WO2011000987A1 - Cuaderna de refuerzo del fuselaje de una aeronave - Google Patents

Cuaderna de refuerzo del fuselaje de una aeronave Download PDF

Info

Publication number
WO2011000987A1
WO2011000987A1 PCT/ES2010/070437 ES2010070437W WO2011000987A1 WO 2011000987 A1 WO2011000987 A1 WO 2011000987A1 ES 2010070437 W ES2010070437 W ES 2010070437W WO 2011000987 A1 WO2011000987 A1 WO 2011000987A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuselage
frame
structural element
aircraft according
stringers
Prior art date
Application number
PCT/ES2010/070437
Other languages
English (en)
French (fr)
Inventor
Francisco Javier Chamorro Alonso
Ignacio José MÁRQUEZ LÓPEZ
José CUENCA RINCÓN
Pedro NOGUEROLES VIÑES
Original Assignee
Airbus Operations, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Operations, S.L. filed Critical Airbus Operations, S.L.
Priority to CN201080028866.3A priority Critical patent/CN102803067B/zh
Publication of WO2011000987A1 publication Critical patent/WO2011000987A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/061Frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/064Stringers; Longerons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/12Construction or attachment of skin panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C2001/0054Fuselage structures substantially made from particular materials
    • B64C2001/0072Fuselage structures substantially made from particular materials from composite materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Definitions

  • the present invention relates to the design of reinforcing frames of the fuselage of an aircraft, said frames being in particular made of composite material.
  • the fuselage is the main set of an aircraft, since the rest of the elements that make up the aircraft are attached, directly or indirectly, to it.
  • the shape of the fuselage varies with the main mission that the aircraft is going to have, hence there are several types of fuselage, such as the reticular, the monocoque, or the semi monocoque, the latter type of fuselage being the most commonly used currently .
  • the fuselage of an aircraft comprises elements in the form of perpendicular reinforcements with respect to the longitudinal axis of the aircraft, called frames, which are responsible for giving shape and rigidity to the structure of the fuselage, these frames being located at intervals in the interior part of the fuselage tube of the aircraft.
  • the fuselage comprises other reinforcement elements, such as the stringers, generally in the form of omega or the like, to achieve the optimization of load distribution and stiffness.
  • the stringers are located joining the frames along the longitudinal axis of the fuselage, allowing its presence to thin the lining of the fuselage structure, thereby lightening the weight of the whole structure.
  • the stringers fulfill a secondary reinforcing function, the elements that give shape to the fuselage and constitute the main points of attachment of the lining.
  • the entire framework of frames, stringers and cladding join to form a complete and rigid structure.
  • reinforcement frames In some areas of the fuselage it is necessary to make openings, such as passenger doors, cargo doors or windows. In these cases, when the structure of the aircraft is weakened, it is necessary to locally reinforce the area of the opening with other elements such as the door frames. These elements are generically called reinforcement frames.
  • the fuselage of the aircraft is subjected to all types of structural loads, in addition to having to also withstand the pressurization loads of the cabin.
  • the fuselage is subjected to bending, torsion and inertia loads, the pressurization loads being mainly supported by the lining, the stringers supporting the flexion that the fuselage experiences in the longitudinal direction.
  • the frames distribute the loads evenly in each of the sections in which they divide the internal section of the fuselage structure, finally supporting the lining, the stringers and the frames, acting as a single beam, the loads of torsion and inertia.
  • the profiles that make up the aircraft's frames must comprise reinforcement ribs or stiffeners that increase the stiffness of the frames.
  • these elements raise the total weight of the structure, while presenting the disadvantages of eliminating the diafanity or useful space inside the fuselage structure, this space being very important for loading or placement of equipment in the interior of large aircraft, while greatly impeding the passage of the stringers through the frames, so as to make them join along the longitudinal axis of the fuselage.
  • the present invention offers a solution to the aforementioned problems.
  • the invention relates to the design of reinforcement frames of the fuselage of an aircraft, said frames being in particular made of composite material, said frames comprising a structural element and a closed hollow element, hollow therein, in turn comprising the said structural element a lower base that is arranged on the inner face of the lining of the fuselage of the aircraft, and through which the stringers that join the frames to the rest of the fuselage structure, and some upper reinforcing elements on which the closed cellular elements are arranged.
  • the structural elements of the frames of the invention preferably have an H-beam shape, such that the lower base and the upper reinforcement are joined through a soul.
  • the closed honeycomb element provides the advantage of increasing the inertia and, consequently, the stiffness of the frame, as it separates the mass that contributes to the calculation of the moment of inertia of the profile of the frame of the center of gravity thereof, while, Being said hollow honeycomb element, it does not add considerable weight to the structure.
  • the final form obtained by designing the frame of the invention is similar to an omega, which gives the structure the advantage of an increase in stiffness without increasing the weight. Structures of this type have not been used until now in aircraft frames.
  • the frames of the invention are not used for the union with the reinforcement elements of the necessary reinforcement frames around the passenger or cargo doors, or of the windows of the aircraft.
  • the structural element of the frame object of the invention is made of composite material by a resin transfer molding process (Resin Transfer Molding, RTM), by means of which catalyzed resin is injected into a matrix mold in which It has previously provided a reinforcement, being able to be both the mold and the resin, heated or not.
  • RTM Resin Transfer Molding
  • the closed honeycomb element is also made of composite material, being able to join in a fresh state the upper reinforcement elements of the structural element of the frame. In this way, since the structural element is flexible, it is able to adapt and adjust in a simple way to the inner face of the fuselage lining on which the frame will be arranged, being able to subsequently place the closed honeycomb element in a fresh state, above the element structural structure, once the latter is arranged on the lining.
  • Figure 1 shows in schematic a section of the fuselage of an aircraft comprising a reinforcement frame, stringers, frames standards and a fuselage reinforcement frame according to the present invention.
  • Figure 2 shows in detail the elements that make up a reinforcement frame of the fuselage of an aircraft according to the present invention.
  • Figure 3 shows the development of the elements that make up a reinforcement frame of the fuselage of an aircraft according to the present invention.
  • Figure 4 shows a sectional detail of the closed cellular elements of a reinforcement frame of the fuselage of an aircraft according to the present invention.
  • Figure 5 shows a detailed view of the reinforcement frame of the fuselage of an aircraft according to the present invention.
  • the invention relates to the design of a reinforcement frame 1 of the fuselage 2 of an aircraft, said frame 1 being preferably made of composite material, although this frame 1 can also be made of metal.
  • the frame 1 comprises a structural element 4 and a closed hollow element 5, hollow inside, whose geometry can be variable.
  • the structural element 4 comprises a lower base 6 that is arranged on the inner face of the lining 3 of the fuselage 2 of the aircraft, and through which the stringers 20 that connect the frames 1 to the rest of the structure of the fuselage 2 pass, and upper reinforcing elements 7 on which the cellular elements 5 are arranged.
  • the structural elements 4 of the frames 1 preferably have a H-beam shape, such that the lower base 6 and the upper reinforcing element 7 are joined through a core 8.
  • the structural element 4 of the frame 1 may have a different sectional shape than this, in Z for example, provided that it comprises a lower base 6 that is arranged on the inner face of the lining 3 and an upper reinforcing element 7 on which the honeycomb element 5 can be arranged.
  • the honeycomb element 5 provides the advantage of increasing the inertia and, consequently, the rigidity of the frame 1 of the invention, while not adding considerable weight to the structure of said frame 1.
  • the final shape obtained by the design of The frame 1 of the invention is similar to an omega, which gives the structure the advantage of an increase in stiffness without increasing the weight.
  • the frame 1 of the invention has greater rigidity than the conventional frames in the direction or direction transverse to the said frame 1, in addition to being intrinsically stable to local buckling.
  • the height 30 of the frame 1 of the invention (see Figure 3), is less than that of a conventional frame for the same load requirement, leaving a greater useful or diaphanous space inside the fuselage 2 of the aircraft.
  • the frame 1 in cases of high load on the frame 1, the conventional frames have to comprise reinforcing ribs or stiffeners that increase the stiffness of said frames.
  • the frame 1 of the invention provides greater diafanity in the interior space of the fuselage 2, since a greater moment of inertia of the structure is achieved without adding soul or height in the structural element 4: the alveolar element 5 stabilizes and reinforces the frame 1, avoiding having to use the reinforcement ribs or stiffeners of conventional frame structures.
  • the frame 1 it is possible to vary and play with the reinforcements of the honeycomb element 5 on the side walls 10 ( Figure 4) thereof, according to the calculation needs, depending on how much it is necessary to increase the stiffness of the frame 1 while maintaining the weight thereof, or that said weight is not considerably increased.
  • the walls 10 of the honeycomb element 5 can comprise reinforcing layers of carbon fiber, which increase the stiffness of the frame 1.
  • Another of the advantages of the frame 1 of the invention is that the passage of the stringers 20 through said frames is carried out in a simple manner, through the walls 40 of the structural elements 4.
  • said stringers 20 are fixed by glued to the aforementioned walls 40 of the structural elements 4, the use of rivets not being necessary that would make the joining procedure more complicated and complicated, while adding weight to it.
  • the assembly of the frame 1 is facilitated through the lower base 6 of the structural element 4, since there is an access with an open part to the inner face of the lining 3 (through the walls 40) on which will be fixed said frame 1.
  • the structural element 4 of the frame 1 is made of composite material by a resin transfer molding process (Resin Transfer Molding, RTM).
  • the closed honeycomb element 5 is also made of composite material, the upper reinforcing elements 7 of the structural element 4 of the frame 1 being able to be bonded in a fresh state.
  • the structural element 4 is able to adapt and adjust in a simple manner to the inner face of the lining 3 of the fuselage 2 on which the frame 1 will be arranged, being placed subsequently the honeycomb element 5 closed in a fresh state, above the structural element 4 above, once said structural element 4 is arranged on the inner face of the lining 3, the whole assembly being subsequently cured, which comprises the structural element 4, the honeycomb element 5 and the lining 3.
  • the structural element 4 of the frame 1, which does not initially comprise the honeycomb element 5, has greater flexibility (that is, less stiffness or moment of inertia) than the traditional frames that are made in one piece, already cured, since, as previously mentioned, it is the alveolar element 5 that gives more rigidity or inertia to the structure of the frame 1 according to the invention.
  • the structural element 4 on the inner lining 3 of the fuselage 2 of the aircraft can have forms, in many cases, with double curvature, for which reason it is very complex to attach an already cured and slightly flexible frame structure on it.
  • the honeycomb element 5 is placed in a fresh, non-stiffened state on the upper reinforcing element 7 of the structural element 4, subsequently healing all the set.
  • the honeycomb element 5 gives inertia to the structural element 4 of The frame 1, having been possible, in a first stage, to easily arrange the structural element 4 on the inner face of the lining 3.
  • the stringers 20, being omega-shaped can easily pass through the frames 1 thanks to the fact that they pass through the walls 40 of the structural element 4 of said frames 1, while said stringers 20 can be fixed by gluing to the walls 40, without using rivets.
  • the tolerances of said walls 40 must be sufficiently narrow.
  • the stringers 20 can be of constant section, or of variable section.
  • the fuselage 2 of the aircraft it is necessary to make openings 50 such as passenger doors, cargo or windows.
  • openings 50 such as passenger doors, cargo or windows.
  • the structure of the fuselage 2 is weakened, it is necessary to locally reinforce the area of the opening 50 with other elements, such as the reinforcement frames 51.
  • the frames 1 of the invention which comprise the closed honeycomb element 5, they are not used for the connection with the reinforcement elements 52 of the necessary reinforcement frames 51 around the openings 50.
  • the standard frames 60 are those that engage with the reinforcement elements 52 in the frames of reinforcement 51, while the frames 1 of the invention can be all others of the structure of the fuselage 2 of the aircraft.

Abstract

Cuaderna (1) de refuerzo del fuselaje (2) de una aeronave, comprendiendo dicho fuselaje (2) un revestimiento (3) y unos larguerillos (20), comprendiendo la citada cuaderna (1) un elemento estructural (4) y un elemento alveolar (5) cerrado, hueco en su interior, comprendiendo el elemento estructural (4) una base inferior (6) que va dispuesta sobre la cara interior del revestimiento (3) del fuselaje (2), y a través de la cual pasan los larguerillos (20) que unen las cuadernas (1) al resto de la estructura del fuselaje (2), y unos elementos de refuerzo superiores (7) sobre los que van dispuestos los citados elementos alveolares (5), tal que los elementos alveolares (5) aumentan la inercia y la rigidez de la cuaderna (1) sin añadir peso ala misma, teniendo la cuaderna (1) elevada rigidez en dirección transversal, además de ser estable intrínsecamente a pandeo local.

Description

REINFORCING FRAME FOR AN AIRCRAFT FUSELAGE
CAMPO DE LA INVENCIÓN
La presente invención se refiere al diseño de cuadernas de refuerzo del fuselaje de una aeronave, estando dichas cuadernas en particular fabricadas en material compuesto.
ANTECEDENTES DE LA INVENCIÓN
A Io largo de Ia historia de Ia aviación, los materiales empleados han ido evolucionando considerablemente para poder aumentar su resistencia, a Ia vez que disminuían su peso. Un material específico que cumple con estas exigencias es el material compuesto de fibra de carbono. Gracias a sus beneficios, el uso de los materiales compuestos llega a ser en Ia actualidad de hasta el 50% de Ia estructura de Ia aeronave.
El fuselaje es el conjunto principal de una aeronave, puesto que el resto de elementos que conforman Ia aeronave se unen, de forma directa o indirecta, al mismo. La forma del fuselaje varía con Ia misión principal que vaya a tener Ia aeronave, de ahí que existan varios tipos de fuselaje, como el reticular, el monocasco, o el semi monocasco, siendo este último tipo de fuselaje el más comúnmente empleado en Ia actualidad.
El fuselaje de una aeronave comprende unos elementos en forma de armaduras perpendiculares con respecto al eje longitudinal de Ia aeronave, denominados cuadernas, que son los encargados de dar forma y rigidez a Ia estructura del fuselaje, situándose estas cuadernas a intervalos en Ia parte interior del tubo del fuselaje de Ia aeronave. Además de las cuadernas, el fuselaje comprende otros elementos de refuerzo, como son los larguerillos, generalmente en forma de omega o similar, para conseguir Ia optimización de Ia distribución de cargas y rigidez. Los larguerillos se sitúan uniendo las cuadernas a Io largo del eje longitudinal del fuselaje, permitiendo su presencia el adelgazamiento del revestimiento de Ia estructura del fuselaje, aligerándose así el peso del conjunto de Ia estructura. Los larguerillos, a su vez, cumplen una función secundaria de refuerzo, siendo los elementos que dan forma al fuselaje y constituyendo los puntos principales de unión del revestimiento. Así, todo el entramado de cuadernas, larguerillos y revestimiento se unen para formar una estructura completa y rígida.
En algunas zonas del fuselaje es necesario realizar aberturas, tales como puertas de pasajeros, de carga o ventanas. En estos casos, al debilitarse Ia estructura de Ia aeronave, es necesario reforzar localmente Ia zona de Ia abertura con otros elementos como pueden ser los marcos de puerta. Estos elementos se denominan, genéricamente, marcos de refuerzo.
El fuselaje de Ia aeronave está sometido a todo tipo de cargas estructurales, además de tener que aguantar también las cargas de presurización de Ia cabina. En conjunto, el fuselaje está sometido a cargas de flexión, de torsión y de inercia, estando soportadas principalmente las cargas de presurización por el revestimiento, soportando los larguerillos Ia flexión que experimenta el fuselaje en sentido longitudinal. Por otro lado, las cuadernas reparten uniformemente las cargas en cada uno de los tramos en los que dividen a Ia sección interna de Ia estructura del fuselaje, soportando finalmente el revestimiento, los larguerillos y las cuadernas, actuando como una viga única, las cargas de torsión y de inercia.
Así, sería deseable que el diseño de cuadernas de aeronave actuales, principalmente en el caso de estructuras o cuadernas muy cargadas, se realizase mediante un diseño que aportase una elevada rigidez e inercia a Ia estructura, al tiempo que no añadiera peso a Ia misma.
Para el caso de estructuras muy cargadas, los perfiles que conforman las cuadernas de Ia aeronave han de comprender nervios de refuerzo o rigidizadores que aumenten Ia rigidez de las cuadernas. Sin embargo, estos elementos elevan el peso total de Ia estructura, al tiempo que presentan las desventajas de que eliminan Ia diafanidad o espacio útil del interior de Ia estructura del fuselaje, siendo este espacio muy importante para temas de carga o de colocación de equipos en el interior de grandes aeronaves, al tiempo que dificultan enormemente el paso de los larguerillos a través de las cuadernas, para así realizar Ia unión de las mismas a Io largo del eje longitudinal del fuselaje.
La presente invención ofrece una solución a los problemas anteriormente mencionados.
SUMARIO DE LA INVENCIÓN
Así, Ia invención se refiere al diseño de cuadernas de refuerzo del fuselaje de una aeronave, estando dichas cuadernas en particular fabricadas en material compuesto, comprendiendo dichas cuadernas un elemento estructural y un elemento alveolar cerrado, hueco en su interior, comprendiendo a su vez el citado elemento estructural una base inferior que va dispuesta sobre Ia cara interior del revestimiento del fuselaje de Ia aeronave, y a través de Ia cual pasan los larguerillos que unen las cuadernas al resto de Ia estructura del fuselaje, y unos elementos de refuerzo superiores sobre los que van dispuestos los elementos alveolares cerrados. Los elementos estructurales de las cuadernas de Ia invención tienen preferiblemente una forma de viga en H, de tal modo que Ia base inferior y el refuerzo superior se unen a través de un alma. El elemento alveolar cerrado proporciona Ia ventaja de aumentar Ia inercia y, consecuentemente, Ia rigidez de Ia cuaderna, pues separa Ia masa que contribuye al cálculo del momento de inercia del perfil de Ia cuaderna del centro de gravedad de Ia misma, al tiempo que, al ser dicho elemento alveolar hueco, no añade peso considerable a Ia estructura. - A -
Así, Ia forma final obtenida mediante el diseño de Ia cuaderna de Ia invención es semejante a una omega, Ia cual aporta a Ia estructura Ia ventaja de un aumento de rigidez sin aumentar el peso. Estructuras de este tipo no se han empleado hasta Ia actualidad en cuadernas de aeronave.
Las cuadernas de Ia invención no se emplean para Ia unión con los elementos de refuerzo de los marcos de refuerzo necesarios alrededor de las puertas de pasajeros o de carga, o bien de las ventanas de Ia aeronave.
El elemento estructural de Ia cuaderna objeto de Ia invención está fabricado en material compuesto mediante un procedimiento de moldeo por transferencia de resina (Resin Transfer Moulding, RTM), mediante el cual se inyecta resina catalizada en el interior de un molde matriz en el cual se ha dispuesto previamente un refuerzo, pudiendo ser, tanto el molde como Ia resina, calentados o no. El elemento alveolar cerrado está fabricado igualmente en material compuesto, pudiéndose unir en estado fresco a los elementos de refuerzo superiores del elemento estructural de Ia cuaderna. De este modo, al ser flexible el elemento estructural, es capaz de adaptarse y ajustarse de forma sencilla a Ia cara interior del revestimiento del fuselaje sobre el que irá dispuesta Ia cuaderna, pudiéndose colocar posteriormente el elemento alveolar cerrado en estado fresco, encima del elemento estructural anterior, una vez que esté dispuesto este último sobre el revestimiento.
Otras características y ventajas de Ia presente invención se desprenderán de Ia descripción detallada que sigue de una realización ilustrativa de su objeto en relación con las figuras que se acompañan.
DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 muestra en esquema una sección del fuselaje de una aeronave que comprende un marco de refuerzo, larguerillos, cuadernas estándares y una cuaderna de refuerzo del fuselaje según Ia presente invención.
La Figura 2 muestra en detalle los elementos que componen una cuaderna de refuerzo del fuselaje de una aeronave según Ia presente invención.
La Figura 3 muestra el desarrollo de los elementos que componen una cuaderna de refuerzo del fuselaje de una aeronave según Ia presente invención.
La Figura 4 muestra un detalle en sección de los elementos alveolares cerrados de una cuaderna de refuerzo del fuselaje de una aeronave según Ia presente invención.
La Figura 5 muestra una vista en detalle de Ia cuaderna de refuerzo del fuselaje de una aeronave según Ia presente invención.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La invención se refiere al diseño de una cuaderna 1 de refuerzo del fuselaje 2 de una aeronave, estando dicha cuaderna 1 fabricada preferiblemente en material compuesto, si bien esta cuaderna 1 puede estar también realizada en metal. La cuaderna 1 comprende un elemento estructural 4 y un elemento alveolar 5 cerrado, hueco en su interior, cuya geometría puede ser variable. El elemento estructural 4 comprende una base inferior 6 que va dispuesta sobre Ia cara interior del revestimiento 3 del fuselaje 2 de Ia aeronave, y a través de Ia cual pasan los larguerillos 20 que unen las cuadernas 1 al resto de Ia estructura del fuselaje 2, y unos elementos de refuerzo superiores 7 sobre los que van dispuestos los elementos alveolares 5. Los elementos estructurales 4 de las cuadernas 1 tienen preferiblemente una forma de viga en H, de tal modo que Ia base inferior 6 y el elemento de refuerzo superior 7 se unen a través de un alma 8. Si bien esto se ha descrito para el perfil en H, el elemento estructural 4 de Ia cuaderna 1 puede tener otra forma en sección distinta a ésta, en Z por ejemplo, siempre que comprenda una base inferior 6 que se disponga sobre Ia cara interior del revestimiento 3 y un elemento de refuerzo superior 7 sobre el que pueda ir dispuesto el elemento alveolar 5.
El elemento alveolar 5 proporciona Ia ventaja de aumentar Ia inercia y, consecuentemente, Ia rigidez de Ia cuaderna 1 de Ia invención, al tiempo que no añade peso considerable a Ia estructura de dicha cuaderna 1. Así, Ia forma final obtenida mediante el diseño de Ia cuaderna 1 de Ia invención es semejante a una omega, Ia cual aporta a Ia estructura Ia ventaja de un aumento de rigidez sin aumentar el peso. Además de estas ventajas señaladas, Ia cuaderna 1 de Ia invención tiene mayor rigidez que las cuadernas convencionales en sentido o dirección transversal a Ia citada cuaderna 1 , además de ser estable intrínsecamente a pandeo local. Además de esto, Ia altura 30 de Ia cuaderna 1 de Ia invención (ver Figura 3), es menor que Ia de una cuaderna convencional para el mismo requisito de carga, dejando un mayor espacio útil o diáfano en el interior del fuselaje 2 de Ia aeronave. Estas ventajas son tanto más acusadas cuanto más cargada esté Ia cuaderna 1 (por ejemplo, en el caso de cuadernas maestras del ala de Ia aeronave): en casos de elevada carga sobre Ia cuaderna 1 , las cuadernas convencionales han de comprender unos nervios de refuerzo o rigidizadores que aumenten Ia rigidez de dichas cuadernas. La cuaderna 1 de Ia invención proporciona mayor diafanidad en el espacio interior del fuselaje 2, pues se consigue un mayor momento de inercia de Ia estructura sin añadir alma o altura en el elemento estructural 4: el elemento alveolar 5 estabiliza y refuerza Ia cuaderna 1 , evitando el tenerse que utilizar los nervios de refuerzo o rigidizadores de las estructuras de cuadernas convencionales. Otra de las ventajas de Ia invención reside en que, en Ia cuaderna 1 , es posible variar y jugar con los refuerzos del elemento alveolar 5 en las paredes laterales 10 (Figura 4) del mismo, según las necesidades de cálculo, en función de cuánto sea necesario aumentar Ia rigidez de Ia cuaderna 1 al tiempo que se mantiene el peso de Ia misma, o que no se aumenta dicho peso de forma considerable. Así, las paredes 10 del elemento alveolar 5 pueden comprender capas de refuerzo de fibra de carbono, que aumenten Ia rigidez de Ia cuaderna 1.
Otra de las ventajas de Ia cuaderna 1 de Ia invención es que el paso de los larguerillos 20 a través de dichas cuadernas de realiza de forma sencilla, a través de las paredes 40 de los elementos estructurales 4. Además, dichos larguerillos 20 se fijan mediante encolado a las citadas paredes 40 de los elementos estructurales 4, no siendo necesario el uso de remaches que encarecerían y complicarían el procedimiento de unión, al tiempo que añadirían peso a Ia misma. Por otro lado, se facilita el montaje de Ia cuaderna 1 a través de Ia base inferior 6 del elemento estructural 4, puesto que se tiene un acceso con una parte abierta a Ia cara interior del revestimiento 3 (a través de las paredes 40) sobre el que se fijará dicha cuaderna 1.
El elemento estructural 4 de Ia cuaderna 1 está fabricado en material compuesto mediante un procedimiento de moldeo por transferencia de resina (Resin Transfer Moulding, RTM). El elemento alveolar 5 cerrado está fabricado igualmente en material compuesto, pudiéndose unir en estado fresco a los elementos de refuerzo superiores 7 del elemento estructural 4 de Ia cuaderna 1. De este modo, al tener flexibilidad Ia cuaderna 1 de Ia invención, gracias a que el elemento alveolar 5 puede disponerse en estado fresco no rigidizado sobre el elemento estructural 4, el elemento estructural 4 es capaz de adaptarse y ajustarse de forma sencilla a Ia cara interior del revestimiento 3 del fuselaje 2 sobre el que irá dispuesta Ia cuaderna 1 , colocándose posteriormente el elemento alveolar 5 cerrado en estado fresco, encima del elemento estructural 4 anterior, una vez que esté dispuesto dicho elemento estructural 4 sobre Ia cara interior del revestimiento 3, curándose posteriormente todo el conjunto, que comprende el elemento estructural 4, el elemento alveolar 5 y el revestimiento 3. En cuadernas tradicionales, es muy difícil ajustar el elemento del perfil de Ia cuaderna, pues suele tratarse de un elemento no flexible, al estar este elemento curado y rigidizado para el caso de dichas cuadernas tradicionales. En el caso de Ia cuaderna 1 de Ia invención, al encontrarse el elemento alveolar 5 en estado fresco no rigidizado, dicho elemento alveolar 5 permite que el elemento estructural 4 por sí solo se acople mejor a Ia cara interior del revestimiento 3. En el caso de que, tanto el elemento estructural 4 como el elemento alveolar 5 estuvieran curados, se generaría entonces una problemática idéntica a Ia existente en las cuadernas convencionales, en las cuales existe el fenómeno denominado "spring-back" o deformación contraria a Ia disposición o colocación del elemento de cuaderna, que hace muy complicado el montaje posterior del resto de elementos de Ia estructura de Ia aeronave.
De este modo, el elemento estructural 4 de Ia cuaderna 1 , que no comprende en un principio el elemento alveolar 5, tiene mayor flexibilidad (es decir, menor rigidez o momento de inercia) que las cuadernas tradicionales que están realizadas en una sola pieza, ya curadas, puesto que, según se comentó anteriormente, es el elemento alveolar 5 el que dota de mayor rigidez o inercia a Ia estructura de Ia cuaderna 1 según Ia invención. De este modo, es posible disponer con mayor facilidad, gracias a su flexibilidad, el elemento estructural 4 sobre el revestimiento interior 3 del fuselaje 2 de Ia aeronave. Este revestimiento interior 3 puede tener formas, en muchas ocasiones, con doble curvatura, por Io que es muy complejo el acoplar una estructura de cuaderna ya curada y poco flexible sobre el mismo. Una vez que se ha dispuesto el elemento estructural 4 (ya curado) sobre Ia cara interior 3 del fuselaje 2, se coloca el elemento alveolar 5 en estado fresco no rigidizado sobre el elemento de refuerzo superior 7 del elemento estructural 4, curándose posteriormente todo el conjunto. Así, el elemento alveolar 5 dota de inercia al elemento estructural 4 de Ia cuaderna 1 , habiendo sido posible, en una primera etapa, disponer fácilmente el elemento estructural 4 sobre Ia cara interior del revestimiento 3.
Otra de las ventajas del diseño de Ia cuaderna 1 de Ia invención reside en que los larguerillos 20, al tener forma de omega, pueden pasar fácilmente a través de las cuadernas 1 gracias a que pasan a través de las paredes 40 del elemento estructural 4 de dichas cuadernas 1 , al tiempo que dichos larguerillos 20 pueden fijarse mediante encolado a las paredes 40, sin necesidad de utilizar remaches. Para ello, las tolerancias de dichas paredes 40 han de ser suficientemente estrechas. Los larguerillos 20 pueden ser de sección constante, o bien de sección variable.
Tal y como se muestra en Ia Figura 1 , en algunas zonas del fuselaje 2 de Ia aeronave es necesario realizar aberturas 50 tales como puertas de pasajeros, de carga o ventanas. En este caso, al debilitarse Ia estructura del fuselaje 2, es necesario reforzar localmente Ia zona de Ia abertura 50 con otros elementos, como pueden ser los marcos de refuerzo 51. Las cuadernas 1 de Ia invención, que comprenden el elemento alveolar cerrado 5, no se emplean para Ia unión con los elementos de refuerzo 52 de los marcos de refuerzo 51 necesarios alrededor de las aberturas 50. Como se desprende de Ia Figura 1 , las cuadernas estándar 60 son las que enganchan con los elementos de refuerzo 52 en los marcos de refuerzo 51 , mientras que las cuadernas 1 de Ia invención pueden ser todas las demás de Ia estructura del fuselaje 2 de Ia aeronave.
En las realizaciones preferentes que acabamos de describir pueden introducirse aquellas modificaciones comprendidas dentro del alcance definido por las siguientes reivindicaciones.

Claims

REIVINDICACIONES
1. Cuaderna (1 ) de refuerzo del fuselaje (2) de una aeronave, comprendiendo dicho fuselaje (2) un revestimiento (3) y unos larguerillos (20), caracterizada porque comprende un elemento estructural (4) y un elemento alveolar (5) cerrado, hueco en su interior, comprendiendo el elemento estructural (4) una base inferior (6) que va dispuesta sobre Ia cara interior del revestimiento (3) del fuselaje (2), y a través de Ia cual pasan los larguerillos (20) que unen las cuadernas (1 ) al resto de Ia estructura del fuselaje (2), y unos elementos de refuerzo superiores (7) sobre los que van dispuestos los citados elementos alveolares (5), tal que los elementos alveolares (5) aumentan Ia inercia y Ia rigidez de Ia cuaderna (1 ) sin añadir peso a Ia misma, teniendo Ia cuaderna (1 ) elevada rigidez en dirección transversal, además de ser estable intrínsecamente a pandeo local.
2. Cuaderna (1 ) de refuerzo del fuselaje (2) de una aeronave según Ia reivindicación 1 en Ia que el elemento alveolar (5) cerrado se une en estado fresco no curado al elemento de refuerzo superior (7) del elemento estructural (4), una vez que dicho elemento estructural (4) se ha colocado sobre Ia cara interior del revestimiento (3), curándose posteriormente el conjunto formado por el elemento estructural (4), el elemento alveolar (5) y el revestimiento (3).
3. Cuaderna (1 ) de refuerzo del fuselaje (2) de una aeronave según cualquiera de las reivindicaciones anteriores en Ia que los larguerillos (20) pasan a través de unas paredes (40) del elemento estructural (4) de Ia cuaderna (1 ) dispuestas para tal fin, uniéndose a dicha cuaderna (1 ) mediante encolado a las citadas paredes (40).
4. Cuaderna (1 ) de refuerzo del fuselaje (2) de una aeronave según Ia reivindicación 3 en Ia que las tolerancias de las paredes (40) del elemento estructural (4) a través de las cuales pasan los larguerillos (20) son estrechas.
5. Cuaderna (1 ) de refuerzo del fuselaje (2) de una aeronave según cualquiera de las reivindicaciones anteriores en Ia que los larguerillos (20) son de sección variable.
6. Cuaderna (1 ) de refuerzo del fuselaje (2) de una aeronave según cualquiera de las reivindicaciones 1 -4 en Ia que los larguerillos (20) son de sección constante.
7. Cuaderna (1 ) de refuerzo del fuselaje (2) de una aeronave según cualquiera de las reivindicaciones anteriores en Ia que las paredes laterales (10) de los elementos alveolares (5) comprenden capas de refuerzo de fibra de carbono que aumentan Ia rigidez de Ia cuaderna
(1 )-
8. Cuaderna (1 ) de refuerzo del fuselaje (2) de una aeronave según cualquiera de las reivindicaciones anteriores en Ia que el elemento estructural (4) está realizado en material compuesto.
9. Cuaderna (1 ) de refuerzo del fuselaje (2) de una aeronave según cualquiera de las reivindicaciones anteriores en Ia que el elemento alveolar (5) está realizado en material compuesto.
10. Cuaderna (1 ) de refuerzo del fuselaje (2) de una aeronave según cualquiera de las reivindicaciones 1 -7 en Ia que el elemento estructural (4) es metálico.
11. Cuaderna (1 ) de refuerzo del fuselaje (2) de una aeronave según cualquiera de las reivindicaciones 1 -7 en Ia que el elemento alveolar (5) es metálico.
12. Cuaderna (1 ) de refuerzo del fuselaje (2) de una aeronave según cualquiera de las reivindicaciones anteriores en Ia que el elemento estructural (4) tiene Ia forma en sección de una viga en H.
PCT/ES2010/070437 2009-06-29 2010-06-28 Cuaderna de refuerzo del fuselaje de una aeronave WO2011000987A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080028866.3A CN102803067B (zh) 2009-06-29 2010-06-28 飞行器的机身的加强框架

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200930371A ES2382765B1 (es) 2009-06-29 2009-06-29 Diseño de cuadernas de aeronave
ESP200930371 2009-06-29

Publications (1)

Publication Number Publication Date
WO2011000987A1 true WO2011000987A1 (es) 2011-01-06

Family

ID=42790867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070437 WO2011000987A1 (es) 2009-06-29 2010-06-28 Cuaderna de refuerzo del fuselaje de una aeronave

Country Status (4)

Country Link
US (1) US8262024B2 (es)
CN (1) CN102803067B (es)
ES (1) ES2382765B1 (es)
WO (1) WO2011000987A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2401517R1 (es) * 2011-05-31 2013-08-26 Airbus Operations Sl Cuaderna de aeronave en material compuesto.
CN103454102A (zh) * 2012-06-04 2013-12-18 北京宇航***工程研究所 蒙皮加筋圆柱壳结构扭转等效刚度优化获取方法
US20190351990A1 (en) * 2018-05-17 2019-11-21 Airbus Operations Gmbh Fuselage Structure For An Aircraft
EP3604119A1 (en) 2018-07-31 2020-02-05 Airbus Operations, S.L. Frame for fuselage shells of an aircraft and fuselage shell

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006026168A1 (de) 2006-06-06 2008-01-31 Airbus Deutschland Gmbh Flugzeugrumpfstruktur und Verfahren zu deren Herstellung
DE102006026170B4 (de) 2006-06-06 2012-06-21 Airbus Operations Gmbh Flugzeugrumpfstruktur und Verfahren zu deren Herstellung
DE102006026169B4 (de) * 2006-06-06 2012-06-21 Airbus Operations Gmbh Flugzeugrumpfstruktur und Verfahren zu deren Herstellung
FR2984845B1 (fr) * 2011-12-21 2014-07-11 Airbus Operations Sas Element de structure de fuselage d'aeronef anti deversement
EP2634086A1 (en) * 2012-02-28 2013-09-04 Airbus Operations S.L. Reinforcing structure integrated in the internal structure of an aircraft of composite material
FR3000018B1 (fr) * 2012-12-21 2016-12-09 Airbus Operations Sas Raidisseur de fuselage d'aeronef, son procede de fabrication, et fuselage d'aeronef equipe d'un tel raidisseur
ES2566168T3 (es) * 2012-12-28 2016-04-11 Airbus Operations, S.L. Estructura aeronáutica con elementos de refuerzo integrados
US9849967B2 (en) 2015-04-01 2017-12-26 The Boeing Company Composite rib for an aircraft
FR3059303B1 (fr) * 2016-11-30 2020-11-06 Airbus Operations Sas Ensemble pour aeronef comprenant un panneau auto-raidi comportant une portion de hauteur croissante par laquelle le panneau est fixe a un element structurel
EP3345754B1 (en) 2017-01-10 2019-09-25 Airbus Operations GmbH Sandwich panel with recessed channel network
US11794873B2 (en) * 2019-03-08 2023-10-24 The Boeing Company Auxiliary power unit enclosure and method of making the same
DE102019211434B3 (de) 2019-07-31 2020-11-05 Premium Aerotec Gmbh Spantkomponente und verfahren zur herstellung einer spantkomponente, spant und rumpfstruktur für ein luftfahrzeug
CN112193400A (zh) * 2020-11-17 2021-01-08 中航通飞华南飞机工业有限公司 一种带大开口的增压后端框
CN113844636B (zh) * 2021-10-19 2023-08-25 大连理工大学 一种ω形柔性蒙皮蜂窝结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242523A (en) * 1992-05-14 1993-09-07 The Boeing Company Caul and method for bonding and curing intricate composite structures
US20060237588A1 (en) * 2005-03-31 2006-10-26 The Boeing Company Composite structural member having an undulating web and method for forming the same
US20070039284A1 (en) * 2005-08-19 2007-02-22 Airbus Espana, S.L. Stringers made of a composite material with a bulb

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3071217A (en) * 1960-01-15 1963-01-01 Avro Aircraft Ltd Vibration damping in sheet metal structures
FR2489779A1 (fr) * 1980-09-09 1982-03-12 Aerospatiale Structure de fuselage pour aeronef resistant aux ruptures longitudinales du revetement exterieur
US4411380A (en) * 1981-06-30 1983-10-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Metal matrix composite structural panel construction
JP4526698B2 (ja) * 2000-12-22 2010-08-18 富士重工業株式会社 複合材成形品及びその製造方法
US7134629B2 (en) * 2004-04-06 2006-11-14 The Boeing Company Structural panels for use in aircraft fuselages and other structures
US7325771B2 (en) * 2004-09-23 2008-02-05 The Boeing Company Splice joints for composite aircraft fuselages and other structures
US7182291B2 (en) * 2005-03-23 2007-02-27 The Boeing Company Integrated aircraft structural floor
CN101304900A (zh) * 2005-10-25 2008-11-12 泽菲罗斯公司 板条结构
FR2902689B1 (fr) * 2006-06-22 2008-08-22 Airbus France Sas Panneau raidi a raidisseurs composites a sensibilite aux chocs diminuee
NL2000232C2 (nl) * 2006-09-12 2008-03-13 Gtm Consulting B V Huidpaneel voor een vliegtuigromp.
DE102006051462B4 (de) * 2006-10-31 2013-04-18 Airbus Operations Gmbh Schalenbauteil für ein Luft- oder Raumfahrzeug und Verfahren zum Herstellen desselben
US7635106B2 (en) * 2006-11-30 2009-12-22 The Boeing Company Composite shear tie
FR2914622B1 (fr) * 2007-04-04 2009-05-15 Airbus France Sas Aeronef comprenant une structure assurant les fonctions structurale et electrique
FR2920743B1 (fr) * 2007-09-07 2009-12-18 Airbus France Cadre de structure en materiau composite et fuselage d'aeronef comportant un tel cadre
WO2009048881A2 (en) * 2007-10-12 2009-04-16 Abe Karem Composite bulkhead and skin construction
US8079549B2 (en) * 2008-06-30 2011-12-20 EMBRAER—Empresa Brasileira de Aeronautica S.A. Monolithic integrated structural panels especially useful for aircraft structures
DE102009013585B4 (de) * 2009-03-17 2012-01-26 Airbus Operations Gmbh Rumpfzellenstruktur für ein Flugzeug in Hybridbauweise

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5242523A (en) * 1992-05-14 1993-09-07 The Boeing Company Caul and method for bonding and curing intricate composite structures
US20060237588A1 (en) * 2005-03-31 2006-10-26 The Boeing Company Composite structural member having an undulating web and method for forming the same
US20070039284A1 (en) * 2005-08-19 2007-02-22 Airbus Espana, S.L. Stringers made of a composite material with a bulb

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2401517R1 (es) * 2011-05-31 2013-08-26 Airbus Operations Sl Cuaderna de aeronave en material compuesto.
CN103454102A (zh) * 2012-06-04 2013-12-18 北京宇航***工程研究所 蒙皮加筋圆柱壳结构扭转等效刚度优化获取方法
US20190351990A1 (en) * 2018-05-17 2019-11-21 Airbus Operations Gmbh Fuselage Structure For An Aircraft
US11697487B2 (en) * 2018-05-17 2023-07-11 Airbus Operations Gmbh Fuselage structure for an aircraft
EP3604119A1 (en) 2018-07-31 2020-02-05 Airbus Operations, S.L. Frame for fuselage shells of an aircraft and fuselage shell
US11440634B2 (en) 2018-07-31 2022-09-13 Airbus Operations S.L. Frame for fuselage shells of an aircraft and fuselage shell

Also Published As

Publication number Publication date
CN102803067A (zh) 2012-11-28
ES2382765A1 (es) 2012-06-13
US20100327113A1 (en) 2010-12-30
CN102803067B (zh) 2015-08-19
ES2382765B1 (es) 2013-05-03
US8262024B2 (en) 2012-09-11

Similar Documents

Publication Publication Date Title
WO2011000987A1 (es) Cuaderna de refuerzo del fuselaje de una aeronave
ES2788529T3 (es) Método de fabricación de un cajón infundido altamente integrado hecho de material compuesto
ES2674659T3 (es) Método para fabricar una caja de torsión aeronáutica, caja de torsión y herramienta para fabricar una caja de torsión aeronáutica
ES2566168T3 (es) Estructura aeronáutica con elementos de refuerzo integrados
ES2523443T3 (es) Estructura de aeronave en material compuesto
US8245971B2 (en) Curved element, wing, control surface and stabilizer for aircraft
ES2418858T3 (es) Soporte costal para paneles de alas
ES2606709T3 (es) Cajón de torsión multilarguero rigidizado
ES2711153T3 (es) Refuerzos en forma de sección en U profunda con almas inclinadas y método para hacer dichos refuerzos
ES2383986B1 (es) Cuaderna de fuselaje de aeronave en material compuesto con alma estabilizada.
ES2606245T3 (es) Borde de ataque altamente integrado de una superficie sustentadora de una aeronave
ES2396328B1 (es) Fuselaje de aeronave en material compuesto y procedimientos para su fabricación.
ES2738109T3 (es) Disposición de unión de los cajones laterales de un estabilizador horizontal de cola con un cajón central tubular y procedimiento de fabricación de dicho cajón
JP2010524770A (ja) 航空機の翼−胴体組立体
US20080223987A1 (en) Rib element and composite flange for aircraft
BRPI0712111A2 (pt) estrutura de fuselagem de aeronave e método para sua produção
BR102013030182A2 (pt) Longarinas de referço integradas verticalmente
CN104249811B (zh) 一种适用于穿梭往返大气层的飞行器机翼
US8702038B2 (en) Pressure fuselage of an aircraft or spacecraft with pressure calotte
ES2707864T3 (es) Estructura de una aeronave realizada en material compuesto
BR112015013094B1 (pt) Estrutura de material compósito compreendendo pelo menos um material de reforço e pelo menos um material de matriz
ES2948928T3 (es) Procedimiento de fabricación de una caja multi-larguero con cubierta superior de revestimiento continuo de una sección de cono de cola para un extremo posterior de una aeronave y un conjunto de material compuesto
ES2881952T3 (es) Conjunto de fuselaje de composite y procedimientos y dispositivos para su fabricación
ES2715826T3 (es) Estructuras de caja para llevar cargas y métodos para fabricarlas
US20130181374A1 (en) Molding tool and method for manufacturing a fiber reinforced plastic aerodynamic aircraft component

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080028866.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10737597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10737597

Country of ref document: EP

Kind code of ref document: A1