WO2012033192A1 - シール構造及び遠心圧縮機 - Google Patents

シール構造及び遠心圧縮機 Download PDF

Info

Publication number
WO2012033192A1
WO2012033192A1 PCT/JP2011/070586 JP2011070586W WO2012033192A1 WO 2012033192 A1 WO2012033192 A1 WO 2012033192A1 JP 2011070586 W JP2011070586 W JP 2011070586W WO 2012033192 A1 WO2012033192 A1 WO 2012033192A1
Authority
WO
WIPO (PCT)
Prior art keywords
gap
impeller
fluid
rotating body
seal structure
Prior art date
Application number
PCT/JP2011/070586
Other languages
English (en)
French (fr)
Inventor
中庭 彰宏
Original Assignee
三菱重工業株式会社
三菱重工コンプレッサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱重工コンプレッサ株式会社 filed Critical 三菱重工業株式会社
Priority to EP11823666.0A priority Critical patent/EP2615338A4/en
Priority to US13/819,860 priority patent/US20130164119A1/en
Publication of WO2012033192A1 publication Critical patent/WO2012033192A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/162Sealings between pressure and suction sides especially adapted for elastic fluid pumps of a centrifugal flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/164Sealings between relatively-moving surfaces the sealing action depending on movements; pressure difference, temperature or presence of leaking fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/443Free-space packings provided with discharge channels

Definitions

  • the present invention relates to a seal structure and a centrifugal compressor.
  • a plurality of impellers are attached to a rotating shaft to constitute a rotor, and two impellers adjacent to each other in the axial direction are communicated in a casing that accommodates the rotor.
  • a U-shaped flow path having a substantially U-shaped longitudinal section is formed, and the pressure of the working gas main flow increases as the flow proceeds from upstream to downstream.
  • this multistage centrifugal compressor for example, an internal partition wall that divides the flow path into a mainstream low-pressure side (upstream U-shaped flow path) and a high-pressure side (downstream U-shaped flow path), and the main flow pass A gap is formed between the impeller and the impeller that applies energy.
  • a sealing member for example, a labyrinth seal
  • the multistage centrifugal compressor having the seal member causes the rotor to vibrate in an unstable manner because an excitation force is applied to the rotor when a fluid having a circumferential velocity component that becomes a swirl flow (swirl) passes through the seal member. There is. As a result, noise may be generated or damage may occur due to contact between the rotor and peripheral components.
  • a high-pressure fluid is supplied from a diffuser portion of the U-shaped channel to a seal member disposed on an internal partition wall that defines the diffuser portion. More specifically, a fluid passage communicating with the diffuser portion and the seal member is formed in the internal partition wall, and a high-pressure fluid in the diffuser portion is supplied to the seal member, so that the swirl flow is canceled and the excitation acting on the rotor is applied. The power is suppressed.
  • the present invention has been made in consideration of such circumstances, and it is an object of the present invention to reduce the labor required for processing by suppressing the excitation force and simplifying the configuration.
  • the seal structure according to the present invention is directed to a flow path constituted by a rotating body that rotates around a central axis and allows a mainstream to pass through, and a stationary body that is disposed with a gap in the rotating body.
  • a speed change member that allows the fluid to pass through and reduces the speed component in the rotational direction of the rotating body among the speed components of the fluid.
  • the forward rotation direction the speed component in the rotating direction of the rotating body (hereinafter simply referred to as the forward rotation direction). Since the speed change member is provided, the speed component in the forward rotation direction of the fluid passing through the speed change member and reaching the seal member is reduced. Thereby, since the fluid passes through the seal member in a state where the speed component in the forward rotation direction is reduced, the excitation force acting on the rotating body can be suppressed. Furthermore, since the excitation force acting on the rotating body is suppressed only by providing the speed change member, the configuration is simplified and the labor required for processing can be reduced compared to the case where the fluid passage is formed in the stationary body.
  • the speed change member imparts a velocity component in a direction opposite to the rotation direction to the fluid. According to this configuration, since the speed change member imparts a speed component in the reverse direction of the forward rotation direction to the fluid, the speed component in the forward rotation direction of the fluid can be further reduced, and the excitation force acting on the rotating body can be further increased. Can be suppressed.
  • the speed change member is provided in a fluid inflow portion where the fluid flows into the gap from the main flow side.
  • the speed change member since the speed change member is provided in the fluid inflow portion, when the fluid flows into the gap, the velocity component in the forward rotation direction of the fluid is reduced, so that the normal flow of the fluid from the fluid inflow portion toward the seal member is reduced.
  • the speed component in the rotation direction is reduced.
  • the excitation force generated when the fluid having the velocity component in the forward rotation direction passes between the fluid inflow portion and the seal member is reduced, and the excitation force generated when the fluid passes through the seal member is reduced.
  • the exciting force which acts on a rotary body can be suppressed significantly.
  • the speed change member is provided on the stationary body side. According to this configuration, since the speed change member is provided on the stationary body side, it is not necessary to adjust the rotation balance of the rotary body as in the case where the speed change member is provided on the rotary body side, and the labor required for processing is further reduced. be able to.
  • the speed change member is formed on the rotating body side, is formed on the stationary body side, and is formed on the stationary body side to block the passage of the fluid, and penetrates the main flow side and the seal member side, and on the main flow side. And a transmission having a through hole formed at a position shifted in an opposite direction of the rotation direction with respect to the opening on the seal member side.
  • the speed change member includes the passage blocking portion that blocks the passage of fluid, and the speed change portion having a through hole that penetrates the main flow side and the seal member side. A velocity component in the direction opposite to the rotation direction can be imparted to the fluid.
  • the speed change member is provided at a position in the gap where the rotating body and the stationary body face each other in the radial direction of the rotating body. According to this configuration, since the speed change member is provided at a position where the rotating body and the stationary body are opposed to each other in the radial direction in the gap, the size of the gap does not fluctuate due to the axial thrust force of the rotating body, The velocity component in the forward rotation direction of the fluid can be continuously reduced, and the excitation force suppressing effect can be stably obtained.
  • the centrifugal compressor according to the present invention is a centrifugal compressor having a flow path constituted by the rotating body and the stationary body, and the rotating body extends from a disk-shaped hub and the hub.
  • An impeller having a plurality of blades and a shroud covering the outer peripheral ends of the plurality of blades, wherein the stationary body partitions the casing containing the impeller and the flow path into the mainstream low pressure side and the high pressure side
  • a seal structure that includes an internal partition wall and seals a first gap formed between the shroud of the impeller and the internal partition wall, the seal structure according to any one of the above is provided.
  • the centrifugal compressor has a flow path constituted by the rotating body and the stationary body, and the rotating body includes an impeller having a disk-shaped hub and a plurality of blades extending from the hub.
  • the stationary body includes a casing that houses the impeller, and an end partition wall that partitions the inside and the outside of the casing, and is formed between the hub of the impeller and the end partition wall.
  • the seal structure according to any one of the above is provided.
  • the centrifugal compressor has a flow path constituted by the rotating body and the stationary body, and the rotating body includes a disk-shaped hub, a plurality of blades extending from the hub, and the plurality of blades.
  • An impeller having a shroud covering an outer peripheral end
  • the stationary body includes a casing that houses the impeller, an internal partition wall that partitions the flow path into a low-pressure side and a high-pressure side of the mainstream, and an interior of the casing And an end partition wall for partitioning the exterior and the outside, and formed between a first gap formed between the shroud of the impeller and the internal partition wall, and a hub of the impeller and the end partition wall
  • the seal structure according to any one of the above is provided as a seal structure for sealing each of the formed second gaps.
  • each said structure while being able to operate stably by suppressing the exciting force which acts on a rotary body, the effort of manufacture can be reduced. Furthermore, since the differential pressure between the high-pressure side and the low-pressure side of the fluid divided by the seal member is smaller than when high-pressure fluid is supplied to the seal member, the amount of fluid passing through the seal member can be suppressed to a small amount. The volumetric efficiency can be maintained and the efficiency of the centrifugal compressor can be maintained well.
  • the excitation force can be suppressed and the configuration can be simplified to reduce the labor required for processing.
  • centrifugal compressor according to the present invention, it is possible to stably operate by suppressing the excitation force acting on the rotating body, and to reduce the manufacturing effort.
  • FIG. 1 is a schematic cross-sectional view of a multistage centrifugal compressor 1 according to an embodiment of the present invention. It is a principal part expanded sectional view of the multistage centrifugal compressor 1 which concerns on embodiment of this invention, Comprising: It is an enlarged view of the principal part I in FIG. It is a principal part expanded sectional view of the multistage centrifugal compressor 1 which concerns on embodiment of this invention, Comprising: The outflow part 22b vicinity of the impeller 22F is shown.
  • FIG. 3 is an enlarged cross-sectional view of a main part of the multistage centrifugal compressor 1 according to the embodiment of the present invention, and is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 1 It is a principal part expanded sectional view which shows the example which applied the seal structure 50 and the seal structure 60a in the multistage centrifugal compressor 1 which concerns on embodiment of this invention.
  • the multistage centrifugal compressor 1 which concerns on embodiment of this invention, it is a principal part expanded sectional view which shows the example which applied the seal structure 50a and the seal structure 60.
  • FIG. 1 It is a principal part expanded sectional view which shows the example which applied the seal structure 50 and the seal structure 60a in the multistage centrifugal compressor 1 which concerns on embodiment of this invention.
  • FIG. 1 is a schematic sectional view of a multistage centrifugal compressor (centrifugal compressor) 1 according to an embodiment of the present invention
  • FIG. 2 is an enlarged view of a main part I in FIG.
  • the multistage centrifugal compressor 1 includes a stationary body 10 including a casing 11 and a plurality of diaphragms 12 (12A to 12F), 13 (13A to 13E), and 14 (14A and 14B), and a rotating body.
  • the rotating body 20 includes a shaft 21 and a plurality of impellers 22 (22A to 22F).
  • the extending direction of the central axis P of the multistage centrifugal compressor 1 (the central axis of the rotating shaft 21) is simply referred to as “axial direction”.
  • the casing 11 is formed in a cylindrical shape, and the cylindrical axis is overlapped with the central axis P.
  • open portions 11a formed at both ends in the axial direction are closed by a diaphragm 14A, and the open portion 11a is closed by a diaphragm 14B.
  • the casing 11 is formed with an introduction portion 11c into which the working gas (fluid) G is introduced from the outside on one end side in the axial direction, and a discharge portion 11d for discharging the working gas G to the outside on the other end side in the axial direction. ing.
  • the casing 11 accommodates diaphragms 12 (12A to 12F) and 13 (13A to 13E) inside.
  • the diaphragms (inner partition walls) 12A to 12E and 13A to 13E form pairs to define the impeller accommodating chambers 17A to 17E and a part of the main flow path of the working gas G, respectively.
  • the diaphragm 12F along with the diaphragm 14B, defines an impeller accommodating chamber 17F and a part of the main flow path.
  • the same alphabet is attached to the pair of diaphragms 12 and 13, and the same alphabet is attached to the diaphragms 12 and 13, the impeller housing chamber 17, and the impeller 22 that are in a housing / contained relationship.
  • the diaphragms 12A to 12E are disk-shaped members, and an accommodation recess 12a is formed on the center side of the other end surface (the other side in the axial direction) (see FIG. 2).
  • a reduced-diameter recess 12b formed in accordance with the shape of the shroud 25 of the impellers 22A to 22E is formed deeper in the center side of the housing recess 12a of the diaphragms 12A to 12E.
  • the diaphragm 12F is a disc-shaped member, and a reduced-diameter recess 12b formed in accordance with the shape of the shroud 25 of the impeller 22F is formed on the center side of the other end surface (the other side in the axial direction). As shown in FIG. 1, these diaphragms 12A to 12F are concatenated and accommodated in the axial direction with their respective reduced diameter concave portions 12b facing the other side in the axial direction.
  • the diaphragms 13A to 13E are disk-shaped members formed with a smaller diameter than the diaphragms 12A to 12E, and a circular recess 13a is formed on the center side of one end surface (one side in the axial direction) (see FIG. 2). ).
  • the diaphragms 13A to 13E are accommodated coaxially in the accommodating recesses 12a of the paired diaphragms 12A to 12E.
  • the diaphragms 13A to 13E define a flow path by forming gaps in the diaphragms 12A to 12E, and the impeller accommodating chambers 17A to 17E are formed by the circular recess 13a facing the reduced diameter recess 12b. Defined.
  • the diaphragm 14B made of a disc-shaped member has a circular recess 14a formed at the center of one end surface (one axial side), and the circular recess 14a faces the reduced diameter recess 12b of the diaphragm 12F.
  • the impeller accommodating chamber 17F is demarcated.
  • An arrangement space for a balance piston 26 described later is formed on the center side of the circular recess 14a.
  • journal bearing 16a and a thrust bearing 16b are disposed on the diaphragm (end partition wall) 14A, and a journal bearing 16a is disposed on the diaphragm (end partition wall) 14B. These support the rotating shaft 21 rotatably.
  • the rotary shaft 21 is inserted through the casing 11, the diaphragms 12A to 12F, 13A to 13E, and the diaphragms 14A and 14B, and is supported rotatably around the central axis P.
  • a balance piston 26 is disposed on the other end side of the rotating shaft 21.
  • each impeller 22 includes a disk-shaped hub 23, a plurality of blades 24, and a shroud 25.
  • the hub 23 gradually increases in diameter as it proceeds from the inflow portion 22a of the working gas G to the outflow portion 22b.
  • the blades 24 extend radially from the outer periphery of the hub 23, and the shroud 25 covers the outer peripheral ends of these blades 24.
  • the multistage centrifugal compressor 1 configured as described above has two impellers 22 adjacent to each other in the axial direction connected by a U-shaped flow path 15.
  • the inflow portion 22a of the first stage impeller 22A communicates with the introduction portion 11c of the casing 11, and the outflow portion 22b of the final stage impeller 22F communicates with the discharge portion 11d of the casing 11 (see FIG. 1). .
  • each U-shaped flow path 15 is defined by a diaphragm 13 forming a gap between a pair of diaphragms 12 and adjacent diaphragms 12.
  • each U-shaped channel 15 includes a diffuser portion 15a, a return bend portion 15b, and a return portion 15c.
  • the diffuser portion 15a is connected to the outflow portion 22b of the impeller 22, and converts mainstream velocity energy of the working gas G flowing out of the impeller 22 into pressure energy.
  • the return bend portion 15b is continuously formed on the downstream side of the diffuser portion 15a, and reverses the direction of the main flow flowing toward the radially outer peripheral side so as to be directed toward the radial center.
  • the return portion 15c is continuously formed on the downstream side of the return bend portion 15b, and guides the main flow to the impeller 22 on the downstream side.
  • a first gap (First gap, second gap) between the shroud 25 and the diaphragm 12 of the impeller 22.
  • a first gap 31 is formed.
  • the first gap 31 opens in the axial direction on the downstream side of the outflow portion 22 b of the impeller 22 from the upstream opening 31 a that opens in the radial direction on the upstream side of the inflow portion 22 a of the impeller 22. It extends to the downstream opening 31b and is formed in a curved shape in a sectional view. More specifically, after extending from the upstream opening 31a to the outer peripheral side in the radial direction, the diameter gradually increases along the shroud 25, extends to the other side in the axial direction, and extends to the downstream opening 31b.
  • a second gap (gap, second gap) 32 is formed between the hub 23 of the final stage impeller 22F, the rotary shaft 21, the balance piston 26, and the diaphragm 14B.
  • This second gap 32 extends from an inner opening 32b that opens in the axial direction on the downstream side of the outflow portion 22b in the final stage impeller 22F to an outer opening 32a that communicates with the outside of the casing 11, and is in a cross-sectional view. It is bent. More specifically, after extending from the inner opening 32b to the other side in the axial direction, extending to the radial center along the hub 23 and the diaphragm 14B and then bending, along the balance piston 26 and the diaphragm 14B. It extends to the other side in the axial direction and finally communicates with the outer opening 32a.
  • the multistage centrifugal compressor 1 has a seal structure 50 and a seal structure 60 that seal the first gap 31 and the second gap 32.
  • seal structure 50 and 60 that seal the first gap 31 and the second gap 32.
  • illustration of the seal structures 50 and 60 is omitted.
  • the seal structure 50 includes a labyrinth seal (seal member) 51A and a speed change member 52A.
  • the labyrinth seal 51 ⁇ / b> A is composed of a plurality of annular fin members fixed to the diaphragm 12. This labyrinth seal 51 ⁇ / b> A is disposed on the downstream opening 31 b side of the portion of the first gap 31 that gradually increases in diameter along the shroud 25.
  • each fin member extends from the diaphragm 12 toward the center in the radial direction, and a minute radial gap is formed between the tip of each fin member and the shroud 25.
  • FIG. 3 is an enlarged cross-sectional view of the main part of FIG. 2, and FIG. 4 is a cross-sectional view taken along the line II-II of FIG.
  • the transmission member 52A is an annular member, and is disposed in a portion (gas inflow portion 31c) of the first gap 31 that extends from the downstream opening 31b to one side in the axial direction (see FIG. 3). That is, as shown in FIGS. 3 and 4, the speed change member 52 ⁇ / b> A is disposed in the first gap 31 at a position where the shroud 25 of the impeller 22 and the diaphragm 12 face each other in the radial direction.
  • the speed change member 52A has a passage blocking portion 53 formed on the impeller 22 side (outer peripheral side) and a speed change portion 54 formed on the diaphragm 12 side (inner peripheral side).
  • the passage blocking portion 53 is formed continuously with the speed change portion 54, extends from the speed change portion 54 toward the shroud 25 of the impeller 22, and has a diameter between one sharp tip and the shroud 25. A minute gap in the direction is formed.
  • the transmission 54 is fixed to the diaphragm 12 on the outer peripheral side.
  • a plurality of through-holes 55 penetrating the mainstream side and the labyrinth seal 51 ⁇ / b> A are formed. .
  • the plurality of through holes 55 are drilled at equal intervals in the circumferential direction.
  • each through-hole 55 has a circular cross-sectional shape, and extends straight from the mainstream side opening 55a to the labyrinth side opening 55b.
  • each through hole 55 is formed at a position where the opening 55b on the labyrinth seal 51A side is shifted in the reverse direction of the forward rotation direction with respect to the opening 55a on the main flow side.
  • the through-hole 55 in FIG. 3 should be illustrated with a broken line if originally, it is illustrated with a solid line for easy understanding.
  • the seal structure 60 includes a labyrinth seal (seal member) 51B and a speed change member 52B.
  • the labyrinth seal 51B has the same configuration as the labyrinth seal 51A, is fixed to the outer periphery of the balance piston 26, and has a plurality of annular shapes extending from the balance piston 26 toward the diaphragm 14B. A minute radial gap is formed between the tip of the fin member and the diaphragm 14B.
  • the speed change member 52B has the same structure as the speed change member 52A. As shown in FIG. 2, the portion (gas gas) of the second gap 32 extends from the inner opening 32b to the other side in the axial direction. The inflow portion 32c) is disposed. That is, the speed change member 52B is disposed in the second gap 32 at a position where the impeller 22F and the diaphragm 14B are opposed to each other in the radial direction of the impeller 22F.
  • the pressure after flowing out of the impeller 22 becomes higher than the pressure before flowing into the impeller 22, and the first gap A pressure gradient is generated in the downstream opening 31b and the upstream opening 31a. For this reason, a part of the main gas G flowing out of the impeller 22 flows into the first gap 31 via the downstream opening 31b and the transmission member 52A.
  • the working gas G flowing into the first gap 31 is divided into a high-pressure side and a low-pressure side by the labyrinth seal 51A being blocked from passing to the upstream opening 31a side.
  • the passage preventing portion 53 of the transmission member 52A forms a minute gap with the shroud 25 of the impeller 22, and the working gas G Block the passage of. Therefore, the working gas G passes through the through hole 55 of the transmission unit 54 and flows into the first gap 31.
  • the working gas G that has flowed out of the impeller 22 has a speed component in the forward rotation direction due to the rotation of the impeller 22, but passes through the through hole 55 of the transmission unit 54, and is in the direction opposite to the forward rotation direction.
  • the speed component is given. More specifically, a velocity component directed in the reverse direction is given to the tangent vector in the forward rotation direction. As a result, the speed component of the working gas G in the forward rotation direction is canceled and becomes smaller.
  • the working gas G that has passed through the speed change member 52A flows through the first gap 31 and reaches the labyrinth seal 51A.
  • the speed component of the working gas G in the forward rotation direction is canceled and reduced, the exciting force that the working gas G flowing through the first gap 31 acts on the rotating body 20 is very small.
  • the speed component in the forward rotation direction of the working gas G that has reached the labyrinth seal 51A is reduced, the excitation force that the working gas G passing through the labyrinth seal 51A acts on the rotating body 20 is very small.
  • the main flow of the working gas G that has passed through the final stage impeller 22F (see FIG. 3) is higher than the atmospheric pressure, and therefore a pressure gradient is generated between the inner opening 32b and the outer opening 32a of the second gap 32.
  • the working gas G flows into the second gap 32 through the inner opening 32b and the speed change member 52B.
  • the working gas G flowing into the second gap 32 passes through the through hole 55 of the speed change portion 54 and flows into the second gap 32, so that a speed component in the direction opposite to the normal rotation direction is given, and the normal rotation direction The velocity component is canceled and becomes smaller (see FIGS. 2 and 3).
  • the working gas G that has passed through the speed change member 52B flows through the second gap 32 and reaches the labyrinth seal 51B.
  • the velocity component of the working gas G in the forward rotation direction is canceled and reduced, the exciting force that the working gas G flowing through the second gap 32 acts on the rotating body 20 is very small.
  • the speed component in the forward rotation direction of the working gas G that has reached the labyrinth seal 51B is reduced, the exciting force that the working gas G passing through the labyrinth seal 51B acts on the rotating body 20 is very small.
  • the labyrinth passes through the transmission members 52A and 52B.
  • the speed component in the forward rotation direction of the working gas G that reaches the seals 51A and 51B is reduced.
  • the speed component in the forward rotation direction of the working gas G passing through the labyrinth seals 51A and 51B is reduced, so that the excitation force acting on the rotating body 20 can be suppressed.
  • the transmission member 52 (52A, 52B) is provided, the excitation force acting on the rotating body 20 is suppressed, so that the configuration is simpler than when the passages for the working gas G are formed in the diaphragms 12, 14B. Therefore, the labor required for processing can be reduced. Further, when the passage of the working gas G is formed and the high-pressure working gas G is supplied to the labyrinth seals 51A and 51B to reduce the speed component of the working gas G in the forward rotation direction, the labyrinth seals 51A and 51B are classified. Since the differential pressure increases between the high pressure side and the low pressure side of the working gas G to be generated, the amount of the working gas G passing through the labyrinth seals 51A and 51B increases.
  • the differential pressure is smaller than when the high-pressure working gas G is supplied to the labyrinth seals 51A and 51B, so that the working gas G passing through the labyrinth seals 51A and 51B is suppressed to a small amount. Can do. Thereby, volume efficiency can be maintained and the efficiency of the multistage centrifugal compressor 1 can be maintained favorably.
  • the speed change members 52 ⁇ / b> A and 52 ⁇ / b> B impart a speed component in the reverse direction of the forward rotation direction to the working gas G, the speed component of the working gas G in the forward rotation direction can be further reduced and acts on the rotating body 20. The excitation force can be further suppressed.
  • the speed change members 52A and 52B are provided in the gas inflow portions 31c and 32c into which the working gas G flows into the first gap 31 and the second gap 32 from the main flow side. Therefore, when the working gas G flows into the first gap 31 and the second gap 32, the working gas G directed from the gas inflow portions 31c and 32c toward the labyrinth seals 51A and 51B is reduced by reducing the velocity component in the forward rotation direction. The speed component in the positive rotation direction becomes smaller.
  • the excitation force generated when the working gas G having a velocity component in the positive rotation direction travels from the gas inflow portions 31c and 32c to the labyrinth seals 51A and 51B is reduced, and is generated when the working gas G passes the labyrinth seals 51A and 51B. Reduce excitation force. Thereby, the exciting force which acts on the rotary body 20 can be suppressed significantly.
  • speed change members 52A and 52B are provided on the diaphragms 12 and 14B side, it is not necessary to adjust the rotational balance of the rotating body 20 as in the case where the speed change members 52A and 52B are provided on the impeller 22 side. Can be further reduced.
  • the speed change members 52A and 52B include a passage blocking portion 53 that blocks the passage of the working gas G, and a speed change portion 54 in which a through hole 55 penetrating the main flow side and the labyrinth seals 51A and 51B is formed. Further, the configuration of the transmission members 52A and 52B can be further simplified.
  • the speed change member 52A is provided in the first gap 31 at a position where the impeller 22 and the diaphragm 12 are opposed to each other in the radial direction, the relative displacement in the radial direction between the impeller 22 and the diaphragm 12 due to centrifugal force or thermal elongation.
  • the relative displacement in the axial direction due to the thrust force or thermal elongation is smaller, the possibility that the transmission member 52A contacts the impeller 22 can be reduced.
  • the relative position between the transmission member 52A disposed on the diaphragm 12 and the impeller 22 can be easily determined at the time of assembly. Can be reduced.
  • the speed change member 52B is provided in the second gap 32 at a position where the impeller 22F and the diaphragm 14B are opposed to each other in the radial direction, the same effect as described above can be obtained.
  • the seal structure 50 and the seal structure 60 are applied to the first gap 31 and the second gap 32, respectively, but either one of the seal structures 50 and 60 is omitted and shown in FIG. Thus, only the seal structure 50 may be applied, or only the seal structure 60 may be applied as shown in FIG.
  • FIG. 7 is an enlarged view of a main part showing a seal structure 50 a which is a modification of the seal structure 50.
  • the seal structure 50a differs from the seal structure 50 in the location where the speed change member 52A is disposed.
  • the sealing structure 50a is provided with the speed change member 52A at a position in the first gap 31 where the shroud 25 of the impeller 22 and the diaphragm 12 are opposed to each other in the radial direction.
  • the difference is that the speed change member 52A is disposed at a position in the gap 31 where the shroud 25 of the impeller 22 and the diaphragm 12 face each other in the axial direction.
  • FIG. 8 is an enlarged view of a main part showing a seal structure 60 a which is a modification of the seal structure 60.
  • the speed change member 52B is disposed in a position where the hub 23 of the impeller 22 and the diaphragm 14B face each other in the radial direction in the second gap 32.
  • the transmission member 52B is disposed at a position where the hub 23 of the impeller 22 and the diaphragm 14B face each other in the axial direction. Also with this configuration, the same effect as that of the seal structure 50a described above can be obtained.
  • FIGS. 9 to 11 are enlarged cross-sectional views of main parts showing variations between the seal structures 50 and 50a and the seal structures 60 and 60a.
  • the seal structure 50 is applied to the first gap 31 and the seal structure 60 is applied to the second gap 32.
  • the seal structure 60 a may be applied to the second gap 32.
  • a seal structure 50 may be applied to the first gap 31 and a seal structure 60a may be applied to the second gap 32.
  • the seal structure 60 may be applied to the second gap 32.
  • the speed change members 52 ⁇ / b> A and 52 ⁇ / b> B impart a speed component in the reverse direction of the forward rotation direction to the working gas G.
  • the speed component in the forward rotation direction of the working gas G passing through the labyrinth seals 51A and 51B is reduced, so that the effect of suppressing the excitation force of the rotating body 20 can be obtained. It is.
  • the cross-sectional shape of the through hole 55 is formed in a circular shape, but may be formed in an elliptical shape, a polygonal shape, or the like.
  • the through hole 55 does not have to be linear, and may be curved.
  • the through-hole 55 may extend only in the rotational tangential direction when viewed from the axial direction.
  • the effect of suppressing the excitation force of the rotating body 20 can be obtained as long as the speed component in the forward rotation direction is reduced. Therefore, the through hole 55 may be extended only in the radial direction. .
  • the positions of the transmission members 52A and 52B are positioned on the downstream opening 31b side and the inner opening 32b side, respectively, but are positioned on the higher pressure side of the working gas G than the labyrinth seals 51A and 51B. On the condition, it may be positioned on the upstream opening 31a side and the outer opening 32a side.
  • the positions of the labyrinth seals 51A and 51B can be changed as appropriate.
  • the tip of the passage blocking portion 53 formed sharply is one, but may be two or more.
  • the labyrinth seal is used as the seal member.
  • any other configuration may be used as long as the seal member is used, and a shaft seal mechanism in which brush seals, honeycomb seals, or thin plates are laminated in the circumferential direction. May be used.
  • the transmission members 52A and 52B are disposed on the stationary body 10 side, but may be disposed on the rotating body 20 side.
  • the present invention is applied to the multistage centrifugal compressor 1, but the present invention may be applied to a single-stage centrifugal compressor.
  • the seal structure according to the present invention is applied to the centrifugal compressor, but may be applied to other fluid machines.
  • the present invention relates to a seal structure that seals the gap for a flow path constituted by a rotating body that rotates around a central axis and allows a mainstream to pass through, and a stationary body that is disposed with a gap in the rotating body.
  • a seal member that is provided in the gap and divides the fluid that has flowed into the gap from the main flow into a high-pressure side and a low-pressure side; and is provided on the high-pressure side of the fluid in the gap and passes through the fluid
  • a speed change member that reduces a speed component in a rotation direction of the rotating body among the speed components of the fluid.
  • Multistage centrifugal compressor (centrifugal compressor) 10 ... stationary body 11 ... casing 12 (12A to 12F) ... diaphragm (internal partition wall) 14 (14A, 14B) ... Diaphragm (end partition wall) 20 ... Rotating body 21 ... Rotating shaft 22 (22A to 22F) ... Impeller 23 ... Hub 24 ... Blade 25 ... Shroud 31 ... First gap (gap, first gap) 31c, 32c ... Gas inflow part (fluid inflow part) 32 ... second gap (gap, second gap) 50, 50a, 60, 60a ... seal structure 51A, 51B ...
  • labyrinth seal (seal member) 52 52A, 52B) ... transmission member 53 ... passage blocking portion 54 ... transmission portion 55 ... through hole 55a ... opening portion 55b ... opening portion G ... working gas (fluid) P ... Center axis

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

 本発明は、中心軸(P)周りに回転すると共に主流を通過させる回転体(20)と回転体(20)に隙間(31,32)を有して配された静止体(10)とで構成された流路を対象として、隙間(31,32)をシールするシール構造(50,60)であって、隙間(31,32)に設けられ、前記主流から前記隙間(31,32)に流入した流体を高圧側と低圧側とに区分するシール部材(51A,51B)と、前記隙間(31,32)のうち前記流体の高圧側に設けられ、前記流体を通過させると共に前記流体の速度成分のうち 前記回転体(20)の回転方向の速度成分を小さくする変速部材(52A,52B)とを備える。 本発明に係るシール構造によれば、励振力を抑制すると共に、構成を簡素にして加工に要する労力を軽減することができる

Description

シール構造及び遠心圧縮機
 本発明は、シール構造及び遠心圧縮機に関するものである。
 本願は、2010年9月9日に日本に出願された特願2010-201803号について優先権を主張し、その内容をここに援用する。
 周知のように、多段遠心圧縮機においては、回転軸に複数のインペラが取り付けられてロータが構成されると共に、このロータを収容するケーシング内において軸方向に相互に隣接する二つのインペラを連通させる縦断面略U字状のU字状流路が構成されており、上流から下流に進むに従って作動ガス主流の圧力が増加する。
 この多段遠心圧縮機においては、例えば流路を主流の低圧側(上流側のU字状流路)と高圧側(下流側のU字状流路)とに仕切る内部仕切壁と、主流を通過させてエネルギを付与するインペラとの間に隙間を形成している。このような隙間をシールするために、シール部材(例えば、ラビリンスシール)が設けられている。
 上記シール部材を有する多段遠心圧縮機は、旋回流(スワール)となる周方向速度成分を持つ流体がシール部材を通過する際にロータに励振力を作用させるので、ロータが不安定に振動することがある。その結果、騒音が発生したり、ロータと周辺部品との接触によって破損が生じたりする恐れがある。
 下記特許文献1には、上記U字状流路のうちディフューザ部から、該ディフューザ部を画定する内部仕切壁に配設されたシール部材に高圧流体を供給している。より具体的には、内部仕切壁にディフューザ部とシール部材とに連通する流体通路を形成し、ディフューザ部における高圧の流体をシール部材に供給することで、旋回流を打ち消すと共にロータに作用する励振力を抑えている。
特開2003-148397号公報
 しかしながら、従来の技術においては、内部仕切壁に流体通路を形成しなければならないために、構成が複雑となって加工に労力を要するという問題があった。
 本発明は、このような事情を考慮してなされたもので、励振力を抑制すると共に、構成を簡素にして加工に要する労力を軽減することを課題とする。
 本発明に係るシール構造は、中心軸周りに回転すると共に主流を通過させる回転体と前記回転体に隙間を有して配された静止体とで構成された流路を対象として、前記隙間をシールするシール構造であって、前記隙間に設けられ、前記主流から前記隙間に流入した流体を高圧側と低圧側とに区分するシール部材と、前記隙間のうち前記流体の高圧側に設けられ、前記流体を通過させると共に前記流体の速度成分のうち前記回転体の回転方向の速度成分を小さくする変速部材とを備える。
 この構成によれば、回転体と静止体との隙間のうち流体の高圧側に設けられ、流体を通過させると共に回転体の回転方向(以下、単に正回転方向という。)の速度成分を小さくする変速部材を備えるので、変速部材を通過してシール部材に到達する流体の正回転方向の速度成分が小さくなる。これにより、正回転方向の速度成分が小さくなった状態で流体がシール部材を通過するので、回転体に作用する励振力を抑制することができる。
 さらに、変速部材を設けるだけで、回転体に作用する励振力を抑制するので、静止体に流体通路を形成する場合に比べて、構成が簡素になって加工に要する労力を軽減することができる。
 また、静止体に流体通路を形成してシール部材に高圧流体を供給した場合には、シール部材が区分する流体の高圧側と低圧側とで差圧が大きくなるので、シール部材を通過する流体の量が大きくなるが、上記の構成によれば、シール部材に高圧流体を供給した場合に比べて前記差圧が小さくなるので、シール部材を通過する流体を少量に抑えることができる。
 なお、「回転方向の速度成分を小さくする」とは、回転方向の速度成分を0に近づけることに加えて、負の値にすることを含む意味で用いている。
 また、前記変速部材は、前記回転方向の逆方向の速度成分を前記流体に付与する。
 この構成によれば、変速部材が正回転方向の逆方向の速度成分を流体に付与するので、流体の正回転方向の速度成分をより小さくすることができ、回転体に作用する励振力をさらに抑制することができる。
 また、前記変速部材は、前記主流側から前記隙間に前記流体が流入する流体流入部に設けられている。
 この構成によれば、変速部材が流体流入部に設けられているので、隙間に流入する際に流体の正回転方向の速度成分を小さくすることで、流体流入部からシール部材に向かう流体の正回転方向の速度成分が小さくなる。これにより、正回転方向の速度成分を有する流体が流体流入部からシール部材の間を通過する際に生じる励振力を低下させると共に、シール部材を通過する際に生じる励振力を低下させる。これにより、回転体に作用する励振力を大幅に抑制することができる。
 また、前記変速部材は、前記静止体側に設けられている。
 この構成によれば、変速部材が静止体側に設けられているので、変速部材を回転体側に設けた場合のように回転体の回転バランスを調整する必要がなく、加工に要する労力をさらに軽減することができる。
 また、前記変速部材は、前記回転体側に形成され、前記流体の通過を阻止する通過阻止部と、前記静止体側に形成され、前記主流側と前記シール部材側とに貫通すると共に前記主流側の開口部が前記シール部材側の開口部に対して前記回転方向の逆方向にずらされた位置に形成された貫通孔を備える変速部とを有する。
 この構成によれば、変速部材が、流体の通過を阻止する通過阻止部と、主流側とシール部材側とに貫通する貫通孔が形成された変速部とを備えるので、簡素な構成で、正回転方向の逆方向の速度成分を流体に付与することができる。
 また、前記変速部材は、前記隙間のうち前記回転体と前記静止体とが前記回転体の径方向に対向する位置に設けられている。
 この構成によれば、隙間のうち回転体と静止体とが径方向に対向する位置に変速部材が設けられているので、回転体の軸方向のスラスト力によって隙間の大きさが変動せず、流体の正回転方向の速度成分を継続して小さくすることができ、励振力抑制効果を安定して得ることができる。
 さらに、本発明に係る遠心圧縮機は、前記回転体と前記静止体とで構成された流路を有する遠心圧縮機であって、前記回転体は、円盤状のハブと前記ハブから延出する複数のブレードと前記複数のブレードの外周端を被覆するシュラウドとを有するインペラを備え、前記静止体は、前記インペラを収容するケーシングと、前記流路を前記主流の低圧側と高圧側とに仕切る内部仕切壁とを備え、前記インペラのシュラウドと前記内部仕切壁との間に形成された第一の隙間をシールするシール構造として、上記のうちいずれか一に記載のシール構造を備える。
 また、前記回転体と前記静止体とで構成された流路を有する遠心圧縮機であって、前記回転体は、円盤状のハブと前記ハブから延出する複数のブレードとを有するインペラを備え、前記静止体は、前記インペラを収容するケーシングと、前記ケーシングの内部と外部とを仕切る端部仕切壁とを備え、前記インペラのハブと前記端部仕切壁との間に形成された第二の隙間をシールするシール構造として、上記のうちいずれか一に記載のシール構造を備える。
 また、前記回転体と前記静止体とで構成された流路を有する遠心圧縮機であって、前記回転体は、円盤状のハブと前記ハブから延出する複数のブレードと前記複数のブレードの外周端を被覆するシュラウドとを有するインペラを備え、前記静止体は、前記インペラを収容するケーシングと、前記流路を前記主流の低圧側と高圧側とに仕切る内部仕切壁と、前記ケーシングの内部と外部とを仕切る端部仕切壁とを備え、前記インペラのシュラウドと前記内部仕切壁との間に形成された第一の隙間と、前記インペラのハブと前記端部仕切壁との間に形成された第二の隙間とをそれぞれシールするシール構造として、上記のうちいずれか一に記載のシール構造を備える。
 上記各構成によれば、回転体に作用する励振力を抑制して安定して稼働させることができると共に、製造の労力を軽減することができる。
 さらに、シール部材に高圧流体を供給した場合に比べて、シール部材が区分する流体高圧側と流体低圧側とで差圧が小さくなるので、シール部材を通過する流体を少量に抑えることができると共に体積効率を維持して遠心圧縮機の効率を良好に維持することができる。
 本発明に係るシール構造によれば、励振力を抑制すると共に、構成を簡素にして加工に要する労力を軽減することができる。
 また、本発明に係る遠心圧縮機によれば、回転体に作用する励振力を抑制して安定して稼働させることができると共に、製造の労力を軽減することができる。
本発明の実施形態に係る多段遠心圧縮機1の概略構成断面図である。 本発明の実施形態に係る多段遠心圧縮機1の要部拡大断面図であって、図1における要部Iの拡大図である。 本発明の実施形態に係る多段遠心圧縮機1の要部拡大断面図であって、インペラ22Fの流出部22b近傍を示している。 本発明の実施形態に係る多段遠心圧縮機1の要部拡大断面図であって、図2におけるII-II線断面図である。 本発明の実施形態に係る多段遠心圧縮機1の第一の変形例を示す要部拡大断面図である。 本発明の実施形態に係る多段遠心圧縮機1の第二の変形例を示す要部拡大断面図である。 本発明の実施形態に係るシール構造50の変形例であるシール構造50aを示す要部拡大図である。 本発明の実施形態に係るシール構造60の変形例であるシール構造60aを示す要部拡大図である。 本発明の実施形態に係る多段遠心圧縮機1において、シール構造50aとシール構造60aとを適用した例を示す要部拡大断面図である。 本発明の実施形態に係る多段遠心圧縮機1において、シール構造50とシール構造60aとを適用した例を示す要部拡大断面図である。 本発明の実施形態に係る多段遠心圧縮機1において、シール構造50aとシール構造60とを適用した例を示す要部拡大断面図である。
 以下、図面を参照し、本発明の実施の形態について説明する。なお、以下の説明に用いる各図面では、各部材や構成要素を認識可能な大きさとするため、各部材の縮尺を適宜変更している。
(遠心圧縮機)
 図1は、本発明の実施形態に係る多段遠心圧縮機(遠心圧縮機)1の概略構成断面図であり、図2は、図1における要部Iの拡大図である。
 図1に示すように、この多段遠心圧縮機1は、ケーシング11と複数のダイヤフラム12(12A~12F),13(13A~13E),14(14A,14B)とを備える静止体10と、回転軸21と複数のインペラ22(22A~22F)とを備える回転体20とを含んで構成されている。
 なお、多段遠心圧縮機1の中心軸P(回転軸21の中心軸)の延在方向を単に「軸方向」という。
 図1に示すように、ケーシング11は、筒状に形成されたものであって筒軸を中心軸Pに重ねている。
 ケーシング11は、軸方向両端に形成された開放部11aがダイヤフラム14A、開放部11aがダイヤフラム14Bによってそれぞれ閉塞されている。このケーシング11には、軸方向一端側において作動ガス(流体)Gが外部から導入される導入部11cが形成され、軸方向他端側において作動ガスGを外部に吐出する吐出部11dが形成されている。
 このケーシング11は、内部にダイヤフラム12(12A~12F),13(13A~13E)を収容している。
 図1に示すように、ダイヤフラム(内部仕切壁)12A~12E,13A~13Eは、それぞれ対となってインペラ収容室17A~17Eと、作動ガスGの主流の流路の一部とを画定している。また、ダイヤフラム12Fは、ダイヤフラム14Bと共に、インペラ収容室17Fと主流の流路の一部とを画定している。
 本明細書においては、対となるダイヤフラム12,13に同一のアルファベットを付すと共に、収容・被収容関係にあるダイヤフラム12,13及びインペラ収容室17と、インペラ22とに同一のアルファベットを付す。
 図1に示すように、ダイヤフラム12A~12Eは、円板環状の部材であり、他端面(軸方向他方側)の中央側に収容凹部12aが形成されている(図2参照)。このダイヤフラム12A~12Eの収容凹部12aの中心側には、インペラ22A~22Eのシュラウド25の形状に合わせて形成された縮径凹部12bが更に深く形成されている。
 また、ダイヤフラム12Fは、円板環状の部材であり、他端面(軸方向他方側)の中央側にインペラ22Fのシュラウド25の形状に合わせて形成された縮径凹部12bが形成されている。
 これらダイヤフラム12A~12Fは、図1に示すように、それぞれの縮径凹部12bを軸方向他方側に向けた状態で、軸方向に連接収容されている。
 ダイヤフラム13A~13Eは、ダイヤフラム12A~12Eよりも小径に形成された円板環状の部材であり、それぞれ一端面(軸方向一方側)の中央側に円形凹部13aが形成されている(図2参照)。このダイヤフラム13A~13Eは、対をなすダイヤフラム12A~12Eの収容凹部12aに同軸状に収容されている。この状態において、ダイヤフラム13A~13Eは、ダイヤフラム12A~12Eに間隙を形成することで流路を画定していると共に、円形凹部13aが縮径凹部12b側に向くことでインペラ収容室17A~17Eを画定している。
 同様に、円板環状の部材からなるダイヤフラム14Bは、一端面(軸方向一方側)の中央側に円形凹部14aが形成されており、円形凹部14aがダイヤフラム12Fの縮径凹部12b側に向くことでインペラ収容室17Fを画定している。なお、この円形凹部14aの中心側には、後述するバランスピストン26の配置空間が形成されている。
 ダイヤフラム(端部仕切壁)14Aには、図1に示すように、ジャーナル軸受16a及びスラスト軸受16bが配設され、ダイヤフラム(端部仕切壁)14Bには、ジャーナル軸受16aが配設されており、これらが回転軸21を回転可能に支持している。
(回転体)
 回転軸21は、図1に示すように、ケーシング11及びダイヤフラム12A~12F,13A~13E,ダイヤフラム14A,14Bを挿通しており、中心軸P周りに回転可能に支持されている。
 この回転軸21の他端側には、バランスピストン26が配設されている。
 インペラ22A~22Fは、図1に示すように、回転軸21に軸方向に間隔を開けて六つ設けられており、上述したインペラ収容室17A~17Fにそれぞれ収容されている。
 各インペラ22は、図2に示すように、円盤状のハブ23と、複数のブレード24と、シュラウド25とを備えている。ハブ23は、作動ガスGの流入部22aから流出部22bに進むにつれて漸次拡径している。ブレード24はハブ23の外周から放射状に延出し、シュラウド25はこれらブレード24の外周端を被覆している。
 (流路)
 上記構成からなる多段遠心圧縮機1は、図1に示すように、軸方向において互いに隣接する二つのインペラ22がU字状流路15で接続されている。なお、一段目のインペラ22Aの流入部22aはケーシング11の導入部11cに連通しており、最終段のインペラ22Fの流出部22bはケーシング11の吐出部11dに連通している(図1参照)。
 各U字状流路15は、図1に示すように、ダイヤフラム13が、対をなすダイヤフラム12及び隣接するダイヤフラム12に間隙を形成することで画定されたものである。
 各U字状流路15は、図2に示すように、ディフューザ部15aと、リターンベンド部15bと、リターン部15cとを備えている。ディフューザ部15aは、インペラ22の流出部22bに接続されており、インペラ22から流出した作動ガスGの主流の速度エネルギを圧力エネルギに変換する。リターンベンド部15bは、ディフューザ部15aの下流側に連続して形成されており、径方向外周側に向かって流れる主流の向きを反転させて径方向中心に向ける。リターン部15cは、リターンベンド部15bの下流側に連続して形成されており、主流を下流側のインペラ22に導く。
 (第一隙間、第二隙間)
 上記構成からなる多段遠心圧縮機1においては、図2に示すように、インペラ22のシュラウド25とダイヤフラム12との間に、シュラウド25とダイヤフラム12との接触を避けるための第一隙間(隙間、第一の隙間)31が形成されている。
 この第一隙間31は、図2に示すように、インペラ22の流入部22aの上流側において径方向に開口する上流側開口31aから、インペラ22の流出部22bの下流側において軸方向に開口する下流側開口31bまで延在しており、断面視で湾曲状に形成されている。より具体的には、上流側開口31aから径方向外周側に延在した後に、シュラウド25に沿って漸次拡径し、軸方向他方側に延在して下流側開口31bまで延在している。
 同様に、最終段のインペラ22Fのハブ23と回転軸21とバランスピストン26と、ダイヤフラム14Bとの間には、第二隙間(隙間、第二の隙間)32が形成されている。
 この第二隙間32は、最終段のインペラ22Fにおける流出部22bの下流側において軸方向に開口する内側開口32bから、ケーシング11の外部に連通する外側開口32aまで延在しており、断面視で屈曲状のものである。より具体的には、内側開口32bから軸方向他方側に延在した後に、ハブ23及びダイヤフラム14Bに沿って径方向中心側に延在した後に屈曲して、バランスピストン26及びダイヤフラム14Bに沿って軸方向他方側に延在し、最終的に外側開口32aに連通している。
(シール構造)
 多段遠心圧縮機1は、上記の第一隙間31と第二隙間32とを封止するシール構造50とシール構造60とを有している。なお、図1においては、シール構造50,60の図示を省略している。
 シール構造50は、ラビリンスシール(シール部材)51Aと、変速部材52Aとを備えている。
 ラビリンスシール51Aは、ダイヤフラム12に固定された複数の円環状のフィン部材からなる。このラビリンスシール51Aは、第一隙間31のうちシュラウド25に沿って漸次拡径する部分の下流側開口31b側に配設されている。ラビリンスシール51Aは、各フィン部材がダイヤフラム12から径方向中心側に向けて延出し、各フィン部材の先端とシュラウド25との間に径方向の微小間隙を形成している。
 図3は、図2の要部拡大断面図であり、図4は、図2のII-II線断面図である。なお、図4においては、ラビリンスシール51Aの図示を省略している。
 変速部材52Aは、円環状の部材であり、第一隙間31のうち下流側開口31bから軸方向一方側に延在する部分(ガス流入部31c)に配設されている(図3参照)。すなわち、変速部材52Aは、図3及び図4に示すように、第一隙間31のうち、インペラ22のシュラウド25とダイヤフラム12とが径方向に対向する位置に配設されている。
 この変速部材52Aは、インペラ22側(外周側)に形成された通過阻止部53と、ダイヤフラム12側(内周側)に形成された変速部54とを有している。
 通過阻止部53は、変速部54と連続して形成されており、変速部54からインペラ22のシュラウド25に向けて延出し、先鋭状に形成された一つの先端とシュラウド25との間に径方向の微小間隙を形成している。
 変速部54は、図3に示すように、外周側をダイヤフラム12に固定されており、図4に示すように、主流側とラビリンスシール51A側とに貫通する貫通孔55が複数形成されている。これら複数の貫通孔55は、周方向に等しい間隔を空けて穿孔されている。
 図4に示すように、各貫通孔55は、断面形状が円形に形成され、主流側の開口部55aからラビリンス側の開口部55bまで真直状に延びている。また、各貫通孔55は、ラビリンスシール51A側の開口部55bが主流側の開口部55aに対して正回転方向の逆方向にずらされた位置に形成されている。なお、図3中の貫通孔55は、本来であれば破線で図示すべきであるが理解容易のために実線で図示している。
 シール構造60は、ラビリンスシール(シール部材)51Bと、変速部材52Bとを備えている。
 ラビリンスシール51Bは、図2に示すように、ラビリンスシール51Aと同様の構成からなり、バランスピストン26の外周に固定されており、バランスピストン26からダイヤフラム14Bに向けて延出する複数の円環状のフィン部材の先端とダイヤフラム14Bとの間に径方向の微小間隙を形成している。
 変速部材52Bは、図3に示すように、変速部材52Aと同様の構成からなり、図2に示すように、第二隙間32のうち内側開口32bから軸方向他方側に延在する部分(ガス流入部32c)に配設されている。すなわち、変速部材52Bは、第二隙間32のうちインペラ22Fとダイヤフラム14Bとが、インペラ22Fの径方向に対向する位置に配設されている。
 次に上記構成からなるシール構造50,60の励振力低減作用について図を用いて説明する。
 図1に示すように、回転体20を回転駆動すると、導入部11cから流入した作動ガスGがインペラ22A~22FとU字状流路15とを交互に流れて段階的に圧縮され、高圧となった作動ガスGが吐出部11dから外部に吐出される。
 インペラ22を通過する主流は、インペラ22の回転によって速度エネルギ及び圧力エネルギが付与されることから、インペラ22に流入前の圧力に比べてインペラ22から流出後の圧力のほうが高くなり、第一隙間31の下流側開口31bと上流側開口31aとにおいて圧力勾配が生じる。
 このため、インペラ22から流出した主流における一部の作動ガスGが、下流側開口31b及び変速部材52Aを介して第一隙間31に流入する。そして、第一隙間31に流入した作動ガスGは、ラビリンスシール51Aによって上流側開口31a側への通過が阻害されることにより、高圧側と低圧側とに区分されることとなる。
 ところで、作動ガスGが第一隙間31に流入する際には、図3に示すように、上記変速部材52Aの通過阻止部53がインペラ22のシュラウド25と微小間隙を形成して、作動ガスGの通過を阻止する。このため、作動ガスGは、変速部54の貫通孔55を通過して第一隙間31に流入することとなる。
 ここで、インペラ22から流出した作動ガスGは、インペラ22の回転によって正回転方向の速度成分を有しているが、変速部54の貫通孔55を通過することで正回転方向とは逆方向の速度成分が付与される。より詳細には、正回転方向の接線ベクトルに対して逆方向に向かう速度成分を付与する。
 そうすると、作動ガスGの正回転方向の速度成分が打ち消されて小さくなる。
 変速部材52Aを通過した作動ガスGは、第一隙間31を流れてラビリンスシール51Aに到達する。
 この際、作動ガスGの正回転方向の速度成分が打ち消されて小さくなっていることから、第一隙間31を流れる作動ガスGが回転体20に作用させる励振力は僅かである。
 さらに、ラビリンスシール51Aに到達した作動ガスGの正回転方向の速度成分が小さくなることから、ラビリンスシール51Aを通過する作動ガスGが回転体20に作用させる励振力は僅かである。
 一方、最終段のインペラ22Fを通過した作動ガスGの主流は(図3参照)、大気圧よりも高圧となるために、第二隙間32の内側開口32bと外側開口32aとで圧力勾配が生じ、作動ガスGが、内側開口32b及び変速部材52Bを介して第二隙間32に流入する。
 この第二隙間32に流入する作動ガスGは、変速部54の貫通孔55を通過して第二隙間32に流入することで正回転方向とは逆方向の速度成分が付与され、正回転方向の速度成分が打ち消されて小さくなる(図2,図3参照)。
 変速部材52Bを通過した作動ガスGは、第二隙間32を流れてラビリンスシール51Bに到達する。
 この際、作動ガスGの正回転方向の速度成分が打ち消されて小さくなっていることから、第二隙間32を流れる作動ガスGが回転体20に作用させる励振力は僅かである。
 さらに、ラビリンスシール51Bに到達した作動ガスGの正回転方向の速度成分が小さくなることから、ラビリンスシール51Bを通過する作動ガスGが回転体20に作用させる励振力は僅かである。
 以上説明したように、シール構造50,60によれば、作動ガスGを通過させると共に正回転方向の速度成分を小さくする変速部材52A,52Bを備えるので、変速部材52A,52Bを通過してラビリンスシール51A,51Bに到達する作動ガスGの正回転方向の速度成分が小さくなる。これにより、ラビリンスシール51A,51Bを通過する作動ガスGの正回転方向の速度成分が小さくなるので、回転体20に作用する励振力を抑制することができる。
 さらに、変速部材52(52A,52B)を設けるだけで、回転体20に作用する励振力を抑制するので、ダイヤフラム12,14Bに作動ガスGの通路を形成する場合に比べて、構成が簡素になって加工に要する労力を軽減することができる。
 また、作動ガスGの通路を形成してラビリンスシール51A,51Bに高圧の作動ガスGを供給して作動ガスGの正回転方向の速度成分を小さくした場合には、ラビリンスシール51A,51Bが区分する作動ガスGの高圧側と低圧側とで差圧が大きくなるので、ラビリンスシール51A,51Bを通過する作動ガスGの量が大きくなる。シール構造50,60によれば、ラビリンスシール51A,51Bに高圧作動ガスGを供給した場合に比べて前記差圧が小さくなるので、ラビリンスシール51A,51Bを通過する作動ガスGを少量に抑えることができる。これにより、体積効率を維持して多段遠心圧縮機1の効率を良好に維持することができる。
 また、変速部材52A,52Bが正回転方向の逆方向の速度成分を作動ガスGに付与するので、作動ガスGの正回転方向の速度成分をより小さくすることができ、回転体20に作用する励振力をさらに抑制することができる。
 また、変速部材52A,52Bが、主流側から第一隙間31と第二隙間32とに作動ガスGが流入するガス流入部31c,32cに設けられている。そこで、第一隙間31と第二隙間32とに作動ガスGが流入する際に正回転方向の速度成分を小さくすることで、ガス流入部31c,32cからラビリンスシール51A,51Bに向かう作動ガスGの正回転方向の速度成分が小さくなる。これにより、正回転方向の速度成分を有する作動ガスGがガス流入部31c,32cからラビリンスシール51A,51Bに向かう際に生じる励振力を低下させると共に、ラビリンスシール51A,51Bを通過する際に生じる励振力を低下させる。これにより、回転体20に作用する励振力を大幅に抑制することができる。
 また、変速部材52A,52Bがダイヤフラム12,14B側に設けられているので、変速部材52A,52Bをインペラ22側に設けた場合のように回転体20の回転バランスを調整する必要がなく、加工に要する労力をさらに軽減することができる。
 また、変速部材52A,52Bが、作動ガスGの通過を阻止する通過阻止部53と、主流側とラビリンスシール51A,51B側とに貫通する貫通孔55が形成された変速部54とを備えるので、変速部材52A,52Bの構成をより簡素にすることができる。
 また、貫通孔55が主流側の開口部55aがラビリンスシール51A,51B側の開口部55bに対して回転方向の逆方向にずらされているので、簡素な構成で、正回転方向の逆方向の速度成分を作動ガスGに付与することができる。
 また、第一隙間31のうちインペラ22とダイヤフラム12とが径方向に対向する位置に変速部材52Aが設けられているので、遠心力や熱伸びによるインペラ22とダイヤフラム12との径方向の相対変位が、スラスト力や熱伸びによる軸方向の相対変位よりも小さい場合に、変速部材52Aがインペラ22に接触する可能性を低減することができる。
 また、インペラ22とダイヤフラム12とが軸方向に対向する位置に配設した場合に比べて、組み立て時においてダイヤフラム12に配設された変速部材52Aとインペラ22との相対位置を定め易くなり、製造の労力を軽減することができる。
 同様に、第二隙間32のうちインペラ22Fとダイヤフラム14Bとが径方向に対向する位置に変速部材52Bが設けられているので、上述した効果と同様の効果を得ることができる。
 上述した構成においては、第一隙間31にシール構造50を、第二隙間32にシール構造60を適用しているが、シール構造50,60のうちいずれか一方を省略して、図5に示すようにシール構造50のみを適用してもよいし、図6に示すようにシール構造60のみを適用してもよい。
 図7は、シール構造50の変形例であるシール構造50aを示す要部拡大図である。
 シール構造50aは、シール構造50と比べて変速部材52Aの配設箇所が異なっている。具体的には、シール構造50が第一隙間31のうちインペラ22のシュラウド25とダイヤフラム12とが径方向に対向する位置に変速部材52Aを配設したのに対して、シール構造50aは、第一隙間31のうちインペラ22のシュラウド25とダイヤフラム12とが軸方向に対向する位置に変速部材52Aを配設している点で異なる。
 このシール構造50aによれば、スラスト力や熱伸びによるインペラ22とダイヤフラム12との軸方向の相対変位が、遠心力や熱伸びによる径方向の相対変位よりも小さい場合に、変速部材52Aがインペラ22に接触する可能性を低減することができる。
 図8は、シール構造60の変形例であるシール構造60aを示す要部拡大図である。
 図8に示すように、シール構造60aは、シール構造60が第二隙間32のうちインペラ22のハブ23とダイヤフラム14Bとが径方向に対向する位置に変速部材52Bを配設したのに対して、第二隙間32のうちインペラ22のハブ23とダイヤフラム14Bとが軸方向に対向する位置に変速部材52Bを配設している点で異なる。
 この構成によっても、上述したシール構造50aと同様の効果を得ることができる。
 図9~図11は、シール構造50,50aとシール構造60,60aとのバリエーションを示す要部拡大断面図である。
 例えば、上述した構成においては、第一隙間31にシール構造50を、第二隙間32にシール構造60を適用しているが、図9に示すように、第一隙間31にシール構造50aを、第二隙間32にシール構造60aを適用してもよい。
 また、図10に示すように、第一隙間31にシール構造50を、第二隙間32にシール構造60aを適用してもよく、図11に示すように、第一隙間31にシール構造50aを、第二隙間32にシール構造60を適用してもよい。
 なお、上述した実施の形態において示した動作手順、あるいは各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 例えば、上述した実施の形態では、変速部材52A,52Bが、正回転方向の逆方向の速度成分を作動ガスGに付与している。ところで、正回転方向の速度成分を小さくさえすれば、ラビリンスシール51A,51Bを通過する作動ガスGの正回転方向の速度成分が小さくなるので、回転体20の励振力抑制効果を得ることが可能である。
 また、上述した実施の形態では、貫通孔55の断面形状を円形に形成したが、楕円形や多角形等に形成してもよい。同様に、貫通孔55は、直線状である必要はなく、曲線状であってもよい。
 また、貫通孔55は、軸方向から見た場合において、回転接線方向のみに延在させてもよい。さらに、上述したように、正回転方向の速度成分を小さくさえすれば、回転体20の励振力抑制効果を得ることが可能であるため、貫通孔55を径方向だけに延在させてもよい。
 また、上述した実施の形態では、変速部材52A,52Bの位置をそれぞれ下流側開口31b側、内側開口32b側に位置させたが、ラビリンスシール51A,51Bよりも作動ガスGの高圧側に位置することを条件として、上流側開口31a側、外側開口32a側に位置させてもよい。
 なお、ラビリンスシール51A,51Bの位置は、適宜変更が可能である。
 また、上述した実施の形態では、通過阻止部53の先鋭状に形成された先端を一つとしたが二つ以上にしてもよい。
 また、上述した実施の形態では、シール部材としてラビリンスシールを用いたが、シール部材であれば他の構成のものでもよく、ブラシシールやハニカムシール、あるいは、薄板を周方向に積層した軸シール機構を用いてもよい。
 また、上述した実施の形態では、変速部材52A,52Bを静止体10側に配設したが、回転体20側に配設してもよい。
 また、上述した実施の形態では、多段遠心圧縮機1に本発明を適用したが、単段の遠心圧縮機に本発明を適用してもよい。
 また、上述した実施の形態では、本発明に係るシール構造を遠心圧縮機に適用したが、他の流体機械に適用してもよい。
 本発明は、中心軸周りに回転すると共に主流を通過させる回転体と前記回転体に隙間を有して配された静止体とで構成された流路を対象として、前記隙間をシールするシール構造であって、前記隙間に設けられ、前記主流から前記隙間に流入した流体を高圧側と低圧側とに区分するシール部材と、前記隙間のうち前記流体の高圧側に設けられ、前記流体を通過させると共に前記流体の速度成分のうち前記回転体の回転方向の速度成分を小さくする変速部材とを備えるシール構造に関する。
 本発明によれば、正回転方向の速度成分が小さくなった状態で流体がシール部材を通過するので、回転体に作用する励振力を抑制することができる。
1…多段遠心圧縮機(遠心圧縮機)
10…静止体
11…ケーシング
12(12A~12F)…ダイヤフラム(内部仕切壁)
14(14A,14B)…ダイヤフラム(端部仕切壁)
20…回転体
21…回転軸
22(22A~22F)…インペラ
23…ハブ
24…ブレード
25…シュラウド
31…第一隙間(隙間、第一の隙間)
31c,32c…ガス流入部(流体流入部)
32…第二隙間(隙間、第二の隙間)
50,50a,60,60a…シール構造
51A,51B…ラビリンスシール(シール部材)
52(52A,52B)…変速部材
53…通過阻止部
54…変速部
55…貫通孔
55a…開口部
55b…開口部
G…作動ガス(流体)
P…中心軸

Claims (9)

  1.  中心軸周りに回転すると共に主流を通過させる回転体と前記回転体に隙間を有して配された静止体とで構成された流路を対象として、前記隙間をシールするシール構造であって、
     前記隙間に設けられ、前記主流から前記隙間に流入した流体を高圧側と低圧側とに区分するシール部材と、
     前記隙間のうち前記流体の高圧側に設けられ、前記流体を通過させると共に前記流体の速度成分のうち前記回転体の回転方向の速度成分を小さくする変速部材とを備えるシール構造。
  2.  前記変速部材は、前記回転方向の逆方向の速度成分を前記流体に付与する請求項1に記載のシール構造。
  3.  前記変速部材は、前記主流側から前記隙間に前記流体が流入する流体流入部に設けられている請求項1又は2に記載のシール構造。
  4.  前記変速部材は、前記静止体側に設けられている請求項1から3のうちいずれか一項に記載のシール構造。
  5.  前記変速部材は、前記回転体側に形成され、前記流体の通過を阻止する通過阻止部と、
     前記静止体側に形成され、前記主流側と前記シール部材側とに貫通すると共に前記主流側の開口部が前記シール部材側の開口部に対して前記回転方向の逆方向にずらされた位置に形成された貫通孔を備える変速部とを有する請求項4に記載のシール構造。
  6.  前記変速部材は、前記隙間のうち前記回転体と前記静止体とが前記回転体の径方向に対向する位置に設けられている請求項1から5のうちいずれか一項に記載のシール構造。
  7.  前記回転体と前記静止体とで構成された流路を有する遠心圧縮機であって、
     前記回転体は、円盤状のハブと前記ハブから延出する複数のブレードと前記複数のブレードの外周端を被覆するシュラウドとを有するインペラを備え、
     前記静止体は、前記インペラを収容するケーシングと、前記流路を前記主流の低圧側と高圧側とに仕切る内部仕切壁とを備え、
     前記インペラのシュラウドと前記内部仕切壁との間に形成された第一の隙間をシールするシール構造として、請求項1から6のうちいずれか一項に記載のシール構造を備える遠心圧縮機。
  8.  前記回転体と前記静止体とで構成された流路を有する遠心圧縮機であって、
     前記回転体は、円盤状のハブと前記ハブから延出する複数のブレードとを有するインペラを備え、
     前記静止体は、前記インペラを収容するケーシングと、前記ケーシングの内部と外部とを仕切る端部仕切壁とを備え、
     前記インペラのハブと前記端部仕切壁との間に形成された第二の隙間をシールするシール構造として、請求項1から6のうちいずれか一項に記載のシール構造を備える遠心圧縮機。
  9.  前記回転体と前記静止体とで構成された流路を有する遠心圧縮機であって、
     前記回転体は、円盤状のハブと前記ハブから延出する複数のブレードと前記複数のブレードの外周端を被覆するシュラウドとを有するインペラを備え、
     前記静止体は、前記インペラを収容するケーシングと、前記流路を前記主流の低圧側と高圧側とに仕切る内部仕切壁と、前記ケーシングの内部と外部とを仕切る端部仕切壁とを備え、
     前記インペラのシュラウドと前記内部仕切壁との間に形成された第一の隙間と、前記インペラのハブと前記端部仕切壁との間に形成された第二の隙間とをそれぞれシールするシール構造として、請求項1から6のうちいずれか一項に記載のシール構造を備える遠心圧縮機。
PCT/JP2011/070586 2010-09-09 2011-09-09 シール構造及び遠心圧縮機 WO2012033192A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11823666.0A EP2615338A4 (en) 2010-09-09 2011-09-09 Sealing structure and centrifugal compressor
US13/819,860 US20130164119A1 (en) 2010-09-09 2011-09-09 Seal structure and centrifugal compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-201803 2010-09-09
JP2010201803A JP2012057726A (ja) 2010-09-09 2010-09-09 シール構造及び遠心圧縮機

Publications (1)

Publication Number Publication Date
WO2012033192A1 true WO2012033192A1 (ja) 2012-03-15

Family

ID=45810788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070586 WO2012033192A1 (ja) 2010-09-09 2011-09-09 シール構造及び遠心圧縮機

Country Status (4)

Country Link
US (1) US20130164119A1 (ja)
EP (1) EP2615338A4 (ja)
JP (1) JP2012057726A (ja)
WO (1) WO2012033192A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014096708A1 (fr) * 2012-12-21 2014-06-26 Turbomeca Assemblage d'étanchéité pour turbomachine
EP2784327A3 (en) * 2013-03-25 2015-04-22 Doosan Heavy Industries & Construction Co., Ltd. Centrifugal compressor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101960714B1 (ko) * 2012-11-30 2019-03-22 한화파워시스템 주식회사 임펠러
DE102014224757A1 (de) * 2014-12-03 2016-06-09 Robert Bosch Gmbh Verdichter mit einem Dichtkanal
JP6523917B2 (ja) * 2015-10-27 2019-06-05 株式会社日立製作所 遠心ポンプ
US10227879B2 (en) 2016-02-11 2019-03-12 General Electric Company Centrifugal compressor assembly for use in a turbine engine and method of assembly
IT201600106889A1 (it) 2016-10-24 2018-04-24 Nuovo Pignone Tecnologie Srl Diaframma per compressore centrifugo
JP6935312B2 (ja) * 2017-11-29 2021-09-15 三菱重工コンプレッサ株式会社 多段遠心圧縮機
EP3587827B1 (en) * 2018-06-28 2024-07-10 Danfoss A/S Refrigerant compressor seal arrangements
JP7095445B2 (ja) * 2018-07-18 2022-07-05 株式会社デンソー シールリング及びこれを用いた弁装置
JP7082029B2 (ja) * 2018-10-26 2022-06-07 三菱重工コンプレッサ株式会社 遠心圧縮機及びシールユニット
US11486498B1 (en) 2021-09-10 2022-11-01 Hamilton Sundstrand Corporation Dynamic sealing labyrinth seals

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04159497A (ja) * 1990-10-19 1992-06-02 Hitachi Ltd 流体機械
JPH06129400A (ja) * 1992-10-14 1994-05-10 Hitachi Ltd ラビリンスホワール防止装置
JPH09177697A (ja) * 1995-12-26 1997-07-11 Mitsubishi Heavy Ind Ltd 流体機械
JP2003148397A (ja) 2001-11-07 2003-05-21 Mitsubishi Heavy Ind Ltd 多段圧縮機のスワール防止装置
JP2007177737A (ja) * 2005-12-28 2007-07-12 Mitsubishi Heavy Ind Ltd 遠心圧縮機
JP2008303767A (ja) * 2007-06-06 2008-12-18 Mitsubishi Heavy Ind Ltd 回転流体機械のシール装置および回転流体機械

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19852895A1 (de) * 1998-11-17 2000-05-18 Abb Research Ltd Vorrichtung und Verfahren zur gezielten Unterdrückung mechanischer Schwingungsmoden bei einer Rotationsmaschine
JP5314255B2 (ja) * 2007-06-06 2013-10-16 三菱重工業株式会社 回転流体機械のシール装置および回転流体機械

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04159497A (ja) * 1990-10-19 1992-06-02 Hitachi Ltd 流体機械
JPH06129400A (ja) * 1992-10-14 1994-05-10 Hitachi Ltd ラビリンスホワール防止装置
JPH09177697A (ja) * 1995-12-26 1997-07-11 Mitsubishi Heavy Ind Ltd 流体機械
JP2003148397A (ja) 2001-11-07 2003-05-21 Mitsubishi Heavy Ind Ltd 多段圧縮機のスワール防止装置
JP2007177737A (ja) * 2005-12-28 2007-07-12 Mitsubishi Heavy Ind Ltd 遠心圧縮機
JP2008303767A (ja) * 2007-06-06 2008-12-18 Mitsubishi Heavy Ind Ltd 回転流体機械のシール装置および回転流体機械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2615338A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014096708A1 (fr) * 2012-12-21 2014-06-26 Turbomeca Assemblage d'étanchéité pour turbomachine
FR3000145A1 (fr) * 2012-12-21 2014-06-27 Turbomeca Assemblage d'etancheite pour turbomachine
KR20150099516A (ko) * 2012-12-21 2015-08-31 터보메카 터보머신용 밀봉 조립체
CN104919186A (zh) * 2012-12-21 2015-09-16 涡轮梅坎公司 用于涡轮机的密封组件
JP2016505759A (ja) * 2012-12-21 2016-02-25 ターボメカTurbomeca ターボ機械用密封アセンブリ
RU2671668C2 (ru) * 2012-12-21 2018-11-06 Турбомека Уплотнительное соединение для газотурбинной установки
US10247192B2 (en) 2012-12-21 2019-04-02 Safran Helicopter Engines Sealing assembly for turbomachine
KR102199039B1 (ko) 2012-12-21 2021-01-06 사프란 헬리콥터 엔진스 터보머신용 밀봉 조립체
EP2784327A3 (en) * 2013-03-25 2015-04-22 Doosan Heavy Industries & Construction Co., Ltd. Centrifugal compressor

Also Published As

Publication number Publication date
JP2012057726A (ja) 2012-03-22
US20130164119A1 (en) 2013-06-27
EP2615338A1 (en) 2013-07-17
EP2615338A4 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
WO2012033192A1 (ja) シール構造及び遠心圧縮機
JP5709898B2 (ja) 回転機械
JP5959816B2 (ja) ラジアルガスエキスパンダ
JP5456491B2 (ja) 両吸込ポンプ
WO2012001995A1 (ja) シール装置及びこれを備えた流体機械
JP2009264205A (ja) 遠心圧縮機
JP6405590B2 (ja) 圧縮機
US10947988B2 (en) Impeller and centrifugal compressor
WO2012001997A1 (ja) シール装置及びこれを備えた流体機械
US10851803B2 (en) Multi-stage centrifugal compressor
JP2024086911A (ja) インペラ、及び遠心圧縮機
JP2016522357A (ja) 遠心ロータ
WO2016043090A1 (ja) 回転機械
WO2018155546A1 (ja) 遠心圧縮機
CN111448396B (zh) 可变静叶片、及压缩机
WO2016121046A1 (ja) 遠心圧縮機のケーシング、及び、遠心圧縮機
US11401944B2 (en) Impeller and centrifugal compressor
WO2020183933A1 (ja) 回転機械、及びシールリング
CN111608952B (zh) 叶轮以及旋转机械
JP6521277B2 (ja) 車室組み立て体及び回転機械
JP7476125B2 (ja) 遠心回転機械
JP7351784B2 (ja) 遠心回転機械
JP6653732B2 (ja) 真空ポンプユニット
RU2189502C2 (ru) Центробежный компрессор
KR20170108141A (ko) 안티-캐비테이션 구조를 가지는 액체 링 펌프 포트 부재

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823666

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13819860

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011823666

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE