WO2011038670A1 - 回程链路上解调导频的发送及信道解调方法、***和设备 - Google Patents

回程链路上解调导频的发送及信道解调方法、***和设备 Download PDF

Info

Publication number
WO2011038670A1
WO2011038670A1 PCT/CN2010/077390 CN2010077390W WO2011038670A1 WO 2011038670 A1 WO2011038670 A1 WO 2011038670A1 CN 2010077390 W CN2010077390 W CN 2010077390W WO 2011038670 A1 WO2011038670 A1 WO 2011038670A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
resource unit
pdsch
pilot signal
demodulation pilot
Prior art date
Application number
PCT/CN2010/077390
Other languages
English (en)
French (fr)
Inventor
王立波
潘学明
肖国军
缪德山
张文健
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP10819899.5A priority Critical patent/EP2485560B1/en
Priority to US13/499,250 priority patent/US9077495B2/en
Publication of WO2011038670A1 publication Critical patent/WO2011038670A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15542Selecting at relay station its transmit and receive resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method, system and device for transmitting and demodulating a demodulation pilot on a backhaul link. Background technique
  • FIG. 1 it is a network structure of a Long Term Evolution (LTE-A) system, where a base station (eNB) is connected to a core network (CN) through a wired interface, and a relay node (RN) is connected to an eNB through a wireless interface.
  • a base station eNB
  • CN core network
  • RN relay node
  • the terminal UE is connected to the RN or eNB through a wireless interface.
  • the communication link between the RN and the eNB is called a backhaul link, and the link between the RN and the UE is called an access link.
  • R-PDCCH Relay-Physical Downlink Control Channel
  • R-PDSCH Physical Downlink Shared Channel
  • a common pilot needs to be given for demodulation by multiple RNs, and a dedicated pilot (DRS) cannot be transmitted for demodulation.
  • DRS dedicated pilot
  • the resource positions occupied by the common pilot are as shown in FIG. 2 Show.
  • DMRS Demodulation Pilot
  • the first three columns of slot 1 in Figure 2 are physical downlink control channel (PDCCH) regions, and columns 4, 5, or 4, 5, 6, or 4, 5, 6, and 7 in slot 1 are R-PDCCH region; each column of slot 2 and the unoccupied column in slot 1 are R-PDSCH regions.
  • PDCCH physical downlink control channel
  • the base station does not transmit a demodulation pilot (DMRS) in the R-PDSCH region, so that the RN cannot utilize the demodulation pilot.
  • DMRS demodulation pilot
  • the embodiment of the present invention provides a method for transmitting a demodulation pilot on a backhaul link and a base station, which are used to solve the problem that the demodulation pilot signal of the R-PDSCH in the existing LTE-A system cannot be transmitted.
  • a method for transmitting demodulation pilots on a backhaul link of a Long Term Evolution (LTE-A) system comprising:
  • the base station selects a pre-configured resource single base station for transmitting the demodulation pilot signal of the R-PDSCH in a resource area occupied by a relay-physical downlink shared channel (R-PDSCH) on the backhaul link
  • the selected resource unit transmits the demodulation pilot signal to a relay node (RN) under the base station.
  • a base station comprising:
  • a resource selection unit configured to select a pre-configured demodulation pilot signal for transmitting the R-PDSCH in a resource area occupied by a relay-physical downlink shared channel (R-PDSCH) on a backhaul link Resource unit
  • a demodulation pilot transmitting unit configured to send, by using a resource unit selected by the resource selection unit, the demodulation pilot signal to a relay node (RN) under the base station.
  • the embodiment of the present invention further provides a channel demodulation method on a backhaul link, an LTE-A communication system, and a relay node, which are used to solve the problem that the RN cannot correctly receive the R-PDSCH in the existing LTE-A system.
  • the problem with the data is a channel demodulation method on a backhaul link, an LTE-A communication system, and a relay node, which are used to solve the problem that the RN cannot correctly receive the R-PDSCH in the existing LTE-A system. The problem with the data.
  • a channel demodulation method on a backhaul link of a Long Term Evolution (LTE-A) system comprising:
  • a relay node determines a location of a resource unit used by a base station to transmit a demodulation pilot signal of a relay-physical downlink shared channel (R-PDSCH), and receives the demodulation pilot signal at the location;
  • the resource unit is located in a resource area occupied by the R-PDSCH;
  • the RN performs channel estimation according to the demodulated pilot signal, and demodulates by using channel estimation results.
  • the R-PDSCH The R-PDSCH.
  • a relay node, the relay node includes:
  • a resource location determining unit configured to determine, by the base station, to send a relay-physical downlink shared channel
  • R-PDSCH a location of a resource unit used by a demodulation pilot signal; the resource unit being located in a resource area occupied by the R-PDSCH;
  • a demodulation pilot receiving unit configured to receive the demodulation pilot signal at a location of the resource unit;
  • a channel demodulation unit configured to perform channel estimation according to the demodulated pilot signal, and utilize channel estimation As a result, the R-PDSCH is demodulated.
  • LTE-A Long Term Evolution Upgrade
  • a base station configured to select a pre-configured resource for transmitting the demodulation pilot signal of the R-PDSCH in a resource area occupied by a relay-physical downlink shared channel (R-PDSCH) on a backhaul link Transmitting, by the selected resource unit, the demodulation pilot signal to a relay node (RN) under the base station;
  • R-PDSCH relay-physical downlink shared channel
  • a relay node configured to receive the demodulation pilot signal on the resource unit, perform channel estimation according to the demodulated pilot signal, and demodulate the R-PDSCH by using a channel estimation result.
  • the base station selects a pre-configured resource unit for transmitting the demodulation pilot signal of the R-PDSCH in the resource region occupied by the R-PDSCH, and sends the R- to the RN under the base station by using the selected resource unit.
  • the demodulation pilot signal of the PDSCH, the RN receives the demodulation pilot signal of the R-PDSCH on the resource unit, performs channel estimation according to the demodulation pilot signal, and demodulates the R-PDSCH by using the channel estimation result, thereby ensuring
  • the RN can correctly demodulate the data on the R-PDSCH to achieve the correct reception of the R-PDSCH.
  • FIG. 1 is a schematic structural diagram of an LTE-A system in the prior art
  • FIG. 2 is a schematic diagram of a configuration of a common pilot in the prior art
  • FIG. 3 is a schematic flowchart of an embodiment of the present invention.
  • 4A is a schematic diagram of pilot configuration of an LTE system according to Embodiment 1 of the present invention
  • 4B is a schematic diagram of a pilot configuration of an LTE-A system according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic diagram of a pilot configuration according to Embodiment 2 of the present invention
  • FIG. 6 is a schematic diagram of pilot configuration according to Embodiment 3 of the present invention.
  • FIG. 7A is a schematic diagram of pilot configuration of an LTE system according to Embodiment 4 of the present invention.
  • FIG. 7B is a schematic diagram of pilot configuration of an LTE-A system according to Embodiment 4 of the present invention.
  • FIG. 8A is a schematic diagram of pilot configuration of an LTE system according to Embodiment 5 of the present invention.
  • 8B is a schematic diagram of pilot configuration of an LTE-A system according to Embodiment 5 of the present invention.
  • FIG. 10 is a schematic diagram of pilot configuration according to Embodiment 7 of the present invention.
  • FIG. 11 is a schematic structural diagram of a system according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a relay node according to an embodiment of the present invention. Detailed ways
  • the embodiment of the present invention provides a method for transmitting a demodulation pilot on a backhaul link of an LTE-A system.
  • a base station uses a resource region occupied by the R-PDSCH.
  • the inner resource unit transmits a demodulation pilot signal of the R-PDSCH to the RN, and the RN receives the demodulation pilot signal and performs R-PDSCH demodulation.
  • a method for transmitting a demodulation pilot on a backhaul link of an LTE-A system includes the following steps:
  • Step 30 The base station selects a pre-configured resource unit for transmitting a demodulation pilot signal of the R-PDSCH in a resource area occupied by the R-PDSCH.
  • Step 31 The base station sends the demodulated pilot signal of the R-PDSCH to the RN under the base station by using the selected resource unit.
  • Step 32 The RN determines a location of a resource unit used by the base station to transmit a demodulation pilot signal of the R-PDSCH, and receives a demodulation pilot signal of the R-PDSCH at the location;
  • Step 33 The RN performs channel estimation according to the received demodulation pilot signal, and uses channel estimation. As a result, the R-PDSCH is demodulated.
  • the resource unit for transmitting the demodulation pilot signal of the R-PDSCH is configured, and the configuration method may include:
  • Step 1 Determine the resource area occupied by the R-PDSCH.
  • Step 2 selecting a resource unit in the resource region that is not occupied by the common pilot and is not located in the last orthogonal frequency division multiplexing (OFDM) symbol of the resource region;
  • OFDM orthogonal frequency division multiplexing
  • Step 3 Configure the selected resource unit as a resource unit for transmitting a demodulation pilot signal of the R-PDSCH.
  • step 2 there are three ways to use the multiplexing method for demodulating the pilot signal and the resource region occupied by the R-PDSCH:
  • the demodulation pilot signal of the R-PDSCH adopts a frequency domain code division multiplexing (CDM-F) mode
  • Resource unit selecting the found resource unit as a resource unit in the resource region that is not occupied by the common pilot and is not located in the last OFDM symbol of the resource region;
  • the resource unit for transmitting the demodulation pilot signal for transmitting the R-PDSCH includes: the OFDM symbol of the second time slot of the subframe in which the resource region occupied by the R-PDSCH is located Resource unit.
  • the demodulation pilot signal of the R-PDSCH adopts the time domain code division multiplexing (CDM-T) mode and the number of OFDM symbols covered by the resource region occupied by the R-PDCCH is less than or equal to 2, then first in the R - searching for a resource unit for transmitting a demodulation pilot signal in the LTE system in a resource region occupied by the PDSCH; then, panning the resource unit of the last two OFDM symbols located in the resource region occupied by the R-PDSCH To the resource unit in the resource area and the resource unit not occupied by the common pilot; finally, the resource unit and the translated resource unit of the first two OFDM symbols located in the resource area occupied by the R-PDSCH are selected as R a resource element within the resource region of the PDSCH that is not occupied by the common pilot and that is not located in the last OFDM symbol of the resource region.
  • CDM-T time domain code division multiplexing
  • the resource unit configured to transmit the demodulation pilot signal of the R-PDSCH includes: an OFDM symbol of the first time slot of the subframe in which the resource region occupied by the R-PDSCH is located A resource unit composed of the OFDM symbol No. 7 and a resource unit composed of the No. 3 OFDM symbol and the No. 4 OFDM symbol of the second slot of the subframe.
  • the demodulation pilot signal of the R-PDSCH adopts the CDM-T mode and the number of OFDM symbols covered by the resource region occupied by the R-PDCCH is greater than 2, first, look for LTE in the resource region occupied by the R-PDSCH. a resource unit for transmitting a demodulation pilot signal in the system; then, the resource unit of the last two OFDM symbols located in the resource region occupied by the R-PDSCH is translated into the resource region and is not commonly guided On the resource unit occupied by the frequency; finally, the translated resource unit is selected as a resource unit of the R-PDSCH in the resource region that is not occupied by the common pilot and is not located in the last OFDM symbol of the resource region.
  • the resource unit for transmitting the demodulation pilot signal for transmitting the R-PDSCH includes: the OFDM symbol No. 3 and the fourth number of the second slot of the subframe in which the resource region occupied by the R-PDSCH is located A resource unit composed of OFDM symbols.
  • the base station may send the RN to the RN according to the preset pilot density value on the selected part of the resource unit instead of all the resource units.
  • the pilot signal is demodulated.
  • the RN determines the location of the resource unit used by the base station to transmit the demodulation pilot signal of the R-PDSCH, and also has the following three modes: First, if R- The demodulation pilot signal of the PDSCH adopts the CDM-F mode, and the RN first determines a resource unit for transmitting a demodulation pilot signal in the LTE system in the resource region occupied by the R-PDSCH; and then determining the location of the resource unit. The transmission of resource elements utilized by the demodulation pilot signal of the R-PDSCH is transmitted to the base station.
  • the RN first determines the resource region occupied by the R-PDSCH.
  • the determined resource unit of the last two OFDM symbols located in the resource region occupied by the R-PDSCH is translated into the resource region and is not public The resource unit occupied by the pilot; finally, the resource unit of the first two OFDM symbols located in the resource region occupied by the R-PDSCH and the translated The location of the resource unit determines the location of the resource unit utilized by the base station to transmit the demodulation pilot signal of the R-PDSCH.
  • the RN first determines the LTE in the resource region occupied by the R-PDSCH. a resource unit for transmitting a demodulation pilot signal in the system; then, the determined resource unit of the last two OFDM symbols located in the resource region occupied by the R-PDSCH is translated into the resource region and is not shared by the common pilot On the occupied resource unit; finally, the position of the translated resource unit is determined as the location of the resource unit used by the base station to transmit the demodulation pilot signal of the R-PDSCH.
  • step 33 when the RN receives the demodulation pilot signal of the R-PDSCH at the determined location of the resource unit, according to the indication of the base station or the saved demodulation pilot point configuration rule, the RN is in the determined resource unit.
  • the demodulation pilot signal of the R-PDSCH is received on some of the resource elements instead of all of the resource elements.
  • the present invention sends the DMRS located in the R-PDSCH region to perform R-PDSCH demodulation. If there is no DMRS pilot that can be used in the R-PDSCH region, the corresponding DMRS pilot is translated in the time domain. Ensure that DMRS exists in the R-PDSCH region for demodulation.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 4A it is a schematic diagram of a demodulation pilot configuration in a CDM-T mode in an LTE system.
  • a demodulation pilot signal of an R-PDSCH adopts a CDM-T mode, and an R-PDCCH occupies 4 OFDM.
  • R-PDSCH occupies the second time slot of the subframe.
  • Step S01 First, searching for the resource unit for transmitting the demodulation pilot signal in the LTE system in the resource region occupied by the R-PDSCH as the last two column resource units of the second time slot; then, the last two columns of resources Forward shifting of the unit to the 3rd and 4th OFDM symbols of the 2nd slot; finally, configuring the 3rd and 4th OFDM symbols of the 2nd slot to be used for transmitting the R-PDSCH Demodulating the resource unit of the pilot signal, as shown in FIG. 4B;
  • Step S02 The base station sends the demodulation pilot signal of the R-PDSCH to the RN by using the configured resource unit. number;
  • Step S03 The RN receives the demodulation pilot signal of the R-PDSCH in the 3rd and 4th OFDM symbols of the 2nd time slot of the subframe, and performs channel estimation according to the demodulated pilot signal, and uses the channel estimation result. Demodulate the data on the R-PDSCH.
  • the pilots of the adjacent two columns of the DMRS of the CDM-T are translated, they may be located just in the middle of the R-PDSCH region, so that in the case that the RN does not move at a high speed or is a fixed RN, R- The DMRS in the PDS 3 ⁇ 4 intermediate area can guarantee the demodulation performance of the R-PDSCH.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the demodulation pilot signal of the R-PDSCH adopts the CDM-T mode
  • the R-PDCCH occupies 3 OFDM symbols
  • the R-PDSCH occupies the second time slot of the subframe and the last one of the first time slot.
  • the OFDM symbol; the resource unit configuration result of the demodulation pilot signal for transmitting the R-PDSCH is the same as that of the first embodiment.
  • the specific procedure can also be referred to the first embodiment.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the demodulation pilot signal of the R-PDSCH is in the CDM-T mode
  • the R-PDCCH occupies 2 OFDM symbols
  • the R-PDSCH occupies the second time slot of the subframe and the last of the first time slot. Two OFDM symbols.
  • Step S11 First, searching for the resource unit for transmitting the demodulation pilot signal in the LTE system in the resource region occupied by the R-PDSCH is the last two columns of resource units of the first slot and the last of the second slot. Two columns of resource units; then, forwardly shifting the last two columns of resource elements of the second slot to the third and fourth OFDM symbols of the second slot; and finally, the first slot
  • the last two columns of resource elements and the third and fourth OFDM symbols of the second slot are configured as resource elements for transmitting the demodulation pilot signal of the R-PDSCH, as shown in FIG. 6;
  • Step S12 The base station sends the demodulation pilot signal of the R-PDSCH to the RN by using the configured resource unit.
  • Step S13 The RN receives the demodulated pilot signal of the R-PDSCH in the 6th and 7th OFDM symbols of the 1st slot of the subframe, and the 3rd and 4th OFDM symbols of the 2nd slot. And performing channel estimation according to the demodulated pilot signal, and demodulating the number on the R-PDSCH by using the channel estimation result. According to.
  • the specific solution of the present invention is that when there is no DMRS in the R-PDSCH region, the two adjacent pilots of the current DMRS are translated to the OFDM symbol in the R-PDSCH region that does not collide with the common pilot. on. If there are already two columns of DMRS pilots in the R-PDSCH region, that is, as shown in FIG. 4C, the last two columns of pilots are forwardly translated to the OFDM symbols in the R-PDSCH region that do not collide with the common pilot. on.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • FIG. 7A it is a schematic diagram of a demodulation pilot configuration in a CDM-F mode in an LTE system.
  • the demodulation pilot signal of the R-PDSCH adopts the CDM-F mode
  • the R-PDCCH occupies 3 OFDM symbols
  • the R-PDSCH occupies the second time slot of the subframe and the last one of the first time slot. OFDM symbol.
  • Step S21 First, in the resource region of the R-PDSCH, search for the resource element in the LTE system for transmitting the demodulation pilot signal as the third column resource unit of the second time slot; and then, the second time slot
  • the three columns of resource units are configured as resource elements for transmitting the demodulation pilot signals of the R-PDSCH, as shown in FIG. 7B;
  • Step S22 The base station sends the demodulation pilot signal of the R-PDSCH to the RN by using the configured resource unit.
  • Step S23 R receives the demodulation pilot signal of the R-PDSCH in the third OFDM symbol of the second time slot of the subframe, performs channel estimation according to the demodulation pilot signal, and demodulates R- by using the channel estimation result. Data on the PDSCH.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • FIG. 8A it is a schematic diagram of another demodulation pilot configuration in the CDM-F mode in the LTE system.
  • the demodulation pilot signal of the R-PDSCH adopts the CDM-F mode
  • the R-PDCCH occupies 3 OFDM symbols
  • the R-PDSCH occupies the second time slot of the subframe and the last one of the first time slot. OFDM symbol.
  • Resource unit configuration result for transmitting demodulation pilot signal of R-PDSCH is implemented
  • the specific process can also refer to Embodiment 4.
  • the R-PDCCH occupies three OFDM symbols, and the DMRS in the R-PDSCH region can perform R-PDSCH demodulation, and can also ensure performance.
  • the R-PDCCH is 2 OFDM symbols, the same processing can be performed.
  • the R-PDCCH is 4 symbols, there is no problem in transmitting only the pilots in the second slot. Therefore, for this DMRS pilot mode, only the pilots in the R-PDSCH region can be transmitted to meet the needs. Regardless of the number of symbols of the R-PDCCH, only the DMRS in the R-PDSCH region can be transmitted to meet performance requirements, and better performance can be obtained.
  • part of the pilot signal may not be transmitted, that is, less DMRS is transmitted on the basis of the existing R-PDSCH pilot, that is, under the premise of ensuring performance. Minimize system redundancy as much as possible. Since it can be assumed that the channel quality of the backhaul channel is stable and relatively good, there is no problem in transmitting some pilot points less on the basis of the current DMRS pilot.
  • the specific configuration can be notified to the RN through eNB signaling or according to specifications.
  • the above embodiments are all based on Layer 2 data transmission, and in fact, can be extended to Layers 3-8.
  • the CDM-F supports a maximum of eight layers of DMRS configurations.
  • the demodulation pilots for transmitting the R-PDSCH configured in this embodiment are compared with the fourth embodiment or the fifth embodiment.
  • the number of resource units of the signal needs to be not less than 8, and therefore, as shown in FIG. 9, all resource elements of the third column in the second slot are configured as resource elements for transmitting demodulation pilot signals of the R-PDSCH. .
  • the CDM-T supports a maximum of 8 layers of the DMRS configuration.
  • the resource unit for transmitting the demodulated pilot signal of the R-PDSCH configured in this embodiment is compared with the first embodiment.
  • the number needs to be not less than 8, therefore, as shown in FIG. 10, a resource unit for demodulating pilot signals for transmitting R-PDSCH is added to the third column and the fourth column in the second slot.
  • the eNB side operation process is as follows:
  • the DMRS in the R-PDSCH region is transmitted for demodulation.
  • the DMRS in the CDM-T mode it is first determined whether the current DMRS mode can be transmitted in the R-PDSCH region, and if the first two can be transmitted. If the number of symbols occupied by the R-PDCCH is less than or equal to 2, the latter two columns are forwardly translated to the OFDM symbols in the R-PDSCH region that do not collide with the common pilot;
  • the two adjacent pilots of the current DMRS are translated to the OFDM symbols in the R-PDSCH region that do not conflict with the common pilot.
  • the DMRS is transmitted in the R-PDSCH region according to the determined specific location.
  • the number of columns of DMRS pilots that can be detected is determined according to the number of symbols of the R-PDCCH. If the number of symbols occupied by the R-PDCCH is less than or equal to 2, it can be known that the first two columns of DMRS pilots are reserved, and the latter two columns of pilots are forward-shifted to the OFDM symbols in the R-PDSCH region that do not collide with the common pilot.
  • the number of symbols of the R-PDCCH is greater than 2, it can be seen that the two adjacent pilots of the current DMRS are translated onto the OFDM symbols in the R-PDSCH region that do not collide with the common pilot.
  • an embodiment of the present invention further provides an LTE-A communication system, where the system includes: a base station 50, configured to select a pre-configured resource for transmitting the R-PDSCH in a resource area occupied by an R-PDSCH. Demodulating a resource unit of the pilot signal; transmitting, by using the selected resource unit, the demodulation pilot signal to a relay node RN under the base station; The relay node 51 is configured to receive the demodulation pilot signal on the resource unit, perform channel estimation according to the demodulation pilot signal, and demodulate the R-PDSCH by using a channel estimation result.
  • the base station 50 is used to:
  • Determining a resource region occupied by the R-PDSCH Determining a resource region occupied by the R-PDSCH; selecting a resource unit in the resource region that is not occupied by a common pilot and not located in a last OFDM symbol of the resource region; configuring the selected resource unit to be used for A resource unit that transmits the demodulation pilot signal of the R-PDSCH.
  • the relay node 51 is used to:
  • the demodulation pilot signal is received on a portion of resource elements in the resource unit according to an indication of the base station or a stored demodulation pilot point configuration rule.
  • an embodiment of the present invention further provides a base station, which can be applied to an LTE-A communication system, where the base station includes:
  • a resource selection unit 60 configured to select a pre-configured resource unit for transmitting the demodulation pilot signal of the R-PDSCH in a resource area occupied by the R-PDSCH;
  • the demodulation pilot transmitting unit 61 is configured to send the demodulation pilot signal to the relay node RN under the base station by using the resource unit selected by the resource selection unit.
  • the base station also includes:
  • a resource configuration unit 62 configured to determine a resource region occupied by the R-PDSCH, and select a resource unit in the resource region that is not occupied by a common pilot and is not located in a last OFDM symbol of the resource region;
  • the resource unit is configured as a resource unit for transmitting a demodulation pilot signal of the R-PDSCH.
  • the resource configuration unit 62 is configured to:
  • the demodulation pilot signal adopts the CDM-F mode, searching for a resource unit for transmitting a demodulation pilot signal in a long-term evolution LTE system in the resource region; selecting the found resource unit as the resource region A resource unit that is not occupied by a common pilot and that is not located in the last OFDM symbol of the resource region.
  • the resource configuration unit 62 is configured to:
  • the demodulation pilot signal adopts a CDM-T mode and the resource area occupied by the R-PDCCH is overwritten.
  • the resource unit for transmitting the demodulation pilot signal in the LTE system is searched in the resource region occupied by the R-PDSCH; and the located R-PDSCH is found in the R-PDSCH
  • the resource unit of the last two OFDM symbols of the occupied resource area is translated to the resource unit in the resource area and the resource unit not occupied by the common pilot; and the first two located in the resource area occupied by the R-PDSCH are selected and found.
  • the resource unit of the OFDM symbol and the translated resource unit are resource elements of the last OFDM symbol that are not occupied by the common pilot and are not located in the resource area.
  • the resource configuration unit 62 is configured to: when the demodulation pilot signal adopts the CDM-T mode and the number of OFDM symbols covered by the resource region occupied by the R-PDCCH is greater than 2, the resource occupied by the R-PDSCH Searching for, in an area, a resource unit for transmitting a demodulation pilot signal in an LTE system; and translating, to the resource region of the last two OFDM symbols located in a resource region occupied by the R-PDSCH, The resource unit that is not occupied by the common pilot; the translated resource unit is selected as a resource unit in the resource area that is not occupied by the common pilot and is not located in the last OFDM symbol of the resource area.
  • the demodulation pilot transmitting unit 61 is configured to:
  • an embodiment of the present invention further provides a relay node, which can be applied to an LTE-A communication system, where the relay node includes:
  • the resource location determining unit 70 is configured to determine a location of a resource unit used by the base station to send a demodulation pilot signal of the R-PDSCH, where the resource unit is located in a resource area occupied by the R-PDSCH;
  • a demodulation pilot receiving unit 71 configured to receive the demodulation pilot signal at a location of the resource unit;
  • the channel demodulating unit 72 is configured to perform channel estimation according to the demodulated pilot signal, and demodulate the R-PDSCH by using a channel estimation result.
  • the resource location determining unit 70 is configured to: Determining, in a CDM-F manner, a resource unit for transmitting a demodulation pilot signal in a Long Term Evolution (LTE) system in the resource region; determining a location of the resource unit as a base station transmission station The location of the resource unit utilized by the demodulation pilot signal of the R-PDSCH.
  • LTE Long Term Evolution
  • the resource location determining unit 70 is configured to:
  • the demodulation pilot signal adopts the CDM-T mode and the number of OFDM symbols covered by the resource region occupied by the R-PDCCH is less than or equal to 2, determining that the R-PDSCH occupies a resource region for use in the LTE system Transmitting, by the resource unit of the demodulation pilot signal, the determined resource unit of the last two OFDM symbols located in the resource area occupied by the R-PDSCH, and shifting to the resource unit in the resource area and not occupied by the common pilot And determining, by the base station, the demodulation pilot signal, where the resource unit of the first two OFDM symbols and the translated resource unit of the resource region occupied by the R-PDSCH are determined The location of the resource unit utilized.
  • the resource location determining unit 70 is configured to:
  • the demodulation pilot signal adopts the CDM-T mode and the number of OFDM symbols covered by the resource region occupied by the R-PDCCH is greater than 2, it is determined that the R-PDSCH occupies a solution in the LTE system in the resource region occupied by the R-PDSCH.
  • a resource unit that modulates a pilot signal and the determined resource unit of the last two OFDM symbols located in the resource region occupied by the R-PDSCH is translated into a resource unit in the resource region and occupied by a common pilot; Determining, by the location of the translated resource unit, a location of a resource unit used by the base station to transmit the demodulation pilot signal.
  • the channel demodulation unit 72 is configured to:
  • the demodulation pilot signal is received on a portion of resource elements in the resource unit according to an indication of the base station or a stored demodulation pilot point configuration rule.
  • the beneficial effects of the present invention include:
  • the base station selects a pre-configured resource unit for transmitting the demodulation pilot signal of the R-PDSCH in the resource area occupied by the R-PDSCH, and uses the selected resource unit to the base station.
  • the RN transmits the demodulation pilot signal of the R-PDSCH, and the RN receives the demodulation pilot signal of the R-PDSCH on the resource unit, performs channel estimation according to the demodulation pilot signal, and demodulates R by using the channel estimation result.
  • -PDSCH thus ensuring that the RN can correctly demodulate the R-PDSCH The data is achieved for the purpose of correctly receiving the R-PDSCH.
  • the resource unit used by the base station to transmit the demodulation pilot signal of the R-PDSCH in the embodiment of the present invention is a resource unit in the R-PDSCH region that is not occupied by the common pilot and is not located in the last OFDM symbol of the resource region. If the demodulation pilot signal is transmitted in the first OFDM symbol of the resource region, the demodulation performance of the R-PDSCH is deteriorated, and the last OFDM symbol of the resource region needs to be blanked out as a conversion interval for the RN to transmit and receive data.
  • the foregoing resource unit selection manner can ensure the demodulation performance of the R-PDSCH in the backhaul link without affecting the specifications of the existing LTE system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

回程链路上解调导频的发送及信道解调方法、 ***和设备 技术领域
本发明涉及无线通信领域, 尤其涉及一种回程链路上解调导频的发送及 信道解调方法、 ***和设备。 背景技术
如图 1所示,为长期演进升级 ( LTE-A )***的网络结构,其中,基站(eNB ) 通过有线接口连接到核心网(CN ),中继节点(RN )通过无线接口连接到 eNB, 终端( UE )通过无线接口连接到 RN或 eNB。
RN与 eNB之间的通信链路称为回程( backhaul )链路, RN与 UE之间 的链路称为接入链路。
LTE-A***中定义了以下两种信道:
中继 -物理下行控制信道( R-PDCCH ): 即在 backhaul链路上 eNB向 RN 发送数据的控制信道;
中继 -物理下行共享信道(R-PDSCH ): 即在 backhaul链路上 eNB向 RN 发送数据的物理共享信道。
对于公共的 R-PDCCH来说,其中需要给出公共导频来供多个 RN进行解 调, 而不能发送专用导频 (DRS )进行解调, 目前公共导频占用的资源位置 如图 2所示。 对于 RN来说, 需要解调导频(DMRS )来对 R-PDSCH上的数 据进行解调。
图 2中时隙 1的前三列为物理下行控制信道(PDCCH ) 区域, 时隙 1中 第 4、 5列、 或第 4、 5、 6列、 或第 4、 5、 6、 7列为 R-PDCCH区域; 时隙 2 的各列和时隙 1中未被占用的列为 R-PDSCH区域。
在实现本发明的过程中, 发明人发现现有技术中存在以下技术问题: LTE-A***中基站在 R-PDSCH区域内不发送解调导频(DMRS ), 使得 RN 无法利用解调导频对 R-PDSCH 进行信道估计, 也就无法正确接收 10 077390
R-PDSCH上的数据。 发明内容
本发明实施例提供一种回程链路上解调导频的发送方法和一种基站, 用 于解决现有 LTE-A***中 R-PDSCH的解调导频信号得不到发送的问题。
一种长期演进升级(LTE-A )***回程链路上解调导频的发送方法, 该方 法包括:
基站在回程链路上的中继-物理下行链路共享信道(R-PDSCH )所占的资 源区域内选取预先配置的用于发送所述 R-PDSCH 的解调导频信号的资源单 基站利用选取的资源单元向所述基站下的中继节点 (RN )发送所述解调 导频信号。
一种基站, 该基站包括:
资源选取单元, 用于在回程链路上的中继-物理下行链路共享信道 ( R-PDSCH )所占的资源区域内选取预先配置的用于发送所述 R-PDSCH的 解调导频信号的资源单元;
解调导频发送单元, 用于利用所述资源选取单元选取的资源单元向所述 基站下的中继节点(RN )发送所述解调导频信号。
本发明实施例还提供一种回程链路上的信道解调方法、 一种 LTE-A通信 ***和一种中继节点, 用于解决现有 LTE-A ***中 RN 无法正确接收 R-PDSCH上的数据的问题。
一种长期演进升级(LTE-A )***回程链路上的信道解调方法, 该方法包 括:
中继节点 (RN )确定基站发送中继-物理下行链路共享信道(R-PDSCH ) 的解调导频信号所利用的资源单元的位置, 并在该位置接收所述解调导频信 号; 所述资源单元位于所述 R-PDSCH所占的资源区域内;
所述 RN根据所述解调导频信号进行信道估计,并利用信道估计结果解调 所述 R-PDSCH。
一种中继节点, 该中继节点包括:
资源位置确定单元, 用于确定基站发送中继-物理下行链路共享信道
( R-PDSCH ) 的解调导频信号所利用的资源单元的位置; 所述资源单元位于 所述 R-PDSCH所占的资源区域内;
解调导频接收单元, 用于在所述资源单元的位置接收所述解调导频信号; 信道解调单元, 用于才艮据所述解调导频信号进行信道估计, 并利用信道 估计结果解调所述 R-PDSCH。
一种长期演进升级(LTE-A )通信***, 该***包括:
基站, 用于在回程链路上的中继-物理下行链路共享信道(R-PDSCH )所 占的资源区域内选取预先配置的用于发送所述 R-PDSCH 的解调导频信号的 资源单元; 利用选取的资源单元向所述基站下的中继节点 (RN )发送所述解 调导频信号;
中继节点, 用于在所述资源单元上接收所述解调导频信号, 才艮据所述解 调导频信号进行信道估计, 并利用信道估计结果解调所述 R-PDSCH。
本发明中,基站在 R-PDSCH所占的资源区域内选取预先配置的用于发送 R-PDSCH的解调导频信号的资源单元, 并利用选取的资源单元向该基站下的 RN发送 R-PDSCH的解调导频信号, RN则在该资源单元上接收 R-PDSCH的 解调导频信号, 并根据该解调导频信号进行信道估计, 利用信道估计结果解 调 R-PDSCH, 从而保证了 RN能够正确解调 R-PDSCH上的数据, 达到正确 接收 R-PDSCH的目的。 附图说明
图 1为现有技术中 LTE-A***的结构示意图;
图 2为现有技术中公共导频的配置示意图;
图 3为本发明实施例提供的流程示意图;
图 4A为本发明实施例一中 LTE***的导频配置示意图; 图 4B为本发明实施例一中 LTE-A***的导频配置示意图; 图 5为本发明实施例二的导频配置示意图;
图 6为本发明实施例三的导频配置示意图;
图 7A为本发明实施例四中 LTE***的导频配置示意图;
图 7B为本发明实施例四中 LTE-A***的导频配置示意图;
图 8A为本发明实施例五中 LTE***的导频配置示意图;
图 8B为本发明实施例五中 LTE-A***的导频配置示意图;
图 9为本发明实施例六的导频配置示意图;
图 10为本发明实施例七的导频配置示意图;
图 11为本发明实施例提供的***结构示意图;
图 12为本发明实施例提供的基站结构示意图;
图 13为本发明实施例提供的中继节点结构示意图。 具体实施方式
为了使得 R 能够正确接收 R-PDSCH上的数据,本发明实施例提供一种 LTE-A***回程链路上解调导频的发送方法, 本方法中, 基站利用 R-PDSCH 所占的资源区域内的资源单元向 RN发送 R-PDSCH的解调导频信号, RN接 收到该解调导频信号后进行 R-PDSCH解调。
参见图 3, 本发明实施例提供的 LTE-A***回程链路上解调导频的发送 方法, 具体包括以卞步骤:
步骤 30: 基站在 R-PDSCH所占的资源区域内选取预先配置的用于发送 R-PDSCH的解调导频信号的资源单元;
步骤 31 :基站利用选取的资源单元向该基站下的 RN发送 R-PDSCH的解 调导频信号;
步骤 32: RN确定基站发送 R-PDSCH的解调导频信号所利用的资源单元 的位置, 并在该位置处接收 R-PDSCH的解调导频信号;
步骤 33: RN根据接收到的解调导频信号进行信道估计,并利用信道估计 结果解调 R-PDSCH。
步骤 30中, 配置用于发送 R-PDSCH的解调导频信号的资源单元, 其配 置方法可以包括:
步骤 1: 确定 R-PDSCH所占的资源区域;
步骤 2: 选取该资源区域内未被公共导频占用、并且不位于该资源区域的 最后一个正交频分复用 (OFDM )符号的资源单元;
步骤 3: 将选取的资源单元配置为用于发送 R-PDSCH的解调导频信号的 资源单元。
对于步驟 2, 针对解调导频信号所采用复用方式以及 R-PDSCH所占资源 区域的不同, 可以有以下三种方式:
第一种,若 R-PDSCH的解调导频信号采用频域码分复用( CDM-F )方式, 则首先在 R-PDSCH的资源区域内查找 LTE***中用于发送解调导频信号的 资源单元; 然后, 选取查找到的资源单元作为该资源区域内未被公共导频占 用、 并且不位于所述资源区域的最后一个 OFDM符号的资源单元;
釆用该种方式时,配置的用于发送 R-PDSCH的解调导频信号的资源单元 包括: R-PDSCH所占的资源区域所在子帧的第 2个时隙的 3号 OFDM符号构 成的资源单元。
第二种, 若 R-PDSCH的解调导频信号采用时域码分复用 (CDM-T )方 式并且 R-PDCCH所占的资源区域覆盖的 OFDM符号数小于或等于 2, 则首 先在 R-PDSCH所占的资源区域内查找 LTE***中用于发送解调导频信号的 资源单元; 然后, 将查找到的位于 R-PDSCH 所占的资源区域的最后两个 OFDM符号的资源单元, 平移到该资源区域内与未被公共导频占用的资源单 元上;最后,选取查找到的位于 R-PDSCH所占的资源区域的最前两个 OFDM 符号的资源单元和平移后的资源单元,作为 R-PDSCH的资源区域内未被公共 导频占用、 并且不位于所述资源区域的最后一个 OFDM符号的资源单元。
采用该种方式时,配置的用于发送 R-PDSCH的解调导频信号的资源单元 包括: R-PDSCH所占的资源区域所在子帧的第 1个时隙的 6号 OFDM符号和 7号 OFDM符号构成的资源单元、 以及该子帧的第 2个时隙的 3号 OFDM符 号和 4号 OFDM符号构成的资源单元。
第三种, 若 R-PDSCH的解调导频信号采用 CDM-T方式并且 R-PDCCH 所占的资源区域覆盖的 OFDM符号数大于 2,首先,在 R-PDSCH所占的资源 区域内查找 LTE***中用于发送解调导频信号的资源单元; 然后, 将查找到 的位于 R-PDSCH所占的资源区域的最后两个 OFDM符号的资源单元, 平移 到该资源区域内与未被公共导频占用的资源单元上; 最后, 选取平移后的资 源单元,作为 R-PDSCH的资源区域内未被公共导频占用、 并且不位于所述资 源区域的最后一个 OFDM符号的资源单元。
采用该种方式时,配置的用于发送 R-PDSCH的解调导频信号的资源单元 包括: R-PDSCH所占的资源区域所在子帧的第 2个时隙的 3号 OFDM符号和 4号 OFDM符号构成的资源单元。
较佳的, 步骤 31中, 为了在保证解调性能的前提下降低***的冗余度, 基站可以根据预先设定的导频密度值在选取的部分资源单元而不是全部资源 单元上向 RN发送解调导频信号。
步骤 32中, 对应于基站侧的三种资源单元配置方式, RN确定基站发送 R-PDSCH的解调导频信号所利用的资源单元的位置, 也有以下三种方式: 第一种, 若 R-PDSCH的解调导频信号采用 CDM-F方式, 则 RN首先确 定 R-PDSCH所占的资源区域内 LTE***中用于发送解调导频信号的资源单 元; 然后,将该资源单元的位置确定为基站发送 R-PDSCH的解调导频信号所 利用的资源单元的传置。
第二种, 若 R-PDSCH的解调导频信号采用 CDM-T方式并且 R-PDCCH 所占的资源区域覆盖的 OFDM符号数小于或等于 2,则 RN首先确定 R-PDSCH 所占的资源区域内 LTE***中用于发送解调导频信号的资源单元; 然后, 将 确定的位于 R-PDSCH所占的资源区域的最后两个 OFDM符号的资源单元, 平移到该资源区域内与未被公共导频占用的资源单元上; 最后, 将确定的位 于 R-PDSCH所占的资源区域的最前两个 OFDM符号的资源单元和平移后的 资源单元的位置,确定为基站发送 R-PDSCH的解调导频信号所利用的资源单 元的位置。
第三种, 若 R-PDSCH的解调导频信号采用 CDM-T方式并且 R-PDCCH 所占的资源区域覆盖的 OFDM符号数大于 2,则 RN首先确定 R-PDSCH所占 的资源区域内 LTE***中用于发送解调导频信号的资源单元; 然后, 将确定 的位于 R-PDSCH所占的资源区域的最后两个 OFDM符号的资源单元, 平移 到该资源区域内与未被公共导频占用的资源单元上; 最后, 将平移后的资源 单元的位置,确定为基站发送 R-PDSCH的解调导频信号所利用的资源单元的 位置。
较佳的,步骤 33中, RN在确定的资源单元的位置处接收 R-PDSCH的解 调导频信号时, 根据基站的指示或保存的解调导频点配置规则, 在确定的资 源单元中的部分资源单元而不是全部资源单元上接收 R-PDSCH 的解调导频 信号。
可见,本发明发送位于 R-PDSCH区域内的 DMRS进行 R-PDSCH的解调, 如果 R-PDSCH区域内没有可以使用的 DMRS导频的话, 则将对应的 DMRS 导频进行时域的平移, 来保证 R-PDSCH区域内存在 DMRS进行解调。
下面以具体实施例对本发明方法进行说明:
实施例一:
如图 4A所示, 为 LTE***中 CDM-T模式下的解调导频配置示意图, 本 实施例中, R-PDSCH的解调导频信号采用 CDM-T方式, R-PDCCH占用 4个 OFDM符号, R-PDSCH占用子帧的第 2个时隙。
步骤 S01: 首先, 在 R-PDSCH所占的资源区域内查找 LTE***中用于发 送解调导频信号的资源单元为第 2个时隙的最后两列资源单元; 然后, 将最 后两列资源单元的向前平移到第 2个时隙的第 3个和第 4个 OFDM符号上; 最后,将第 2个时隙的第 3个和第 4个 OFDM符号配置为用于发送 R-PDSCH 的解调导频信号的资源单元, 如图 4B所示;
步骤 S02: 基站利用配置的资源单元向 RN发送 R-PDSCH的解调导频信 号;
步骤 S03: RN在子帧第 2个时隙的第 3个和第 4个 OFDM符号接收到 R-PDSCH的解调导频信号, 并根据该解调导频信号进行信道估计, 利用信道 估计结果解调 R-PDSCH上的数据。
可见, 当 CDM-T的 DMRS的相邻两列的导频进行平移后, 可以刚好位 于 R-PDSCH区域的中间位置, 这样, 在 RN移动速度不高, 或者是固定 RN 的情况下, R-PDS ¾中间区域内的 DMRS能够保证 R-PDSCH的解调性能。
实施例二:
本实施例中, R-PDSCH的解调导频信号采用 CDM-T方式, R-PDCCH占 用 3个 OFDM符号, R-PDSCH占用子帧的第 2个时隙和第 1个时隙的最后一 个 OFDM符号; 用于发送 R-PDSCH的解调导频信号的资源单元配置结果同 实施例一, 如图 5所示, 具体流程也可以参见实施例一。
实施例三:
本实施例中, R-PDSCH的解调导频信号釆用 CDM-T方式, R-PDCCH占 用 2个 OFDM符号, R-PDSCH占用子帧的第 2个时隙和第 1个时隙的最后两 个 OFDM符号。
步骤 S11 : 首先, 在 R-PDSCH所占的资源区域内查找 LTE***中用于发 送解调导频信号的资源单元为第 1个时隙的最后两列资源单元和第 2个时隙 的最后两列资源单元; 然后, 将第 2个时隙的最后两列资源单元的向前平移 到第 2个时隙的第 3个和第 4个 OFDM符号上; 最后, 将第 1个时隙的最后 两列资源单元和第 2个时隙的第 3个和第 4个 OFDM符号配置为用于发送 R-PDSCH的解调导频信号的资源单元, 如图 6所示;
步骤 S12: 基站利用配置的资源单元向 RN发送 R-PDSCH的解调导频信 号;
步骤 S13: RN在子帧第 1个时隙的第 6个和第 7个 OFDM符号、以及第 2个时隙的第 3个和第 4个 OFDM符号接收到 R-PDSCH的解调导频信号,并 根据该解调导频信号进行信道估计,利用信道估计结果解调 R-PDSCH上的数 据。
可见, 当 R-PDCCH区域占用 2个 OFDM符号时, 第一个时隙内的原来 的两列 DMRS可以保留, 而仅仅将后两列导频进行了移位操作,
由此可以看出, 本发明的具体方案就是当 R-PDSCH 区域内没有 DMRS 时, 将目前的 DMRS的两列相邻的导频平移到 R-PDSCH区域内不与公共导 频冲突的 OFDM符号上。 如果 R-PDSCH区域内已经有两列 DMRS导频时, 即如图 4C所示的情况, 此时将最后两列导频向前平移到 R-PDSCH区域内不 与公共导频沖突的 OFDM符号上。
实施例四:
如图 7A所示, 为 LTE***中 CDM-F模式下的解调导频配置示意图。 本 实施例中, R-PDSCH的解调导频信号采用 CDM-F方式, R-PDCCH占用 3个 OFDM符号, R-PDSCH占用子帧的第 2个时隙和第 1个时隙的最后一个 OFDM 符号。
步骤 S21:首先在 R-PDSCH的资源区域内查找 LTE***中用于发送解调 导频信号的资源单元为第 2个时隙的第 3列资源单元; 然后, 将第 2个时隙 的第 3列资源单元配置为用于发送 R-PDSCH的解调导频信号的资源单元,如 图 7B所示;
步骤 S22: 基站利用配置的资源单元向 RN发送 R-PDSCH的解调导频信 号;
步骤 S23: R 在子帧第 2个时隙的第 3个 OFDM符号接收到 R-PDSCH 的解调导频信号, 并根据该解调导频信号进行信道估计, 利用信道估计结果 解调 R-PDSCH上的数据。
实施例五:
如图 8A所示,为 LTE***中 CDM-F模式下的另一解调导频配置示意图。 本实施例中, R-PDSCH的解调导频信号采用 CDM-F方式, R-PDCCH占用 3 个 OFDM符号, R-PDSCH占用子帧的第 2个时隙和第 1个时隙的最后一个 OFDM符号。用于发送 R-PDSCH的解调导频信号的资源单元配置结果同实施 例四, 如图 8B所示, 具体流程也可以参见实施四。
由实施例四和实施例五可以看出, R-PDCCH占用了 3个 OFDM符号, 此时 R-PDSCH区域内的 DMRS可以进行 R-PDSCH的解调 ,而且也能够保证 性能。 当 R-PDCCH 为 2 个 OFDM符号时, 也可以进行同样的处理。 当 R-PDCCH为 4个符号时, 仅仅发送第二个时隙内的导频完全没有问题。 所以 对于这种 DMRS导频模式, 仅仅发送 R-PDSCH区域内的导频就可以满足需 要。无论 R-PDCCH为多少个符号,仅仅发送 R-PDSCH区域内的 DMRS都可 以满足性能要求, 而且还能够获得比更好的性能。
在 R-PDSCH区域内的导频密度满足要求的情况下,可以将部分导频信号 不发送, 即在现有的 R-PDSCH导频的基础上少发送一些 DMRS, 即在保证性 能的前提下尽可能的降低***的冗余度。 因为可以假设 backhaul 路的信道 质量稳定且比较好, 因此在目前的 DMRS导频的基础上, 少发送一些导频点 是没有问题的。 而具体的配置可以通过 eNB信令通知给 RN或者是根据规范 进行。
实施例六:
上述实施例都 基于 2层的数据发送的, 实际上, 也可以推广到 3 - 8层 的情况。 本实施例为 CDM-F支持最多 8层的 DMRS配置, 为了支持 8层的 数据, 与实施例四或实施例五相比, 本实施例中配置的用于发送 R-PDSCH的 解调导频信号的资源单元的数目需要不小于 8, 因此, 如图 9所示, 将第 2个 时隙中第 3列的全部资源单元配置为用于发送 R-PDSCH的解调导频信号的资 源单元。
实施例七:
本实施例为 CDM-T支持最多 8层的 DMRS配置, 为了支持 8层的数据, 与实施例一相比,本实施例中配置的用于发送 R-PDSCH的解调导频信号的资 源单元的数目需要不小于 8, 因此, 如图 10所示, 在第 2个时隙中第 3列和 第 4列中增加了一行资源单元用于发送 R-PDSCH的解调导频信号的资源单 元 从实施例六或实施例七可以看出, 在支持 3 - 8层的情况下, 本发明所提 出的针对 CDM-F直接发送, 和 CDM-T移位发送的方案是完全适用的。
综上, eNB侧操作流程如下:
首先, 确定发送的 DMRS的时域 OFDM符号位置:
对于 CDM-F方式的 DMRS:发送 R-PDSCH区域内的 DMRS进行解调; 对于 CDM-T方式的 DMRS: 首先判断按照目前的 DMRS方式是否能够 在 R-PDSCH区域内发送, 如果能够发送前两列的话, 即 R-PDCCH占用的符 号数目小于等于 2, 则将后两列向前平移到 R-PDSCH区域内不与公共导频沖 突的 OFDM符号上;
当 R-PDSCH区域内没有 DMRS时, 即 R-PDCCH的符号数目大于 2, 将 目前的 DMRS的两列相邻的导频平移到 R-PDSCH区域内不与公共导频冲突 的 OFDM符号上。
然后, 根据确定的具***置将 DMRS在 R-PDSCH区域内发送。
RN侧的操作流程如下:
首先, 对于 CDM-F方式的 DMRS: 检测 R-PDSCH区域内的 DMRS进 行解调;
对于 CDM-T方式的 DMRS:根据 R-PDCCH的符号数目来确定能够检测 的 DMRS导频的列数。 如果 R-PDCCH占用的符号数目小于等于 2, 则可知, 此时前两列 DMRS导频保留, 而后面两列导频进行向前平移到 R-PDSCH区 域内不与公共导频冲突的 OFDM符号上;
如果 R-PDCCH的符号数目大于 2, 可知此时是将目前的 DMRS的两列 相邻的导频平移到 R-PDSCH区域内不与公共导频冲突的 OFDM符号上。
然后, 根据确定的 DMRS导频的位置进行相应的检测。
参见图 11, 本发明实施例还提供一种 LTE-A通信***, 该***包括: 基站 50, 用于在 R-PDSCH所占的资源区域内选取预先配置的用于发送 所述 R-PDSCH的解调导频信号的资源单元;利用选取的资源单元向所述基站 下的中继节点 RN发送所述解调导频信号; 中继节点 51, 用于在所述资源单元上接收所述解调导频信号, 4艮据所述 解调导频信号进行信道估计, 并利用信道估计结果解调所述 R-PDSCH。
所述基站 50用于:
确定所述 R-PDSCH所占的资源区域;选取所述资源区域内未被公共导频 占用、 并且不位于所述资源区域的最后一个 OFDM符号的资源单元; 将选取 的资源单元配置为用于发送所述 R-PDSCH的解调导频信号的资源单元。
所述中继节点 51用于:
根据所述基站的指示或保存的解调导频点配置规则, 在所述资源单元中 的部分资源单元上接收所述解调导频信号。
参见图 12, 本发明实施例还提供一种基站, 可以应用于 LTE-A通信*** 中, 该基站包括:
资源选取单元 60, 用于在 R-PDSCH所占的资源区域内选取预先配置的 用于发送所述 R-PDSCH的解调导频信号的资源单元;
解调导频发送单元 61, 用于利用所述资源选取单元选取的资源单元向所 述基站下的中继节点 RN发送所述解调导频信号。
该基站还包括:
资源配置单元 62, 用于确定所述 R-PDSCH所占的资源区域; 选取所述 资源区域内未被公共导频占用、 并且不位于所述资源区 的最后一个 OFDM 符号的资源单元;将选取的资源单元配置为用于发送所述 R-PDSCH的解调导 频信号的资源单元。
所述资源配置单元 62用于:
在所述解调导频信号采用 CDM-F方式时,在所述资源区域内查找长期演 进 LTE***中用于发送解调导频信号的资源单元; 选取查找到的资源单元作 为所述资源区域内未被公共导频占用、 并且不位于所述资源区域的最后一个 OFDM符号的资源单元。
所述资源配置单元 62用于:
在所述解调导频信号采用 CDM-T方式并且 R-PDCCH所占的资源区域覆 盖的 OFDM符号数小于或等于 2时, 在所述 R-PDSCH所占的资源区域内查 找 LTE ***中用于发送解调导频信号的资源单元; 将查找到的位于所述 R-PDSCH所占的资源区域的最后两个 OFDM符号的资源单元,平移到该资源 区域内与未被公共导频占用的资源单元上; 选取查找到的位于所述 R-PDSCH 所占的资源区域的最前两个 OFDM符号的资源单元和所述平移后的资源单 元, 作为所述资源区域内未被公共导频占用、 并且不位于所述资源区域的最 后一个 OFDM符号的资源单元。
所述资源配置单元 62用于: 在所述解调导频信号采用 CDM-T方式并且 R-PDCCH所占的资源区域覆盖的 OFDM符号数大于 2时, 在所述 R-PDSCH 所占的资源区域内查找 LTE***中用于发送解调导频信号的资源单元; 将查 找到的位于所述 R-PDSCH所占的资源区域的最后两个 OFDM符号的资源单 元, 平移到该资源区域内与未被公共导频占用的资源单元上; 选取所述平移 后的资源单元, 作为所述资源区域内未被公共导频占用、 并且不位于所述资 源区域的最后一个 OFDM符号的资源单元。
所述解调导频发送单元 61用于:
根据预先设定的导频密度值在选取的部分资源单元上向所述 RN发送所 述解调导频信号。
参见图 13, 本发明实施例还提供一种中继节点, 可以应用于 LTE-A通信 ***中, 该中继节点包括:
资源位置确定单元 70, 用于确定基站发送 R-PDSCH的解调导频信号所 利用的资源单元的位置; 所述资源单元位于所述 R-PDSCH所占的资源区域 内;
解调导频接收单元 71 , 用于在所述资源单元的位置接收所述解调导频信 号;
信道解调单元 72, 用于根据所述解调导频信号进行信道估计, 并利用信 道估计结果解调所述 R-PDSCH。
所述资源位置确定单元 70用于: 在所述解调导频信号采用 CDM-F方式时,确定所述资源区域内长期演进 LTE ***中用于发送解调导频信号的资源单元; 将所述资源单元的位置确定 为基站发送所述 R-PDSCH的解调导频信号所利用的资源单元的位置。
所述资源位置确定单元 70用于:
在所述解调导频信号采用 CDM-T方式并且 R-PDCCH所占的资源区域覆 盖的 OFDM符号数小于或等于 2时, 确定所述 R-PDSCH所占的资源区域内 LTE***中用于发送解调导频信号的资源单元; 将确定的位于所述 R-PDSCH 所占的资源区域的最后两个 OFDM符号的资源单元, 平移到该资源区域内与 未被公共导频占用的资源单元上;将确定的位于所述 R-PDSCH所占的资源区 域的最前两个 OFDM符号的资源单元和所述平移后的资源单元的位置, 确定 为所述基站发送所述解调导频信号所利用的资源单元的位置。
所述资源位置确定单元 70用于:
在所述解调导频信号采用 CDM-T方式并且 R-PDCCH所占的资源区域覆 盖的 OFDM符号数大于 2时, 确定所述 R-PDSCH所占的资源区域内 LTE系 统中用于发送解调导频信号的资源单元;将确定的位于所述 R-PDSCH所占的 资源区域的最后两个 OFDM符号的资源单元, 平移到该资源区域内与未被公 共导频占用的资源单元上; 将所述平移后的资源单元的位置, 确定为所述基 站发送所述解调导频信号所利用的资源单元的位置。
所述信道解调单元 72用于:
根据所述基站的指示或保存的解调导频点配置规则, 在所述资源单元中 的部分资源单元上接收所述解调导频信号。
综上, 本发明的有益效果包括:
本发明实施例提供的方案中,基站在 R-PDSCH所占的资源区域内选取预 先配置的用于发送 R-PDSCH的解调导频信号的资源单元,并利用选取的资源 单元向该基站下的 RN发送 R-PDSCH的解调导频信号, RN则在该资源单元 上接收 R-PDSCH的解调导频信号, 并根据该解调导频信号进行信道估计, 利 用信道估计结果解调 R-PDSCH, 从而保证了 RN能够正确解调 R-PDSCH上 的数据, 达到正确接收 R-PDSCH的目的。
同时,本发明实施例中基站发送 R-PDSCH的解调导频信号所利用的资源 单元是 R-PDSCH区域内未被公共导频占用、并且不位于该资源区域的最后一 个 OFDM符号的资源单元,由于若在该资源区域的第一个 OFDM符号发送解 调导频信号会造成 R-PDSCH解调性能的恶化,该资源区域的最后一个 OFDM 符号需要空白出来作为 RN收发数据的转换间隔,因此上述资源单元选取方式 能够在不影响现有 LTE***规范的 出上, 保证 backhaul链路中 R-PDSCH 的解调性能。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、一种长期演进升级 LTE-A***回程链路上解调导频的发送方法,其特 征在于, 该方法包括:
基站在回程链路上的中继-物理下行链路共享信道 R-PDSCH所占的资源 区域内选取预先配置的用于发送所述 R-PDSCH的解调导频信号的资源单元; 基站利用选取的资源单元向所述基站下的中继节点 RN发送所述解调导 频信号。
2、如权利要求 1所述的方法,其特征在于, 配置用于发送所述 R-PDSCH 的解调导频信号的资源单元包括:
确定所述 R-PDSCH所占的资源区域;
选取所述资源区域内未被公共导频占用、 并且不位于所述资源区域的最 后一个正交频分复用 OFDM符号的资源单元;
将选取的资源单元配置为用于发送所述 R-PDSCH 的解调导频信号的资 源单元。
3、 '如权利要求 2所述的方法, 其特征在于, 所述解调导频信号采用频域 码分复用 CDM-F方式; 所述选取所述资源区域内未被公共导频占用、 并且不 位于所述资源区域的最后一个 OFDM符号的资源单元包括:
在所述资源区域内查找长期演进 LTE***中用于发送解调导频信号的资 源单元;
选取查找到的资源单元作为所述资源区域内未被公共导频占用、 并且不 位于所述资源区域的最后一个 OFDM符号的资源单元。
4、如权利要求 3所述的方法, 其特征在于, 所述用于发送所述 R-PDSCH 的解调导频信号的资源单元包括:
所述资源区域所在子帧的第 2个时隙的 3号 OFDM符号构成的资源单元。
5、 如权利要求 2所述的方法, 其特征在于, 所述解调导频信号采用时域 码分复用 CDM-T方式; 在回程链路上的物理下行控制信道 R-PDCCH所占的 资源区域覆盖的 OFDM符号数小于或等于 2的情况下, 所述选取所述资源区 域内未被公共导频占用、 并且不位于所述资源区域的最后一个 OFDM符号的 资源单元包括:
在所述 R-PDSCH所占的资源区域内查找 LTE***中用于发送解调导频 信号的资源单元;
将查找到的位于所述 R-PDSCH所占的资源区域的最后两个 OFDM符号 的资源单元, 平移到该资源区域内与未被公共导频占用的资源单元上;
选取查找到的位于所述 R-PDSCH所占的资源区域的最前两个 OFDM符 号的资源单元和所述平移后的资源单元, 作为所述资源区域内未被公共导频 占用、 并且不位于所述资源区域的最后一个 OFDM符号的资源单元。
6、如权利要求 5所述的方法,其特征在于,所述用于发送所述 R-PDSCH 的解调导频信号的资源单元包括:
所述 R-PDSCH所占的资源区域所在子帧的第 1个时隙的 6号 OFDM符 号和 7号 OFDM符号构成的资源单元、 以及所述子帧的第 2个时隙的 3号 OFDM符号和 4号 OFDM符号构成的资源单元。
7、 如权利要求 2所述的方法, 其特征在于, 所述解调导频信号采用时域 码分复用 CDM-T方式; 在回程链路上的物理下行控制信道 R-PDCCH所占的 资源区域覆盖的 OFDM符号数大于 1情况下, 所述选取所述资源区域内未被 公共导频占用、 并且不位于所述资源区域的最后一个 OFDM符号的资源单元 包括:
在所述 R-PDSCH所占的资源区域内查找 LTE***中用于发送解调导频 信号的资源单元;
将查找到的位于所述 R-PDSCH所占的资源区域的最后两个 OFDM符号 的资源单元, 平移到该资源区域内与未被公共导频占用的资源单元上;
选取所述平移后的资源单元, 作为所述资源区域内未被公共导频占用、 并且不位于所述资源区域的最后一个 OFDM符号的资源单元。
8、如权利要求 7所述的方法,其特征在于, 所述用于发送所述 R-PDSCH 的解调导频信号的资源单元包括:
所述 R-PDSCH所占的资源区域所在子帧的第 2个时隙的 3号 OFDM符 号和 4号 OFDM符号构成的资源单元。
9、 如权利要求 1-8中任一所述的方法, 其特征在于, 所述基站利用选取 的资源单元向所述基站下的中继节点 RN发送所述解调导频信号包括:
所述基站根据预先设定的导频密度值在选取的部分资源单元上向所述 RN发送所述解调导频信号。
10、 一种长期演进升级 LTE-A***回程链路上的信道解调方法, 其特征 在于, 该方法包括:
中继节点 RN确定基站发送中继-物理下行链路共享信道 R-PDSCH的解 调导频信号所利用的资源单元的位置, 并在该位置接收所述解调导频信号; 所述资源单元位于所述 R-PDSCH所占的资源区域内;
所述 R 根据所述解调导频信号进行信道估计,并利用信道估计结果解调 所述 R-PDSCH。
11、 如权利要求 10所述的方法, 其特征在于, 所述解调导频信号采用频 域码分复用 CDM-F 方式; 所述 RN确定基站发送物理下行链路共享信道 R-PDSCH的解调导频信号所利用的资源单元的位置包括:
确定所述资源区域内长期演进 LTE***中用于发送解调导频信号的资源 单元;
将所述资源单元的位置确定为^ ^站发送所述 R-PDSCH 的解调导频信号 所利用的资源单元的位置。
12、 如权利要求 10所述的方法, 其特征在于, 所述解调导频信号采用时 域码分复用 CDM-T方式; 在回程链路上的物理下行控制信道 R-PDCCH所占 的资源区域覆盖的 OFDM符号数小于或等于 2情况下, 所述 R 确定基站发 送物理下行链路共享信道 R-PDSCH的解调导频信号所利用的资源单元的位 置包括:
确定所述 R-PDSCH所占的资源区域内 LTE***中用于发送解调导频信 号的资源单元;
将确定的位于所述 R-PDSCH所占的资源区域的最后两个 OFDM符号的 资源单元, 平移到该资源区域内与未被公共导频占用的资源单元上;
将确定的位于所述 R-PDSCH所占的资源区域的最前两个 OFDM符号的 资源单元和所述平移后的资源单元的位置, 确定为所述基站发送所述解调导 频信号所利用的资源单元的位置。
13、 如权利要求 10所述的方法, 其特征在于, 所述解调导频信号釆用时 域码分复用 CDM-T方式; 在回程链路上的物理下行控制信道 R-PDCCH所占 的资源区域覆盖的 OFDM符号数大于 2情况下, 所述 RN确定基站发送物理 下行链路共享信道 R-PDSCH的解调导频信号所利用的资源单元的位置包括: 确定所述 R-PDSCH所占的资源区域内 LTE***中用于发送解调导频信 号的资源单元;
将确定的位于所述 R-PDSCH所占的资源区域的最后两个 OFDM符号的 资源单元, 平移到该资源区域内与未被公共导频占用的资源单元上;
将所述平移后的资源单元的位置, 确定为所述基站发送所述解调导频信 号所利用的资源单元的位置。
14、如权利要求 10-13中任一所述的方法, 其特征在于, 所述在该位置接 收所述解调导频信号包括:
所述 RN根据所述基站的指示或保存的解调导频点配置规则,在所述资源 单元中的部分资源单元上接收所述解调导频信号。
15、 一种基站, 其特征在于, 该基站包括:
资源选取单元, 用于在回程链路上的中继-物理下行链路共享信道 R-PDSCH所占的资源区域内选取预先配置的用于发送所述 R-PDSCH的解调 导频信号的资源单元;
解调导频发送单元, 用于利用所述资源选取单元选取的资源单元向所述 基站下的中继节点 RN发送所述解调导频信号。
16、 如权利要求 15所述的基站, 其特征在于, 该基站还包括: 资源配置单元, 用于确定所述 R-PDSCH所占的资源区域; 选取所述资源 区域内未被公共导频占用、 并且不位于所述资源区域的最后一个 OFDM符号 的资源单元;将选取的资源单元配置为用于发送所述 R-PDSCH的解调导频信 号的资源单元。
17、 如权利要求 16所述的基站, 其特征在于, 所述资源配置单元用于: 在所述解调导频信号采用频域码分复用 CDM-F方式时,在所述资源区域 内查找长期演进 LTE***中用于发送解调导频信号的资源单元;
选取查找到的资源单元, 作为所述资源区域内未被公共导频占用、 并且 不位于所述资源区域的最后一个 OFDM符号的资源单元。
18、 如权利要求 16所述的基站, 其特征在于, 所述资源配置单元用于: 在所述解调导频信号采用时域码分复用 CDM-T 方式并且回程链路上的 物理下行控制信道 R-PDCCH所占的资源区域覆盖的 OFDM符号数小于或等 于 2时, 在所述 R-PDSCH所占的资源区域内查找 LTE***中用于发送解调 导频信号的资源单元;
将查找到的位于所述 R-PDSCH所占的资源区域的最后两个 OFDM符号 的资源单元, 平移到该资源区域内与未被公共导频占用的资源单元上;
选取查找到的位于所述 R-PDSCH所占的资源区域的最前两个 OFDM符 号的资源单元和所述平移后的资源单元, 作为所述资源区域内未被公共导频 占用、 并且不位于所述资源区域的最后一个 OFDM符号的资源单元。
19、 如权利要求 16所述的基站, 其特征在于, 所述资源配置单元用于: 在所述解调导频信号采用时域码分复用 CDM-T方式并且回程链路上的物理 下行控制信道 R-PDCCH所占的资源区域覆盖的 OFDM符号数大于 2时, 在 所述 R-PDSCH所占的资源区域内查找 LTE***中用于发送解调导频信号的 资源单元;
将查找到的位于所述 R-PDSCH所占的资源区域的最后两个 OFDM符号 的资源单元, 平移到该资源区域内与未被公共导频占用的资源单元上;
选取所述平移后的资源单元, 作为所述资源区域内未被公共导频占用、 并且不位于所述资源区域的最后一个 OFDM符号的资源单元。
20、如权利要求 15-19中任一所述的基站, 其特征在于, 所述解调导频发 送单元用于:
根据预先设定的导频密度值在选取的部分资源单元上向所述 RN发送所 述解调导频信号。
21、 一种中继节点, 其特征在于, 该中继节点包括:
资源位置确定单元, 用于确定基站发送中继-物理下行链路共享信道 R-PDSCH的解调导频信号所利用的资源单元的位置; 所述资源单元位于所述 R-PDSCH所占的资源区域内;
解调导频接收单元, 用于在所述资源单元的位置接收所述解调导频信号; 信道解调单元, 用于才艮据所述解调导频信号进行信道估计, 并利用信道估计 结果解调所述 R-PDSCH。
22、 如权利要求 21所述的中继节点, 其特征在于, 所述资源位置确定单 元用于:
在所述解调导频信号采用频域码分复用 CDM-F方式时,确定所述资源区 域内长期演进 LTE***中用于发送解调导频信号的资源单元;
将所述资源单元的位置,确定为基站发送所述 R-PDSCH的解调导频信号 所利用的资源单元的位置。
23、 如权利要求 21所述的中继节点, 其特征在于, 所述资源位置确定单 元用于:
在所述解调导频信号采用时域码分复用 CDM-T 方式并且回程链路上的 物理下行控制信道 R-PDCCH所占的资源区域覆盖的 OFDM符号数小于或等 于 2时, 确定所述 R-PDSCH所占的资源区域内 LTE***中用于发送解调导 频信号的资源单元;
将确定的位于所述 R-PDSCH所占的资源区域的最后两个 OFDM符号的 资源单元, 平移到该资源区域内与未被公共导频占用的资源单元上;
将确定的位于所述 R-PDSCH所占的资源区域的最前两个 OFDM符号的 资源单元和所述平移后的资源单元的位置, 确定为所述基站发送所述解调导 频信号所利用的资源单元的位置。
24、 如权利要求 21所述的中继节点, 其特征在于, 所述资源位置确定单 元用于:
在所述解调导频信号采用时域码分复用 CDM-T 方式并且回程链路上的 物理下行控制信道 R-PDCCH所占的资源区域覆盖的 OFDM符号数大于 2时, 确定所述 R-PDSCH所占的资源区域内 LTE***中用于发送解调导频信号的 资源单元;
将确定的位于所述 R-PDSCH所占的资源区域的最后两个 OFE¾VI符号的 资源单元, 平移到该资源区域内与未被公共导频占用的资源单元上;
将所述平移后的资源单元的位置, 确定为所述基站发送所述解调导频信 号所利用的资源单元的位置。
25、如权利要求 21-24中任一所述的中继节点, 其特征在于, 所述信道解 调单元用于:
才艮据所述基站的指示或保存的解调导频点配置规则, 在所述资源单元中 的部分资源单元上接收所述解调导频信号。
26、 一种长期演进升级 LTE-A通信***, 其特征在于, 该***包括: 基站,用于在回程链路上的中继物理下行链路共享信道 R-PDSCH所占的 资源区域内选取预先配置的用于发送所述 R-PDSCH 的解调导频信号的资源 单元;利用选取的资源单元向所述基站下的中继节点 RN发送所述解调导频信 号;
中继节点, 用于在所述资源单元上接收所述解调导频信号, 根据所述解 调导频信号进行信道估计, 并利用信道估计结果解调所述 R-PDSCH。
27、 如权利要求 26所述的***, 其特征在于, 所述基站用于:
确定所述 R-PDSCH所占的资源区域;选取所述资源区域内未被公共导频 占用、 并且不位于所述资源区域的最后一个 OFDM符号的资源单元; 将选取 的资源单元配置为用于发送所述 R-PDSCH的解调导频信号的资源单元。
28、 如权利要求 26或 27所述的***, 其特征在于, 所述中继节点用于: 根据所述基站的指示或保存的解调导频点配置规则, 在所述资源单元中 的部分资源单元上接收所述解调导频信号。
PCT/CN2010/077390 2009-09-29 2010-09-28 回程链路上解调导频的发送及信道解调方法、***和设备 WO2011038670A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10819899.5A EP2485560B1 (en) 2009-09-29 2010-09-28 Transmission of demodulation reference signal and demodulation of channel over backhaul link
US13/499,250 US9077495B2 (en) 2009-09-29 2010-09-28 Method, system and device for transmitting demodulation reference signal and demodulating channel over backhaul link

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910235261.0 2009-09-29
CN200910235261.0A CN102014527B (zh) 2009-09-29 2009-09-29 回程链路上解调导频的发送及信道解调方法、***和设备

Publications (1)

Publication Number Publication Date
WO2011038670A1 true WO2011038670A1 (zh) 2011-04-07

Family

ID=43825571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077390 WO2011038670A1 (zh) 2009-09-29 2010-09-28 回程链路上解调导频的发送及信道解调方法、***和设备

Country Status (4)

Country Link
US (1) US9077495B2 (zh)
EP (1) EP2485560B1 (zh)
CN (1) CN102014527B (zh)
WO (1) WO2011038670A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8937875B2 (en) * 2009-03-16 2015-01-20 Panasonic Intellectual Property Corporation Of America Radio reception apparatus, radio transmission apparatus, and radio communication method
KR101769375B1 (ko) * 2010-10-21 2017-08-18 엘지전자 주식회사 무선 통신 시스템에서 릴레이 노드가 기지국으로부터 데이터를 수신하는 방법 및 이를 위한 장치
WO2014015800A1 (zh) * 2012-07-24 2014-01-30 电信科学技术研究院 下行用户专用解调参考信号的传输方法和设备
PT2941080T (pt) * 2013-01-25 2018-06-20 Huawei Tech Co Ltd Transmissão de sinais de referência de demodulação num novo tipo de portadora
US10616914B2 (en) * 2017-01-06 2020-04-07 Qualcomm Incorporated Unicast data transmission on a downlink common burst of a slot using mini-slots
CN108631912B (zh) * 2017-03-23 2021-09-28 大唐移动通信设备有限公司 一种传输方法和装置
CN115038154A (zh) * 2017-06-16 2022-09-09 中兴通讯股份有限公司 发送功率的确定方法及装置、终端
JP7060672B2 (ja) * 2017-08-04 2022-04-26 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける参照信号を送受信するための方法及びそのための装置
CN117979446A (zh) * 2018-01-12 2024-05-03 华为技术有限公司 通信方法、通信装置、计算机可读存储介质和计算机程序产品
CN110958589B (zh) 2018-09-26 2021-08-03 华为技术有限公司 数据传输方法、装置及存储介质
CN113872905B (zh) * 2018-09-26 2023-05-12 华为技术有限公司 一种资源配置的方法、装置及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101222272A (zh) * 2008-01-28 2008-07-16 中兴通讯股份有限公司 下行导频时隙中物理下行控制信道的信号发送方法
WO2009052363A2 (en) * 2007-10-18 2009-04-23 Qualcomm Incorporated Transmission structure supporting multi-user scheduling and mimo transmission
EP2077692A2 (en) * 2008-01-04 2009-07-08 LG Electronics Inc. Method of performing random access procedure in wireless communication system
CN101534265A (zh) * 2008-03-15 2009-09-16 中兴通讯股份有限公司 下行专用导频和物理资源块的映射方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101540751B (zh) * 2009-04-30 2013-01-02 北京邮电大学 用于多流数据的解调方法和***
KR101754617B1 (ko) * 2009-07-13 2017-07-06 엘지전자 주식회사 백홀 링크 전송을 위한 전송 모드 구성 방법 및 장치
KR101641388B1 (ko) * 2009-08-19 2016-07-21 엘지전자 주식회사 중계국의 참조신호 이용 방법 및 상기 방법을 이용하는 중계국

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009052363A2 (en) * 2007-10-18 2009-04-23 Qualcomm Incorporated Transmission structure supporting multi-user scheduling and mimo transmission
EP2077692A2 (en) * 2008-01-04 2009-07-08 LG Electronics Inc. Method of performing random access procedure in wireless communication system
CN101222272A (zh) * 2008-01-28 2008-07-16 中兴通讯股份有限公司 下行导频时隙中物理下行控制信道的信号发送方法
CN101534265A (zh) * 2008-03-15 2009-09-16 中兴通讯股份有限公司 下行专用导频和物理资源块的映射方法

Also Published As

Publication number Publication date
US9077495B2 (en) 2015-07-07
EP2485560A4 (en) 2017-02-22
CN102014527A (zh) 2011-04-13
EP2485560B1 (en) 2018-02-21
EP2485560A1 (en) 2012-08-08
CN102014527B (zh) 2014-04-16
US20120188937A1 (en) 2012-07-26

Similar Documents

Publication Publication Date Title
WO2011038670A1 (zh) 回程链路上解调导频的发送及信道解调方法、***和设备
KR101714439B1 (ko) 기지국으로부터 제어정보를 수신하는 중계기 장치 및 그 방법
AU2016264077B2 (en) Terminal device, base station device, and communication method
KR101625859B1 (ko) 이동통신 시스템에서 기지국으로부터 신호를 수신하기 위한 중계기 및 그 방법
TWI559720B (zh) 增強實體下行鏈路控制通道搜尋空間技術
JP6048892B2 (ja) 中継局、基地局、及び通信方法
KR101227740B1 (ko) 서브프레임의 무선자원 할당 방법 및 장치
US8976725B2 (en) Communication system, relay device, communication terminal, and base station
KR101650749B1 (ko) 릴레이를 위한 백홀 서브프레임의 제어 채널 자원 할당 방법 및 장치
US9215730B2 (en) Method for transmitting the PDCCH signal
JP4875504B2 (ja) Ofdma無線システム及び中継局
US20120093063A1 (en) Method and device for detecting downlink control information
EP2485410B1 (en) Transmission method, detection method and equipment for control channels of a relay system
WO2012062178A1 (zh) 用于确定中继链路资源单元组的方法及装置
US20120149296A1 (en) Communication system, relay node, user equipment and base station
JP2013518502A (ja) 無線通信システムにおいてリソースを割り当てる方法及びそのための装置
JP2013528979A (ja) リレー物理ダウンリンク制御チャネルでデータをインターリビングするための装置及び方法
JP2009544175A (ja) 直交周波数分割多元接続(ofdma)モバイルマルチホップ中継無線ネットワークにおいてチャネルにアクセスする方法
JP2012515494A (ja) 無線通信システムにおけるmbsfnサブフレームを用いた信号送信方法
JPWO2010076852A1 (ja) 中継ノードの透過伝送と非透過伝送との共存方法
CA2985765A1 (en) Terminal device, base station device, and communication method
JP7306400B2 (ja) 電子機器及び無線通信方法
WO2011137696A1 (zh) 中继节点下行控制信道的传输方法及***
US20110051629A1 (en) Method for transmitting frame in wireless communication system including relay station
CN102055689B (zh) 回程链路上解调导频的发送及信道解调方法、***和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10819899

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010819899

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13499250

Country of ref document: US