する機能を有する。なお、PDMSは架橋されていない直鎖構造を有し、トルエン等の有機溶媒に溶解する点で、上記シリコーンゴムとは異なる。
 PDMSによる硬化抑制効果の発現は、以下のようなメカニズムによるものと考えられる。PDMSに放射線が照射されると、シリコーンゴムと同様、PDMSのシロキサン結合の開裂、メチル基の引き抜き、メチル基上の水素原子の引き抜きなどによりラジカルが発生する。そして、生じたラジカル同士が結合することにより分子内架橋または分子間架橋が起こる。シリコーンゴム組成物がPDMSを含む場合、シリコーンゴムにおけるラジカルの発生や架橋反応をPDMSが競争的に阻害するため、シリコーンゴムの硬化が抑制される。また、PDMSは元々シリコーンゴムのような架橋構造を有しないため、PDMSにおいて、ラジカルの発生や架橋反応が起こったとしても、シリコーンゴム組成物の硬度には然程影響を及ぼさない。
 PDMSの粘度(25℃)は、10~12500mm/sであることが好ましく、20~1000であることがより好ましい。このような範囲の粘度を有するPDMSを用いることによって、シリコーンゴムの硬化を効果的に抑制することができる。なお、本明細書において、粘度はASTM D2515に準じた方法により測定される値を採用する。
 本形態のシリコーンゴム組成物におけるPDMSの含有量は、使用するシリコーンゴムの硬度により適宜調整することができる。硬化抑制効果の観点からは、含有量の下限は、シリコーンゴムの全質量に対して、好ましくは1.0質量%以上であり、より好ましくは5.0質量%以上である。また、シリコーンゴム組成物の物性を維持する観点からは、含有量の上限は、シリコーンゴムの全質量に対して、好ましくは30.0質量%以下であり、より好ましくは25.0質量%以下である。
 本形態のシリコーンゴム組成物は、シリコーンゴム、酸化防止剤、PDMSの他に、必要により、本発明の効果を著しく阻害しない範囲において、各種添加物を含有してもよい。
 添加物としては例えば、架橋剤、充填材、紫外線吸収剤、可塑剤、着色剤、帯電防止剤、熱安定化剤、抗酸化剤、光安定剤、難燃剤、滑剤、酸化防止剤、老化防止剤、反応助剤、反応抑制剤、樹脂などが挙げられる。
 以上、本形態のシリコーンゴム組成物について説明したが、これ以外に、放射線滅菌により硬化しやすい他のゴム材料に上述の酸化防止剤を分散させた場合も、当該他のゴム材料の硬化を抑制することが可能である。他のゴム材料としては、例えば、天然ゴム、フッ素ゴム、ブタジエンゴム、ブチルゴム、エチレン・プロピレンゴム、アクリルゴムなどが挙げられる。
 <シリコーンゴム組成物の製造方法>
 本形態のシリコーンゴム組成物は、(I)シリコーンゴム前駆体と、酸化防止剤とを混合し、得られた混合物を硬化する;または(II)シリコーンゴムを、液体状の酸化防止剤に浸潤させることにより製造することができる。
 上記(I)の方法では、まず、架橋前のシリコーンゴム前駆体、酸化防止剤(例えば、BHAまたはビタミンE等)、および必要により添加される添加剤などを所定量ずつはかり取り、これらを混合機などを用いて混合し、各成分が均一に分散されるようにする。混合機としては、例えば、ミキシングロール、加圧式ニーダー、ローラミル、バンバリーミキサ、二本ロール、三本ロール、ホモジナイザー、ボールミルおよびビーズミルなどが使用される。また、混合するときの温度は特に制限はないが、酸化防止剤としてBHAを用いる場合は0~100℃で行うことが好ましく、酸化防止剤としてビタミンE等を用いる場合には、0~50℃で行うことが好ましい。このような温度とすることにより、混合がより容易になる。混合は、空気中(酸素存在下)で行ってもよいが、必要により、酸化防止剤が酸化されてしまうのを防ぐために窒素等の不活性ガス雰囲気下で行ってもよい。そして、得られた混合物は、さらに必要により成形工程、硬化工程を経ることにより、所望の形状および物性(例えば弾性)を有するシリコーンゴム組成物となる。なお、成形工程、硬化工程において使用される装置や条件等は特に制限はなく、公知の知見を適宜採用することができる。本方法は、シリコーンゴム組成物に含まれる酸化防止剤の量を制御しやすいという点において優れている。
 一方、上記(II)の方法では、架橋後のシリコーンゴムを、液体状の酸化防止剤(例えば、BHAまたはビタミンE等)に浸潤させて、シリコーンゴム内部に酸化防止剤を導入する。本明細書において、「液体状の酸化防止剤」とは、融点以上の温度で融解されてなる酸化防止剤であることを意味する。液体状の酸化防止剤の一例として、ビタミンEの一種であるα-トコフェロールが挙げられる。α-トコフェロールは、融点が2.5~3.5℃、沸点が200~220℃であるため、常温では液体である。本方法で使用するシリコーンゴムは、シリコーンゴム前駆体に予め必要な添加剤が混合され、成形され、硬化処理されたシリコーンゴムを用いることが好ましい。