WO2011107674A1 - Véhicule électrique comportant au moins trois roues - Google Patents

Véhicule électrique comportant au moins trois roues Download PDF

Info

Publication number
WO2011107674A1
WO2011107674A1 PCT/FR2011/000094 FR2011000094W WO2011107674A1 WO 2011107674 A1 WO2011107674 A1 WO 2011107674A1 FR 2011000094 W FR2011000094 W FR 2011000094W WO 2011107674 A1 WO2011107674 A1 WO 2011107674A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
wheel
motor
inclination
frame
Prior art date
Application number
PCT/FR2011/000094
Other languages
English (en)
Inventor
Christian Rigaux
Original Assignee
Synergethic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Synergethic filed Critical Synergethic
Priority to EP11709991A priority Critical patent/EP2542459A1/fr
Publication of WO2011107674A1 publication Critical patent/WO2011107674A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/10Cycles with handlebars, equipped with three or more main road wheels with means for inwardly inclining the vehicle body on bends
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/007Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces means for adjusting the wheel inclination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J45/00Electrical equipment arrangements specially adapted for use as accessories on cycles, not otherwise provided for
    • B62J45/40Sensor arrangements; Mounting thereof
    • B62J45/41Sensor arrangements; Mounting thereof characterised by the type of sensor
    • B62J45/415Inclination sensors
    • B62J45/4151Inclination sensors for sensing lateral inclination of the cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K5/00Cycles with handlebars, equipped with three or more main road wheels
    • B62K5/02Tricycles
    • B62K5/027Motorcycles with three wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/45Rolling frame vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K2204/00Adaptations for driving cycles by electric motor

Definitions

  • Electric vehicle having at least three wheels
  • the present invention relates to a new electric vehicle having at least three wheels.
  • the present invention relates to a new electric vehicle having at least three wheels, of small width, able to tilt strongly as needed, especially in bends.
  • the reclining vehicles include those that are at partial inclination, namely inclination of the chassis but not the driving wheels, control of the inclination can be free, assisted or automatic, and those with total inclination, to to know the inclination of the chassis and driving wheels, said inclination being as previously free, assisted or automatic.
  • control of the inclination can be free, assisted or automatic, and those with total inclination, to to know the inclination of the chassis and driving wheels, said inclination being as previously free, assisted or automatic.
  • those that are narrow gauge and those with wide gauge are narrow gauge and those with wide gauge.
  • the vehicle according to the invention thanks to its technical characteristics, will limit the risk of errors, including eliminating the inclination of the vehicle solely because of the will of the driver through an automatic control of said inclination, the latter can reach 40 °, which corresponds to what has been previously mentioned as a so-called total inclination.
  • the inclination is defined by an angle A formed between a vertical plane of symmetry S of the vehicle and a normal plane N to the running surface of the ground.
  • the secure electric vehicle according to the invention is of the type comprising at least three wheels of which at least two are driving, capable of tilting relative to the ground, by an automatic control comprising a control member controlling the inclination of said vehicle automatically, the vehicle having a frame and a rocker supporting said driving wheels, the rocker being pivotally mounted on the frame, a mechanical device being disposed between the rocker and the frame, said mechanical device on the one hand to adjust the angle of inclination of the vehicle by adjusting the angle between the rocker and the frame, and the same mechanical device on the other hand to constantly block the frame and the balance between them in a position determined by the automatic control.
  • the mechanical device is a non-reversible member.
  • the simple device allows at any time to change the angle of inclination of the vehicle while permanently stiffening the connection between the frame and the balance and thus the running gear. This avoids any relative movement between frame and beam, for example because of the imperfections of the roadway or the centrifugal force exerted in turns. This makes it possible to secure the behavior of the vehicle.
  • the drive wheels comprise a right wheel and a left wheel, each of the drive wheels being provided with a motor-wheel, the motor-wheels being differentially managed by said control member which groups the information representative of the state of movement of the vehicle and gives the instructions to create a differential motor torque between the wheel motor of the right wheel and that of the left wheel, the engine torque differential forcing the vehicle to tilt.
  • the creation of the torque differential makes it possible to release the locking between chassis and beam and thus to quickly and accurately control a change in the angle between the balance and thus the inclination of the vehicle.
  • each of the driving wheels is provided with an oscillating arm integral with the motor-wheels, each of the oscillating arms being articulated to the chassis of said vehicle, the oscillating arms being furthermore connected to the balance wheel via shock absorbers.
  • the mechanical device is a non-reversible gearbox of a geared motor integral with the chassis and having a shaft engaged with said balance, the geared motor controlling the angular position of the chassis relative to the beam and blocking the frame and the balance between them in a tilting position of the vehicle determined by said control member.
  • the non-reversible gearbox is a worm and worm gearbox whose shaft carrying the wheel is in direct contact with the balance.
  • the same member ensures control of the angular position and the locking of the balance and the frame between them.
  • the vehicle according to the invention comprises three wheels, two driving wheels arranged at the rear of said vehicle, and a steering wheel disposed at the front of said vehicle.
  • the invention also relates to a method for controlling the inclination of the electric vehicle.
  • control unit detects a change in the steering angle of a steering wheel, it gives instructions for applying a differential of engine torque between the wheel motor of the right wheel and that of the left wheel, this differential of engine torque forcing the vehicle to bow to the side of the turn.
  • This feature contributes to the inclination of the vehicle by counteracting the effect of centrifugal force.
  • the control member together with the application of said engine torque differential, adjusts the angle between the rocker arm and the chassis until the desired inclination calculated by the control member.
  • the simultaneous control of angle adjustment and torque differential improves the reactivity of the vehicle at the initiation of steering.
  • the torque differential is such that the engine torque applied to the engine located on the side of the turn is greater than the engine torque applied to the engine located on the side opposite the turn.
  • the control member returns said engine torque differential to zero.
  • the vehicle is then tilted and in stable equilibrium because the mechanical device immobilizes the relative position between the chassis and the undercarriage.
  • Figure 1 is a rear three-quarter view of the drive wheels of the vehicle according to a first embodiment of the invention
  • Figure 2 is a side view of the assembly illustrated in Figure 1
  • Figure 3 is a rear three-quarter view of the drive wheels of the vehicle according to a second alternative embodiment of the invention
  • Figure 4 is a side view of the assembly illustrated in Figure 3
  • Figure 5 is a rear three-quarter view of the drive wheels of the vehicle according to a third embodiment of the invention
  • Figure 6 is a side view of the assembly illustrated in Figure 5
  • Figure 7 is a schematic front view of the vehicle according to the invention in an inclined position.
  • Figure 8 is a rear three-quarter view of a particular embodiment of the third variant.
  • Figures 9a, 9b are rear views of the assembly of Figure 8 in vertical and inclined position of the vehicle;
  • Figures 10a, 10b shows in perspective rear geared motor of Figure 8;
  • Figures 11a, 11b show the vehicle in a top view and rear view at the beginning of the inclination adjustment
  • Figures 12a, 12b show the vehicle in plan view and rear view in stable inclined position.
  • FIG. 1 schematically illustrates the drive wheels of the vehicle according to a first embodiment of the invention; in this variant, the drive wheels (1) are each provided with a wheel motor (2). Each of the drive wheels (1) is connected to an oscillating arm (3), itself preferentially connected in the middle to a rocker (4) via a damper (5) as it appears in FIG. 1 This same figure 1 reveals a part of the chassis (6) of the vehicle according to the invention. These different characteristics are also illustrated in Figure 2.
  • FIGS. 3 to 6 Two alternative embodiments illustrated in FIGS. 3 to 6 give examples of these means.
  • these means consist of a connection between the balance (4) and a beam (7) of the frame (6), said beam (7) being parallel to the balance (4) when the vehicle is in equilibrium position on flat ground.
  • Two dampers (8) provide this connection; in the aforementioned equilibrium configuration, the dampers (8) are arranged perpendicularly to the beam (7) and to the balance (4).
  • FIG. 4 is a side view showing, at a different angle, the different characteristics of FIG.
  • a geared motor (9) integral with the frame is disposed in the central portion of the balance (4) and allows the locking in the equilibrium position of the assembly when the vehicle is stopped.
  • the additional advantage provided by the geared motor (9) is that it is itself capable of generating on command a torque, thus participating in the inclination of the vehicle.
  • the geared motor (9) is disposed in the central portion of the balance (4); it could also be attached to one end of said beam (4).
  • FIG. 7 schematically represents, from the front, a vehicle according to the invention in an inclined position in the preferred embodiment, namely a three-wheeled vehicle, including two drive wheels located at the rear of the vehicle and a wheel placed at the front of the vehicle, the front wheel being only a steering wheel.
  • This inclined position corresponds to what was previously mentioned as a total inclination, it being understood that the latter can reach up to 40 ° with respect to the vertical.
  • these motor-wheels will be housed in the rims of the drive wheels; in addition to the role of these motor-wheels in the inclination of the vehicle, the first function of these motor-wheels is of course to ensure the propulsion and braking of the rear axle of the vehicle (when the two drive wheels are located at the rear of the vehicle).
  • the motor-wheels are themselves integral with the aforementioned oscillating arms, the latter being connected on the one hand to the frame by rolling to allow their movement in a plane, and secondly to said balance by dampers ensuring the suspension of the vehicle.
  • FIGS. 8 to 10 describe an embodiment corresponding to that illustrated in FIGS. 5 and 6.
  • FIG. 8 shows that the geared motor 9 is carried by a support part 1 1 fixed on the chassis 6.
  • the balance 4 is pivotally mounted on the part support along an L axis substantially longitudinal of the vehicle through bearings 12A, 12R.
  • the two ends of the balance 4 each carry a pivot for a damper 5 right and left.
  • the foot of each damper 5 is received by a pivot on an oscillating arm 3 which is articulated to the frame along a substantially transverse axis T of the vehicle.
  • the rear axle of the vehicle thus consists of the driving wheels 1, the oscillating arms 3, the dampers 5 and the balance 4.
  • FIG. 9a shows the vehicle in a vertical position.
  • FIG. 9b shows the vehicle inclined at an angle A. It can be seen that, thanks to the link by oscillating arms, the wheels and the chassis are inclined at the same angle A allowing total inclination.
  • FIG. 10a shows a mechanical device formed by the support part 1 1 pivotally supporting the balance 4 and on which the geared motor 9 is fixed.
  • FIG. 10b is a similar figure at another angle showing the internal gearing without the casings of the geared motor.
  • the latter comprises a motor 10, a first reducer RI driving a second reducer R2 which controls the movement of the rocker 4 relative to the frame 6.
  • the reducer R2 is fixed on a plate l ia itself fixed to the frame 6.
  • two reducer RI, R2 are used in order to accommodate the motor 10 forward.
  • the R2 reducer could be enough to achieve the desired effect. In this case it is a non-reversible reduction gear wheel 14a and worm 15a.
  • the wheel 14a is mounted on the shaft 13 which carries the rocker 4.
  • the shaft 13 is pivotally mounted on the bearings 12A, 12R, each being received in parts 1 lb, the V-shaped integral with the plate 1 and forming the support part 11.
  • the rocker is disposed between these parts 11b, 1 1c.
  • the worm 15a is rotated by the gear RI which is controlled by the motor 10.
  • the gear RI has a wheel 14b and a worm 15b. Since the gearbox R2 is non-reversible, no rotational movement can be transmitted from the beam to the chassis while the rotation of the motor 10 causes the balance 4 to rotate. Indeed, the screw 15a acts as a rotational locking device for the wheel 14a and thus of the shaft 13 and the balance 4.
  • the balance / frame connection is thus stiffened.
  • the chassis 6 and the running gear are thus constantly immobilized relative to each other regardless of the angle of inclination A of the vehicle.
  • the chassis can not be destabilized by the centrifugal force during a turn or by movements related to the imperfections of the road, which allows to secure the behavior of the vehicle in all circumstances.
  • an pilot control the rotation of the motor 10 which will adjust the angle between the rocker 4 and the frame 6 through the gearbox R1, R2 until the desired angle.
  • the mechanical device allows both to adjust the angle between the beam and the frame while constantly blocking the frame and the balance between them.
  • the vehicle according to the invention is furthermore provided with a control member, not shown here, controlling the inclination of said vehicle automatically, said control member grouping the information given by different sensors responsible for following certain parameters and giving the instructions to create a differential of engine torque between the wheel motor of the right wheel and that of the left wheel: it is this differential that forces the vehicle to tilt.
  • These sensors comprise in the configuration "a front steering wheel and two rear driving wheels":
  • an angle sensor on the direction to determine the will of the driver, and which allows tilting the vehicle to take turns at high speed for example;
  • this information makes it possible to verify that the inclination is well adapted to the turn that the pilot wishes to take; the speed and the radius of the initiated turn make it possible to calculate the transverse acceleration and this value is compared with the value measured by the accelerometer;
  • this sensor makes it possible to know the inclination of the balance and to deduce the position of inclination of the vehicle;
  • a speed sensor at each motor-wheel it makes it possible to check the applied speed vis-à-vis the setpoint and is used for the functions of traction control and antilock braking of the wheels;
  • the information from said sensors is sent to the controller which will thus determine the angle of inclination necessary to maintain the stability of the vehicle and control the inverters to create a differential motor torque between the motor-wheel right and the left wheel motor: it is this differential and the up position of the oscillating arms that allow to tilt the vehicle.
  • the inverters generate the current that powers each of the wheel motors.
  • Figures 11 and 12 illustrate how to control the inclination of the vehicle.
  • Figures 11a, 11b show the vehicle at the very beginning of a left turn V.
  • the driver orients the steering wheel 20 in the direction of the turn and the angle sensor on the direction detects a steering angle a.
  • the control member controls a torque to the left wheel (located on the side of the V-turn) greater than the torque applied to the right wheel.
  • This torque differential generates a traction force FG on the left wheel greater than the traction force FD on the right wheel ( Figure 11a).
  • This force difference generates a torque CL ( Figure 11b) about the longitudinal axis L tending to tilt the frame on the left side of the corner V.
  • the torque CL makes it possible to compensate for the DC torque.
  • the control member controls the rotation of the engine 10 in order to adjust the angle of inclination of the vehicle. From the measurements of the steering angle and the speed of the vehicle, the controller calculates the desired inclination A and the engine torque differential needed to create the torque CL necessary to overcome the torque due to the centrifugal force. CC resulting from the turn. The control member maintains the torque differential until the desired angle of inclination A is obtained.
  • the joint control makes it possible to gain reactivity and to recreate the phenomenon of taking a corner of a two-wheeled vehicle exerted by the pilot by leaning towards the bend. It has been demonstrated that the angle of inclination of the vehicle was changed as soon as a very low engine torque differential was created at the motor-wheels.
  • the engine torque differential is calculated as a function of the speed and the steering angle to obtain the required angle of inclination.
  • the engine torque differential applied will be greater at high speed than at low speed. Likewise, it will be larger at a high steering angle than at a low steering angle.
  • FIG. 12a and 12b show the vehicle once the angle of inclination A wanted obtained.
  • the control member controls an identical engine torque on the two wheels.
  • FIG. 12b shows that the chassis is then in stable equilibrium, subjected to two equal pairs which cancel out: on the one hand the DC torque due to the centrifugal force and on the other hand the CP torque due to the displacement of the center of gravity G of the vehicle towards the inside of the turn resulting from the inclination of the vehicle. Thanks to the mechanical device, the chassis and the balance are immobilized with respect to each other thus stabilizing the vehicle completely.
  • the controller receives the data provided by the sensors and continuously calculates the parameters (tilt angle and motor torque differential) that are set according to the method described above.
  • the preferred embodiment is a three-wheeled vehicle whose two drive wheels are located at the rear, the only front wheel being a director: it would also be possible to envisage a four-wheeled vehicle, two of which would be driving, or whose four wheels would drive.
  • the two-wheel drive can be located either at the front or at the rear of the vehicle.
  • the vehicle according to the invention will find its use in agglomeration, especially in large cities where traffic is saturated, resulting in a loss of time, increased pollution and a risk of serious accidents increasing constant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

Véhicule électrique sécurisé du type comportant au moins trois roues dont au moins deux sont motrices, susceptible de s'incliner par rapport au sol, par un contrôle automatique comprenant un organe de commande contrôlant l'inclinaison dudit véhicule de façon automatique, le véhicule présentant un châssis (6) et un balancier (4) supportant lesdites roues motrices (1), le balancier étant monté pivotant sur le châssis. Un dispositif mécanique est disposé entre le balancier et le châssis et permet d'une part de régler l'angle d'inclinaison du véhicule par réglage de l'angle entre le balancier et le châssis, le même dispositif mécanique permettant d'autre part de constamment bloquer le châssis et le balancier entre eux dans une position déterminée par le contrôle automatique. L'invention concerne également un procédé de commande de l'inclinaison du véhicule électrique consistant à appliquer un différentiel de couple moteur entre le moteur-roue de la roue droite et celui de la roue gauche.

Description

Véhicule électrique comportant au moins trois roues
La présente invention concerne un nouveau véhicule électrique comportant au moins trois roues.
Plus particulièrement, la présente invention concerne un nouveau véhicule électrique comportant au moins trois roues, de faible largeur, susceptible de s'incliner fortement en tant que de besoin, notamment dans les virages.
Traditionnellement, on distingue parmi les véhicules inclinables ceux qui sont à inclinaison partielle, à savoir inclinaison du châssis mais pas des roues motrices, le contrôle de l'inclinaison pouvant être libre, assisté ou automatique, et ceux qui sont à inclinaison dite totale, à savoir inclinaison du châssis et des roues motrices, ladite inclinaison pouvant être comme précédemment libre, assistée ou automatique. En outre, pour chacun de ces véhicules, on distinguera ceux qui sont à voie étroite et ceux qui sont à voie large.
Quel que soit le véhicule considéré, l'un des critères fondamentaux que doit respecter un tel véhicule est sa tenue de route, assurant ainsi la sécurité des occupants du véhicule. A cet égard, l'appréciation du pilote dudit véhicule lorsqu'il souhaite incliner son véhicule en abordant un virage peut se révéler mauvaise, débouchant sur des dérapages, voire des chutes. Ces difficultés peuvent également survenir en cas de route présentant un certain devers et/ou en cas de vent latéral important.
Le véhicule selon l'invention, grâce à ses caractéristiques techniques, va limiter les risques d'erreurs, notamment en éliminant l'inclinaison du véhicule du seul fait de la volonté du pilote grâce à un contrôle automatique de ladite inclinaison, cette dernière pouvant atteindre 40°, ce qui correspond à ce qui a été précédemment mentionné comme une inclinaison dite totale. L'inclinaison est définie par un angle A formé entre un plan de symétrie verticale S du véhicule et un plan normal N à la surface de roulement du sol.
De façon plus précise, le véhicule électrique sécurisé selon l'invention est du type comportant au moins trois roues dont au moins deux sont motrices, susceptible de s'incliner par rapport au sol, par un contrôle automatique comprenant un organe de commande contrôlant l'inclinaison dudit véhicule de façon automatique, le véhicule présentant un châssis et un balancier supportant lesdites roues motrices, le balancier étant monté pivotant sur le châssis, un dispositif mécanique étant disposé entre le balancier et le châssis, ledit dispositif mécanique permettant d'une part de régler l'angle d'inclinaison du véhicule par réglage de l'angle entre le balancier et le châssis, et, le même dispositif mécanique permettant d'autre part de constamment bloquer le châssis et le balancier entre eux dans une position déterminée par le contrôle automatique. Le dispositif mécanique est un organe non réversible. Le dispositif simple permet à tout moment de modifier l'angle d'inclinaison du véhicule tout en rigidifiant en permanence la liaison entre le châssis et le balancier et donc le train roulant. On évite ainsi tout mouvement relatif entre châssis et balancier, par exemple en raison des imperfections de la chaussée ou de la force centrifuge exercée en virage. Ceci permet de sécuriser le comportement du véhicule.
Selon une caractéristique de l'invention, les roues motrices comprennent une roue droite et une roue gauche, chacune des roues motrices étant dotée d'un moteur-roue, les moteur-roues étant gérés de manière différenciée par ledit organe de commande qui regroupe les informations représentatives de l'état de déplacement du véhicule et donne les instructions pour créer un différentiel de couple moteur entre le moteur-roue de la roue droite et celui de la roue gauche, ce différentiel de couple moteur obligeant le véhicule à s'incliner. La création du différentiel de couple permet de relâcher le blocage entre châssis et balancier et ainsi de piloter rapidement et précisément une modification de l'angle entre le balancier et donc l'inclinaison du véhicule.
Selon une caractéristique particulière de l'invention, chacune des roues motrices est dotée d'un bras oscillant solidaire des moteur-roues, chacun des bras oscillant étant articulé au châssis dudit véhicule, les bras oscillants étant en outre reliés au balancier par l'intermédiaire d'amortisseurs. Ces caractéristiques permettent d'amplifier l'action du différentiel de couple moteur lors d'un changement d'angle d'inclinaison.
Selon une caractéristique particulière, le dispositif mécanique est un réducteur non réversible d'un motoréducteur solidaire du châssis et présentant un arbre en prise avec ledit balancier, le motoréducteur contrôlant la position angulaire du châssis par rapport au balancier et bloquant le châssis et le balancier entre eux dans une position d'inclinaison du véhicule déterminée par ledit organe de commande. Ces moyens simples et fiables permettent un blocage robuste et permanent de la position relative entre le châssis et le balancier et donc le train roulant.
Selon une autre caractéristique particulière, le réducteur non réversible est un réducteur à roue et vis sans fin dont l'arbre portant la roue est en prise directe avec le balancier. Ainsi, le même organe permet d'assurer le contrôle de la position angulaire et le blocage du balancier et du châssis entre eux. A titre tout à fait préférentiel, le véhicule selon l'invention comprend trois roues, deux roues motrices disposées à l'arrière dudit véhicule, et une roue directrice disposée à l'avant dudit véhicule. L'invention vise également un procédé de commande de l'inclinaison du véhicule électrique. Selon une première caractéristique, dès que l'organe de commande détecte une modification de l'angle de braquage d'une roue directrice, il donne des instructions pour appliquer un différentiel de couple moteur entre le moteur-roue de la roue droite et celui de la roue gauche, ce différentiel de couple moteur obligeant le véhicule à s'incliner du coté du virage. Cette caractéristique permet de contribuer à l'inclinaison du véhicule en contrant l'effet de la force centrifuge.
Selon une seconde caractéristique du procédé, conjointement à l'application dudit différentiel de couple moteur, l'organe de commande règle l'angle entre le balancier et le châssis jusqu'à obtenir l'inclinaison voulue calculée par l'organe de commande. La commande simultanée de réglage de l'angle et du différentiel de couple permet d'améliorer la réactivité du véhicule dès l'initiation du braquage.
Selon une autre caractéristique du procédé, le différentiel de couple est tel que le couple moteur appliqué au moteur situé du coté du virage est supérieur au couple moteur appliqué au moteur situé du coté opposé au virage. Cette caractéristique permet d'incliner le véhicule du côté du virage et de compenser la force centrifuge due au virage.
Selon une caractéristique supplémentaire du procédé, une fois l'inclinaison voulue obtenue, l'organe de commande ramène ledit différentiel de couple moteur à zéro. Le véhicule se trouve alors incliné et en équilibre stable car le dispositif mécanique immobilise la position relative entre le châssis et le train roulant.
D'autres détails et caractéristiques apparaîtront à la lecture de la description qui va suivre faite en regard des figures données à titre indicatif et nullement limitatif parmi les quelles :
la figure 1 est une vue trois-quarts arrière des roues motrices du véhicule selon une première variante d'exécution de l'invention ; la figure 2 est une vue de profil de l'ensemble illustré à la figure 1 ; la figure 3 est une vue trois-quarts arrière des roues motrices du véhicule selon une deuxième variante d'exécution de l'invention; la figure 4 est une vue de profil de l'ensemble illustré à la figure 3 ; la figure 5 est une vue trois-quarts arrière des roues motrices du véhicule selon une troisième variante d'exécution de l'invention ; la figure 6 est une vue de profil de l'ensemble illustré à la figure 5 ; la figure 7 est une vue de face schématique du véhicule selon l'invention en position inclinée.
la figure 8 est vue trois-quarts arrière d'un mode de réalisation particulier de la troisième variante ;
les figures 9a,9b sont des vues arrière de l'ensemble de la figure 8 en position verticale et inclinée du véhicule;
les figures 10a, 10b montre én perspective arrière le motoréducteur de la figure 8 ;
les figures 11 a, 11 b montrent le véhicule en vue de dessus et vue arrière au début du réglage de l'inclinaison ;
les figures 12a, 12b montrent le véhicule en vue de dessus et vue arrière en position inclinée stable.
La figure 1 illustre de façon schématique les roues motrices du véhicule selon une première variante d'exécution de l'invention ; dans cette variante, les roues motrices (1) sont chacune dotée d'un moteur-roue (2). Chacune des roues motrices (1) est reliée à un bras oscillant (3), lui-même relié préférentiellement en son milieu à un balancier (4) par l'intermédiaire d'un amortisseur (5) ainsi que cela apparaît à la figure 1. Cette même figure 1 laisse apparaître une partie du châssis (6) du véhicule selon l'invention. Ces différentes caractéristiques sont également illustrées à la figure 2.
Lorsque le véhicule est à l'arrêt, il est important que ledit véhicule reste en position verticale et il convient donc de prévoir des moyens permettant de bloquer le balancier en position sensiblement horizontale, et évitant que le véhicule ne s'incline spontanément. Deux variantes d'exécution illustrées aux figures 3 à 6, donnent des exemples de ces moyens.
Selon une première variante d'exécution illustrée à la figure 3, ces moyens consistent en une liaison entre le balancier (4) et une poutre (7) du châssis (6), ladite poutre (7) étant parallèle au balancier (4) lorsque le véhicule est en position d'équilibre sur un terrain plat. Deux amortisseurs (8) assurent cette liaison ; dans la configuration d'équilibre précitée, les amortisseurs (8) sont disposés perpendiculairement à la poutre (7) et au balancier (4). La figure 4 est une vue de profil présentant sous un angle différent les différentes caractéristiques de la figure 3.
Selon une variante préférentielle d'exécution, illustrée à la figure 5, un motoréducteur (9) solidaire du châssis est disposé dans la partie centrale du balancier (4) et permet le blocage en position d'équilibre de l'ensemble lorsque le véhicule est à l'arrêt. L'avantage supplémentaire procuré par le motoréducteur (9) est qu'il est lui-même susceptible d'engendrer sur commande un couple, participant ainsi à l'inclinaison du véhicule. Dans l'exemple illustré à la figure 5, le motoréducteur (9) est disposé dans la partie centrale du balancier (4) ; il pourrait aussi être fixé à l'une des extrémités dudit balancier (4). Ces différentes caractéristiques sont également illustrées à la figure 6.
La figure 7 représente de façon schématique, de face, un véhicule selon l'invention en position inclinée dans le mode préférentiel de réalisation, à savoir un véhicule à trois roues, dont deux roues motrices situées à l'arrière du véhicule et une roue placée à l'avant du véhicule, la roue avant étant uniquement une roue directrice. Cette position inclinée correspond à ce qui a été précédemment mentionné comme une inclinaison totale, étant entendu que cette dernière peut atteindre jusqu'à 40° par rapport à la verticale.
Quelle que soit la variante d'exécution telle que représentée dans l'une des figures
1 à 6, ce sont les moteur-roues combinés aux bras oscillants reliés par le balancier qui vont commander l'inclinaison approprié du véhicule. Préférentiellement, ces moteur-roues seront logés dans les jantes des roues motrices ; outre le rôle de ces moteur-roues dans l'inclinaison du véhicule, la première fonction de ces moteur-roues est bien entendu d'assurer la propulsion ainsi que le freinage de l'essieu arrière du véhicule (lorsque les deux roues motrices sont situées à l'arrière du véhicule).
Les moteur-roues sont eux-mêmes solidaires des bras oscillants précités, ces derniers étant reliés d'une part au châssis par roulement pour permettre leur mouvement dans un plan, et d'autre part audit balancier par des amortisseurs assurant la suspension du véhicule.
Les figures 8 à 10 décrivent un mode de réalisation correspondant à celui illustré figures 5 et 6. La figure 8 montre que le motoréducteur 9 est porté par une pièce support 1 1 fixée sur le châssis 6. Le balancier 4 est monté pivotant sur la pièce support selon un axe L sensiblement longitudinal du véhicule par l'intermédiaire de paliers 12A,12R. On peut observer le palier arrière 12R disposé derrière le balancier, un autre palier 12A étant disposé à l'avant du balancier (figure 10b). Les deux extrémités du balancier 4 portent chacune un pivot pour un amortisseur 5 droit et gauche. Le pied de chaque amortisseur 5 est reçu par un pivot sur un bras oscillant 3 qui est articulé au châssis selon un axe T sensiblement transversal du véhicule. Le train arrière du véhicule est ainsi constitué des roues motrices 1, des bras oscillants 3, des amortisseurs 5 et du balancier 4.
La figure 9a montre le véhicule en position verticale. La figure 9b montre le véhicule incliné d'un angle A. On observe que, grâce à la liaison par bras oscillants, les roues et le châssis sont inclinés du même angle A permettant une inclinaison totale.
La figure 10a montre un dispositif mécanique formé par la pièce support 1 1 portant à pivotement le balancier 4 et sur laquelle est fixé le motoréducteur 9. La figure 10b est une figure similaire sous un autre angle faisant apparaître la pignonerie interne sans les carters du motoréducteur. Ce dernier comprend un moteur 10, un premier réducteur RI entraînant un second réducteur R2 qui commande le mouvement du balancier 4 par rapport au châssis 6. Le réducteur R2 est fixé sur une platine l ia elle-même fixée au châssis 6. Dans cet exemple on utilise deux réducteur RI, R2 afin de pouvoir loger le moteur 10 vers l'avant. Dans la pratique le réducteur R2 pourrait suffire pour obtenir l'effet désiré. En l'occurrence il s'agit d'un réducteur non réversible à roue 14a et vis sans fin 15a. La roue 14a est montée sur l'arbre 13 qui porte fixement le balancier 4. L'arbre 13 est monté pivotant sur les paliers 12A,12R, chacun étant reçu dans des parties 1 lb,l le en forme de V solidaire de la platine 1 la et formant la pièce support 11. Le balancier est disposé entre ces parties 11b, 1 1c. La vis sans fin 15a est entraînée en rotation par le réducteur RI qui est commandé par le moteur 10. Le réducteur RI présente une roue 14b et une vis sans fin 15b. Le réducteur R2 étant non réversible, aucun mouvement de rotation ne peut être transmis du balancier vers le châssis alors que la rotation du moteur 10 entraîne la rotation du balancier 4. En effet, la vis 15a joue un rôle de blocage en rotation de la roue 14a et donc de l'arbre 13 et du balancier 4. La liaison balancier/châssis est ainsi rigidifiée. Le châssis 6 et le train roulant sont donc constamment immobilisés l'un par rapport à l'autre quel que soit l'angle d'inclinaison A du véhicule. Ainsi, le châssis ne peut pas être déstabilisé par la force centrifuge lors d'un virage ou par des mouvements liés aux imperfections de la chaussée, ce qui permet de sécuriser le comportement du véhicule en toutes circonstances. Pour modifier l'angle d'inclinaison du véhicule, un organe de commande pilote la rotation du moteur 10 qui va régler l'angle entre le balancier 4 et le châssis 6 par l'intermédiaire des réducteurs R1,R2 jusqu'à l'obtention de l'angle voulu. Ainsi le dispositif mécanique permet à la fois de régler l'angle entre le balancier et le châssis tout en bloquant constamment le châssis et le balancier entre eux.
Le véhicule selon l'invention est doté en outre d'un organe de commande, non représenté ici, contrôlant l'inclinaison dudit véhicule de façon automatique, ledit organe de commande regroupant les informations données par différents capteurs chargés de suivre certains paramètres et donnant les instructions pour créer un différentiel de couple moteur entre le moteur-roue de la roue droite et celui de la roue gauche : c'est ce différentiel qui oblige le véhicule à s'incliner.
Ces capteurs, non illustrés dans les figures 1 à 6 comprennent dans la configuration « une roue avant directrice et deux roues arrières motrices » :
un capteur de vitesse de la roue avant : cette information est utile pour la fonction d' antiblocage de roue ;
un capteur d'angle sur la direction permettant de déterminer la volonté du pilote, et qui permet d'incliner le véhicule pour prendre les virages à vitesse élevée par exemple ;
un capteur d'accélération transversale : cette information permet de vérifier que l'inclinaison est bien adaptée au virage que souhaite prendre le pilote ; la vitesse et le rayon du virage amorcé permettent de calculer l'accélération transversale et cette valeur est comparée à la valeur mesurée par l'accéléromètre ;
un capteur d'angle sur le balancier : ce capteur permet de connaître l'inclinaison du balancier et d'en déduire la position d'inclinaison du véhicule ;
un capteur de vitesse au niveau de chaque moteur-roue : il permet de vérifier la vitesse appliquée vis-à-vis de la consigne et est utilisé pour les fonctions d' antipatinage et d'antiblocage des roues ;
- un gyromètre de vitesse de lacet.
Les informations provenant desdits capteurs sont envoyées au contrôleur qui va ainsi déterminer l'angle d'inclinaison nécessaire pour conserver la stabilité du véhicule et commander les onduleurs pour créer un différentiel de couple moteur entre le moteur-roue droit et le moteur-roue gauche : c'est ce différentiel et la position cabrée des bras oscillants qui permettent d'incliner le véhicule. Les onduleurs génèrent le courant qui alimente chacun des moteurs des roues.
Les figures 11 et 12 illustrent la manière de commander l'inclinaison du véhicule. Les figures 11 a, 1 1 b montrent le véhicule au tout début d'un virage V à gauche. A ce moment le conducteur oriente la roue directrice 20 dans le sens du virage et le capteur d'angle sur la direction détecte un angle de braquage a. À cet instant, l'organe de commande commande un couple moteur à la roue gauche (située du côté du virage V) supérieur au couple appliqué à la roue droite. Ce différentiel de couple génère une force de traction FG sur la roue gauche supérieure à la force de traction FD sur la roue droite (figure l ia). Cette différence de force génère un couple CL (figure 11b) autour de l'axe longitudinal L tendant à faire basculer le châssis sur la gauche du côté du virage V. En effet, dès le début du virage le châssis est soumis à une force centrifuge qui génère un couple CC tendant à faire le basculer vers l'extérieur du virage : le couple CL permet de compenser le couple CC.
Conjointement à l'application du différentiel de couple moteur, l'organe de commande pilote la rotation du moteur 10 afin de régler l'angle d'inclinaison du véhicule. A partir des mesures de l'angle de braquage et de la vitesse du véhicule, l'organe de commande calcule l'inclinaison A voulue et le différentiel de couple moteur nécessaire pour créer le couple CL nécessaire à vaincre le couple dû à la force centrifuge CC résultant du virage. L'organe de commande maintient le différentiel de couple jusqu'à l'obtention de l'angle d'inclinaison A voulu. La commande conjointe permet de gagner en réactivité et de recréer le phénomène de prise d'angle d'un véhicule à deux roues exercé par le pilote en se penchant du côté du virage. Il a été mis en évidence que l'angle d'inclinaison du véhicule était modifié dès qu'un différentiel de couple moteur -même très faible- était créé aux moteur-roues. Pour être efficace, le différentiel de couple moteur est calculé en fonction de la vitesse et de l'angle de braquage afin d'obtenir l'angle d'inclinaison nécessaire. Le différentiel de couple moteur appliqué sera plus important à grande vitesse qu'à petite vitesse. De même, il sera plus important à fort angle de braquage qu'à faible angle de braquage.
Les figures 12a et 12b montrent le véhicule une fois l'angle d'inclinaison A voulu obtenu. Dès l'obtention de l'angle voulu, l'organe de commande commande un couple moteur identique sur les deux-roues. Ceci se traduit par une force de traction F identique sur les deux roues (figure 12a). La figure 12b montre que le châssis se trouve alors en équilibre stable, soumis à deux couples égaux qui s'annulent : d'une part le couple CC dû à la force centrifuge et d'autre part le couple CP dû au déplacement du centre de gravité G du véhicule vers l'intérieur du virage résultant de l'inclinaison du véhicule. Grâce au dispositif mécanique le châssis et le balancier sont immobilisés l'un par rapport à l'autre stabilisant ainsi complètement le véhicule.
L'organe de commande reçoit les données fournies par les capteurs et calcule en permanence les paramètres (angle d'inclinaison et différentiel de couple moteur) qui sont réglés selon la méthode décrite ci-dessus.
Il est bien entendu possible, à partir de ces caractéristiques techniques de prévoir tous types d'habillage du véhicule ; un exemple est illustré à la figure 7 précitée.
D'autres variantes non illustrées dans la présente description peuvent être envisagées sans pour autant sortir du cadre de la présente invention. Ainsi, le mode de réalisation préférentiel est un véhicule à trois roues dont les deux roues motrices sont situées à l'arrière, l'unique roue avant étant directrice : il serait également possible d'envisager un véhicule à quatre roues dont deux seraient motrices, ou bien dont les quatre roues seraient motrices. De même, lorsque deux roues seulement sont motrices, qu'il s'agisse d'un véhicule à trois roues ou à quatre roues, les deux roues motrices peuvent se situer soit à l'avant, soit à l'arrière du véhicule.
A titre indicatif et nullement limitatif, le véhicule selon l'invention trouvera son utilisation en agglomération, notamment dans les grandes agglomérations où le trafic est saturé, d'où une perte de temps, une pollution accrue et un risque d'accidents graves en augmentation constante.

Claims

REVENDICATIONS
1) Véhicule électrique sécurisé du type comportant au moins trois roues dont au moins deux sont motrices, susceptible de s'incliner par rapport au sol, par un contrôle automatique comprenant un organe de commande contrôlant l'inclinaison dudit véhicule de façon automatique, le véhicule présentant un châssis (6) et un balancier (4) supportant lesdites roues motrices (1), le balancier étant monté pivotant sur le châssis caractérisé en ce qu'un dispositif mécanique est disposé entre le balancier et le châssis, ledit dispositif mécanique permettant d'une part de régler l'angle d'inclinaison du véhicule par réglage de l'angle entre le balancier et le châssis, et, le même dispositif mécanique permettant d'autre part de constamment bloquer le châssis et le balancier entre eux dans une position déterminée par le contrôle automatique.
2) Véhicule selon la revendication 1 caractérisé en ce que, les roues motrices (1) comprennent une roue droite et une roue gauche, chacune desdites roues motrices étant dotée d'un moteur-roue (2), lesdits moteur-roues sont gérés de manière différenciée par ledit organe de commande qui regroupe les informations représentatives de l'état de déplacement du véhicule et donne les instructions pour créer un différentiel de couple moteur entre le moteur-roue de la roue droite et celui de la roue gauche, ce différentiel de couple moteur obligeant le véhicule à s'incliner.
3) Véhicule selon la revendications 2 caractérisé en ce que chacune desdites roues motrices (1) est dotée d'un bras oscillant (3) solidaire desdits moteur-roues (1), chacun des bras oscillant étant articulé au châssis dudit véhicule, lesdits bras oscillants (3) étant en outre reliés au balancier (4) par l'intermédiaire d'amortisseurs (5).
4) Véhicule selon l'une quelconque des revendications 1 à 3 caractérisé en ce que le dispositif mécanique est un réducteur non réversible (R2) d'un motoréducteur (9) solidaire du châssis et présentant un arbre (13) en prise avec ledit balancier (4), ledit motoréducteur contrôlant la position angulaire du châssis par rapport au balancier et bloquant le châssis et le balancier entre eux dans une position d'inclinaison du véhicule déterminée par ledit organe de commande. 5) Véhicule selon la revendication 4 caractérisé en ce que le réducteur non réversible (R2) est un réducteur à roue (14a) et vis sans fin (15a) dont l'arbre (13) portant la roue (14a) est en prise directe avec le balancier (4). 6) Véhicule selon l'une quelconque des revendications 1 à 5 caractérisé en ce que lesdites roues motrices (1) sont situées à l'arrière du véhicule.
7) Procédé de commande de l'inclinaison d'un véhicule électrique selon l'une des revendications 1 à 6, le véhicule comprenant un moteur-roue (2) droit et gauche caractérisé en ce que dès que l'organe de commande détecte une modification de l'angle de braquage (a) d'une roue directrice (20), il donne des instructions pour appliquer un différentiel de couple moteur entre le moteur-roue de la roue droite et celui de la roue gauche, ce différentiel de couple moteur obligeant le véhicule à s'incliner du coté du virage.
8) Procédé selon la revendication 7 caractérisé en ce que conjointement à l'application dudit différentiel de couple moteur, l'organe de commande règle l'angle entre le balancier et le châssis jusqu'à obtenir l'inclinaison (A) voulue calculée par l'organe de commande.
9) Procédé selon la revendication 7 ou 8 caractérisé en ce que ledit différentiel de couple est tel que le couple moteur appliqué au moteur situé du coté du virage (V) est supérieur au couple moteur appliqué au moteur situé du coté opposé au virage. 10) Procédé selon l'une des revendications 7 à 9 caractérisé en ce qu'une fois l'inclinaison voulue obtenue, l'organe de commande ramène ledit différentiel de couple moteur à zéro.
11) Véhicule ou procédé selon l'une quelconque des revendications précédentes caractérisé en ce que les informations représentatives de l'état de déplacement du véhicule sont fournies par des capteurs mesurant au moins certains des paramètres suivants :
a. la vitesse de chaque roue ; b. l'angle sur la direction ;
c. l'accélération transversale ;
d. l'angle sur le balancier ;
e. la vitesse de chaque moteur-roue ; f. la vitesse de lacet.
PCT/FR2011/000094 2010-03-02 2011-02-16 Véhicule électrique comportant au moins trois roues WO2011107674A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11709991A EP2542459A1 (fr) 2010-03-02 2011-02-16 Véhicule électrique comportant au moins trois roues

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1000850A FR2957049B1 (fr) 2010-03-02 2010-03-02 Nouveau vehicule electrique comportant au moins trois roues
FR1000850 2010-03-02

Publications (1)

Publication Number Publication Date
WO2011107674A1 true WO2011107674A1 (fr) 2011-09-09

Family

ID=42813248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/000094 WO2011107674A1 (fr) 2010-03-02 2011-02-16 Véhicule électrique comportant au moins trois roues

Country Status (3)

Country Link
EP (1) EP2542459A1 (fr)
FR (1) FR2957049B1 (fr)
WO (1) WO2011107674A1 (fr)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013051195A1 (ja) * 2011-10-06 2015-03-30 ヤマハ発動機株式会社 電動車両
US9045015B2 (en) 2013-03-07 2015-06-02 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9090281B2 (en) 2013-03-07 2015-07-28 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9145168B2 (en) 2013-03-07 2015-09-29 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9248857B2 (en) 2013-03-07 2016-02-02 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9283989B2 (en) 2013-03-07 2016-03-15 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
EP3025933A1 (fr) * 2013-08-29 2016-06-01 Sung Jin Kim Système permettant de commander le roulement d'un véhicule et procédé pour celui-ci
US9809273B2 (en) 2014-02-12 2017-11-07 Royalty Bugaboo Gmbh Foldable vehicle
US9821620B2 (en) 2014-09-01 2017-11-21 Ford Technologies Corporation Method for operating a tilting running gear and an active tilting running gear for a non-rail-borne vehicle
US9845129B2 (en) 2014-08-29 2017-12-19 Ford Global Technologies, Llc Stabilizing arrangement for a tilting running gear of a vehicle and tilting running gear
US9925843B2 (en) 2015-02-24 2018-03-27 Ford Global Technologies, Llc Rear suspension systems for laterally tiltable multitrack vehicles
US10023019B2 (en) 2015-02-24 2018-07-17 Ford Global Technologies, Llc Rear suspension systems with rotary devices for laterally tiltable multitrack vehicles
US10076939B2 (en) 2014-11-26 2018-09-18 Ford Global Technologies, Llc Suspension systems for laterally tiltable multitrack vehicles
CN109693747A (zh) * 2017-10-20 2019-04-30 深圳市亮点智控科技有限公司 一种摆动式平衡机器人以及平衡机器人控制方法
WO2020086606A3 (fr) * 2018-10-22 2021-04-01 Piaggio Fast Forward, Inc. Ensemble de déplacement et transporteur mobile le comportant
US11112807B1 (en) 2018-05-01 2021-09-07 Piaggio Fast Forward, Inc. Method for determining self-driving vehicle behavior models, a self-driving vehicle, and a method of navigating a self-driving vehicle
DE102020007995A1 (de) 2020-07-15 2022-01-20 Bayerische Motoren Werke Aktiengesellschaft Dreirädriges Fahrzeug mit mehrteiligem Rahmen
DE102020118623A1 (de) 2020-07-15 2022-01-20 Bayerische Motoren Werke Aktiengesellschaft Dreirädriges Fahrzeug mit mehrteiligem Rahmen
US11370497B2 (en) 2016-10-18 2022-06-28 Piaggio Fast Forward, Inc. Vehicle having non-axial drive and stabilization system
US11613325B2 (en) 2017-10-11 2023-03-28 Piaggio Fast Forward Inc. Two-wheeled vehicle having linear stabilization system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3205564B1 (fr) * 2016-01-21 2019-06-19 Herbert Weber Vélo cargo
FR3109362B1 (fr) * 2020-04-21 2023-06-30 Pierre Deberghes Ensemble stabilisant pour véhicule

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060255550A1 (en) * 2005-05-13 2006-11-16 Pfeil Michael C Self-centering return mechanism
WO2006130007A2 (fr) * 2005-05-31 2006-12-07 Brinks Westmaas B.V. Vehicule a equilibrage autonome
WO2008044838A1 (fr) * 2006-10-10 2008-04-17 Yun-Heum Park Suspension orientable
EP1944228A1 (fr) * 2005-10-07 2008-07-16 Toyota Jidosha Kabushiki Kaisha Véhicule

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL84382A (en) * 1987-11-05 1995-12-08 Carcom Computerized Vehicle Lt Computerized electrical vehicle
GB2407541B (en) * 2003-10-29 2006-12-06 Michael Hobbs Improvements in or relating to tilting vehicles
KR100873537B1 (ko) * 2007-10-11 2008-12-11 권용범 양륜 이동체 및 이를 가지는 오토바이
DE102008033995A1 (de) * 2008-07-21 2010-01-28 Bräuer, Dietrich, Dipl.-Ing. (FH) Dreiradfahrzeug mit Neigetechnik zur Verbesserung der Kurvenstabilität bei schmaler aerodynamischer Bauart

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060255550A1 (en) * 2005-05-13 2006-11-16 Pfeil Michael C Self-centering return mechanism
WO2006130007A2 (fr) * 2005-05-31 2006-12-07 Brinks Westmaas B.V. Vehicule a equilibrage autonome
EP1944228A1 (fr) * 2005-10-07 2008-07-16 Toyota Jidosha Kabushiki Kaisha Véhicule
WO2008044838A1 (fr) * 2006-10-10 2008-04-17 Yun-Heum Park Suspension orientable

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013051195A1 (ja) * 2011-10-06 2015-03-30 ヤマハ発動機株式会社 電動車両
US9045015B2 (en) 2013-03-07 2015-06-02 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9090281B2 (en) 2013-03-07 2015-07-28 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9145168B2 (en) 2013-03-07 2015-09-29 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9248857B2 (en) 2013-03-07 2016-02-02 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
US9283989B2 (en) 2013-03-07 2016-03-15 Ford Global Technologies, Llc Laterally tiltable, multitrack vehicle
EP3025933A1 (fr) * 2013-08-29 2016-06-01 Sung Jin Kim Système permettant de commander le roulement d'un véhicule et procédé pour celui-ci
EP3025933A4 (fr) * 2013-08-29 2017-04-05 Sung Jin Kim Système permettant de commander le roulement d'un véhicule et procédé pour celui-ci
US9809273B2 (en) 2014-02-12 2017-11-07 Royalty Bugaboo Gmbh Foldable vehicle
US9845129B2 (en) 2014-08-29 2017-12-19 Ford Global Technologies, Llc Stabilizing arrangement for a tilting running gear of a vehicle and tilting running gear
US9821620B2 (en) 2014-09-01 2017-11-21 Ford Technologies Corporation Method for operating a tilting running gear and an active tilting running gear for a non-rail-borne vehicle
US10076939B2 (en) 2014-11-26 2018-09-18 Ford Global Technologies, Llc Suspension systems for laterally tiltable multitrack vehicles
US9925843B2 (en) 2015-02-24 2018-03-27 Ford Global Technologies, Llc Rear suspension systems for laterally tiltable multitrack vehicles
US10023019B2 (en) 2015-02-24 2018-07-17 Ford Global Technologies, Llc Rear suspension systems with rotary devices for laterally tiltable multitrack vehicles
US11370497B2 (en) 2016-10-18 2022-06-28 Piaggio Fast Forward, Inc. Vehicle having non-axial drive and stabilization system
US11613325B2 (en) 2017-10-11 2023-03-28 Piaggio Fast Forward Inc. Two-wheeled vehicle having linear stabilization system
CN109693747A (zh) * 2017-10-20 2019-04-30 深圳市亮点智控科技有限公司 一种摆动式平衡机器人以及平衡机器人控制方法
CN109693747B (zh) * 2017-10-20 2022-04-26 深圳市亮点智控科技有限公司 一种摆动式平衡机器人以及平衡机器人控制方法
US11112807B1 (en) 2018-05-01 2021-09-07 Piaggio Fast Forward, Inc. Method for determining self-driving vehicle behavior models, a self-driving vehicle, and a method of navigating a self-driving vehicle
US11675373B2 (en) 2018-05-01 2023-06-13 Piaggio Fast Forward Inc. Method for determining self-driving vehicle behavior models, a self-driving vehicle, and a method of navigating a self-driving vehicle
CN112996685A (zh) * 2018-10-22 2021-06-18 皮亚吉奥科技有限公司 移位组件及包括其的移动载具
US11408498B2 (en) 2018-10-22 2022-08-09 Piaggio Fast Forward, Inc. Shifting assembly and mobile carrier comprising same
WO2020086606A3 (fr) * 2018-10-22 2021-04-01 Piaggio Fast Forward, Inc. Ensemble de déplacement et transporteur mobile le comportant
JP7466557B2 (ja) 2018-10-22 2024-04-12 ピアジオ ファスト フォワード インク シフトアセンブリおよびこれを備える移動キャリア
DE102020007995A1 (de) 2020-07-15 2022-01-20 Bayerische Motoren Werke Aktiengesellschaft Dreirädriges Fahrzeug mit mehrteiligem Rahmen
DE102020118623A1 (de) 2020-07-15 2022-01-20 Bayerische Motoren Werke Aktiengesellschaft Dreirädriges Fahrzeug mit mehrteiligem Rahmen
WO2022012783A1 (fr) 2020-07-15 2022-01-20 Bayerische Motoren Werke Aktiengesellschaft Véhicule à trois roues ayant un cadre en plusieurs parties
WO2022012811A1 (fr) 2020-07-15 2022-01-20 Bayerische Motoren Werke Aktiengesellschaft Véhicule à trois roues pourvu d'un cadre en plusieurs parties

Also Published As

Publication number Publication date
EP2542459A1 (fr) 2013-01-09
FR2957049B1 (fr) 2013-01-04
FR2957049A1 (fr) 2011-09-09

Similar Documents

Publication Publication Date Title
WO2011107674A1 (fr) Véhicule électrique comportant au moins trois roues
EP1247663B1 (fr) Véhicule comportant une suspension à variation de carrossage
EP1899212B1 (fr) Commande de direction de véhicule sans liaison mécanique entre volant et roues directrices
EP1145879B1 (fr) Véhicule comportant une suspension verticale, dans le plan de la roue à une variation de carrossage
EP2605952B1 (fr) Phare frontal pour véhicule à deux roues
EP1885594B1 (fr) Vehicule routier a habitacle pendulaire
EP1883569B1 (fr) Commande de direction de vehicule sans liaison mecanique entre volant et roues directrices
EP3131769A1 (fr) Véhicule possédant un châssis et une nacelle pendulaire
FR2949421A1 (fr) Dispositif de controle de trajectoire pour vehicule etroit a motorisation electrique et inclinaison asservie
FR2995255A1 (fr) Systeme de liaison au sol pour vehicule inclinable, tel qu'un tricycle
EP3344518A1 (fr) Procédé de commande d'un convoi automobile routier et convoi automobile routier
FR2833233A1 (fr) Dispositif de suspension d'une roue
EP3040220A1 (fr) Véhicule pendulaire à moyens de verrouillage de l'inclinaison
EP3698996A1 (fr) Système de suspension bidirectionnelle pour essieu à roues indépendantes d'un véhicule
WO2018036723A1 (fr) Procede de stabilisation par orientation d'un convoi de vehicules
EP1169210B1 (fr) Vehicule a pendularite variable guidee
FR3100160A1 (fr) Procede de controle d'une inclinaison d'un habitacle de vehicule
WO2022175603A1 (fr) Vehicule pendulaire avec essieu a deux roues equipe d'une premiere suspension
EP0915798A1 (fr) Perfectionnement pour chassis de vehicule
FR2947803A1 (fr) Motocycle et procede de controle d’un tel motocycle
WO2022263584A1 (fr) Pédale de contrôle de l'accélération d'un transporteur personnel
EP1437289A1 (fr) Colonne de direction pour véhicule automobile, son procédé de commande et véhicule automobile correspondant
EP2045112B1 (fr) Systéme de gestion d'adhérence d'une paire de roues motrice de véhicule automobile
FR2921621A1 (fr) Dispositif d'assistance de direction d'un vehicule automobile.
FR2833234A1 (fr) Dispositif de suspension permettant le carrossage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11709991

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011709991

Country of ref document: EP