WO2011121887A1 - ばね鋼およびその製造方法 - Google Patents

ばね鋼およびその製造方法 Download PDF

Info

Publication number
WO2011121887A1
WO2011121887A1 PCT/JP2011/001156 JP2011001156W WO2011121887A1 WO 2011121887 A1 WO2011121887 A1 WO 2011121887A1 JP 2011001156 W JP2011001156 W JP 2011001156W WO 2011121887 A1 WO2011121887 A1 WO 2011121887A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
spring steel
corrosion
component composition
Prior art date
Application number
PCT/JP2011/001156
Other languages
English (en)
French (fr)
Inventor
稔 本庄
長谷 和邦
木村 秀途
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US13/638,375 priority Critical patent/US8608874B2/en
Priority to KR1020127028210A priority patent/KR101311386B1/ko
Priority to CN201180022549.5A priority patent/CN102884216B/zh
Priority to EP11762141.7A priority patent/EP2557195B1/en
Publication of WO2011121887A1 publication Critical patent/WO2011121887A1/ja
Priority to US14/075,594 priority patent/US9618070B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/021Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by their composition, e.g. comprising materials providing for particular spring properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention is, for example, a high-strength spring steel used as a material for automobile suspension springs, torsion bars, stabilizers, and the like, particularly high-strength, excellent in pitting corrosion resistance and corrosion fatigue characteristics, and suitable as an undercarriage part for automobiles.
  • the present invention relates to a strong spring steel and a manufacturing method thereof.
  • General-purpose spring steel is stipulated in JIS G4801, etc.
  • the strength after quenching and tempering is about 1600 to 1800MPa.
  • Quenching and tempering treatment is performed after heat forming into a spring shape. In the case of a cold formed spring, after drawing, quenching and tempering treatment is performed to form a spring shape.
  • SUP7 described in JIS G4801 as a material generally used so far.
  • the fatigue properties in the atmosphere are improved when the strength is increased, but the fatigue properties after corrosion are decreased, so that the deterioration of the corrosion fatigue properties due to the increased strength is a problem. Therefore, the upper limit of the usable hardness is the HRC51 level, and the upper limit is 1100 MPa as the design stress, and there is a limit to increase the strength.
  • Patent Document 1 by controlling the component composition and the FP value (the following formula 1a) between 2.5 and 4.5, a supercooled structure does not appear in the structure after rolling, and the strength after rolling is cold. It is said that it is suppressed to about 1350 MPa or less, which is easy to process, and uniform and sufficient quenching is performed by subsequent quenching and tempering, and the strength after quenching and tempering can be achieved to a level of 1900 MPa or more.
  • it is based on the addition of alloying elements that improve corrosion resistance, and even if the FP value is controlled in the range of 2.5 to 4.5, high strength spring steel with good pitting corrosion resistance and corrosion fatigue properties can be obtained. Is not limited.
  • Patent Document 2 in a spring steel in which at least a part of the surface of the spring steel base material is coated with an anticorrosion film functioning as a sacrificial anode, a carbonitride-forming element is added to the spring steel base material, and the spring steel base material is added.
  • a spring steel in which carbonitride is finely dispersed in the material is disclosed.
  • the anticorrosion film a metal film made of a metal or an alloy that is electrochemically lower than the spring steel base metal, or a metal that is electrochemically lower than the spring steel base metal in a non-metal film or its A composite film in which a large number of alloys are dispersed is used.
  • Patent Document 3 describes that C is reduced because C is the cause of a decrease in corrosion fatigue strength, and that the deterioration of sag resistance, which is a concern due to the reduction of C, is prevented by addition of Si, and the ratio of Si / C is It is disclosed that it is important. However, since there is a limit to reducing the amount of C, which is effective in suppressing the decrease in corrosion fatigue strength, high strength spring steel with good pitting corrosion resistance and corrosion fatigue characteristics is not always obtained with the Si / C ratio alone. Absent.
  • Patent Document 4 discloses that by reducing the Cr content, the amount of hydrogen generated at the tip of the corrosion pit can be suppressed, the penetration of hydrogen into the steel can be suppressed, the hydrogen embrittlement can be suppressed, and the hydrogen is a steel material. In the case of intrusion, hydrogen brittleness can be suppressed by trapping hydrogen with Ti and V. Therefore, it is disclosed that corrosion fatigue resistance can be improved by appropriately balancing the amount of Cr, Ti and V. Has been. However, even if the hydrogen embrittlement of the spring steel can be suppressed only by optimizing the amounts of Cr, Ti, and V, a high-strength spring steel having good pitting corrosion resistance and corrosion fatigue characteristics is not always obtained.
  • Patent Document 5 after heat treatment is performed so that HRC is 50.5 to 55.0, corrosion shot fatigue is performed by performing warm shot peening so as to generate a residual stress of 600 MPa or more at a position 0.2 mm below the surface. It is disclosed that the characteristics can be improved. However, since a process of performing shot peening on the spring steel is required, the manufacturing cost is increased. Moreover, although application of residual stress by shot peening is effective in suppressing the occurrence of surface cracks, high strength spring steel with good pitting corrosion resistance and corrosion fatigue properties is not always obtained.
  • Patent Document 6 the amount of C, Si, Mn, Cr, Ni, and Cu from the viewpoint of the hardness of the spring steel, the amount of C, Cr, Ni, and Cu from the viewpoint of the pit shape, and the viewpoint of hydrogen embrittlement resistance.
  • a spring steel having an excellent corrosion fatigue property is disclosed by appropriately balancing the amounts of C, Si, Mn, Cr, Ni, Cu, Ti, and Nb.
  • An object of the present invention is to provide a high-strength spring steel that suppresses the depth of pitting corrosion that occurs and is high in strength and excellent in pitting corrosion resistance and corrosion fatigue characteristics together with a preferable manufacturing method thereof.
  • the gist configuration of the present invention is as follows. 1.
  • the component composition further includes: Al: 0.01 mass% or more and 0.50 mass% or less, 3.
  • the component composition further includes: W: 0.001% to 2.0% by mass, Nb: 0.001 mass% or more and 0.1 mass% or less,
  • the component composition further includes: B: The spring steel as described in any one of 1 to 4 above, containing 0.0002 mass% or more and 0.005 mass% or less.
  • the component composition further includes: N: The spring steel as described in any one of 1 to 5 above, containing 0.005 mass% or more and 0.020 mass% or less.
  • C more than 0.35% by mass and less than 0.50% by mass
  • Si more than 1.75 mass% and 3.00 mass% or less
  • Mn 0.2% by mass or more and 1.0% by mass or less
  • Cr 0.01% by mass or more and 0.04% by mass or less
  • P 0.025 mass% or less
  • S 0.025 mass% or less
  • the component composition further includes: Al: 0.01 mass% or more and 0.50 mass% or less, The manufacturing method of the spring steel of said 7 or 8 containing 1 type (s) or 2 or more types chosen from Cu: 0.005 mass%-1.0 mass% and Ni: 0.005 mass%-2.0 mass%.
  • the component composition further includes: W: 0.001% to 2.0% by mass, Nb: 0.001 mass% or more and 0.1 mass% or less, The manufacturing method of the spring steel as described in any one of 7 to 9 above, containing one or more selected from Ti: 0.001% by mass to 0.2% by mass and V: 0.002% by mass to 0.5% by mass. .
  • the component composition further includes: B: The method for producing spring steel as described in any one of 7 to 10 above, containing 0.0002 mass% or more and 0.005 mass% or less.
  • the component composition further includes: N: The manufacturing method of the spring steel in any one of said 7 thru
  • the spring steel of the present invention is C: more than 0.35% by mass and less than 0.50% by mass, Si: more than 1.75 mass% and 3.00 mass% or less, Mn: 0.2% by mass or more and 1.0% by mass or less, Cr: 0.01% by mass or more and 0.04% by mass or less, P: 0.025 mass% or less, S: 0.025 mass% or less, Mo: 0.1% by mass or more and 1.0% by mass or less and O: 0.0015% by mass or less under the condition that the PC value calculated by the above formula (1) is more than 3.3 to 8.0 or less, Or in addition, Al: 0.01 mass% or more and 0.50 mass% or less, Cu: 0.005% by mass or more and 1.0% by mass or less and Ni: 0.005% by mass or more and 2.0% by mass or less selected from 1 type or 2 types or more, Or in addition, W: 0.001% to 2.0% by mass, Nb: 0.001 mass% or more and 0.1 mass% or less, Ti: 0.001% by mass or more, Si
  • C more than 0.35% by mass and less than 0.50% by mass
  • C is an essential element for ensuring the necessary strength. If 0.35% by mass or less, it is difficult to ensure a predetermined strength, and in order to ensure a predetermined strength, an alloy The addition of a large amount of element is necessary, leading to an increase in alloy cost. On the other hand, addition of 0.50% by mass or more generates a large amount of carbides in the steel, and the pitting corrosion resistance decreases due to the preferential corrosion at the carbide-matrix interface, leading to deterioration of corrosion fatigue characteristics and toughness. From the above, the C content is more than 0.35 mass% and less than 0.50 mass%.
  • Si more than 1.75 mass% but not more than 3.00 mass% Si increases the strength of steel by improving the solid solution strengthening and temper softening resistance as a deoxidizer, and improves the sag resistance of the steel. Furthermore, it is an element added to improve pitting corrosion resistance. In the present invention, it is added in an amount exceeding 1.75% by mass. However, addition exceeding 3.00% by mass reduces ductility and cracks in the raw material during casting, necessitating care of the raw material, leading to increased manufacturing costs. Further, since the strength of the steel is increased, the toughness and coiling properties are significantly reduced. Therefore, the upper limit of Si is 3.00% by mass. For these reasons, the Si content is set to be more than 1.75 mass% and not more than 3.00 mass%.
  • Mn 0.2% by mass or more and 1.0% by mass or less Mn improves the hardenability of the steel and is useful for increasing the strength, so 0.2% by mass or more is added. However, addition exceeding 1.0% by mass increases the strength of the steel, leading to a decrease in the base metal toughness. Moreover, since the corrosion rate of steel is increased and the pitting depth is also increased, the corrosion fatigue characteristics are deteriorated. Therefore, the upper limit of Mn is 1.0% by mass. From the above, the amount of Mn is set to 0.2% by mass or more and 1.0% by mass or less.
  • P, S 0.025% by mass or less
  • P and S segregate at the grain boundaries and cause a reduction in the base metal toughness of the steel.
  • the corrosion rate is increased, and accordingly, the pitting depth is also increased.
  • S exists in steel as MnS
  • the pitting corrosion depth due to dissolution of MnS becomes deep. From the above, it is preferable to reduce these elements as much as possible. Therefore, both P and S are 0.025 mass% or less.
  • Cr 0.01% by mass or more and 0.04% by mass or less
  • Cr is an element that improves the hardenability of the steel and increases the strength. Therefore, 0.01 mass% or more is added. Moreover, it is an element which suppresses corrosion by densifying the rust produced
  • the Cr amount Is controlled to 0.04 mass% or less. From the above, the Cr content is 0.01 mass% or more and 0.04 mass% or less.
  • Mo 0.1% by mass or more and 1.0% by mass or less Mo is a particularly important element in the present invention. Mo is an element that improves the corrosion-inhibiting function and pitting corrosion resistance by forming a passive film, and should be added in an amount of 0.1% by mass or more. However, if added in excess of 1.0 mass%, the toughness is lowered due to the increase in strength, and the alloy cost is increased. Based on the above, the Mo content is 0.1 to 1.0 mass%.
  • O 0.0015% by mass or less O is bonded to Si or Al to form a hard oxide-based non-metallic inclusion, resulting in a decrease in fatigue life characteristics. Then, up to 0.0015% by mass is allowed.
  • PC value (the above formula (1)): more than 3.3 and less than 8.0
  • the inventors made spring steel by changing the component composition and the PC value, and investigated the pitting corrosion depth and corrosion fatigue resistance characteristics.
  • the pitting depth and the corrosion fatigue characteristic were implemented by the test method mentioned later.
  • Table 1 shows the component composition
  • Table 2 shows the evaluation results of the pitting depth and corrosion fatigue resistance.
  • FIG. 1 and FIG. 2 the evaluation results (vertical axis) of the pitting depth and the corrosion fatigue resistance characteristics are shown with respect to the PC value (horizontal axis).
  • the manufacturing conditions of the spring steel were the same except for the standard steel. That is, the manufacturing conditions are as follows. First, the billet melted by vacuum melting was heated to 1100 ° C. and hot-rolled to obtain a round bar having a diameter of 25 mm. Then, after normalizing for 1 hour at 950 ° C., the wire was drawn to a diameter of 15 mm. The obtained wire was subjected to quenching and tempering treatment by high frequency heating. In this heat treatment condition, heating was performed up to 1000 ° C. at a heating rate of 100 ° C./sec. As the tempering conditions, heating was performed up to 300 ° C. at a heating rate of 50 ° C./second, and air cooling was performed after holding for 20 seconds.
  • the reference steel (A-1: SUP7 compliant) was subjected to quenching and tempering after wire drawing with a diameter of 15 mm.
  • electric furnace heating hereinafter also simply referred to as furnace heating
  • quenching was performed with oil at 60 ° C.
  • tempering conditions the quenched steel was heated to 510 ° C., held for 1 hour, and then allowed to cool.
  • the ratio [Cr] / [Mo] (hereinafter referred to as AR value) is represented by the ratio of the added amount of Cr and Mo.
  • Cr is an element that increases the pitting depth as the addition amount increases
  • Mo is an element that decreases the pitting depth as the addition amount increases. Therefore, when it is desired to further improve the pitting corrosion depth, it is preferable to manage the addition amount ratio. That is, when the AR value exceeds 0.35, the pitting depth due to Cr becomes deep and the effect of suppressing the pitting depth due to Mo decreases, so the AR value is preferably set to 0.35 or less.
  • the spring steel of the present invention can contain the following components in addition to the above components in order to increase the strength and improve the pitting corrosion resistance and corrosion fatigue characteristics of the steel.
  • Al 0.01 mass% or more and 0.50 mass% or less
  • Cu 0.005 mass% or more and 1.0 mass% or less
  • Ni 0.005 mass% or more and 2.0 mass% or less
  • Cu or Ni is hardenability or tempering It is an element that increases the later strength and further improves the corrosion resistance of the steel, and can be selected and added.
  • Cu and Ni are preferably added at 0.005 mass% or more. However, if Cu is added in an amount of 1.0% by mass and Ni is added in an amount exceeding 2.0% by mass, the alloy cost is increased.
  • Al is an element excellent as a deoxidizing agent, and is an element effective for maintaining strength by suppressing austenite grain growth during quenching, so it is preferably added in an amount of 0.01% by mass or more.
  • Al is preferably added with an upper limit of 0.50% by mass.
  • W 0.001% to 2.0% by mass
  • Nb 0.001% to 0.1% by mass
  • Ti 0.001% to 0.2% by mass
  • V 0.002% to 0.5% by mass
  • W, Nb, Ti and V are all elements that increase the hardenability and strength of the steel after tempering, and can be selected and added according to the required strength.
  • W is an element that improves the pitting corrosion resistance of steel. In order to obtain such an effect, it is preferable to add 0.001% by mass or more for W, Nb, and Ti and 0.002% by mass or more for V, respectively.
  • Nb is added in an amount of more than 0.1% by mass and Ti is added in an amount of more than 0.2% by mass, a large amount of carbides are formed in the steel, and the pitting corrosion resistance is reduced due to the preferential corrosion at the carbide-matrix interface. As a result, the corrosion fatigue resistance is reduced.
  • Nb, Ti and V are preferably added with the above values as upper limits.
  • W is added in excess of 2.0% by mass, the strength is increased and the toughness is lowered, leading to an increase in alloy cost. Therefore, it is preferable to add W with an upper limit of 2.0% by mass.
  • B 0.0002 mass% or more and 0.005 mass% or less B is an element that increases the strength of the steel after tempering by increasing the hardenability, and can be contained if necessary. In order to acquire the said effect, adding at 0.0002 mass% or more is preferable. However, if added over 0.005% by mass, the workability in the cold state deteriorates. Therefore, B is preferably added in the range of 0.0002 to 0.005 mass%.
  • N 0.005% by mass or more and 0.020% by mass or less N is an element that improves the corrosion inhibiting function and pitting corrosion resistance of steel materials, and can be added at 0.005% by mass or more in order to exhibit this effect. However, if added over 0.020% by mass, nitrides are likely to be formed at the grain boundaries, causing intergranular corrosion and reducing the corrosion resistance of the steel. In addition, pitting corrosion resistance decreases due to preferential corrosion at the nitride-matrix interface, leading to deterioration in corrosion fatigue characteristics and toughness. From the above, the N amount when N is positively added is 0.005 to 0.020 mass%. As described above, the present invention includes a case where N is not positively added.
  • the N content is less than 0.005% by mass and is contained as an inevitable impurity.
  • the balance other than the elements described above is Fe and inevitable impurities.
  • the steel ingot having the above component composition can be used in both melting by a converter and vacuum melting. And a material such as a steel ingot, slab, bloom or billet is heated and hot-rolled, pickled and scaled, drawn, adjusted to a predetermined thickness, and used for spring steel.
  • Martensite fraction 90% or more Martensite is a structure necessary for obtaining strength.
  • excellent characteristics can be obtained by forming a martensite structure having a volume ratio of 90% or more. That is, when the volume fraction of martensite is less than 90%, the amount of untransformed phases such as retained austenite phase, which does not contribute to the increase in strength, and precipitates such as carbides increases, resulting in a high strength of over 1900 MPa in tensile strength. It will be difficult to achieve this.
  • This martensite fraction may be 100%.
  • the Martensite fraction can be increased to 90% or higher by heating to Ac 3 points or higher and quenching, but heating in a temperature range exceeding (Ac 3 points + 200 ° C.) coarsens prior austenite grains. It will be. Therefore, although it depends on the size of the steel material, it is kept in a temperature range of Ac 3 points or more (Ac 3 points + 200 ° C) and cooled to 200 ° C or less at a cooling rate of 10 ° C / s or more and quenched. However, it is most effective in achieving the above-described martensite fraction of 90% or more.
  • tempering process it is important to disperse the intra-grain carbide as finely as possible.
  • coarse carbides When coarse carbides are formed, a matrix and a local battery are formed, and the carbides are dissolved to form pitting corrosion. Corrosion is promoted at the bottom of the pitting corrosion and the pitting depth is increased. Corrosion fatigue properties decrease as the pitting depth increases.
  • tempering conditions are important in order to achieve the above tensile strength. For this purpose, it is effective to perform tempering in the temperature range of 150 to 500 ° C. and then to cool.
  • the steel material is made into a wire rod or steel bar by hot rolling and is preferably descaled by pickling and further subjected to a wire drawing treatment.
  • the spring is formed by the above-described quenching-before quenching treatment, quenching- It is preferable to carry out after tempering or after quenching.
  • the high-strength spring steel thus obtained has high strength, excellent pitting corrosion resistance and corrosion fatigue resistance, although it can be manufactured at low cost, and requires high strength of 1900 MPa or more, for example, an automobile. It can be applied to a suspension spring that is an underbody part.
  • the martensite fraction was determined by observing 20 thin-film samples collected from the vicinity of the wire 1 / 4D portion (D is the diameter of the wire) with a transmission electron microscope at a magnification of 20,000 times, and no cementite was precipitated. The area of the region was measured and determined as a martensite fraction based on the ratio of the measured area to the whole.
  • Tensile test was performed by taking a tensile test piece with a parallel part diameter of 6mm ⁇ x length of 32mm and a gripping part of 12mm ⁇ centering on 1 / 2D (D is the diameter of the wire), with a distance of 25mm between evaluation points and a tensile speed of 5mm / min. The test was conducted.
  • Spray salt water 5% salt water (50 ⁇ 5 g / l), specific gravity 1.029 to 1.036, pH 6.5 to 7.2
  • Test chamber temperature 35 °C Spray amount: 1.5 ⁇ 0.5ml / 80cm 2 / 1h ⁇ Constant temperature and humidity test>
  • sag resistance which is an important characteristic of spring steel, is preferably evaluated by an actual vehicle test, but this requires a lot of time and cost. Therefore, sag resistance was evaluated by a torsional creep test. That is, a test piece shown in FIG. 4 was collected from a sample that had been drawn to a diameter of 15 mm, and was subjected to a setting test. In the sag test, a 1% pre-strain is applied by simulating the spring setting, then a torsional stress is applied to the test piece with a weight, and the descent amount (sag amount) is measured for 96 hours. The sag resistance was evaluated by the amount of sag afterwards.
  • FIG. 5 shows an outline of the sag test.
  • Table 5 shows the results of tensile strength, martensite fraction, maximum pitting corrosion depth, corrosion fatigue resistance characteristics, and sag resistance test.
  • Steels of B-1 to 4, B-6 to 10, B-14 to 15, B-17 to 18, and B-21 to 25 that satisfy the component composition and PC value of the present invention have a maximum pitting corrosion depth. It can be seen that they are shallow and have good corrosion fatigue resistance.
  • the component composition is within the range of the present invention, the B-5 steel whose PC value does not satisfy the range of the present invention has a deep maximum pitting corrosion depth, and the corrosion fatigue resistance property is lowered. I understand that.
  • the steels of B-11 to 13, B-19 to 20, and B-27 whose component composition does not satisfy the scope of the present invention have a deep maximum pitting corrosion depth and deteriorate corrosion fatigue characteristics.
  • the PC value is smaller than the range of the present invention as in B-16, the allowance for improving pitting corrosion resistance and corrosion fatigue characteristics is small and saturated.
  • the amount of C is outside the scope of the present invention, the tensile strength is outside the scope of the present invention.
  • the AR value does not satisfy 0.35 or less as in B-23, the maximum pitting corrosion depth is deeper and the corrosion fatigue characteristics are lower than those of the other invention examples.
  • the steel having the composition shown in Table 6 was manufactured by melting in a vacuum melting furnace. Billets made from these steels were heated to 1100 ° C. and then hot rolled into round bars with a diameter of 25 mm ⁇ . Then, after normalizing for 1 hour at 950 ° C., the wire was drawn to a diameter of 15 mm ⁇ . The obtained wire was subjected to quenching and tempering treatment by induction heating under the conditions shown in Table 7. The test mentioned above was implemented with respect to the obtained wire, and each evaluated.
  • Table 8 shows the tensile strength, martensite fraction, maximum pitting depth, corrosion fatigue characteristics, and sag test results.
  • the steels of C-1 to 4, C-6 to 10, C-14 to 15, C-17 to 18, C-21 to 24 and C-27 satisfying the component composition and PC value of the present invention have the largest pores. It can be seen that the depth of corrosion is shallow and has good corrosion fatigue properties. On the other hand, even if the component composition is within the range of the present invention, the C-5 steel whose PC value does not satisfy the range of the present invention has a deep maximum pitting corrosion depth and deteriorated corrosion fatigue characteristics. I understand that.
  • the steels of C-11 to 13, C-19 to 20, and C-26 whose component compositions do not satisfy the scope of the present invention, have a deep maximum pitting corrosion depth and deteriorate corrosion fatigue characteristics.
  • the PC value is smaller than the range of the present invention as in C-16, the margin for improving pitting corrosion resistance and corrosion fatigue resistance is small and saturated.
  • the alloy cost is increased.
  • C-25 has a tempering temperature outside the range of the present invention, it can be seen that the tensile strength is low, the maximum pitting depth is deep, and the corrosion fatigue properties are lowered.
  • the AR value does not satisfy 0.35 or less, the maximum pitting corrosion depth is deeper and the corrosion fatigue characteristics are lower than those of the other invention examples.
  • the steel having the component composition shown in Table 9 was manufactured by melting in a vacuum melting furnace. Billets made from these steels were heated to 1100 ° C. and then hot rolled into round bars with a diameter of 25 mm. Then, after normalizing for 1 hour at 950 ° C., the wire was drawn to a diameter of 15 mm. The obtained wire was subjected to electric furnace heating (hereinafter abbreviated as furnace heating) under the conditions shown in Table 10, and subjected to quenching and tempering treatment. The test mentioned above was implemented with respect to the obtained wire, and each evaluated.
  • furnace heating electric furnace heating
  • Table 11 shows the tensile strength, the martensite fraction, the maximum pitting corrosion depth, the corrosion fatigue characteristics, and the results of the sag test.
  • Steels of D-1 to 4, D-6 to 10, D-14 to 15, D-17 to 18, D-21 to 29, and D-31 that satisfy the component composition and PC value of the present invention have the largest pores. It can be seen that the depth of corrosion is shallow and has good corrosion fatigue properties. On the other hand, even if the component composition is within the range of the present invention, the D-5 steel whose PC value does not satisfy the range of the present invention has a deep maximum pitting corrosion depth and deteriorated corrosion fatigue characteristics. I understand that.
  • the steels of D-11 to 13 and D-19 to 20 whose component compositions do not satisfy the scope of the present invention have a deep maximum pitting corrosion depth and deteriorate corrosion fatigue characteristics. It can also be seen that when the PC value is smaller than the range of the present invention as in D-16, the margin for improving pitting corrosion resistance and corrosion fatigue resistance is small and saturated. Moreover, since many alloy elements are added, the alloy cost is increased. It can be seen that the steel of D-30 has a tempering temperature outside the range of the present invention, a low tensile strength, a maximum maximum pitting corrosion depth, and a reduced corrosion fatigue property. Further, when the AR value does not satisfy 0.35 or less as in D-23, the maximum pitting corrosion depth is deeper and the corrosion fatigue characteristics are lower than those of the other invention examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 C:0.35質量%超0.50質量%未満、Si:1.75質量%超3.00質量%以下、Mn:0.2質量%以上1.0質量%以下、Cr:0.01質量%以上0.04質量%以下、P:0.025質量%以下、S:0.025質量%以下、Mo:0.1質量%以上1.0質量%以下およびO:0.0015質量%以下を、PC=4.2×([C]+[Mn])+0.1×(1/[Si]+1/[Mo])+20.3×[Cr]+0.001×(1/[N])で算出されるPC値が3.3超8.0以下の条件下に含有する組成とすることにより、腐食時に発生する孔食の深さを抑制し、高強度でありながら、耐孔食性ならびに腐食疲労特性に優れた高強度のばね鋼をその好ましい製造方法とともに提供する。

Description

ばね鋼およびその製造方法
 本発明は、例えば自動車用の懸架ばね、トーションバーおよびスタビライザーなどの素材となる高強度ばね鋼、特に高強度でかつ耐孔食性および腐食疲労特性に優れ、自動車用の足回り部品として好適な高強度のばね鋼およびその製造方法に関するものである。
 近年、地球環境問題の観点から、自動車の燃費向上、ならびに二酸化炭素排出量の削減が要望されており、自動車の軽量化の要望がますます高くなっている。特に、自動車の足回り部品の一つである懸架ばねの軽量化に対する要望が強く、焼入れ-焼戻し後の強度が2000MPa以上となる、高強度化した素材を用いた高応力設計が適用されている。
 汎用的なばね用鋼は、JIS G4801などに規定される、焼入れ-焼戻し後の強度が1600~1800MPa程度のものであり、熱間圧延で所定の線材に製造後、熱間成形ばねの場合はばね状に加熱成形してから焼入れ-焼戻し処理を行い、冷間成形ばねの場合は、引き抜き加工後、焼入れ-焼戻し処理を行い、ばね状に成形される。
 例えば、懸架ばねにおいては、これまで一般的に使用されている素材として、JIS G4801に記載のSUP7がある。SUP7は、高強度化すると大気中の疲労特性が向上するが、腐食後の疲労特性が低下するため、高強度化による腐食疲労特性の低下が問題となっている。そのため、使用可能な硬さの上限はHRC51レベル、設計応力として1100MPaが上限とされており、高強度化を図るには限界がある。
 焼入れ-焼戻し処理後の強度1900MPa以上に高強度化した素材では、割れ感受性が高まるので、耐孔食性が劣る場合には、自動車用足回り部品の懸架ばね等の、外部に露出する部品では、小石などで塗装がはがれた個所に腐食ピットが形成され、該腐食ピットを起点とする疲労亀裂の伝播により、部品が破損することが懸念されている。
 そこで、上記問題を克服するため、いくつかの提案がなされている。特許文献1には、成分組成ならびにFP値(下記1a式)を2.5~4.5の間に制御することで、圧延後の組織中に過冷却組織が出現することなく、圧延後の強度は冷間加工の容易な1350MPa程度以下に抑えられ、その後の焼入れ焼戻しにより均一且つ十分な焼きが入り、焼入れ焼戻し後の強度で1900MPaレベル以上を達成することができるとされている。しかしながら、耐食性を向上させる合金元素を添加することを基本としており、FP値が2.5~4.5の範囲に制御しても、必ずしも耐孔食性および腐食疲労特性が良好な高強度ばね鋼が得られるとは限らない。
              記
 FP=(0.23[C]+0.1)×(0.7[Si]+1)×(3.5[Mn]+1)×(2.2[Cr]+1)×(0.4[Ni]+1)×(3[Mo]+1)・・・(1a)
  但し、[ ]は各元素の含有量(質量%)を表す。
 特許文献2には、ばね鋼母材の表面の少なくとも一部が犠牲アノードとして機能する防食膜で被覆されたばね鋼において、前記ばね鋼母材に炭窒化物形成元素が添加されて前記ばね鋼母材に炭窒化物が微分散しているばね鋼が開示されている。本特許文献では、防食膜として、ばね鋼母材よりも電気化学的に卑な金属または合金からなる金属膜や、非金属膜中にばね鋼母材よりも電気化学的に卑な金属またはその合金を多数分散させた複合膜が用いられている。しかしながら、ばね鋼に防食膜を形成させる工程が必要になるため、製造コストの増加を招く。また、小石などにより防食膜が剥れた場合には、腐食ピットが形成され、腐食疲労特性の低下を招くと考えられる。
 特許文献3には、Cが腐食疲労強度の低下原因であるとしてCを低減すること、そしてCの低減によって懸念される耐へたり性の低下をSi添加で防止し、Si/Cの比率が重要であることを開示している。しかしながら、腐食疲労強度の低下抑制に有効な、C量低減には限界があるため、Si/Cの比率のみでは必ずしも耐孔食性および腐食疲労特性が良好な高強度ばね鋼が得られるとは限らない。
 特許文献4には、Cr含有量の低減により、腐食ピット先端での発生水素量を抑制することができ、鋼中への水素の侵入が抑制でき、水素脆性が抑制できること、また、水素が鋼材中に侵入した場合には、Ti、Vにより水素のトラップを行うことで、水素脆性が抑制できることから、Cr、Ti、Vの量を適切にバランスさせれば耐腐食疲労性が改善できることが開示されている。しかしながら、Cr、Ti、V量の適正化のみではばね鋼の水素脆性を抑制できたとしても、耐孔食性および腐食疲労特性が良好な高強度ばね鋼が得られるとは限らない。
 特許文献5では、HRC50.5~55.0になるように熱処理を施した後、表面下0.2mm位置で600MPa以上の残留応力を発生させるように温間ショットピーニングを施すことで耐腐食疲労特性を向上できることが開示されている。しかしながら、ばね鋼にショットピーニングを施す工程が必要になるため、製造コストの増加を招く。また、ショットピーニングによる残留応力の付与は、表面亀裂発生抑制には効果があるものの、耐孔食性および腐食疲労特性が良好な高強度ばね鋼が得られるとは限らない。
 特許文献6では、ばね鋼の硬さの観点からC、Si、Mn、Cr、Ni、Cuの量を、ピット形状の観点からC、Cr、Ni、Cuの量を、耐水素脆性の観点からC、Si、Mn、Cr、Ni、Cu、Ti、Nbの量を適正にバランスさせることにより、腐食疲労特性に優れたばね鋼について開示されている。しかしながら、C、Cr、Ni、Cu量のみで、ピットの形状の最適化を行うには限界がある。
特許第2932943号公報 特開平10-196697号公報 特許第3896902号公報 特許第4280123号公報 特開2008-106365号公報 特開2009-46764号公報
 上述の通り、自動車の燃費向上、ならびに二酸化炭素排出量の削減の観点から、自動車の足回り部品の1つである懸架ばねの更なる高強度化が課題となっていた。しかしながら、高強度化に伴い素材の割れ感受性が高まるため、素材の耐孔食性が劣る場合には腐食疲労損傷性が低下することが問題となっていた。
 本発明は、このような課題を解決すべくなされたものであり、従来の高強度ばね鋼に対して、C、Si、Mn、CrおよびMoの添加量の適正化を行うことによって、腐食時に発生する孔食の深さを抑制し、高強度でありながら、耐孔食性ならびに腐食疲労特性に優れた高強度のばね鋼をその好ましい製造方法とともに提供することを目的とする。
 発明者らは、前記課題を解決するため、C、Si、Mn、CrおよびMoの添加量を変化させ、かつ下記(1)式で表されるPC値を変化させた高強度ばね鋼を製作し、耐孔食性および耐腐食疲労特性について鋭意調査した。
              記
 PC=4.2×([C]+[Mn])+0.1×(1/[Si]+1/[Mo])+20.3×[Cr]
   +0.001×(1/[N]) ・・・(1)
  但し、[ ]は該括弧内成分の含有量(質量%)
 その結果、C、Si、Mn、CrおよびMoの添加量の最適化、並びにPC値を適正範囲に制御することによって、素材の耐孔食性並びに耐腐食疲労特性が向上することを見出し、本発明を完成するに至った。
 すなわち、本発明の要旨構成は、以下のとおりである。
1.C:0.35質量%超0.50質量%未満、
 Si:1.75質量%超3.00質量%以下、
 Mn:0.2質量%以上1.0質量%以下、
 Cr:0.01質量%以上0.04質量%以下、
 P:0.025質量%以下、
 S:0.025質量%以下、
 Mo:0.1質量%以上1.0質量%以下および
 O:0.0015質量%以下
を、下記(1)式で算出されるPC値が3.3超8.0以下の条件下に含有し、残部不可避的不純物およびFeの成分組成を有し、さらに、マルテンサイト分率が90%以上の組織を有し、かつ引張強さが1900MPa以上であるばね鋼。
               記
 PC=4.2×([C]+[Mn])+0.1×(1/[Si]+1/[Mo])+20.3×[Cr]
   +0.001×(1/[N])  ・・・(1)
  但し、[ ]は該括弧内成分の含有量(質量%)
 なお、Nは積極的に添加しなくとも、N量:0.005質量%未満の範囲にて不可避的不純物として含有される。従って、上記(1)式におけるN含有量[N]については、不可避的不純物として含有されるNの含有量(質量%)あるいは、後述する積極的に添加した場合にはその含有量(質量%)、の値を用いるものとする。
2.前記成分組成が、さらに、下記(2)式を満足する前記1に記載のばね鋼。
               記
 [Cr]/[Mo]≦0.35 ・・・(2)
  但し、[ ]は該括弧内成分の含有量(質量%)
3.前記成分組成は、さらに、
 Al:0.01質量%以上0.50質量%以下、
 Cu:0.005質量%以上1.0質量%以下および
 Ni:0.005質量%以上2.0質量%以下
のうちから選ばれる1種または2種以上を含有する前記1または2に記載のばね鋼。
4.前記成分組成は、さらに、
 W:0.001質量%以上2.0質量%以下、
 Nb:0.001質量%以上0.1質量%以下、
 Ti:0.001質量%以上0.2質量%以下および
 V:0.002質量%以上0.5質量%以下
のうちから選ばれる1種または2種以上を含有する前記1ないし3のいずれかに記載のばね鋼。
5.前記成分組成は、さらに、
 B:0.0002質量%以上0.005質量%以下
を含有する前記1ないし4のいずれかに記載のばね鋼。
6.前記成分組成は、さらに、
 N:0.005質量%以上0.020質量%以下
を含有する前記1ないし5のいずれかに記載のばね鋼。
7.C:0.35質量%超0.50質量%未満、
 Si:1.75質量%超3.00質量%以下、
 Mn:0.2質量%以上1.0質量%以下、
 Cr:0.01質量%以上0.04質量%以下、
 P:0.025質量%以下、
 S:0.025質量%以下、
 Mo:0.1質量%以上1.0質量%以下および
 O:0.0015質量%以下
を、下記(1)式で算出されるPC値が3.3超8.0以下の条件下に含有する成分組成を有する鋼素材を、Ac点以上(Ac点+200℃)以下の温度域に加熱し、10℃/s以上の冷却速度で200℃以下まで冷却し、その後、150℃以上500℃以下の温度域まで加熱し、冷却するばね鋼の製造方法。
               記
 PC=4.2×([C]+[Mn])+0.1×(1/[Si]+1/[Mo])+20.3×[Cr]
+0.001×(1/[N])   ・・・(1)
  但し、[ ]は該括弧内成分の含有量(質量%)
8.前記成分組成が、さらに、下記(2)式を満足する前記7に記載のばね鋼の製造方法。
               記
 [Cr]/[Mo] ≦0.35 ・・・(2)
  但し、[ ]は該括弧内成分の含有量(質量%)
9.前記成分組成は、さらに、
 Al:0.01質量%以上0.50質量%以下、
 Cu:0.005質量%以上1.0質量%以下および
 Ni:0.005質量%以上2.0質量%以下
のうちから選ばれる1種または2種以上を含有する前記7または8に記載のばね鋼の製造方法。
10.前記成分組成は、さらに、
 W:0.001質量%以上2.0質量%以下、
 Nb:0.001質量%以上0.1質量%以下、
 Ti:0.001質量%以上0.2質量%以下および
 V:0.002質量%以上0.5質量%以下
のうちから選ばれる1種または2種以上を含有する前記7ないし9のいずれかに記載のばね鋼の製造方法。
11.前記成分組成は、さらに、
 B:0.0002質量%以上0.005質量%以下
を含有する前記7ないし10のいずれかに記載のばね鋼の製造方法。
12.前記成分組成は、さらに、
 N:0.005質量%以上0.020質量%以下
を含有する前記7ないし11のいずれかに記載のばね鋼の製造方法。
 すなわち、本発明のばね鋼は、
 C:0.35質量%超0.50質量%未満、
 Si:1.75質量%超3.00質量%以下、
 Mn:0.2質量%以上1.0質量%以下、
 Cr:0.01質量%以上0.04質量%以下、
 P:0.025質量%以下、
 S:0.025質量%以下、
 Mo:0.1質量%以上1.0質量%以下および
 O:0.0015質量%以下
を、上記(1)式で算出されるPC値が3.3超8.0以下の条件下に含有し、
あるいはさらに、
 Al:0.01質量%以上0.50質量%以下、
 Cu:0.005質量%以上1.0質量%以下および
 Ni:0.005質量%以上2.0質量%以下
のうちから選ばれる1種または2種以上を含有し、
あるいはさらに、
 W:0.001質量%以上2.0質量%以下、
 Nb:0.001質量%以上0.1質量%以下、
 Ti:0.001質量%以上0.2質量%以下および
 V:0.002質量%以上0.5質量%以下
のうちから選ばれる1種または2種以上を含有し、
あるいはさらに、
 B:0.0002質量%以上0.005質量%以下
を含有し、
あるいはさらに、
 N:0.005質量%以上0.020質量%以下
を含有し、
残部不可避的不純物およびFeの成分組成を有する。
 また、本発明のばね鋼の製造方法は、上記組成の鋼素材に上記7に記載の熱処理を施すものである。
 本発明によれば、従来の高強度ばね鋼に比べて遥かに優れた耐孔食性および腐食疲労特性を有する高強度のばね鋼を、安定して製造することが可能となる。更には自動車の軽量化にも寄与するため、産業上有益な効果がもたらされる。
孔食深さの評価結果を、PC値に関して整理して示した図である。 耐腐食疲労特性の評価結果を、PC値に関して整理して示した図である。 腐食試験に供した試験片の形状を示す図である。 耐へたり性評価試験に供した試験片の形状を示す図である。 耐へたり試験の試験機の概略図である。 孔食深さ測定用サンプルの形状を示す図である。
 次に、本発明のばね鋼の成分組成並びにその製造条件について説明する。
C:0.35質量%超0.50質量%未満
 Cは、必要な強度を確保するために必須の元素であり、0.35質量%以下では所定の強度確保が難しく、また所定強度を確保するためには、合金元素の多量添加が必要となって、合金コストの上昇を招くことから、0.35質量%超とする。一方、0.50質量%以上の添加は、鋼中に炭化物が多量に生成し、炭化物-母相界面の優先腐食により耐孔食性が低下し、腐食疲労特性の低下や靭性の低下を招く。以上のことから、C量は0.35質量%超0.50質量%未満とする。
Si:1.75質量%超3.00質量%以下
 Siは、脱酸剤として、また、固溶強化や焼戻し軟化抵抗を向上させることにより鋼の強度を高め、鋼の耐へたり性を向上する。さらに、耐孔食性も向上するため添加される元素であり、本発明では、1.75質量%超で添加する。しかし、3.00質量%を超える添加は、延性が低下し、鋳造時に素材に割れが発生するため、素材の手入れが必要となり製造コストの増加を招く。また、鋼が高強度化するために、靭性およびコイリング性が著しく低下する。よって、Siの上限は3.00質量%とする。以上のことから、Si量は1.75質量%超3.00質量%以下とする。
Mn:0.2質量%以上1.0質量%以下
 Mnは、鋼の焼入れ性を向上させ強度増加に有益であるため、0.2質量%以上添加する。しかし、1.0質量%を超える添加は、鋼を高強度化するため、母材靭性の低下を招く。また、鋼の腐食速度を増加させて、孔食深さも深くなるため、腐食疲労特性の低下を招く。よって、Mnの上限は、1.0質量%とする。以上のことから、Mn量は、0.2質量%以上1.0質量%以下とする。
P、S:0.025質量%以下
 PおよびSは、粒界に偏析して鋼の母材靭性の低下を招く。また、腐食速度を増加させ、それに伴い、孔食深さも深くなる。とくに、SはMnSとして鋼中に存在するため、MnSの溶解による孔食深さが深くなる。以上のことから、これらの元素はできるかぎり低減するのが好ましい。よって、PおよびSはいずれも0.025質量%以下とする。
Cr:0.01質量%以上0.04質量%以下
 Crは、鋼の焼入れ性を向上させ強度を増加させる元素である。そのため、0.01質量%以上は添加する。また、表層部に生成する錆を緻密化して腐食を抑制する元素である。一方で、孔食部のpH値を低下させるため、孔食深さを増大させ、耐腐食疲労特性を低下させる元素である、そのため、本発明では、耐孔食性を向上させるために、Cr量は0.04質量%以下に制御する。以上のことから、Cr量は0.01質量%以上0.04質量%以下とする。
Mo:0.1質量%以上1.0質量%以下
 Moは、本発明において特に重要な元素である。Moは不動態皮膜の形成により腐食抑制機能ならびに耐孔食性を向上させる元素であり、0.1質量%以上で添加する必要がある。しかし、1.0質量%を超えて添加すると、高強度化による靭性の低下をまねき、また合金コストの上昇をも招く。以上のことから、Mo量は0.1~1.0質量%とする。
O:0.0015質量%以下
 Oは、SiやAlと結合し、硬質な酸化物系非金属介在物を形成して、疲労寿命特性の低下を招くため、可能な限り低い方が良いが、本発明では、0.0015質量%までは許容される。
PC値(上記(1)式):3.3超8.0以下
 さらに、発明者らは、成分組成並びにPC値を変化させてばね鋼を作製し、その孔食深さおよび耐腐食疲労特性を調査した。なお、孔食深さならびに腐食疲労特性は、後述する試験方法で実施した。表1に成分組成を、表2に孔食深さ並びに耐腐食疲労特性の評価結果を、それぞれ示す。また、図1および図2に、孔食深さ並びに耐腐食疲労特性の評価結果(縦軸)を、PC値(横軸)に関して整理して示した。
 ここで、ばね鋼の製造条件は、基準となる鋼以外は同じにした。すなわち、製造条件は、次の通りである。
 まず、真空溶解で溶製したビレットを1100℃に加熱後、熱間圧延を行い、直径25mmの丸棒にした。その後、950℃で1時間のノルマライジング処理を行ってから、直径15mmまで伸線加工を行った。得られた線材に対して、高周波加熱による、焼入れ-焼戻し処理を行った。この熱処理条件は、1000℃まで100℃/秒の加熱速度で加熱を行い、5秒保持後、50℃/秒で50℃まで冷却した。焼戻し条件は、300℃まで50℃/秒の加熱速度で加熱を行い、20秒保持後に空冷した。
 但し、基準となる鋼(A-1:SUP7準拠)については、直径15mmの伸線加工後、焼入れ-焼戻し処理を実施した。焼入れ条件は、840℃に電気炉加熱(以下、単に炉加熱とも言う)を行い、0.5時間保持後、60℃の油にて焼入れを行った。焼戻し条件は、焼入れ後の鋼を510℃に加熱し、1時間保持後、放冷した。
 表2、図1および図2に示すように、PC値が8.0超になると孔食深さが深くなり、耐腐食疲労特性が低下した。一方、PC値を3.3以下としても、孔食深さの低減および耐腐食疲労特性の顕著な向上は認められなかった。しかも、PC値が3.3以下の場合には、添加する合金元素が増加するため、合金コストが増加することになる。以上のことから、PC値は、3.3超8.0以下の範囲に調整することによって、耐孔食性および耐腐食疲労特性が向上することが判明した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[Cr]/[Mo]≦0.35
  但し、[ ]は該括弧内成分の含有量(質量%)
 比[Cr]/[Mo](以下、AR値という)は、CrとMoの添加量の比で表される。ここに、Crは添加量の増加に伴い孔食深さを深くする元素であり、Moは添加量の増加に伴い孔食深さを浅くする元素である。そのため、孔食深さをさらに改善したい場合は、その添加量比も管理することが好ましい。すなわち、AR値が0.35超になると、Crによる孔食深さが深くなり、Moによる孔食深さの抑制効果が低下するため、AR値は0.35以下とすることが好ましい。
 さらに、本発明のばね鋼は、強度を高めたり、鋼の耐孔食性や腐食疲労特性を向上させたりするため、上記成分に加えて、以下の成分を含有することができる。
Al:0.01質量%以上0.50質量%以下、Cu:0.005質量%以上1.0質量%以下およびNi:0.005質量%以上2.0質量%以下のうちの1種または2種以上
 CuおよびNiは、焼入れ性や焼戻し後の強度を高め、更には、鋼の耐食性を向上させる元素であり、選択して添加することができる。このような効果を得るためには、CuおよびNiは0.005質量%以上で添加することが好ましい。しかし、Cuは1.0質量%およびNiは2.0質量%を超えて添加すると、却って合金コストが上昇するため、Cuは1.0質量%およびNiは2.0質量%を上限として添加するのが好ましい。
 また、Alは脱酸剤として優れた元素であり、さらに、焼入れ時のオーステナイト粒成長を抑制することによって、強度の維持に有効な元素であるため、好ましくは0.01質量%以上で添加する。しかしながら、0.50質量%を超えて添加しても、その効果は飽和してコスト上昇を招く不利が生じる上、冷間でのコイリング性も低下する。よって、Alは0.50質量%を上限として添加することが好ましい。
W:0.001質量%以上2.0質量%以下、Nb:0.001質量%以上0.1質量%以下、Ti:0.001質量%以上0.2質量%以下およびV:0.002質量%以上0.5質量%以下のうちの1種または2種以上
 W、Nb、TiおよびVは、いずれも焼入れ性や焼戻し後の鋼の強度を高める元素であり、必要とする強度に応じて選択して添加することができる。さらに、Wは、鋼の耐孔食性も向上させる元素である。このような効果を得るためには、W、NbおよびTiは、それぞれ0.001質量%以上、Vは0.002質量%以上添加することが好ましい。しかし、Vは0.5質量%、Nbは0.1質量%およびTiは0.2質量%を超えて添加すると、鋼中に炭化物が多量に生成し、炭化物-母相界面の優先腐食により耐孔食性が低下するため、耐腐食疲労特性の低下を招く。Nb、TiおよびVは、それぞれ上記の値を上限として添加するのが好ましい。また、Wは2.0質量%を超えて添加すると、高強度化して靭性が低下し、合金コストの上昇を招く。よって、Wは、2.0質量%を上限として添加するのが好ましい。
B:0.0002質量%以上0.005質量%以下
 Bは、焼入れ性の増大により焼戻し後の鋼の強度を高める元素であり、必要に応じて含有することができる。上記効果を得るためには、0.0002質量%以上で添加するのが好ましい。しかし、0.005質量%を超えて添加すると、冷間での加工性が劣化する。よって、Bは0.0002~0.005質量%の範囲で添加することが好ましい。
N:0.005質量%以上0.020質量%以下
 Nは、鋼材の腐食抑制機能ならびに耐孔食性を向上させる元素であり、この効果を発現させるために0.005質量%以上で添加することができる。しかし、0.020質量%を超えて添加すると、粒界に窒化物が形成され易くなり、粒界腐食が起こり、鋼の耐食性が低下する。また、窒化物-母相界面の優先腐食により耐孔食性が低下し、腐食疲労特性の低下や、靭性の低下を招く。以上のことからNを積極的に添加する場合のN量は0.005~0.020質量%とする。
 なお、上記したように、本発明においては、Nを積極的に添加しない場合を含み、この場合はN量が0.005質量%未満にて不可避的不純物として含有される。上記(1)式におけるN含有量[N]については、不可避的不純物として含有されるNの含有量(質量%)あるいは、積極的に添加した場合にはその含有量(質量%)、の値を用いるものとする。
 以上説明した元素以外の残部は、Feおよび不可避的不純物である。
 以上の成分組成を有する鋼塊は、転炉による溶製においても真空溶製によるものでも使用できる。そして、鋼塊、スラブ、ブルームまたはビレットなどの素材は、加熱されて熱間圧延され、酸洗してスケール除去された後に伸線されて所定の太さに整えられ、ばね用鋼に供される。
 さらに、得られた伸線材に焼入れ-焼戻し処理を施すことによって、次の組織および機械的特性を付与する。
マルテンサイト分率:90%以上
 マルテンサイトは、強度を得るために必要な組織である。本発明の場合には、体積率で90%以上のマルテンサイト組織とすることによって、優れた特性が得られる。すなわち、マルテンサイトの体積率が90%未満では、強度の上昇に寄与しない残留オーステナイト相などの未変態相や、炭化物などの析出物の量が多くなりすぎて、引張強さ1900MPa以上という高強度化の達成は困難となる。このマルテンサイト分率は、100%であってもよい。
 以上の成分組成および鋼組織を有し、且つ引張強さで1900MPa以上が必要である。すなわち、引張強さが1900MPa未満では、ばね鋼の高強度化に対応できないため、1900MPa以上とする。
 次に、上記の組織および引張強さを得るための製造条件について説明する。
 前述した鋼を得るためには、前述した成分組成の鋼素材に、焼入れ-焼戻し処理を施すことが有効である。すなわち、Ac点以上に加熱して焼き入れることにより、マルテンサイト分率を90%以上とできるが、(Ac点+200℃)を超える温度域での加熱は、旧オーステナイト粒を粗大化させることになる。そこで、鋼素材のサイズにもよるが、Ac点以上(Ac点+200℃)以下の温度域に保持して10℃/s以上の冷却速度で200℃以下まで冷却して焼き入れする工程が、上述したマルテンサイト分率90%以上を達成する上で最も有効である。
 また、焼戻し処理では、粒内炭化物をできるだけ細かく分散させることが重要となる。
粗大な炭化物が形成されると、母相と局部電池を形成して、炭化物が溶解して孔食が形成され、孔食底部で腐食が促進し孔食深さが深くなる。孔食深さが深くなることで腐食疲労特性が低下する。さらに、上記の引張強さを達成するためにも、焼戻し条件が重要である。このためには、150~500℃の温度域にて、焼戻しを行い、その後冷却することが有効である。
 なお、鋼素材は、熱間圧延により線材または棒鋼とされ、酸洗によるデスケーリング、さらに伸線処理を経たものが好適であり、ばねへの成形は、上述した焼入れ-焼戻し処理前、焼入れ-焼戻し処理後または焼入れ処理後に実施するのが好ましい。
 かくして得られた高強度ばね鋼は、安価に製造できるにも関わらず、高強度と、優れた耐孔食性および耐腐食疲労特性とを有し、1900MPa以上の高強度を必要とする、例えば自動車の足回り部品である懸架ばねへの適用が可能である。
 表3に示した成分組成を有する鋼を真空溶解炉で溶製し、これらの鋼から製造したビレットを、1100℃に加熱後、熱間圧延を行い、直径25mmの丸棒にした。その後、950℃で1時間のノルマライジング処理を行ってから、直径15mmまで伸線加工を行った。得られた線材に対して、表4に示す条件で高周波加熱による焼入れ-焼戻し処理を施した。
 かくして得られた線材を、以下に示す、引張試験、腐食試験、孔食深さ測定、腐食疲労試験およびへたり試験に供した。また、線材のマルテンサイト分率の測定を、次のように行った。
[マルテンサイト分率]
 マルテンサイト分率は、線材1/4D部(Dは線材の直径)付近より採取した薄膜状のサンプルを透過型電子顕微鏡により、2万倍の倍率で20視野観察し、セメンタイトの析出していない領域の面積を測定し、その測定面積の全体に対する割合に基づいて、マルテンサイト分率として求めた。
[引張試験]
 引張試験は、平行部の直径6mmφ×長さ32mm、つかみ部12mmφの引張試験片を1/2D(Dは線材の径)を中心として採取し、評点間距離25mmおよび引張速度5mm/分にて試験を実施した。
[腐食試験]
 耐孔食性並びに耐腐食疲労特性を評価するには、実際にばねを製造し、実車試験を実施するのが好ましいが、それでは多大な時間と費用を要する。そのため、図3に示す試験片を採取し、腐食試験に供した。この腐食試験は、塩水噴霧-恒温恒湿サイクル試験とした。試験片は、前処理として、全試験片について、アセトン中で10分間超音波洗浄し、全試験片について、端部および掴み部をポリエステルテープにてマスキングを行った。マスキング後の試験片を、「塩水噴霧8時間
→ 恒温恒湿(35℃,50%)下で16時間保持」を1サイクルとし、7サイクルにわたり実施した。なお、塩水噴霧試験は、JIS Z2371に準拠して実施した。試験の詳細は下記の通りである。
<塩水噴霧試験>
 噴霧塩水:5%塩水(50±5g/l)、比重1.029~1.036、pH6.5~7.2
 試験槽内温度:35℃
 噴霧量:1.5±0.5ml/80cm2/1h
<恒温恒湿試験>
 試験槽内温度:35℃
 試験槽内湿度:50%RH
<試験機>
 スガ試験機製 塩乾湿複合サイクル試験機 CYP90
<孔食深さ測定>
 上述した腐食試験終了後、JIS Z2371参考表1 化学的腐食生成物除去方法に準拠し、20%クエン酸水素二アンモニウム水溶液-80℃-20分浸漬にて除錆した。その後、平行部を、図6に示すように切り出し、孔食の深さを測定し、一番深い孔食の深さを最大孔食深さと定義した。
[腐食疲労試験]
 上述した腐食試験終了後、JIS Z2371参考表1 化学的腐食生成物除去方法に準拠し、20%クエン酸水素二アンモニウム水溶液-80℃-20分浸漬にて除錆した。その後、島津製作所製 島津小野式回転曲げ疲れ試験機 H7型試験機により、疲労限を導出した。腐食疲労特性は、それぞれの鋼の疲労限の値を基準材の疲労限の値で除して規格化を行い、導出した数値が1.1以上になった場合に腐食疲労特性が向上したと判断した。
[へたり試験]
 ばね鋼の重要特性である耐へたり性は、実車試験で評価するのが好ましいが、それでは多大な時間と費用を要する。そのため、耐へたり性は、ねじりクリープ試験で評価した。すなわち、直径15mmに伸線加工を行ったサンプルから、図4に示す試験片を採取し、へたり試験に供した。へたり試験は、ばねのセッティングを模擬して1%の予歪を負荷した後、試験片にねじり応力を錘で負荷し、錘の降下量(へたり量)を計測して、96時間試験後のへたり量をもって耐へたり性を評価した。図5に、へたり試験の概要を示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表5に、引張強さ、マルテンサイト分率、最大孔食深さ、耐腐食疲労特性および耐へたり試験の各結果を示した。本発明の成分組成およびPC値を満たす、B-1~4、B-6~10、B-14~15、B-17~18およびB-21~25の鋼は、最大孔食深さが浅く、かつ良好な耐腐食疲労特性を有していることが分かる。これに対して、成分組成が本発明範囲内であっても、PC値が本発明の範囲を満たさないB-5の鋼は、最大孔食深さが深く、耐腐食疲労特性が低下していることが分かる。また、成分組成が本発明の範囲を満たさないB-11~13、B-19~20およびB-27の鋼は、最大孔食深さが深く、腐食疲労特性が低下していることが分かる。また、B-16のようにPC値が本発明の範囲より小さい場合、耐孔食性および腐食疲労特性の向上代が小さく、飽和していることが分かる。さらに、C量が本発明の範囲外であるため、引張強さが本発明範囲外となっている。また、B-23のように、AR値が0.35以下を満足しない場合、他の発明例に比較して最大孔食深さが深く、腐食疲労特性も低めである。
Figure JPOXMLDOC01-appb-T000005
 表6に示した成分組成を有する鋼を真空溶解炉で溶製して製造した。これらの鋼から製造したビレットを1100℃に加熱後、熱間圧延を行い、直径25mmφの丸棒にした。その後、950℃で1時間のノルマライジング処理を行ってから、直径15mmφまで伸線加工を行った。得られた線材に対して、表7に示す条件で高周波加熱による焼入れ-焼戻し処理を施した。得られた線材に対して、上述した試験を実施し、それぞれ評価を行った。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表8に、引張強さ、マルテンサイト分率、最大孔食深さ、腐食疲労特性およびへたり試験の結果を示した。本発明の成分組成およびPC値を満たす、C-1~4、C-6~10、C-14~15、C-17~18、C-21~24およびC-27の鋼は、最大孔食深さが浅く、かつ良好な腐食疲労特性を有していることが分かる。これに対して、成分組成が本発明範囲内であっても、PC値が本発明の範囲を満たさないC-5の鋼は、最大孔食深さが深く、腐食疲労特性が低下していることが分かる。また、成分組成が本発明の範囲を満たさない、C-11~13、C-19~20およびC-26の鋼は、最大孔食深さが深く、腐食疲労特性が低下していることが分かる。また、C-16のようにPC値が本発明の範囲より小さい場合、耐孔食性および耐腐食疲労特性の向上代が小さく、飽和していることが分かる。また、添加する合金元素も多いため、却って合金コストの上昇を招く。C-25は、焼戻し温度が本発明の範囲外であるため、引張強度が低く、最大孔食深さが深く、腐食疲労特性が低下していることが分かる。また、C-23のように、AR値が0.35以下を満足しない場合、他の発明例に比較して最大孔食深さが深く、腐食疲労特性も低めである。
Figure JPOXMLDOC01-appb-T000008
 表9に示した成分組成を有する鋼を真空溶解炉で溶製して製造した。これらの鋼から製造したビレットを1100℃に加熱後、熱間圧延を行い、直径25mmの丸棒にした。その後、950℃で1時間のノルマライジング処理を行ってから、直径15mmまで伸線加工を行った。得られた線材に対して、表10に示す条件で電気炉加熱(以下、炉加熱と略す)を行い、焼入れ-焼戻し処理を施した。得られた線材に対して、上述した試験を実施し、それぞれ評価を行った。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表11に、引張強さ、マルテンサイト分率、最大孔食深さ、腐食疲労特性およびへたり試験の結果を示した。本発明の成分組成およびPC値を満たす、D-1~4、D-6~10、D-14~15、D-17~18、D-21~29およびD-31の鋼は、最大孔食深さが浅く、かつ良好な腐食疲労特性を有していることが分かる。これに対して、成分組成が本発明範囲内であっても、PC値が本発明の範囲を満たさないD-5の鋼は、最大孔食深さが深く、腐食疲労特性が低下していることが分かる。また、成分組成が本発明の範囲を満たさない、D-11~13およびD-19~20の鋼は、最大孔食深さが深く、腐食疲労特性が低下していることが分かる。また、D-16のようにPC値が本発明の範囲より小さい場合、耐孔食性および耐腐食疲労特性の向上代が小さく、飽和していることが分かる。また、添加する合金元素も多いため、却って合金コストの上昇を招く。D-30の鋼は、焼戻し温度が本発明の範囲外であり、引張強度が低く、最大孔食深さが深く、腐食疲労特性が低下していることが分かる。また、D-23のように、AR値が0.35以下を満足しない場合、他の発明例に比較して最大孔食深さが深く、腐食疲労特性も低めである。
Figure JPOXMLDOC01-appb-T000011
 本発明によれば、従来の高強度ばね鋼に比べて遥かに優れた耐孔食性および腐食疲労特性を有する高強度のばね鋼を、安定して製造することが可能となる。更には、自動車の軽量化にも寄与するため、産業上有益な効果がもたらされる。

Claims (12)

  1.  C:0.35質量%超0.50質量%未満、
     Si:1.75質量%超3.00質量%以下、
     Mn:0.2質量%以上1.0質量%以下、
     Cr:0.01質量%以上0.04質量%以下、
     P:0.025質量%以下、
     S:0.025質量%以下、
     Mo:0.1質量%以上1.0質量%以下および
     O:0.0015質量%以下
    を、下記(1)式で算出されるPC値が3.3超8.0以下の条件下に含有し、残部不可避的不純物およびFeの成分組成を有し、さらに、マルテンサイト分率が90%以上の組織を有し、かつ引張強さが1900MPa以上であるばね鋼。
                   記
     PC=4.2×([C]+[Mn])+0.1×(1/[Si]+1/[Mo])
       +20.3×[Cr]+0.001×(1/[N])・・・(1)
      但し、[ ]は該括弧内成分の含有量(質量%)
  2.  前記成分組成が、さらに、下記(2)式を満足する請求項1に記載のばね鋼。
                   記
     [Cr]/[Mo]≦0.35 ・・・(2)
      但し、[ ]は該括弧内成分の含有量(質量%)
  3.  前記成分組成は、さらに、
     Al:0.01質量%以上0.50質量%以下、
     Cu:0.005質量%以上1.0質量%以下および
     Ni:0.005質量%以上2.0質量%以下
    のうちから選ばれる1種または2種以上を含有する請求項1または2に記載のばね鋼。
  4.  前記成分組成は、さらに、
     W:0.001質量%以上2.0質量%以下、
     Nb:0.001質量%以上0.1質量%以下、
     Ti:0.001質量%以上0.2質量%以下および
     V:0.002質量%以上0.5質量%以下
    のうちから選ばれる1種または2種以上を含有する請求項1ないし3のいずれかに記載のばね鋼。
  5.  前記成分組成は、さらに、
     B:0.0002質量%以上0.005質量%以下
    を含有する請求項1ないし4のいずれかに記載のばね鋼。
  6.  前記成分組成は、さらに、
     N:0.005質量%以上0.020質量%以下
    を含有する請求項1ないし5のいずれかに記載のばね鋼。
  7.  C:0.35質量%超0.50質量%未満、
     Si:1.75質量%超3.00質量%以下、
     Mn:0.2質量%以上1.0質量%以下、
     Cr:0.01質量%以上0.04質量%以下、
     P:0.025質量%以下、
     S:0.025質量%以下、
     Mo:0.1質量%以上1.0%以下および
     O:0.0015質量%以下
    を、下記(1)式で算出されるPC値が3.3超8.0以下の条件下に含有する成分組成を有する鋼素材を、Ac点以上(Ac点+200℃)以下の温度域に加熱し、10℃/s以上の冷却速度で200℃以下まで冷却し、その後、150℃以上500℃以下の温度域まで加熱し、冷却するばね鋼の製造方法。
                   記
     PC=4.2×([C]+[Mn])+0.1×(1/[Si]+1/[Mo])
       +20.3×[Cr]+0.001×(1/[N])・・・(1)
      但し、[ ]は該括弧内成分の含有量(質量%)
  8.  前記成分組成が、さらに、下記(2)式を満足する請求項7に記載のばね鋼の製造方法。
                   記
     [Cr]/[Mo] ≦0.35 ・・・(2)
      但し、[ ]は該括弧内成分の含有量(質量%)
  9.  前記成分組成は、さらに、
     Al:0.01質量%以上0.50質量%以下、
     Cu:0.005質量%以上1.0質量%以下および
     Ni:0.005質量%以上2.0質量%以下
    のうちから選ばれる1種または2種以上を含有する請求項7または8に記載のばね鋼の製造方法。
  10.  前記成分組成は、さらに、
     W:0.001質量%以上2.0質量%以下、
     Nb:0.001質量%以上0.1質量%以下、
     Ti:0.001質量%以上0.2質量%以下および
     V:0.002質量%以上0.5質量%以下
    のうちから選ばれる1種または2種以上を含有する請求項7ないし9のいずれかに記載のばね鋼の製造方法。
  11.  前記成分組成は、さらに、
     B:0.0002質量%以上0.005質量%以下
    を含有する請求項7ないし10のいずれかに記載のばね鋼の製造方法。
  12.  前記成分組成は、さらに、
     N:0.005質量%以上0.020質量%以下
    を含有する請求項7ないし11のいずれかに記載のばね鋼の製造方法。
PCT/JP2011/001156 2010-03-29 2011-02-28 ばね鋼およびその製造方法 WO2011121887A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/638,375 US8608874B2 (en) 2010-03-29 2011-02-28 Spring steel and method for manufacturing the same
KR1020127028210A KR101311386B1 (ko) 2010-03-29 2011-02-28 스프링강 및 그 제조 방법
CN201180022549.5A CN102884216B (zh) 2010-03-29 2011-02-28 弹簧钢及其制造方法
EP11762141.7A EP2557195B1 (en) 2010-03-29 2011-02-28 Spring steel and method of manufacture for same
US14/075,594 US9618070B2 (en) 2010-03-29 2013-11-08 Spring steel and method for manufacturing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-076315 2010-03-29
JP2010076315 2010-03-29
JP2010-104536 2010-04-28
JP2010104536 2010-04-28
JP2011-019206 2011-01-31
JP2011019206A JP4900516B2 (ja) 2010-03-29 2011-01-31 ばね鋼およびその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/638,375 A-371-Of-International US8608874B2 (en) 2010-03-29 2011-02-28 Spring steel and method for manufacturing the same
US14/075,594 Continuation US9618070B2 (en) 2010-03-29 2013-11-08 Spring steel and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2011121887A1 true WO2011121887A1 (ja) 2011-10-06

Family

ID=44711658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001156 WO2011121887A1 (ja) 2010-03-29 2011-02-28 ばね鋼およびその製造方法

Country Status (6)

Country Link
US (2) US8608874B2 (ja)
EP (1) EP2557195B1 (ja)
JP (1) JP4900516B2 (ja)
KR (1) KR101311386B1 (ja)
CN (1) CN102884216B (ja)
WO (1) WO2011121887A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150004051A1 (en) * 2012-02-14 2015-01-01 Jfe Steel Corporation Spring steel
CN106011630A (zh) * 2016-07-06 2016-10-12 安徽红桥金属制造有限公司 一种高疲劳强度的汽车悬架弹簧用钢及其制备方法
EP2937434A4 (en) * 2012-12-21 2017-01-04 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel wire rod for high-strength spring with excellent hydrogen embrittlement resistance and manufacturing process therefor and high-strength spring

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104603310B (zh) * 2012-08-31 2017-09-08 杰富意钢铁株式会社 钢筋用钢和钢筋
CN102991449B (zh) * 2012-11-08 2016-04-06 上海冠驰汽车安全技术有限公司 一种有关汽车安全带的限力扭杆
US10350676B2 (en) 2013-04-23 2019-07-16 Nippon Steel & Sumitomo Metal Corporation Spring steel with excellent fatigue resistance and method of manufacturing the same
JP6135553B2 (ja) * 2014-02-28 2017-05-31 Jfeスチール株式会社 鉄筋およびその製造方法
JP6452454B2 (ja) * 2014-02-28 2019-01-16 株式会社神戸製鋼所 高強度ばね用圧延材および高強度ばね用ワイヤ
JP6356309B1 (ja) * 2016-10-19 2018-07-11 三菱製鋼株式会社 高強度ばね、およびその製造方法、ならびに高強度ばね用鋼、およびその製造方法
KR101889172B1 (ko) 2016-12-12 2018-08-16 주식회사 포스코 응력부식 저항성이 우수한 고강도 스프링용 강선 및 그 제조방법
WO2021070384A1 (ja) * 2019-10-11 2021-04-15 日本製鉄株式会社 高強度鋼部材
CN113493882B (zh) * 2021-07-08 2022-02-01 马鞍山钢铁股份有限公司 一种具有优异抗点蚀能力的高疲劳寿命弹簧用钢及其热处理方法和生产方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10196697A (ja) 1997-01-10 1998-07-31 Kobe Steel Ltd 環境脆性の良好な高強度ばね
JP2932943B2 (ja) 1993-11-04 1999-08-09 株式会社神戸製鋼所 高耐食性高強度ばね用鋼材
JP2001288530A (ja) * 2000-03-31 2001-10-19 Kobe Steel Ltd 高強度・高靭性マルテンサイト鋼及びその製造方法
JP3896902B2 (ja) 2002-06-06 2007-03-22 大同特殊鋼株式会社 腐食疲労強度に優れた高強度ばね鋼
JP2007100209A (ja) * 2005-01-28 2007-04-19 Kobe Steel Ltd 耐水素脆化特性に優れた高強度ばね用鋼
JP2007191776A (ja) * 2006-01-23 2007-08-02 Kobe Steel Ltd 耐脆性破壊特性に優れた高強度ばね鋼およびその製造方法
JP2008106365A (ja) 1997-11-17 2008-05-08 Chuo Spring Co Ltd 耐腐食疲労強度を向上させたばね
JP2009046764A (ja) 2007-07-20 2009-03-05 Kobe Steel Ltd 腐食疲労特性に優れたばね用鋼
JP4280123B2 (ja) 2003-07-01 2009-06-17 株式会社神戸製鋼所 耐腐食疲労性に優れたばね用鋼
JP2009256771A (ja) * 2008-03-27 2009-11-05 Jfe Steel Corp 耐遅れ破壊特性に優れた高強度ばね用鋼およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2839900B2 (ja) * 1989-05-29 1998-12-16 愛知製鋼株式会社 耐久性,耐へたり性に優れたばね鋼
US5294271A (en) * 1991-06-14 1994-03-15 Nisshin Steel Co., Ltd. Heat treatment for manufacturing spring steel excellent in high-temperature relaxation resistance
JP3255296B2 (ja) * 1992-02-03 2002-02-12 大同特殊鋼株式会社 高強度ばね用鋼およびその製造方法
JP2001064752A (ja) * 1999-08-27 2001-03-13 Sumitomo Electric Ind Ltd 鋼線およびその製造方法
JP3983218B2 (ja) * 2003-10-23 2007-09-26 株式会社神戸製鋼所 延性に優れた極細高炭素鋼線およびその製造方法
KR100764253B1 (ko) 2005-01-28 2007-10-05 가부시키가이샤 고베 세이코쇼 내수소취화 특성이 우수한 고강도 스프링용 강
JP4476846B2 (ja) * 2005-03-03 2010-06-09 株式会社神戸製鋼所 冷間加工性と品質安定性に優れた高強度ばね用鋼
JP4476863B2 (ja) * 2005-04-11 2010-06-09 株式会社神戸製鋼所 耐食性に優れた冷間成形ばね用鋼線
CN101624679B (zh) * 2007-07-20 2011-08-17 株式会社神户制钢所 弹簧用钢线材及其制造方法
US8789817B2 (en) * 2009-09-29 2014-07-29 Chuo Hatsujo Kabushiki Kaisha Spring steel and spring having superior corrosion fatigue strength

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2932943B2 (ja) 1993-11-04 1999-08-09 株式会社神戸製鋼所 高耐食性高強度ばね用鋼材
JPH10196697A (ja) 1997-01-10 1998-07-31 Kobe Steel Ltd 環境脆性の良好な高強度ばね
JP2008106365A (ja) 1997-11-17 2008-05-08 Chuo Spring Co Ltd 耐腐食疲労強度を向上させたばね
JP2001288530A (ja) * 2000-03-31 2001-10-19 Kobe Steel Ltd 高強度・高靭性マルテンサイト鋼及びその製造方法
JP3896902B2 (ja) 2002-06-06 2007-03-22 大同特殊鋼株式会社 腐食疲労強度に優れた高強度ばね鋼
JP4280123B2 (ja) 2003-07-01 2009-06-17 株式会社神戸製鋼所 耐腐食疲労性に優れたばね用鋼
JP2007100209A (ja) * 2005-01-28 2007-04-19 Kobe Steel Ltd 耐水素脆化特性に優れた高強度ばね用鋼
JP2007191776A (ja) * 2006-01-23 2007-08-02 Kobe Steel Ltd 耐脆性破壊特性に優れた高強度ばね鋼およびその製造方法
JP2009046764A (ja) 2007-07-20 2009-03-05 Kobe Steel Ltd 腐食疲労特性に優れたばね用鋼
JP2009256771A (ja) * 2008-03-27 2009-11-05 Jfe Steel Corp 耐遅れ破壊特性に優れた高強度ばね用鋼およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2557195A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150004051A1 (en) * 2012-02-14 2015-01-01 Jfe Steel Corporation Spring steel
EP2937434A4 (en) * 2012-12-21 2017-01-04 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel wire rod for high-strength spring with excellent hydrogen embrittlement resistance and manufacturing process therefor and high-strength spring
CN106011630A (zh) * 2016-07-06 2016-10-12 安徽红桥金属制造有限公司 一种高疲劳强度的汽车悬架弹簧用钢及其制备方法

Also Published As

Publication number Publication date
US20140060706A1 (en) 2014-03-06
CN102884216A (zh) 2013-01-16
JP4900516B2 (ja) 2012-03-21
US8608874B2 (en) 2013-12-17
KR20130018808A (ko) 2013-02-25
EP2557195A1 (en) 2013-02-13
CN102884216B (zh) 2014-08-06
JP2011246811A (ja) 2011-12-08
US9618070B2 (en) 2017-04-11
US20130048158A1 (en) 2013-02-28
KR101311386B1 (ko) 2013-09-25
EP2557195A4 (en) 2015-04-08
EP2557195B1 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP4900516B2 (ja) ばね鋼およびその製造方法
CN109312433B (zh) 钢板
KR101485236B1 (ko) 가공성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
TWI502080B (zh) 加工性優異之高強度鋼板及其製造方法
JP4894863B2 (ja) 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP7370320B2 (ja) 耐腐食疲労特性に優れたばね用線材、鋼線及びこれらの製造方法
JP6795042B2 (ja) ホットスタンプ成形体及びその製造方法
JP5942841B2 (ja) 強度と耐水素脆性に優れたホットスタンプ成形体及びホットスタンプ成形体の製造方法
JP6027302B2 (ja) 高強度焼戻し省略ばね用鋼
JP5825185B2 (ja) 冷延鋼板およびその製造方法
JP5408398B1 (ja) ばね鋼
JP7329984B2 (ja) ステンレス鋼
JP5679455B2 (ja) ばね用鋼、ばね用鋼線及びばね
JP3969350B2 (ja) 高張力冷延鋼板とその製造方法
JP5332547B2 (ja) 冷延鋼板
EP3971307B1 (en) Electric-resistance-welded steel pipe or tube for hollow stabilizer
JP4937499B2 (ja) 耐食性および疲労特性に優れた高強度ばね用鋼およびその製造方法
JP3775225B2 (ja) 高張力冷延鋼板およびその製造方法
CN115210398A (zh) 钢板、构件和它们的制造方法
JP5041096B2 (ja) 高張力冷延鋼板およびその製造方法
JP5136174B2 (ja) 耐候性、耐遅れ破壊特性に優れた高強度ボルト用鋼
JP4622783B2 (ja) 剛性に優れた高強度薄鋼板およびその製造方法
JP3969351B2 (ja) 高張力冷延鋼板とその製造方法
TWI593812B (zh) Steel plate
JP3750600B2 (ja) 高張力冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180022549.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762141

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011762141

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011762141

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1201005179

Country of ref document: TH

Ref document number: 2306/MUMNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127028210

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13638375

Country of ref document: US