言い換えると、本方法は、従来使用されてきた所望の形状および物性を有するシリコーンゴム部材をそのまま使用し、酸化防止剤を導入できるので、その点で(I)の方法よりも有利である。そして、このシリコーンゴムを液体状の酸化防止剤に浸潤させる。この浸潤の際、シリコーンゴムの全体が酸化防止剤に接触しているようにすることが好ましい。また、浸潤の温度および時間は、シリコーンゴムのサイズや形状によって調節されるので一概にはいえないが、酸化防止剤としてBHAを用いる場合、BHAの融点以上~100℃の温度で、1~500時間行うことにより、シリコーンゴム内に効果的にBHAを導入することができる。一方、酸化防止剤としてビタミンE等を用いる場合には、一般的に0~150℃の温度で1~500時間行うことにより、シリコーンゴム内に効果的にビタミンE等を導入することができる。特に、浸潤の温度を高めることによって酸化防止剤の導入が促進される。浸潤は、空気中(酸素存在下)で行ってもよいが、必要により、酸化防止剤が酸化されてしまうのを防ぐために窒素等の不活性ガス雰囲気下で行ってもよい。
 また、シリコーンゴム組成物がPDMSを含む場合のPDMSの添加方法は、特に制限はないが、(i)シリコーンゴム前駆体にPDMSを加えて混合する方法、または(ii)シリコーンゴムをPDMSに浸潤させる方法であることが好ましい。より詳しくは、(i)シリコーンゴム前駆体にPDMSを加えて混合する方法を採用する場合、上記(I)の方法では、シリコーンゴム前駆体に酸化防止剤(例えば、BHAまたはビタミンE)を加えて混合する前もしくは混合後、または酸化防止剤の混合と同時に、PDMSをシリコーンゴム前駆体に加えて混合する;(II)の方法では、成形前のシリコーンゴム前駆体にPDMSを加えて混合し、成形・硬化させた後に酸化防止剤(例えば、BHAまたはビタミンE等)に浸潤させる。また、(ii)シリコーンゴムをPDMSに浸潤させる方法を採用する場合、(I)の方法では、シリコーンゴム前駆体に酸化防止剤を混合し、成形・硬化させた後にPDMSに浸潤させる;(II)の方法では、酸化防止剤に浸潤させる前もしくは浸潤後、または酸化防止剤に浸潤させるのと同時に、PDMSにシリコーンゴムを浸潤させる。
 <医療器具>
 上記シリコーンゴム組成物は、放射線照射による硬化が少ないことから、放射線滅菌処理される医療器具の弾性材料として好適に使用されうる。よって、上記シリコーンゴム組成物を含む医療器具もまた本発明の技術的範囲に含まれる。
 医療器具としては、以下に制限されないが、例えば、カテーテル;チューブ;カテーテルやガイドワイヤなどの長尺部材を生体内へ導入する際に使用されるイントロデューサ;人工心臓、血液回路、人工透析などの体液回路;薬液を生体内へ一定時間持続的に注入するための輸液回路;注射針などが刺される針刺栓;薬液ビンのキャップなどが挙げられる。これらの医療器具において、シリコーンゴム組成物は、例えば、カテーテルのバルーン;イントロデューサの止血弁;体液回路や輸液回路のパッキンの弾性材料;輸液回路の逆止弁;各種器具のOリングやコネクターとして使用される。
 上記シリコーンゴム組成物を用いた弁体(止血弁)を有する医療器具は、電子線照射前後で硬度の変化が少ないので、弁体としての性能が電子線滅菌を行った場合でも維持される。例えば、シリコーンゴム組成物を含むスリットを備えた弁体の場合、通常は電子線照射によってスリットが張り付いて、弁体に挿入するダイレータの刺通抵抗や、カテーテルの挿入抵抗が高くなってしまうが、上述したような本形態のシリコーンゴム組成物を用いた場合、スリットの張り付きが抑制されてダイレータやカテーテルなどの医療器具の抵抗がエチレンオキシドガス滅菌をした場合と同等に維持されうる。さらに、電子線滅菌を行った場合でも柔軟性を維持できるので、弁体における液体の漏出もエチレンオキシドガス滅菌をした場合と同等に抑えることができる。
 なお、上記医療器具は、医療器具本体に本発明のシリコーンゴム組成物を組み込むこと以外は、従来と同様の方法を用いて製造される。
 <滅菌工程>
 本発明によると、さらに、上記医療器具に放射線を照射し滅菌する工程を含む、医療器具の製造方法が提供される。特に好ましい形態としては、上記医療器具を密封包装した後、当該密封包装された医療器具に放射線を照射する。このように密封包装することにより医療器具の滅菌状態を保持することができるため、医療現場で滅菌処理を行うことなく直ちに使用することが可能となる。
 照射される放射線の線量は、対象製品により異なり特に限定されるものではないが、5~100kGy、好ましくは、10kGy~60kGyである。
 照射する放射線の種類は、電子線、γ線、またはX線などを用いることができる。このうち、工業的生産が容易であることから、電子加速器による電子線とコバルト-60からのγ線が好ましく、電子線がより好ましい。電子加速器は、比較的厚い部分を有する医療用具等の内側まで照射を可能とするために、加速電圧1MeV以上の中エネルギーから高エネルギー電子加速器を用いることが好ましい。
 電離放射線の照射雰囲気は、特に限定されないが、空気を除いた不活性雰囲気下や真空下で行ってもよい。また、包材によって医療用具を密封した後に電離放射線を照射してもよく、その場合も包材内は空気や不活性ガスが充填されていてもよいし、真空状態であってもよい。照射時の温度はいずれであってもよいが、典型的には室温(25℃)で行う。
 本発明の作用効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。
 <3-tert-ブチル-4-ヒドロキシアニソールを含むシリコーンゴム組成物の調製>
 [実施例1]
 ミラブル型シリコーンゴム(硬度A35)(ヌシルテクノロジー社製 MED)のA剤およびB剤、各50質量部を予め室温(25℃;以下同様)で練って柔らかくした。A剤50質量部に3-tert-ブチル-4-ヒドロキシアニソール(以下、「3BHA」とも称する)(和光純薬工業社製)1.0質量部(シリコーンゴムの全質量(A剤およびB剤の合計質量)に対して1.0質量%)を添加して65℃で混合した。その後、一旦室温まで冷却した後、これにB剤50質量部を加えてさらに混合した。
 得られた混合物を、厚さが2mmとなるようにシート成形し、116℃で10分間熱処理することによって硬化して、シリコーンゴム組成物を調製した。
 [実施例2]
 3BHAの添加量を2.0質量部(シリコーンゴムの全質量に対して2.0質量%)としたこと以外は、実施例1と同様の方法でシリコーンゴム組成物を調製した。
 [実施例3]
 3BHAの添加量を3.0質量部(シリコーンゴムの全質量に対して3.0質量%)としたこと以外は、実施例1と同様の方法でシリコーンゴム組成物を調製した。
 [実施例4]
 3BHAの添加量を4.0質量部(シリコーンゴムの全質量に対して4.0質量%)としたこと以外は、実施例1と同様の方法でシリコーンゴム組成物を調製した。
 [実施例5]
 まず、3BHAを添加せずに、実施例1と同様の方法でシリコーンゴムを調製した。得られたシリコーンゴム片をガラス容器に入れ、ゴム片が十分に覆われる量の3BHAを加え、ガラス容器に蓋をした。これを65℃のオーブン中で9日間静置し、ゴム片を3BHAに浸潤させた。その後、ゴム片を取り出して表面についた3BHAをふき取り、シリコーンゴム組成物を得た。
 得られたゴム片の質量を浸潤前と比較し、当該シリコーンゴム組成物に含まれる3BHAの含有量を算出したところ、シリコーンゴムの全質量に対して4.0質量%の3BHAが含まれていた。
 [実施例6]
 ミラブル型シリコーンゴム(硬度A50)(ヌシルテクノロジー社製 MED)のA剤およびB剤、各50質量部を予め室温で練って柔らかくした。A剤50質量部に3BHA(和光純薬工業社製)0.5質量部(シリコーンゴムの全質量(A剤およびB剤の合計質量)に対して0.5質量%)およびポリジメチルシロキサン(ダウコーニング社製 360 Medical Fluid 100cSt)20.0質量部(シリコーンゴムの全質量(A剤およびB剤の合計質量)に対して20.0質量%)を添加して65℃で混合した。その後、一旦室温まで冷却した後、これにB剤50質量部を加えてさらに混合した。
 得られた混合物を、厚さが2mmとなるようにシート成形し、116℃で10分間熱処理することによって硬化して、シリコーンゴム組成物を調製した。
 [実施例7]
 3BHAの添加量を1.0質量部(シリコーンゴムの全質量に対して1.0質量%)としたこと以外は、実施例6と同様の方法でシリコーンゴム組成物を調製した。
 [実施例8]
 3BHAの添加量を2.0質量部(シリコーンゴムの全質量に対して2.0質量%)としたこと以外は、実施例6と同様の方法でシリコーンゴム組成物を調製した。
 [実施例9]
 3BHAの添加量を3.0質量部(シリコーンゴムの全質量に対して3.0質量%)としたこと以外は、実施例6と同様の方法でシリコーンゴム組成物を調製した。
 [実施例10]
 3BHAの添加量を4.0質量部(シリコーンゴムの全質量に対して4.0質量%)としたこと以外は、実施例6と同様の方法でシリコーンゴム組成物を調製した。
 [比較例1]
 3BHAを添加しなかったこと以外は、実施例1と同様の方法でシリコーンゴムを調製した。
 <滅菌処理>
 室温にて、10MeV電子加速器により電子線40kGyを照射した。
 <性能評価>
 [硬度]
 実施例1~10および比較例1で得たシリコーンゴム組成物について、上記滅菌処理前および滅菌処理後(電子線照射前および電子線照射後)の硬度をJIS K 6253に準じて測定した。なお、測定にはアスカーゴム硬度計タイプAを用いた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1によると、シリコーンゴムと3BHAとを混合することにより得た実施例1~4のシリコーンゴム組成物、およびシリコーンゴムを3BHAに浸潤することにより得た実施例5のシリコーンゴム組成物は、3BHAを添加しなかった比較例1と比べて、電子線照射による硬化が抑制された。また、実施例1~4の結果より、その硬化抑制効果は3BHAの添加量が多くなるにつれてより大きくなることが示された。なお、3BHAを添加することのみによる硬度の変化(シリコーンゴムの硬度(カタログ値)と、電子線照射前のシリコーンゴム組成物との硬度の変化)は小さかった。さらに、3BHAに加えてポリジメチルシロキサンを添加した実施例6~10のシリコーンゴム組成物は、実施例1~5よりもさらに電子線照射による硬化が効果的に抑制されることが示された。
