WO2011061810A1 - 車両および車両の制御方法 - Google Patents

車両および車両の制御方法 Download PDF

Info

Publication number
WO2011061810A1
WO2011061810A1 PCT/JP2009/069471 JP2009069471W WO2011061810A1 WO 2011061810 A1 WO2011061810 A1 WO 2011061810A1 JP 2009069471 W JP2009069471 W JP 2009069471W WO 2011061810 A1 WO2011061810 A1 WO 2011061810A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
upper limit
limit value
battery
distance
Prior art date
Application number
PCT/JP2009/069471
Other languages
English (en)
French (fr)
Inventor
久須美 秀年
社本 純和
一真 荒井
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/509,933 priority Critical patent/US8798833B2/en
Priority to PCT/JP2009/069471 priority patent/WO2011061810A1/ja
Priority to CN200980162493.6A priority patent/CN102648105B/zh
Priority to EP09851432.6A priority patent/EP2502775B1/en
Priority to JP2011541745A priority patent/JP5370492B2/ja
Publication of WO2011061810A1 publication Critical patent/WO2011061810A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/52Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/248Age of storage means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/448End of discharge regulating measures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a vehicle and a vehicle control method, and more particularly to control of charging of a power storage device mounted on the vehicle.
  • Vehicles such as hybrid vehicles, electric vehicles, and fuel cell vehicles include a power storage device for storing electric power and an electric motor.
  • the electric motor generates driving force of the vehicle by electric power supplied from the power storage device.
  • the electric motor performs regenerative power generation.
  • the electric power generated by the regenerative power generation is supplied to the power storage device. Therefore, during the traveling of the vehicle, charging and discharging of the power storage device are controlled so that the index value (SOC) indicating the charging state of the power storage device is within an appropriate range.
  • the SOC is defined as the ratio of the current charged amount to the charged amount in the fully charged state.
  • the SOC of the power storage device in a fully charged state is 100 (%), and the SOC of the power storage device in a state where no power is stored is 0 (%).
  • Patent Document 1 discloses a hybrid vehicle control system configured to be able to adjust the SOC management range of a power storage device in accordance with a travel section.
  • the control system includes a road information acquisition unit that acquires road information of a planned travel route of the vehicle, a management width and a travel method determination processing unit that changes the SOC management range of the power storage unit and determines the travel method of the vehicle, A control execution processing unit that executes vehicle travel control according to the determined travel method.
  • the management width and traveling method determination processing unit calculates the SOC of the power storage means (battery) in a predetermined section of the planned traveling route of the vehicle, and changes the management width of the SOC based on the SOC. Further, the management width and traveling method determination processing unit determines the traveling method of the hybrid vehicle so that the SOC at the end point of the predetermined section is within the management width.
  • Patent Document 2 discloses a control device for controlling charging and discharging of a battery.
  • This control device changes the management width of the SOC of the battery, thereby preventing overdischarge of the battery and avoiding the influence of the memory effect on the charging and discharging of the battery.
  • the above control device increases both the upper limit value and the lower limit value of the SOC management width when the memory effect occurs.
  • the cruising distance of the above vehicle is preferably as long as possible.
  • the “cruising distance” means a distance that the vehicle can travel with the electric power stored in the power storage device.
  • One solution for increasing the cruising distance is to increase the number of power storage devices or the number of cells constituting the power storage device.
  • the number of power storage devices or the number of cells increases, not only the volume and weight of the power storage device increase but also the cost of the power storage device increases.
  • the actual cruising distance may be shorter than the distance calculated based on the capacity of the power storage device.
  • Patent Document 1 changes the SOC management range while the hybrid vehicle is traveling in order to collect a sufficient regenerative current in the battery. As a result, the fuel consumption of the hybrid vehicle can be reduced.
  • Patent Document 1 discloses only a technique for reducing fuel consumption during vehicle travel performed at an arbitrary time.
  • Patent Document 1 does not describe a specific method for suppressing a decrease in the capacity of the power storage device.
  • Patent Document 2 describes a method for preventing a decrease in battery capacity due to the memory effect. However, Patent Document 2 does not explain the deterioration of the battery due to repeated traveling of the vehicle. In other words, Patent Document 2 does not disclose battery control in consideration of battery deterioration.
  • An object of the present invention is to provide a vehicle capable of realizing both suppression of deterioration of a power storage device and securing of a cruising distance.
  • a vehicle includes a power storage device configured to be rechargeable, an electric motor configured to generate a driving force of the vehicle by using electric power stored in the power storage device, and an outside of the vehicle
  • a charging mechanism configured to supply power output from the power source to the power storage device
  • a control device configured to control a charging state of the power storage device when the power storage device is charged.
  • the control device is configured to increase an upper limit value of the index value when a state estimation unit configured to calculate an index value indicating the state of charge and a predetermined condition regarding deterioration of the power storage device is satisfied.
  • the setting unit sets the amount of change in the upper limit value so that the upper limit value falls below a predetermined value.
  • the setting unit can switch between the first mode in which the predetermined value is set as the upper limit value and the second mode in which the upper limit value can be adjusted, and sets the amount of change in the second mode. To do.
  • the setting unit sets the amount of change so that the travelable distance of the vehicle is equal to or greater than the target distance and the upper limit value is less than a predetermined value.
  • the vehicle further includes a command generation unit.
  • the command generation unit is configured to switch between generation of a command for extending the use period of the power storage device and stop of the generation of the command by manual operation.
  • the setting unit selects the second mode from the first and second modes when the command generation unit generates a command, while the command generation unit stops generating the command.
  • the first mode is selected from the first and second modes.
  • the predetermined condition is a condition determined in advance based on a usage period of the vehicle.
  • the predetermined condition is a condition determined in advance based on a travel distance of the vehicle.
  • control device further includes a distance calculation unit.
  • the distance calculation unit is configured to estimate a travelable distance of the vehicle based on the upper limit value set by the setting unit.
  • vehicle further includes a display device configured to be able to display the travelable distance estimated by the distance calculation unit.
  • the travelable distance includes a first travelable distance that the vehicle can travel before the upper limit value is changed, and a second travelable distance that the vehicle can travel after the upper limit value is changed.
  • the distance calculation unit estimates the first and second travelable distances.
  • the display device is configured to be able to display the first and second travelable distances estimated by the distance calculation unit.
  • the present invention is a vehicle control method.
  • the vehicle includes a power storage device configured to be rechargeable, an electric motor configured to generate a driving force of the vehicle by using power stored in the power storage device, and power output from a power source external to the vehicle And a control device configured to control a charging state of the power storage device when the power storage device is charged.
  • the control method includes a step of calculating an index value indicating the state of charge, and a step of increasing an upper limit value of the index value when a predetermined condition regarding deterioration of the power storage device is satisfied.
  • the amount of change in the upper limit value is set so that the upper limit value falls below a predetermined value.
  • the vehicle control method further includes a step of selecting one of a first mode in which a predetermined value is set as an upper limit value and a second mode in which the upper limit value can be adjusted.
  • the step of increasing the upper limit value the amount of change is set when the second mode is selected.
  • the amount of change is set in the second mode so that the travelable distance of the vehicle is equal to or greater than the target distance and the upper limit value is lower than the predetermined value.
  • the vehicle further includes a command generation unit.
  • the command generation unit is configured to switch between generation of a command for extending the use period of the power storage device and stop of the generation of the command by manual operation.
  • the second mode is selected from the first and second modes, while the command generation unit stops generating the command. Selects the first mode from the first and second modes.
  • the predetermined condition is a condition determined in advance based on a usage period of the vehicle.
  • the predetermined condition is a condition determined in advance based on a travel distance of the vehicle.
  • the vehicle further includes a display device.
  • the control method further includes a step of estimating the travelable distance of the vehicle based on the upper limit value, and a step of outputting the travelable distance to the display device so that the travelable distance is displayed on the display device.
  • the travelable distance includes a first travelable distance that the vehicle can travel before the upper limit value is changed, and a second travelable distance that the vehicle can travel after the upper limit value is changed. .
  • first and second travelable distances are calculated.
  • the present invention it is possible to suppress the deterioration of the power storage device mounted on the vehicle and to secure the cruising distance of the vehicle.
  • FIG. 1 is an overall block diagram of a vehicle according to a first embodiment of the present invention. It is the figure which showed the structural example of the monitoring unit shown in FIG. It is a functional block diagram of charge ECU shown in FIG. It is a figure for demonstrating the control range of SOC in a normal mode, and the control range of SOC in a long life mode.
  • 3 is a flowchart for illustrating control of battery charging executed by a charging ECU shown in FIG. 1. It is a figure for demonstrating the correlation between the years of use of the vehicle which drive
  • FIG. 6 is a diagram illustrating a cruising distance that can be achieved by control according to the first embodiment. It is a figure for demonstrating control of the upper limit of the control range based on the age of use of a battery. It is a figure for demonstrating control of the upper limit of the control range based on the travel distance of a vehicle.
  • FIG. 10 is a flowchart for illustrating control executed according to the map shown in FIG. 9. FIG. It is a flowchart for demonstrating the control performed according to the map shown by FIG. It is a whole block diagram of the vehicle by Embodiment 2 of this invention. It is a figure for demonstrating the example of a display of the display apparatus shown in FIG. It is a functional block diagram of charge ECU shown in FIG.
  • FIG. 16 is a flowchart for illustrating a display process executed by the charging ECU shown in FIG. 15.
  • 1 is a diagram showing a configuration of a hybrid vehicle that is an example of a vehicle according to an embodiment of the present invention.
  • FIG. 1 is an overall block diagram of a vehicle according to Embodiment 1 of the present invention.
  • a vehicle 1 according to Embodiment 1 of the present invention includes a battery 10, a system main relay (hereinafter also referred to as "SMR") 12, an inverter 16, and a motor generator (hereinafter referred to as "MG”). 20), drive wheels 22, and MG-ECU (Electronic Control Unit) 30.
  • the vehicle 1 further includes a charging inlet 42, a sensor 43, a charger 44, a relay 46, a charging ECU 48, a switch 49, a current sensor 50, a monitoring unit 54, and an air conditioner 70.
  • the battery 10 is a power storage device configured to be rechargeable.
  • the battery 10 is constituted by an assembled battery in which a plurality of cells 11 are connected in series.
  • battery 10 is a lithium ion battery.
  • the battery 10 supplies the inverter 16 with power for driving the MG 20.
  • the MG 20 When the electric power stored in the battery 10 is supplied to the MG 20, the MG 20 generates the driving force of the vehicle 1.
  • the charger 44 supplies power to the battery 10.
  • the battery 10 is charged by supplying power to the battery 10.
  • the power source 60 is, for example, an AC power source.
  • the SMR 12 is provided between the battery 10 and the inverter 16.
  • the SMR 12 is connected to the battery 10 by a positive electrode line 13P and a negative electrode line 13N.
  • SMR 12 is connected to inverter 16 by a positive line 15P and a negative line 15N.
  • the SMR 12 is on.
  • the SMR 12 is in an off state.
  • the SMR 12 may be disposed between the battery 10 and the relay 46.
  • the inverter 16 drives the MG 20 based on the control signal PWI1 from the MG-ECU 30.
  • inverter 16 is configured by a three-phase bridge circuit including, for example, a U-phase arm, a V-phase arm, and a W-phase arm.
  • Inverter 16 converts the DC power output from battery 10 into AC power and supplies the AC power to MG 20.
  • the inverter 16 converts the AC power generated by the MG 20 into DC power and supplies the DC power to the battery 10.
  • a voltage converter (DC / DC converter) may be provided between the battery 10 and the inverter 16 for conversion between the DC voltage of the battery and the DC voltage of the inverter.
  • MG20 is an AC rotating electric machine, and is constituted by, for example, a three-phase AC synchronous motor having a rotor in which a permanent magnet is embedded.
  • the rotation shaft of MG 20 is connected to drive wheel 22.
  • the MG-ECU 30 generates a control signal PWI1 for driving the MG 20, and outputs the control signal PWI1 to the inverter 16.
  • the connector 62 is provided outside the vehicle 1 and connected to the power source 60.
  • the charging inlet 42 is connected to the input side of the charger 44 and is configured to be connectable to the connector 62.
  • AC power from the power source 60 is input to the charging inlet 42.
  • the sensor 43 detects the connection between the charging inlet 42 and the connector 62 and outputs a signal STR indicating that charging of the battery 10 can be started.
  • the sensor 43 stops outputting the signal STR.
  • the charger 44 is connected to the positive line 13P and the negative line 13N by the relay 46, and supplies the battery 10 with the electric power output from the power source 60.
  • the charger 44 is configured by, for example, an AC / DC converter that converts AC power into DC power.
  • the charger 44 converts AC power supplied from the power source 60 into DC power based on a control signal PWD from the charging ECU 48.
  • the DC power output from the charger 44 is supplied to the battery 10 through the relay 46, the positive line 13P, and the negative line 13N. While the charger 44 charges the battery 10, the relay 46 is kept on.
  • the charger 44 may be provided outside the vehicle 1.
  • the charging inlet 42 receives DC power output from the charger 44.
  • the electric power input to the charging inlet 42 is supplied to the battery 10 through the relay 46, the positive line 13P, and the negative line 13N.
  • the charging inlet 42 and the relay 46 supply the electric power output from the power source 60 to the battery 10.
  • the charging ECU 48 starts controlling the charger 44 based on the signal STR from the sensor 43. Specifically, the charging ECU 48 generates a control signal PWD for driving the charger 44 based on the detected values of current, voltage and temperature sent from the monitoring unit 54, and uses the control signal PWD as a charger. 44.
  • the charger 44 converts AC power supplied from the power source 60 into DC power based on the control signal PWD.
  • the charging ECU 48 controls the charger 44 based on an index value (SOC) indicating the charging state of the battery 10.
  • SOC index value
  • the SOC is defined as the ratio of the current charged amount of the battery 10 to the charged amount of the battery 10 in the fully charged state.
  • the switch 49 is mounted on the vehicle 1 as a switch operated by the user. By manual operation, the switch 49 switches its state between an on state and an off state. When the switch 49 is in the ON state, the switch 49 generates a command (signal SLF) for setting the charging mode of the battery 10 so that deterioration of the battery 10 is suppressed.
  • the use period of the battery 10 can be extended by suppressing the deterioration of the battery 10. That is, the signal SLF is a command for extending the use period of the battery 10.
  • a charging mode for suppressing deterioration of the battery 10 will be referred to as a “long life mode”.
  • the switch 49 stops generating the signal SLF. Thereby, the setting of the long life mode is canceled, and the charging mode of the vehicle 1 is switched from the long life mode to the normal mode. That is, the user can select the charging mode of the vehicle 1 from the long life mode and the normal mode by operating the switch 49.
  • the charging ECU 48 sets the SOC control range for charging the battery 10.
  • the control range in the long life mode is narrower than the control range in the normal mode.
  • the upper limit value of the control range in the long life mode is smaller than the upper limit value of the control range in the normal mode.
  • the lower limit value of the control range in the long life mode is not less than the lower limit value of the control range in the normal mode. That is, the charging ECU 48 controls the state of charge of the battery 10 when the battery 10 is charged.
  • the upper limit value of the control range may be referred to as “the upper limit value of the SOC” or simply “the upper limit value”.
  • the current sensor 50 detects the current input to the battery 10 and the current output from the battery 10, and outputs an analog signal that changes according to the magnitude of the current to the monitoring unit 54.
  • the monitoring unit 54 converts the analog signal output from the current sensor 50 into a digital signal indicating a current value.
  • the monitoring unit 54 outputs the digital signal (current value) to the charging ECU 48. Further, the monitoring unit 54 detects the temperature and voltage for each battery block constituted by a predetermined number of cells 11. The monitoring unit 54 outputs a digital signal indicating the temperature and voltage of each block to the charging ECU 48.
  • Auxiliary machines that are operated by electric power supplied from the battery 10 are connected to the positive electrode line 13P and the negative electrode line 13N.
  • an air conditioner 70 is shown as a representative example of an auxiliary machine.
  • FIG. 2 is a diagram showing a configuration example of the monitoring unit shown in FIG.
  • battery 10 includes a plurality of cells 11 connected in series.
  • the plurality of cells 11 are divided into a plurality of battery blocks BB (1) to BB (n) (n: natural number).
  • the monitoring unit 54 includes sensor groups 56 (1) to 56 (n) arranged corresponding to the battery blocks BB (1) to BB (n), respectively, and analog-digital arranged corresponding to the current sensor 50. And a converter (A / D) 58.
  • Each of the sensor groups 56 (1) to 56 (n) detects the temperature and voltage of the corresponding block. Sensor groups 56 (1) to 56 (n) detect temperatures Tb (1) to Tb (n), respectively. Furthermore, the sensor groups 56 (1) to 56 (n) detect voltages Vb (1) to Vb (n), respectively. The detection values of the sensor groups 56 (1) to 56 (n) are output to the charging ECU 48.
  • the analog-digital converter 58 converts an analog signal from the current sensor 50 into a digital signal.
  • the digital signal indicates the value of the current Ib.
  • the current Ib is a current input to the battery 10 and a current output from the battery 10.
  • a monitor for monitoring the voltage of the cell 11 is provided for each cell 11. May be. For example, each monitor turns on a flag indicating an abnormality of the cell 11 when the voltage of the corresponding cell 11 is outside the normal range. When the flag is turned on, the charging ECU 48 can detect an abnormality in the battery 10.
  • FIG. 3 is a functional block diagram of the charging ECU shown in FIG.
  • charging ECU 48 includes an SOC estimation unit 101, a control range setting unit 111, a determination unit 112, and a signal generation unit 113.
  • the SOC estimation unit 101 receives detection values of the current Ib, the voltages Vb (1) to Vb (n), and the temperatures Tb (1) to Tb (n) from the monitoring unit 54.
  • the SOC estimation unit 101 calculates the total SOC of the battery 10 based on each detection value.
  • the SOC estimation unit 101 calculates the SOC of the block based on the detection value of each block, and calculates the overall SOC based on the SOC of each block.
  • a known method for calculating the SOC of a lithium ion battery can be used as a method for calculating the SOC of each block.
  • the SOC of each block may be calculated based on the integrated value of the current Ib.
  • the SOC of each block may be calculated at regular intervals based on the correlation between the open circuit voltage (OCV) and the SOC and the voltage value detected by the monitoring unit 54.
  • the method for calculating the total SOC from the SOC of each block is not particularly limited.
  • the total SOC may be an average value of the SOC of each block.
  • the control range setting unit 111 sets the SOC control range. When the switch 49 is off, the switch 49 stops generating the signal SLF. In this case, the control range setting unit 111 sets the SOC control range to the first range and outputs the upper limit value UL1 of the first range. On the other hand, when the user turns on the switch 49, the switch 49 generates a signal SLF. In this case, control range setting unit 111 sets the SOC control range to the second range and outputs upper limit value UL2 of the second range.
  • the first range is the SOC control range in the normal mode.
  • the second range is the SOC control range in the long life mode.
  • the determination unit 112 receives the SOC from the SOC estimation unit 101 and receives either the upper limit value UL1 or UL2 from the control range setting unit 111. Determination unit 112 determines whether or not the SOC has reached the upper limit value (UL1 or UL2). The determination unit 112 outputs the determination result to the signal generation unit 113.
  • the signal generator 113 generates the control signal PWD based on the signal STR from the sensor 43.
  • the signal generator 113 outputs the control signal PWD to the charger 44.
  • the determination unit 112 determines that the SOC has reached the upper limit value
  • the signal generation unit 113 stops generating the control signal PWD based on the determination result of the determination unit 112.
  • the charger 44 is stopped.
  • the charger 44 stops the charging of the battery 10 is completed.
  • FIG. 4 is a diagram for explaining the SOC control range in the normal mode and the SOC control range in the long life mode.
  • first range R1 is an SOC control range in the normal mode.
  • the second range R2 is the SOC control range in the long mode.
  • UL1 is the upper limit value of the first range R1
  • UL2 is the upper limit value of the second range R2.
  • UL1 is a predetermined value.
  • the lower limit value of the first range R1 and the lower limit value of the second range R2 are both LL. However, the lower limit value of the second range R2 may be larger than the lower limit value of the first range R1.
  • the upper limit value UL2 is smaller than the upper limit value UL1. Therefore, the second range R2 is narrower than the first range R1.
  • both the upper limit values UL1 and UL2 are smaller than 100 (%).
  • the lower limit value LL is larger than 0 (%).
  • FIG. 5 is a flowchart for explaining control of battery charging executed by the charging ECU shown in FIG. The process of this flowchart is executed at regular time intervals or whenever a predetermined condition is satisfied.
  • step S1 charging ECU 48 determines whether or not signal STR has been generated.
  • the signal generation unit 113 determines that the signal STR has been generated. In this case (YES in step S1), the process proceeds to step S2.
  • the signal generation unit 113 determines that the signal STR is not generated. In this case (NO in step S1), the process is returned to the main routine.
  • step S2 the charging ECU 48 determines whether or not the signal SLF has been generated.
  • the control range setting unit 111 determines that the signal SLF is not generated. In this case (NO in step S2), the process proceeds to step S3.
  • the control range setting unit 111 receives the signal SLF, the control range setting unit 111 determines that the signal SLF has been generated. In this case (YES in step S2), the process proceeds to step S4.
  • charging ECU 48 sets the upper limit value of the SOC control range to UL1. Thereby, the charging mode is set to the normal mode.
  • charging ECU 48 sets the upper limit value of the SOC control range to UL2. Thereby, the charging mode is set to the long life mode.
  • the upper limit value (UL1 or UL2) set by the control range setting unit 111 is sent from the control range setting unit 111 to the determination unit 112.
  • step S5 is executed.
  • charging ECU 48 (signal generation unit 113) generates control signal PWD.
  • the charger 44 converts AC power supplied from the power source 60 into DC power based on the control signal PWD.
  • the battery 10 is charged by supplying DC power to the battery 10 from the charger 44.
  • step S6 the charging ECU 48 calculates the SOC of the battery 10. Specifically, the SOC estimation unit 101 determines the battery 10 based on the current value Ib, voltage values Vb (1) to Vb (n) and temperatures Tb (1) to Tb (n) sent from the monitoring unit 54. Calculate the total SOC.
  • step S7 the charging ECU 48 determines whether or not the SOC has reached the upper limit value (UL1 or UL2). Specifically, in step S7, determination unit 112 compares the SOC calculated by SOC estimation unit 101 with the upper limit value. Based on the comparison result, determination unit 112 determines whether or not the SOC has reached the upper limit value.
  • the upper limit value UL1 or UL2
  • step S7 If it is determined that the SOC has reached the upper limit (YES in step S7), the process proceeds to step S8. On the other hand, when it is determined that the SOC has not reached the upper limit value (NO in step S7), the process returns to step S5. Until the SOC reaches the upper limit value, the processes in steps S5 to S7 are repeatedly executed for charging the battery 10.
  • step S8 the charging ECU 48 stops generating the control signal PWD. Specifically, when the determination unit 112 determines that the SOC has reached the upper limit value, the signal generation unit 113 stops generating the control signal PWD based on the determination result of the determination unit 112. Thereby, charging of the battery 10 is completed. When the process of step S8 ends, the entire process is returned to the main routine.
  • the vehicle 1 shown in FIG. 1 travels with electric power stored in the battery 10. In order to extend the cruising distance of the vehicle 1, it is necessary to extract as much power as possible from the battery 10. When the capacity of the battery 10 is increased, the amount of power extracted from the battery 10 can be increased. However, increasing the capacity of the battery 10 can result in an increase in the weight and volume of the battery 10.
  • the upper limit value of the SOC when the battery 10 is charged is maximized. Specifically, the upper limit value is determined in advance so that battery 10 is not overcharged when the SOC reaches the upper limit value.
  • the lower limit value (LL) of the SOC is determined in advance as a value for preventing overdischarge of the battery 10. Thereby, a large amount of power can be taken out from the battery 10. Therefore, the cruising distance of the vehicle 1 can be extended.
  • a lithium ion battery is used as the battery 10.
  • a lithium ion battery is characterized by high energy density. By mounting the lithium ion battery on the vehicle 1, a large amount of electric power can be taken out from the battery 10, and the battery 10 can be reduced in size and weight.
  • the lithium ion battery when the lithium ion battery is stored for a long time in a high SOC state (for example, in a fully charged state), the characteristics of the lithium ion battery deteriorate. For example, the capacity of a lithium ion battery is reduced. By storing the lithium ion battery in a low SOC state, deterioration of the characteristics of the lithium ion battery can be suppressed.
  • FIG. 6 is a diagram for explaining a correlation between the years of use of a vehicle that runs on electric power stored in the lithium ion battery and the capacity maintenance rate of the lithium ion battery.
  • the capacity retention rate when the lithium ion battery is new is defined as 100 (%).
  • the capacity maintenance ratio decreases as the service life of the vehicle increases. That is, the capacity of the lithium ion battery is reduced.
  • the higher the SOC at the completion of charging of the lithium ion battery the greater the degree of decrease in the capacity maintenance rate with respect to the service life.
  • the period from when the charging of the battery 10 is completed to when the vehicle 1 starts running may vary depending on the user. For this reason, the battery 10 may be stored for a long time in a high SOC state. If the battery 10 is stored for a long time in a high SOC state, the capacity of the battery 10 may be reduced.
  • the vehicle 1 has a long life mode for extending the usage period of the battery 10.
  • Setting the long life mode narrows the SOC control range. Specifically, the upper limit value of the control range decreases. By narrowing the SOC control range, it is possible to lower the SOC when the charging of the battery 10 is completed. Therefore, a decrease in the capacity of the battery 10 can be suppressed.
  • the decrease in the cruising distance of the vehicle 1 can be suppressed by suppressing the decrease in the capacity of the battery 10. As a result, the cruising distance of the vehicle 1 can be ensured.
  • the vehicle can travel the target distance when the target age has elapsed.
  • FIG. 7 is a diagram for explaining the cruising distance in the long life mode and the cruising distance in the normal mode.
  • battery 10 when the degree of deterioration of battery 10 is small, battery 10 can store a large amount of power. Therefore, when the service life of the vehicle 1 is short, the cruising distance in the normal mode is longer than the cruising distance in the long life mode.
  • deterioration of the battery 10 can be suppressed by charging the battery 10 in the long life mode. For this reason, when the battery 10 is charged in the long life mode, a decrease in the capacity of the battery 10 can be suppressed.
  • the cruising distance in the long life mode can be made longer than the cruising distance in the normal mode. That is, when the battery 10 is charged in the long life mode, deterioration of the battery 10 can be suppressed and the cruising distance of the vehicle 1 can be secured.
  • the vehicle 1 includes the switch 49 operated by the user.
  • the charging mode of the battery 10 is selected from the normal mode and the long life mode.
  • the long life mode is selected, the deterioration of the battery 10 can be suppressed, so that the cruising distance can be secured even if the vehicle has been used for a long time.
  • the capacity of the battery 10 is sufficient (when the service life is short)
  • the charge amount of the battery 10 can be increased by selecting the normal mode. Therefore, the running performance of the vehicle 1 can be improved. For example, the vehicle 1 can travel a cruising distance longer than a normal cruising distance.
  • the convenience for the user can be improved.
  • the SOC control range during travel is set independently of the control range during battery 10 charging.
  • the SOC increases as a result of the battery 10 being charged by the regenerative power generation of the MG 20.
  • the SOC may be higher than the upper limit value when the battery 10 is charged.
  • the SOC decreases again. That is, when the vehicle 1 is traveling, the battery 10 is unlikely to be stored in a high SOC state for a long time. Therefore, the SOC control range during traveling can be set independently of the control range in the long life mode and the control range in the normal mode.
  • the upper limit value (UL2) of the SOC control range is increased.
  • FIG. 8 is a diagram illustrating a cruising distance that can be achieved by the control according to the first embodiment.
  • the upper limit value of the SOC control range increases at a predetermined timing based on the deterioration state of the battery.
  • the cruising distance is decreasing (see the broken line 201).
  • the amount of charge of the battery 10 can be increased by increasing the upper limit value (see the solid line 202). Therefore, the cruising distance can be extended.
  • the capacity of the battery 10 decreases due to the deterioration of the battery 10.
  • the upper limit value of the SOC control range is fixed, the amount of electric power that can be extracted from the battery 10 decreases as the number of years of use increases. For this reason, as shown by the broken line, the cruising distance decreases as the service life becomes longer.
  • the cruising distance can be extended by increasing the upper limit value of the control range at an appropriate timing. Therefore, the target cruising distance can be secured when the target service life has elapsed.
  • the causes of deterioration of the battery 10 include the years of use of the battery 10 and the travel distance of the vehicle 1. Therefore, in the present embodiment, the upper limit value of the control range is changed based on at least one of the years of use of battery 10 and the travel distance of vehicle 1. Below, the control of the upper limit value based on the years of use of the battery 10 and the control of the upper limit value based on the travel distance will be described.
  • FIG. 9 is a diagram for explaining the control of the upper limit value of the control range based on the years of use of the battery.
  • upper limit UL ⁇ b> 2 increases every time the battery 10 has been used for a certain number of years (y 0 ).
  • the change amount of the upper limit value UL2 is constant. This amount of change is determined in advance such that the cruising distance of the vehicle 1 is equal to or greater than the target distance.
  • the upper limit value UL2 is lower than the upper limit value UL1 of the control range in the normal mode. That is, the change amount of the upper limit value UL2 is set so that the upper limit value UL2 does not exceed the predetermined value (UL1).
  • FIG. 10 is a diagram for explaining the control of the upper limit value of the control range based on the travel distance of the vehicle.
  • upper limit value UL2 increases every time the travel distance of the vehicle reaches a certain distance (x 0 ).
  • the change amount of the upper limit value UL2 is constant.
  • the change amount of the upper limit value UL2 is set so that the cruising distance of the vehicle 1 is equal to or greater than the target distance and the upper limit value UL2 does not exceed UL1 (predetermined value).
  • the control pattern of the upper limit value UL2 shown in FIG. 9 or 10 is stored in the control range setting unit 111 as a map. In accordance with this map, the control range setting unit 111 changes the upper limit value UL2 of the control range.
  • each of FIG. 9 and FIG. 10 shows the control pattern which raises the upper limit UL2 based only on either one of a travel distance and a use years.
  • upper limit value UL2 may be increased based on both the travel distance and the years of use. That is, the upper limit value UL2 of the SOC control range may be increased either when the battery usage years reach a certain value or when the travel distance reaches a certain value. However, the upper limit value UL2 is smaller than the upper limit value UL1.
  • the control range setting unit 111 calculates the travel distance of the vehicle based on the vehicle speed detected by a vehicle speed sensor (not shown), for example. Furthermore, the control range setting unit 111 measures, for example, a period in which the vehicle speed is different from 0 as the years of use of the vehicle.
  • the above method is an example of a method for measuring the travel distance and age of a vehicle. The travel distance and age of the vehicle can be measured by various known methods.
  • the upper limit value 8 to 10 show control patterns for increasing the upper limit value a plurality of times.
  • the upper limit value may be increased once.
  • the number of times to increase the upper limit value can be determined based on the standard years of use of the vehicle 1, the capacity of the battery 10, the target cruising distance, and the like.
  • the charging ECU 48 suppresses the increase of the upper limit value. Specifically, the upper limit value is kept constant. However, if the SOC fluctuation range is small because the travel distance of the vehicle 1 is short, the charging ECU 48 may decrease the upper limit value of the battery 10 by learning the range. Even in this case, the charging ECU 48 increases the upper limit value when a predetermined condition regarding the deterioration of the battery 10 is satisfied. On the other hand, when the predetermined condition regarding the deterioration of the battery 10 is not satisfied, the increase in the upper limit value is suppressed.
  • FIG. 11 is a flowchart for explaining the control executed in accordance with the map shown in FIG.
  • the process of this flowchart is executed every predetermined time or every time a predetermined condition is satisfied.
  • charging ECU 48 determines whether the age of battery 10 has reached a reference value (y 0 ).
  • the charging ECU 48 (control range setting unit 111) measures, for example, the running years of the vehicle 1. The measured value is used as the service life of the battery 10. When the measured value reaches the reference value (y 0 ), the charging ECU 48 (control range setting unit 111) determines that the service life of the battery 10 has reached the reference value.
  • step S101 If it is determined that the age of battery 10 has reached the reference value (YES in step S101), the process proceeds to step S102. On the other hand, when it is determined that the age of battery 10 has not reached the reference value (NO in step S101), the process proceeds to step S104.
  • step S102 the charging ECU 48 (control range setting unit 111) increases the upper limit value UL2.
  • the amount of change of upper limit value UL2 is, for example, a constant value.
  • step S103 is executed.
  • step S103 the charging ECU 48 (control range setting unit 111) returns the measured value of the running years of the vehicle 1 to zero.
  • the entire process is returned to the main routine.
  • step S104 the charging ECU 48 (control range setting unit 111) suppresses an increase in the upper limit value UL2. That is, the upper limit value UL2 does not change.
  • the entire process is returned to the main routine.
  • FIG. 12 is a flowchart for explaining control executed in accordance with the map shown in FIG.
  • the process of this flowchart is executed every predetermined time or every time a predetermined condition is satisfied.
  • step S101A charging ECU 48 (control range setting unit 111) determines whether or not the travel distance of vehicle 1 has reached the reference value (x 0 ). If it is determined that the travel distance of vehicle 1 has reached the reference value (YES in step S101A), the process proceeds to step S102A. On the other hand, when it is determined that the travel distance of vehicle 1 has not reached the reference value (NO in step S101A), the process proceeds to step S104A.
  • step S102A the charging ECU 48 (control range setting unit 111) increases the upper limit value UL2.
  • the amount of change of upper limit value UL2 is, for example, a constant value.
  • step S103A the process of step S103A is executed.
  • step S103A the charging ECU 48 (control range setting unit 111) returns the measured value of the travel distance of the vehicle 1 to zero.
  • the entire process is returned to the main routine.
  • step S104A the charging ECU 48 (control range setting unit 111) suppresses an increase in the upper limit value UL2. That is, the upper limit value UL2 does not change.
  • the entire process is returned to the main routine.
  • the charging ECU increases the upper limit value (UL2) of the SOC control range in the long life mode when a predetermined condition regarding the deterioration of the battery is satisfied. Thereby, the fall of cruising distance can be suppressed. Furthermore, the upper limit value (UL2) is smaller than the upper limit value (UL1) when the battery 10 is charged in the normal mode. Thereby, the effect which suppresses deterioration of the battery 10 can be acquired.
  • FIG. 13 is an overall block diagram of a vehicle according to the second embodiment of the present invention.
  • vehicle 1 ⁇ / b> A is different from vehicle 1 in that display device 72 is further provided, and charge ECU 48 ⁇ / b> A is provided instead of charge ECU 48.
  • the charging ECU 48A causes the display device 72 to display both the cruising distance before the upper limit value of the SOC control range increases and the cruising distance after the upper limit value increases.
  • the two types of cruising distances may be displayed on the display device 72 by a normal operation of the user. Alternatively, these two types of cruising distances may be displayed on the display device 72 by a special operation of the display device 72 during maintenance of the vehicle 1A.
  • FIG. 14 is a diagram for explaining a display example of the display device shown in FIG. Referring to FIG. 14, original upper limit value ULa and cruising distance xa (km) corresponding to upper limit value ULa are displayed on the screen of display device 72. Further, the upper limit value ULb changed from the upper limit value ULa and the cruising distance xb (km) corresponding to the upper limit value ULb are displayed on the screen of the display device 72.
  • FIG. 15 is a functional block diagram of the charging ECU shown in FIG. Referring to FIGS. 15 and 3, charge ECU 48 ⁇ / b> A is different from charge ECU 48 in that it further includes a storage unit 124 and a cruising distance calculation unit 125.
  • the storage unit 124 stores the original upper limit value (hereinafter referred to as the upper limit value (1)) and the upper limit value changed from the original upper limit value (hereinafter referred to as the upper limit value (2)). Furthermore, the memory
  • the upper limit value (1), the upper limit value (2), and the first and second cruising distances are associated with years of use or travel distance by a table (may be a map).
  • the storage unit 124 stores the above table or map. In the following description, it is assumed that the storage unit 124 stores a table.
  • the control range setting unit 111 increases the upper limit value of the SOC control range, and outputs the upper limit value (1) and the upper limit value (2) to the cruising distance calculation unit 125.
  • the cruising distance calculation unit 125 receives the upper limit value (1) and the upper limit value (2) and refers to the table stored in the storage unit 124.
  • the cruising distance calculation unit 125 acquires the first cruising distance based on the upper limit value (1) and the table. Further, the cruising distance calculation unit 125 acquires the second cruising distance based on the upper limit value (2) and the table.
  • the cruising distance calculation unit 125 outputs the upper limit value (1) and the upper limit value (2), and the first cruising distance and the second cruising distance to the display device 72.
  • the display device 72 displays the original upper limit value (upper limit value (1)) ULa and the cruising distance xa corresponding to the upper limit value ULa (see FIG. 9). Further, the display device 72 displays the changed upper limit value (upper limit value (2)) ULb and the cruising distance xb corresponding to the upper limit value ULb (see FIG. 9).
  • FIG. 16 is a diagram for explaining a first example of a table stored in the storage unit illustrated in FIG. 15.
  • an upper limit value (1), an upper limit value (2), a first cruising distance (cruising distance (1)), and a second cruising distance (cruising distance (2)) are predetermined. It is predetermined for each age y 0 of. For example, when the age reaches y 0 years, upper limit of the SOC rises ULb from ULa. Cruising distance when age is y 0 years is xa. As the upper limit value of the SOC increases from ULa to ULb, the cruising distance changes from xa to xb. xb> xa.
  • the upper limit of the SOC is kept in ULb.
  • the upper limit of the SOC rises to ULc from ULb.
  • the cruising distance changes from xm to xc. xc> xm.
  • the upper limit of SOC is kept at ULc.
  • the upper limit value of the SOC increases from ULc to ULd.
  • FIG. 17 is a diagram for describing a second example of the table stored in the storage unit illustrated in FIG. 15.
  • the upper limit value of the SOC is increased.
  • the cruising distance extends from Xa1 to Xb1.
  • the cruising distance extends from Xm1 to Xc1 by changing the upper limit value of the SOC from ULb to ULc.
  • FIG. 18 is a flowchart for explaining a display process executed by the charge ECU shown in FIG. This process is executed, for example, after the increase of the upper limit value of the SOC is completed. That is, it is executed after the control range setting unit 111 executes the control shown in the flowchart of FIG. 11 or FIG.
  • step S111 cruising distance calculation unit 125 obtains an upper limit value (1) and an upper limit value (2).
  • step S112 the cruising distance calculation unit 125 acquires the cruising distance (1) and the cruising distance (2) by referring to the table stored in the storage unit 124.
  • step S113 the cruising distance calculation unit 125 outputs the upper limit value (1) and the upper limit value (2), and the cruising distance (1) and the cruising distance (2).
  • the display device 72 displays these upper limit values and cruising distances.
  • the same effect as in the first embodiment can be obtained. Further, according to the second embodiment, the cruising distance is displayed on the display device. Thereby, for example, the effects described below can be obtained.
  • the cruising distance after the upper limit value of the SOC increases is displayed on the display device. Thereby, a user etc. can confirm that control for extending cruising distance was performed.
  • both the cruising distance before the upper limit value of the SOC control range is increased and the cruising distance after the upper limit value is increased are displayed on the display device. For example, when the user is concerned about a decrease in cruising distance due to battery deterioration, cruising distance information can be provided to the user.
  • a vehicle including only a motor as a driving source for generating a driving force is shown.
  • the present invention can be applied to a vehicle including a power storage device and an electric motor that generates a driving force by electric power stored in the power storage device. Therefore, for example, the present invention can be applied to a hybrid vehicle including an internal combustion engine and an electric motor as drive sources.
  • FIG. 19 is a diagram showing a configuration of a hybrid vehicle which is an example of a vehicle according to the embodiment of the present invention.
  • vehicle 1 ⁇ / b> B differs from vehicle 1 in that it further includes a converter (CONV) 14, an inverter 18, an MG 24, a power split device 26, and an engine 28.
  • CONV converter
  • the engine 28 generates power by burning fuel such as gasoline.
  • Converter 14 mutually converts a DC voltage between positive electrode line 13P and negative electrode line 13N and a DC voltage between positive electrode line 15P and negative electrode line 15N based on control signal PWC received from MG-ECU 30.
  • the inverter 18 has the same configuration as that of the inverter 16 and is constituted by, for example, a three-phase bridge circuit.
  • the MG 24 is an AC rotating electric machine, and is constituted by, for example, a three-phase AC synchronous motor having a rotor in which a permanent magnet is embedded.
  • Inverter 18 drives MG 24 based on control signal PWI 2 received from MG-ECU 30.
  • the drive shaft of the MG 24 is connected to the power split device 26.
  • Power split device 26 includes a planetary gear mechanism including a sun gear, a pinion gear, a planetary carrier, and a ring gear.
  • a rotation shaft of MG 24, a crankshaft of engine 28, and a drive shaft coupled to drive wheel 22 are connected to power split device 26.
  • the power split device 26 distributes the power output from the engine 28 to the MG 24 and the drive wheels 22. For this reason, the engine 28 can drive the vehicle 1B.
  • the battery 10 can be charged by the power source 60 provided outside the vehicle 1B. Furthermore, the vehicle 1B can travel with the engine 28 stopped by the driving force of the MG 20. Therefore, the present invention can also be applied to the vehicle 1B having the configuration shown in FIG.
  • the vehicle 1B may include a charging ECU 48A instead of the charging ECU 48.
  • FIG. 19 shows a series / parallel type hybrid vehicle in which the power of the engine 28 can be transmitted to the drive wheels 22 and the MG 20 by the power split device 26.
  • the present invention is also applicable to other types of hybrid vehicles.
  • the present invention can be applied to a so-called series type hybrid vehicle that uses the engine 28 only to drive the MG 24 and generates the driving force of the vehicle only by the MG 20.
  • the present invention can be applied not only to the battery 10 but also to a fuel cell vehicle equipped with a fuel cell as a DC power source.
  • a lithium ion battery is applied as a power storage device for supplying electric power to an electric motor.
  • the present invention is not limited to be applicable only to a vehicle having a lithium ion battery.
  • the present invention can be applied to a vehicle as long as the vehicle includes a power storage device that is likely to deteriorate due to being stored in a high SOC state, and an electric motor that generates a driving force by the power storage device. .
  • the charging mode may be automatically switched by the charging ECU.
  • the charging ECU may switch the charging mode from the normal mode to the long life mode when the charging mode is set to the normal mode and the traveling distance exceeds a reference value until the traveling year reaches a predetermined number of years.
  • Conditions for the charge ECU to switch the charge mode are not particularly limited.
  • the charging ECU is configured to be able to switch the charging mode between the normal mode and the long life mode.
  • the vehicle according to the present invention may have only the long life mode as the charging mode.
  • the charging ECU increases the upper limit value of the SOC control range when a predetermined condition regarding the deterioration of the battery 10 is satisfied. Accordingly, it is possible to suppress a decrease in cruising distance (to ensure a cruising distance that is equal to or greater than the target distance) and to suppress deterioration of the battery 10.
  • the change amount of the upper limit value can be set so that the upper limit value is lower than the predetermined value.
  • the predetermined value is determined in consideration of overcharge of the battery, for example. In this case, the SOC reaches the upper limit value when the battery is charged, but the upper limit value does not exceed the predetermined value. Therefore, the battery can be prevented from being overcharged.
  • 1, 1A, 1B vehicle 10 battery, 11 cell, 12 system main relay, 13N, 15N negative wire, 13P, 15P positive wire, 14 converter, 16, 18 inverter, 20, 24 motor generator, 22 drive wheels, 26 power Splitting device, 28 engine, 42 charging inlet, 43 sensor, 44 charger, 46 relay, 48, 48A charging ECU, 49 switch, 50 current sensor, 54 monitoring unit, 56 (1) to 56 (n) sensor group, 58 Analog-digital converter, 60 power supply, 62 connector, 70 air conditioner, 72 display device, 101 SOC estimation unit, 111 control range setting unit, 112 determination unit, 113 signal generation unit, 124 storage unit, 125 cruising distance calculation unit, BB (1) to BB (n) Battery block.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 車両(1)は、バッテリ(10)と、バッテリ(10)に蓄えられた電力を用いることによって車両(1)の駆動力を発生させるように構成された電動機(20)と、車両の外部(1)の電源(60)から出力された電力を、バッテリ(10)に供給するように構成された充電器(44)と、バッテリ(10)が充電されるときのバッテリ(10)の充電状態を制御するように構成されたECU(48)とを備える。ECU(48)は、バッテリ(10)の充電状態を示す指標値を算出するとともに、その制御範囲を設定する。ECU(48)はバッテリ(10)の劣化に関する所定の条件が成立したときに、指標値の上限値を上昇させる。

Description

車両および車両の制御方法
 本発明は車両および車両の制御方法に関し、特に車両に搭載された蓄電装置の充電の制御に関する。
 ハイブリッド自動車、電気自動車、および燃料電池自動車等の車両は、電力を蓄えるための蓄電装置と、電動機とを備える。電動機は、蓄電装置から供給される電力により車両の駆動力を発生させる。車両の制動時には、電動機は回生発電を行なう。回生発電によって生成された電力は、蓄電装置に供給される。したがって上記の車両の走行中には、蓄電装置の充電状態を示す指標値(SOC)が適切な範囲内になるように、蓄電装置の充電および放電が制御される。SOCは、満蓄電状態の蓄電量に対する現在の蓄電量の比率と定義される。満蓄電状態の蓄電装置のSOCは100(%)であり、全く蓄電されていない状態での蓄電装置のSOCは0(%)である。
 たとえば特開2004-56867号公報(特許文献1)は、蓄電装置のSOCの管理幅を走行区間に従って調節可能に構成された、ハイブリッド車両の制御システムを開示する。この制御システムは、車両の走行予定経路の道路情報を取得する道路情報取得部と、蓄電手段のSOCの管理幅を変化させるとともに車両の走行方法を決定する管理幅および走行方法決定処理部と、決定された走行方法に従って車両の走行制御を実行する制御実行処理部とを備える。管理幅および走行方法決定処理部は、車両の走行予定経路の所定区間において蓄電手段(バッテリ)のSOCを算出するとともに、そのSOCに基づいて、SOCの管理幅を変更する。さらに、管理幅および走行方法決定処理部は、その所定区間の終点におけるSOCが、その管理幅内に収まるように、ハイブリッド車両の走行方法を決定する。
 たとえば特開2005-65352号公報(特許文献2)は、バッテリの充電および放電を制御するための制御装置を開示する。この制御装置は、バッテリのSOCの管理幅を変更することによって、バッテリの過放電を防止するとともに、バッテリの充電および放電に対するメモリ効果の影響を回避する。具体的には、上記の制御装置は、メモリ効果が生じた場合には、SOCの管理幅の上限値および下限値を、ともに上昇させる。
特開2004-56867号公報 特開2005-65352号公報
 上記の車両の航続距離は、できるだけ長いことが好ましい。本明細書では「航続距離」とは、蓄電装置に蓄えられた電力によって車両が走行可能な距離を意味する。
 航続距離を長くするための1つの解決策は、蓄電装置の個数、あるいは蓄電装置を構成するセルの個数を増やすことである。しかしながら蓄電装置の個数あるいはセルの個数が増えることによって、蓄電装置の体積、重量が増加するだけでなく蓄電装置のコストが上昇する。蓄電装置の重量が増加することにより、実際の航続距離が、蓄電装置の容量に基づいて算出された距離よりも短くなる可能性がある。
 特許文献1に開示された制御装置は、十分な回生電流をバッテリに回収するためにハイブリッド車両の走行中にSOCの管理幅を変化させる。これによりハイブリッド車両の燃料消費量を低減することが可能になる。しかし、特許文献1は、任意の時期に行なわれた車両の走行において燃料消費量を低減するための技術しか開示していない。
 ハイブリッド車両の走行が繰返されるうちに、蓄電装置は次第に劣化する。蓄電装置が劣化することによって蓄電装置の容量が低下する。したがって、ハイブリッド車両の使用年数が長くなるにつれて燃料消費量を低減する効果を十分に得ることができなくなる可能性がある。特許文献1は、蓄電装置の容量の低下を抑制するための具体的な方法を説明していない。
 特許文献2は、メモリ効果によるバッテリの容量低下を防ぐための方法を説明する。しかし特許文献2は、車両の走行が繰返されることによるバッテリの劣化について説明していない。言い換えると、特許文献2は、バッテリの劣化を考慮したバッテリの制御を開示していない。
 本発明の目的は、蓄電装置の劣化の抑制と航続距離の確保との両方を実現可能な車両を提供することである。
 本発明のある局面に従う車両は、再充電可能に構成された蓄電装置と、蓄電装置に蓄えられた電力を用いることによって車両の駆動力を発生させるように構成された電動機と、車両の外部の電源から出力された電力を、蓄電装置に供給するように構成された充電機構と、蓄電装置が充電されるときの蓄電装置の充電状態を制御するように構成された制御装置とを備える。制御装置は、充電状態を示す指標値を算出するように構成された状態推定部と、蓄電装置の劣化に関する所定の条件が成立したときに、指標値の上限値を上昇させるように構成された設定部とを含む。
 好ましくは、設定部は、上限値が所定値を下回るように、上限値の変化量を設定する。
 好ましくは、設定部は、所定値が上限値として設定された第1のモードと、上限値を調整可能な第2のモードとを切替可能であり、かつ、第2のモードにおいて変化量を設定する。
 好ましくは、設定部は、第2のモードにおいて、車両の走行可能距離が目標距離以上となり、かつ、上限値が所定値を下回るように、変化量を設定する。
 好ましくは、車両は、指令発生部をさらに備える。指令発生部は、手動操作によって、蓄電装置の使用期間を延ばすための指令の発生と、指令の発生の停止とを切換えるように構成される。設定部は、指令発生部が指令を発生させた場合には、第1および第2のモードの中から第2のモードを選択する一方で、指令発生部が指令の発生を停止した場合には、第1および第2のモードの中から第1のモードを選択する。
 好ましくは、所定の条件は、車両の使用期間に基づいて予め定められた条件である。
 好ましくは、所定の条件は、車両の走行距離に基づいて予め定められた条件である。
 好ましくは、制御装置は、距離算出部をさらに含む。距離算出部は、設定部によって設定された上限値に基づいて、車両の走行可能距離を推定するように構成される。車両は、距離算出部によって推定された走行可能距離を表示可能に構成された表示装置をさらに備える。
 好ましくは、走行可能距離は、上限値が変更される前に車両が走行可能な第1の走行可能距離と、上限値が変更された後に車両が走行可能な第2の走行可能距離とを含む。距離算出部は、第1および第2の走行可能距離を推定する。表示装置は、距離算出部によって推定された第1および第2の走行可能距離を表示可能に構成される。
 本発明は、他の局面では、車両の制御方法である。車両は、再充電可能に構成された蓄電装置と、蓄電装置に蓄えられた電力を用いることによって車両の駆動力を発生させるように構成された電動機と、車両の外部の電源から出力された電力を、蓄電装置に供給するように構成された充電機構と、蓄電装置が充電されるときの蓄電装置の充電状態を制御するように構成された制御装置とを備える。制御方法は、充電状態を示す指標値を算出するステップと、蓄電装置の劣化に関する所定の条件が成立したときに、指標値の上限値を上昇させるステップとを備える。
 好ましくは、上限値を上昇させるステップは、上限値が所定値を下回るように、上限値の変化量を設定する。
 好ましくは、車両の制御方法は、所定値が上限値として設定された第1のモードと、上限値を調整可能な第2のモードとのいずれか一方を選択するステップをさらに備える。上限値を上昇させるステップは、第2のモードが選択されたときに変化量を設定する。
 好ましくは、上限値を上昇させるステップは、第2のモードにおいて、車両の走行可能距離が目標距離以上となり、かつ、上限値が所定値を下回るように、変化量を設定する。
 好ましくは、車両は、指令発生部をさらに備える。指令発生部は、手動操作によって、蓄電装置の使用期間を延ばすための指令の発生と、指令の発生の停止とを切換えるように構成される。選択するステップは、指令発生部が指令を発生させた場合には、第1および第2のモードの中から第2のモードを選択する一方で、指令発生部が指令の発生を停止した場合には、第1および第2のモードの中から第1のモードを選択する。
 好ましくは、所定の条件は、車両の使用期間に基づいて予め定められた条件である。
 好ましくは、所定の条件は、車両の走行距離に基づいて予め定められた条件である。
 好ましくは、車両は、表示装置をさらに備える。制御方法は、上限値に基づいて、車両の走行可能距離を推定するステップと、表示装置に走行可能距離が表示されるように、走行可能距離を表示装置に出力するステップとをさらに備える。
 好ましくは、走行可能距離は、上限値が変更される前に車両が走行可能な第1の走行可能距離と、上限値が変更された後に車両が走行可能な第2の走行可能距離とを含む。推定するステップは、第1および第2の走行可能距離を算出する。
 本発明によれば、車両に搭載される蓄電装置の劣化を抑制できるとともに、その車両の航続距離を確保できる。
本発明の実施の形態1による車両の全体ブロック図である。 図1に示した監視ユニットの構成例を示した図である。 図1に示した充電ECUの機能ブロック図である。 通常モードにおけるSOCの制御範囲およびロングライフモードにおけるSOCの制御範囲を説明するための図である。 図1に示した充電ECUにより実行されるバッテリの充電の制御を説明するためのフローチャートである。 リチウムイオン電池に蓄えられた電力によって走行する車両の使用年数と、そのリチウムイオン電池の容量維持率との間の相関関係を説明するための図である。 ロングライフモードでの航続距離と通常モードでの航続距離とを説明するための図である。 実施の形態1に従う制御により達成可能な航続距離を説明した図である。 バッテリの使用年数に基づく制御範囲の上限値の制御を説明するための図である。 車両の走行距離に基づく制御範囲の上限値の制御を説明するための図である。 図9に示されるマップに従って実行される制御を説明するためのフローチャートである。 図10に示されるマップに従って実行される制御を説明するためのフローチャートである。 本発明の実施の形態2による車両の全体ブロック図である。 図13に示した表示装置の表示例を説明するための図である。 図13に示した充電ECUの機能ブロック図である。 図15に示した記憶部に記憶されるテーブルの第1の例を説明するための図である。 図15に示した記憶部に記憶されるテーブルの第2の例を説明するための図である。 図15に示した充電ECUにより実行される表示処理を説明するためのフローチャートである。 本発明の実施の形態による車両の一例であるハイブリッド車両の構成を示した図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 [実施の形態1]
 図1は、本発明の実施の形態1による車両の全体ブロック図である。図1を参照して、本発明の実施の形態1による車両1は、バッテリ10と、システムメインリレー(以下「SMR」とも称する。)12と、インバータ16と、モータジェネレータ(以下「MG」とも称する。)20と、駆動輪22と、MG-ECU(Electronic Control Unit)30とを備える。車両1は、さらに、充電インレット42と、センサ43と、充電器44と、リレー46と、充電ECU48と、スイッチ49と、電流センサ50と、監視ユニット54と、エアコン70とを備える。
 バッテリ10は、再充電可能に構成された蓄電装置である。バッテリ10は、複数のセル11を直列接続した組電池により構成される。本実施の形態では、バッテリ10はリチウムイオン電池である。
 車両1の走行時には、バッテリ10は、MG20を駆動するための電力をインバータ16に供給する。バッテリ10に蓄えられた電力がMG20に供給されることによって、MG20は車両1の駆動力を発生させる。車両1の制動時には、MG20の回生発電により生成された電力がバッテリ10に供給される。車両1の外部に設けられた電源60から車両1に電力が供給された場合には、充電器44がバッテリ10に電力を供給する。バッテリ10に電力が供給されることによりバッテリ10が充電される。電源60は、たとえば交流電源である。
 SMR12は、バッテリ10とインバータ16との間に設けられる。SMR12は、正極線13Pおよび負極線13Nによってバッテリ10に接続される。SMR12は正極線15Pおよび負極線15Nによってインバータ16に接続される。車両1の走行時には、SMR12はオン状態である。一方、充電器44によりバッテリ10が充電されるときには、SMR12はオフ状態である。なお、SMR12は、バッテリ10とリレー46との間に配置されてもよい。
 インバータ16は、MG-ECU30からの制御信号PWI1に基づいてMG20を駆動する。図示しないが、インバータ16は、たとえばU相アーム、V相アームおよびW相アームを備える三相ブリッジ回路によって構成される。インバータ16は、バッテリ10から出力された直流電力を交流電力に変換するとともに、その交流電力をMG20に供給する。インバータ16は、MG20によって生成された交流電力を直流電力に変換するとともに、その直流電力をバッテリ10に供給する。なお、バッテリの直流電圧とインバータの直流電圧との変換のために、バッテリ10とインバータ16との間に電圧変換器(DC/DCコンバータ)を設けてもよい。
 MG20は、交流回転電機であり、たとえば永久磁石が埋設されたロータを有する三相交流同期電動機によって構成される。MG20の回転軸は駆動輪22に連結される。MG-ECU30は、MG20を駆動するための制御信号PWI1を生成するとともに、その制御信号PWI1をインバータ16へ出力する。
 コネクタ62は車両1の外部に設けられ、かつ電源60に接続される。充電インレット42は、充電器44の入力側に接続され、かつコネクタ62と接続可能に構成される。充電インレット42がコネクタ62に接続されることによって、電源60からの交流電力が充電インレット42に入力される。センサ43は、充電インレット42とコネクタ62との接続を検出するとともに、バッテリ10の充電を開始可能であることを示す信号STRを出力する。コネクタ62が充電インレット42から外されたときに、センサ43は信号STRの出力を停止する。
 充電器44は、リレー46によって正極線13Pおよび負極線13Nに接続されるとともに、電源60から出力された電力をバッテリ10に供給する。充電器44は、たとえば、交流電力を直流電力に変換するAC/DCコンバータによって構成される。充電器44は、充電ECU48からの制御信号PWDに基づいて電源60から供給された交流電力を直流電力に変換する。充電器44から出力された直流電力は、リレー46、正極線13Pおよび負極線13Nを通じてバッテリ10へ供給される。充電器44がバッテリ10を充電する間、リレー46がオン状態に保たれる。
 なお、充電器44が車両1の外部に設けられてもよい。この場合には、充電インレット42は、充電器44から出力される直流電力を受ける。充電インレット42に入力された電力は、リレー46、正極線13Pおよび負極線13Nを介してバッテリ10に供給される。要するに、充電インレット42およびリレー46は、電源60から出力された電力をバッテリ10に供給する。
 充電ECU48は、センサ43からの信号STRに基づいて充電器44の制御を開始する。詳細には、充電ECU48は、監視ユニット54から送られた電流、電圧および温度の検出値に基づいて、充電器44を駆動するための制御信号PWDを生成するとともに、その制御信号PWDを充電器44に送る。充電器44は、制御信号PWDに基づいて、電源60から供給された交流電力を直流電力に変換する。
 充電ECU48は、バッテリ10の充電状態を示す指標値(SOC)に基づいて充電器44を制御する。バッテリ10のSOCが制御範囲の上限値に達したときに、充電ECU48は制御信号PWDの出力を停止する。充電ECU48が制御信号PWDの出力を停止することによって充電器44が停止する。充電器44が停止することによりバッテリ10の充電が終了する。SOCは、満蓄電状態のバッテリ10の蓄電量に対する、現在のバッテリ10の蓄電量の比率として定義される。
 スイッチ49は、ユーザによって操作されるスイッチとして車両1に搭載される。手動操作によって、スイッチ49はその状態をオン状態とオフ状態との間で切換える。スイッチ49がオン状態であるときに、スイッチ49は、バッテリ10の劣化が抑制されるようにバッテリ10の充電モードを設定するための指令(信号SLF)を発生させる。バッテリ10の劣化が抑制されることによって、バッテリ10の使用期間を延ばすことができる。すなわち信号SLFはバッテリ10の使用期間を延ばすための指令である。以下の説明では、バッテリ10の劣化を抑制するための充電モードを「ロングライフモード」と呼ぶことにする。
 ユーザがスイッチ49をオフすることによって、スイッチ49は信号SLFの発生を停止する。これによりロングライフモードの設定が解除されるとともに、車両1の充電モードがロングライフモードから通常モードへと切り換わる。すなわち、ユーザは、スイッチ49を操作することにより、ロングライフモードおよび通常モードの中から車両1の充電モードを選択することができる。
 充電ECU48は、バッテリ10の充電のためにSOCの制御範囲を設定する。ロングライフモードにおける制御範囲は、通常モードにおける制御範囲よりも狭い。具体的には、ロングライフモードにおける制御範囲の上限値は、通常モードにおける制御範囲の上限値よりも小さい。ロングライフモードにおける制御範囲の下限値は、通常モードにおける制御範囲の下限値以上である。すなわち充電ECU48は、バッテリ10の充電時におけるバッテリ10の充電状態を制御する。
 なお、以下の説明では「制御範囲の上限値」を「SOCの上限値」あるいは単に「上限値」と称する場合もある。
 電流センサ50は、バッテリ10に対して入力される電流およびバッテリ10から出力される電流を検出するとともに、その電流の大きさに応じて変化するアナログ信号を監視ユニット54へ出力する。
 監視ユニット54は、電流センサ50から出力されたアナログ信号を、電流値を示すデジタル信号に変換する。監視ユニット54は、そのデジタル信号(電流値)を充電ECU48へ出力する。さらに、監視ユニット54は、所定個数のセル11により構成された電池ブロックごとに温度および電圧を検出する。監視ユニット54は、各ブロックの温度および電圧を示すデジタル信号を充電ECU48へ出力する。
 正極線13Pおよび負極線13Nには、バッテリ10から供給される電力によって動作する補機が接続される。図1では補機の代表例としてエアコン70を示す。
 図2は、図1に示した監視ユニットの構成例を示した図である。図2を参照して、バッテリ10は、直列接続された複数のセル11を含む。複数のセル11は、複数の電池ブロックBB(1)~BB(n)に分割される(n:自然数)。監視ユニット54は、電池ブロックBB(1)~BB(n)にそれぞれ対応して配置されたセンサ群56(1)~56(n)と、電流センサ50に対応して配置されたアナログ-デジタル変換器(A/D)58とを含む。
 センサ群56(1)~56(n)の各々は、対応するブロックの温度および電圧を検出する。センサ群56(1)~56(n)は、温度Tb(1)~Tb(n)をそれぞれ検出する。さらにセンサ群56(1)~56(n)は、電圧Vb(1)~Vb(n)をそれぞれ検出する。各センサ群56(1)~56(n)の検出値は、充電ECU48に出力される。
 アナログ-デジタル変換器58は、電流センサ50からのアナログ信号をデジタル信号に変換する。デジタル信号は、電流Ibの値を示す。電流Ibはバッテリ10に入力される電流およびバッテリ10から出力される電流である。
 なお、図2に示したセンサ群56(1)~56(n)およびアナログ-デジタル変換器(A/D)58に加えて、セル11の電圧を監視するためのモニタをセル11ごとに設けてもよい。各モニタは、たとえば、対応するセル11の電圧が通常の範囲外にある場合に、セル11の異常を示すフラグをオンする。フラグがオンすることにより、充電ECU48は、バッテリ10の異常を検出することができる。
 図3は、図1に示した充電ECUの機能ブロック図である。図3を参照して、充電ECU48は、SOC推定部101と、制御範囲設定部111と、判定部112と、信号生成部113とを含む。
 SOC推定部101は、監視ユニット54から電流Ib、電圧Vb(1)~Vb(n)および温度Tb(1)~Tb(n)の各々の検出値を受ける。SOC推定部101は、各検出値に基づいて、バッテリ10の全体SOCを算出する。詳細には、SOC推定部101は、各ブロックの検出値に基づいて、当該ブロックのSOCを算出するとともに、各ブロックのSOCに基づいて全体SOCを算出する。本実施の形態では、リチウムイオン電池のSOCを算出するための公知の方法を、各ブロックのSOCを算出するための方法に使用できる。たとえば各ブロックのSOCを、電流Ibの積算値に基づいて算出してもよい。あるいは、開回路電圧(OCV)とSOCとの間の相関関係および、監視ユニット54により検出された電圧値に基づいて、各ブロックのSOCを一定周期毎に算出してもよい。各ブロックのSOCから全体SOCを算出するための方法は特に限定されず、たとえば全体SOCは、各ブロックのSOCの平均値であってもよい。
 制御範囲設定部111は、SOCの制御範囲を設定する。スイッチ49がオフ状態のときには、スイッチ49は信号SLFの発生を停止する。この場合には、制御範囲設定部111は、SOCの制御範囲を第1の範囲に設定するとともに、第1の範囲の上限値UL1を出力する。一方、ユーザがスイッチ49をオンした場合には、スイッチ49は信号SLFを発生させる。この場合には、制御範囲設定部111は、SOCの制御範囲を第2の範囲に設定するとともに、第2の範囲の上限値UL2を出力する。第1の範囲は、通常モードにおけるSOCの制御範囲である。第2の範囲は、ロングライフモードにおけるSOCの制御範囲である。
 判定部112は、SOC推定部101からSOCを受けるとともに、制御範囲設定部111から上限値UL1およびUL2のいずれか一方を受ける。判定部112は、SOCが上限値(UL1またはUL2)に達したか否かを判定する。判定部112は、その判定結果を信号生成部113に出力する。
 信号生成部113は、センサ43からの信号STRに基づいて制御信号PWDを生成する。信号生成部113は、その制御信号PWDを充電器44へ出力する。SOCが上限値に達したと判定部112が判定した場合には、信号生成部113は、判定部112の判定結果に基づいて、制御信号PWDの生成を停止する。制御信号PWDの生成が停止されることにより充電器44が停止する。充電器44が停止することによりバッテリ10の充電が終了する。
 図4は、通常モードにおけるSOCの制御範囲およびロングライフモードにおけるSOCの制御範囲を説明するための図である。図4を参照して、第1の範囲R1は、通常モードにおけるSOCの制御範囲である。第2の範囲R2は、ロングモードにおけるSOCの制御範囲である。UL1は第1の範囲R1の上限値であり、UL2は第2の範囲R2の上限値である。なお、UL1は予め定められた値である。
 第1の範囲R1の下限値および第2の範囲R2の下限値はともにLLである。ただし第2の範囲R2の下限値が第1の範囲R1の下限値より大きくてもよい。上限値UL2は上限値UL1よりも小さい。したがって第2の範囲R2は第1の範囲R1よりも狭い。バッテリ10の過充電を防止するため、上限値UL1,UL2はともに100(%)よりも小さい。バッテリ10の過放電を防止するため、下限値LLは、0(%)よりも大きい。
 図5は、図1に示した充電ECUにより実行されるバッテリの充電の制御を説明するためのフローチャートである。このフローチャートの処理は、一定時間ごとまたは所定の条件が成立するごとに実行される。
 図5を参照して、ステップS1において、充電ECU48は、信号STRが発生したか否かを判定する。信号生成部113が信号STRを受けたときに、信号生成部113は信号STRが発生したと判定する。この場合(ステップS1においてYES)、処理はステップS2に進む。一方、信号生成部113が信号STRを受けていない場合、信号生成部113は信号STRが発生していないと判定する。この場合(ステップS1においてNO)、処理はメインルーチンに戻される。
 ステップS2において、充電ECU48は、信号SLFが発生したか否かを判定する。制御範囲設定部111が信号SLFを受けていない場合、制御範囲設定部111は信号SLFが発生していないと判定する。この場合(ステップS2においてNO)、処理はステップS3に進む。一方、制御範囲設定部111が信号SLFを受けたときに、制御範囲設定部111は信号SLFが発生したと判定する。この場合(ステップS2においてYES)、処理はステップS4に進む。
 ステップS3において、充電ECU48(制御範囲設定部111)は、SOCの制御範囲の上限値をUL1に設定する。これにより充電モードは通常モードに設定される。ステップS4において、充電ECU48(制御範囲設定部111)は、SOCの制御範囲の上限値をUL2に設定する。これにより充電モードはロングライフモードに設定される。制御範囲設定部111によって設定された上限値(UL1またはUL2)は、制御範囲設定部111から判定部112に送られる。
 ステップS3またはS4の処理が実行された後に、ステップS5の処理が実行される。ステップS5において、充電ECU48(信号生成部113)は制御信号PWDを生成する。充電器44はその制御信号PWDに基づいて、電源60から供給された交流電力を直流電力に変換する。充電器44からバッテリ10に直流電力が供給されることによって、バッテリ10が充電される。
 ステップS6において、充電ECU48は、バッテリ10のSOCを算出する。詳細には、SOC推定部101は、監視ユニット54から送られた電流値Ib、電圧値Vb(1)~Vb(n)および温度Tb(1)~Tb(n)に基づいて、バッテリ10の全体SOCを算出する。
 ステップS7において、充電ECU48は、SOCが上限値(UL1またはUL2)に達したか否かを判定する。具体的には、ステップS7において、判定部112は、SOC推定部101により算出されたSOCと上限値とを比較する。その比較結果に基づいて、判定部112は、SOCが上限値に達したか否かを判定する。
 SOCが上限値に達したと判定された場合(ステップS7においてYES)、処理はステップS8に進む。一方、SOCが上限値に達していないと判定された場合(ステップS7においてNO)、処理はステップS5に戻る。SOCが上限値に達するまで、バッテリ10の充電のためにステップS5~S7の処理が繰返して実行される。
 ステップS8において、充電ECU48は制御信号PWDの生成を停止する。詳細には、判定部112によりSOCが上限値に達したと判定されたときに、信号生成部113は判定部112の判定結果に基づいて制御信号PWDの生成を停止する。これによりバッテリ10の充電が終了する。ステップS8の処理が終了すると、全体の処理はメインルーチンに戻される。
 図1に示した車両1は、バッテリ10に蓄えられた電力によって走行する。車両1の航続距離を延ばすためには、バッテリ10からできるだけ多くの電力量を取り出すことが必要となる。バッテリ10の容量を増やした場合には、バッテリ10から取り出される電力量を増やすことができる。しかし、バッテリ10の容量が増えることにより、バッテリ10の重量および体積の増加がもたらされる可能性がある。
 本実施の形態では、バッテリ10の充電時におけるSOCの上限値を最大限高くする。具体的には、SOCが上限値に達したときにバッテリ10が過充電状態とならないように、上限値が予め定められる。一方、SOCの下限値(LL)は、バッテリ10の過放電を防止するための値として予め定められる。これにより、バッテリ10から多くの電力量を取り出すことができる。したがって車両1の航続距離を延ばすことができる。
 さらに、本実施の形態では、バッテリ10としてリチウムイオン電池が用いられる。リチウムイオン電池は、エネルギー密度が高いという特徴を有する。リチウムイオン電池が車両1に搭載されることにより、バッテリ10から多くの電力量を取り出すことができるとともに、バッテリ10の小型化および軽量化を図ることができる。
 しかしながらリチウムイオン電池が高SOC状態(たとえば満充電状態)のまま長時間保存された場合には、リチウムイオン電池の特性の劣化が生じる。たとえばリチウムイオン電池の容量が低下する。リチウムイオン電池が低SOC状態で保存されることにより、リチウムイオン電池の特性の劣化を抑制することができる。
 図6は、リチウムイオン電池に蓄えられた電力によって走行する車両の使用年数と、そのリチウムイオン電池の容量維持率との間の相関関係を説明するための図である。図6を参照して、リチウムイオン電池が新品である時の容量維持率が100(%)と定義される。車両の走行が繰返されることにより、リチウムイオン電池は次第に劣化する。車両の使用年数が長くなるほど容量維持率は小さくなる。すなわちリチウムイオン電池の容量が低下する。リチウムイオン電池の充電完了時のSOCが高くなるほど、使用年数に対する容量維持率の低下の度合いが大きくなる。
 バッテリ10の充電が完了してから車両1の走行が開始されるまでの期間は、ユーザによって異なりうる。このためバッテリ10が高SOC状態で長期間保存される可能性がある。バッテリ10が高SOC状態で長期間保存されることによりバッテリ10の容量が低下する可能性がある。
 本実施の形態では、車両1は、バッテリ10の使用期間を延ばすためのロングライフモードを有する。ロングライフモードが設定されることによって、SOCの制御範囲が狭くなる。具体的には、制御範囲の上限値が低下する。SOCの制御範囲が狭くなることによって、バッテリ10の充電が完了したときのSOCを下げることができる。したがってバッテリ10の容量の低下を抑制することができる。
 バッテリ10の容量の低下が抑制されることによって、車両1の航続距離の低下を抑制できる。この結果、車両1の航続距離を確保することができる。たとえば目標の使用年数が経過したときに、車両が目標距離を走行することができる。
 図7は、ロングライフモードでの航続距離と通常モードでの航続距離とを説明するための図である。図7を参照して、バッテリ10の劣化の程度が小さいときにはバッテリ10は多くの電力量を蓄えることができる。したがって車両1の使用年数が短い場合には、通常モードでの航続距離がロングライフモードでの航続距離よりも長い。
 しかし、バッテリ10が満充電状態に近い状態になるまでバッテリ10を充電した場合には、バッテリ10の劣化が促進される。特に、バッテリ10の新品時には、バッテリ10のSOCを高くすることによって、バッテリ10の劣化が促進される。通常モードでバッテリ10が充電されることにより、バッテリ10の容量の低下の度合いが大きくなる。
 一方、ロングライフモードでバッテリ10が充電されることにより、バッテリ10の劣化を抑制することができる。このためロングライフモードでバッテリ10が充電された場合には、バッテリ10の容量の低下を抑制できる。図7に示すように、車両1の使用年数が長い場合には、ロングライフモードでの航続距離を通常モードでの航続距離よりも長くすることができる。すなわちロングライフモードでバッテリ10が充電されることにより、バッテリ10の劣化を抑制できるとともに車両1の航続距離を確保することができる。
 さらに本実施の形態によれば、車両1はユーザにより操作されるスイッチ49を備える。ユーザがスイッチ49を操作することにより、バッテリ10の充電モードが通常モードおよびロングライフモードの中から選択される。ロングライフモードが選択された場合には、バッテリ10の劣化を抑制できるため、車両の使用年数が長くなっても航続距離を確保できる。一方、バッテリ10の能力に余裕がある場合(使用年数が短い場合)に、通常モードが選択されることによりバッテリ10の充電量を増やすことができる。したがって車両1の走行性能を高めることができる。たとえば、通常の航続距離よりも長い航続距離を車両1が走行することができる。
 本実施の形態によれば、通常モードおよびロングライフモードの中からユーザが充電モードを選択できるので、ユーザの利便性を向上させることができる。
 なお、走行時におけるSOCの制御範囲は、バッテリ10の充電時における制御範囲とは独立に設定される。たとえば車両1の制動時には、MG20の回生発電によってバッテリ10が充電された結果SOCが上昇する。この結果、バッテリ10の充電時における上限値よりもSOCが高くなる可能性がある。しかしながら車両1の走行が継続されることによって、SOCが再び低下する。すなわち車両1の走行中には、長時間にわたりバッテリ10が高SOC状態で保存される可能性が低い。したがって走行時におけるSOCの制御範囲をロングライフモードでの制御範囲および通常モードでの制御範囲とは独立に設定することができる。
 ただしロングライフモードが充電モードとして選択された場合にも、バッテリ10の使用年数が長くなるにつれてバッテリ10が劣化する。このため車両1の使用年数が長くなるにつれて航続距離が低下する。したがって本実施の形態では、充電モードとしてロングライフモードが選択され、かつ、バッテリ10の劣化に関する所定の条件が満たされた場合に、SOCの制御範囲の上限値(UL2)を上昇させる。
 図8は、実施の形態1に従う制御により達成可能な航続距離を説明した図である。図8を参照して、バッテリの劣化状態に基づいた所定のタイミングでSOCの制御範囲の上限値が上昇する。上限値が固定された場合には、航続距離は低下する一方である(破線201を参照)。一方、上限値を上昇させることによって、バッテリ10の充電量を増やすことができる(実線202を参照)。したがって航続距離を延ばすことができる。
 バッテリ10の劣化によりバッテリ10の容量が低下する。SOCの制御範囲の上限値が固定されている場合には、使用年数が長くなるにつれてバッテリ10から取り出すことができる電力量が少なくなる。このため破線によって示されるように、使用年数が長くなるほど航続距離が低下する。本実施の形態によれば、適切なタイミングで制御範囲の上限値が上昇することで、航続距離を延ばすことができる。したがって、目標の使用年数が経過したときに目標の航続距離を確保することができる。
 バッテリ10の劣化の要因は、バッテリ10の使用年数、および、車両1の走行距離を含む。したがって本実施の形態では、バッテリ10の使用年数および車両1の走行距離の少なくとも一方に基づいて、制御範囲の上限値が変更される。以下に、バッテリ10の使用年数に基づく上限値の制御、および走行距離に基づく上限値の制御を説明する。
 図9は、バッテリの使用年数に基づく制御範囲の上限値の制御を説明するための図である。図9を参照して、バッテリ10の使用年数が、一定の年数(y)に達するごとに上限値UL2が上昇する。たとえば上限値UL2の変化量は一定である。この変化量は、車両1の航続距離が目標距離以上となるように予め定められる。なお、上限値UL2は通常モードでの制御範囲の上限値UL1を下回る。すなわち、上限値UL2が所定値(UL1)を超えないように、上限値UL2の変化量が設定される。
 図10は、車両の走行距離に基づく制御範囲の上限値の制御を説明するための図である。図10を参照して、車両の走行距離が、一定の距離(x)に達するごとに上限値UL2が上昇する。たとえば上限値UL2の変化量は一定である。この場合においても、車両1の航続距離が目標距離以上となり、かつ、上限値UL2がUL1(所定値)を超えないように、上限値UL2の変化量が設定される。
 図9あるいは図10に示される上限値UL2の制御パターンは、制御範囲設定部111にマップとして記憶される。このマップに従って、制御範囲設定部111は、制御範囲の上限値UL2を変化させる。
 なお、図9および図10の各々は、走行距離と使用年数とのいずれか一方のみに基づいて上限値UL2を上昇させる制御パターンを示す。本実施の形態では、走行距離と使用年数との両方に基づいて上限値UL2を上昇させてもよい。すなわち、バッテリの使用年数が一定値に達した場合、および、走行距離が一定値に達した場合のいずれかにおいてSOCの制御範囲の上限値UL2を上昇させてもよい。ただし上限値UL2は上限値UL1より小さい。
 制御範囲設定部111は、たとえば図示しない車速センサによって検出された車両の速度に基づいて、車両の走行距離を算出する。さらに、制御範囲設定部111は、たとえば車両の速度が0と異なる期間を車両の使用年数として計測する。上記の方法は、車両の走行距離および使用年数を測定するための方法の一例である。車両の走行距離および使用年数は、公知の種々の方法によって測定できる。
 図8~図10は、上限値を複数回上昇させる制御パターンを示す。しかし、上限値を上昇させる回数は、1回でもよい。車両1の標準的な使用年数、バッテリ10の容量、目標航続距離等に基づいて、上限値を上昇させる回数を定めることができる。
 なお、バッテリの劣化に関する所定の条件が成立しない場合には、充電ECU48は上限値の上昇を抑制する。具体的には、上限値が一定に保たれる。ただし、車両1の走行距離が短いためにSOCの変動範囲が小さい場合には、充電ECU48は、その範囲を学習することによってバッテリ10の上限値を低下させてもよい。この場合においても、バッテリ10の劣化に関する所定の条件が成立するときに充電ECU48は上限値を上昇させる。一方で、バッテリ10の劣化に関する所定の条件が成立しない場合には、上限値の上昇が抑制される。
 図11は、図9に示されるマップに従って実行される制御を説明するためのフローチャートである。このフローチャートの処理は、ロングライフモードが設定された場合(図5中のステップS4)、一定時間ごとまたは所定の条件が成立するごとに実行される。
 図11を参照して、ステップS101において、充電ECU48は、バッテリ10の使用年数が基準値(y)に達したか否かを判定する。充電ECU48(制御範囲設定部111)は、たとえば車両1の走行年数を計測する。その計測値がバッテリ10の使用年数として用いられる。計測値が基準値(y)に達した場合に、充電ECU48(制御範囲設定部111)は、バッテリ10の使用年数が基準値に達したと判定する。
 バッテリ10の使用年数が基準値に達したと判定された場合(ステップS101においてYES)、処理はステップS102に進む。一方、バッテリ10の使用年数が基準値に達していないと判定された場合(ステップS101においてNO)、処理はステップS104に進む。
 ステップS102において、充電ECU48(制御範囲設定部111)は、上限値UL2を上昇させる。上限値UL2の変化量はたとえば一定値である。ステップS102の処理に続いてステップS103の処理が実行される。
 ステップS103において、充電ECU48(制御範囲設定部111)は、車両1の走行年数の計測値を0に戻す。ステップS103の処理が終了すると、全体の処理はメインルーチンに戻される。
 ステップS104において、充電ECU48(制御範囲設定部111)は、上限値UL2の上昇を抑制する。すなわち上限値UL2は変化しない。ステップS104の処理が終了すると、全体の処理はメインルーチンに戻される。
 図12は、図10に示されるマップに従って実行される制御を説明するためのフローチャートである。このフローチャートの処理はロングライフモードが設定された場合(図5中のステップS4)、一定時間ごとまたは所定の条件が成立するごとに実行される。
 図12を参照して、ステップS101Aにおいて、充電ECU48(制御範囲設定部111)は、車両1の走行距離が基準値(x)に達したか否かを判定する。車両1の走行距離が基準値に達したと判定された場合(ステップS101AにおいてYES)、処理はステップS102Aに進む。一方、車両1の走行距離が基準値に達していないと判定された場合(ステップS101AにおいてNO)、処理はステップS104Aに進む。
 ステップS102Aにおいて、充電ECU48(制御範囲設定部111)は、上限値UL2を上昇させる。上限値UL2の変化量は、たとえば一定値である。ステップS102Aの処理に続いてステップS103Aの処理が実行される。
 ステップS103Aにおいて、充電ECU48(制御範囲設定部111)は、車両1の走行距離の計測値を0に戻す。ステップS103Aの処理が終了すると、全体の処理はメインルーチンに戻される。
 ステップS104Aにおいて、充電ECU48(制御範囲設定部111)は、上限値UL2の上昇を抑制する。すなわち上限値UL2は変化しない。ステップS104Aの処理が終了すると、全体の処理はメインルーチンに戻される。
 以上のように、実施の形態1によれば、充電ECUは、バッテリの劣化に関する所定の条件の成立時に、ロングライフモードにおけるSOCの制御範囲の上限値(UL2)を上昇させる。これにより、航続距離の低下を抑制できる。さらに、その上限値(UL2)は、通常モードでバッテリ10を充電する場合における上限値(UL1)よりも小さい。これにより、バッテリの10の劣化を抑制する効果を得ることができる。
 [実施の形態2]
 図13は、本発明の実施の形態2による車両の全体ブロック図である。図13および図1を参照して、車両1Aは、表示装置72をさらに備える点、および充電ECU48に代えて充電ECU48Aを備える点において、車両1と異なる。
 充電ECU48Aは、SOCの制御範囲の上限値が上昇する前の航続距離、および上限値が上昇した後の航続距離の両方を表示装置72に表示させる。2種類の航続距離は、ユーザの通常の操作によって表示装置72に表示されてもよい。あるいは、それら2種類の航続距離は、車両1Aのメンテナンスの際に、表示装置72の特別な操作によって表示装置72に表示されてもよい。
 図14は、図13に示した表示装置の表示例を説明するための図である。図14を参照して、元の上限値ULaと、その上限値ULaに対応する航続距離xa(km)とが表示装置72の画面に表示される。さらに、上限値ULaから変更された上限値ULbと、その上限値ULbに対応する航続距離xb(km)とが表示装置72の画面に表示される。
 図15は、図13に示した充電ECUの機能ブロック図である。図15および図3を参照して、充電ECU48Aは、記憶部124と、航続距離算出部125とをさらに含む点において充電ECU48と異なる。
 記憶部124は、元の上限値(以下では上限値(1)と呼ぶ)と、元の上限値から変更された上限値(以下では上限値(2)と呼ぶ)とを記憶する。さらに記憶部124は、それら2つの値にそれぞれ対応する第1の航続距離および第2の航続距離を記憶する。上限値(1)および上限値(2)、ならびに第1および第2の航続距離は、テーブル(マップでもよい)によって使用年数または走行距離に対応付けられる。記憶部124は上記のテーブルまたはマップを記憶する。以下の説明においては、記憶部124はテーブルを記憶するものとする。
 制御範囲設定部111はSOCの制御範囲の上限値を上昇させるとともに、上限値(1)、上限値(2)を航続距離算出部125に出力する。航続距離算出部125は、上限値(1)、上限値(2)を受けるとともに、記憶部124に記憶されたテーブルを参照する。航続距離算出部125は、上限値(1)およびテーブルに基づいて第1の航続距離を取得する。さらに航続距離算出部125は、上限値(2)およびテーブルに基づいて第2の航続距離を取得する。
 航続距離算出部125は、上限値(1)および上限値(2)、ならびに第1の航続距離および第2の航続距離を表示装置72に出力する。表示装置72は、元の上限値(上限値(1))ULaと、その上限値ULaに対応する航続距離xaとを表示する(図9参照)。さらに、表示装置72は、変更後の上限値(上限値(2))ULbと、その上限値ULbに対応する航続距離xbとを表示する(図9参照)。
 図16は、図15に示した記憶部に記憶されるテーブルの第1の例を説明するための図である。図16を参照して、上限値(1)と、上限値(2)と、第1の航続距離(航続距離(1))と、第2の航続距離(航続距離(2))とが所定の年数yごとに予め定められる。たとえば使用年数がy年に達したときに、SOCの上限値がULaからULbに上昇する。使用年数がy年であるときの航続距離はxaである。SOCの上限値がULaからULbへと上昇することにより、航続距離がxaからxbに変化する。xb>xaである。
 y年から2y年までの間はSOCの上限値はULbに保たれる。使用年数が2y年に達したときに、SOCの上限値がULbからULcに上昇する。これにより航続距離はxmからxcに変化する。xc>xmである。
 2y年から3y年までの間はSOCの上限値はULcに保たれる。使用年数が3y年に達したときに、SOCの上限値がULcからULdに上昇する。
 すなわち、図16に示されるテーブルによれば、y年が経過するごとに、SOCの上限値が上昇するとともに航続距離が延ばされる。
 図17は、図15に示した記憶部に記憶されるテーブルの第2の例を説明するための図である。図17を参照して、車両の走行距離が一定の距離xに達するごとに、SOCの上限値が上昇する。SOCの上限値がULaからULbに変更されることにより、航続距離がXa1からXb1に延びる。さらに、SOCの上限値がULbからULcに変更されることにより、航続距離がXm1からXc1に延びる。
 図18は、図15に示した充電ECUにより実行される表示処理を説明するためのフローチャートである。この処理は、たとえば、SOCの上限値の上昇が完了した後に実行される。すなわち、制御範囲設定部111が図11あるいは図12のフローチャートに示される制御を実行した後に実行される。
 図18を参照して、ステップS111において、航続距離算出部125は、上限値(1)および上限値(2)を取得する。ステップS112において、航続距離算出部125は、記憶部124に記憶されたテーブルを参照することによって、航続距離(1)および航続距離(2)を取得する。ステップS113において、航続距離算出部125は、上限値(1)および上限値(2)、ならびに航続距離(1)および航続距離(2)を出力する。表示装置72はこれらの上限値および航続距離を表示する。
 実施の形態2によれば、実施の形態1と同様の効果を得ることができる。さらに実施の形態2によれば、航続距離が表示装置に表示される。これにより、たとえば以下に記載される効果を得ることができる。
 実施の形態2によれば、SOCの上限値が上昇した後の航続距離が表示装置に表示される。これにより、航続距離を延ばすための制御が実行されたことをユーザ等が確認できる。
 さらに、実施の形態2によれば、SOCの制御範囲の上限値が上昇した前の航続距離と、その上限値が上昇した後の航続距離の両方が表示装置に表示される。たとえばユーザがバッテリの劣化に伴う航続距離の低下を懸念する場合において、航続距離の情報をユーザに提供することができる。
 [車両の他の構成例]
 実施の形態1および2では、駆動力を発生させる駆動源としてモータのみを備える車両を示した。しかしながら本発明は、蓄電装置と、その蓄電装置に蓄えられた電力により駆動力を発生させる電動機とを備える車両に適用可能である。したがって、たとえば内燃機関と電動機とを駆動源として備えるハイブリッド車両に本発明を適用できる。
 図19は、本発明の実施の形態による車両の一例であるハイブリッド車両の構成を示した図である。図19および図1を参照して、車両1Bは、コンバータ(CONV)14と、インバータ18と、MG24と、動力分割装置26と、エンジン28とをさらに備える点において、車両1と異なる。
 エンジン28は、たとえばガソリンなどの燃料を燃焼させることによって動力を発生させる。コンバータ14は、MG-ECU30から受ける制御信号PWCに基づいて、正極線13Pおよび負極線13N間の直流電圧と、正極線15Pおよび負極線15N間の直流電圧とを相互に変換する。
 インバータ18はインバータ16と同様の構成を有し、たとえば三相ブリッジ回路によって構成される。MG24は、交流回転電機であり、たとえば永久磁石が埋設されたロータを有する三相交流同期電動機によって構成される。インバータ18は、MG-ECU30から受ける制御信号PWI2に基づいてMG24を駆動する。
 MG24の駆動軸は、動力分割装置26に連結される。動力分割装置26は、サンギヤ、ピニオンギヤ、プラネタリキャリヤおよびリングギヤによって構成される遊星歯車機構を備える。MG24の回転軸、エンジン28のクランクシャフト、および駆動輪22に連結される駆動軸が動力分割装置26に接続される。動力分割装置26は、エンジン28から出力される動力をMG24および駆動輪22に分配する。このためエンジン28が車両1Bを駆動することができる。
 図19に示した構成によれば、車両1Bの外部に設けられた電源60によってバッテリ10を充電することができる。さらに、MG20の駆動力によって、車両1Bはエンジン28が停止した状態で走行可能である。したがって、図41に示した構成を有する車両1Bにも本発明を適用できる。なお車両1Bは、充電ECU48に代えて、充電ECU48Aを備えてもよい。
 図19は、動力分割装置26によりエンジン28の動力を駆動輪22とMG20とに伝達可能なシリーズ/パラレル型のハイブリッド車両を示す。本発明は、その他の形式のハイブリッド自動車にも適用可能である。一例を示すと、たとえば、MG24を駆動するためにのみエンジン28を用い、MG20でのみ車両の駆動力を発生する、いわゆるシリーズ型のハイブリッド車両に本発明を適用可能である。
 さらに本発明は、バッテリ10だけでなく燃料電池を直流電源として備える燃料電池自動車にも適用できる。
 本発明の実施の形態では、電動機に電力を供給するための蓄電装置としてリチウムイオン電池が適用される。しかしながら、本発明は、リチウムイオン電池を有する車両にのみ適用可能なように限定されるものではない。高SOC状態で保存されることによって劣化が進む可能性を有する蓄電装置、および、その蓄電装置により駆動力を発生させる電動機を車両が備えるのであれば、本発明をその車両に適用することができる。
 また、充電モードの切換えが充電ECUによって自動的に行なわれてもよい。たとえば、充電モードが通常モードに設定され、かつ、走行年数が所定年数に達するまでに走行距離が基準値を超えた場合に、充電ECUが充電モードを通常モードからロングライフモードに切換えてもよい。充電ECUが充電モードを切換えるための条件は特に限定されない。
 さらに、本実施の形態では、充電ECUは、通常モードおよびロングライフモードとの間で充電モードを切替え可能に構成される。しかしながら本発明に係る車両は、充電モードとしてロングライフモードのみを有していてもよい。この場合にも、充電ECUは、バッテリ10の劣化に関する所定の条件が成立するときにSOCの制御範囲の上限値を上昇させる。したがって航続距離の低下を抑制する(目標距離以上の航続距離を確保する)ことが可能になるとともに、バッテリの10の劣化を抑制することができる。
 充電モードがロングライフモードのみである場合にも、上限値が所定値を下回るように上限値の変化量を設定することができる。その所定値は、たとえばバッテリの過充電を考慮して定められる。この場合には、バッテリの充電時にSOCが上限値に達するものの、その上限値は所定値を超えない。したがってバッテリが過充電状態となることを防止することできる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,1A,1B 車両、10 バッテリ、11 セル、12 システムメインリレー、13N,15N 負極線、13P,15P 正極線、14 コンバータ、16,18 インバータ、20,24 モータジェネレータ、22 駆動輪、26 動力分割装置、28 エンジン、42 充電インレット、43 センサ、44 充電器、46 リレー、48,48A 充電ECU、49 スイッチ、50 電流センサ、54 監視ユニット、56(1)~56(n) センサ群、58 アナログ-デジタル変換器、60 電源、62 コネクタ、70 エアコン、72 表示装置、101 SOC推定部、111 制御範囲設定部、112 判定部、113 信号生成部、124 記憶部、125 航続距離算出部、BB(1)~BB(n) 電池ブロック。

Claims (18)

  1.  車両であって、
     再充電可能に構成された蓄電装置(10)と、
     前記蓄電装置(10)に蓄えられた電力を用いることによって前記車両の駆動力を発生させるように構成された電動機(20)と、
     前記車両の外部の電源(60)から出力された電力を、前記蓄電装置(10)に供給するように構成された充電機構(44)と、
     前記蓄電装置(10)が充電されるときの前記蓄電装置(10)の充電状態を制御するように構成された制御装置(48,48A)とを備え、
     前記制御装置(48,48A)は、
     前記充電状態を示す指標値を算出するように構成された状態推定部(101)と、
     前記蓄電装置(10)の劣化に関する所定の条件が成立したときに、前記指標値の上限値を上昇させるように構成された設定部(111)とを含む、車両。
  2.  前記設定部(111)は、前記上限値が所定値を下回るように、前記上限値の変化量を設定する、請求の範囲第1項に記載の車両。
  3.  前記設定部(111)は、前記所定値が前記上限値として設定された第1のモードと、前記上限値を調整可能な第2のモードとを切替可能であり、かつ、前記第2のモードにおいて前記変化量を設定する、請求の範囲第2項に記載の車両。
  4.  前記設定部(111)は、前記第2のモードにおいて、前記車両の走行可能距離が目標距離以上となり、かつ、前記上限値が前記所定値を下回るように、前記変化量を設定する、請求の範囲第3項に記載の車両。
  5.  前記車両は、
     手動操作によって、前記蓄電装置(10)の使用期間を延ばすための指令の発生と、前記指令の発生の停止とを切換えるように構成された指令発生部(49)をさらに備え、
     前記設定部(111)は、前記指令発生部(49)が前記指令を発生させた場合には、前記第1および第2のモードの中から前記第2のモードを選択する一方で、前記指令発生部(49)が前記指令の発生を停止した場合には、前記第1および第2のモードの中から前記第1のモードを選択する、請求の範囲第4項に記載の車両。
  6.  前記所定の条件は、前記車両の使用期間に基づいて予め定められた条件である、請求の範囲第1項に記載の車両。
  7.  前記所定の条件は、前記車両の走行距離に基づいて予め定められた条件である、請求の範囲第1項に記載の車両。
  8.  前記制御装置(48A)は、
     前記設定部(111)によって設定された前記上限値に基づいて、前記車両の走行可能距離を推定するように構成された距離算出部(125)をさらに含み、
     前記車両は、
     前記距離算出部(125)によって推定された前記走行可能距離を表示可能に構成された表示装置(72)をさらに備える、請求の範囲第1項に記載の車両。
  9.  前記走行可能距離は、
     前記上限値が変更される前に前記車両が走行可能な第1の走行可能距離と、
     前記上限値が変更された後に前記車両が走行可能な第2の走行可能距離とを含み、
     前記距離算出部(125)は、前記第1および第2の走行可能距離を推定し、
     前記表示装置(72)は、前記距離算出部(125)によって推定された前記第1および第2の走行可能距離を表示可能に構成される、請求の範囲第8項に記載の車両。
  10.  車両の制御方法であって、前記車両は、
     再充電可能に構成された蓄電装置(10)と、
     前記蓄電装置(10)に蓄えられた電力を用いることによって前記車両の駆動力を発生させるように構成された電動機(20)と、
     前記車両の外部の電源(60)から出力された電力を、前記蓄電装置(10)に供給するように構成された充電機構(44)と、
     前記蓄電装置(10)が充電されるときの前記蓄電装置(10)の充電状態を制御するように構成された制御装置(48,48A)とを備え、
     前記制御方法は、
     前記充電状態を示す指標値を算出するステップ(S6)と、
     前記蓄電装置(10)の劣化に関する所定の条件が成立したときに、前記指標値の上限値を上昇させるステップ(S102,S102A)とを備える、車両の制御方法。
  11.  前記上限値を上昇させるステップ(S102,S102A)は、前記上限値が所定値を下回るように、前記上限値の変化量を設定する、請求の範囲第10項に記載の車両の制御方法。
  12.  前記所定値が前記上限値として設定された第1のモードと、前記上限値を調整可能な第2のモードとのいずれか一方を選択するステップ(S3,S4)をさらに備え、
     前記上限値を上昇させるステップ(S102,S102A)は、前記第2のモードが選択されたときに前記変化量を設定する、請求の範囲第11項に記載の車両の制御方法。
  13.  前記上限値を上昇させるステップ(S102,S102A)は、前記第2のモードにおいて、前記車両の走行可能距離が目標距離以上となり、かつ、前記上限値が前記所定値を下回るように、前記変化量を設定する、請求の範囲第12項に記載の車両の制御方法。
  14.  前記車両は、
     手動操作によって、前記蓄電装置(10)の使用期間を延ばすための指令の発生と、前記指令の発生の停止とを切換えるように構成された指令発生部(49)をさらに備え、
     前記選択するステップ(S3,S4)は、前記指令発生部(49)が前記指令を発生させた場合には、前記第1および第2のモードの中から前記第2のモードを選択する一方で、前記指令発生部(49)が前記指令の発生を停止した場合には、前記第1および第2のモードの中から前記第1のモードを選択する、請求の範囲第13項に記載の車両の制御方法。
  15.  前記所定の条件は、前記車両の使用期間に基づいて予め定められた条件である、請求の範囲第10項に記載の車両の制御方法。
  16.  前記所定の条件は、前記車両の走行距離に基づいて予め定められた条件である、請求の範囲第10項に記載の車両の制御方法。
  17.  前記車両は、表示装置(72)をさらに備え、
     前記制御方法は、
     前記上限値に基づいて、前記車両の走行可能距離を推定するステップ(S112)と、
     前記表示装置(72)に前記走行可能距離が表示されるように、前記走行可能距離を前記表示装置(72)に出力するステップ(S113)とをさらに備える、請求の範囲第10項に記載の車両の制御方法。
  18.  前記走行可能距離は、
     前記上限値が変更される前に前記車両が走行可能な第1の走行可能距離と、
     前記上限値が変更された後に前記車両が走行可能な第2の走行可能距離とを含み、
     前記推定するステップ(S112)は、前記第1および第2の走行可能距離を算出する、請求の範囲第17項に記載の車両の制御方法。
PCT/JP2009/069471 2009-11-17 2009-11-17 車両および車両の制御方法 WO2011061810A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/509,933 US8798833B2 (en) 2009-11-17 2009-11-17 Vehicle and method for controlling vehicle
PCT/JP2009/069471 WO2011061810A1 (ja) 2009-11-17 2009-11-17 車両および車両の制御方法
CN200980162493.6A CN102648105B (zh) 2009-11-17 2009-11-17 车辆及车辆的控制方法
EP09851432.6A EP2502775B1 (en) 2009-11-17 2009-11-17 Vehicle and method for controlling vehicle
JP2011541745A JP5370492B2 (ja) 2009-11-17 2009-11-17 車両および車両の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/069471 WO2011061810A1 (ja) 2009-11-17 2009-11-17 車両および車両の制御方法

Publications (1)

Publication Number Publication Date
WO2011061810A1 true WO2011061810A1 (ja) 2011-05-26

Family

ID=44059312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069471 WO2011061810A1 (ja) 2009-11-17 2009-11-17 車両および車両の制御方法

Country Status (5)

Country Link
US (1) US8798833B2 (ja)
EP (1) EP2502775B1 (ja)
JP (1) JP5370492B2 (ja)
CN (1) CN102648105B (ja)
WO (1) WO2011061810A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9233613B2 (en) 2011-06-07 2016-01-12 Toyota Jidosha Kabushiki Kaisha Electrically powered vehicle and method for controlling electrically powered vehicle
CN111071050A (zh) * 2018-10-19 2020-04-28 丰田自动车株式会社 显示装置
WO2020129438A1 (ja) * 2018-12-19 2020-06-25 株式会社日立インダストリアルプロダクツ 無停電電源装置
CN111907373A (zh) * 2020-06-17 2020-11-10 汉腾汽车有限公司 一种电动汽车充电电流动态调节的充电方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172686A1 (ja) * 2011-06-17 2012-12-20 トヨタ自動車株式会社 電動車両および電動車両の制御方法
EP3048450B1 (en) 2015-01-22 2021-03-10 Volvo Car Corporation System and method for determining battery usage limits
DE102015224067A1 (de) * 2015-12-02 2017-06-08 Borgward Trademark Holdings Gmbh Batteriemanagementsystem, Fahrzeug damit und Verfahren zur Batterierelais-Steuerung
US10899247B2 (en) * 2016-06-08 2021-01-26 Ford Global Technologies, Llc System and method for online vehicle battery capacity diagnosis
JP6489102B2 (ja) * 2016-12-01 2019-03-27 トヨタ自動車株式会社 車両
JP6770885B2 (ja) * 2016-12-14 2020-10-21 株式会社ジェイテクト 車両制御装置
JP6583298B2 (ja) 2017-01-24 2019-10-02 トヨタ自動車株式会社 電動車両
JP6927328B2 (ja) * 2017-12-15 2021-09-01 日産自動車株式会社 ハイブリッド車両の制御方法、及び、制御装置
KR102345863B1 (ko) * 2017-12-15 2022-01-04 닛산 지도우샤 가부시키가이샤 하이브리드 차량의 제어 방법, 및 제어 장치
JP7010191B2 (ja) * 2018-10-23 2022-02-10 トヨタ自動車株式会社 二次電池システムおよび二次電池の充電制御方法
US11220990B2 (en) 2019-11-29 2022-01-11 Hyundai Motor Company Method and device for controlling start of vehicle
DE102020119346A1 (de) * 2020-07-22 2022-01-27 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung und Verfahren zur Erhöhung der Reichweite eines Elektrofahrzeugs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157369A (ja) * 1999-11-26 2001-06-08 Sanyo Electric Co Ltd 電池の充放電制御方法
JP2003164006A (ja) * 2001-11-21 2003-06-06 Nissan Motor Co Ltd 容量表示装置及び容量表示方法
JP2003199211A (ja) * 2001-12-25 2003-07-11 Toyota Motor Corp 自動車用のバッテリ充放電制御装置
JP2009248822A (ja) * 2008-04-08 2009-10-29 Denso Corp 蓄電量制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4089325B2 (ja) 2002-07-17 2008-05-28 アイシン・エィ・ダブリュ株式会社 ハイブリッド車両制御システム
JP2005065352A (ja) 2003-08-11 2005-03-10 Nissan Motor Co Ltd バッテリ充放電制御装置
JP4631761B2 (ja) * 2005-08-08 2011-02-16 トヨタ自動車株式会社 パワートレイン用の電池寿命予知装置及び電池寿命警告装置
JP2007099223A (ja) * 2005-10-07 2007-04-19 Toyota Motor Corp ハイブリッド自動車
CN1877473A (zh) * 2006-06-30 2006-12-13 中国南车集团株洲电力机车研究所 一种用于电动车辆的动力电池管理***
JP2008087516A (ja) * 2006-09-29 2008-04-17 Toyota Motor Corp ハイブリッド車両およびハイブリッド車両の走行制御方法
JP2008308122A (ja) * 2007-06-18 2008-12-25 Mazda Motor Corp 車両用バッテリの制御装置
DE102008009568A1 (de) * 2008-02-16 2009-08-20 Bayerische Motoren Werke Aktiengesellschaft Energieversorgungseinrichtung für ein Hybridfahrzeug und Verfahren zum Betrieb einer elektrischen Hochvolt-Energiespeichereinrichtung
JP2010125868A (ja) * 2008-11-25 2010-06-10 Denso Corp 充放電計画装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001157369A (ja) * 1999-11-26 2001-06-08 Sanyo Electric Co Ltd 電池の充放電制御方法
JP2003164006A (ja) * 2001-11-21 2003-06-06 Nissan Motor Co Ltd 容量表示装置及び容量表示方法
JP2003199211A (ja) * 2001-12-25 2003-07-11 Toyota Motor Corp 自動車用のバッテリ充放電制御装置
JP2009248822A (ja) * 2008-04-08 2009-10-29 Denso Corp 蓄電量制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9233613B2 (en) 2011-06-07 2016-01-12 Toyota Jidosha Kabushiki Kaisha Electrically powered vehicle and method for controlling electrically powered vehicle
EP2719572A4 (en) * 2011-06-07 2016-03-02 Toyota Motor Co Ltd ELECTRIC VEHICLE AND METHOD FOR CONTROLLING AN ELECTRIC VEHICLE
CN111071050A (zh) * 2018-10-19 2020-04-28 丰田自动车株式会社 显示装置
WO2020129438A1 (ja) * 2018-12-19 2020-06-25 株式会社日立インダストリアルプロダクツ 無停電電源装置
CN111907373A (zh) * 2020-06-17 2020-11-10 汉腾汽车有限公司 一种电动汽车充电电流动态调节的充电方法

Also Published As

Publication number Publication date
EP2502775A4 (en) 2017-08-23
US8798833B2 (en) 2014-08-05
EP2502775B1 (en) 2021-05-12
US20120283903A1 (en) 2012-11-08
CN102648105B (zh) 2014-10-29
CN102648105A (zh) 2012-08-22
EP2502775A1 (en) 2012-09-26
JP5370492B2 (ja) 2013-12-18
JPWO2011061810A1 (ja) 2013-04-04

Similar Documents

Publication Publication Date Title
JP5370492B2 (ja) 車両および車両の制御方法
JP5482798B2 (ja) 車両および車両の制御方法
JP5310865B2 (ja) 車両および車両の制御方法
JP4544273B2 (ja) 車両用電源装置および車両用電源装置における蓄電装置の充電状態推定方法
JP5626465B2 (ja) 電動車両および電動車両の制御方法
JP5967125B2 (ja) ハイブリッド車両およびその制御方法
KR101761539B1 (ko) 하이브리드 차량
EP3245096A1 (en) Method and arrangement for determining a value of the state of energy of a battery in a vehicle
EP3135521B1 (en) Battery system and a control method therefor
JP2010280250A (ja) 動力発生源制御装置
US20160311304A1 (en) Vehicle
US20120187899A1 (en) Power supply system, vehicle provided with same, and control method of power supply system
JP2011072067A (ja) 車両の電源システムおよびそれを備える電動車両
JP2013072862A (ja) 車両および車両用制御方法
JP5741189B2 (ja) 車両の充電制御装置および充電制御方法
CN111071098A (zh) 显示装置及具备该显示装置的车辆
JP2021083187A (ja) 電動車両

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980162493.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851432

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011541745

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009851432

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13509933

Country of ref document: US