WO2011050507A1 - 氧化还原液流电池和使电池长时间持续运行的方法 - Google Patents

氧化还原液流电池和使电池长时间持续运行的方法 Download PDF

Info

Publication number
WO2011050507A1
WO2011050507A1 PCT/CN2009/001434 CN2009001434W WO2011050507A1 WO 2011050507 A1 WO2011050507 A1 WO 2011050507A1 CN 2009001434 W CN2009001434 W CN 2009001434W WO 2011050507 A1 WO2011050507 A1 WO 2011050507A1
Authority
WO
WIPO (PCT)
Prior art keywords
redox flow
flow battery
electrolyte reservoir
pipe
reservoir
Prior art date
Application number
PCT/CN2009/001434
Other languages
English (en)
French (fr)
Inventor
牟镠锋
黄绵延
克拉森·安迪
哈柏·马修·埃尔伯特·麦克利南
Original Assignee
北京普能世纪科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京普能世纪科技有限公司 filed Critical 北京普能世纪科技有限公司
Priority to EP09833908.8A priority Critical patent/EP2339682A4/en
Priority to MX2012005017A priority patent/MX2012005017A/es
Priority to JP2011537821A priority patent/JP2012502445A/ja
Priority to CA2779800A priority patent/CA2779800A1/en
Priority to US12/810,950 priority patent/US10608274B2/en
Priority to BR112012010000A priority patent/BR112012010000A2/pt
Priority to RU2012121261/07A priority patent/RU2012121261A/ru
Publication of WO2011050507A1 publication Critical patent/WO2011050507A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a redox flow battery, and more particularly to a redox flow battery capable of long-term continuous operation and stabilization.
  • the present invention also relates to a method of continuously operating a redox flow battery for a long period of time.
  • Vanadium Redox Battery is a redox renewable fuel cell energy storage system based on metal vanadium.
  • the vanadium battery energy is stored chemically in vanadium ions of different valence states.
  • the electrolysis is carried out by an external pump into the battery stack, and under the action of the force, it is circulated in the closed circuit of different storage tanks and half-cells, and the proton exchange membrane is used as the battery pack.
  • the separator the electrolyte solution flows in parallel through the surface of the electrode and electrochemically reacts, collecting and conducting current through the two-electrode plate, thereby converting the chemical energy stored in the solution into electrical energy.
  • the batch liquid adjustment method is performed in several (for example, 30) charge and discharge cycles. After that, the positive electrode or the negative electrode electrolyte with the liquid level raised is pumped to the negative electrode or the positive electrode electrolyte with the liquid level lowered, and the initial liquid level difference between the positive electrode and the negative electrode electrolyte is set by the overflow method and one of the liquids is set.
  • the electrolyte which is increased when the surface is raised can be returned to the liquid electrolyte which is lowered by the gravity by means of the liquid level difference through the pipe connected between the positive electrode and the negative electrode electrolyte storage tank.
  • the battery can be continuously operated for a long period of time.
  • a series of studies have unexpectedly found that this can be achieved by keeping the positive electrolyte reservoir and the negative electrolyte reservoir in fluid communication. Accordingly, it is an object of the present invention to provide a redox flow battery comprising a positive electrolyte reservoir and a negative electrolyte reservoir, wherein the positive electrolyte reservoir and the negative electrolyte reservoir are in fluid communication through the conduit,
  • the pipe for liquid communication has an aspect ratio of not less than about 10.
  • Another object of the present invention is to provide a method for continuously operating a redox flow battery comprising a positive electrolyte reservoir and a negative electrolyte reservoir, characterized in that the method comprises The positive electrode electrolyte reservoir and the negative electrolyte reservoir are maintained in fluid communication through a conduit, wherein the conduit for liquid communication has an aspect ratio of not less than about 10.
  • the cumbersome procedure of mixing the positive and negative electrolytes to the initial state after a period of operation can be omitted, and no additional electrical energy and/or equipment is required. Newly dispensed mixed electrolyte.
  • self-discharge between the positive electrode and the negative electrode can be effectively reduced or prevented by selecting an appropriate aspect ratio.
  • the liquid level of the positive and negative electrode electrolytes can be kept almost the same for a long period of time, so that the battery capacity during operation is kept stable for a long time, and the battery reliability is high.
  • the production cost can be significantly reduced, thereby significantly increasing the economic efficiency of the product.
  • FIG. 1 shows a positive electrode electrolyte storage in a redox flow battery according to the present invention.
  • Fig. 2 shows another way of connecting the positive electrode electrolyte reservoir and the negative electrode electrolyte reservoir in the redox flow battery according to the present invention.
  • Fig. 3 shows still another mode of communication of the positive electrode electrolyte reservoir and the negative electrode electrolyte reservoir in the redox flow battery according to the present invention.
  • Figure 4 shows the construction of a conventional all-vanadium redox flow battery.
  • Figure 5 shows the basic construction of an all-vanadium redox flow battery with a fluid communication conduit in accordance with the present invention.
  • the "length to diameter ratio” is the ratio of the length to the inner diameter of the pipe.
  • the numerical ranges recited herein all include endpoint values. Approximately “word indicates that the index value can float within a range of ⁇ 5%. “Approximate value” means that the index value can float within a range of ⁇ 5%.
  • a redox flow is provided Battery, including positive
  • the aspect ratio of the track is not less than about 10.
  • the positive electrolyte reservoir and the negative electrolyte reservoir are in fluid communication through the conduit below the liquid level of each reservoir.
  • liquid communication may be maintained through the conduit at the bottom of the respective reservoir or below the liquid level.
  • 1 to 3 exemplarily show three kinds of communication modes in which the positive electrode electrolyte storage tank 2 and the negative electrode electrolyte storage tank 3 are communicated through the pipes 51, 52, and 53, respectively.
  • the connecting pipe may be horizontal or inclined, and may be respectively connected at the bottom of the positive electrode electrolyte storage tank and the negative electrode electrolyte storage tank, or may be respectively stored in the positive electrode electrolyte.
  • the connection method of the pipeline is not particularly limited, but can be determined according to specific conditions, such as equipment size, plant size, and the like.
  • the conduit for liquid communication has an aspect ratio of from about 20 to about 1000, preferably from about 40 to about 600, more preferably from about 60 to about 400, and most preferably from about 80 to about 200, such as 90.
  • the presence of the pipe allows the positive and negative electrolyte levels to remain substantially uniform over time (connector principle), and suitable
  • the aspect ratio makes it possible to unexpectedly and effectively reduce or prevent self-discharge between the positive electrode and the negative electrode.
  • the ion concentration on one side is slightly larger after several charge and discharge cycles.
  • the vanadium ions in the positive and negative electrolytes will rapidly cross each other through the balance tube, causing the battery to be short-circuited, which will not only significantly decrease.
  • the current efficiency of the battery will continue to reduce the charge and discharge capacity of the battery.
  • the pipe for liquid communication can be made of any material resistant to electrolyte corrosion, preferably made of a polymer material resistant to electrolyte corrosion, for example Selected from Polyvinyl chloride, polypropylene, polyethylene, polytetrafluoroethylene, polyvinylidene fluoride, chlorinated polyethylene, chlorinated polypropylene, polyvinylidene fluoride, polyester, polycarbonate, polyalcohol, polysulfone, poly Ether sulfone, polyether, polyamide, polyimide, polyphenylene sulfide, polyether ketone, polyetheretherketone, poly(phthalazinone polyether ketone), polybenzimidazole, polystyrene, polyisobutylene, polypropylene Made of at least one material in the nitrile.
  • a polymer material resistant to electrolyte corrosion for example Selected from Polyvinyl chloride, polypropylene, polyethylene, polytetrafluoroethylene, polyvinylid
  • the manner of connecting the conduit for liquid communication to the positive and negative electrolyte reservoirs is also not particularly limited as long as it can be firmly connected and the electrolyte does not leak.
  • the conduit for liquid communication may be coupled to the electrolyte reservoir by at least one selected from the group consisting of flange attachment, welding, and gluing.
  • the conduit for liquid communication and the electrolyte reservoir may also be in communication by integral molding.
  • the shape and existence state of the pipe for liquid communication are also not particularly limited as long as the object of the present invention can be achieved.
  • the pipe for liquid communication may be a long straight pipe independently existing between the positive and negative electrolyte storage tanks, or may include a plurality of curved passages, and may also be coiled on the positive and negative electrolyte storage tanks.
  • a valve for liquid communication may be fitted with a valve to open or close as desired.
  • the redox flow battery can be any redox flow battery or other type of flow battery using a single metal solution as an electrolyte, such as vanadium (V), (Cr) or ( Co) is a battery, a bromine-bromine battery, a sodium polysulfide-bromine battery, and an iron-chromium battery, and is preferably an all-vanadium redox flow battery.
  • V vanadium
  • Cr chloride
  • Co iron-chromium battery
  • a method of continuously operating a redox flow battery comprising a positive electrolyte reservoir and a negative electrolyte reservoir, characterized in that the method includes maintaining the cathode electrolyte reservoir and the anode electrolyte reservoir in fluid communication through a conduit, wherein the conduit for liquid communication has an aspect ratio of not less than about 10.
  • the method includes causing the positive electrode electrolyte The reservoir and the negative electrolyte reservoir are in fluid communication through the conduit below the liquid level of each reservoir. For example, liquid communication may be maintained through the conduit at the bottom of the respective reservoir or below the liquid level.
  • the connecting pipe may be horizontal or inclined, and may be respectively connected at the bottom of the positive electrode electrolyte storage tank and the negative electrode electrolyte storage tank, or may be respectively stored in the positive electrode electrolyte.
  • the groove and the side of the negative electrode electrolyte storage tank are connected, and the bottom of the positive electrode electrolyte storage tank and the negative electrode electrolyte storage tank may be connected to the bottom of the other one, as long as the positive electrode electrolyte storage tank and the negative electrode electrolysis are ensured.
  • the liquid storage tank can be kept in fluid communication. Therefore, the connection method of the pipeline is not particularly limited, but can be determined according to specific conditions, such as equipment size, plant size, and the like.
  • the method comprises using a conduit having an aspect ratio of from about 20 to about 1000, preferably from about 40 to about 600, more preferably from about 60 to about 400, and most preferably from about 80 to about 200.
  • the aspect ratio is, for example, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190 or its vicinity.
  • the pipe for liquid communication may be made of any material capable of resisting electrolyte corrosion.
  • a polymer material resistant to electrolyte corrosion for example selected from the group consisting of polyvinyl chloride, polypropylene, polyethylene, polytetrafluoroethylene, polyvinylidene fluoride, chlorinated polyethylene, chlorinated polypropylene , polyvinylidene fluoride, polyester, polycarbonate, polyalcohol, polysulfone, polyethersulfone, polyether, polyamide, polyimide, polyphenylene sulfide, polyetherketone, polyetheretherketone, miscellaneous Made of at least one of naphthol polyether ketone, polybenzimidazole, polystyrene, polyisobutylene, and polyacrylonitrile.
  • a polymer material resistant to electrolyte corrosion for example selected from the group consisting of polyvinyl chloride, polypropylene, polyethylene, polytetrafluoroethylene, polyvinylidene fluoride, chlorinated polyethylene, chlorinated polypropylene
  • the pipeline for liquid communication there is no connection between the pipeline for liquid communication and the positive and negative electrolyte reservoirs.
  • the pipe for liquid communication can be connected to the electrolyte reservoir by at least one selected from the group consisting of flange connection, welding, and gluing.
  • the The pipe for liquid communication and the electrolyte reservoir may also be connected by integral molding.
  • the shape and existence state of the pipe for liquid communication are also not specifically limited, only It is sufficient to be able to achieve the object of the present invention.
  • the pipe for liquid communication may be a long straight pipe that exists independently between the positive and negative electrolyte reservoirs, or may include a plurality of curves, and may also be coiled on the positive and negative electrolyte reservoirs.
  • a valve can be installed on the conduit for liquid communication to open or close as needed.
  • the redox flow battery can be any redox flow battery or other type of flow battery using a single metal solution as an electrolyte, such as vanadium (V), (Cr) or ( Co) is a battery, a zinc-bromine battery, a sodium polysulfide-bromine battery, and an iron-chromium battery, and is preferably an all-vanadium redox flow battery.
  • V vanadium
  • Cr Cr
  • Co iron-chromium battery
  • FIG. 4 shows the construction of a conventional all-vanadium (V) redox flow battery, as follows:
  • the stack consists of 5 single cells, and the stack 1 is tested without end leaks;
  • the reaction area of the single cell is 300cm 2 ;
  • the electrolyte V ion concentration is 1.5 M (ie 1.5 mol/L);
  • the electrolyte is pressed into the stack 1 through the external pump 4;
  • Battery charge and discharge ⁇ H is constant current 70mA / cm 2 charge and discharge, charge and discharge cutoff voltage are 1.6V and 1.1V, respectively, a charge and discharge cycle time of 2 hours;
  • Figure 5 shows the basic construction of an all-vanadium redox flow battery with a liquid communication conduit according to the present invention, which differs from the conventional all-vanadium (V) redox flow battery shown in Figure 4 only in the positive electrolysis
  • the liquid storage tank 2 and the negative electrode electrolyte storage tank 3 are in fluid communication through the pipe 5.
  • Example 1 The all-vanadium redox flow battery shown in Fig. 5 was used, in which the length of the pipe 5 was 225 mm, the inner diameter was 15 mm, and the aspect ratio was 15.
  • Embodiment 2 The all-vanadium redox flow battery shown in Fig. 5 is used, wherein the length of the pipe 5 is
  • Example 3 The all-vanadium redox flow battery shown in Fig. 5 was used, wherein the pipe 5 had a length of 760 mm, an inner diameter of 10 mm, and an aspect ratio of 76.
  • Example 4 The all-vanadium redox flow battery shown in Fig. 5 was used, wherein the pipe 5 had a length of 498 mm, an inner diameter of 6 mm, and an aspect ratio of 83.
  • Example 5 The all-vanadium redox flow battery shown in Fig. 5 was used, wherein the pipe 5 had a length of 500 mm, an inner diameter of 4 mm, and an aspect ratio of 125.
  • Example 6 The all-vanadium redox flow battery shown in Fig.
  • Embodiment 7 adopts the all-vanadium redox flow battery shown in FIG. 5, wherein the length of the pipe 5 is 1280mm, inner diameter is 4mm, length to diameter ratio is 320.
  • Example 8 The all-vanadium redox flow battery shown in Fig. 5 was used, wherein the pipe 5 had a length of 1600 mm, an inner diameter of 4 mm, and an aspect ratio of 400.
  • Example 9 The all-vanadium redox flow battery shown in Fig. 5 was used, wherein the pipe 5 had a length of 2320 mm, an inner diameter of 4 mm, and an aspect ratio of 580.
  • Example 10 The all-vanadium redox flow battery shown in Fig. 5 was used, wherein the pipe 5 had a length of 4,800 mm, an inner diameter of 6 mm, and an aspect ratio of 800.
  • Example 11 The all-vanadium redox flow battery shown in Fig. 5 was used, wherein the pipe 5 had a length of 7,200 mm, an inner diameter of 6 mm, and an aspect ratio of 1,200.
  • Comparative Example 1 The all-vanadium redox flow battery shown in Fig. 4 was used, that is, there was no pipe for liquid communication between the positive and negative liquid storage tanks. Comparative Example 2 The all-vanadium redox flow battery shown in Fig. 5 was used, wherein the pipe 5 had a length of 120 mm, an inner diameter of 15 mm, and an aspect ratio of 8.
  • the test uses the ⁇ -XCF microcomputer battery cycle charge and discharge tester (Jiangsu Jinfan Power Technology has 1 ⁇ Division) to test the current efficiency of the stack; the scale is used to measure the liquid level difference between the positive and negative liquid storage tanks; T 8704.5-1994 uses potential The change of vanadium ion concentration in the positive and negative liquid storage tanks was determined by titration. The test results are shown in Table 1.
  • the redox flow battery according to the present invention passes through 100 After a charge and discharge cycle, 1.
  • the current efficiency of the battery is maintained above 75%, and within the preferred aspect ratio range, the current efficiency is not between the conventional redox flow battery (ie, the positive and negative liquid storage tanks).
  • the drop is less than 5 percentage points;
  • the liquid level of the positive and negative storage tanks is basically level, the liquid level difference is no more than 4 cm;
  • the vanadium ion in the positive and negative liquid storage tank The difference in concentration is within 0.45 M because an ion balance zone is formed in the conduit to facilitate stabilization of the ion concentration in the positive and negative reservoirs.
  • positive electrolyte reservoir may also be referred to as “positive storage tank (tank)”
  • negative electrolyte reservoir may also be referred to as “negative “Liquid tank (tank)”
  • Pipe for liquid communication can also be called “balance tube”, these terms have the same meaning when they represent parts with the same function and can be used interchangeably.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Cell Separators (AREA)

Description

氧化还原液流电池和使电池长时间持续运行的方法
技术领域 本发明涉及一种氧化还原液流电池,更具体而言, 涉及一种 能够长期持续运行并且稳定的氧化还原液流电池。本发明还涉及 一种使氧化还原液流电池长时间持续运行的方法。
背景技术 由于能源危机和环保压力,传统能源正在向可再生能源转换。 随着风能和太阳能等可再生能源的大规模开发,由于他们的不稳 定性而造成对电网的冲击日益严重, 因此研究和开发价廉、 高效 率的大容量储能***来削峰填谷、以获得稳定的可再生能源是十 分必要的。在众多的储能***中,氧化还原液流电池具有电池容 量可调、 无固相反应, 不发生电极物质结构形态的改变、价格便 宜、 寿命长、 可靠性高、 操作和维修费用低等优点, 因而得到了
全钒氧化还原液流电池 (Vanadium Redox Battery, 缩写为 VRB)是一种基于金属钒元素的氧化还原可再生燃料电池储能系 统,钒电池电能以化学能的方式存储在不同价态钒离子的硫酸电 解液中,通过外接泵把电解'; ½入电池堆体内,在^ ^力作用 下,使其在不同的储槽和半电池的闭合回路中循环流动,采用质 子交换膜作为电池组的隔膜,电解质溶液平行流过电极表面并发 生电化学反应,通过双电极板收集和传导电流,从而使得储存在 溶液中的化学能转换成电能。这个可逆的反应过程使钒电池顺利 完成充电、 放电和再充电。 然而,在全钒氧化还原液流电池的充放电循环过程中,正如 其他种类的氧化还原液流电池一样,由于正负极之间的离子和水 迁移,会导致电解液逐渐失衡,从而使得电池的效率及容量降低。 为了解决该问题,需要特别繁瑣的程序在运行一段时间之后 将正负极电解液混合至初始状态。该混合程序本身非常繁瑣并且 需要额外的电能以实现混液。 针对传统混合程序, US6764789提出了两种替代方法:分批 液体调整法 ( batchwise liquid adjusting method ) 和溢流法 ( overflow method ). 分批液体调整法通过在若干个(例如 30 个)充放电循环之后将液面升高的正极或负极电解液泵抽到液面 降低的负极或正极电解液中实现,溢流法通 i½正极和负极电解 液之间设定初始液位差并在其中一方液面升高时增多的电解液 可以借助于液位差通过连接在正极和负极电解液储槽之间的管 道依靠重力流回到液面降低的电解液中。
发明内容 为了防止由于伴随全钒氧化还原液流电池充放电的水和离 子迁移而导致的电池容量降低以及为了尽可能降低传统混合程 序的混合频率从而使得电池能够长期持续运行,申请人进行了一 系列的研究,出乎意料地发现可以通过使正极电解液储槽和负极 电解液储槽保持液体连通来实现该目的。 因此,本发明的一个目的是提供一种氧化还原液流电池, 包 括正极电解液储槽和负极电解液储槽,其特征在于正极电解液储 槽和负极电解液储槽通过管道保持液体连通,其中用于液体连通 的管道的长径比不小于约 10。 本发明的另一个目的是提供一种使氧化还原液流电池长时 间持续运行的方法,所述氧化还原液流电池包括正极电解液储槽 和负极电解液储槽,其特征在于所述方法包括使得所述正极电解 液储槽和所述负极电解液储槽通过管道保持液体连通,其中用于 液体连通的所述管道的长径比不小于约 10。 根据本发明,可以省去在运行一段时间后将正负极电解液混 合至初始状态的繁瑣程序, 也不需要额外的电能和 /或设备来重 新分配混合电解液。根据本发明, 通过选择合适的长径比, 可以 有效地降低或者防止正极和负极之间的自放电。根据本发明,正 负极电解液的液位可以长时间保持几乎相同,从而使得运行过程 中的电池容量保持长时间稳定, 电池可靠性高。根据本发明, 可 以显著降低生产成本,进而显著提高产品的经济效益。根据本发 明, 可以获得电池容量和电流效率长时间保持稳定的电池***。
附图说明 图 1 示出根据本发明的氧化还原液流电池中正极电解液储
图 2 示出根据本发明的氧化还原液流电池中正极电解液储 槽和负极电解液储槽的另一种连通方式。 图 3 示出根据本发明的氧化还原液流电池中正极电解液储 槽和负极电解液储槽的又一种连通方式。 图 4示出一种传统全钒氧化还原液流电池的基 造。 图 5 示出根据本发明的一种带有液体连通管道的全钒氧化 还原液流电池的基本构造。
具体实施方式 在本发明的上下文中, 除非另有说明, 所提及的"长径比,, 均为管道的长度与内径之比。另外,本文所提及的数值范围均包 含端点值。 "约"字表示所指数值可以在 ±5%。的范围内浮动。 "近 似值"表示所指数值可以在士 5%的范围内浮动。 在本发明的第一方面,提供一种氧化还原液流电池, 包括正
Figure imgf000005_0001
道的长径比不小于约 10。 在一个优选实施方案中,所述正极电解液储槽和所述负极电 解液储槽在所述各储槽的液面以下部分通过管道保持液体连通。 例如,可以在所述各储槽的底部或液面以下的侧面通过管道保持 液体连通。 图 1〜3示例性地示出了三种连通方式,其中正极电解 液储槽 2和负极电解液储槽 3分别通过管道 51、 52和 53连通。 由图可见, 在本发明范围内, 连接管道可以是水平的, 也可以是 倾斜的,可以分别在正极电解液储槽和负极电解液储槽的底部进 行连接,也可以分别在正极电解液储槽和负极电解液储槽的侧面 进行连接,还可以在正极电解液储槽和负极电解液储槽中任一个 的底部以及另一个的侧面进行连接,只要能够确保正极电解液储 槽和负极电解液储槽保持液体连通即可。 因此, 管道的连接方式 没有特殊限制,而是可以根据具体情况进行确定,例如设备尺寸、 厂房大小等。 在一个优选实施方案中,用于液体连通的管道的长径比为约 20〜约 1000, 优选约 40〜约 600, 更优选约 60〜约 400, 最优选约 80〜约 200, 例如 90、 100、 110、 120、 130、 140、 150、 160、 170、 180、 190或其近似值„ 所述管道的存在使得正负极电解液液位可以长时间保持基 本一致(连通器原理), 而合适的长径比使得可以出人意料地有 效降低或者防止正极和负极之间的自放电。在本发明所推荐的长 径比的情况下,当经过若干个充放电循环之后某一侧的离子浓度 稍大时, 该侧钒离子因为浓差扩散通过所述管道迁移到另一侧, 如此可以保证正负极两侧的钒离子浓 JLS^本一致,同时也不会造 成电流效率的显著降低。 相比之下, 当长径比不在本发明所推荐的范围内,例如小于 10 时, 正负极电解液中的钒离子会通过平衡管快速互窜, 造成 电池短路,这样不但会显著降低电池的电流效率,还会持续降低 电池的充放电容量。 用于液体连通的管道可以由任何能够耐电解液腐蚀的材料 制成,优选由能够耐电解液腐蚀的高分子材料制成,例如由选自 聚氯乙烯、 聚丙烯、 聚乙烯、 聚四氟乙烯、 聚偏氟乙烯, 氯化聚 乙烯、 氯化聚丙烯、 聚偏二氟乙烯、 聚酯、 聚碳酸酯、 聚醇、 聚 砜、 聚醚砜、 聚醚、 聚酰胺、 聚酰亚胺、 聚苯硫醚、 聚醚酮、 聚 醚醚酮、 杂萘联苯聚醚酮、 聚苯并咪唑、 聚苯乙烯、 聚异丁烯、 聚丙烯腈中的至少一种材料制成。 用于液体连通的管道与正、负极电解液储槽的连接方式也没 有具体限定, 只要能够牢固连接并且电解液***露即可。 例如, 所述用于液体连通的管道可以通过选自法兰连接、焊接和胶粘中 的至少一种方式与电解液储槽连接。作为替代方案,所述用于液 体连通的管道与所述电解液储槽也可以通过整体成型的方式连 通。 用于液体连通的管道的形状和存在状态也没有具体限定,只 要能够实现本发明的目的即可。例如, 所述用于液体连通的管道 可以是独立存在于正、 负电解液储槽之间的长直管道,也可以包 含多个弯道,还可以通过盘绕在正、负电解液储槽上以节省空间, 等等。 在一个优选实施方案中,用于液体连通的管道上可以安装有 阀门, 以根据需要开启或关闭。 在一个优选实施方案中,所述氧化还原液流电池可以是任何 以单一金属溶液为电解质的氧化还原液流电池或其它种类的液 流电池, 例如钒(V ) 系、 (Cr ) 系或(Co ) 系电池、 辞-溴电 池、多硫化钠-溴电池以及铁 -铬电池等,优选全钒氧化还原液 流电池。 在本发明的另一方面,提供一种使氧化还原液流电池长时间 持续运行的方法,所述氧化还原液流电池包括正极电解液储槽和 负极电解液储槽,其特征在于所述方法包括使得所述正极电解液 储槽和所述负极电解液储槽通过管道保持液体连通,其中用于液 体连通的所述管道的长径比不小于约 10。 在一个优选实施方案中,所述方法包括使得所述正极电解液 储槽和所述负极电解液储槽在所述各储槽的液面以下部分通过 管道保持液体连通。例如,可以在所述各储槽的底部或液面以下 的侧面通过管道保持液体连通。图 1~3示例性地示出了三种连通 方式,其中正极电解液储槽 2和负极电解液储槽 3分别通过管道 51、 52和 53连通。 由图可见, 在本发明范围内, 连接管道可以 是水平的,也可以是倾斜的,可以分别在正极电解液储槽和负极 电解液储槽的底部进行连接,也可以分别在正极电解液储槽和负 极电解液储槽的侧面进行连接,还可以在正极电解液储槽和负极 电解液储槽中任一个的底部以及另一个的侧面进行连接,只要能 够确保正极电解液储槽和负极电解液储槽保持液体连通即可。因 此,管道的连接方式没有特殊限制, 而是可以根据具体情况进行 确定, 例如设备尺寸、 厂房大小等。 在一个优选实施方案中, 所述方法包括使用长径比为约 20〜 约 1000、优选约 40〜约 600、 更优选约 60〜约 400、 最优选约 80~ 约 200的管道。 所述长径比例如 90、 100、 110、 120、 130、 140、 150、 160、 170、 180、 190或其近^ (值。 用于液体连通的管道可以由任何能够耐电解液腐蚀的材料 制成,优选由能够耐电解液腐蚀的高分子材料制成,例如由选自 聚氯乙烯、 聚丙烯、 聚乙烯、 聚四氟乙烯、 聚偏氟乙烯、 氯化聚 乙烯、 氯化聚丙烯、 聚偏二氟乙烯、 聚酯、 聚碳酸酯、 聚醇、 聚 砜、 聚醚砜、 聚醚、 聚酰胺、 聚酰亚胺、 聚苯硫醚、 聚醚酮、 聚 醚醚酮、 杂萘联苯聚醚酮、 聚苯并咪唑、 聚苯乙烯、 聚异丁烯、 聚丙烯腈中的至少一种材料制成。 用于液体连通的管道与正、负极电解液储槽的连接方式也没 有具体限定, 只要能够牢固连接并且电解液***露即可。 例如, 所述用于液体连通的管道可以通过选自法兰连接、焊接和胶粘中 的至少一种方式与电解液储槽连接。作为替代方案,所述用于液 体连通的管道与所述电解液储槽也可以通过整体成型的方式连 通。 用于液体连通的管道的形状和存在状态也没有具体限定,只 要能够实现本发明的目的即可。例如,所述用于液体连通的管道 可以是独立存在于正、 负电解液储槽之间的长直管道,也可以包 含多个弯道,还可以通过盘绕在正、负电解液储槽上以节省空间, 等等。 在一个优选实施方案中,可以在用于液体连通的管道上安装 阀门, 以根据需要开启或关闭。 在一个优选实施方案中,所述氧化还原液流电池可以是任何 以单一金属溶液为电解质的氧化还原液流电池或其它种类的液 流电池, 例如钒(V ) 系、 (Cr ) 系或(Co ) 系电池、 锌-溴电 池、多硫化钠-溴电池以及铁 -铬电池等,优选全钒氧化还原液 流电池。
实施例 下面以全钒氧化还原液流电池为例更加详细地说明本发明, 但本发明不限于此。 图 4示出一种传统全钒(V )氧化还原液流电池的基 造, 具体说明如下:
1. 由 5个单电池组成电堆 1, 该电堆 1经过测试无内漏;
2.单电池反应面积为 300cm2;
3.使用 Nafion 115膜;
4. 电解液 V离子浓度为 1.5 M (即 1.5mol/L );
5. 电解液通过外接泵 4压入电堆 1内;
6. 电池充放电 ^H 为恒流 70mA/cm2充放电,充放电截止电 压分别为 1.6V和 1.1V, —个充放电循环的时间为 2小时;
7. 正极电解液储槽 2和负极电解液储槽 3原始液面高度均 为 12cm。 图 5 示出根据本发明的一种带有液体连通管道的全钒氧化 还原液流电池的基本构造, 其与图 4所示传统全钒 ( V )氧化还 原液流电池的区别仅在于正极电解液储槽 2和负极电解液储槽 3 通过管道 5液体连通。
实施例 1 采用图 5所示全钒氧化还原液流电池,其中管道 5的长度为 225mm, 内径为 15mm, 长径比为 15。 实施例 2 采用图 5所示全钒氧化还原液流电池,其中管道 5的长度为
480mm , 内径为 10mm, 长径比为 48。 实施例 3 采用图 5所示全钒氧化还原液流电池,其中管道 5的长度为 760mm , 内径为 lOmm, 长径比为 76。 实施例 4 采用图 5所示全钒氧化还原液流电池,其中管道 5的长度为 498mm , 内径为 6mm, 长径比为 83。 实施例 5 采用图 5所示全钒氧化还原液流电池,其中管道 5的长度为 500mm, 内径为 4mm, 长径比为 125。 实施例 6 采用图 5所示全钒氧化还原液流电池,其中管道 5的长度为 800mm , 内径为 4mm, 长径比为 200。 实施例 7 采用图 5所示全钒氧化还原液流电池,其中管道 5的长度为 1280mm, 内径为 4mm, 长径比为 320。 实施例 8 采用图 5所示全钒氧化还原液流电池,其中管道 5的长度为 1600mm, 内径为 4mm, 长径比为 400。 实施例 9 采用图 5所示全钒氧化还原液流电池,其中管道 5的长度为 2320mm, 内径为 4mm, 长径比为 580。 实施例 10 采用图 5所示全钒氧化还原液流电池,其中管道 5的长度为 4800mm, 内径为 6mm, 长径比为 800。 实施例 11 采用图 5所示全钒氧化还原液流电池,其中管道 5的长度为 7200mm, 内径为 6mm, 长径比为 1200。
对比例 1 采用图 4所示全钒氧化还原液流电池, 即: 正负极储液槽之 间没有用于液体连通的管道。 对比例 2 采用图 5所示全钒氧化还原液流电池,其中管道 5的长度为 120 mm, 内径为 15 mm, 长径比为 8。
测试 采用 μΟ-XCF微电脑蓄电池循环充放电测试仪(江苏金帆 电源科技有 1^ 司制造)测试电堆的电流效率; 采用刻度尺测定 正负极储液槽的液面高度差; 根据 GB/T 8704.5-1994采用电位 滴定法测定正负极储液槽中钒离子浓度的变化。 测试结果如表 1所示。
Figure imgf000012_0001
由上表可知, 根据本发明的氧化还原液流电池在经过 100 个充放电循环之后, 1. 电池的电流效率保持在 75%以上, 并且 在优选的长径比范围内, 其电流效率与传统氧化还原液流电池 (即: 正负极储液槽之间没有用于液体连通的管道)相比, 下降 小于 5个百分点; 2. 正负极储槽液面基本相平, 液面相差最大 不超过 4 cm; 3. 正负极储液槽中的钒离子浓度差异在 0.45 M以 内,这是因为在所述管道中形成了离子平衡区,有利于稳定正负 极储液槽中的离子浓度。 相比之下, 在不使用用于液体连通的管道(平衡管 )的情况 下,经过 100个充放电循环之后,正负极储液槽液面高度差达到 4.80,正负极储液槽中的钒离子浓度差异达到 0.50M; 而在平衡 管的长径比不在本发明所推荐的范围内时,经过 100个充放电循 环之后, 电流效率仅为 60.6%。 此外, 经试验证实,根据本发明的氧化还原液流电池在运行 至少 2年后, 电池容量不发生衰减。
术语说明 在本说明书上下文中, "正极电解液储槽(罐),,又可称为 "正 极储液槽(罐) ", "负极电解液储槽(罐),,又可称为 "负极储液 槽(罐) ", "用于液体连通的管道"又可称为"平衡管,,, 这些术 语在表示具有相同功能的部件的情况下具有相同的含义,可以互 换使用 .
以上对本发明的氧化还原液流电池的优选实施方案进行了 详细的说明,但是本领域技术人员完全可以在本发明的精神范围 内对这些具体实施方案进行改进、 变化和 /或替代。 例如, 用于 液体连通的管道的连接位置、形状、材质以及长径比可以随电解 质的不同而不同, 等等。

Claims

权 利 要 求
1. 一种氧化还原液流电池, 包括正极电解液储槽和负极 电解液储槽,其特征在于所述正极电解液储槽和所述负极电解 液储槽通过管道保持液体连通,其中用于液体连通的所述管道 的长径比不小于约 10。
2. 根据权利要求 1的氧化还原液流电池, 其中所述正极 电解液储槽和所述负极电解液储槽在所述各储槽的液面以下 部分通过管道保持液体连通。
3. 根据权利要求 1或 2的氧化还原液流电池, 其中所述 正极电解液储槽和所述负极电解液储槽在所述各储槽的底部 或液面以下的侧面通过管道保持液体连通。
4. 根据权利要求 1〜3中任一项的氧化还原液流电池, 其 中所述管道的长径比为约 20〜约 1000, 优选约 40〜约 600, 更 优选约 60〜约 400, 最优选约 80〜约 200。
5. 根据权利要求 1〜4中任一项的氧化还原液流电池, 其 中所述管道由选自聚氯乙烯、 聚丙烯、 聚乙烯、 聚四氟乙烯、 聚偏氟乙烯, 氯化聚乙烯、氯化聚丙烯、聚偏二氟乙烯、聚酯、 聚碳酸酯、 聚醇、 聚砜、 聚醚砜、 聚醚、 聚酰胺、 聚酰亚胺、 聚苯硫醚、聚醚酮、聚醚醚酮、杂萘联苯聚醚酮、聚苯并咪峻、 聚苯乙烯、 聚异丁烯、 聚丙烯腈中的至少一种材料制成。
6. 根据权利要求 1~5中任一项的氧化还原液流电池, 其 中所述管道通过选自法兰连接、焊接和胶粘中的至少一种方式 与所述电解液储槽连接。
7. 根据权利要求 1〜5中任一项的氧化还原液流电池, 其 中所述管道与所述电解液储槽通过整体成型的方式连通。
8. 根据权利要求 1~7中任一项的氧化还原液流电池, 其 中所述管道上安装有阀门。
9. 根据权利要求 1〜8中任一项的氧化还原液流电池, 其 中所述氧化还原液流电池是全钒氧化还原液流电池。
10. 一种使氧化还原液流电池长时间持续运行的方法,所 述氧化还原液流电池包括正极电解液储槽和负极电解液储槽, 其特征在于所述方法包括使得所述正极电解液储槽和所述负 极电解液储槽通过管道保持液体连通,其中用于液体连通的所 述管道的长径比不小于约 10。
11. 根据权利要求 10的方法, 其中使得所述正极电解液 储槽和所述负极电解液储槽在所述各储槽的液面以下部分通 过管道保持液体连通。
12. 根据权利要求 10或 11的方法, 其中使得所述正极电 解液储槽和所述负极电解液储槽在所述各储槽的底部或液面 以下的侧面通过管道保持液体连通。
13. 根据权利要求 10~12中任一项的方法,其中所述管道 的长径比为约 20〜约 1000, 优选约 40〜约 600, 更优选约 60〜 约 400, 最优选约 80〜约 200。
14. 根据权利要求 10〜: 13中任一项的方法,其中所述管道 由选自聚氯乙烯、聚丙烯、聚乙烯、聚四氟乙烯、聚偏氟乙烯, 氯化聚乙烯、 氯化聚丙烯、 聚偏二氟乙烯、 聚酯、 聚碳酸酯、 聚醇、 聚砜、 聚醚砜、 聚醚、 聚酰胺、 聚酰亚胺、 聚苯硫醚、 聚醚酮、聚醚醚酮、杂萘联苯聚醚酮、聚苯并咪唑、聚苯乙烯、 聚异丁烯、 聚丙烯腈中的至少一种材料制成。
15. 根据权利要求 10 14中任一项的方法,其中通过选自 法兰连接、焊接和胶粘中的至少一种方式使所述管道与所述电 解液储槽连接。
16. 根据权利要求 10~14中任一项的方法,其中通过整体 成型的方式使所述管道与所述电解液储槽连通。
17. 根据权利要求 10〜: 16中任一项的方法,其中所述方法 还包括在所述管道上安装阀门。
18. 根据权利要求 10〜; 17中任一项的方法,其中所述氧化 还原液流电池是全钒氧化还原液流电池。
PCT/CN2009/001434 2009-10-29 2009-12-14 氧化还原液流电池和使电池长时间持续运行的方法 WO2011050507A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP09833908.8A EP2339682A4 (en) 2009-10-29 2009-12-14 REDOX FLOW BATTERY AND METHOD FOR CONTINUOUS OPERATION OF THIS BATTERY OVER A LONG TIME
MX2012005017A MX2012005017A (es) 2009-10-29 2009-12-14 Bateria de flujo redox y metodo para operar continuamente la bateria durante un largo periodo de tiempo.
JP2011537821A JP2012502445A (ja) 2009-10-29 2009-12-14 レドックスフロー電池及び長期間連続して電池を作動させる方法
CA2779800A CA2779800A1 (en) 2009-10-29 2009-12-14 Redox flow battery and method for continually operating the redox flow battery for a long time
US12/810,950 US10608274B2 (en) 2009-10-29 2009-12-14 Redox flow battery and method for operating the battery continuously in a long period of time
BR112012010000A BR112012010000A2 (pt) 2009-10-29 2009-12-14 bateria de fluxo redox e método para operar a bateria de fluxo redox continuamente por um longo período de tempo
RU2012121261/07A RU2012121261A (ru) 2009-10-29 2009-12-14 Батарея, работающая на основе окислительно-восстановительного процесса, и способ непрерывной эксплуатации такой батареи в течение длительного времени

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910210176.9A CN102055000B (zh) 2009-10-29 2009-10-29 氧化还原液流电池和使电池长时间持续运行的方法
CN200910210176.9 2009-10-29

Publications (1)

Publication Number Publication Date
WO2011050507A1 true WO2011050507A1 (zh) 2011-05-05

Family

ID=43921237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001434 WO2011050507A1 (zh) 2009-10-29 2009-12-14 氧化还原液流电池和使电池长时间持续运行的方法

Country Status (11)

Country Link
US (1) US10608274B2 (zh)
EP (1) EP2339682A4 (zh)
JP (1) JP2012502445A (zh)
KR (1) KR20120099025A (zh)
CN (1) CN102055000B (zh)
BR (1) BR112012010000A2 (zh)
CA (1) CA2779800A1 (zh)
CL (1) CL2012001114A1 (zh)
MX (1) MX2012005017A (zh)
RU (1) RU2012121261A (zh)
WO (1) WO2011050507A1 (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785023B2 (en) 2008-07-07 2014-07-22 Enervault Corparation Cascade redox flow battery systems
US7820321B2 (en) 2008-07-07 2010-10-26 Enervault Corporation Redox flow battery system for distributed energy storage
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
AT512184B1 (de) * 2012-01-23 2013-06-15 Cellstrom Gmbh System zur energieerzeugung bzw. -speicherung auf elektrochemischer basis
KR101491300B1 (ko) 2012-08-21 2015-02-10 현대중공업 주식회사 이차 전지
CN104143651A (zh) * 2013-05-09 2014-11-12 中国科学院大连化学物理研究所 一种氧化还原液流电池***
CN104143646A (zh) * 2013-05-09 2014-11-12 中国科学院大连化学物理研究所 一种液流储能电池或电堆的运行方法
CN104143650A (zh) * 2013-05-09 2014-11-12 中国科学院大连化学物理研究所 一种氧化还原液流电池及其应用
CN104143649A (zh) * 2013-05-09 2014-11-12 中国科学院大连化学物理研究所 一种液流电池用一体化电解液储罐
PT3105811T (pt) * 2014-02-12 2018-06-07 Univ Aarhus Célula de escoamento redox recarregável solar
KR101558081B1 (ko) * 2014-02-24 2015-10-06 오씨아이 주식회사 레독스 흐름 전지
US10333159B2 (en) * 2014-07-07 2019-06-25 Unienergy Technologies, Llc Charge capacity management in redox flow battery string
KR102344416B1 (ko) * 2014-11-20 2021-12-29 현대일렉트릭앤에너지시스템(주) 전해액 저장장치
WO2016099217A1 (ko) * 2014-12-18 2016-06-23 주식회사 엘지화학 플로우 배터리의 전해액 재생 모듈 및 이를 이용한 플로우 배터리의 전해액 재생 방법
US11075396B2 (en) 2015-09-02 2021-07-27 University Of Limerick Method and system for improving the energy efficiency and for reconditioning of a vanadium flow battery
WO2017203899A1 (ja) * 2016-05-25 2017-11-30 住友電気工業株式会社 レドックスフロー電池用配管、及びレドックスフロー電池用配管の製造方法、並びに配管ユニット、レドックスフロー電池
CN106229536B (zh) * 2016-08-31 2023-07-28 东方电气(成都)氢燃料电池科技有限公司 电解液平衡装置及具有其的液流电池
KR102081768B1 (ko) * 2016-10-13 2020-04-23 주식회사 엘지화학 레독스 플로우 전지용 전해액 저장부 및 이를 포함하는 바나듐 레독스 플로우 전지
US10886553B2 (en) 2016-12-19 2021-01-05 Vionx Energy Corporation Large scale flow battery system
KR102381015B1 (ko) * 2017-11-28 2022-04-01 스미토모덴키고교가부시키가이샤 레독스 플로우 전지
JP7216080B2 (ja) * 2018-04-24 2023-01-31 昭和電工株式会社 レドックスフロー電池及びその運転方法
CN108598529B (zh) * 2018-05-08 2020-06-09 湖南钒谷新能源技术有限公司 一种全钒液流电池正负极***压力平衡装置
KR102178304B1 (ko) * 2018-12-27 2020-11-13 스탠다드에너지(주) 밸런싱 유로를 사용하는 레독스 흐름전지
FR3116952B1 (fr) * 2020-11-30 2023-07-28 Kemiwatt Drainage d’empilement pour batterie rédox à flux
CN113113620B (zh) * 2021-04-16 2022-11-11 峰特(浙江)新材料有限公司 一种碱性锌-铁液流电池的制备方法
JP2023140042A (ja) * 2022-03-22 2023-10-04 株式会社東芝 電解装置および電解装置の駆動方法
KR102539928B1 (ko) * 2022-06-28 2023-06-05 스탠다드에너지(주) 이차전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204124A (ja) * 1998-01-08 1999-07-30 Sumitomo Electric Ind Ltd 電解液流通型電池
JP2001043884A (ja) * 1999-07-28 2001-02-16 Sumitomo Electric Ind Ltd レドックスフロー型2次電池およびその運転方法
US6764789B1 (en) 1999-09-27 2004-07-20 Sumitomo Electric Industries, Ltd. Redox flow battery
CN1643722A (zh) * 2002-02-14 2005-07-20 E-燃料技术有限公司 氧化还原流动蓄电池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3540934A (en) * 1967-07-11 1970-11-17 Jan Boeke Multiple cell redox battery
JPS6358771A (ja) 1986-08-28 1988-03-14 Agency Of Ind Science & Technol 電解液流通型電池の電解液タンク装置
US5725967A (en) 1995-08-15 1998-03-10 Micron Communications, Inc. Battery container and method of manufacture
GB9526577D0 (en) 1995-12-28 1996-02-28 Nat Power Plc Method for the fabrication of electrochemical cells
JPH09180745A (ja) * 1995-12-28 1997-07-11 Nippon Chem Ind Co Ltd バナジウム系電解液の製造方法
ATE232019T1 (de) 1999-07-01 2003-02-15 Squirrel Holdings Ltd Durch membran getrennter bipolarer mehrzelliger elektrochemischer reaktor
JP4830190B2 (ja) 1999-09-27 2011-12-07 住友電気工業株式会社 レドックスフロー電池
JP2002237323A (ja) 2001-02-09 2002-08-23 Sumitomo Electric Ind Ltd セルフレーム及びレドックスフロー電池
JP2003303611A (ja) * 2002-04-10 2003-10-24 Sumitomo Electric Ind Ltd レドックスフロー電池の運転方法
JP5027384B2 (ja) * 2004-11-19 2012-09-19 関西電力株式会社 レドックスフロー電池およびその運転方法
JP2007188729A (ja) * 2006-01-12 2007-07-26 Sumitomo Electric Ind Ltd バナジウムレドックスフロー電池の再生方法
JP2008164455A (ja) 2006-12-28 2008-07-17 National Institute Of Advanced Industrial & Technology 定量比分注装置及び定量比混合流体調製方法
US7740977B2 (en) * 2007-03-26 2010-06-22 Jd Holding Inc. Vanadium redox battery incorporating multiple electrolyte reservoirs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204124A (ja) * 1998-01-08 1999-07-30 Sumitomo Electric Ind Ltd 電解液流通型電池
JP2001043884A (ja) * 1999-07-28 2001-02-16 Sumitomo Electric Ind Ltd レドックスフロー型2次電池およびその運転方法
US6764789B1 (en) 1999-09-27 2004-07-20 Sumitomo Electric Industries, Ltd. Redox flow battery
CN1643722A (zh) * 2002-02-14 2005-07-20 E-燃料技术有限公司 氧化还原流动蓄电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2339682A4

Also Published As

Publication number Publication date
RU2012121261A (ru) 2013-12-10
BR112012010000A2 (pt) 2019-09-24
US10608274B2 (en) 2020-03-31
CL2012001114A1 (es) 2012-10-12
AU2009324269A1 (en) 2011-05-19
KR20120099025A (ko) 2012-09-06
CN102055000A (zh) 2011-05-11
EP2339682A4 (en) 2015-09-23
JP2012502445A (ja) 2012-01-26
CA2779800A1 (en) 2011-05-05
EP2339682A1 (en) 2011-06-29
MX2012005017A (es) 2012-06-08
CN102055000B (zh) 2015-04-22
US20110300417A1 (en) 2011-12-08

Similar Documents

Publication Publication Date Title
WO2011050507A1 (zh) 氧化还原液流电池和使电池长时间持续运行的方法
CN101593841B (zh) 一种氧化还原液流电池和氧化还原液流电池组
US20180269514A1 (en) Redox flow battery
KR102069832B1 (ko) 바나듐 레독스 플로우 전지용 전해액 저장부 및 이를 포함하는 바나듐 레독스 플로우 전지
KR101760983B1 (ko) 플로우 배터리 및 플로우 배터리의 전해액 혼합 방지 방법
CN109075368B (zh) 用于氧化还原液流电池的电解液贮存单元和包含其的钒氧化还原液流电池
JP6247778B2 (ja) キノンポリハライドフロー電池
US10673089B2 (en) Reduction-oxidation flow battery
EP3709421A1 (en) Zinc-iodine flow battery
KR101843973B1 (ko) 레독스 흐름전지 시스템
KR101878365B1 (ko) 레독스 흐름전지 시스템
CN109888351B (zh) 一种树状均匀流场液流电池及其工作方法
KR20160091154A (ko) 설폰화 개질된 폴리에테르에테르케톤 막을 포함하는 바나듐 레독스 흐름전지
CN109687007A (zh) 一种有机醌类液流电池及其组建方法
US11380928B2 (en) Sealed redox battery
US20240191031A1 (en) Method for preparing polybenzimidazole-based separator, polybenzimidazole-based separator prepared thereby, and secondary battery including the same
US11955678B2 (en) Method to improved redox flow battery performance
CN106129444A (zh) 一种纯电动船舶专用全钒液流电池
US20200067121A1 (en) A reduction-oxidation flow battery
CN115732732A (zh) 一种钴钨酸-卤素液流电池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 586341

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2011537821

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2009833908

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009324269

Country of ref document: AU

Ref document number: 2009833908

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833908

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12810950

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127010750

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2779800

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 0155812

Country of ref document: KE

WWE Wipo information: entry into national phase

Ref document number: 2012001114

Country of ref document: CL

Ref document number: MX/A/2012/005017

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1164/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2012121261

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012010000

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012010000

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120427