 <α-トコフェロールを含むシリコーンゴム組成物の調製>
 [実施例11]
 ミラブル型シリコーンゴム(硬度A50)(ダウコーニング社製 SILASTIC)のA剤およびB剤、各50質量部を予め室温(25℃;以下同様)で練って柔らかくした。A剤50質量部にα-トコフェロール(和光純薬工業社製)1.0質量部(シリコーンゴムの全質量(A剤およびB剤の合計質量)に対して1.0質量%)と、ポリジメチルシロキサン(ダウコーニング社製 360 Medical Fluid 100cSt)20.0質量部(シリコーンゴムの全質量(A剤およびB剤の合計質量)に対して20.0質量%)とを添加して室温で混合した。その後、これにB剤50質量部を加えてさらに混合した。
 得られた混合物を、厚さが2mmとなるようにシート成形し、116℃で10分間熱処理することによって硬化して、シリコーンゴム組成物を調製した。
 [実施例12]
 α-トコフェロールの添加量を2.0質量部(シリコーンゴムの全質量に対して2.0質量%)としたこと以外は、実施例11と同様の方法でシリコーンゴム組成物を調製した。
 [実施例13]
 α-トコフェロールの添加量を3.0質量部(シリコーンゴムの全質量に対して3.0質量%)としたこと以外は、実施例11と同様の方法でシリコーンゴム組成物を調製した。
 [実施例14]
 α-トコフェロールの添加量を4.0質量部(シリコーンゴムの全質量に対して4.0質量%)としたこと以外は、実施例11と同様の方法でシリコーンゴム組成物を調製した。
 [比較例2]
 α-トコフェロールを添加しなかったこと以外は、実施例11と同様の方法でシリコーンゴム組成物を調製した(すなわち、PDMSのみを添加した)。
 [比較例3]
 ミラブル型シリコーンゴム(硬度A35)(ダウコーニング社製 SILASTIC)のA剤およびB剤、各50質量部を予め室温(25℃;以下同様)で練って柔らかくした。A剤50質量部にα-トコフェロール(和光純薬工業社製)3.0質量部(シリコーンゴムの全質量(A剤およびB剤の合計質量)に対して3.0質量%)を添加して室温で混合した。その後、これにB剤50質量部を加えてさらに混合した(すなわち、α-トコフェロールのみを添加した)。
 得られた混合物を、厚さが2mmとなるようにシート成形し、116℃で10分間熱処理することによって硬化して、シリコーンゴム組成物を調製した。
 [比較例4]
 α-トコフェロールを添加しなかったこと以外は、比較例3と同様の方法でシリコーンゴムを調製した(すなわち、α-トコフェロールおよびPDMSのいずれも添加しなかった)。
 <滅菌処理>
 室温にて、10MeV電子加速器により電子線40kGyを照射した。
 <性能評価>
 [硬度]
 実施例11~14および比較例4で得たシリコーンゴム組成物について、上記滅菌処理前および滅菌処理後(電子線照射前および電子線照射後)の硬度をJIS K 6253に準じて測定した。なお、測定にはアスカーゴム硬度計タイプAを用いた。結果を表1に示す。
 [引張り弾性率]
 実施例11~14および比較例4で得たシリコーンゴム組成物について、ISO 527-2に示す5B型ダンベル試験片を抜き型により作製した後、オートグラフ(AG-IS、株式会社島津製作所製)を用いて試験速度10mm/minで引張り試験を実施し、引張弾性率を測定した。
Figure JPOXMLDOC01-appb-T000002
 表2によると、シリコーンゴムにα-トコフェロールとPDMSとを添加した実施例11~14のシリコーンゴム組成物は、α-トコフェロールまたはPDMSを添加しなかった比較例11~13と比べて、電子線照射による硬度の上昇が効果的に抑制されることが示された。さらに、実施例11~14の結果より、α-トコフェロールの添加量が多くなるにつれて、硬度の上昇を抑制する効果はより大きくなる傾向があることが示された。なお、α-トコフェロールおよびPDMSを添加することのみによる硬度の変化(シリコーンゴムの硬度(カタログ値)と、電子線照射前のシリコーンゴム組成物との硬度の変化)は小さかった。
 また、シリコーンゴムにα-トコフェロールとPDMSとを添加した実施例11~14のシリコーンゴム組成物は、α-トコフェロールまたはPDMSを添加しなかった比較例2~4と比べて、電子線照射による引張り弾性率の変化も小さいことが示された。
 <シリコーンゴム弁体および医療器具の作製>
 [実施例15]
 ミラブル型シリコーンゴム(硬度A50)(ヌシルテクノロジー社製 MED)のA剤およびB剤、各50質量部を予め室温で練って柔らかくした。A剤50質量部に3BHA(和光純薬工業社製)1.0質量部(シリコーンゴムの全質量(A剤およびB剤の合計質量)に対して1.0質量%)およびポリジメチルシロキサン(ダウコーニング社製 360 Medical Fluid 100cSt)20.0質量部(シリコーンゴムの全質量(A剤およびB剤の合計質量)に対して20.0質量%)を添加して65℃で混合した。その後、一旦室温まで冷却した後、これにB剤50質量部を加えてさらに混合した。
 得られた混合物を、厚さが1.3mmとなるようにシート成形し、116℃で10分間熱処理することによって硬化して、シリコーンゴム組成物を調製した。この後、当該組成物を直径8.0mmの円形状に切り取り、長さ4.5mm、深さ0.88mmのスリットを円形状シートの中心を通るように形成した。一方、下面側にも上面側スリットと同様の長さおよび深さで、かつ十字状になるような方向(下面側のスリットが、上面側スリットに対して垂直方向になるよう)にスリットを形成し、医療用弁体を作製した。なお、両スリットは反対側には貫通しておらず、円形状シート内部で交差しているが、その交点の長さは0.46mmであった。この弁体をイントロデューサ(テルモ株式会社製)のシースに組み込んで医療器具(イントロデューサシース)とした。当該イントロデューサシースに対して、電子線40kGyを10MeV電子加速器を用いて室温にて照射し、滅菌処理を施した医療器具(イントロデューサシース)を得た。
 [実施例16]
 3BHAの添加量を2.0質量部(シリコーンゴムの全質量に対して2.0質量%)としたこと以外は、実施例15と同様の方法でシリコーンゴム組成物を調製した。
 [実施例17]
 3BHAの添加量を3.0質量部(シリコーンゴムの全質量に対して3.0質量%)としたこと以外は、実施例15と同様の方法でシリコーンゴム組成物を調製した。
 [実施例18]
 3BHAの添加量を4.0質量部(シリコーンゴムの全質量に対して4.0質量%)としたこと以外は、実施例15と同様の方法でシリコーンゴム組成物を調製した。
 [比較例5]
 3BHAを添加しなかったこと以外は、実施例15と同様の方法でシリコーンゴムを調製した。
 <性能評価>
 [硬度]
 実施例15~18および比較例5で得た弁体について、電子線照射前および電子線照射後の硬度をJIS K 6253に準じて測定した(電子線は、室温にて、10MeV電子加速器を用いて40kGyを照射した)。なお、測定にはアスカーゴム硬度計タイプAを用いた。結果を表2に示す。
 [ダイレータ刺通抵抗]
 実施例15~18および比較例5で得た滅菌処理を施したイントロデューサシースへのダイレータ挿入時の刺通抵抗をEOG滅菌(エチレンオキシドガス滅菌)の場合との比較することで評価した。なお、ダイレータとしては、テルモ株式会社製 6Frイントロデューサの0.035インチガイドワイヤ用のダイレータを使用した。結果を表2に示す。
 [カテーテル摺動抵抗]
 実施例15~18および比較例5で得た滅菌処理を施したイントロデューサシースにダイレータを刺通後、当該ダイレータを数回摺動させ、その後、カテーテルの摺動抵抗(挿入時・抜去時)をEOG滅菌の場合との比較することで評価した。なお、カテーテルとしては、テルモ株式会社製 5Fr「ハートキャス」を使用した。摺動抵抗は下記の4段階で評価した。結果を表2に示す。
 [漏れ試験]
 実施例15~18および比較例5で得た滅菌処理を施したイントロデューサシースにダイレータを刺通後、当該ダイレータを数回摺動させ、エアーを加圧し、弁体部からの漏れ易さを評価した。なお、評価はガイドワイヤ挿入時に、ガイドワイヤを弁体の上下スリット沿いに曲げた際の漏れ発生角度を測定することによって行った(試験数=5)。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3によると、シリコーンゴムに3BHAとPDMSとを混合することにより得た実施例15~18のシリコーンゴム組成物を用いた弁体は、3BHAおよびPDMSを添加しなかった比較例5と比べて、硬度の上昇が小さく、電子線照射による硬化が抑制されたことが示された。また、実施例15~18の結果より、その硬化抑制効果は3BHAの添加量が多くなるにつれてより大きくなることが示された。
 また、実施例15~18のシリコーンゴム組成物を用いた弁体およびイントロデューサシースは、電子線照射によっても各性能が維持されることが示された。特に、電子線照射前後で硬度に変化がなかった実施例17は、ダイレータの刺通抵抗において、EOG滅菌品と同等以上であった。また、実施例15および18は、漏れ試験においてEOG滅菌品と同等以上であった。
 一方、比較例5は、ダイレータの刺通抵抗が極めて高く、また、漏れ試験においても漏れが検出された。これは、電子線照射により弁体のスリットが張り付いたこととスリット付近のシリコーンが硬化したことが原因と考えられた。

Claims (16)

  1.  シリコーンゴムの少なくとも一部に、酸化防止剤が分散されてなる、シリコーンゴム組成物。
  2.  前記酸化防止剤は、tert-ブチルヒドロキシアニソールである、請求項1に記載のシリコーンゴム組成物。
  3.  前記tert-ブチルヒドロキシアニソールの含有量が、前記シリコーンゴムの全質量に対して、0.1~10質量%である、請求項2に記載のシリコーンゴム組成物。
  4.  前記シリコーンゴムの少なくとも一部に、ポリジメチルシロキサンがさらに分散されてなる、請求項2または3に記載のシリコーンゴム組成物。
  5.  前記ポリジメチルシロキサンの含有量が、前記シリコーンゴムの全質量に対して、1.0~30.0質量%である、請求項4に記載のシリコーンゴム組成物。
  6.  前記酸化防止剤は、ビタミンEもしくはその誘導体またはそれらの塩であり、
     前記シリコーンゴムの少なくとも一部に、ポリジメチルシロキサンがさらに分散されてなる、請求項1に記載のシリコーンゴム組成物。
  7.  前記ビタミンEもしくはその誘導体またはそれらの塩の含有量が、前記シリコーンゴムの全質量に対して、0.1~10.0質量%である、請求項6に記載のシリコーンゴム組成物。
  8.  前記ポリジメチルシロキサンの含有量が、前記シリコーンゴムの全質量に対して、1.0~30.0質量%である、請求項6または7に記載のシリコーンゴム組成物。
  9.  前記シリコーンゴムは、シリコーンゴム前駆体が架橋されてなるものであり、
     前記シリコーンゴム前駆体は、アルケニル基含有ポリオルガノシロキサン(A)と、オルガノハイドロジェンポリシロキサン(B)とを含む、請求項1~8のいずれか1項に記載のシリコーンゴム組成物。
  10.  シリコーンゴム前駆体と、酸化防止剤とを混合し、得られた混合物を硬化する工程を含む、シリコーンゴム組成物の製造方法。
  11.  シリコーンゴムを、液体状の酸化防止剤に浸潤させる工程を含む、シリコーンゴム組成物の製造方法。
  12.  前記酸化防止剤は、tert-ブチルヒドロキシアニソールである、請求項10または11に記載のシリコーンゴム組成物の製造方法。
  13.  シリコーンゴム前駆体と、ビタミンEもしくはその誘導体またはそれらの塩と、ポリジメチルシロキサンとを混合し、得られた混合物を硬化する工程を含む、請求項10に記載のシリコーンゴム組成物の製造方法。
  14.  シリコーンゴムを、液体状のビタミンEもしくはその誘導体またはそれらの塩と、ポリジメチルシロキサンとに浸潤させる工程を含む、請求項11に記載のシリコーンゴム組成物の製造方法。
  15.  請求項1~9のいずれか1項に記載のシリコーンゴム組成物、または請求項10~14に記載の製造方法により得られるシリコーンゴム組成物を含む、医療器具。
  16.  シリコーンゴム前駆体と、酸化防止剤とを混合し、得られた混合物を硬化する工程;またはシリコーンゴムを、液体状の酸化防止剤に浸潤させる工程と、
     得られたシリコーンゴム組成物を医療器具に組み込む工程と、
     得られた医療器具を密封包装する工程と、
     密封包装された医療器具に放射線を照射する工程と、を含む医療器具の製造方法。
PCT/JP2011/064470 2010-09-17 2011-06-23 シリコーンゴム組成物 WO2012035844A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11824856.6A EP2617774B1 (en) 2010-09-17 2011-06-23 Silicone rubber composition
CN201180044297.6A CN103108920B (zh) 2010-09-17 2011-06-23 硅橡胶组合物
JP2012533897A JP5770736B2 (ja) 2010-09-17 2011-06-23 シリコーンゴム組成物
US13/801,168 US9523001B2 (en) 2010-09-17 2013-03-13 Silicone rubber composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010209675 2010-09-17
JP2010-209675 2010-09-17
JP2010209659 2010-09-17
JP2010-209659 2010-09-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/801,168 Continuation US9523001B2 (en) 2010-09-17 2013-03-13 Silicone rubber composition

Publications (1)

Publication Number Publication Date
WO2012035844A1 true WO2012035844A1 (ja) 2012-03-22

Family

ID=45831326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064470 WO2012035844A1 (ja) 2010-09-17 2011-06-23 シリコーンゴム組成物

Country Status (5)

Country Link
US (1) US9523001B2 (ja)
EP (1) EP2617774B1 (ja)
JP (1) JP5770736B2 (ja)
CN (1) CN103108920B (ja)
WO (1) WO2012035844A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014117424A (ja) * 2012-12-14 2014-06-30 Shin Etsu Polymer Co Ltd コネクタ及びシリコーンゴム製のコネクタ用弁体

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105482688A (zh) * 2015-12-11 2016-04-13 江苏国泰环境监测有限公司常熟分公司 硫化物检测装置
CN107343966A (zh) * 2017-05-31 2017-11-14 苏州蔻美新材料有限公司 一种人工心脏用纳米生物材料的制备方法
DE102021202061A1 (de) * 2021-03-03 2022-09-08 B. Braun Melsungen Aktiengesellschaft Medizinprodukt, Funktionsteil für ein Medizinprodukt und Verfahren zum Sterilisieren und/oder zum Herstellen von Sterilisationsbeständigkeit eines Medizinprodukts oder Funktionsteils
DE102021118759A1 (de) 2021-07-20 2023-01-26 Paul Hartmann Ag Strahlenvernetzung und Sterilisation von Silicon

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02949B2 (ja) 1983-01-18 1990-01-09 Terumo Corp
JPH0866461A (ja) * 1994-08-22 1996-03-12 Becton Dickinson & Co 医療装置用の放射線適合性滑剤
JPH08259817A (ja) * 1994-12-07 1996-10-08 General Electric Co <Ge> シリコーン製物品におけるニトロソアミン生成防止用添加剤
JPH091697A (ja) * 1995-06-26 1997-01-07 Canon Inc シリコーンゴム成型体、その製造方法、ゴムローラー、及び弾性ブレード
JP2005272697A (ja) * 2004-03-25 2005-10-06 Shin Etsu Chem Co Ltd 硬化性シリコーン樹脂組成物、光半導体用封止材および光半導体装置
JP2005344102A (ja) * 2004-05-07 2005-12-15 Shin Etsu Chem Co Ltd イオン導電性ゴム組成物およびそれを用いたイオン導電性ゴムロール
JP2006063208A (ja) * 2004-08-27 2006-03-09 Shin Etsu Chem Co Ltd 液状シリコーンゴムコーティング剤組成物およびエアーバッグ
JP2009114376A (ja) * 2007-11-08 2009-05-28 Sekisui Chem Co Ltd 離型剤及び表面保護フィルム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3524674B2 (ja) * 1995-11-24 2004-05-10 東レ・ダウコーニング・シリコーン株式会社 オルガノポリシロキサン組成物およびその製造方法
US6168782B1 (en) * 1999-05-24 2001-01-02 Dow Corning Corporation Elastomeric silicone containing an active ingredient
US6423417B1 (en) * 2000-05-24 2002-07-23 Reynolds Metals Company Non-stick polymer coated aluminum foil
JP4849477B2 (ja) * 2004-04-08 2012-01-11 ダウ・コーニング・コーポレイション シリコーン皮膚接着ゲル
US8007737B2 (en) * 2004-04-14 2011-08-30 Wyeth Use of antioxidants to prevent oxidation and reduce drug degradation in drug eluting medical devices
JP4654780B2 (ja) 2005-06-10 2011-03-23 富士ゼロックス株式会社 質問応答システム、およびデータ検索方法、並びにコンピュータ・プログラム
US7785647B2 (en) * 2005-07-25 2010-08-31 Advanced Cardiovascular Systems, Inc. Methods of providing antioxidants to a drug containing product
CN101395206B (zh) * 2006-03-21 2013-03-27 陶氏康宁公司 有机硅弹性体凝胶
KR101364818B1 (ko) 2006-03-21 2014-02-19 다우 코닝 코포레이션 실리콘 엘라스토머 겔
WO2008057155A1 (en) * 2006-11-07 2008-05-15 Dow Corning Corporation Silicone skin adhesive gels
CN101104700A (zh) * 2007-08-18 2008-01-16 青岛科技大学 一种环保型医用橡胶制品的辐射硫化方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02949B2 (ja) 1983-01-18 1990-01-09 Terumo Corp
JPH0866461A (ja) * 1994-08-22 1996-03-12 Becton Dickinson & Co 医療装置用の放射線適合性滑剤
JPH08259817A (ja) * 1994-12-07 1996-10-08 General Electric Co <Ge> シリコーン製物品におけるニトロソアミン生成防止用添加剤
JPH091697A (ja) * 1995-06-26 1997-01-07 Canon Inc シリコーンゴム成型体、その製造方法、ゴムローラー、及び弾性ブレード
JP2005272697A (ja) * 2004-03-25 2005-10-06 Shin Etsu Chem Co Ltd 硬化性シリコーン樹脂組成物、光半導体用封止材および光半導体装置
JP2005344102A (ja) * 2004-05-07 2005-12-15 Shin Etsu Chem Co Ltd イオン導電性ゴム組成物およびそれを用いたイオン導電性ゴムロール
JP2006063208A (ja) * 2004-08-27 2006-03-09 Shin Etsu Chem Co Ltd 液状シリコーンゴムコーティング剤組成物およびエアーバッグ
JP2009114376A (ja) * 2007-11-08 2009-05-28 Sekisui Chem Co Ltd 離型剤及び表面保護フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2617774A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014117424A (ja) * 2012-12-14 2014-06-30 Shin Etsu Polymer Co Ltd コネクタ及びシリコーンゴム製のコネクタ用弁体

Also Published As

Publication number Publication date
EP2617774A4 (en) 2014-04-02
JP5770736B2 (ja) 2015-08-26
US9523001B2 (en) 2016-12-20
EP2617774A1 (en) 2013-07-24
JPWO2012035844A1 (ja) 2014-02-03
EP2617774B1 (en) 2015-03-04
US20130192167A1 (en) 2013-08-01
CN103108920B (zh) 2015-07-29
CN103108920A (zh) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5770736B2 (ja) シリコーンゴム組成物
KR101740743B1 (ko) Uhmwpe 중 다중 첨가제 블렌딩의 상승작용 효과
JP5261175B2 (ja) 放射線耐性シリコーン調合物およびそれで生成された医療機器
ES2373585T3 (es) Miembros de sellado, artículos que usan los mismos y procedimientos de reducir fricción estática.
EP2614847B1 (en) Coating system, articles and assembly using the same and methods of reducing sticktion
JP2010529213A (ja) 酸化防止剤含有ポリマーの架橋
JP2012120855A (ja) 耐酸化性ポリマー物質の製造方法
CA2154118A1 (en) Radiation compatible lubricant for medical devices
JP2012041522A (ja) シリコーンゴム組成物
JP4763317B2 (ja) ポリ塩化ビニル樹脂製医療用具
US9133340B2 (en) Radiation resistant silicone formulations and medical devices formed of same
JP5013516B2 (ja) 医療用ゴム部材、滅菌済医療用ゴム部材及びゴム組成物
JP7440615B2 (ja) ヨウ素が注入された超高分子量ポリエチレン
JPWO2014188872A1 (ja) 一液型オルガノポリシロキサンゲル組成物及びその硬化方法
US7939014B2 (en) Radiation resistant silicone formulations and medical devices formed of same
JP2005325165A (ja) 100℃以下の温度で溶融塗布可能なヨウ素含有ホットメルト粘着剤および該粘着剤を用いた医療用粘着シート製品
JP4657629B2 (ja) 医療用熱可塑性樹脂組成物および医療用チューブ
JP2023023431A (ja) カテーテルの製造方法
JP2011094158A (ja) 100℃以下の温度で溶融塗布可能なヨウ素含有ホットメルト粘着剤および該粘着剤を用いた医療用粘着シート製品
JP2020503427A (ja) エラストマー製品のためのエラストマー組成物
Ledig Silicone rubbers in medical applications–friction reduction with LSR Top Coat

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180044297.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824856

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011824856

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012533897

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE