WO2010146112A1 - Antifungal 1, 2, 4-triazolyl derivatives - Google Patents

Antifungal 1, 2, 4-triazolyl derivatives Download PDF

Info

Publication number
WO2010146112A1
WO2010146112A1 PCT/EP2010/058536 EP2010058536W WO2010146112A1 WO 2010146112 A1 WO2010146112 A1 WO 2010146112A1 EP 2010058536 W EP2010058536 W EP 2010058536W WO 2010146112 A1 WO2010146112 A1 WO 2010146112A1
Authority
WO
WIPO (PCT)
Prior art keywords
cio
compounds
alkyl
phenyl
formula
Prior art date
Application number
PCT/EP2010/058536
Other languages
French (fr)
Inventor
Jens Renner
Jochen Dietz
Alice GLÄTTLI
Thomas Grote
Wassilios Grammenos
Bernd Müller
Jan Klaas Lohmann
Sarah Ulmschneider
Marianna Vrettou-Schultes
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to BRPI1009656A priority Critical patent/BRPI1009656A2/en
Priority to US13/377,654 priority patent/US20120088660A1/en
Priority to EP10725703A priority patent/EP2443098A1/en
Priority to JP2012515492A priority patent/JP2012530110A/en
Priority to CN2010800268848A priority patent/CN102803231A/en
Publication of WO2010146112A1 publication Critical patent/WO2010146112A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • C07D249/101,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D249/12Oxygen or sulfur atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to novel triazole compounds of the formulae I and Il as defined below which carry a sulfur substituent, to agricultural compositions containing them, to their use as fungicides and to intermediate compounds used in the method of producing them.
  • Plant disease damage to ornamental, vegetable, field, cereal, and fruit crops can cause significant reduction in productivity and thereby result in increased costs to the consumer.
  • WO96/16048 and WO 97/43269 describe sulfurized triazolyl derivatives. The compounds are used for combating harmful fungi.
  • triazole compounds of the general formulae I and II defined below, and by the agriculturally acceptable salts of the compounds I and II.
  • the present invention relates to triazole compounds of the formulae I and Il and to agriculturally useful salts thereof
  • R 1 is selected from Ci-Cio-alkyl, Ci-Cio-haloalkyl, C2-Cio-alkenyl, C2-Cio-haloalkenyl, C2-Cio-alkynyl, C2-Cio-haloalkynyl, C3-Cio-cycloalkyl, C3-Cio-halocycloalkyl, C3-
  • R 2 is selected from hydrogen and a protective group
  • R 3 and R 4 independently of each other and independently of each occurrence, are selected from hydrogen, halogen, Ci-C4-alkyl, Ci-C4-haloalkyl, C2-C4-alkenyl, C2- C4-haloalkenyl, C2-C4-alkynyl, C2-C4-haloalkynyl, Ci-C4-alkoxy and C1-C4- haloalkoxy;
  • R 3 and R 4 together with the carbon atom to which they are bound, form a saturated, partially unsaturated or maximum unsaturated 3-, 4-, 5-, 6- or 7- membered carbocyclic or heterocyclic ring, where the heterocyclic ring contains 1 , 2 or 3 heteroatoms or heteroatom-containing groups selected from N, O, S, SO and SO2 as ring members;
  • R 5 is selected from C3-Cio-cycloalkyl, C3-Cio-halocycloalkyl, where the cycloalkyl moiety in the 2 last-mentioned radicals may carry 1 , 2, 3 or 4 substituents R 8 , C3- Cio-cycloalkenyl, C3-Cio-halocycloalkenyl, where the cycloalkenyl moiety in the 2 last-mentioned radicals may carry 1 , 2, 3 or 4 substituents R 8 , aryl which may carry 1 , 2 or 3 substituents R 9 , and a saturated, partially unsaturated or maximum unsaturated 3-, 4-, 5-, 6- or 7-membered heterocyclic ring containing 1 , 2 or 3 heteroatoms or heteroatom-containing groups selected from N, O, S, SO and SO2 as ring members, where the heterocyclic ring may carry 1 , 2 or 3 substitu- ents R 10 ;
  • R 1 , R 2 , R 3 , R 4 , R 5 and n are as defined for formulae I and II;
  • # is the attachment point to the remainder of the molecule
  • each R 7 is independently selected from halogen, nitro, CN, Ci-C4-alkyl, Ci-C4-haloalkyl, Ci-C 4 -alkoxy, Ci-C 4 -haloalkoxy and NR 15 R 16 ;
  • each R 10 is independently selected from halogen, nitro, CN, Ci-C 4 -alkyl, CrC 4 - haloalkyl, Ci-C 4 -alkoxy, Ci-C 4 -haloalkoxy and NR 15 R 16 ;
  • each R 11 is independently selected from halogen, nitro, CN, Ci-C 4 -alkyl, CrC 4 - haloalkyl, Ci-C 4 -alkoxy, Ci-C 4 -haloalkoxy and NR 15 R 16 ;
  • R 12 is selected from hydrogen, Ci-Cio-alkyl, Ci-Cio-haloalkyl, Ci-Cio-alkoxy, C1-C10- haloalkoxy, Ci-Cio-aminoalkyl, C3-Cio-cycloalkyl, C3-Cio-halocycloalkyl, phenyl, phenyl-Ci-C 4 -alkyl, where the phenyl moiety in the 2 last-mentioned radicals may carry 1 , 2, 3, 4 or 5 substituents R 11 , a 5- or 6-membered saturated, partially un- saturated or aromatic heterocyclic ring containing 1 , 2 or 3 heteroatoms selected from N, O and S as ring members, where the heterocyclic ring may carry 1 , 2 or 3 substituents R 11 , and NR 15 R 16 ;
  • R 13 and R 14 are selected from Ci-Cio-alkyl, C1-C10- haloalkyl, C2-Cio-alkenyl, C2-Cio-haloalkenyl, C2-Cio-alkynyl, C2-Cio-haloalkynyl,
  • each R 15 is independently selected from hydrogen and Ci-Cs-alkyl
  • each R 16 is independently selected from hydrogen, Ci-Cs-alkyl, phenyl, and phenyl-Ci- C 4 -alkyl;
  • R 15 and R 16 together form a linear C 4 - or Cs-alkylene bridge or a group -CH2CH2OCH2CH2- or -CH 2 CH 2 NR 17 CH 2 CH 2 -;
  • each R 17 is independently selected from hydrogen and Ci-C 4 -alkyl
  • Q is O or S;
  • M is a metal cation equivalent or an ammonium cation of formula (NR a R b R c R d ) + , wherein R a , R b , R c and R d , independently of each other, are selected from hydrogen, Ci-Cio-alkyl, phenyl and benzyl, where the phenyl moiety in the 2 last- mentioned radicals may carry 1 , 2 or 3 substituents independently selected from halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy, Ci-C4-haloalkoxy and NR 15 R 16 ;
  • n 0, 1 , 2 or 3;
  • n 2, 3, 4, 5, 6 or 7;
  • the present invention also provides the use of triazole compounds of the formulae I and Il and/or their agriculturally useful salts for controlling harmful fungi.
  • the invention further provides fungicidal compositions comprising these triazole compounds of the formulae I and/or Il (and/or also of the formula IV; see below) and/or their agriculturally acceptable salts and suitable carriers. Suitable agriculturally acceptable carriers are described below.
  • the compounds I and Il can exist as one or more stereoisomers.
  • the various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers.
  • one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers.
  • the compounds of the invention may be present as a mixture of stereoisomers, e.g. a racemate, individual stereoisomers, or as an optically active form.
  • Suitable agriculturally useful salts are especially the salts of those cations or the acid addition salts of those acids whose cations and anions, respectively, have no adverse effect on the fungicidal action of the compounds I and II.
  • suitable cations are in particular the ions of the alkali metals, preferably sodium and potassium, of the alkaline earth metals, preferably calcium, magnesium and barium, and of the transition metals, preferably manganese, copper, zinc and iron, and also the ammonium ion which, if desired, may carry one to four Ci-C4-alkyl substituents and/or one phenyl or benzyl substituent, preferably diisopropylammonium, tetramethylammonium, tetrabutylammo- nium, trimethylbenzylammonium, furthermore phosphonium ions, sulfonium ions, pref- erably tri(Ci-C4-alkyl)sulfonium and s
  • Anions of useful acid addition salts are primarily chloride, bromide, fluoride, hydrogen- sulfate, sulfate, dihydrogenphosphate, hydrogenphosphate, phosphate, nitrate, bicar- bonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate, and also the anions of Ci-C4-alkanoic acids, preferably formate, acetate, propionate and butyrate. They can be formed by reacting I or Il with an acid of the corresponding anion, preferably hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or nitric acid.
  • C n -Cm indicates the number of carbon atoms possible in each case in the substituent or sub- stitutent moiety in question:
  • Halogen fluorine, chlorine, bromine and iodine
  • C 2 -C 3 - Alkyl is ethyl, n-propyl or isopropyl.
  • Ci-C 2 -Alkyl is methyl or ethyl.
  • Ci-C4-Alkyl is methyl, ethyl, propyl, isopropyl, butyl, 1-methylpropyl (sec-butyl), 2-methylpropyl (isobutyl) or 1 ,1-dimethylethyl (tert-butyl).
  • Ci-C ⁇ -Alkyl is additionally also, for example, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, 1 ,1-dimethylpropyl, 1 ,2-dimethylpropyl, hexyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1 ,1-dimethylbutyl, 1 ,2-dimethylbutyl, 1 ,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1 ,1 ,2-trimethylpropyl, 1 ,2,2-trimethylpropyl, 1-ethyl-1-methylpropyl, or 1-ethyl-2- methylpropyl.
  • d-Cs-Alkyl is additionally also, for example, heptyl, octyl, 2-ethylhexyl and positional isomers thereof.
  • Ci-Cio-Alkyl is additionally also, for example, nonyl, decyl, 2-propylheptyl, 3-propylheptyl and positional isomers thereof.
  • Haloalkyl straight-chain or branched alkyl groups having 1 to 2 (Ci-C2-haloalkyl), 1 to 3 (d-Cs-haloalkyl), 1 to 4 (Ci-C 4 -haloalkyl), 1 to 6 (d-C ⁇ -haloalkyl), 1 to 8 (Ci-C 8 - haloalkyl), 1 to 10 (Ci-Cio-haloalkyl) or 2 to 10 (C2-Cio-haloalkyl) carbon atoms (as mentioned above), where some or all of the hydrogen atoms in these groups may be replaced by halogen atoms as mentioned above: in particular Ci-C2-haloalkyl, such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoro- methyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl
  • Ci-C3-Haloalkyl is additionally, for example, 1 ,1 ,1-trifluoroprop-2-yl, 3,3,3-trifluoropropyl or heptafluoropropyl.
  • CrC 4 - Haloalkyl is additionally, for example, 1-chlorobuty, 2-chlorobutyl, 3-chlorobutyl or 4- chlorobutyl.
  • Ci-Cio-Hydroxyalkyl straight-chain or branched alkyl groups having 1 to 2 (Ci-C 2 - hydroxyalkyl), 1 to 4 (Ci-C 4 -hydroxyalkyl), 2 to 4 (C 2 -C 4 -hydroxyalkyl), 1 to 6 (Ci-C 6 - hydroxyalkyl), 2 to 6 (C 2 -C 6 -hydroxyalkyl), 1 to 8 (Ci-C 8 -hydroxyalkyl), 2 to 8 (C 2 -C 8 - hydroxyalkyl), 1 to 10 (Ci-Cio-hydroxyalkyl) or 2 to 10 (C 2 -Cio-hydroxyalkyl) carbon atoms (as mentioned above), where at least one of the hydrogen atoms is replaced by a hydroxyl group, such as in 2-hydroxyethyl or 3-hydroxypropyl.
  • Haloalkenyl and the haloalkenyl moieties in haloalkenyloxy, haloalkenylcarbonyl and the like unsaturated straight-chain or branched hydrocarbon radicals having 2 to 4 (C 2 - C 4 -haloalkenyl), 2 to 6 (C 2 -C 6 -haloalkenyl), 2 to 8 (C 2 -C 8 -haloalkenyl) or 2 to 10 (C 2 - Cio-haloalkenyl) carbon atoms and a double bond in any position (as mentioned above), where some or all of the hydrogen atoms in these groups may be replaced by halogen atoms as mentioned above, in particular fluorine, chlorine and bromine, for example chlorovinyl, chloroallyl and the like;
  • Haloalkynyl and the haloalkynyl moieties in haloalkynyloxy, haloalkynylcarbonyl and the like unsaturated straight-chain or branched hydrocarbon radicals having 2 to 4 (C 2 - C 4 -haloalkynyl), 2 to 6 (C 2 -C 6 -haloalkynyl), 2 to 8 (C 2 -C 8 -haloalkynyl) or 2 to 10 (C 2 -Ci 0 - haloalkynyl) carbon atoms and one or two triple bonds in any position (as mentioned above), where some or all of the hydrogen atoms in these groups may be replaced by halogen atoms as mentioned above, in particular fluorine, chlorine and bromine; Cycloalkyl and the cycloalkyl moieties in cycloalkoxy, cycloalkylcarbonyl and the like; monocyclic saturated hydrocarbon groups having 3 to 6 (Cs-C
  • C3-C6-cycloalkyl-Ci-C2-alkyl a Ci-C2-alkyl residue, as decribed above, wherein one of the hydrogen atoms is replaced by a Cs-C ⁇ -cycloalkyl group.
  • Examples are cyclopro- pylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, cyclopropyl-1 -ethyl, cyclobutyl-1 -ethyl, cyclopentyl-1 -ethyl, cyclohexyl-1 -ethyl, cyclopropyl-2-ethyl, cyclobu- tyl-2-ethyl, cyclopentyl-2-ethyl, cyclohexyl-2-ethyl and the like.
  • C3-Cio-cycloalkyl-Ci-C4- alkyl is a Ci-C4-alkyl residue, as decribed above, wherein one of the hydrogen atoms is replaced by a C3-Cio-cycloalkyl group.
  • Examples are, apart those mentioned above for C3-C6-cycloalkyl-Ci-C4-alkyl, cycloheptylmethyl, cyclooctylmethyl, cyclononylmethyl, cyclodecylmethyl, cycloheptyl-1 -ethyl, cyclooctyl-1 -ethyl, cyclononyl-1 -ethyl, cyclode- cyl-1 -ethyl, cycloheptyl-2 -ethyl, cyclooctyl-2 -ethyl, cyclononyl-2 -ethyl, cyclodecylmethyl, cyclopropyl-1 -propyl, cyclopropyl-2-propyl, cyclopropyl-3-propyl, cyclobutyl-1 - propyl, cyclobutyl-2-propyl, cyclobutyl-3-propy
  • C3-C6-halocycloalkyl-Ci-C2-alkyl a Ci-C2-alkyl residue, as decribed above, wherein one of the hydrogen atoms is replaced by a Cs-C ⁇ -halocycloalkyl group.
  • Examples are 1- chlorocyclopropylmethyl, i-chlorocyclobutylmethyl, i-chlorocyclopentylmethyl, 1- chlorocyclohexylmethyl, i-chlorocyclopropyl-i -ethyl, 1-chlorocyclobutyl-i -ethyl, 1- chlorocyclopentyl-1 -ethyl, i-chlorocyclohexyl-i -ethyl, i-chlorocyclopropyl ⁇ -ethyl, 1- chlorocyclobutyl-2 -ethyl, i-chlorocyclopentyl ⁇ -ethyl, i-chlorocyclohexyl ⁇ -ethyl, 2- chlorocyclopropylmethyl, 2-chlorocyclobutylmethyl, 2-chlorocyclopentylmethyl, 2- chlorocyclohexylmethyl, 2-chlorocyclopropyl-1 -ethyl
  • C3-Cio-halocycloalkyl-Ci-C4-alkyl is a Ci-C 4 -alkyl residue, as decribed above, wherein one of the hydrogen atoms is replaced by a C3-Cio-halocycloalkyl group.
  • Ci-C2-Alkoxy is methoxy or ethoxy.
  • C1-C3- Alkoxy is additionally, for example, n-propoxy or 1-methylethoxy (isopropoxy).
  • C1-C4- Alkoxy is additionally, for example, butoxy, 1-methylpropoxy (sec-butoxy), 2- methylpropoxy (isobutoxy) or 1 ,1-dimethylethoxy (tert-butoxy).
  • d-C ⁇ -Alkoxy is additionally, for example, pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 1 ,1- dimethylpropoxy, 1 ,2-dimethylpropoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy, hexoxy, 1-methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1 ,1- dimethylbutoxy, 1 ,2-dimethylbutoxy, 1 ,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3- dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2-ethylbutoxy, 1 ,1 ,2- trimethylpropoxy, 1 ,2,2-trimethylpropoxy, 1-ethyl-1-methylpropoxy or 1 -ethyl-2- methylpropoxy.
  • Ci-Cs-Alkoxy is additionally, for example, heptyloxy, octyloxy, 2- ethylhexyloxy and positional isomers thereof. Ci-Cio-Alkoxy is additionally, for example, nonyloxy, decyloxy and positional isomers thereof. C2-Cio-Alkoxy is like Ci-Cio-alkoxy with the exception of methoxy.
  • Haloalkoxy an alkoxy radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, preferably by fluorine.
  • Ci-C2-Haloalkoxy is, for example, OCH 2 F, OCHF 2 , OCF 3 , OCH 2 CI, OCHCI 2 , OCCI 3 , chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2-bromoethoxy, 2-iodoethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2- fluoroethoxy, 2-chloro-2,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy or OC 2 Fs.
  • Ci-C4-Haloalkoxy is additionally, for example, 2-fluoropropoxy, 3-fluoropropoxy, 2,2-difluoropropoxy, 2,3-difluoropropoxy, 2-chloropropoxy, 3-chloropropoxy, 2,3-dichloropropoxy, 2-bromopropoxy, 3-bromopropoxy, 3,3,3-trifluoropropoxy, 3,3,3-trichloropropoxy, OCH 2 -C 2 F 5 , OCF 2 - C 2 F 5 , 1-(CH 2 F)-2-fluoroethoxy, 1-(CH 2 CI)-2-chloroethoxy, 1-(CH 2 Br)-2-bromoethoxy, 4-fluorobutoxy, 4-chlorobutoxy, 4-bromobutoxy or nonafluorobutoxy.
  • Ci-C6-Haloalkoxy is additionally, for example, 5-fluoropentoxy, 5-chloropentoxy, 5-brompentoxy, 5-iodopentoxy, undecafluoropentoxy, 6-fluorohexoxy, 6-chlorohexoxy, 6-bromohexoxy, 6-iodohexoxy or dodecafluorohexoxy.
  • Alkenyloxy alkenyl as mentioned above which is attached via an oxygen atom, for example C 2 -Cio-alkenyloxy, such as 1-ethenyloxy, 1-propenyloxy, 2-propenyloxy, 1- methylethenyloxy, 1-butenyloxy, 2-butenyloxy, 3-butenyloxy, 1-methyl-1-propenyloxy, 2-methyl-1-propenyloxy, 1-methyl-2-propenyloxy, 2-methyl-2-propenyloxy, 1- pentenyloxy, 2-pentenyloxy, 3-pentenyloxy, 4-pentenyloxy, 1-methyl-1-butenyloxy, 2- methyl-1-butenyloxy, 3-methyl-1-butenyloxy, 1-methyl-2-butenyloxy, 2-methyl-2-butenyloxy, 3-methyl-1-butenyloxy, 1-methyl-2-butenyloxy, 2-methyl-2- butenyloxy, 3-methyl-2-butenyloxy, 1-methyl-3
  • Haloalkenyloxy an alkenyloxy radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, preferably by fluorine.
  • Alkynyloxy alkynyl as mentioned above which is attached via an oxygen atom, for example C2-Cio-alkynyloxy, such as 2-propynyloxy, 2-butynyloxy, 3-butynyloxy, 1-methyl- 2-propynyloxy, 2-pentynyloxy, 3-pentynyloxy, 4-pentynyloxy, 1-methyl-2-butynyloxy, 1- methyl-3-butynyloxy, 2-methyl-3-butynyloxy, 1 -ethyl-2-propynyloxy, 2-hexynyloxy, 3- hexynyloxy, 4-hexynyloxy, 5-hexynyloxy, 1-methyl-2-pentynyloxy, 1-methyl-3- pentynyloxy and the like;
  • Haloalkynyloxy an alkynyloxy radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, preferably by fluorine.
  • Cycloalkoxy cycloalkyl as mentioned above which is attached via an oxygen atom, for example C3-Cio-cycloalkoxy or Cs-Cs-cycloalkoxy, such as cyclopropoxy, cyclopentoxy, cyclohexoxy, cycloheptoxy, cyclooctoxy, cyclononyloxy, cyclodecyloxy and the like;
  • Cycloalkenyloxy cycloalkenyl as mentioned above which is attached via an oxygen atom, for example C3-Cio-cycloalkenyloxy, Cs-Cs-cycloalkenyloxy or, preferably, Cs-C ⁇ - cycloalkenyloxy, such as cyclopent-1-enoxy, cyclopent-2-enoxy, cyclohex-1-enoxy and cyclohex-2-enoxy;
  • Alkoxyalkyl alkyl as defined above having 1 to 10, 1 to 8, 1 to 6 or 1 to 4, in particular 1 to 3, carbon atoms, in which one hydrogen atom is replaced by an alkoxy group having 1 to 8, 1 to 6, 1 to 4 or 1 to 3 carbon atoms, for example methoxymethyl, 2- methoxyethyl, ethoxymethyl, 3-methoxypropyl, 3-ethoxypropyl and the like.
  • Alkoxyalkoxy alkoxy as defined above having 1 to 10, 1 to 8, 1 to 6 or 1 to 4, in particular 1 to 3, carbon atoms, in which one hydrogen atom is replaced by an alkoxy group having 1 to 8, 1 to 6 or in particular 1 to 4 carbon atoms, for example 2-methoxyethoxy, 2-ethoxyethoxy, 3-methoxypropoxy, 3-ethoxypropoxy and the like.
  • Alkylcarbonyl group of the formula R-CO- in which R is an alkyl group as defined above, for example Ci-Cio-alkyl, d-Cs-alkyl, Ci-C ⁇ -alkyl, Ci-C4-alkyl, Ci-C2-alkyl or C3- C4-alkyl. Examples are acetyl, propionyl and the like. Examples for C3-C4-alkylcarbonyl are propylcarbonyl, isopropylcarbonyl, n-butylcarbonyl, sec-butylcarbonyl, isobutylcar- bonyl and tert-butylcarbonyl.
  • Haloalkylcarbonyl group of the formula R-CO- in which R is a haloalkyl group as defined above, for example Ci-Cio-haloalkyl, d-Cs-haloalkyl, d-C ⁇ -haloalkyl, C1-C4- haloalkyl, Ci-C2-haloalkyl or C3-C4-haloalkyl. Examples are difluoromethylcarbonyl, trifluoromethylcarbonyl, 2,2-difluoroethylcarbony, 2,2,3-trifluoroethylcarbonyl and the like.
  • Alkoxycarbonyl group of the formula R-CO- in which R is an alkoxy group as defined above, for example Ci-Cio-alkoxy, Ci-Cs-alkoxy, Ci-C ⁇ -alkoxy, Ci-C4-alkoxy or C1-C2- alkoxy.
  • Ci-C4-alkoxycarbonyl are methoxycarbonyl, ethoxycarbonyl, pro- poxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, sec-butoxycarbonyl, isobutoxy- carbonyl and tert-butoxycarbonyl.
  • Haloalkoxycarbonyl group of the formula R-CO- in which R is a haloalkoxy group as defined above, for example Ci-Cio-haloalkoxy, d-Cs-haloalkoxy, Ci-C6-haloalkoxy, Ci- C4-haloalkoxy or Ci-C2-haloalkoxy.
  • Ci-C4-haloalkoxycarbonyl are di- fluoromethoxycarbonyl, trifluoromethoxycarbonyl, 2,2-difluoroethoxycarbony, 2,2,3- trifluoroethoxycarbonyl and the like.
  • Alkylaminocarbonyl group of the formula R-NH-CO- in which R is an alkyl group as defined above, for example Ci-Cio-alkyl, d-Cs-alkyl, Ci-C ⁇ -alkyl, Ci-d-alkyl, C1-C2- alkyl or Cs-d-alkyl.
  • Ci-d-alkylaminocarbonyl are methylaminocarbonyl, ethylaminocarbonyl, propylaminocarbonyl, isopropylaminocarbonyl, butylaminocar- bonyl, sec-butylaminocarbonyl, isobutylaminocarbonyl and tert-butylaminocarbonyl.
  • Dialkylaminocarbonyl group of the formula RR'N-CO- in which R and R', independently of each other, are an alkyl group as defined above, for example Ci-Cio-alkyl, Ci-Cs- alkyl, d-Ce-alkyl, Ci-d-alkyl, Ci-C 2 -alkyl or C 3 -C 4 -alkyl.
  • R and R' independently of each other, are an alkyl group as defined above, for example Ci-Cio-alkyl, Ci-Cs- alkyl, d-Ce-alkyl, Ci-d-alkyl, Ci-C 2 -alkyl or C 3 -C 4 -alkyl.
  • Examples for di-(Ci-C 4 -alkyl)- aminocarbonyl are dimethylaminocarbonyl, diethylaminocarbonyl, dipropylaminocar- bonyl, diisopropylaminocarbonyl and dibut
  • Aminoalkyl group of the formula R-NH 2 in which R is an alkyl group as defined above, for example Ci-Cio-alkyl, Ci-C 8 -alkyl, Ci-C 6 -alkyl, Ci-C 4 -alkyl, Ci-C 2 -alkyl or C 3 -C 4 - alkyl.
  • R is an alkyl group as defined above, for example Ci-Cio-alkyl, Ci-C 8 -alkyl, Ci-C 6 -alkyl, Ci-C 4 -alkyl, Ci-C 2 -alkyl or C 3 -C 4 - alkyl.
  • Examples are aminomethyl, 1- and 2-aminoethyl, 1-, 2- and 3-aminopropyl, 1- and 2-amino1-methylethyl, 1-, 2-, 3- and 4-aminobutyl and the like.
  • Alkylsulfonyl group of the formula R-S(O) 2 - in which R is an alkyl group as defined above, for example Ci-Cio-alkyl, d-Cs-alkyl, C-i-C ⁇ -alkyl, Ci-C 4 -alkyl or Ci-C2-alkyl.
  • Ci-C4-alkylsulfonyl examples include methylsulfonyl, ethylsulfonyl, propylsulfonyl, iso- propylsulfonyl, n-butylsulfonyl, sec-butylsulfonyl, isobutylsulfonyl and tert-butylsulfonyl.
  • Alkylthio alkyl as defined above which is attached via a sulfur atom.
  • Haloalkylthio haloalkyl as defined above which is attached via a sulfur atom.
  • Alkenylthio alkenyl as defined above which is attached via a sulfur atom.
  • Haloalkenylthio haloalkenyl as defined above which is attached via a sulfur atom.
  • Alkynylthio alkynyl as defined above which is attached via a sulfur atom.
  • Haloalkynylthio haloalkynyl as defined above which is attached via a sulfur atom.
  • Cycloalkylthio cycloalkyl as defined above which is attached via a sulfur atom.
  • Aryl is a carbocyclic aromatic monocyclic or polycyclic ring containing 6 to 16 carbon atoms as ring members. Examples are phenyl, naphthyl, anthracenyl, phenanthrenyl, fluorenyl and azulenyl. Preferably, aryl is phenyl or naphthyl, and especially phenyl.
  • Phenyl-Ci-C 4 -alkyl Ci-C 4 -alkyl (as defined above), where a hydrogen atom is replaced by a phenyl group, such as benzyl, phenethyl and the like.
  • Phenyl-Ci-C 4 -alkoxy Ci-C 4 -alkoxy (as defined above), where one hydrogen atom is replaced by a phenyl group, such as benzyloxy, phenethyloxy and the like.
  • a seven-membered saturated or partially unsaturated heterocycle which contains 1 , 2 or 3 heteroatoms from the group consisting of oxygen, nitrogen and sulfur as ring members: for example mono- and bicyclic heterocycles having 7 ring mem- bers which, in addition to carbon ring members, contain one to three nitrogen atoms and/or one oxygen or sulfur atom or one or two oxygen and/or sulfur atoms, for example tetra- and hexahydroazepinyl, such as 2,3,4,5-tetrahydro[1 H]azepin- 1-, -2-, -3-, -4-, -5-, -6- or -7-yl, 3,4,5,6-tetrahydro[2H]azepin-2-, -3-, -A-, -5-, -6- or -7-yl, 2,3,4,7-tetrahydro[1 H]azepin-1 -, -2-, -3-, -4-, -5-, -6- or
  • 5-membered heteroaryl which is attached via nitrogen and contains one to three nitrogen atoms as ring members, such as pyrrol-1-yl, pyrazol-1-yl, imidazol-1-yl, 1 ,2,3-triazol-1-yl and 1 ,2,4-triazol- 1-yl; 6-membered heteroaryl, which contains one, two or three nitrogen atoms as ring members, such as pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, 3-pyridazinyl, 4- pyridazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 2-pyrazinyl, 1 ,3,5-triazin-2- yl and 1 ,2,4-triazin-3-yl;
  • C2-C5-Alkylene divalent branched or preferably unbranched chains having 2 to 5 car- bon atoms, for example CH 2 CH 2 , -CH(CH 3 )-, CH 2 CH 2 CH 2 , CH(CH 3 )CH 2 , CH 2 CH(CH 3 ), CH 2 CH 2 CH 2 CH 2 , CH 2 CH 2 CH 2 CH 2 CH 2 .
  • C4-C5-Alkylene divalent branched or preferably unbranched chains having 4 to 5 carbon atoms, for example CH 2 CH 2 CH 2 CH 2 or CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 .
  • the group -SM is more correctly spoken a group -S " M + , where M + is a metal cation equivalent or an ammonium cation as defined above.
  • M + is a metal cation equivalent or an ammonium cation as defined above.
  • a metal cation equivalent is more correctly spoken 1/a M a+ , where a is the valence of the metal and is in general 1 , 2 or 3.
  • the protective group in the definition of R 2 may be any oxygen-protective group (to be more precise: an OH protective group) known in the art.
  • OH groups for instance, can be protected by means of a benzyl group, introduced by reaction with benzyl chloride for example; by a silyl protective group, for example trimethylsilyl (TMS), tert- butyldimethylsilyl (TBDMS) or tert-butyldiphenylsilyl (TBDPS), which is introduced by reaction with the corresponding chloride; by the tetrahydropyranyl protective group; by an alkyl group, such as Ci-C ⁇ -alkyl; by a haloalkyl group, such as Ci-C4-haloalkyl; by an alkenyl group, such as C 2 -C6-alkenyl; by a haloalkenyl group, such as C 2 -C 4 - haloalkenyl; by an alkylcarbony
  • n is preferably 2, 3, 4, 5 or 6, more preferably 3, 4 or 5 and even more preferably 4 or 5. Specifically, n is 4. Alternatively, n is specifically 5.
  • R 1 is preferably selected from Ci-C ⁇ -alkyl, Ci-C4-haloalkyl, Cs-C ⁇ -cycloalkyl, C3-C6- halocycloalkyl, C3-C6-cycloalkyl-Ci-C2-alkyl, C3-C6-halocycloalkyl-Ci-C2-alkyl, where the cycloalkyl moiety in the 4 last-mentioned radicals may carry 1 or 2 substituents R 8 , where R 8 is preferably selected from methyl, difluoromethyl and trifluoromethyl; phenyl which may carry 1 , 2, 3, 4 or 5, preferably 1 , 2 or 3 and in particular 1 or 2, substituents R 7 , and a 5- or 6-membered heteroaromatic ring containing 1 , 2 or 3 heteroatoms selected from N, O and S as ring members, where the heteroaromatc ring may carry 1 , 2 or 3 substituents R 7 .
  • R 1 is selected from Ci-C ⁇ -alkyl, Ci-C4-haloalkyl, C3-C6-cycloalkyl, Cs-C ⁇ -halocycloalkyl, C3-C6-cycloalkyl-Ci-C2-alkyl, C3-C6- halocycloalkyl-Ci-C2-alkyl, where the cycloalkyl moiety in the 4 last-mentioned radicals may carry 1 substituent R 8 selected from methyl, difluoromethyl and trifluoromethyl, and phenyl which may carry 1 , 2, 3, 4 or 5, preferably 1 , 2 or 3 and in particular 1 or 2, substituents R 7 .
  • R 1 is selected from Ci-C ⁇ -alkyl (preferably Ci-C4-alkyl), cyclo- propyl, 1-methylcyclopropyl, 1-chlorocyclopropyl, 1-cyclopropylethyl and phenyl which may carry 1 , 2, 3, 4 or 5, preferably 1 , 2 or 3 and in particular 1 or 2, substituents R 7 and particularly preferably from tert-butyl, cyclopropyl, 1-methylcyclopropyl, 1- chlorocyclopropyl, 1-cyclopropylethyl and phenyl.
  • R 1 is tert-butyl.
  • the protective group in the definition of R 2 is preferably selected from benzyl, a silyl protective group, such as trimethylsilyl (TMS), tert-butyldimethylsilyl (TBDMS) or tert- butyldiphenylsilyl (TBDPS), d-Ce-alkyl, Ci-C 4 -haloalkyl, C 2 -C 6 -alkenyl, C 2 -C 4 - haloalkenyl, Ci-C4-alkylcarbonyl, Ci-C4-haloalkylcarbonyl, Ci-C4-alkoxycarbonyl, C1-C4- haloalkoxycarbonyl, Ci-C4-alkylaminocarbonyl, and di-(Ci-C4-alkyl)-aminocarbonyl.
  • TMS trimethylsilyl
  • TDMS tert-butyldimethylsilyl
  • TDPS tert- but
  • the protective group in the definition of R 2 is selected from Ci-C ⁇ -alkyl, Ci-C4-haloalkyl, C2-C6-alkenyl, C2-C4-haloalkenyl, Ci-C4-alkylcarbonyl, C1-C4- haloalkylcarbonyl, Ci-C4-alkoxycarbonyl, Ci-C4-haloalkoxycarbonyl, C1-C4- alkylaminocarbonyl, and di-(Ci-C4-alkyl)-aminocarbonyl.
  • R 2 is preferably selected from hydrogen and the above listed preferred and more pre- ferred protective groups. More preferably, R 2 is hydrogen.
  • R 3 and R 4 are preferably selected from hydrogen, halogen and Ci-C4-alkyl and more preferably from hydrogen, F, Cl, methyl and ethyl. Even more preferably, one of the radicals R 3 and R 4 is selected from hydrogen, F, Cl, methyl and ethyl and the remaining radicals R 3 and R 4 are all hydrogen. Particularly preferably, one of the radicals R 3 and R 4 is methyl and the remaining radicals R 3 and R 4 are all hydrogen or all radicals R 3 and R 4 are hydrogen. Specifically, all radicals R 3 and R 4 are hydrogen.
  • R 5 is preferably selected from phenyl which may carry 1 , 2 or 3 substituents R 9 , and a 5- or 6-membered heteroaromatic ring containing 1 , 2 or 3 heteroatoms selected from N, O and S as ring members, where the heteroaromatic ring may carry 1 , 2 or 3 substituents R 10 .
  • R 5 is phenyl which may carry 1 , 2 or 3, preferably 1 or 2 substituents R 9 .
  • R 9 is preferably selected from halogen, methyl, difluoromethyl, trifluoromethyl, methoxy, difluoromethoxy and trifluoromethoxy and preferably from halogen.
  • Halogen is in this case preferably selected from fluorine, chlorine and bromine and more preferably from fluorine and chlorine.
  • R 9 is fluorine. More preferably in this case, R 5 is phenyl which carries one fluorine substituent. More preferred groups R 9 are thus 2-fluorophenyl, 3-fluorophenyl and 4-fluorophenyl.
  • R 5 is phenyl which may carry 1 , 2 or 3 substituents R 9 selected from nitro, CN, Ci-C4-alkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy, Ci- C4-haloalkoxy and NR 15 R 16 . More preferably, R 5 is phenyl which may carry 1 , 2 or 3 substituents R 9 selected from Ci-C4-alkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy and C1-C4- haloalkoxy. Even more preferably, R 5 is phenyl which may carry 1 , 2 or 3 substituents R 9 selected from methyl and trifluoromethyl.
  • Examples therefore are 2,3- dimethylphenyl, 2,4-dimethylphenyl, 2,5-dimethylphenyl, 2,6-dimethylphenyl, 3,4- dimethylphenyl, 3,5-dimethylphenyl, 2,3-di(trifluoromethyl)phenyl, 2,4- di(trifluoromethyl)phenyl, 2,5-di(trifluoromethyl)phenyl, 2,6-di(trifluoromethyl)phenyl, 3,4-di(trifluoromethyl)phenyl and 2,6-di(trifluoromethyl)phenyl.
  • R 5 is phenyl which carries 2 or 3 substituents selected from halogen, nitro, CN, Ci-C4-alkyl, Ci-C4-haloalkyl, C1-C4- alkoxy, Ci-C4-haloalkoxy and NR 15 R 16 . In this case it is preferred that at least one of the 2 or 3 substituents is fluorine.
  • the second and, if present, the third substitu- ent are selected from halogen, especially fluorine and chlorine, Ci-C4-alkyl, C1-C4- haloalkyl, Ci-C4-alkoxy and Ci-C4-haloalkoxy, more preferably from halogen, especially fluorine and chlorine, Ci-C4-alkyl and Ci-C4-haloalkyl, and in particular from fluorine, chlorine, methyl and trifluoromethyl.
  • R 5 examples for such radicals R 5 are 2,3- difluorophenyl, 2,4-difluorophenyl, 2,5-difluorophenyl, 2,6-difluorophenyl, 3,4- difluorophenyl, 3,5-difluorophenyl, 2,3,4-trifluorophenyl, 2,4,6-trifluorophenyl, 3,4,5- trifluorophenyl, 2-chloro-3-difluorophenyl, 2-chloro-4-difluorophenyl, 2-chloro-5- difluorophenyl, 2-chloro-6-difluorophenyl, 3-chloro-4-difluorophenyl, 3-chloro-5- difluorophenyl, 3-chloro-2-difluorophenyl, 4-chloro-2-difluorophenyl, 5-chloro-2- difluorophenyl, 4-chloro-3-di
  • R 5 is phenyl which carries 1 or 2 substituents selected from 2-CI, 3-CI, 2,3-Cl 2 , 2,4-Cl 2 , 2,5-Cl 2 , 3,4-Cl 2 and 3,5-Cl 2 , relative to the 1 -position of the attachment point of the phenyl ring to the remainder of the molecule.
  • R 7 , R 10 and R 11 are independently of each other and independently of each occurrence selected from halogen, Ci-C4-alkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy and Ci- C4-haloalkoxy and more preferably from methyl, difluoromethyl, trifluoromethyl, meth- oxy, difluoromethoxy and trifluoromethoxy.
  • R 8 is independently of each occurrence selected from Ci-C4-alkyl, C1-C4- haloalkyl, Ci-C4-alkoxy and Ci-C4-haloalkoxy and more preferably from methyl, difluoromethyl, trifluoromethyl, methoxy, difluoromethoxy and trifluoromethoxy.
  • R 12 is specifically Ci-C4-alkyl, such as methyl, ethyl, propyl, isopropyl, n- butyl, sec-butyl, isobutyl or tert-butyl, preferably methyl, or is Ci-C4-alkoxy, such as methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, sec-butoxy, isobutoxy or tert-butoxy, preferably methoxy, and is more specifically methyl, and in the group -S(O)2R 12 , R 12 is specifically methyl.
  • Ci-C4-alkyl such as methyl, ethyl, propyl, isopropyl, n- butyl, sec-butyl, isobutyl or tert-butyl, preferably methyl
  • Ci-C4-alkoxy such as methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, sec-but
  • R 15 is hydrogen and R 16 is selected from hydrogen, Ci- C4-alkyl and phenyl, preferably from hydrogen and Ci-C4-alkyl, or the two of R 15 and R 16 are Ci-C 4 -alkyl.
  • R 6 is selected from hydrogen, CN, methyl- carbonyl, methoxycarbonyl and methyl.
  • R 6 is hydrogen.
  • M is preferably selected from an alkali metal cation, an earth alkaline metal cation equivalent, a cation equivalent of Cu, Zn, Fe or Ni or an ammonium cation of formula (NR a R b R c R d ) + , wherein one of R a , R b , R c and R d is hydrogen and three of R a , R b , R c and R d , independently of each other, are selected from Ci-Cio-alkyl.
  • M is selected from Li + , Na + , K + , /4Mg 2+ , a cation equivalent of Cu, Zn, Fe or Ni and an ammonium cation of formula (NR a R b R c R d ) + , wherein one of R a , R b , R c and R d is hydrogen and three of R a , R b , R c and R d , independently of each other, are selected from Ci-Cio- alkyl.
  • M is selected from Na + , K + , /4Mg 2+ , !4Cu 2+ , !4Zn 2+ , !4Fe 2+ , !4Ni 2+ , triethylammonium and trimethylammonium.
  • n 0 and R 6 is H (or, alterna- tively, in compounds II, R 6a is H).
  • Particularly preferred compounds I are compounds of formula I.
  • n 3, 4 or 5, preferably 4 or 5, specifically 5, and R 91 , R 92 , R 93 , R 94 and R 95 are hydrogen or have one of the general or, in particular, one of the preferred meanings given for R 9 .
  • Particular compounds I/I I/I .A are the following: 3-(5-mercapto-[1 ,2,4]-triazol- 1 -ylmethyl)-2,2-dimethyl- 6-phenoxy-hexan-3-ol; 3-(5-mercapto-[1 ,2,4]-triazol- 1 -ylmethyl)-2,2-dimethyl- 6-(2-fluorophenoxy)-hexan-3-ol; 3-(5-mercapto-[1 ,2,4]-triazol- 1 -ylmethyl)-2,2-dimethyl- 6-(4-fluorophenoxy)-hexan-3-ol; 3-(5-mercapto-[1 ,2,4]-triazol- 1 -ylmethyl)-2,2-dimethyl- 6-(2,4-difluorophenoxy)-hexan-3-ol;
  • Examples for preferred compounds I and Il are compounds of formulae 1.1 to 1.14 and 11.1 to 11.7, where the variables have one of the general or, in particular, one of the pre- ferred meanings given above.
  • Examples of preferred compounds are the individual compounds compiled in the tables 1 to 3654 below. Moreover, the meanings mentioned below for the individual variables in the tables are per se, independently of the combination in which they are mentioned, a particularly preferred embodiment of the substituents in question.
  • Tables 246 to 294 Compounds of the formula 1.1 in which the combination of R 91 , R 92 , R 93 , R 94 and R 95 for a compound corresponds in each case to one row of Table A, R 6 is as defined in any of tables 1 to 49 and R 1 is 1-cyclopropylethyl
  • R 1 and R 6 is as defined in any of tables 1 to 294
  • R 1 and R 6 is as defined in any of tables 1 to 294 Tables 1177 to 1470
  • R 1 and R 6 is as defined in any of tables 1 to 294
  • R 1 and R 6 is as defined in any of tables 1 to 294
  • R 1 and R 6 is as defined in any of tables 1 to 294
  • Tables 2071 to 2076 Compounds of the formula 1.10 in which the combination of R 91 , R 92 , R 93 , R 94 and R 95 for a compound corresponds in each case to one row of Table A and R 1 is as defined in any of tables 2059 to 2064
  • Table 2102 Compounds of the formula 11.1 in which the combination of R 91 , R 92 , R 93 , R 94 and R 95 for a compound corresponds in each case to one row of Table A, R 1 is tert-butyl and R 6a is methyl
  • Table 2109 Compounds of the formula 11.1 in which the combination of R 91 , R 92 , R 93 , R 94 and R 95 for a compound corresponds in each case to one row of Table A, R 1 is tert-butyl and R 6a is tert-butyl
  • Table 21 10 Compounds of the formula 11.1 in which the combination of R 91 , R 92 , R 93 , R 94 and R 95 for a compound corresponds in each case to one row of Table A, R 1 is tert-butyl and R 6a is phenyl
  • Table 21 15 Compounds of the formula 11.1 in which the combination of R 91 , R 92 , R 93 , R 94 and R 95 for a compound corresponds in each case to one row of Table A, R 1 is tert-butyl and R 6a is isopropylcarbonyl
  • Tables 2212 to 2248 Compounds of the formula 11.1 in which the combination of R 91 , R 92 , R 93 , R 94 and R 95 for a compound corresponds in each case to one row of Table A, R 6a is as defined in any of tables 2101 to 2137 and R 1 is 1-chlorocyclopropyl
  • R 1 and R 6a is as defined in any of tables 2101 to 2322 Tables 2545 to 2766
  • R 1 and R 6a is as defined in any of tables 2101 to 2322
  • R 1 and R 6a is as defined in any of tables 2101 to 2322
  • R 1 and R 6a is as defined in any of tables 2101 to 2322
  • R 1 and R 6a is as defined in any of tables 2101 to 2322
  • R 1 and R 6a is as defined in any of tables 2101 to 2322
  • an organolithium base such as n-butyllithium, tert- butyllithium or sec-butyllithium, lithium diisopropyl amide, sodium hydride, sodium amide or potassium tert-butylate mixed with tetramethylethylene diamine (TMEDA), and then the resulting anion is reacted with elemental sulfur.
  • Sulfur is generally used in powdered form.
  • the reaction is generally carried out in an inert solvent, such as ethers, e.g. diethylether, methyl-tert-butylether, tetrahydrofuran or dioxane, dimethoxyethane, liquid ammonia, dimethylsulfoxide or dimethylformamide.
  • the reaction temperature is not very critical and can range, for example, from -70 to +50 0 C, preferably from -70 to 0 0 C.
  • sulfurization can be carried out in the absence of a base by reacting 7 with elemental sulfur in a high-boiling solvent, such as N-methylpyrrolidinone, diox- ane or N,N-dimethylformamide, while heating, e.g. to 160 to 250 0 C.
  • a high-boiling solvent such as N-methylpyrrolidinone, diox- ane or N,N-dimethylformamide
  • the resulting mixture is hydrolyzed, e.g. by the addition of water or an aqueous acid, such as a mineral acid (e.g. dilute sulfuric acid or hydrochloric acid), acetic acid or ammoniumchloride, to give compound I.
  • a high-boiling solvent such as N-methylpyrrolidinone, diox- ane or N
  • the triazole compound IV wherein R 2 is H
  • R 2 can be prepared in analogy to known methods, such as described, for example, in DE-A-3702301 , as outlined in scheme 2.
  • the oxirane compound 1 and [1 ,2,4]-1 H-triazole can be reacted in the presence of a base, such as an alkali metal hydride (e.g. sodium hydride, potassium hydride), an alkali metal hydroxide (e.g. sodium hydroxide, potassium hydroxide), or an alkali metal carbonate (e.g. sodium carbonate, potassium carbonate, caesium carbonate).
  • a base such as an alkali metal hydride (e.g. sodium hydride, potassium hydride), an alkali metal hydroxide (e.g. sodium hydroxide, potassium hydroxide), or an alkali metal carbonate (e.g. sodium carbonate, potassium carbonate, caesium carbonate).
  • a base such as an alkali metal
  • Suitable solvents are, for example, toluene, N-methypyrrolidinone, ethers (e.g. diethyl ether, tetrahydrofuran), alcohols (e.g. methanol, ethanol, isopropanol or tert-butanol), acetonitrile, or N, N- dimethylformamide.
  • the oxirane 1 in turn can be prepared in analogy to known methods, such as described, for example, in EP-A-0267778, Org. Syn. 49, 78 (1968) or J. Am. Chem. Soc. 1975, 1353, as outlined in scheme 3 below.
  • the ketone 2 may be reacted with a sulfonium ylide or an oxosulfonium ylide, such as dimethyloxosulfonium me- thylide or dimethylsulfonium methylide in a solvent.
  • the oxirane 1 can be prepared in an epoxidation reaction in analogy to the method described in Tetrahedron Lett.
  • a trimethylsulfonium salt such as trimethylsulfonium bromide, trimethylsulfonium iodide or methyltrimethylsulfonium sulfate
  • a metal oxide such as alkaline metal oxides (e.g. sodium oxide, potassium oxide), alkaline earth metal oxides (e.g. magnesium oxide, calcium oxide, barium oxide) or zinc oxide
  • alkali metal hydrides e.g. sodium hydride, potassium hydride
  • alkali metal hydroxides e.g.
  • alkali metal carbonates e.g. sodium carbonate, potassium carbonate, caesium carbonate
  • a two-phase solid/liquid system comprising an organic solvent, such as toluene, N- methypyrrolidinone, ethers (e.g. diethyl ether, tetrahydrofuran), acetonitrile or N, N- dimethylformamide.
  • organic solvent such as toluene, N- methypyrrolidinone, ethers (e.g. diethyl ether, tetrahydrofuran), acetonitrile or N, N- dimethylformamide.
  • the oxirane 1 can be prepared in analogy to the method described in Tetrahedron 1985, 1259 by epoxidation of 2 with a trimethylsulfonium salt, such as trimethylsulfonium bromide, trimethylsulfonium iodide or methyl- trimethylsulfonium sulfate, or a trimethylsulfoxonium salt, such as trimethylsulfoxonium bromide, trimethylsulfoxonium iodide or methyltrimethylsulfoxonium sulfate and potassium sulfate/aluminium oxide.
  • a trimethylsulfonium salt such as trimethylsulfonium bromide, trimethylsulfonium iodide or methyltrimethylsulfoxonium sulfate and potassium sulfate/aluminium oxide.
  • the oxirane 1 can be prepared in analogy to the method described in EP-A-291795 by first reacting 2 with a methyla- tion reagent, such as methyl triphenylphosphonium bromide, in the presence of a strong base and in a second step with a peracid in a suitable solvent.
  • a methyla- tion reagent such as methyl triphenylphosphonium bromide
  • the ketone 2 can be obtained from the halide 4 by a Grignard reaction with the aldehyde 5, as outlined in scheme 4 below.
  • Scheme 4
  • the oxirane 1 can be prepared in analogy to the method described in Org. Syn. 40, 66, 1966, J. Org. Chem. 28, 1128, 1963 and Org. Syn. Coll. Vol. 4, 552, 1963 as outlined in scheme 5 below by first sub- jecting the ketone 2 to a Wittig reaction, thus yielding the corresponding olefinic compound 6, and then subjecting this to an epoxidation reaction.
  • the Wittig reaction can be carried out under standard conditions, such as the use of methyltriphenylphosphonium bromide or iodide in the presence of an alkali metal base, such as n-butyllithium, sec- butyllithium or tert-butyllithium.
  • Epoxidation can also be carried out with standard re- agents, such as peracetic acid, perbenzoic acid meta-chloroperbenzoic acid, perphthalic acid and the like.
  • Tebbe's reagent ((C 5 Hs) 2 TiCH 2 CIAI(CHs) 2 ).
  • the semicarbazide is then converted into I/I I via reaction with a formic acid alkyl ester (e.g. formic acid methyl ester, formic acid ethyl ester) in a solvent.
  • Suitable solvents are, for example, alcohols (e.g.
  • ethers e.g. diethyl ether, tetrahydrofuran, dioxane, 1 ,2-dimethoxyethane
  • acetonitrile N,N-dimethylformamide, dimethylsulfoxide, toluene or xylene.
  • 7 can be reacted with hydrogen thiocyanate and formaldehyde in a solvent.
  • Suitable solvents are, for example, alcohols (e.g. methanol, ethanol, isopropanol, tert-butanol),
  • triazolidinthione 9 is then oxidized using, for example, FeCb in an aqueous acid (e.g. hydrochloric acid) or oxygen in the presence of an alkali metal hydroxide (e.g. sodium hydroxide, potassium hydroxide) and elemental sulfur to I/I I.
  • a dialkyl ketone e.g.
  • Suitable solvents are, for example, alcohols (e.g. methanol, ethanol, isopropanol, tert-butanol), N-methylpyrrolidinone, ethers (e.g.
  • the triazolidinthione 10 is then converted into l/ll by reaction with formic acid in the presence of an acid (e.g. hydrochloric acid, hydrobromic acid, acetic acid, sulfuric acid, p-toluenesulfonic acid) or a metal oxide (e.g. amorphous TiO 2 ).
  • an acid e.g. hydrochloric acid, hydrobromic acid, acetic acid, sulfuric acid, p-toluenesulfonic acid
  • a metal oxide e.g. amorphous TiO 2
  • the ketone 2 wherein n is 3 and all radicals R 3 and R 4 are H, can be obtained from the hydroxyl compound 11 by coupling with a propargyl halide 12 to 13 in analogy to the process described in DE-A- 3702301. Subsequent reaction with the carboxylic halide 14 yields the propargyl ether 15, which ih then hydrated to the ketone 2.
  • HaI halogen
  • the halides 4, 12 and 14, the hydroxyl compound 11 and the aldehyde 5 used in the above reactions are either commercially available or can be produced by standard methods known to the skilled person.
  • Halide 4 can for instance be prepared by reacting a hydroxyl compound 11 with a compound 16, wherein X is a halogen atom, an optionally protected OH group or a carboxyl group, in the presence of a base as shown in scheme 8 below.
  • LG is a costumary leaving group, such as a halogen atom, a tosylate or a mesylate group.
  • Suitable bases are for example alkali metal hydrides, such a lithium hydride or sodium hydride, earth alka- line hydrides, such as calcium hydride, alkali amides, such as sodium amide, and alco- holates, such as sodium methanolate, sodium ethanolate and potassium tert- butanolate.
  • the reaction is suitably carried out in a solvent.
  • suitable solvents are, for example, N-methylpyrrolidinone, ethers (e.g. diethyl ether, tetrahydrofuran, dioxane, 1 ,2-dimethoxyethane) or N,N-dimethylformamide.
  • the reaction temperature is not criti- cal and is generally in a range of from -20 to 160 0 C. If X is an optionally protected hydroxyl group, this is then converted into a halogen group by known methods.
  • X is a carboxyl group
  • this is converted into a hydroxyl group in analogy to the method described in Tetrahedron Asymmetry, 12(1 1 ), 1595-1602, 2001 by reduction with a metal hydride, such as lithium aluminium hydride, diisobutylaluminium hydride or boron hy- drides.
  • a metal hydride such as lithium aluminium hydride, diisobutylaluminium hydride or boron hy- drides.
  • the resulting hydroxyl group is then converted into a halogen group by known methods.
  • Suitable bases are, for example, alkali metal hydrides (e.g. sodium hydride, po- tassium hydride), alkali metal hydroxides (e.g. sodium hydroxide, potassium hydroxide), alkali metal carbonates (e.g. sodium carbonate, potassium carbonate, caesium carbonate), alkali metal alkoxides (e.g. sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, potassium tert-butoxide) or organolithium bases (e.g.
  • alkali metal hydrides e.g. sodium hydride, po- tassium hydride
  • alkali metal hydroxides e.g. sodium hydroxide, potassium hydroxide
  • alkali metal carbonates e.g. sodium carbonate, potassium carbonate, caesium carbonate
  • alkali metal alkoxides e.g. sodium methoxide, potassium methoxide, sodium ethoxid
  • n-butyl lithium, sec-butyl lithium, tert-butyl lithium and lithium diisopropylamine. The reaction is generally carried out in a suitable solvent.
  • suitable solvents are, for example, toluene, N-methylpyrrolidinone, ethers (e.g. diethyl ether, tetrahydrofuran, dioxane, 1 ,2-dimethoxyethane), acetonitrile, N,N-dimethylformamide or dimethylsulfox- ide.
  • compounds of formula I wherein m is 0 and R 6 is Ci-Cio-alkyl, C1-C10- haloalkyl, C2-Cio-alkenyl, C2-Cio-haloalkenyl, C2-Cio-alkynyl, C2-Cio-haloalkynyl, C3-C10- cycloalkyl, C3-Cio-halocycloalkyl, phenyl, phenyl-Ci-C4-alkyl, where the phenyl moiety in the 2 last-mentioned radicals may be substituted as described above, and a 5- or 6- membered saturated, partially unsaturated or aromatic heterocyclic ring containing 1 , 2 or 3 heteroatoms selected from N, O and S as ring members, where the heterocyclic ring may be substituted as described above, may be prepared in analogy to the method described in Heterocycles, 23(7), 1645-1649, 1985 by react
  • alkoxide e.g. methoxide, ethoxide
  • pentafluorophenoxide in the presence of a base.
  • bases are, for example, alkali metal hydrides (e.g. sodium hydride, potassium hydride), alkali metal hydroxides (e.g. sodium hydroxide, potassium hydroxide), alkali metal carbonates (e.g. sodium carbonate, potassium carbonate, caesium carbonate), alkali metal alkoxides (e.g. sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, potassium tert-butoxide) or organolithium bases (e.g.
  • alkali metal hydrides e.g. sodium hydride, potassium hydride
  • alkali metal hydroxides e.g. sodium hydroxide, potassium hydroxide
  • alkali metal carbonates e.g. sodium carbonate, potassium carbonate, caesium carbonate
  • n-butyl lithium, sec-butyl lithium, tert-butyl lithium, lithium diisopropylamine The reaction is generally carried out in a suitable solvent.
  • suitable solvents are, for exam- pie, toluene, N-methylpyrrolidinone, ethers (e.g. diethyl ether, tetrahydrofuran, dioxane, 1 ,2-dimethoxyethane), acetonitrile, N,N-dimethylformamide or dimethylsulfoxide.
  • Compounds of formula I, wherein m is 0 and R 6 is -SO2R 12 may be prepared in anal- ogy to the method described in DE-A-19620590 by reacting a compound I, wherein m is 0 and R 6 is H, with a compound R 12 -S ⁇ 2-W, wherein R 12 has one of the above meanings and W is a good leaving group, such as a halide (e.g. Cl, Br, I), an alkoxide (e.g. methoxide, ethoxide) or pentafluorophenoxide, in the presence of a base.
  • Suitable bases are, for example, alkali metal hydrides (e.g.
  • alkali metal hydroxides e.g. sodium hydroxide, potassium hydroxide
  • alkali metal carbonates e.g. sodium carbonate, potassium carbonate, caesium carbonate
  • alkali metal alkoxides e.g. sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, potassium tert-butoxide
  • organolithium bases e.g. n-butyl lithium, sec-butyl lithium, tert-butyl lithium, lithium diisopropylamine.
  • Suitable solvents are, for example, toluene, N- methylpyrrolidinone, ethers (e.g. diethyl ether, tetrahydrofuran, dioxane, 1 ,2- dimethoxyethane), acetonitrile, N,N-dimethylformamide or dimethylsulfoxide.
  • Compounds of formula I, wherein m is 0 and R 6 is -CN may be prepared in analogy to the method described in DE-A-19620407 by reacting a compound I, wherein m is 0 and R 6 is H, with a compound CN-W, wherein W is a good leaving group, such as a halide (e.g. Cl, Br, I), in the presence of a base.
  • Suitable bases are, for example, alkali metal hydrides (e.g. sodium hydride, potassium hydride), alkali metal hydroxides (e.g. sodium hydroxide, potassium hydroxide), alkali metal carbonates (e.g.
  • alkali metal alkoxides e.g. sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, potassium tert-butoxide
  • organolithium bases e.g. n-butyl lithium, sec-butyl lithium, tert-butyl lithium, lithium diisopropylamine.
  • Suitable solvents are, for example, toluene, N-methylpyrrolidinone, ethers (e.g. diethyl ether, tetrahydrofuran, dioxane, 1 ,2-dimethoxyethane), acetonitrile, N,N-dimethylformamide or dimethylsulfoxide.
  • Compounds of formula I, wherein m is 0 and R 6 is M, may be prepared in analogy to the method described in DE-A-19617282 by reacting a compound I with an amine NR a R b R c , wherein R a , R b and R c are as defined above, or with a metal salt, such as sodium hydroxide, potassium hydroxide or copper acetate.
  • a metal salt such as sodium hydroxide, potassium hydroxide or copper acetate.
  • Suitable bases are, for example, alkali metal hydrides (e.g. sodium hydride, potassium hydride), alkali metal hydroxides (e.g. sodium hydroxide, potassium hydroxide), alkali metal carbonates (e.g. sodium carbonate, potassium carbonate, caesium carbonate), alkali metal alkoxides (e.g.
  • organolithium bases e.g. n-butyl lithium, sec-butyl lithium, tert-butyl lithium, lithium diisopropylamine.
  • the reaction is generally carried out in a suitable solvent. Suitable solvents are, for example, toluene, N-methylpyrrolidinone, ethers (e.g. diethyl ether, tetrahydrofuran, dioxane, 1 ,2-dimethoxyethane), acetonitrile, N,N-dimethylformamide or dimethylsulfoxide.
  • Compounds of formula II, wherein R 6a is hydrogen (or compounds of formula I, wherein m is 0 and R 6 is hydrogen), can be prepared in analogy to the method described in WO 99/18087 by reacting a triazolidinthione 9 with an oxidizing agent, optionally in the presence of a catalyst.
  • Suitable oxidizing agents are, for example, oxygen, sulfur and potassium superoxide. Especially in case oxygen is used as oxidizing agent, it is ad- vantageous to carry out the oxidation reaction in the presence of a catalyst.
  • a suitable catalyst is, for example, a mixture of powdery sulfur and KOH.
  • the reaction is generally carried out in a suitable solvent.
  • Suitable solvents are, for example, aliphatic hydrocarbons (e.g.
  • cycloaliphatic hydrocarbons e.g. cyclohexane
  • aromatic hydrocarbons e.g. bemzene, toluene, the xylenes
  • ethers e.g. diethylether, methyl- tert-butylether
  • esters e.g. ethylecetate, propylacetate, n-butylacetate
  • the oxidation of the triazolidinthione 9 may also be carried out with ferric chloride (FeCb) in an acidic aqueous solution in analogy to the method described in WO 01/46158.
  • the reaction is generally carried out in a suitable solvent. Suitable solvents are, for example, ethanol, ethylacetate and mixtures of ethanol with toluene.
  • the oxidation of the triazolidinthione 9 may also be carried out with formic acid, optionally in the presence of a catalyst, in analogy to the method described in WO 99/18086 or WO 99/18088.
  • Suitable catalysts are, for example, acids, like hydrochloric acid, sul- furic acid or p-toluenesulfonic acid, and metal oxides, like amorphous titanium dioxide.
  • the reaction is generally carried out in a suitable solvent.
  • Suitable solvents are weakly polar solvents like, for example, alcohols such as propanol, butanol and pentanol, esters, like ethyl acetate, butyl acetate and isobutyl formate, ethers, like 1 ,2- dimethoxyethane, methyl-tert-butyl ether and methyl-tert-amylether, and formic acid used in excess.
  • alcohols such as propanol, butanol and pentanol
  • esters like ethyl acetate, butyl acetate and isobutyl formate
  • ethers like 1 ,2- dimethoxyethane, methyl-tert-butyl ether and methyl-tert-amylether, and formic acid used in excess.
  • Compounds I, wherein m is 1 or 2 can be prepared from respective compounds I, wherein m is 0, by oxidation.
  • compounds I, wherein m is 2 can be pre- pared from compounds IV by first deprotonating the triazolyl ring and then reacting with a sulfonyl chloride R 6 SC ⁇ CI.
  • Compounds I, wherein m is 3, can be prepared from compounds IV by first deprotonating the triazolyl ring and then reacting with sulfuric acid chloride or a sulfuric ester chloride of formula R 6 OSC ⁇ CI, wherein R 6 is selected from hydrogen, Ci-Cio-alkyl, Ci-Cio-haloalkyl, C2-Cio-alkenyl, C2-Cio-haloalkenyl, C2-C10- alkynyl, C2-Cio-haloalkynyl, C3-Cio-cycloalkyl, C3-Cio-halocycloalkyl, phenyl, phenyl-Ci- C4-alkyl, where the phenyl moiety in the 2 last-mentioned radicals may be substituted as mentioned above, and a 5- or 6-membered saturated, partially unsaturated or aromatic heterocyclic ring containing 1 , 2 or 3 heteroatoms selected from N, O and S
  • reaction mixtures are worked up in the customary manner, for example by mixing with water, separating the phases, and, if appropriate, purifying the crude products by chromatography, for example on alumina or silica gel.
  • Some of the intermediates and end products may be obtained in the form of colorless or pale brown viscous oils, which are freed or purified from volatile components under reduced pressure and at moder- ately elevated temperature. If the intermediates and end products are obtained as solids, they may be purified by recrystallization or digestion.
  • a further aspect of the invention relates to compounds of formula IV
  • R 1 , R 2 , R 3 , R 4 , R 5 and n have one of the general or, in particular, one of the preferred meanings given above for compounds I and II, with the proviso that n is not 3 if R 5 is phenyl optionally substituted by one or more chlorine atoms and simultaneously R 1 is tert-butyl.
  • a yet further aspect of the invention relates to compounds of formula IV
  • R 1 , R 2 , R 3 , R 4 and R 5 have one of the general or, in particular, one of the preferred meanings given above for compounds I and II, and n is 4, 5, 6 or 7, preferably 4 or 5.
  • R 1 is selected from tert-butyl, phenyl, cyclopropyl, 1- methylcyclopropyl, i-chlorocyclopropyl and 1-cyclopropylethyl and is specifically tert- butyl.
  • Particularly preferred compounds IV are compounds of formulae IV.1 , IV.2, IV.3, IV.4, IV.5, IV.6 and IV.7 (for IV.2, IV.3 and IV.4 see however the above proviso), wherein the combination of R 91 , R 92 , R 93 , R 94 and R 95 corresponds in each case to one row in table A above and R 1 is tert-butyl, cyclopropyl, 1-methylcyclopropyl, 1-chlorocyclopropyl, cyclopropylmethyl or 1-cyclopropylethyl and especially tert-butyl.
  • R 91 , R 92 , R 93 , R 94 and R 95 corresponds in each case to one row in table A above and R 1 is tert-butyl, cyclopropyl, 1-methylcyclopropyl, 1-chlorocyclopropyl, cyclopro- pylmethyl or 1-cyclopropylethyl and especially tert-butyl.
  • a further aspect of the invention relates to compounds of formula 7
  • R 1 , R 3 , R 4 , R 5 and n have one of the general or, in particular, one of the preferred meanings given above for compounds I and II.
  • a further aspect of the invention relates to compounds of formula 1 wherein R 1 , R 3 , R 4 , R 5 and n have one of the general or, in particular, one of the preferred meanings given above for compounds I and II.
  • the invention further refers to an agricultural composition
  • an agricultural composition comprising at least one compound of formula I, Il and/or IV as defined above or an agriculturally acceptable salt thereof and a liquid or solid carrier.
  • Suitable carriers, as well as auxiliaries and further active compounds which may also be contained in the composition of the invention are defined below.
  • the compounds I and Il as well as IV and the compositions according to the invention, respectively, are suitable as fungicides. They are distinguished by an outstanding effectiveness against a broad spectrum of phytopathogenic fungi, including soil-borne fungi, which derive especially from the classes of the Plasmodiophoromycetes, Per- onosporomycetes (syn. Oomycetes), Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes (syn. Fungi imperfecti). Some are systemically effective and they can be used in crop protection as foliar fungicides, fungicides for seed dressing and soil fungicides. Moreover, they are suitable for controlling harmful fungi, which inter alia occur in wood or roots of plants.
  • the compounds I, Il and IV and the compositions according to the invention are par- ticularly important in the control of a multitude of phytopathogenic fungi on various cultivated plants, such as cereals, e. g. wheat, rye, barley, triticale, oats or rice; beet, e. g. sugar beet or fodder beet; fruits, such as pomes, stone fruits or soft fruits, e. g.
  • compounds 1, 11 and IV and compositions thereof, respectively are used for controlling a multitude of fungi on field crops, such as potatoes sugar beets, tobacco, wheat, rye, barley, oats, rice, corn, cotton, soybeans, rape, legumes, sunflowers, coffee or sugar cane; fruits; vines; ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes.
  • field crops such as potatoes sugar beets, tobacco, wheat, rye, barley, oats, rice, corn, cotton, soybeans, rape, legumes, sunflowers, coffee or sugar cane; fruits; vines; ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes.
  • plant propagation material is to be understood to denote all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e. g. potatoes), which can be used for the multiplication of the plant. This in- eludes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants, including seedlings and young plants, which are to be transplanted after germination or after emergence from soil. These young plants may also be protected before transplantation by a total or partial treatment by immersion or pouring.
  • treatment of plant propagation materials with compounds I, Il and IV and compositions thereof, respectively, is used for controlling a multitude of fungi on cereals, such as wheat, rye, barley and oats; rice, corn, cotton and soybeans.
  • cultiva plants is to be understood as including plants which have been modified by breeding, mutagenesis or genetic engineering including but not limiting to agricultural biotech products on the market or in development (cf. http://www.bio.org/speeches/pubs/er/agrLproducts.asp).
  • Genetically modified plants are plants, which genetic material has been so modified by the use of recombinant DNA techniques that under natural circumstances cannot readily be obtained by cross breeding, mutations or natural recombination.
  • one or more genes have been integrated into the genetic material of a genetically modified plant in order to improve certain properties of the plant.
  • Such genetic modifications also include but are not limited to targeted post-translational modification of protein(s), oligo- or polypeptides e. g. by glycosylation or polymer additions such as prenylated, acetylated or farnesylated moieties or PEG moieties.
  • HPPD hydroxyphenylpyruvate dioxygenase
  • ALS acetolactate synthase
  • sulfonyl ureas see e. g.
  • EPSPS enolpyruvylshikimate-3-phosphate synthase
  • GS glutamine synthetase
  • glufosinate see e.g. EP-A 242 236, EP-A 242 246) or oxynil herbicides (see e. g. US 5,559,024) as a result of conventional methods of breeding or genetic engineering.
  • mutagenesis e.g.
  • Clearfield ® summer rape (Canola, BASF SE, Germany) being tolerant to imidazolinones, e. g. imazamox.
  • Genetic engineering methods have been used to render cultivated plants, such as soybean, cotton, corn, beets and rape, tolerant to herbicides such as glypho- sate and glufosinate, some of which are commercially available under the trade names RoundupReady ® (glyphosate-tolerant, Monsanto, U.S.A.) and LibertyLink ® (glufosinate- tolerant, Bayer CropScience, Germany).
  • plants are also covered that, by the use of recombinant DNA techniques, are capable to synthesize one or more insecticidal proteins, especially those known from the bacterial genus Bacillus, particularly from Bacillus thuringiensis, such as ⁇ -endotoxins, e. g. CrylA(b), CrylA(c), CrylF, CrylF(a2), CryllA(b), CrylllA, CrylllB(bi ) or Cry ⁇ c; vegetative insecticidal proteins (VIP), e. g. VIP1 , VIP2, VIP3 or VIP3A; insecticidal proteins of bacteria colonizing nematodes, e. g. Photorhabdus spp.
  • insecticidal proteins especially those known from the bacterial genus Bacillus, particularly from Bacillus thuringiensis, such as ⁇ -endotoxins, e. g. CrylA(b), CrylA(c), CrylF, CrylF(a2), Cry
  • toxins produced by animals such as scorpion toxins, arachnid toxins, wasp toxins, or other insect-specific neurotoxins
  • toxins produced by fungi such Strep- tomycetes toxins, plant lectins, such as pea or barley lectins; agglutinins
  • proteinase inhibitors such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin or papain inhibitors
  • ribosome-inactivating proteins (RIP) such as ricin, maize-RIP, abrin, luffin, saporin or bryodin
  • steroid metabolism enzymes such as 3-hydroxysteroid oxidase, ecdysteroid-IDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors or HMG-CoA-reductase
  • ion channel blockers such as blockers of sodium
  • these insecticidal proteins or toxins are to be understood expressly also as pre-toxins, hybrid proteins, truncated or otherwise modified proteins.
  • Hybrid proteins are characterized by a new combination of protein domains, (see, e. g. WO 02/015701 ).
  • Further examples of such toxins or genetically modified plants capable of synthesizing such toxins are disclosed, e. g., in EP-A 374 753, WO 93/007278, WO 95/34656, EP-A 427 529, EP-A 451 878, WO 03/18810 und WO 03/52073.
  • the methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, e.
  • insecticidal proteins contained in the genetically modified plants impart to the plants producing these proteins tolerance to harmful pests from all taxonomic groups of arthropods, especially to beetles (Coleoptera), two-winged insects (Diptera), and moths (Lepidoptera) and to nematodes (Nematoda).
  • Genetically modified plants capable to synthesize one or more insecticidal proteins are, e.
  • WO 03/018810 MON 863 from Monsanto Europe S.A., Belgium (corn cultivars producing the Cry3Bb1 toxin), IPC 531 from Monsanto Europe S.A., Belgium (cotton cultivars producing a modified version of the CryiAc toxin) and 1507 from Pioneer Overseas Corporation, Belgium (corn cultivars producing the Cry1 F toxin and PAT enzyme).
  • plants are also covered that, by the use of recombinant DNA techniques, are capable to synthesize one or more proteins to increase the resistance or tolerance of those plants to bacterial, viral or fungal pathogens.
  • proteins are the so-called "pathogenesis-related proteins" (PR proteins, see, e. g. EP-A 392 225), plant disease resistance genes (e. g. potato cultivars, which express resistance genes acting against Phytophthora infestans derived from the Mexican wild potato Solarium bulbocastanum) or T4-lysozym (e. g. potato cultivars capable of synthesizing these proteins with increased resistance against bacteria such as Erwinia amylvora).
  • PR proteins pathogenesis-related proteins
  • plant disease resistance genes e. g. potato cultivars, which express resistance genes acting against Phytophthora infestans derived from the Mexican wild potato Solarium bulbocastanum
  • T4-lysozym e. g. potato cultivars capable of synthe
  • plants are also covered that, by the use of recombinant DNA techniques, are capable to synthesize one or more proteins to increase the productivity (e. g. bio mass production, grain yield, starch content, oil content or protein content), tolerance to drought, salinity or other growth-limiting environmental factors or tolerance to pests and fungal, bacterial or viral pathogens of those plants.
  • productivity e. g. bio mass production, grain yield, starch content, oil content or protein content
  • plants are also covered that, by the use of recombinant DNA techniques, contain a modified amount of substances of content or new substances of content, specifically to improve human or animal nutrition, e. g. oil crops that produce health- promoting long-chain omega-3 fatty acids or unsaturated omega-9 fatty acids (e. g. Nexera ® rape, DOW Agro Sciences, Canada).
  • a modified amount of substances of content or new substances of content specifically to improve human or animal nutrition, e. g. oil crops that produce health- promoting long-chain omega-3 fatty acids or unsaturated omega-9 fatty acids (e. g. Nexera ® rape, DOW Agro Sciences, Canada).
  • plants are also covered that, by the use of recombinant DNA techniques, contain a modified amount of substances of content or new substances of content, specifically to improve raw material production, e. g. potatoes that produce increased amounts of amylopectin (e. g. Amflora ® potato, BASF SE, Germany).
  • a modified amount of substances of content or new substances of content specifically to improve raw material production, e. g. potatoes that produce increased amounts of amylopectin (e. g. Amflora ® potato, BASF SE, Germany).
  • the compounds I, Il and IV and compositions thereof, respectively, are particularly suitable for controlling the following plant diseases:
  • Albugo spp. (white rust) on ornamentals, vegetables (e. g. A. Candida) and sunflowers (e. g. A. tragopogonis); Altemaria spp. (Alternaria leaf spot) on vegetables, rape ⁇ A. brassicola or brassicae), sugar beets ⁇ A. tenuis), fruits, rice, soybeans, potatoes (e. g. A. solani or A.retemata), tomatoes (e. g. A. solanior A.retemata) and wheat; Aphano- myces spp. on sugar beets and vegetables; Ascochyta spp. on cereals and vegetables, e. g. A.
  • tritici anthracnose
  • Bipolaris and Drechslera spp. teleomorph: Cochliobolus spp.), e. g. Southern leaf blight (D. maydis) or Northern leaf blight ( ⁇ . zeicola) on corn, e. g. spot blotch ( ⁇ . sorokiniana) on cereals and e.g. B. oryzae on rice and turfs
  • Blumeria (formerly Erysiphe) graminis (powdery mildew) on cereals (e. g.
  • Botrytis cinerea (teleomorph: Botryotinia fuckeliana: grey mold) on fruits and berries (e. g. strawberries), vegetables (e. g. lettuce, carrots, celery and cabbages), rape, flowers, vines, forestry plants and wheat; Bremia lactucae (downy mildew) on lettuce; Ceratocystis (syn. Ophiostoma) spp. (rot or wilt) on broad- leaved trees and evergreens, e. g. C. ulmi (Dutch elm disease) on elms; Cercospora spp. (Cercospora leaf spots) on corn (e.g.
  • Gray leaf spot C. zeae-maydis
  • rice sugar beets (e. g. C. beticola), sugar cane, vegetables, coffee, soybeans (e. g. C. sojina or C. kikuchii) and rice
  • Cladosporium spp. on tomatoes e. g. C. fulvum: leaf mold
  • ce- reals e. g. C. herbarum (black ear) on wheat
  • Cochliobolus anamorph: Helminthosporium of Bipolaris
  • spp. (leaf spots) on corn (C. carbonum), cereals (e. g. C.
  • sa- sakii sheath blight
  • Corynespora cassiicola leaf spots
  • Cycloconium spp. e. g. C. oleaginum on olive trees
  • Cylindrocarpon spp. e. g. fruit tree canker or young vine decline, teleomorph: Nectria or Neonectria spp.
  • vines e. g. C. liriodendri, teleomorph: Neonectria liriodendrf.
  • Phellinus punctata, F. mediterranea, Phaeomoniella chlamydospora (earlier Phaeo- acremonium chlamydosporum), Phaeoacremonium aleophilum and/or Botryosphaeria obtusa; Elsinoe spp. on pome fruits (E. pyri), soft fruits (E. veneta: anthracnose) and vines (E ampelina: anthracnose); Entyloma oryzae (leaf smut) on rice; Epicoccum spp. (black mold) on wheat; Erysiphe spp. (powdery mildew) on sugar beets (E.
  • betae vegetables (e. g. E. pisi), such as cucurbits (e. g. E. cichoracearum), cabbages, rape (e. g. E. cruciferarum); Eutypa lata (Eutypa canker or dieback, anamorph: Cytosporina lata, syn. Libertella blepharis) on fruit trees, vines and ornamental woods; Exserohilum (syn. Helminthosporium) spp. on corn (e. g. E. turcicum); Fusarium (teleomorph: Gib- berella) spp. (wilt, root or stem rot) on various plants, such as F. graminearum or F.
  • vegetables e. g. E. pisi
  • cucurbits e. g. E. cichoracearum
  • cabbages rape (e. g. E. cruciferarum)
  • Eutypa lata Eu
  • Cladosporium vitis on vines; Macrophomina phaseolina (syn. phaseoli) (root and stem rot) on soybeans and cotton; Microdochium (syn. Fusarium) nivale (pink snow mold) on cereals (e. g. wheat or barley); Microsphaera diffusa (powdery mildew) on soybeans; Monilinia spp., e. g. M. laxa, M. fructicola and M. fructigena (bloom and twig blight, brown rot) on stone fruits and other rosaceous plants; Mycosphaerella spp. on cereals, bananas, soft fruits and ground nuts, such as e. g. M.
  • graminicola anamorph: Septoria tritici, Septoria blotch
  • M. fijiensis black Sigatoka disease
  • Peronospora spp. downy mildew
  • cabbage e. g. P. brassicae
  • rape e. g. P. parasitica
  • onions e. g. P. destructor
  • tobacco e. g. P. tabacina
  • soybeans e. g. P. manshurica
  • Phakopsora pachyrhizi and P. meibomiae soybean rust
  • Phialophora spp. e. g. on vines e. g. P.
  • soybeans e. g. P. gregata: stem rot
  • Phoma lingam root and stem rot
  • P. betae root rot, leaf spot and damping-off
  • sugar beets e. g. P. viticola: can and leaf spot
  • soybeans e. g. stem rot: P. phaseoli, teleomorph: Diaporthe phaseolorum
  • Physoderma maydis brown spots
  • Podosphaera spp. (powdery mildew) on rosaceous plants, hop, pome and soft fruits, e. g. P. leucotricha on apples; Polymyxa spp., e. g. on cereals, such as barley and wheat (P. graminis) and sugar beets (P. betae) and thereby transmitted viral diseases; Pseudocercosporella herpotrichoides (eyespot, teleomorph: Tapesia yallundae) on cereals, e. g. wheat or barley; Pseudoperonospora (downy mildew) on various plants, e. g.
  • P. asparagi Pyrenophora (anamorph: Drechslera) tritici- repentis (tan spot) on wheat or P. feres (net blotch) on barley; Pyricularia spp., e. g. P. oryzae (teleomorph: Magnaporthe grisea, rice blast) on rice and P. grisea on turf and cereals; Pythium spp. (damping-off) on turf, rice, corn, wheat, cotton, rape, sunflowers, soybeans, sugar beets, vegetables and various other plants (e. g. P. ultimum or P. aphanidermatum); Ramularia spp., e. g. R.
  • collo-cygni (Ra mu Ia ria leaf spots, Physiological leaf spots) on barley and R. beticola on sugar beets; Rhizoctonia spp. on cotton, rice, potatoes, turf, corn, rape, potatoes, sugar beets, vegetables and various other plants, e. g. R. solani (root and stem rot) on soybeans, R. so/an/ (sheath blight) on rice or R.
  • S. miliaria head smut
  • S. sorghum und sugar cane Sphaerotheca fuliginea (powdery mildew) on cucurbits
  • Spongospora subterranea Powdery scab
  • Stagonospora spp. on cereals, e. g. S. nodorum (Stagonospora blotch, teleomorph: Leptosphaeria [syn. Phaeosphaeria] nodorum) on wheat
  • Synchytrium endobioticum on potatoes potato wart disease
  • Taphrina spp. e. g. T.
  • Thielaviopsis spp. black root rot
  • tobacco, pome fruits, vegetables, soybeans and cotton e. g. T. basicola (syn. Chalara elegans)
  • Tilletia spp. common bunt or stinking smut
  • cereals such as e. g. T. tritici (syn. T. caries, wheat bunt) and T. controversa (dwarf bunt) on wheat
  • Typhula incarnata grey snow mold
  • Um- cystis spp. e. g. U.
  • Ummyces spp. rust
  • vegetables such as beans (e. g. U. appendiculatus, syn. U. phaseoli) and sugar beets (e. g. U. betae); Ustilago spp. (loose smut) on cereals (e. g. U. nuda and U. avaenae), corn (e. g. U. maydis: corn smut) and sugar cane; Venturia spp. (scab) on apples (e. g. V. inaequalis) and pears; and Verticillium spp. (wilt) on various plants, such as fruits and ornamentals, vines, soft fruits, vegetables and field crops, e. g. V. dahliae on strawberries, rape, potatoes and tomatoes.
  • Ummyces spp. rust
  • vegetables such as beans (e. g. U. appendiculatus, syn. U. phaseoli) and sugar beets (e.
  • the compounds I, Il and IV and compositions thereof, respectively, are also suitable for controlling harmful fungi in the protection of stored products or harvest and in the protection of materials.
  • the term "protection of materials” is to be understood to denote the protection of technical and non-living materials, such as adhesives, glues, wood, paper and paperboard, textiles, leather, paint dispersions, plastics, colling lubricants, fiber or fabrics, against the infestation and destruction by harmful microorganisms, such as fungi and bacteria.
  • Ascomycetes such as Ophio- stoma spp., Ceratocysf/s spp., Aureobasidium pullulans, Sclemphoma spp., Chae- tomium spp., Humicola spp., Petriella spp., Trichurus spp.; Basidiomycetes such as Coniophora spp., Coriolus spp., Gloeophyllum spp., Lentinus spp., Pleumtus spp., Po- ria spp., Serpula spp.
  • yeast fungi are worthy of note: Candida spp. and Sacchammyces cerevisae.
  • the compounds I, Il and IV and compositions thereof, respectively, may be used for improving the health of a plant.
  • the invention also relates to a method for improving plant health by treating a plant, its propagation material and/or the locus where the plant is growing or is to grow with an effective amount of compounds 1, 11 and/or IV and compositions thereof, respectively.
  • plant health is to be understood to denote a condition of the plant and/or its products which is determined by several indicators alone or in combination with each other such as yield (e. g. increased biomass and/or increased content of valuable ingredients), plant vigor [e. g. improved plant growth and/or greener leaves ("greening effect")], quality (e. g. improved content or composition of certain ingredients) and tolerance to abiotic and/or biotic stress.
  • yield e. g. increased biomass and/or increased content of valuable ingredients
  • plant vigor e. g. improved plant growth and/or greener leaves ("greening effect")
  • quality e. g. improved content or composition of certain ingredients
  • tolerance to abiotic and/or biotic stress e. g. improved content or composition of certain ingredients
  • the compounds of formula I, Il and IV can be present in different crystal modifications whose biological activity may differ. They are likewise subject matter of the present invention.
  • the compounds I, Il and IV are employed as such or in form of compositions by treating the fungi or the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms to be protected from fungal attack with a fungicidally effective amount of the active substances.
  • the application can be carried out both before and after the infection of the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms by the fungi.
  • Plant propagation materials may be treated with compounds I, Il and/or IV as such or a composition comprising at least one compound I, Il and/or IV prophylactically either at or before planting or transplanting.
  • the invention also relates to agrochemical compositions comprising a solvent or solid carrier and at least one compound I, Il and/or IV and to the use for controlling harmful fungi.
  • An agrochemical composition comprises a fungicidally effective amount of a compound I, Il and/or IV.
  • effective amount denotes an amount of the composition or of the compounds I, Il and/or IV, which is sufficient for controlling harmful fungi on cultivated plants or in the protection of materials and which does not result in a substantial damage to the treated plants. Such an amount can vary in a broad range and is dependent on various factors, such as the fungal species to be controlled, the treated cultivated plant or material, the climatic conditions and the specific compound I used.
  • the compounds 1, 11 and IV and salts thereof can be converted into customary types of agrochemical compositions, e. g. solutions, emulsions, suspensions, dusts, powders, pastes and granules.
  • the composition type depends on the particular intended purpose; in each case, it should ensure a fine and uniform distribution of the compound according to the invention.
  • composition types are suspensions (SC, OD, FS), emulsifiable concentrates (EC), emulsions (EW, EO, ES), pastes, pastilles, wettable powders or dusts (WP, SP, SS, WS, DP, DS) or granules (GR, FG, GG, MG), which can be water- soluble or wettable, as well as gel formulations for the treatment of plant propagation materials such as seeds (GF).
  • composition types e. g. SC, OD, FS, EC, WG, SG, WP, SP, SS, WS, GF
  • composition types such as DP, DS, GR, FG, GG and MG are usually used undiluted.
  • compositions are prepared in a known manner (cf. US 3,060,084, EP-A 707 445 (for liquid concentrates), Browning: "Agglomeration", Chemical Engineering, Dec. 4, 1967, 147-48, Perry's Chemical Engineer's Handbook, 4 th Ed., McGraw-Hill, New York, 1963, pp. 8-57 et seq., WO 91/13546, US 4,172,714, US 4,144,050, US 3,920,442, US 5,180,587, US 5,232,701 , US 5,208,030, GB 2,095,558, US 3,299,566, Klingman: Weed Control as a Science (J.
  • the agrochemical compositions may also comprise auxiliaries which are customary in agrochemical compositions.
  • auxiliaries depend on the particular application form and active substance, respectively.
  • auxiliaries are solvents, solid carriers, dispersants or emulsifiers (such as further solubilizers, protective colloids, surfactants and adhesion agents), organic and inorganic thickeners, bactericides, anti-freezing agents, anti-foaming agents, if appropriate colorants and tackifiers or binders (e. g. for seed treatment formulations).
  • Suitable solvents are water, organic solvents such as mineral oil fractions of medium to high boiling point, such as kerosene or diesel oil, furthermore coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e.g.
  • Solid carriers are mineral earths such as silicates, silica gels, talc, kaolins, limestone, lime, chalk, bole, loess, clays, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertilizers, such as, e. g., ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas, and products of vegetable origin, such as cereal meal, tree bark meal, wood meal and nutshell meal, cellulose powders and other solid carriers.
  • mineral earths such as silicates, silica gels, talc, kaolins, limestone, lime, chalk, bole, loess, clays, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertilizers, such as, e. g., ammonium sulfate, ammonium phosphat
  • Suitable surfactants are alkali metal, alkaline earth metal and ammonium salts of aromatic sulfonic acids, such as ligninsoulfonic acid (Borresperse ® types, Borregard, Norway) phenolsulfonic acid, naphthalenesulfonic acid (Morwet ® types, Akzo Nobel, U.S.A.), dibutylnaphthalene- sulfonic acid (Nekal ® types, BASF, Germany), and fatty acids, alkylsulfonates, alkyl- arylsulfonates, alkyl sulfates, laurylether sulfates, fatty alcohol sulfates, and sulfated hexa-, hepta- and octadecanolates, sulfated fatty alcohol glycol ethers,
  • aromatic sulfonic acids such as ligninsoulfonic acid (Borresperse
  • methylcellulose g. methylcellulose
  • hydrophobically modified starches polyvinyl alcohols (Mowiol ® types, Clariant, Switzerland), polycarboxylates (Sokolan ® types, BASF, Germany), polyalkoxylates, polyvinyl- amines (Lupasol ® types, BASF, Germany), polyvinylpyrrolidone and the copolymers therof.
  • thickeners i. e. compounds that impart a modified flowability to compositions, i. e. high viscosity under static conditions and low viscosity during agitation
  • thickeners are polysaccharides and organic and anorganic clays such as Xanthan gum (Kelzan ® , CP Kelco, U.S.A.), Rhodopol ® 23 (Rhodia, France), Veegum ® (RT. Vanderbilt, U.S.A.) or Attaclay ® (Engelhard Corp., NJ, USA).
  • Bactericides may be added for preservation and stabilization of the composition.
  • suitable bactericides are those based on dichlorophene and benzylalcohol hemi formal (Proxel ® from ICI or Acticide ® RS from Thor Chemie and Kathon ® MK from Rohm & Haas) and isothiazolinone derivatives such as alkylisothiazolinones and ben- ziothiazolinones (Acticide ® MBS from Thor Chemie).
  • Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea and glycerin.
  • anti-foaming agents examples include silicone emulsions (such as e. g. Silikon ® SRE, Wacker, Germany or Rhodorsil ® , Rhodia, France), long chain alcohols, fatty acids, salts of fatty acids, fluoroorganic compounds and mixtures thereof.
  • Suitable colorants are pigments of low water solubility and water-soluble dyes. Examples to be mentioned und the designations rhodamin B, C. I. pigment red 112, C. I. solvent red 1 , pigment blue 15:4, pigment blue 15:3, pigment blue 15:2, pigment blue 15:1 , pigment blue 80, pigment yellow 1 , pigment yellow 13, pigment red 112, pigment red 48:2, pigment red 48: 1 , pigment red 57: 1 , pigment red 53: 1 , pigment orange 43, pigment orange 34, pigment orange 5, pigment green 36, pigment green 7, pigment white 6, pigment brown 25, basic violet 10, basic violet 49, acid red 51 , acid red 52, acid red 14, acid blue 9, acid yellow 23, basic red 10, basic red 108.
  • tackifiers or binders examples include polyvinylpyrrolidons, polyvinylacetates, polyvinyl alcohols and cellulose ethers (Tylose ® , Shin-Etsu, Japan).
  • Powders, materials for spreading and dusts can be prepared by mixing or concomitantly grinding the compounds I and, if appropriate, further active substances, with at least one solid carrier.
  • Granules e. g. coated granules, impregnated granules and homogeneous granules, can be prepared by binding the active substances to solid carriers.
  • solid carriers are mineral earths such as silica gels, silicates, talc, kaolin, attaclay, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertilizers, such as, e.
  • ammonium sulfate ammonium phosphate, ammonium nitrate, ureas
  • products of vegetable origin such as cereal meal, tree bark meal, wood meal and nutshell meal, cellulose powders and other solid carriers.
  • composition types are:
  • composition types for dilution with water i) Water-soluble concentrates (SL, LS)
  • a compound I according to the invention 10 parts by weight of a compound I according to the invention are dissolved in 90 parts by weight of water or in a water-soluble solvent.
  • wetting agents or other auxiliaries are added.
  • the active substance dissolves upon dilution with water. In this way, a composition having a content of 10% by weight of active substance is obtained.
  • a compound I according to the invention 20 parts by weight of a compound I according to the invention are dissolved in 70 parts by weight of cyclohexanone with addition of 10 parts by weight of a dispersant, e. g. polyvinylpyrrolidone. Dilution with water gives a dispersion.
  • the active substance content is 20% by weight.
  • Emulsifiable concentrates 15 parts by weight of a compound I according to the invention are dissolved in 75 parts by weight of xylene with addition of calcium dodecylbenzenesulfonate and castor oil ethoxylate (in each case 5 parts by weight). Dilution with water gives an emulsion.
  • the composition has an active substance content of 15% by weight.
  • Emulsions (EW, EO, ES)
  • a compound I according to the invention 25 parts by weight of a compound I according to the invention are dissolved in 35 parts by weight of xylene with addition of calcium dodecylbenzenesulfonate and castor oil ethoxylate (in each case 5 parts by weight).
  • This mixture is introduced into 30 parts by weight of water by means of an emulsifying machine (Ultraturrax) and made into a ho- mogeneous emulsion. Dilution with water gives an emulsion.
  • the composition has an active substance content of 25% by weight.
  • a compound I according to the invention 20 parts by weight of a compound I according to the invention are comminuted with addition of 10 parts by weight of dispersants and wetting agents and 70 parts by weight of water or an organic solvent to give a fine active substance suspension. Dilution with water gives a stable suspension of the active substance.
  • the active substance content in the composition is 20% by weight.
  • a compound I according to the invention 50 parts by weight of a compound I according to the invention are ground finely with addition of 50 parts by weight of dispersants and wetting agents and prepared as water-dispersible or water-soluble granules by means of technical appliances (e. g. extrusion, spray tower, fluidized bed). Dilution with water gives a stable dispersion or solu- tion of the active substance.
  • the composition has an active substance content of 50% by weight.
  • a compound I according to the invention 20 parts by weight of a compound I according to the invention are comminuted with addition of 10 parts by weight of dispersants, 1 part by weight of a gelling agent wetters and 70 parts by weight of water or of an organic solvent to give a fine suspension of the active substance. Dilution with water gives a stable suspension of the active substance, whereby a composition with 20% (w/w) of active substance is obtained.
  • Dustable powders (DP, DS)
  • a compound I according to the invention is ground finely and associated with 99.5 parts by weight of carriers.
  • Current methods are extrusion, spray- drying or the fluidized bed. This gives granules to be applied undiluted having an active substance content of 0.5% by weight.
  • the agrochemical compositions generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, most preferably between 0.5 and 90%, by weight of active substance.
  • the active substances are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum).
  • Water-soluble concentrates (LS), flowable concentrates (FS), powders for dry treatment (DS), water-dispersible powders for slurry treatment (WS), water-soluble powders (SS), emulsions (ES) emulsifiable concentrates (EC) and gels (GF) are usually em- ployed for the purposes of treatment of plant propagation materials, particularly seeds. These compositions can be applied to plant propagation materials, particularly seeds, diluted or undiluted.
  • compositions in question give, after two-to-tenfold dilution, active substance concentrations of from 0.01 to 60% by weight, preferably from 0.1 to 40% by weight, in the ready-to-use preparations.
  • Application can be carried out before or during sowing.
  • Methods for applying or treating agrochemical compounds and compositions thereof, respectively, on to plant propagation material, especially seeds, are known in the art, and include dressing, coating, pelleting, dusting, soaking and in- furrow application methods of the propagation material.
  • the compounds or the compositions thereof, respectively are applied on to the plant propagation material by a method such that germination is not induced, e. g. by seed dressing, pelleting, coating and dusting.
  • a suspension-type (FS) composition is used for seed treatment.
  • a FS composition may comprise 1-800 g/l of active substance, 1-200 g/l Surfactant, 0 to 200 g/l antifreezing agent, 0 to 400 g/l of binder, 0 to 200 g/l of a pigment and up to 1 liter of a solvent, preferably water.
  • the active substances can be used as such or in the form of their compositions, e. g. in the form of directly sprayable solutions, powders, suspensions, dispersions, emulsions, oil dispersions, pastes, dustable products, materials for spreading, or granules, by means of spraying, atomizing, dusting, spreading, brushing, immersing or pouring.
  • the application forms depend entirely on the intended purposes; it is intended to ensure in each case the finest possible distribution of the active substances according to the invention.
  • Aqueous application forms can be prepared from emulsion concentrates, pastes or wettable powders (sprayable powders, oil dispersions) by adding water.
  • the substances as such or dissolved in an oil or solvent, can be homogenized in water by means of a wetter, tackifier, dispersant or emulsifier.
  • concentrates composed of active substance, wetter, tackifier, dispersant or emulsifier and, if appropriate, solvent or oil, and such concentrates are suitable for dilution with water.
  • the active substance concentrations in the ready-to-use preparations can be varied within relatively wide ranges. In general, they are from 0.0001 to 10%, preferably from 0.001 to 1 % by weight of active substance.
  • the active substances may also be used successfully in the ultra-low-volume process (ULV), it being possible to apply compositions comprising over 95% by weight of active substance, or even to apply the active substance without additives.
  • UUV ultra-low-volume process
  • the amounts of active substances applied are, de- pending on the kind of effect desired, from 0.001 to 2 kg per ha, preferably from 0.005 to 2 kg per ha, more preferably from 0.05 to 0.9 kg per ha, in particular from 0.1 to 0.75 kg per ha.
  • amounts of active substance of from 0.1 to 1000 g, preferably from 1 to 1000 g, more preferably from 1 to 100 g and most preferably from 5 to 100 g, per 100 kilogram of plant propagation material (preferably seed) are generally required.
  • the amount of active sub- stance applied depends on the kind of application area and on the desired effect. Amounts customarily applied in the protection of materials are, e. g., 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active substance per cubic meter of treated material.
  • oils, wetters, adjuvants, herbicides, bactericides, other fungicides and/or pesticides may be added to the active substances or the compositions comprising them, if appropriate not until immediately prior to use (tank mix).
  • These agents can be admixed with the compositions according to the invention in a weight ratio of 1 :100 to 100:1 , preferably 1 :10 to 10:1.
  • Adjuvants which can be used are in particular organic modified polysiloxanes such as Break Thru S 240 ® ; alcohol alkoxylates such as Atplus 245 ® , Atplus MBA 1303 ® , PIu- rafac LF 300 ® and Lutensol ON 30 ® ; EO/PO block polymers, e. g. Pluronic RPE 2035 ® and Genapol B ® ; alcohol ethoxylates such as Lutensol XP 80 ® ; and dioctyl sulfosucci- nate sodium such as Leophen RA ® .
  • organic modified polysiloxanes such as Break Thru S 240 ®
  • alcohol alkoxylates such as Atplus 245 ® , Atplus MBA 1303 ® , PIu- rafac LF 300 ® and Lutensol ON 30 ®
  • EO/PO block polymers e. g. Pluronic
  • compositions according to the invention can, in the use form as fungicides, also be present together with other active substances, e. g. with herbicides, insecticides, growth regulators, fungicides or else with fertilizers, as pre-mix or, if appropriate, not until immediately prior to use (tank mix).
  • Other active substances e. g. with herbicides, insecticides, growth regulators, fungicides or else with fertilizers, as pre-mix or, if appropriate, not until immediately prior to use (tank mix).
  • Mixing the compounds 1, 11 and/or IV or the compositions comprising them in the use form as fungicides with other fungicides results in many cases in an expansion of the fungicidal spectrum of activity being obtained or in a prevention of fungicide resistance development. Furthermore, in many cases, synergistic effects are obtained.
  • azoles triazoles triazoles: azaconazole, bitertanol, bromuconazole, cyproconazole, difenocona- zole, diniconazole, diniconazole-M, epoxiconazole, fenbuconazole, fluquincona- zole, flusilazole, flutriafol, hexaconazole, imibenconazole, ipconazole, metcona- zole, myclobutanil, oxpoconazole, paclobutrazole, penconazole, propiconazole, prothioconazole, simeconazole, tebuconazole, tetraconazole, triadimefon, triadi- menol, triticonazole, uniconazole, 1-(4-chloro-phenyl)-2-([1 ,2,4]triazol-1-yl)- cycl
  • D) heterocyclic compounds - pyridines fluazinam, pyrifenox, 3-[5-(4-chloro-phenyl)-2,3-dimethyl-isoxazolidin- 3-yl]-pyridine, 3-[5-(4-methyl-phenyl)-2,3-dimethyl-isoxazolidin-3-yl]-pyridine, 2,3,5,6-tetra-chloro-4-methanesulfonyl-pyridine, 3 ,4 , 5-trichloropyrid ine-2 ,6-d i- carbonitrile, N-(1-(5-bromo-3-chloro-pyridin-2-yl)-ethyl)-2,4-dichloronicotinamide, N-[(5-bromo-3-chloro-pyridin-2-yl)-methyl]-2,4-dichloro-nicotinamide; - pyrimidines: bupirimate, cy
  • guanidines guanidine, dodine, dodine free base, guazatine, guazatine-acetate, iminoctadine, iminoctadine-triacetate, iminoctadine-tris(albesilate); antibiotics: kasugamycin, kasugamycin hydrochloride-hydrate, streptomycin, pol- yoxine, validamycin A; - nitrophenyl derivates: binapacryl, dinobuton, dinocap, nitrthal-isopropyl, tecna- zen, organometal compounds: fentin salts, such as fentin-acetate, fentin chloride or fentin hydroxide; sulfur-containing heterocyclyl compounds: dithianon, isoprothiolane; - organophosphorus compounds: edifenphos, fosetyl, fosetyl-aluminum, iproben- fos
  • growth regulators abscisic acid, amidochlor, ancymidol, 6-benzylaminopurine, brassinolide, butralin, chlormequat (chlormequat chloride), choline chloride, cyclanilide, daminozide, dikegulac, dimethipin, 2,6-dimethylpuridine, ethephon, flumetralin, flurprimidol, fluthiacet, forchlorfenuron, gibberellic acid, inabenfide, indole-3-acetic acid , maleic hydrazide, mefluidide, mepiquat (mepiquat chloride), naphthaleneacetic acid, N-6-benzyladenine, paclobu
  • herbicides acetamides acetochlor, alachlor, butachlor, dimethachlor, dimethenamid, flufen- acet, mefenacet, metolachlor, metazachlor, napropamide, naproanilide, pethox- amid, pretilachlor, propachlor, thenylchlor; amino acid derivatives: bilanafos, glyphosate, glufosinate, sulfosate; aryloxyphenoxypropionates: clodinafop, cyhalofop-butyl, fenoxaprop, fluazifop, haloxyfop, metamifop, propaquizafop, quizalofop, quizalofop-P-tefuryl; - Bipyridyl
  • (thio)carbamates asulam, butylate, carbetamide, desmedipham, dimepiperate, eptam (EPTC), esprocarb, molinate, orbencarb, phenmedipham, prosulfocarb, pyributicarb, thiobencarb, triallate; cyclohexanediones: butroxydim, clethodim, cycloxydim, profoxydim, sethoxydim, tepraloxydim, tralkoxydim; dinitroanilines: benfluralin, ethalfluralin, oryzalin, pendimethalin, prodiamine, triflu- ralin; diphenyl ethers: acifluorfen, aclonifen, bifenox, diclofop, ethoxyfen, fomesafen, lactofen, oxyfluorfen; - hydroxybenzonitriles:
  • DB dichlorprop, MCPA, MCPA-thioethyl, MCPB, Mecoprop; - pyrazines: chloridazon, flufenpyr-ethyl, fluthiacet, norflurazon, pyridate; pyridines: aminopyralid, clopyralid, diflufenican, dithiopyr, fluridone, fluroxypyr, picloram, picolinafen, thiazopyr; sulfonyl ureas: amidosulfuron, azimsulfuron, bensulfuron, chlorimuron-ethyl, chlorsulfuron, cinosulfuron, cyclosulfamuron, ethoxysulfuron, flazasulfuron, fluce- tosulfuron, flupyrsulfuron, foramsulfuron, halosulfuron, imazosulfuron, iodosulfu- ron, meso
  • I) insecticides organo(thio)phosphates acephate, azamethiphos, azinphos-methyl, chlorpyrifos, chlorpyrifos-methyl, chlorfenvinphos, diazinon, dichlorvos, dicrotophos, dimethoa- te, disulfoton, ethion, fenitrothion, fenthion, isoxathion, malathion, methamido- phos, methidathion, methyl-parathion, mevinphos, monocrotophos, oxydemeton- methyl, paraoxon, parathion, phenthoate, phosalone, phosmet, phosphamidon, phorate, phoxim, pirimiphos-methyl, profenofos, prothiofos, sulprophos, tetra- chlorvinphos, terbufos, triazophos, trichlorfon;
  • METI Il and III compounds acequinocyl, fluacyprim, hydramethylnon; - Uncouplers: chlorfenapyr; oxidative phosphorylation inhibitors: cyhexatin, diafenthiuron, fenbutatin oxide, propargite; moulting disruptor compounds: cryomazine; mixed function oxidase inhibitors: piperonyl butoxide; - sodium channel blockers: indoxacarb, metaflumizone; others: benclothiaz, bifenazate, cartap, flonicamid, pyridalyl, pymetrozine, sulfur, thiocyclam, flubendiamide, chlorantraniliprole, cyazypyr (HGW86), cyenopyrafen, flupyrazofos, cyflumetofen, amidoflumet, imicyafos, bistrifluron, and pyrifluquina- zon.
  • the present invention furthermore relates to agrochemical compositions comprising a mixture of at least one compound I, Il and/or IV (component 1 ) and at least one further active substance useful for plant protection, e. g. selected from the groups A) to I) (component 2), in particular one further fungicide, e. g. one or more fungicide from the groups A) to F), as described above, and if desired one suitable solvent or solid carrier.
  • agrochemical compositions comprising a mixture of at least one compound I, Il and/or IV (component 1 ) and at least one further active substance useful for plant protection, e. g. selected from the groups A) to I) (component 2), in particular one further fungicide, e. g. one or more fungicide from the groups A) to F), as described above, and if desired one suitable solvent or solid carrier.
  • combating harmful fungi with a mixture of compounds I, Il and/or IV and at least one fungicide from groups A) to F), as described above, is more efficient than combating those fungi with individ- ual compounds I, Il or IV or individual fungicides from groups A) to F).
  • compounds I, Il and/or IV together with at least one active substance from groups A) to I) a synergistic effect can be obtained, i.e. more then simple addition of the individual effects is obtained (synergistic mixtures).
  • applying the compounds I, Il and/or IV together with at least one further active substance is to be understood to denote that at least one compound of formula 1, 11 and/or IV and at least one further active substance occur simultaneously at the site of action (i.e. the harmful fungi to be controlled or their habitats such as in- fected plants, plant propagation materials, particularly seeds, surfaces, materials or the soil as well as plants, plant propagation materials, particularly seeds, soil, surfaces, materials or rooms to be protected from fungal attack) in a fungicidally effective amount.
  • This can be obtained by applying the compounds I, Il and/or IV and at least one further active substance simultaneously, either jointly (e. g.
  • tank-mix or sper- ately, or in succession, wherein the time interval between the individual applications is selected to ensure that the active substance applied first still occurs at the site of action in a sufficient amount at the time of application of the further active substance(s).
  • the order of application is not essential for working of the present invention.
  • the weight ratio of component 1 and component 2 generally depends from the properties of the active substances used, usually it is in the range of from 1 :100 to 100:1 , regularly in the range of from 1 :50 to 50:1 , pref- erably in the range of from 1 :20 to 20: 1 , more preferably in the range of from 1 : 10 to 10:1 and in particular in the range of from 1 :3 to 3:1.
  • the weight ratio of component 1 and component 2 depends from the properties of the active substances used, preferably it is in the range of from 1 :50 to 50:1 and particularly in the range of from 1 :10 to 10:1
  • the weight ratio of component 1 and component 3 preferably is in the range of from 1 :50 to 50:1 and particularly in the range of from 1 :10 to 10:1.
  • the components can be used individually or already partially or completely mixed with one another to prepare the composition according to the invention. It is also possible for them to be packaged and used further as combination composition such as a kit of parts.
  • kits may include one or more, including all, components that may be used to prepare a subject agrochemical composition.
  • kits may include one or more fungicide component(s) and/or an adjuvant component and/or an insecticide component and/or a growth regulator component and/or a her- bicde.
  • One or more of the components may already be combined together or pre- formulated.
  • the components may already be combined together and as such are packaged in a single container such as a vial, bottle, can, pouch, bag or canister.
  • two or more components of a kit may be packaged separately, i. e., not pre- formulated.
  • kits may include one or more separate containers such as vials, cans, bottles, pouches, bags or canisters, each container containing a separate com- ponent for an agrochemical composition.
  • a component of the kit may be applied separately from or together with the further components or as a component of a combination composition according to the invention for preparing the composition according to the invention.
  • the user applies the composition according to the invention usually from a predosage device, a knapsack sprayer, a spray tank or a spray plane.
  • the agrochemical composition is made up with water and/or buffer to the desired application concentration, it being possible, if appropriate, to add further auxiliaries, and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus ob- tained.
  • 50 to 500 liters of the ready-to-use spray liquor are applied per hectare of agricultural useful area, preferably 100 to 400 liters.
  • composition according to the invention such as parts of a kit or parts of a binary or ternary mixture may be mixed by the user himself in a spray tank and further auxiliaries may be added, if appropriate (tank mix).
  • either individual components of the composition according to the invention or partially premixed components e. g. components comprising com- pounds I, Il and/or IV and/or active substances from the groups A) to I
  • either individual components of the composition according to the invention or partially premixed components e. g. components comprising compounds 1, 11 and/or IV and/or active substances from the groups A) to I)
  • mixtures comprising a compound I, Il and/or IV (component 1 ) and at least one active substance selected from the strobilurines of group A) (component 2) and particularly selected from azoxystrobin, dimoxystrobin, fluoxastrobin, kresoxim-methyl, orysastrobin, picoxystrobin, pyraclostrobin and trifloxystrobin.
  • mixtures comprising a compound I, Il and/or IV (component 1 ) and at least one active substance selected from the carboxamides of group B) (component 2) and particularly selected from bixafen, boscalid, sedaxane, fenhexamid, metalaxyl, isopyrazam, mefenoxam, ofurace, dimethomorph, flumorph, fluopicolid (pi- cobenzamid), zoxamide, carpropamid, mandipropamid and N-(3',4',5'-trifluorobiphenyl- 2-yl)-3-difluoromethyl-1 -methyl-1 H-pyrazole-4-carboxamide.
  • mixtures comprising a compound of formula I, Il and/or IV (component 1 ) and at least one active substance selected from the azoles of group C) (component 2) and particularly selected from cyproconazole, difenoconazole, epoxi- conazole, fluquinconazole, flusilazole, flutriafol, metconazole, myclobutanil, pencona- zole, propiconazole, prothioconazole, triadimefon, triadimenol, tebuconazole, tetra- conazole, triticonazole, prochloraz, cyazofamid, benomyl, carbendazim and eth- aboxam.
  • mixtures comprising a compound I, Il and/or IV (component 1 ) and at least one active substance selected from the heterocyclic compounds of group D) (component 2) and particularly selected from fluazinam, cyprodinil, fenarimol, mepanipyrim, pyrimethanil, triforine, fludioxonil, dodemorph, fenpropimorph, tride- morph, fenpropidin, iprodione, vinclozolin, famoxadone, fenamidone, probenazole, pro- quinazid, acibenzolar-S-methyl, captafol, folpet, fenoxanil, quinoxyfen and 5-ethyl- 6-octyl-[1 ,2,4]triazolo[1 ,5-a]pyrimidine-7-ylamine.
  • active substance selected from the heterocyclic compounds of group D) (component 2) and particularly selected from fluazinam,
  • mixtures comprising a compound I, Il and/or IV (component 1 ) and at least one active substance selected from the carbamates of group E) (component 2) and particularly selected from mancozeb, metiram, propineb, thiram, iprovali- carb, benthiavalicarb and propamocarb.
  • mixtures comprising a compound I, Il and/or IV (component 1 ) and at least one active substance selected from the fungicides given in group F) (component 2) and particularly selected from dithianon, fentin salts, such as fentin acetate, fosetyl, fosetyl-aluminium, H3PO3 and salts thereof, chlorthalonil, dichlofluanid, thiophanat-methyl, copper acetate, copper hydroxide, copper oxychloride, copper sulfate, sulfur, cymoxanil, metrafenone and spiroxamine.
  • component 1 a compound I, Il and/or IV
  • the present invention furthermore relates to compositions comprising one compound I, Il and/or IV (component 1 ) and one further active substance (component 2), which further active substance is selected from the column "Component 2" of the lines B-1 to B-346 of Table B.
  • a further embodiment relates to the compositions B-1 to B-346 listed in Table B, where a row of Table B corresponds in each case to a fungicidal composition comprising one of the in the present specification individualized compounds of formula I or Il (component 1 ) and the respective further active substance from groups A) to I) (component 2) stated in the row in question.
  • the compositions described comprise the active substances in synergistically effective amounts.
  • Table B Composition comprising one indiviualized compound I or Il and one further active substance from groups A) to I)
  • B-243 one individualized compound or Il acetyl]-piperidin-4-yl ⁇ -thiazole-4- carboxylic acid methyl-(1 , 2,3,4- tetrahydro-naphthalen-1-yl)-amide
  • component 2 The active substances referred to as component 2, their preparation and their activity against harmful fungi is known (cf.: http://www.alanwood.net/pesticides/); these substances are commercially available.
  • the compounds described by IUPAC nomencla- ture, their preparation and their fungicidal activity are also known (cf. Can. J. Plant Sci.
  • the mixtures of active substances can be prepared as compositions comprising besides the active ingredients at least one inert ingredient by usual means, e. g. by the means given for the compositions of compounds I, Il and/or IV.
  • compositions containing compounds I, Il and/or IV Concerning usual ingredients of such compositions reference is made to the explanations given for the compositions containing compounds I, Il and/or IV.
  • the mixtures of active substances according to the present invention are suitable as fungicides, as are the compounds of formula I, Il ad IV. They are distinguished by an outstanding effectiveness against a broad spectrum of phytopathogenic fungi, especially from the classes of the Ascomycetes, Basidiomycetes, Deuteromycetes and Per- onosporomycetes (syn. Oomycetes ). In addition, it is referred to the explanations regarding the fungicidal activity of the compounds and the compositions containing com- pounds I, Il and/or IV respectively.
  • the compounds I, Il and IV and pharmaceutically acceptable salts thereof are also suitable for treating diseases in men and animals, especially as antimycotics, for treating cancer and for treating virus infections.
  • antimycotic as distinguished from the term “fungicide”, refers to a medicament for combating zoopathogenic or hu- manpathogenic fungi, i.e. for combating fungi in animals, especially in mammals (including humans) and birds.
  • a further aspect of the present invention relates to a medicament comprising at least one compound of the formulae I, Il and/or IV and/or at least one pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
  • Suitable pharmaceutically acceptable salts are especially physiologically tolerated salts of the compound I, in particular the acid addition salts with physiologically acceptable acids.
  • suitable organic and inorganic acids are hydrochloric acid, hydro- bromic acid, phosphoric acid, sulfuric acid, Ci-C4-alkylsulfonic acids, such as methane- sulfonic acid, aromatic sulfonic acids, such as benzenesulfonic acid and toluenesulfo- nic acid, oxalic acid, maleic acid, fumaric acid, lactic acid, tartaric acid, adipic acid and benzoic acid.
  • suitable acids are described, for example, in Fort suitse der Arzneistoffforschung, Volume 10, pages 224 ff., Birkhauser Verlag, Basle and Stuttgart, 1966, the entire contents of which is expressly incorporated herein by way of reference.
  • Suitable carriers are, for example, solvents, carriers, excipients, binders and the like customarily used for pharmaceutical formulations, which are described below in an exemplary manner for individual types of administration.
  • a further aspect of the present invention relates to the use of compounds I, Il and IV or of pharmaceutically acceptable salts thereof for preparing an antimycotic medicament; i.e. for preparing a medicament for the treatment and/or prophylaxis of infections with humanpathogenic and/or zoopathogenic fungi.
  • Another aspect of the present invention relates to the use of compounds of formulae I, Il and/or IV or of pharmaceutically ac- ceptable salts thereof for preparing a medicament for the treatment of cancer.
  • Another aspect of the present invention relates to the use of compounds of formulae I, Il and/or IV or of pharmaceutically acceptable salts thereof for preparing a medicament for the treatment or prophylaxis of virus infections.
  • the compounds of formulae I, Il and IV and/or their pharmaceutically acceptable salts are suitable for the treatment, inhibiton or control of growth and/or propagation of tumor cells and the disorders associated therewith. Accordingly, they are suitable for cancer therapy in warm-blooded vertebrates, for example mammals and birds, in particular man, but also other mammals, in particular useful and domestic animals, such as dogs, cats, pigs, ruminants (cattle, sheep, goats, bison, etc.), horses and birds, such as chicken, turkey, ducks, geese, guineafowl and the like.
  • the compounds of formulae I, Il and IV and/or their pharmaceutically acceptable salts are suitable for the therapy of cancer or cancerous disorders of the following organs: breast, lung, intestine, prostate, skin (melanoma), kidney, bladder, mouth, larynx, oesophagus, stomach, ovaries, pancreas, liver and brain or CNS.
  • the compounds of formulae I, Il and IV and/or their pharmaceutically acceptable salts are suitable for the treatment of virus infections in warm-blooded vertebrates, for example mammals and birds, in particular man, but also other mammals, in particular useful and domestic animals, such as dogs, cats, pigs, ruminants (cattle, sheep, goats, bison, etc.), horses and birds, such as chicken, turkey, ducks, geese, guineafowl and the like. They are suitable for treating virus infections like retrovirus infections such as HIV and HTLV, influenza virus infection, rhinovirus infections, herpes and the like.
  • the compounds according to the invention can be administered in a customary manner, for example orally, intravenously, intramuscularly or subcutaneously.
  • the active compound can be mixed, for example, with an inert diluent or with an edible carrier; it can be embedded into a hard or soft gelatin capsule, it can be compressed to tablets or it can be mixed directly with the food/feed.
  • the active compound can be mixed with excipients and administered in the form of indigestible tablets, buccal tablets, pastilles, pills, capsules, suspensions, potions, syrups and the like.
  • Such preparations should contain at least 0.1 % of active compound.
  • the composition of the preparation may, of course, vary. It usually comprises from 2 to 60% by weight of active compound, based on the total weight of the preparation in question (dosage unit).
  • Preferred preparations of the compound I according to the invention comprise from 10 to 1000 mg of active compound per oral dosage unit.
  • the tablets, pastilles, pills, capsules and the like may furthermore comprise the following components: binders, such as traganth, gum arabic, corn starch or gelatin, excipients, such as dicalcium phosphate, disintegrants, such as corn starch, potato starch, alginic acid and the like, glidants, such as magnesium stearate, sweeteners, such as sucrose, lactose or saccharin, and/or flavors, such as peppermint, vanilla and the like.
  • binders such as traganth, gum arabic, corn starch or gelatin
  • excipients such as dicalcium phosphate
  • disintegrants such as corn starch, potato starch, alginic acid and the like
  • glidants such as magnesium stearate
  • sweeteners such as sucrose, lactose or saccharin
  • flavors such as peppermint, vanilla and the like.
  • Capsules may furthermore comprise a liquid carrier.
  • syrups or potions may also comprise sugar (or other sweeteners), methyl- or propylparaben as preservative, a colorant and/or a flavor.
  • the components of the active compound preparations must, of course, be pharmaceutically pure and nontoxic at the quantities employed.
  • the active compounds can be formulated as preparations with a controlled release of active compound, for example as delayed-release preparations.
  • the active compounds can also be administered parenterally or intraperitoneal ⁇ .
  • Solutions or suspensions of the active compounds or their salts can be prepared with water using suitable wetting agents, such as hydroxypropylcellulose.
  • Dispersions can also be prepared using glycerol, liquid polyethylene glycols and mixtures thereof in oils. Fre- quently, these preparations furthermore comprise a preservative to prevent the growth of microorganisms.
  • Preparations intended for injections comprise sterile aqueous solutions and dispersions and also sterile powders for preparing sterile solutions and dispersions.
  • the prepara- tion has to be sufficiently liquid for injection. It has to be stable under the preparation and storage conditions and it has to be protected against contamination by microorganisms.
  • the carrier may be a solvent or a dispersion medium, for example, water, etha- nol, a polyol (for example glycerol, propylene glycol or liquid polyethylene glycol), a mixture thereof and/or a vegetable oil.
  • the reaction mixture was diluted with EtOAc (30 ml.) and washed with saturated NH 4 CI solution (1 x25 ml.) and brine (1 x25 ml_). The organic layer was separated, dried over anhydrous Na2SO 4 and concentrated under reduced pressure. The crude product was puri- tied by silica gel column chromatography (eluent: 35% EtOAc/hexanes) to afford the title thiotriazole in a yield of 230 mg (30%).
  • the spray soultions were prepared in several steps:
  • the stock solution were prepared by adding a mixture of acetone and/or dimethylsul- foxide and the wetting agent/emulsifier Wettol, which is based on ethoxylated alkylphe- noles, in a relation (volume) solvent-emulsifier of 99 to 1 to 25 mg of the compound to give a total of 10 ml. Water was then added to total volume of 100 ml. This stock solution was diluted with the described solvent-emulsifier-water mixture to the given concentration.
  • Wettol which is based on ethoxylated alkylphe- noles
  • Leaves of pot-grown soy bean seedlings were inoculated with spores of Phakopsora pachyrhizi .
  • the plants were trans- ferred to a humid chamber with a relative humidity of about 95 % and 20 to 24°C for 24 h.
  • the next day the plants were cultivated for 2 days in a greenhouse chamber at 23- 27°C and a relative humidity between 60 and 80 %.
  • the plants were sprayed to run-off with an aqueous suspension, containing the concentration of active ingredient or their mixture as described below. The plants were allowed to air-dry.
  • the trial plants were cultivated for 14 days in a greenhouse chamber at 23-27°C and a relative humidity between 60 and 80 %.
  • the extent of fungal attack on the leaves was visually assessed as % diseased leaf area.
  • the plants which had been treated with an aqueous active compound preparation comprising 300 ppm of the active compounds of examples 1 , 2, 3, 4, 5, 6, 11 , 13, 16, 17, 18 and 20 showed an infection of 0%, whereas the untreated plants were 60% infected.
  • Leaves of pot-grown wheat seedling were sprayed to run-off with an aqueous suspen- sion of the active compound or their mixture, prepared as described.
  • the plants were allowed to air-dry. At the following day the plants were inoculated with an aqueous spore suspension of Septoria tritici. Then the trial plants were immediately transferred to a humid chamber at 18-22°C and a relative humidity close to 100 %. After 4 days the plants were transferred to a chamber with 18-22°C and a relative humidity close to 70 %. After 4 weeks the extent of fungal attack on the leaves was visually assessed as % diseased leaf area.
  • the plants which had been treated with an aqueous active compound preparation comprising 300 ppm of the active compounds of examples 3, 4, 5, 6, 7, 9, 10, 12, 13, 16 and 18 showed an infection of at most 15%, whereas the untreated plants were 90% infected.
  • Young seedlings of green pepper were grown in pots to the 2 to 3 leaf stage. These plants were sprayed to run-off with an aqueous suspension, containing the concentration of active ingredient or their mixture mentioned in the table below. The next day the treated plants were inoculated with a spore suspension of Botrytis cinerea in a 2 % aqueous biomalt solution. Then the trial plants were immediately transferred to a dark, humid chamber. After 5 days at 22 to 24°C and a relative humidity close to 100 % the extent of fungal attack on the leaves was visually assessed as % diseased leaf area. The plants which had been treated with an aqueous active compound preparation comprising 300 ppm of the active compounds of examples 12, 17, 19 and 20 showed an infection of at most 10%, whereas the untreated plants were 100% infected.

Abstract

The present invention relates to novel triazole compounds of the formulae (I), (II) and (IV) as defined below, to agricultural and pharmaceutical compositions containing them and to their use as fungicides, antimycotic, anticancer and antiviral agents.

Description

ANTIFUNGAL 1, 2, 4-TRIAZOLYL DERIVATIVES
Description
The present invention relates to novel triazole compounds of the formulae I and Il as defined below which carry a sulfur substituent, to agricultural compositions containing them, to their use as fungicides and to intermediate compounds used in the method of producing them.
The control of plant diseases caused by phythopathogenic fungi is extremely important for achieving high crop efficiency. Plant disease damage to ornamental, vegetable, field, cereal, and fruit crops can cause significant reduction in productivity and thereby result in increased costs to the consumer.
DE 19528046, DE 19617461 , DE 19617282, DE 19620407, DE 19620590,
WO96/16048 and WO 97/43269 describe sulfurized triazolyl derivatives. The compounds are used for combating harmful fungi.
There is a continuous need for new compounds which are more effective, less costly, less toxic, environmentally safer and/or have different modes of action.
Accordingly, it is an object of the present invention to provide compounds having a better fungicidal activity and/or a better crop plant compatibility.
Surprisingly, these objects are achieved by triazole compounds of the general formulae I and II, defined below, and by the agriculturally acceptable salts of the compounds I and II.
Accordingly, the present invention relates to triazole compounds of the formulae I and Il and to agriculturally useful salts thereof
R6a
Figure imgf000004_0001
(I) (H)
wherein
R1 is selected from Ci-Cio-alkyl, Ci-Cio-haloalkyl, C2-Cio-alkenyl, C2-Cio-haloalkenyl, C2-Cio-alkynyl, C2-Cio-haloalkynyl, C3-Cio-cycloalkyl, C3-Cio-halocycloalkyl, C3-
Cio-cycloalkyl-Ci-C4-alkyl, alkyl-C3-Cio-halocycloalkyl-Ci-C4, where the cycloalkyl moiety in the 4 last-mentioned radicals may carry 1 , 2, 3 or 4 substituents R8, phenyl which may carry 1 , 2, 3, 4 or 5 substituents R7, and a saturated, partially unsaturated or maximum unsaturated 3-, 4-, 5-, 6- or 7-membered heterocyclic ring containing 1 , 2 or 3 heteroatoms or heteroatom-containing groups selected from N, O, S, SO and SO2 as ring members, where the heterocyclic ring may carry 1 , 2 or 3 substituents R7;
R2 is selected from hydrogen and a protective group;
R3 and R4, independently of each other and independently of each occurrence, are selected from hydrogen, halogen, Ci-C4-alkyl, Ci-C4-haloalkyl, C2-C4-alkenyl, C2- C4-haloalkenyl, C2-C4-alkynyl, C2-C4-haloalkynyl, Ci-C4-alkoxy and C1-C4- haloalkoxy;
or R3 and R4, together with the carbon atom to which they are bound, form a saturated, partially unsaturated or maximum unsaturated 3-, 4-, 5-, 6- or 7- membered carbocyclic or heterocyclic ring, where the heterocyclic ring contains 1 , 2 or 3 heteroatoms or heteroatom-containing groups selected from N, O, S, SO and SO2 as ring members;
R5 is selected from C3-Cio-cycloalkyl, C3-Cio-halocycloalkyl, where the cycloalkyl moiety in the 2 last-mentioned radicals may carry 1 , 2, 3 or 4 substituents R8, C3- Cio-cycloalkenyl, C3-Cio-halocycloalkenyl, where the cycloalkenyl moiety in the 2 last-mentioned radicals may carry 1 , 2, 3 or 4 substituents R8, aryl which may carry 1 , 2 or 3 substituents R9, and a saturated, partially unsaturated or maximum unsaturated 3-, 4-, 5-, 6- or 7-membered heterocyclic ring containing 1 , 2 or 3 heteroatoms or heteroatom-containing groups selected from N, O, S, SO and SO2 as ring members, where the heterocyclic ring may carry 1 , 2 or 3 substitu- ents R10;
R6 is selected from hydrogen, Ci-Cio-alkyl, Ci-Cio-haloalkyl, C2-Cio-alkenyl, C2-C10- haloalkenyl, C2-Cio-alkynyl, C2-Cio-haloalkynyl, C3-Cio-cycloalkyl, C3-C10- halocycloalkyl, phenyl, phenyl-Ci-C4-alkyl, where the phenyl moiety in the 2 last- mentioned radicals may carry 1 , 2, 3, 4 or 5 substituents R11, and a 5- or 6- membered saturated, partially unsaturated or aromatic heterocyclic ring containing 1 , 2 or 3 heteroatoms selected from N, O and S as ring members, where the heterocyclic ring may carry 1 , 2 or 3 substituents R11; or, in case m is 0, may also be selected from -C(=O)R12, -C(=S)R12, -S(O)2R12, -CN, -P(=Q)R13R14, M and a group of the formula III
Figure imgf000005_0001
wherein
R1, R2, R3, R4, R5 and n are as defined for formulae I and II; and
# is the attachment point to the remainder of the molecule;
R6a is selected from hydrogen, Ci-Cio-alkyl, Ci-Cio-haloalkyl, C2-Cio-alkenyl, C2-C10- haloalkenyl, C2-Cio-alkynyl, C2-Cio-haloalkynyl, C3-Cio-cycloalkyl, C3-C10- halocycloalkyl, phenyl, phenyl-Ci-C4-alkyl, where the phenyl moiety in the 2 last- mentioned radicals may carry 1 , 2, 3, 4 or 5 substituents R11, a 5- or 6-membered saturated, partially unsaturated or aromatic heterocyclic ring containing 1 , 2 or 3 heteroatoms selected from N, O and S as ring members, where the heterocyclic ring may carry 1 , 2 or 3 substituents R11, -C(=O)R12, -C(=S)R12, -S(O)2R12, -CN, -P(=Q)R13R14 and M;
each R7 is independently selected from halogen, nitro, CN, Ci-C4-alkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy, Ci-C4-haloalkoxy and NR15R16;
each R8 is independently selected from nitro, CN, Ci-C4-alkyl, Ci-C4-haloalkyl, C1-C4- alkoxy, Ci-C4-haloalkoxy and NR15R16; each R9 is independently selected from halogen, nitro, CN, Ci-C4-alkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy, Ci-C4-haloalkoxy and NR15R16;
each R10 is independently selected from halogen, nitro, CN, Ci-C4-alkyl, CrC4- haloalkyl, Ci-C4-alkoxy, Ci-C4-haloalkoxy and NR15R16;
each R11 is independently selected from halogen, nitro, CN, Ci-C4-alkyl, CrC4- haloalkyl, Ci-C4-alkoxy, Ci-C4-haloalkoxy and NR15R16;
R12 is selected from hydrogen, Ci-Cio-alkyl, Ci-Cio-haloalkyl, Ci-Cio-alkoxy, C1-C10- haloalkoxy, Ci-Cio-aminoalkyl, C3-Cio-cycloalkyl, C3-Cio-halocycloalkyl, phenyl, phenyl-Ci-C4-alkyl, where the phenyl moiety in the 2 last-mentioned radicals may carry 1 , 2, 3, 4 or 5 substituents R11, a 5- or 6-membered saturated, partially un- saturated or aromatic heterocyclic ring containing 1 , 2 or 3 heteroatoms selected from N, O and S as ring members, where the heterocyclic ring may carry 1 , 2 or 3 substituents R11, and NR15R16;
R13 and R14, independently of each other, are selected from Ci-Cio-alkyl, C1-C10- haloalkyl, C2-Cio-alkenyl, C2-Cio-haloalkenyl, C2-Cio-alkynyl, C2-Cio-haloalkynyl,
C3-Cio-cycloalkyl, C3-Cio-halocycloalkyl, Ci-Cio-alkoxy, Ci-Cio-haloalkoxy, C1-C4- alkoxy-Ci-Cio-alkyl, Ci-C4-alkoxy-Ci-Cio-alkoxy, Ci-Cio-alkylthio, C1-C10- haloalkylthio, C2-Cio-alkenyloxy, C2-Cio-alkenylthio, C2-Cio-alkynyloxy, C2-C10- alkynylthio, C3-Cio-cycloalkoxy, C3-Cio-cycloalkylthio, phenyl, phenyl-Ci-C4-alkyl, phenylthio, phenyl-Ci-C4-alkoxy, and NR15R16;
each R15 is independently selected from hydrogen and Ci-Cs-alkyl;
each R16 is independently selected from hydrogen, Ci-Cs-alkyl, phenyl, and phenyl-Ci- C4-alkyl;
or R15 and R16 together form a linear C4- or Cs-alkylene bridge or a group -CH2CH2OCH2CH2- or -CH2CH2NR17CH2CH2-;
each R17 is independently selected from hydrogen and Ci-C4-alkyl;
Q is O or S; M is a metal cation equivalent or an ammonium cation of formula (NRaRbRcRd)+, wherein Ra, Rb, Rc and Rd, independently of each other, are selected from hydrogen, Ci-Cio-alkyl, phenyl and benzyl, where the phenyl moiety in the 2 last- mentioned radicals may carry 1 , 2 or 3 substituents independently selected from halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy, Ci-C4-haloalkoxy and NR15R16;
m is 0, 1 , 2 or 3; and
n is 2, 3, 4, 5, 6 or 7;
and the agriculturally acceptable salts thereof.
The present invention also provides the use of triazole compounds of the formulae I and Il and/or their agriculturally useful salts for controlling harmful fungi.
The invention further provides fungicidal compositions comprising these triazole compounds of the formulae I and/or Il (and/or also of the formula IV; see below) and/or their agriculturally acceptable salts and suitable carriers. Suitable agriculturally acceptable carriers are described below.
The compounds I and Il can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers. One skilled in the art will appreciate that one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. The compounds of the invention may be present as a mixture of stereoisomers, e.g. a racemate, individual stereoisomers, or as an optically active form.
Compounds I and Il can be understood as positional/double bond isomers of each other, at least in case the radicals R6/R6a are identical. In case R6 (and of course also R6a) is hydrogen, the respective compounds I and Il are tautomers.
Suitable agriculturally useful salts are especially the salts of those cations or the acid addition salts of those acids whose cations and anions, respectively, have no adverse effect on the fungicidal action of the compounds I and II. Thus, suitable cations are in particular the ions of the alkali metals, preferably sodium and potassium, of the alkaline earth metals, preferably calcium, magnesium and barium, and of the transition metals, preferably manganese, copper, zinc and iron, and also the ammonium ion which, if desired, may carry one to four Ci-C4-alkyl substituents and/or one phenyl or benzyl substituent, preferably diisopropylammonium, tetramethylammonium, tetrabutylammo- nium, trimethylbenzylammonium, furthermore phosphonium ions, sulfonium ions, pref- erably tri(Ci-C4-alkyl)sulfonium and sulfoxonium ions, preferably tri(Ci-C4-alkyl)sulf- oxonium.
Anions of useful acid addition salts are primarily chloride, bromide, fluoride, hydrogen- sulfate, sulfate, dihydrogenphosphate, hydrogenphosphate, phosphate, nitrate, bicar- bonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate, and also the anions of Ci-C4-alkanoic acids, preferably formate, acetate, propionate and butyrate. They can be formed by reacting I or Il with an acid of the corresponding anion, preferably hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or nitric acid.
In the definitions of the variables given in the formulae above, collective terms are used which are generally representative for the substituents in question. The term Cn-Cm indicates the number of carbon atoms possible in each case in the substituent or sub- stitutent moiety in question:
Halogen: fluorine, chlorine, bromine and iodine;
Alkyl and the alkyl moieties in alkoxy, alkoxyalkyl, alkoxyalkoxy, alkylcarbonyl, alkyl- thiocarbonyl, aminoalkyl, alkylamino, dialkylamino, alkylaminocarbonyl, dialkylamino- carbonyl, alkylthio, alkylsulfonyl and the like: saturated straight-chain or branched hy- drocarbon radicals having 1 to 2 (Ci-C2-alkyl), 2 or 3 (C2-C3-alkyl), 1 to 4 (Ci-C4-alkyl), 1 to 6 (d-Ce-alkyl), 1 to 8 (Ci-C8-alkyl) or 1 to 10 (Ci-Cio-alkyl) carbon atoms. C2-C3- Alkyl is ethyl, n-propyl or isopropyl. Ci-C2-Alkyl is methyl or ethyl. Ci-C4-Alkyl is methyl, ethyl, propyl, isopropyl, butyl, 1-methylpropyl (sec-butyl), 2-methylpropyl (isobutyl) or 1 ,1-dimethylethyl (tert-butyl). Ci-Cβ-Alkyl is additionally also, for example, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, 1 ,1-dimethylpropyl, 1 ,2-dimethylpropyl, hexyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1 ,1-dimethylbutyl, 1 ,2-dimethylbutyl, 1 ,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1 ,1 ,2-trimethylpropyl, 1 ,2,2-trimethylpropyl, 1-ethyl-1-methylpropyl, or 1-ethyl-2- methylpropyl. d-Cs-Alkyl is additionally also, for example, heptyl, octyl, 2-ethylhexyl and positional isomers thereof. Ci-Cio-Alkyl is additionally also, for example, nonyl, decyl, 2-propylheptyl, 3-propylheptyl and positional isomers thereof. Haloalkyl: straight-chain or branched alkyl groups having 1 to 2 (Ci-C2-haloalkyl), 1 to 3 (d-Cs-haloalkyl), 1 to 4 (Ci-C4-haloalkyl), 1 to 6 (d-Cβ-haloalkyl), 1 to 8 (Ci-C8- haloalkyl), 1 to 10 (Ci-Cio-haloalkyl) or 2 to 10 (C2-Cio-haloalkyl) carbon atoms (as mentioned above), where some or all of the hydrogen atoms in these groups may be replaced by halogen atoms as mentioned above: in particular Ci-C2-haloalkyl, such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoro- methyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2- trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2- fluoroethyl, 2,2,2-trichloroethyl, or pentafluoroethyl. Ci-C3-Haloalkyl is additionally, for example, 1 ,1 ,1-trifluoroprop-2-yl, 3,3,3-trifluoropropyl or heptafluoropropyl. CrC4- Haloalkyl is additionally, for example, 1-chlorobuty, 2-chlorobutyl, 3-chlorobutyl or 4- chlorobutyl.
Ci-Cio-Hydroxyalkyl: straight-chain or branched alkyl groups having 1 to 2 (Ci-C2- hydroxyalkyl), 1 to 4 (Ci-C4-hydroxyalkyl), 2 to 4 (C2-C4-hydroxyalkyl), 1 to 6 (Ci-C6- hydroxyalkyl), 2 to 6 (C2-C6-hydroxyalkyl), 1 to 8 (Ci-C8-hydroxyalkyl), 2 to 8 (C2-C8- hydroxyalkyl), 1 to 10 (Ci-Cio-hydroxyalkyl) or 2 to 10 (C2-Cio-hydroxyalkyl) carbon atoms (as mentioned above), where at least one of the hydrogen atoms is replaced by a hydroxyl group, such as in 2-hydroxyethyl or 3-hydroxypropyl.
Alkenyl and the alkenyl moieties in alkenyloxy, alkenylthio, alkenylcarbonyl and the like: monounsaturated straight-chain or branched hydrocarbon radicals having 2 to 4 (C2- C4-alkenyl), 2 to 6 (C2-C6-alkenyl), 2 to 8 (C2-C8-alkenyl), 3 to 8 (C3-C8-alkenyl), 2 to 10 (C2-Cio-alkenyl) or 3 to 10 (C3-Cio-alkenyl) carbon atoms and a double bond in any position, for example C2-C4-alkenyl, such as ethenyl, 1-propenyl, 2-propenyl, 1- methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1- propenyl, 1-methyl-2-propenyl or 2-methyl-2-propenyl, or, for example, C2-C6-alkenyl, such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3- butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2- propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1 -butenyl, 2-methyl- 1 -butenyl, 3-methyl-1 -butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2- butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 1 ,1-dimethyl-2- propenyl, 1 ,2-dimethyl-1-propenyl, 1 ,2-dimethyl-2-propenyl, 1-ethyl-1-propenyl, 1-ethyl- 2-propenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 1-methyl-1- pentenyl, 2-methyl-1-pentenyl, 3-methyl-1-pentenyl, 4-methyl-1-pentenyl, 1-methyl-2- pentenyl, 2-methyl-2-pentenyl, 3-methyl-2-pentenyl, 4-methyl-2-pentenyl, 1-methyl-3- pentenyl, 2-methyl-3-pentenyl, 3-methyl-3-pentenyl, 4-methyl-3-pentenyl, 1-methyl-4- pentenyl, 2-methyl-4-pentenyl, 3-methyl-4-pentenyl, 4-methyl-4-pentenyl, 1 ,1-dimethyl- 2-butenyl, 1 ,1-dimethyl-3-butenyl, 1 ,2-dimethyl-1-butenyl, 1 ,2-dimethyl-2-butenyl, 1 ,2- dimethyl-3-butenyl, 1 ,3-dimethyl-1-butenyl, 1 ,3-dimethyl-2-butenyl, 1 ,3-dimethyl-3- butenyl, 2,2-dimethyl-3-butenyl, 2,3-dimethyl-1-butenyl, 2,3-dimethyl-2-butenyl, 2,3- dimethyl-3-butenyl, 3,3-dimethyl-1-butenyl, 3,3-dimethyl-2-butenyl, 1-ethyl-1-butenyl, 1- ethyl-2-butenyl, 1-ethyl-3-butenyl, 2-ethyl-1-butenyl, 2-ethyl-2-butenyl, 2-ethyl-3- butenyl, 1 ,1 ,2-trimethyl-2-propenyl, 1-ethyl-1-methyl-2-propenyl, 1-ethyl-2-methyl-1- propenyl, 1-ethyl-2-methyl-2-propenyl and the like;
Haloalkenyl and the haloalkenyl moieties in haloalkenyloxy, haloalkenylcarbonyl and the like: unsaturated straight-chain or branched hydrocarbon radicals having 2 to 4 (C2- C4-haloalkenyl), 2 to 6 (C2-C6-haloalkenyl), 2 to 8 (C2-C8-haloalkenyl) or 2 to 10 (C2- Cio-haloalkenyl) carbon atoms and a double bond in any position (as mentioned above), where some or all of the hydrogen atoms in these groups may be replaced by halogen atoms as mentioned above, in particular fluorine, chlorine and bromine, for example chlorovinyl, chloroallyl and the like;
Alkynyl and the alkynyl moieties in alkynyloxy, alkynylthio, alkynylcarbonyl and the like: straight-chain or branched hydrocarbon groups having 2 to 4 (C2-C4-alkynyl), 2 to 6 (C2-C6-alkynyl), 2 to 8 (C2-C8-alkynyl), 3 to 8 (C3-C8-alkynyl), 2 to 10 (C2-Cio-alkynyl) or 3 to 10 (C3-Cio-alkynyl) carbon atoms and one or two triple bonds in any position, for example C2-C4-alkynyl, such as ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3- butynyl, or 1-methyl-2-propynyl, or, for example, C2-C6-alkynyl, such as ethynyl, 1- propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methyl-2-propynyl, 1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-methyl-2-butynyl, 1-methyl-3-butynyl, 2-methyl-3- butynyl, 3-methyl-1-butynyl, 1 ,1-dimethyl-2-propynyl, 1-ethyl-2-propynyl, 1-hexynyl, 2- hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 1-methyl-2-pentynyl, 1-methyl-3-pentynyl, 1- methyl-4-pentynyl, 2-methyl-3-pentynyl, 2-methyl-4-pentynyl, 3-methyl-1-pentynyl, 3- methyl-4-pentynyl, 4-methyl-1-pentynyl, 4-methyl-2-pentynyl, 1 ,1-dimethyl-2-butynyl, 1 ,1-dimethyl-3-butynyl, 1 ,2-dimethyl-3-butynyl, 2,2-dimethyl-3-butynyl, 3,3-dimethyl-1- butynyl, 1-ethyl-2-butynyl, 1-ethyl-3-butynyl, 2-ethyl-3-butynyl, 1-ethyl-1-methyl-2- propynyl and the like;
Haloalkynyl and the haloalkynyl moieties in haloalkynyloxy, haloalkynylcarbonyl and the like: unsaturated straight-chain or branched hydrocarbon radicals having 2 to 4 (C2- C4-haloalkynyl), 2 to 6 (C2-C6-haloalkynyl), 2 to 8 (C2-C8-haloalkynyl) or 2 to 10 (C2-Ci0- haloalkynyl) carbon atoms and one or two triple bonds in any position (as mentioned above), where some or all of the hydrogen atoms in these groups may be replaced by halogen atoms as mentioned above, in particular fluorine, chlorine and bromine; Cycloalkyl and the cycloalkyl moieties in cycloalkoxy, cycloalkylcarbonyl and the like; monocyclic saturated hydrocarbon groups having 3 to 6 (Cs-Cβ-cycloalkyl), 3 to 8 (C3- Cs-cycloalkyl) or 3 to 10 (C3-Cio-cycloalkyl) carbon ring members, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl and cyclodecyl;
Halocycloalkyl and the halocycloalkyl moieties in halocycloalkoxy, halocycloalkylcar- bonyl and the like: monocyclic saturated hydrocarbon groups having 3 to 6 (C3-C6- halocycloalkyl), 3 to 8 (Cs-Cs-halocycloalkyl) or 3 to 10 (C3-Cio-halocycloalkyl) carbon ring members (as mentioned above) in which some or all of the hydrogen atoms may be replaced by halogen atoms as mentioned above, in particular fluorine, chlorine and bromine;
Cycloalkenyl and the cycloalkenyl moieties in cycloalkenyloxy, cycloalkenylcarbonyl and the like; monocyclic monounsaturated hydrocarbon groups having 3 to 6 (C3-C6- cycloalkenyl), 3 to 8 (Cs-Cs-cycloalkenyl) or 3 to 10 (C3-Cio-cycloalkenyl) carbon ring members, such as cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cyclohep- tenyl, cyclooctenyl, cyclononenyl and cyclodecenyl;
Halocycloalkenyl and the halocycloalkenyl moieties in halocycloalkenyloxy, halo- cycloalkenylcarbonyl and the like: monocyclic monounsaturated hydrocarbon groups having 3 to 6 (C3-C6-halocycloalkenyl), 3 to 8 (C3-C8-halocycloalkenyl) or 3 to 10 (C3- Cio-halocycloalkenyl) carbon ring members (as mentioned above) in which some or all of the hydrogen atoms may be replaced by halogen atoms as mentioned above, in particular fluorine, chlorine and bromine;
C3-C6-cycloalkyl-Ci-C2-alkyl: a Ci-C2-alkyl residue, as decribed above, wherein one of the hydrogen atoms is replaced by a Cs-Cβ-cycloalkyl group. Examples are cyclopro- pylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, cyclopropyl-1 -ethyl, cyclobutyl-1 -ethyl, cyclopentyl-1 -ethyl, cyclohexyl-1 -ethyl, cyclopropyl-2-ethyl, cyclobu- tyl-2-ethyl, cyclopentyl-2-ethyl, cyclohexyl-2-ethyl and the like. C3-Cio-cycloalkyl-Ci-C4- alkyl is a Ci-C4-alkyl residue, as decribed above, wherein one of the hydrogen atoms is replaced by a C3-Cio-cycloalkyl group. Examples are, apart those mentioned above for C3-C6-cycloalkyl-Ci-C4-alkyl, cycloheptylmethyl, cyclooctylmethyl, cyclononylmethyl, cyclodecylmethyl, cycloheptyl-1 -ethyl, cyclooctyl-1 -ethyl, cyclononyl-1 -ethyl, cyclode- cyl-1 -ethyl, cycloheptyl-2 -ethyl, cyclooctyl-2 -ethyl, cyclononyl-2 -ethyl, cyclodecylmethyl, cyclopropyl-1 -propyl, cyclopropyl-2-propyl, cyclopropyl-3-propyl, cyclobutyl-1 - propyl, cyclobutyl-2-propyl, cyclobutyl-3-propyl, cyclopentyl-1 -propyl, cyclopentyl-2- propyl, cyclopentyl-3-propyl, cyclohexyl-1 -propyl, cyclohexyl-2-propyl, cyclohexyl-3- propyl, cycloheptyl-1 -propyl, cycloheptyl-2-propyl, cycloheptyl-3-propyl, cyclooctyl-1- propyl, cyclooctyl-2-propyl, cyclooctyl-3-propyl, cyclononyl-1 -propyl, cyclononyl-2- propyl, cyclononyl-3-propyl, cyclodecyl-1 -propyl, cyclodecyl-2-propyl, cyclodecyl-3- propy, cyclopropyl-1 -butyl, cyclopropyl-2-butyl, cyclopropyl-3-butyl, cyclopropyl-4-butyl, cyclobutyl-1 -butyl, cyclobutyl-2-butyl, cyclobutyl-3-butyl, cyclobutyl-4-butyl, cyclopentyl- 1 -butyl, cyclopentyl-2-butyl, cyclopentyl-3-butyl, cyclopentyl-4-butyl, cyclohexyl-1 -butyl, cyclohexyl-2-butyl, cyclohexyl-3-butyl, cyclohexyl-4-butyl, cycloheptyl-1 -butyl, cyclohep- tyl-2-butyl, cycloheptyl-3-butyl, cycloheptyl-4-butyl, cyclooctyl-1 -butyl, cyclooctyl-2- butyl, cyclooctyl-3-butyl, cyclooctyl-4-butyl, cyclononyl-1 -butyl, cyclononyl-2-butyl, cyc- lononyl-3-butyl, cyclononyl-4-butyl, cyclodecyl-1 -butyl, cyclodecyl-2-butyl, cyclodecyl-3- butyl, cyclodecyl-4-butyl, and the like.
C3-C6-halocycloalkyl-Ci-C2-alkyl: a Ci-C2-alkyl residue, as decribed above, wherein one of the hydrogen atoms is replaced by a Cs-Cβ-halocycloalkyl group. Examples are 1- chlorocyclopropylmethyl, i-chlorocyclobutylmethyl, i-chlorocyclopentylmethyl, 1- chlorocyclohexylmethyl, i-chlorocyclopropyl-i -ethyl, 1-chlorocyclobutyl-i -ethyl, 1- chlorocyclopentyl-1 -ethyl, i-chlorocyclohexyl-i -ethyl, i-chlorocyclopropyl^-ethyl, 1- chlorocyclobutyl-2 -ethyl, i-chlorocyclopentyl^-ethyl, i-chlorocyclohexyl^-ethyl, 2- chlorocyclopropylmethyl, 2-chlorocyclobutylmethyl, 2-chlorocyclopentylmethyl, 2- chlorocyclohexylmethyl, 2-chlorocyclopropyl-1 -ethyl, 2-chlorocyclobutyl-1 -ethyl, 2- chlorocyclopentyl-1 -ethyl, 2-chlorocyclohexyl-1 -ethyl, 2-chlorocyclopropyl-2-ethyl, 2- chlorocyclobutyl-2 -ethyl, 2-chlorocyclopentyl-2-ethyl, 2-chlorocyclohexyl-2-ethyl, 1- fluorocyclopropylmethyl, 1-fluorocyclobutylmethyl, 1-fluorocyclopentylmethyl, 1- fluorocyclohexylmethyl, 1-fluorocyclopropyl-i -ethyl, 1-fluorocyclobutyl-i -ethyl, 1- fluorocyclopentyl-1 -ethyl, 1-fluorocyclohexyl-i -ethyl, i-fluorocyclopropyl-2-ethyl, 1- fluorocyclobutyl-2 -ethyl, i-fluorocyclopentyl-2-ethyl, i-fluorocyclohexyl-2-ethyl, 2- fluorocyclopropylmethyl, 2-fluorocyclobutylmethyl, 2-fluorocyclopentylmethyl, 2- fluorocyclohexylmethyl, 2-fluorocyclopropyl-1 -ethyl, 2-fluorocyclobutyl-1 -ethyl, 2- fluorocyclopentyl-1 -ethyl, 2-fluorocyclohexyl-1 -ethyl, 2-fluorocyclopropyl-2-ethyl, 2- fluorocyclobutyl-2-ethyl, 2-fluorocyclopentyl-2-ethyl, 2-fluorocyclohexyl-2-ethyl, and the like. C3-Cio-halocycloalkyl-Ci-C4-alkyl is a Ci-C4-alkyl residue, as decribed above, wherein one of the hydrogen atoms is replaced by a C3-Cio-halocycloalkyl group.
Alkoxy: an alkyl group attached via oxygen. Ci-C2-Alkoxy is methoxy or ethoxy. C1-C3- Alkoxy is additionally, for example, n-propoxy or 1-methylethoxy (isopropoxy). C1-C4- Alkoxy is additionally, for example, butoxy, 1-methylpropoxy (sec-butoxy), 2- methylpropoxy (isobutoxy) or 1 ,1-dimethylethoxy (tert-butoxy). d-Cβ-Alkoxy is additionally, for example, pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 1 ,1- dimethylpropoxy, 1 ,2-dimethylpropoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy, hexoxy, 1-methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1 ,1- dimethylbutoxy, 1 ,2-dimethylbutoxy, 1 ,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3- dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2-ethylbutoxy, 1 ,1 ,2- trimethylpropoxy, 1 ,2,2-trimethylpropoxy, 1-ethyl-1-methylpropoxy or 1 -ethyl-2- methylpropoxy. Ci-Cs-Alkoxy is additionally, for example, heptyloxy, octyloxy, 2- ethylhexyloxy and positional isomers thereof. Ci-Cio-Alkoxy is additionally, for example, nonyloxy, decyloxy and positional isomers thereof. C2-Cio-Alkoxy is like Ci-Cio-alkoxy with the exception of methoxy.
Haloalkoxy: an alkoxy radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, preferably by fluorine. Ci-C2-Haloalkoxy is, for example, OCH2F, OCHF2, OCF3, OCH2CI, OCHCI2, OCCI3, chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2-bromoethoxy, 2-iodoethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2- fluoroethoxy, 2-chloro-2,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy or OC2Fs. Ci-C4-Haloalkoxy is additionally, for example, 2-fluoropropoxy, 3-fluoropropoxy, 2,2-difluoropropoxy, 2,3-difluoropropoxy, 2-chloropropoxy, 3-chloropropoxy, 2,3-dichloropropoxy, 2-bromopropoxy, 3-bromopropoxy, 3,3,3-trifluoropropoxy, 3,3,3-trichloropropoxy, OCH2-C2F5, OCF2- C2F5, 1-(CH2F)-2-fluoroethoxy, 1-(CH2CI)-2-chloroethoxy, 1-(CH2Br)-2-bromoethoxy, 4-fluorobutoxy, 4-chlorobutoxy, 4-bromobutoxy or nonafluorobutoxy. Ci-C6-Haloalkoxy is additionally, for example, 5-fluoropentoxy, 5-chloropentoxy, 5-brompentoxy, 5-iodopentoxy, undecafluoropentoxy, 6-fluorohexoxy, 6-chlorohexoxy, 6-bromohexoxy, 6-iodohexoxy or dodecafluorohexoxy.
Alkenyloxy: alkenyl as mentioned above which is attached via an oxygen atom, for example C2-Cio-alkenyloxy, such as 1-ethenyloxy, 1-propenyloxy, 2-propenyloxy, 1- methylethenyloxy, 1-butenyloxy, 2-butenyloxy, 3-butenyloxy, 1-methyl-1-propenyloxy, 2-methyl-1-propenyloxy, 1-methyl-2-propenyloxy, 2-methyl-2-propenyloxy, 1- pentenyloxy, 2-pentenyloxy, 3-pentenyloxy, 4-pentenyloxy, 1-methyl-1-butenyloxy, 2- methyl-1-butenyloxy, 3-methyl-1-butenyloxy, 1-methyl-2-butenyloxy, 2-methyl-2- butenyloxy, 3-methyl-2-butenyloxy, 1-methyl-3-butenyloxy, 2-methyl-3-butenyloxy, 3- methyl-3-butenyl, 1 ,1-dimethyl-2-propenyloxy, 1 ,2-dimethyl-1-propenyloxy, 1 ,2- dimethyl-2-propenyloxy, 1-ethyl-1-propenyloxy, 1-ethyl-2-propenyloxy, 1-hexenyloxy, 2-hexenyloxy, 3-hexenyloxy, 4-hexenyloxy, 5-hexenyloxy, 1-methyl-1-pentenyloxy, 2-methyl-1-pentenyloxy, 3-methyl-1-pentenyloxy, 4-methyl-1-pentenyloxy, 1-methyl-2- pentenyloxy, 2-methyl-2-pentenyloxy, 3-methyl-2-pentenyloxy, 4-methyl-2-pentenyloxy, 1-methyl-3-pentenyloxy, 2-methyl-3-pentenyloxy, 3-methyl-3-pentenyloxy, 4-methyl-3- pentenyloxy, 1-methyl-4-pentenyloxy, 2-methyl-4-pentenyloxy, 3-methyl-4-pentenyloxy, 4-methyl-4-pentenyloxy, 1 ,1-dimethyl-2-butenyloxy, 1 ,1-dimethyl-3-butenyloxy, 1 ,2-dimethyl-1-butenyloxy, 1 ,2-dimethyl-2-butenyloxy, 1 ,2-dimethyl-3-butenyloxy, 1 ,3-dimethyl-1-butenyloxy, 1 ,3-dimethyl-2-butenyloxy, 1 ,3-dimethyl-3-butenyloxy, 2,2-dimethyl-3-butenyloxy, 2,3-dimethyl-1 -butenyloxy, 2,3-dimethyl-2-butenyloxy, 2,3-dimethyl-3-butenyloxy, 3,3-dimethyl-1 -butenyloxy, 3,3-dimethyl-2-butenyloxy, 1-ethyl-1 -butenyloxy, 1-ethyl-2-butenyloxy, 1-ethyl-3-butenyloxy, 2-ethyl-1 -butenyloxy, 2-ethyl-2-butenyloxy, 2-ethyl-3-butenyloxy, 1 ,1 ,2-trimethyl-2-propenyloxy, 1-ethyl-1- methyl-2-propenyloxy, 1-ethyl-2-methyl-1-propenyloxy and 1-ethyl-2-methyl-2- propenyloxy and the like;
Haloalkenyloxy: an alkenyloxy radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, preferably by fluorine.
Alkynyloxy: alkynyl as mentioned above which is attached via an oxygen atom, for example C2-Cio-alkynyloxy, such as 2-propynyloxy, 2-butynyloxy, 3-butynyloxy, 1-methyl- 2-propynyloxy, 2-pentynyloxy, 3-pentynyloxy, 4-pentynyloxy, 1-methyl-2-butynyloxy, 1- methyl-3-butynyloxy, 2-methyl-3-butynyloxy, 1 -ethyl-2-propynyloxy, 2-hexynyloxy, 3- hexynyloxy, 4-hexynyloxy, 5-hexynyloxy, 1-methyl-2-pentynyloxy, 1-methyl-3- pentynyloxy and the like;
Haloalkynyloxy: an alkynyloxy radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, preferably by fluorine.
Cycloalkoxy: cycloalkyl as mentioned above which is attached via an oxygen atom, for example C3-Cio-cycloalkoxy or Cs-Cs-cycloalkoxy, such as cyclopropoxy, cyclopentoxy, cyclohexoxy, cycloheptoxy, cyclooctoxy, cyclononyloxy, cyclodecyloxy and the like;
Cycloalkenyloxy: cycloalkenyl as mentioned above which is attached via an oxygen atom, for example C3-Cio-cycloalkenyloxy, Cs-Cs-cycloalkenyloxy or, preferably, Cs-Cβ- cycloalkenyloxy, such as cyclopent-1-enoxy, cyclopent-2-enoxy, cyclohex-1-enoxy and cyclohex-2-enoxy;
Alkoxyalkyl: alkyl as defined above having 1 to 10, 1 to 8, 1 to 6 or 1 to 4, in particular 1 to 3, carbon atoms, in which one hydrogen atom is replaced by an alkoxy group having 1 to 8, 1 to 6, 1 to 4 or 1 to 3 carbon atoms, for example methoxymethyl, 2- methoxyethyl, ethoxymethyl, 3-methoxypropyl, 3-ethoxypropyl and the like.
Alkoxyalkoxy: alkoxy as defined above having 1 to 10, 1 to 8, 1 to 6 or 1 to 4, in particular 1 to 3, carbon atoms, in which one hydrogen atom is replaced by an alkoxy group having 1 to 8, 1 to 6 or in particular 1 to 4 carbon atoms, for example 2-methoxyethoxy, 2-ethoxyethoxy, 3-methoxypropoxy, 3-ethoxypropoxy and the like.
Alkylcarbonyl: group of the formula R-CO- in which R is an alkyl group as defined above, for example Ci-Cio-alkyl, d-Cs-alkyl, Ci-Cβ-alkyl, Ci-C4-alkyl, Ci-C2-alkyl or C3- C4-alkyl. Examples are acetyl, propionyl and the like. Examples for C3-C4-alkylcarbonyl are propylcarbonyl, isopropylcarbonyl, n-butylcarbonyl, sec-butylcarbonyl, isobutylcar- bonyl and tert-butylcarbonyl.
Haloalkylcarbonyl: group of the formula R-CO- in which R is a haloalkyl group as defined above, for example Ci-Cio-haloalkyl, d-Cs-haloalkyl, d-Cβ-haloalkyl, C1-C4- haloalkyl, Ci-C2-haloalkyl or C3-C4-haloalkyl. Examples are difluoromethylcarbonyl, trifluoromethylcarbonyl, 2,2-difluoroethylcarbony, 2,2,3-trifluoroethylcarbonyl and the like.
Alkoxycarbonyl: group of the formula R-CO- in which R is an alkoxy group as defined above, for example Ci-Cio-alkoxy, Ci-Cs-alkoxy, Ci-Cβ-alkoxy, Ci-C4-alkoxy or C1-C2- alkoxy. Examples for Ci-C4-alkoxycarbonyl are methoxycarbonyl, ethoxycarbonyl, pro- poxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, sec-butoxycarbonyl, isobutoxy- carbonyl and tert-butoxycarbonyl.
Haloalkoxycarbonyl: group of the formula R-CO- in which R is a haloalkoxy group as defined above, for example Ci-Cio-haloalkoxy, d-Cs-haloalkoxy, Ci-C6-haloalkoxy, Ci- C4-haloalkoxy or Ci-C2-haloalkoxy. Examples for Ci-C4-haloalkoxycarbonyl are di- fluoromethoxycarbonyl, trifluoromethoxycarbonyl, 2,2-difluoroethoxycarbony, 2,2,3- trifluoroethoxycarbonyl and the like.
Alkylaminocarbonyl: group of the formula R-NH-CO- in which R is an alkyl group as defined above, for example Ci-Cio-alkyl, d-Cs-alkyl, Ci-Cβ-alkyl, Ci-d-alkyl, C1-C2- alkyl or Cs-d-alkyl. Examples for Ci-d-alkylaminocarbonyl are methylaminocarbonyl, ethylaminocarbonyl, propylaminocarbonyl, isopropylaminocarbonyl, butylaminocar- bonyl, sec-butylaminocarbonyl, isobutylaminocarbonyl and tert-butylaminocarbonyl.
Dialkylaminocarbonyl: group of the formula RR'N-CO- in which R and R', independently of each other, are an alkyl group as defined above, for example Ci-Cio-alkyl, Ci-Cs- alkyl, d-Ce-alkyl, Ci-d-alkyl, Ci-C2-alkyl or C3-C4-alkyl. Examples for di-(Ci-C4-alkyl)- aminocarbonyl are dimethylaminocarbonyl, diethylaminocarbonyl, dipropylaminocar- bonyl, diisopropylaminocarbonyl and dibutylaminocarbonyl. Aminoalkyl: group of the formula R-NH2 in which R is an alkyl group as defined above, for example Ci-Cio-alkyl, Ci-C8-alkyl, Ci-C6-alkyl, Ci-C4-alkyl, Ci-C2-alkyl or C3-C4- alkyl. Examples are aminomethyl, 1- and 2-aminoethyl, 1-, 2- and 3-aminopropyl, 1- and 2-amino1-methylethyl, 1-, 2-, 3- and 4-aminobutyl and the like.
Alkylsulfonyl: group of the formula R-S(O)2- in which R is an alkyl group as defined above, for example Ci-Cio-alkyl, d-Cs-alkyl, C-i-Cβ-alkyl, Ci-C4-alkyl or Ci-C2-alkyl. Examples for Ci-C4-alkylsulfonyl are methylsulfonyl, ethylsulfonyl, propylsulfonyl, iso- propylsulfonyl, n-butylsulfonyl, sec-butylsulfonyl, isobutylsulfonyl and tert-butylsulfonyl.
Alkylthio: alkyl as defined above which is attached via a sulfur atom.
Haloalkylthio: haloalkyl as defined above which is attached via a sulfur atom.
Alkenylthio: alkenyl as defined above which is attached via a sulfur atom.
Haloalkenylthio: haloalkenyl as defined above which is attached via a sulfur atom.
Alkynylthio: alkynyl as defined above which is attached via a sulfur atom.
Haloalkynylthio: haloalkynyl as defined above which is attached via a sulfur atom.
Cycloalkylthio: cycloalkyl as defined above which is attached via a sulfur atom.
Aryl is a carbocyclic aromatic monocyclic or polycyclic ring containing 6 to 16 carbon atoms as ring members. Examples are phenyl, naphthyl, anthracenyl, phenanthrenyl, fluorenyl and azulenyl. Preferably, aryl is phenyl or naphthyl, and especially phenyl.
Phenyl-Ci-C4-alkyl: Ci-C4-alkyl (as defined above), where a hydrogen atom is replaced by a phenyl group, such as benzyl, phenethyl and the like.
Phenyl-Ci-C4-alkoxy: Ci-C4-alkoxy (as defined above), where one hydrogen atom is replaced by a phenyl group, such as benzyloxy, phenethyloxy and the like.
3-, 4-, 5-, 6- or 7- membered saturated, partially unsaturated or maximum unsaturated carbocyclic radical: cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclo- propenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclobutadienyl, cyclopentadienyl, cyclohexadienyl, cycloheptadienyl or cycloheptatrienyl. Formally, phenyl is also included in this definition, but as it is also encompassed in the term aryl, it is not listed here.
3-, 4-, 5-, 6- or 7- membered saturated, partially unsaturated or maximum unsaturated heterocycle which contains 1 , 2 or 3 heteroatoms or heteroatom containing groups selected from oxygen, nitrogen (as N or NR) and sulfur (as S, SO or SO2) and optionally 1 or 2 groups selected from C(=O) and C(=S) as ring members:
three- or four-membered saturated or partially unsaturated heterocycle (hereinbe- low also referred to as heterocyclyl) which contains 1 , 2 or 3 heteroatoms from the group consisting of oxygen, nitrogen (as N or NR) and sulfur (as S, SO or SO2) and optionally 1 or 2 groups selected from C(=O) and C(=S) as ring members: for example monocyclic saturated or partially unsaturated heterocycles which, in addition to carbon ring members, contain one to three nitrogen atoms and/or one oxygen or sulfur atom or one or two oxygen and/or sulfur atoms and optionally 1 or 2 groups selected from C(=O) and C(=S), for example 2-oxiranyl, 2-thiiranyl, 1- or 2-aziridinyl, 1-, 2- or 3-azetidinyl,
five- or six-membered saturated or partially unsaturated heterocycle (hereinbelow also referred to as heterocyclyl) which contains 1 , 2 or 3 heteroatoms from the group consisting of oxygen, nitrogen (as N or NR) and sulfur (as S, SO or SO2) and optionally 1 or 2 groups selected from C(=O) and C(=S) as ring members: for example monocyclic saturated or partially unsaturated heterocycles which, in addition to carbon ring members, contain one to three nitrogen atoms and/or one oxygen or sulfur atom or one or two oxygen and/or sulfur atoms and optionally 1 or 2 groups selected from C(=O) and C(=S), for example 2-tetrahydrofuranyl, 3- tetrahydrofuranyl, 3-tetrahydrofuran-2-onyl, 4-tetrahydrofuran-2-onyl, 5- tetrahydrofuran-2-onyl, 2-tetrahydrofuran-3-onyl, 4-tetrahydrofuran-3-onyl, 5- tetrahydrofuran-3-onyl, 2-tetrahydrothienyl, 3-tetrahydrothienyl, 3-tetrahydrothien- 2-onyl, 4-tetrahydrothien-2-onyl, 5-tetrahydrothien-2-onyl, 2-tetrahydrothien-3- onyl, 4-tetrahydrothien-3-onyl, 5-tetrahydrothien-3-onyl, 2-pyrrolidinyl, 3- pyrrolidinyl, 1 -pyrrolidin-2-onyl, 3-pyrrolidin-2-onyl, 4-pyrrolidin-2-onyl, 5- pyrrolidin-2-onyl, 1 -pyrrolidin-3-onyl, 2-pyrrolidin-3-onyl, 4-pyrrolidin-3-onyl, 5- pyrrolidin-3-onyl, 1-pyrrolidin-2,5-dionyl, 3-pyrrolidin-2,5-dionyl, 3-isoxazolidinyl, 4-isoxazolidinyl, 5-isoxazolidinyl, 3-isothiazolidinyl, 4-isothiazolidinyl,
5-isothiazolidinyl, 3-pyrazolidinyl, 4-pyrazolidinyl, 5-pyrazolidinyl, 2-oxazolidinyl, 4-oxazolidinyl, 5-oxazolidinyl, 2-thiazolidinyl, 4-thiazolidinyl, 5-thiazolidinyl, 2-imidazolidinyl, 4-imidazolidinyl, 1 ,2,4-oxadiazolidin-3-yl, 1 ,2,4-oxadiazolidin-5-yl, 1 ,2,4-thiadiazolidin-3-yl, 1 ,2,4-thiadiazolidin-5-yl, 1 ,2,4-triazolidin-3-yl, 1 ,3,4-oxadiazolidin-2-yl, 1 ,3,4-thiadiazolidin-2-yl,
1 ,3,4-triazolidin-2-yl, 2,3-dihydrofur-2-yl, 2,3-dihydrofur-3-yl, 2,4-dihydrofur-2-yl, 2,4-dihydrofur-3-yl, 2,3-dihydrothien-2-yl, 2,3-dihydrothien-3-yl, 2,4-dihydrothien- 2-yl, 2,4-dihydrothien-3-yl, 2-pyrrolin-2-yl, 2-pyrrolin-3-yl, 3-pyrrolin-2-yl, 3- pyrrolin-3-yl, 2-isoxazolin-3-yl, 3-isoxazolin-3-yl, 4-isoxazolin-3-yl, 2-isoxazolin-4- yl, 3-isoxazolin-4-yl, 4-isoxazolin-4-yl, 2-isoxazolin-5-yl, 3-isoxazolin-5-yl, 4- isoxazolin-5-yl, 2-isothiazolin-3-yl, 3-isothiazolin-3-yl, 4-isothiazolin-3-yl, 2- isothiazolin-4-yl, 3-isothiazolin-4-yl, 4-isothiazolin-4-yl, 2-isothiazolin-5-yl, 3- isothiazolin-5-yl, 4-isothiazolin-5-yl, 2,3-dihydropyrazol-1-yl, 2,3-dihydropyrazol-2- yl, 2,3-dihydropyrazol-3-yl, 2,3-dihydropyrazol-4-yl, 2,3-dihydropyrazol-5-yl, 3,4- dihydropyrazol-1-yl, 3,4-dihydropyrazol-3-yl, 3,4-dihydropyrazol-4-yl, 3,4- dihydropyrazol-5-yl, 4,5-dihydropyrazol-1-yl, 4,5-dihydropyrazol-3-yl, 4,5- dihydropyrazol-4-yl, 4,5-dihydropyrazol-5-yl, 2,3-dihydrooxazol-2-yl, 2,3- dihydrooxazol-3-yl, 2,3-dihydrooxazol-4-yl, 2,3-dihydrooxazol-5-yl, 3,4- dihydrooxazol-2-yl, 3,4-dihydrooxazol-3-yl, 3,4-dihydrooxazol-4-yl, 3,4- dihydrooxazol-5-yl, 3,4-dihydrooxazol-2-yl, 3,4-dihydrooxazol-3-yl, 3,4- dihydrooxazol-4-yl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 1 ,3-dioxan-5-yl, 2- tetrahydropyranyl, 4-tetrahydropyranyl, 2-tetrahydrothienyl, 3- hexahydropyridazinyl, 4-hexahydropyridazinyl, 2-hexahydropyrimidinyl, 4- hexahydropyrimidinyl, 5-hexahydropyrimidinyl, 2-piperazinyl, 1 ,3,5- hexahydrotriazin-2-yl and 1 ,2,4-hexahydrotriazin-3-yl and also the corresponding -ylidene radicals;
a seven-membered saturated or partially unsaturated heterocycle which contains 1 , 2 or 3 heteroatoms from the group consisting of oxygen, nitrogen and sulfur as ring members: for example mono- and bicyclic heterocycles having 7 ring mem- bers which, in addition to carbon ring members, contain one to three nitrogen atoms and/or one oxygen or sulfur atom or one or two oxygen and/or sulfur atoms, for example tetra- and hexahydroazepinyl, such as 2,3,4,5-tetrahydro[1 H]azepin- 1-, -2-, -3-, -4-, -5-, -6- or -7-yl, 3,4,5,6-tetrahydro[2H]azepin-2-, -3-, -A-, -5-, -6- or -7-yl, 2,3,4,7-tetrahydro[1 H]azepin-1 -, -2-, -3-, -4-, -5-, -6- or -7-yl,
2,3,6,7-tetrahydro[1 H]azepin-1-, -2-, -3-, -4-, -5-, -6- or -7-yl, hexahydroazepin-1-, -2-, -3- or -4-yl, tetra- and hexahydrooxepinyl, such as 2,3,4,5-tetrahydro[1 H]oxepin-2-, -3-, -A-, -5-, -6- or -7-yl, 2,3,4,7-tetrahydro[1 H]oxepin-2-, -3-, -A-, -5-, -6- or -7-yl, 2,3,6,7-tetrahydro[1 H]oxepin-2-, -3-, -A-, -5-, -6- or -7-yl, hexahydroazepin-1-, -2-, -3- or -4-yl, tetra- and hexahydro-1 ,3-diazepinyl, tetra- and hexahydro-1 ,4-diazepinyl, tetra- and hexahydro-1 ,3-oxazepinyl, tetra- and hexahydro-1 ,4-oxazepinyl, tetra- and hexahydro-1 ,3-dioxepinyl, tetra- and hexahydro-1 ,4-dioxepinyl and the corresponding -ylidene radicals. a five- or six-membered aromatic (= maximum unsaturated) heterocycle (= het- eroaromatic radical) which contains 1 , 2 or 3 heteroatoms from the group consisting of oxygen, nitrogen and sulfur, for example 5-membered heteroaryl which is attached via carbon and contains one to three nitrogen atoms or one or two ni- trogen atoms and one sulfur or oxygen atom as ring members, such as 2-furyl, 3- furyl, 2-thienyl, 3-thienyl, 2-pyrrolyl, 3-pyrrolyl, 3-isoxazolyl, 4-isoxazolyl, 5- isoxazolyl, 3-isothiazolyl, 4-isothiazolyl, 5-isothiazolyl, 3-pyrazolyl, 4-pyrazolyl, 5- pyrazolyl, 2-oxazolyl, 4-oxazolyl, 5-oxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-imidazolyl, 4-imidazolyl, 1 ,2,4-oxadiazol-3-yl, 1 ,2,4-oxadiazol-5-yl, 1 ,2,4-thiadiazol-3-yl, 1 ,2,4-thiadiazol-5-yl, 1 ,2,4-triazol-3-yl, 1 ,3,4-oxadiazol-2-yl,
1 ,3,4-thiadiazol-2-yl and 1 ,3,4-triazol-2-yl; 5-membered heteroaryl which is attached via nitrogen and contains one to three nitrogen atoms as ring members, such as pyrrol-1-yl, pyrazol-1-yl, imidazol-1-yl, 1 ,2,3-triazol-1-yl and 1 ,2,4-triazol- 1-yl; 6-membered heteroaryl, which contains one, two or three nitrogen atoms as ring members, such as pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, 3-pyridazinyl, 4- pyridazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 2-pyrazinyl, 1 ,3,5-triazin-2- yl and 1 ,2,4-triazin-3-yl;
C2-C5-Alkylene: divalent branched or preferably unbranched chains having 2 to 5 car- bon atoms, for example CH2CH2, -CH(CH3)-, CH2CH2CH2, CH(CH3)CH2, CH2CH(CH3), CH2CH2CH2CH2, CH2CH2CH2CH2CH2.
C4-C5-Alkylene: divalent branched or preferably unbranched chains having 4 to 5 carbon atoms, for example CH2CH2CH2CH2 or CH2CH2CH2CH2CH2.
The group -SM is more correctly spoken a group -S"M+, where M+ is a metal cation equivalent or an ammonium cation as defined above. A metal cation equivalent is more correctly spoken 1/a Ma+, where a is the valence of the metal and is in general 1 , 2 or 3.
The protective group in the definition of R2 may be any oxygen-protective group (to be more precise: an OH protective group) known in the art. OH groups, for instance, can be protected by means of a benzyl group, introduced by reaction with benzyl chloride for example; by a silyl protective group, for example trimethylsilyl (TMS), tert- butyldimethylsilyl (TBDMS) or tert-butyldiphenylsilyl (TBDPS), which is introduced by reaction with the corresponding chloride; by the tetrahydropyranyl protective group; by an alkyl group, such as Ci-Cβ-alkyl; by a haloalkyl group, such as Ci-C4-haloalkyl; by an alkenyl group, such as C2-C6-alkenyl; by a haloalkenyl group, such as C2-C4- haloalkenyl; by an alkylcarbonyl group, such as Ci-C4-alkylcarbonyl; by a haloalkylcar- bonyl group, such as Ci-C4-haloalkylcarbonyl; by an alkoxycarbonyl protective group, such as Ci-C4-alkoxycarbonyl; by a haloalkoxycarbonyl protective group, such as 2,2,2-trichloroethoxycarbonyl (TROC); or by an alkyl- or dialkylaminocarbonyl protective group, such as Ci-C4-alkylaminocarbonyl or di-(Ci-C4-alkyl)-aminocarbonyl.
The statements made below with respect to suitable and preferred features of the com- pounds according to the invention, especially with respect to their substituents R1, R2, R3, R4, R5, R6, R6a, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, Ra, Rb, Rc, Rd, Q, M and the indices m and n, and to their use, are valid both per se and, in particular, in every possible combination with one another.
n is preferably 2, 3, 4, 5 or 6, more preferably 3, 4 or 5 and even more preferably 4 or 5. Specifically, n is 4. Alternatively, n is specifically 5.
R1 is preferably selected from Ci-Cβ-alkyl, Ci-C4-haloalkyl, Cs-Cβ-cycloalkyl, C3-C6- halocycloalkyl, C3-C6-cycloalkyl-Ci-C2-alkyl, C3-C6-halocycloalkyl-Ci-C2-alkyl, where the cycloalkyl moiety in the 4 last-mentioned radicals may carry 1 or 2 substituents R8, where R8 is preferably selected from methyl, difluoromethyl and trifluoromethyl; phenyl which may carry 1 , 2, 3, 4 or 5, preferably 1 , 2 or 3 and in particular 1 or 2, substituents R7, and a 5- or 6-membered heteroaromatic ring containing 1 , 2 or 3 heteroatoms selected from N, O and S as ring members, where the heteroaromatc ring may carry 1 , 2 or 3 substituents R7. More preferably, R1 is selected from Ci-Cβ-alkyl, Ci-C4-haloalkyl, C3-C6-cycloalkyl, Cs-Cβ-halocycloalkyl, C3-C6-cycloalkyl-Ci-C2-alkyl, C3-C6- halocycloalkyl-Ci-C2-alkyl, where the cycloalkyl moiety in the 4 last-mentioned radicals may carry 1 substituent R8 selected from methyl, difluoromethyl and trifluoromethyl, and phenyl which may carry 1 , 2, 3, 4 or 5, preferably 1 , 2 or 3 and in particular 1 or 2, substituents R7.
Even more preferably, R1 is selected from Ci-Cβ-alkyl (preferably Ci-C4-alkyl), cyclo- propyl, 1-methylcyclopropyl, 1-chlorocyclopropyl, 1-cyclopropylethyl and phenyl which may carry 1 , 2, 3, 4 or 5, preferably 1 , 2 or 3 and in particular 1 or 2, substituents R7 and particularly preferably from tert-butyl, cyclopropyl, 1-methylcyclopropyl, 1- chlorocyclopropyl, 1-cyclopropylethyl and phenyl. Specifically, R1 is tert-butyl.
The protective group in the definition of R2 is preferably selected from benzyl, a silyl protective group, such as trimethylsilyl (TMS), tert-butyldimethylsilyl (TBDMS) or tert- butyldiphenylsilyl (TBDPS), d-Ce-alkyl, Ci-C4-haloalkyl, C2-C6-alkenyl, C2-C4- haloalkenyl, Ci-C4-alkylcarbonyl, Ci-C4-haloalkylcarbonyl, Ci-C4-alkoxycarbonyl, C1-C4- haloalkoxycarbonyl, Ci-C4-alkylaminocarbonyl, and di-(Ci-C4-alkyl)-aminocarbonyl. More preferably, the protective group in the definition of R2 is selected from Ci-Cβ-alkyl, Ci-C4-haloalkyl, C2-C6-alkenyl, C2-C4-haloalkenyl, Ci-C4-alkylcarbonyl, C1-C4- haloalkylcarbonyl, Ci-C4-alkoxycarbonyl, Ci-C4-haloalkoxycarbonyl, C1-C4- alkylaminocarbonyl, and di-(Ci-C4-alkyl)-aminocarbonyl.
R2 is preferably selected from hydrogen and the above listed preferred and more pre- ferred protective groups. More preferably, R2 is hydrogen.
R3 and R4, independently of each other and independently of each occurence, are preferably selected from hydrogen, halogen and Ci-C4-alkyl and more preferably from hydrogen, F, Cl, methyl and ethyl. Even more preferably, one of the radicals R3 and R4 is selected from hydrogen, F, Cl, methyl and ethyl and the remaining radicals R3 and R4 are all hydrogen. Particularly preferably, one of the radicals R3 and R4 is methyl and the remaining radicals R3 and R4 are all hydrogen or all radicals R3 and R4 are hydrogen. Specifically, all radicals R3 and R4 are hydrogen.
R5 is preferably selected from phenyl which may carry 1 , 2 or 3 substituents R9, and a 5- or 6-membered heteroaromatic ring containing 1 , 2 or 3 heteroatoms selected from N, O and S as ring members, where the heteroaromatic ring may carry 1 , 2 or 3 substituents R10.
More preferably, R5 is phenyl which may carry 1 , 2 or 3, preferably 1 or 2 substituents R9.
R9 is preferably selected from halogen, methyl, difluoromethyl, trifluoromethyl, methoxy, difluoromethoxy and trifluoromethoxy and preferably from halogen. Halogen is in this case preferably selected from fluorine, chlorine and bromine and more preferably from fluorine and chlorine.
Alternatively preferably, especially when R5 is phenyl, R9 is fluorine. More preferably in this case, R5 is phenyl which carries one fluorine substituent. More preferred groups R9 are thus 2-fluorophenyl, 3-fluorophenyl and 4-fluorophenyl.
In another alternatively preferred embodiment, R5 is phenyl which may carry 1 , 2 or 3 substituents R9 selected from nitro, CN, Ci-C4-alkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy, Ci- C4-haloalkoxy and NR15R16. More preferably, R5 is phenyl which may carry 1 , 2 or 3 substituents R9 selected from Ci-C4-alkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy and C1-C4- haloalkoxy. Even more preferably, R5 is phenyl which may carry 1 , 2 or 3 substituents R9 selected from methyl and trifluoromethyl. Examples therefore are 2,3- dimethylphenyl, 2,4-dimethylphenyl, 2,5-dimethylphenyl, 2,6-dimethylphenyl, 3,4- dimethylphenyl, 3,5-dimethylphenyl, 2,3-di(trifluoromethyl)phenyl, 2,4- di(trifluoromethyl)phenyl, 2,5-di(trifluoromethyl)phenyl, 2,6-di(trifluoromethyl)phenyl, 3,4-di(trifluoromethyl)phenyl and 2,6-di(trifluoromethyl)phenyl.
In yet another alternatively preferred embodiment, R5 is phenyl which carries 2 or 3 substituents selected from halogen, nitro, CN, Ci-C4-alkyl, Ci-C4-haloalkyl, C1-C4- alkoxy, Ci-C4-haloalkoxy and NR15R16. In this case it is preferred that at least one of the 2 or 3 substituents is fluorine. Preferably, the second and, if present, the third substitu- ent are selected from halogen, especially fluorine and chlorine, Ci-C4-alkyl, C1-C4- haloalkyl, Ci-C4-alkoxy and Ci-C4-haloalkoxy, more preferably from halogen, especially fluorine and chlorine, Ci-C4-alkyl and Ci-C4-haloalkyl, and in particular from fluorine, chlorine, methyl and trifluoromethyl. Examples for such radicals R5 are 2,3- difluorophenyl, 2,4-difluorophenyl, 2,5-difluorophenyl, 2,6-difluorophenyl, 3,4- difluorophenyl, 3,5-difluorophenyl, 2,3,4-trifluorophenyl, 2,4,6-trifluorophenyl, 3,4,5- trifluorophenyl, 2-chloro-3-difluorophenyl, 2-chloro-4-difluorophenyl, 2-chloro-5- difluorophenyl, 2-chloro-6-difluorophenyl, 3-chloro-4-difluorophenyl, 3-chloro-5- difluorophenyl, 3-chloro-2-difluorophenyl, 4-chloro-2-difluorophenyl, 5-chloro-2- difluorophenyl, 4-chloro-3-difluorophenyl, 2,4-dichloro-3-fluoro, 2,4-dichloro-5-fluoro, 2,4-dichloro-6-fluoro, 2,6-dichloro-3-fluoro, 2,6-dichloro-6-fluoro, 4-chloro-2,3-difluoro, 4-chloro-2,5-difluoro, 4-chloro-2,6-difluoro, 3-chloro-2,4-difluoro, 3-chloro-2,5-difluoro, 4-chloro-2,6-difluoro, and the like.
In yet another alternatively preferred embodiment, R5 is phenyl which carries 1 or 2 substituents selected from 2-CI, 3-CI, 2,3-Cl2, 2,4-Cl2, 2,5-Cl2, 3,4-Cl2 and 3,5-Cl2, relative to the 1 -position of the attachment point of the phenyl ring to the remainder of the molecule.
Preferably, R7, R10 and R11 are independently of each other and independently of each occurrence selected from halogen, Ci-C4-alkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy and Ci- C4-haloalkoxy and more preferably from methyl, difluoromethyl, trifluoromethyl, meth- oxy, difluoromethoxy and trifluoromethoxy.
Preferably, R8 is independently of each occurrence selected from Ci-C4-alkyl, C1-C4- haloalkyl, Ci-C4-alkoxy and Ci-C4-haloalkoxy and more preferably from methyl, difluoromethyl, trifluoromethyl, methoxy, difluoromethoxy and trifluoromethoxy.
R12 in the groups -C(=O)R12 and -S(O)2R12 is preferably selected from Ci-C4-alkyl, Ci- C2-haloalkyl, Ci-C4-alkoxy, Ci-C2-haloalkoxy, phenyl, phenoxy and NR15R16, more preferably from Ci-C4-alkyl, Ci-C2-haloalkyl, Ci-C4-alkoxy, Ci-C2-haloalkoxy and NR15R16 and even more preferably from Ci-C4-alkyl, Ci-C4-alkoxy and NR15R16. In the group -C(=O)R12, R12 is specifically Ci-C4-alkyl, such as methyl, ethyl, propyl, isopropyl, n- butyl, sec-butyl, isobutyl or tert-butyl, preferably methyl, or is Ci-C4-alkoxy, such as methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, sec-butoxy, isobutoxy or tert-butoxy, preferably methoxy, and is more specifically methyl, and in the group -S(O)2R12, R12 is specifically methyl. Preferably, R15 is hydrogen and R16 is selected from hydrogen, Ci- C4-alkyl and phenyl, preferably from hydrogen and Ci-C4-alkyl, or the two of R15 and R16 are Ci-C4-alkyl.
R6 is preferably selected from hydrogen, Ci-C4-alkyl, -C(=O)R12, -S(O)2R12, -CN, M and a group of the formula III, where R12 has one of the above general meanings or, in particular, one of the above preferred meanings and M has one of the above general meanings or, in particular, one of the below-given preferred meanings.
R6 is more preferably selected from hydrogen, Ci-C4-alkyl, C3-C4-alkylcarbonyl, Ci-C4- alkoxycarbonyl, -C(=O)N(H)Ci-C4-alkyl, -C(=O)N(Ci-C4-alkyl)2, Ci-C4-alkylsulfonyl, CN and a group of the formula III. In particular, R6 is selected from hydrogen, CN, methyl- carbonyl, methoxycarbonyl and methyl. Specifically, R6 is hydrogen.
M is preferably selected from an alkali metal cation, an earth alkaline metal cation equivalent, a cation equivalent of Cu, Zn, Fe or Ni or an ammonium cation of formula (NRaRbRcRd)+, wherein one of Ra, Rb, Rc and Rd is hydrogen and three of Ra, Rb, Rc and Rd, independently of each other, are selected from Ci-Cio-alkyl. More preferably, M is selected from Li+, Na+, K+, /4Mg2+, a cation equivalent of Cu, Zn, Fe or Ni and an ammonium cation of formula (NRaRbRcRd)+, wherein one of Ra, Rb, Rc and Rd is hydrogen and three of Ra, Rb, Rc and Rd, independently of each other, are selected from Ci-Cio- alkyl. Even more preferably, M is selected from Na+, K+, /4Mg2+, !4Cu2+, !4Zn2+, !4Fe2+, !4Ni2+, triethylammonium and trimethylammonium.
In the group of formula III, the variables preferably have the same meanings as in the remainder of the molecule I. Thus, the remarks made above as to preferred meanings of the radicals apply to this moiety, too.
R6a is preferably selected from hydrogen, Ci-Cio-alkyl, Ci-C4-haloalkyl, phenyl, phenyl- Ci-C4-alkyl, -C(=O)R12 and -S(O)2R12, where R12 has one of the above given general or, in particular, one of the above-given preferred meanings. More preferably, R6a is selected from hydrogen, Ci-C4-alkyl, Ci-C4-haloalkyl, phenyl, benzyl, -C(=O)R12 and -S(O)2R12, where R12 has one of the above given general or, in particular, one of the above-given preferred meanings, and more preferably from hydrogen, Ci-C4-alkyl, Ci- C4-haloalkyl, -C(=O)R12 and -S(O)2R12, where R12 has one of the above given general or, in particular, one of the above-given preferred meanings. In particular, R6a is hydrogen, Ci-C4-alkyl, preferably methyl, or -C(=O)R12, more particularly hydrogen, C1-C4- alkyl, preferably methyl, methylcarbonyl or methoxycarbonyl, even more particularly hydrogen or Ci-C4-alkyl, preferably methyl, and is specifically hydrogen.
If m is 1 , the oxygen atom is preferably bound via a double bond to the sulfur atom, the radical -S(O)m-R6 thus resulting in a group -S(=O)-R6. If m is 2, the two oxygen atoms are preferably both bound via a double bond to the sulfur atom, the radical -S(O)m-R6 thus resulting in a group -S(=O)2-R6. If m is 3, the radical -S(O)m-R6 is a group -S(=O)2- O-R6.
m is preferably 0.
In a particularly preferred embodiment, in compounds I, m is 0 and R6 is H (or, alterna- tively, in compounds II, R6a is H).
Particularly preferred compounds I are compounds of formula I. A
Figure imgf000024_0001
wherein n is 3, 4 or 5, preferably 4 or 5, specifically 5, and R91, R92, R93, R94 and R95 are hydrogen or have one of the general or, in particular, one of the preferred meanings given for R9.
Preferably, in compounds I. A the combination of n, R91, R92, R93, R94 and R95 is as given in following table:
Figure imgf000024_0002
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000027_0001
Figure imgf000028_0001
Particular compounds I/I I/I .A are the following: 3-(5-mercapto-[1 ,2,4]-triazol- 1 -ylmethyl)-2,2-dimethyl- 6-phenoxy-hexan-3-ol; 3-(5-mercapto-[1 ,2,4]-triazol- 1 -ylmethyl)-2,2-dimethyl- 6-(2-fluorophenoxy)-hexan-3-ol; 3-(5-mercapto-[1 ,2,4]-triazol- 1 -ylmethyl)-2,2-dimethyl- 6-(4-fluorophenoxy)-hexan-3-ol; 3-(5-mercapto-[1 ,2,4]-triazol- 1 -ylmethyl)-2,2-dimethyl- 6-(2,4-difluorophenoxy)-hexan-3- ol;
3-(5-mercapto-[1 ,2,4]-triazol- 1 -ylmethyl)-2,2-dimethyl- 6-(2-chlorophenoxy)-hexan-3-ol; 3-(5-mercapto-[1 ,2,4]-triazol- 1 -ylmethyl)-2,2-dimethyl- 6-(3-chlorophenoxy)-hexan-3-ol; 3-(5-mercapto-[1 ,2,4]-triazol- 1 -ylmethyl)-2,2-dimethyl- 6-(4-chlorophenoxy)-hexan-3-ol; 3-(5-mercapto-[1 ,2,4]-triazol- 1 -ylmethyl)-2,2-dimethyl- 6-(2,4-dichlorophenoxy)-hexan-3- ol; 3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2-dimethyl-6-(2-chloro-4-fluorophenoxy)- hexan-3-ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2-dimethyl-6-(4-chloro-2-fluorophenoxy)- hexan-3-ol; 3-(5-mercapto-[1 ,2,4]-triazol-1 -ylmethyl)-2,2,5-trimethyl-6-phenoxy-hexan-3-ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2,5-trimethyl-6-(2-fluorophenoxy)-hexan-3- ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2,5-trimethyl-6-(4-fluorophenoxy)-hexan-3- ol; 3-(5-mercapto-[1 ,2,4]-triazol-1 -ylmethyl)-2,2,5-trimethyl-6-(2,4-difluorophenoxy)-hexan-
3-ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2,5-trimethyl-6-(2-chlorophenoxy)-hexan-3- ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2,5-trimethyl-6-(3-chlorophenoxy)-hexan-3- ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2,5-trimethyl-6-(4-chlorophenoxy)-hexan-3- ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2,5-trimethyl-6-(2,4-dichlorophenoxy)-hexan-
3-ol; 3-(5-mercapto-[1 ,2,4]-triazol-1 -ylmethyl)-2,2,5-trimethyl-6-(2-chloro-4-fluorophenoxy)- hexan-3-ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2,5-trimethyl-6-(4-chloro-2-fluorophenoxy)- hexan-3-ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2,6-trimethyl-6-phenoxy-hexan-3-ol; 3-(5-mercapto-[1 ,2,4]-triazol-1 -ylmethyl)-2,2,6-trimethyl-6-(2-fluorophenoxy)-hexan-3- ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2,6-trimethyl-6-(4-fluorophenoxy)-hexan-3- ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2,6-trimethyl-6-(2,4-difluorophenoxy)-hexan- 3-ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2,6-trimethyl-6-(2-chlorophenoxy)-hexan-3- ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2,6-trimethyl-6-(3-chlorophenoxy)-hexan-3- ol; 3-(5-mercapto-[1 ,2,4]-triazol-1 -ylmethyl)-2,2,6-trimethyl-6-(4-chlorophenoxy)-hexan-3- ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2,6-trimethyl-6-(2,4-dichlorophenoxy)-hexan-
3-ol; 3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2,6-trimethyl-6-(2-chloro-4-fluorophenoxy)- hexan-3-ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2,6-trimethyl-6-(4-chloro-2-fluorophenoxy)- hexan-3-ol; 3-(5-mercapto-[1 ,2,4]-triazol-1 -ylmethyl)-2,2-dimethyl-7-phenoxy-heptan-3-ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2-dimethyl-7-(2-fluorophenoxy)-heptan-3-ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2-dimethyl-7-(4-fluorophenoxy)-heptan-3-ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2-dimethyl-7-(2,4-difluorophenoxy)-heptan-
3-ol; 3-(5-mercapto-[1 ,2,4]-triazol-1 -ylmethyl)-2,2-dimethyl-7-(2-chlorophenoxy)-heptan-3-ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2-dimethyl-7-(3-chlorophenoxy)-heptan-3-ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2-dimethyl-7-(4-chlorophenoxy)-heptan-3-ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2-dimethyl-7-(2,4-dichlorophenoxy)-heptan-
3-ol; 3-(5-mercapto-[1 ,2,4]-triazol-1 -ylmethyl)-2,2-dimethyl-7-(2-chloro-4-fluorophenoxy)- heptan-3-ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2-dimethyl-7-(4-chloro-2-fluorophenoxy)- heptan-3-ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2-dimethyl-8-phenoxy-octan-3-ol; 3-(5-mercapto-[1 ,2,4]-triazol-1 -ylmethyl)-2,2-dimethyl-8-(2-fluorophenoxy)-octan-3-ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2-dimethyl-8-(4-fluorophenoxy)-octan-3-ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2-dimethyl-8-(2,4-difluorophenoxy)-octan-3- ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2-dimethyl-8-(2,6-difluorophenoxy)-octan-3- ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2-dimethyl-8-(2-chlorophenoxy)-octan-3-ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2-dimethyl-8-(3-chlorophenoxy)-octan-3-ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2-dimethyl-8-(4-chlorophenoxy)-octan-3-ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2-dimethyl-8-(2,4-dichlorophenoxy)-octan-3- ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2-dimethyl-8-(2-chloro-4-fluorophenoxy)- octan-3-ol;
3-(5-mercapto-[1 ,2,4]-triazol-1-ylmethyl)-2,2-dimethyl-8-(4-chloro-2-fluorophenoxy)- octan-3-ol 3-(5-mercapto-[1 ,2,4]-triazol-1 -ylmethyl)-2,2-dimethyl-8-(4-methylphenoxy)-octan-3-ol.
Examples for preferred compounds I and Il are compounds of formulae 1.1 to 1.14 and 11.1 to 11.7, where the variables have one of the general or, in particular, one of the pre- ferred meanings given above. Examples of preferred compounds are the individual compounds compiled in the tables 1 to 3654 below. Moreover, the meanings mentioned below for the individual variables in the tables are per se, independently of the combination in which they are mentioned, a particularly preferred embodiment of the substituents in question.
Figure imgf000031_0001
(I 4) (I 5)
Figure imgf000031_0002
Figure imgf000032_0001
Figure imgf000032_0002
R
Figure imgf000032_0003
(Il 4) ;ιi 5)
Figure imgf000032_0004
Table 1
Compounds of the formula I. 1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is
H
Table 2
Compounds of the formula I. 1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is methyl
Table 3
Compounds of the formula I .1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is ethyl
Table 4
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is propyl
Table 5
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is isopropyl
Table 6
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is n-butyl
Table 7
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is sec-butyl Table 8
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is isobutyl
Table 9 Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is tert-butyl
Table 10
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is phenyl
Table 11
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is 4-methylphenyl
Table 12
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is
Li+ Table 13
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is
Na+ Table 14
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is
K+ Table 15
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is
Y2Mg2+
Table 16 Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is
1/_Cu2+
Table 17
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is
1Z-Zn2+
Table 18
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is Y2Fe2+
Table 19
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is
V2Ni2+ Table 20
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is
NH(CHs)3 +
Table 21 Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is
NH(C2Hs)3 +
Table 22
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is
Figure imgf000034_0001
Table 23 Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is
Figure imgf000035_0001
Table 24 Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is
Figure imgf000035_0002
Table 25
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is methylcarbonyl
Table 26
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is ethylcarbonyl
Table 27
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is propylcarbonyl Table 28
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is isopropylcarbonyl
Table 29 Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is methoxycarbonyl
Table 30
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is ethoxycarbonyl
Table 31
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is propoxycarbonyl
Table 32
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is isopropoxycarbonyl Table 33
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is phenoxycarbonyl Table 34
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is methylaminocarbonyl
Table 35 Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is ethylaminocarbonyl
Table 36
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is propylaminocarbonyl
Table 37
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is isopropylaminocarbonyl
Table 38
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is phenylaminocarbonyl Table 39
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is methylsulfonyl
Table 40 Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is ethylsulfonyl
Table 41
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is propylsulfonyl
Table 42 Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is isopropylsulfonyl
Table 43 Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is phenylsulfonyl
Table 44
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is methoxysulfonyl
Table 45
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is ethoxysulfonyl
Table 46
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is propoxysulfonyl Table 47
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is isopropoxysulfonyl
Table 48 Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is phenoxysulfonyl
Table 49
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6 is
CN
Tables 50 to 98
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R6 is as defined in any of tables 1 to 49 and R1 is cyclopropyl
Tables 99 to 147
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R6 is as defined in any of tables 1 to 49 and R1 is 1-methylcyclopropyl Tables 148 to 196
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R6 is as defined in any of tables 1 to 49 and R1 is i-chlorocyclopropyl Tables 197 to 245
Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R6 is as defined in any of tables 1 to 49 and R1 is cyclopropylmethyl
Tables 246 to 294 Compounds of the formula 1.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R6 is as defined in any of tables 1 to 49 and R1 is 1-cyclopropylethyl
Tables 295 to 588
Compounds of the formula 1.2 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A and the combination of
R1 and R6 is as defined in any of tables 1 to 294
Tables 589 to 882
Compounds of the formula 1.3 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A and the combination of R1 and R6 is as defined in any of tables 1 to 294
Tables 883 to 1176
Compounds of the formula 1.4 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A and the combination of
R1 and R6 is as defined in any of tables 1 to 294 Tables 1177 to 1470
Compounds of the formula 1.5 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A and the combination of
R1 and R6 is as defined in any of tables 1 to 294
Tables 1471 to 1764 Compounds of the formula 1.6 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A and the combination of
R1 and R6 is as defined in any of tables 1 to 294
Tables 1765 to 2058
Compounds of the formula 1.7 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A and the combination of
R1 and R6 is as defined in any of tables 1 to 294
Table 2059
Compounds of the formula 1.8 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A and R1 is tert-butyl Table 2060
Compounds of the formula 1.8 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A and R1 is cyclopropyl
Table 2061 Compounds of the formula 1.8 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A and R1 is 1- methylcyclopropyl
Table 2062
Compounds of the formula 1.8 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A and R1 is 1 - chlorocyclopropyl
Table 2063
Compounds of the formula 1.8 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A and R1 is cyclopropyl- methyl
Table 2064
Compounds of the formula 1.8 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A and R1 is 1- cyclopropylethyl Tables 2065 to 2070
Compounds of the formula 1.9 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A and R1 is as defined in any of tables 2059 to 2064
Tables 2071 to 2076 Compounds of the formula 1.10 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A and R1 is as defined in any of tables 2059 to 2064
Tables 2077 to 2082
Compounds of the formula 1.11 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A and R1 is as defined in any of tables 2059 to 2064
Tables 2083 to 2088
Compounds of the formula 1.12 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A and R1 is as defined in any of tables 2059 to 2064
Tables 2089 to 2094
Compounds of the formula 1.13 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A and R1 is as defined in any of tables 2059 to 2064 Tables 2095 to 2100
Compounds of the formula 1.14 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A and R1 is as defined in any of tables 2059 to 2064 Table 2101
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is
H
Table 2102 Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is methyl
Table 2103
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is ethyl
Table 2104
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is n-propyl
Table 2105
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is isopropyl Table 2106
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is n-butyl
Table 2107 Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is sec-butyl
Table 2108
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is isobutyl
Table 2109 Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is tert-butyl
Table 21 10 Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is phenyl
Table 21 11
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is
4-methylphenyl
Table 21 12
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is methylcarbonyl
Table 21 13
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is ethylcarbonyl Table 21 14
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is propylcarbonyl
Table 21 15 Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is isopropylcarbonyl
Table 21 16
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is phenylcarbonyl
Table 21 17
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is methoxycarbonyl
Table 21 18
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is ethoxycarbonyl Table 21 19
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is propoxycarbonyl Table 2120
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is isopropoxycarbonyl
Table 2121 Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is phenoxycarbonyl
Table 2122
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is methylaminocarbonyl
Table 2123
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is ethylaminocarbonyl
Table 2124
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is propylaminocarbonyl Table 2125
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is isopropylaminocarbonyl
Table 2126 Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is phenylaminocarbonyl
Table 2127
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is methylsulfonyl
Table 2128 Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is ethylsulfonyl
Table 2129 Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is propylsulfonyl
Table 2130
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is isopropylsulfonyl
Table 2131
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is phenylsulfonyl
Table 2132
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is methoxysulfonyl Table 2133
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is ethoxysulfonyl
Table 2134 Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is propoxysulfonyl
Table 2135
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is isopropoxysulfonyl
Table 2136
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is phenoxysulfonyl
Table 2137
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R1 is tert-butyl and R6a is
CN Tables 2138 to 2174
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R6a is as defined in any of tables 2101 to 2137 and R1 is cyclopropyl Tables 2175 to 221 1
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R6a is as defined in any of tables 2101 to 2137 and R1 is 1-methylcyclopropyl
Tables 2212 to 2248 Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R6a is as defined in any of tables 2101 to 2137 and R1 is 1-chlorocyclopropyl
Tables 2249 to 2285
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R6a is as defined in any of tables 2101 to 2137 and R1 is cyclopropylmethyl
Tables 2286 to 2322
Compounds of the formula 11.1 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A, R6a is as defined in any of tables 2101 to 2137 and R1 is 1-cyclopropylethyl
Tables 2323 to 2544
Compounds of the formula 11.2 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A and the combination of
R1 and R6a is as defined in any of tables 2101 to 2322 Tables 2545 to 2766
Compounds of the formula 11.3 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A and the combination of
R1 and R6a is as defined in any of tables 2101 to 2322
Tables 2767 to 2988 Compounds of the formula 11.4 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A and the combination of
R1 and R6a is as defined in any of tables 2101 to 2322
Tables 2989 to 3210
Compounds of the formula 11.5 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A and the combination of
R1 and R6a is as defined in any of tables 2101 to 2322
Tables 3211 to 3432 Compounds of the formula 11.6 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A and the combination of
R1 and R6a is as defined in any of tables 2101 to 2322
Tables 3433 to 3654
Compounds of the formula II.7 in which the combination of R91, R92, R93, R94 and R95 for a compound corresponds in each case to one row of Table A and the combination of
R1 and R6a is as defined in any of tables 2101 to 2322
Table A
Figure imgf000045_0001
Figure imgf000046_0001
Figure imgf000047_0001
Figure imgf000048_0001
Figure imgf000049_0001
Figure imgf000050_0001
Figure imgf000051_0001
Figure imgf000052_0001
Figure imgf000053_0001
Figure imgf000054_0001
Figure imgf000055_0001
Figure imgf000056_0001
Figure imgf000057_0001
Figure imgf000058_0001
Figure imgf000059_0001
Figure imgf000060_0001
Among the above compounds, preference is given to compounds of formulae 1.1 , 1.2, I.3, I.4, I.5, I.6, I.7, 11.1 , II.2, II.3, II.4, II.5, II.6 and II.7. More preference is given to compounds of formulae 1.1 , I.2, I.3, I.4, I.5, I.6, I.7, 11.1 , II.2, II.3, II.4, II.5, II.6 and II.7, wherein R1 is tert-butyl, and even more preference to compounds of formulae 1.1 , 1.2, I.3, I.4, I.5, I.6, I.7, 11.1 , II.2, II.3, II.4, II.5, II.6 and II.7, wherein R1 is tert-butyl and R6 or R6a are hydrogen. Particular preference is given to compounds of formulae 1.3, 1.6, 1.7, Ii.3, II.6 and II.7, in particular to compounds of formulae 1.3, 1.6, 1.7, II.3, II.6 and II.7, wherein R1 is tert-butyl, and even more preference is given to compounds of formulae 1.3, I.6, 1.7, II.3, II.6 and II.7, wherein R1 is tert-butyl and R6 or R6a are hydrogen. Especial preference is given to compounds of formulae 1.6, 1.7, II.6 and II.7, in particular to compounds of formulae 1.6, 1.7, II.6 and II.7, wherein R1 is tert-butyl, and even more preference is given to compounds of formulae 1.6, 1.7, II.6 and II.7, wherein R1 is tert- butyl and R6 or R6a are hydrogen.
Compounds of formulae I and Il can be prepared by one or more of the following methods and variations as described in schemes 1 to 8 and in the syntheses descriptions below. The variables are as defined above for formulae I and II.
Compounds of formula I, wherein R6 is H and m is 0 (or compounds II, wherein R6a is H), can be prepared by sulfurizing the corresponding triazole derivative IV as outlined in scheme 1. Sulfurization can be carried out in analogy to known processes, for example as described in WO 96/16048. For instance, the triazolyl ring can be first depro- tonated with a strong base, e.g. an organolithium base, such as n-butyllithium, tert- butyllithium or sec-butyllithium, lithium diisopropyl amide, sodium hydride, sodium amide or potassium tert-butylate mixed with tetramethylethylene diamine (TMEDA), and then the resulting anion is reacted with elemental sulfur. Sulfur is generally used in powdered form. The reaction is generally carried out in an inert solvent, such as ethers, e.g. diethylether, methyl-tert-butylether, tetrahydrofuran or dioxane, dimethoxyethane, liquid ammonia, dimethylsulfoxide or dimethylformamide. The reaction temperature is not very critical and can range, for example, from -70 to +50 0C, preferably from -70 to 00C. Alternatively, sulfurization can be carried out in the absence of a base by reacting 7 with elemental sulfur in a high-boiling solvent, such as N-methylpyrrolidinone, diox- ane or N,N-dimethylformamide, while heating, e.g. to 160 to 250 0C. After completion of the reaction, the resulting mixture is hydrolyzed, e.g. by the addition of water or an aqueous acid, such as a mineral acid (e.g. dilute sulfuric acid or hydrochloric acid), acetic acid or ammoniumchloride, to give compound I.
Scheme 1
Figure imgf000061_0001
0)
The triazole compound IV, wherein R2 is H, can be prepared in analogy to known methods, such as described, for example, in DE-A-3702301 , as outlined in scheme 2. For instance, the oxirane compound 1 and [1 ,2,4]-1 H-triazole can be reacted in the presence of a base, such as an alkali metal hydride (e.g. sodium hydride, potassium hydride), an alkali metal hydroxide (e.g. sodium hydroxide, potassium hydroxide), or an alkali metal carbonate (e.g. sodium carbonate, potassium carbonate, caesium carbonate). The reaction is suitably carried out in a solvent. Suitable solvents are, for example, toluene, N-methypyrrolidinone, ethers (e.g. diethyl ether, tetrahydrofuran), alcohols (e.g. methanol, ethanol, isopropanol or tert-butanol), acetonitrile, or N, N- dimethylformamide.
Scheme 2
Figure imgf000061_0002
IV (R2 = H) The oxirane 1 in turn can be prepared in analogy to known methods, such as described, for example, in EP-A-0267778, Org. Syn. 49, 78 (1968) or J. Am. Chem. Soc. 1975, 1353, as outlined in scheme 3 below. For instance, the ketone 2 may be reacted with a sulfonium ylide or an oxosulfonium ylide, such as dimethyloxosulfonium me- thylide or dimethylsulfonium methylide in a solvent. Alternatively, the oxirane 1 can be prepared in an epoxidation reaction in analogy to the method described in Tetrahedron Lett. 23, 5283 (1982) or in EP-A-0655443 by subjecting 2 to the reaction with a trimethylsulfonium salt, such as trimethylsulfonium bromide, trimethylsulfonium iodide or methyltrimethylsulfonium sulfate, in the presence of a metal oxide, such as alkaline metal oxides (e.g. sodium oxide, potassium oxide), alkaline earth metal oxides (e.g. magnesium oxide, calcium oxide, barium oxide) or zinc oxide, and optionally a base, such as alkali metal hydrides (e.g. sodium hydride, potassium hydride), alkali metal hydroxides (e.g. sodium hydroxide, potassium hydroxide), alkali metal carbonates (e.g. sodium carbonate, potassium carbonate, caesium carbonate) in a two-phase solid/liquid system comprising an organic solvent, such as toluene, N- methypyrrolidinone, ethers (e.g. diethyl ether, tetrahydrofuran), acetonitrile or N, N- dimethylformamide. Alternatively, the oxirane 1 can be prepared in analogy to the method described in Tetrahedron 1985, 1259 by epoxidation of 2 with a trimethylsulfonium salt, such as trimethylsulfonium bromide, trimethylsulfonium iodide or methyl- trimethylsulfonium sulfate, or a trimethylsulfoxonium salt, such as trimethylsulfoxonium bromide, trimethylsulfoxonium iodide or methyltrimethylsulfoxonium sulfate and potassium sulfate/aluminium oxide. Yet in another alternative, the oxirane 1 can be prepared in analogy to the method described in EP-A-291795 by first reacting 2 with a methyla- tion reagent, such as methyl triphenylphosphonium bromide, in the presence of a strong base and in a second step with a peracid in a suitable solvent.
Scheme 3
epoxidation
Figure imgf000062_0001
Figure imgf000062_0002
2 1
The ketone 2 can be obtained from the halide 4 by a Grignard reaction with the aldehyde 5, as outlined in scheme 4 below. Oxidation of the obtained alcohol 3 via known methods, such as oxidation with the Swern reagent, hypervalent iodine compounds (IBX, Martin's reagent), chromine compounds (e.g. pyridinium dichromate, pyridinium chlorochromate, dipyridinium chromine trioxide), sodium hypochlorite and the like, yields the ketone 2. Scheme 4
Figure imgf000063_0001
(Hal = halogen)
As an alternative to the process described in scheme 3, the oxirane 1 can be prepared in analogy to the method described in Org. Syn. 40, 66, 1966, J. Org. Chem. 28, 1128, 1963 and Org. Syn. Coll. Vol. 4, 552, 1963 as outlined in scheme 5 below by first sub- jecting the ketone 2 to a Wittig reaction, thus yielding the corresponding olefinic compound 6, and then subjecting this to an epoxidation reaction. The Wittig reaction can be carried out under standard conditions, such as the use of methyltriphenylphosphonium bromide or iodide in the presence of an alkali metal base, such as n-butyllithium, sec- butyllithium or tert-butyllithium. Epoxidation can also be carried out with standard re- agents, such as peracetic acid, perbenzoic acid meta-chloroperbenzoic acid, perphthalic acid and the like. Olefination (i.e. transformation of the C=O into a C=CHb group) of 5 can alternatively be achieved by the use of Tebbe's reagent ((C5Hs)2TiCH2CIAI(CHs)2).
Scheme 5
olefination epoxidation
Figure imgf000063_0002
Figure imgf000063_0003
Figure imgf000063_0004
As an alternative to the process described in scheme 1 , compounds I, wherein R6 is H and m is 0 (or compounds II, wherein R6a is H), can also be prepared in analogy to the method described in WO 99/18088 as outlined in scheme 6 below. Epoxide opening of 1 with hydrazine, optionally in the presence of an acid (e.g. hydrochloric acid, hydro- bromic acid, acetic acid, sulfuric acid or p-toluenesulfonic acid) or a base (e.g. triethyl- amine, diisopropylethylamine, sodium carbonate or potassium carbonate) in a suitable solvent, such as an alcohol (e.g. methanol, ethanol, isopropanol, tert-butanol), N- methylpyrrolidinone, an ether (e.g. diethyl ether, tetrahydrofuran, dioxane, 1 ,2- dimethoxyethane), acetonitrile, N,N-dimethylformamide or dimethylsulfoxide, yields 7. This is then converted into the semicarbazide 8 by reaction with a thiocyanate, such as sodium thiocyanate, potassium thiocyanate or ammonium thiocyanate (i.e. M+ = e.g. Na+, K+, NH4 +), in a suitable solvent, such as an alcohol (e.g. methanol, ethanol, iso- propanol, tert-butanol), N-methylpyrrolidinone, an ether (e.g. diethyl ether, tetrahydrofu- ran, dioxane, 1 ,2-dimethoxyethane), acetonitrile, N,N-dimethylformamide, dimethylsul- foxide, toluene or xylene. The semicarbazide is then converted into I/I I via reaction with a formic acid alkyl ester (e.g. formic acid methyl ester, formic acid ethyl ester) in a solvent. Suitable solvents are, for example, alcohols (e.g. methanol, ethanol, isopropanol, tert-butanol), N-methylpyrrolidinone, ethers (e.g. diethyl ether, tetrahydrofuran, dioxane, 1 ,2-dimethoxyethane), acetonitrile, N,N-dimethylformamide, dimethylsulfoxide, toluene or xylene. Alternatively, 7 can be reacted with hydrogen thiocyanate and formaldehyde in a solvent. Suitable solvents are, for example, alcohols (e.g. methanol, ethanol, isopropanol, tert-butanol), N-methylpyrrolidinone, ethers (e.g. diethyl ether, tetrahydrofuran, dioxane, 1 ,2-dimethoxyethane), acetonitrile, N,N-dimethylformamide, dimethylsulfoxide, toluene or xylene. The resulting triazolidinthione 9 is then oxidized using, for example, FeCb in an aqueous acid (e.g. hydrochloric acid) or oxygen in the presence of an alkali metal hydroxide (e.g. sodium hydroxide, potassium hydroxide) and elemental sulfur to I/I I. In a yet further alternative, 7 is reacted with a dialkyl ketone (e.g. acetone, diethylketone, methyl ethyl ketone) and a thiocyanate (e.g. sodium thiocyanate, potassium thiocyanate, ammonium thiocyanate) in a solvent to give the tria- zolidinthione 10. Suitable solvents are, for example, alcohols (e.g. methanol, ethanol, isopropanol, tert-butanol), N-methylpyrrolidinone, ethers (e.g. diethyl ether, tetrahydrofuran, dioxane, 1 ,2-dimethoxyethane), acetonitrile, N,N-dimethylformamide, dimethylsulfoxide, toluene or xylene. The triazolidinthione 10 is then converted into l/ll by reaction with formic acid in the presence of an acid (e.g. hydrochloric acid, hydrobromic acid, acetic acid, sulfuric acid, p-toluenesulfonic acid) or a metal oxide (e.g. amorphous TiO2).
Scheme 6
= H)
Figure imgf000065_0001
As an alternative to the process described in scheme 4, the ketone 2, wherein n is 3 and all radicals R3 and R4 are H, can be obtained from the hydroxyl compound 11 by coupling with a propargyl halide 12 to 13 in analogy to the process described in DE-A- 3702301. Subsequent reaction with the carboxylic halide 14 yields the propargyl ether 15, which ih then hydrated to the ketone 2.
Scheme 7
Hal R O
.0 14 __ R5-θ"
R5-OH + Haiκ R5-Oκ R5-θ' ^R1 11 12 13 15 2
(n = 3, R3 , R4 = = H)
HaI = halogen The halides 4, 12 and 14, the hydroxyl compound 11 and the aldehyde 5 used in the above reactions are either commercially available or can be produced by standard methods known to the skilled person.
Halide 4 can for instance be prepared by reacting a hydroxyl compound 11 with a compound 16, wherein X is a halogen atom, an optionally protected OH group or a carboxyl group, in the presence of a base as shown in scheme 8 below. LG is a costumary leaving group, such as a halogen atom, a tosylate or a mesylate group. Suitable bases are for example alkali metal hydrides, such a lithium hydride or sodium hydride, earth alka- line hydrides, such as calcium hydride, alkali amides, such as sodium amide, and alco- holates, such as sodium methanolate, sodium ethanolate and potassium tert- butanolate. The reaction is suitably carried out in a solvent. Suitable solvents are, for example, N-methylpyrrolidinone, ethers (e.g. diethyl ether, tetrahydrofuran, dioxane, 1 ,2-dimethoxyethane) or N,N-dimethylformamide. The reaction temperature is not criti- cal and is generally in a range of from -20 to 160 0C. If X is an optionally protected hydroxyl group, this is then converted into a halogen group by known methods. If X is a carboxyl group, this is converted into a hydroxyl group in analogy to the method described in Tetrahedron Asymmetry, 12(1 1 ), 1595-1602, 2001 by reduction with a metal hydride, such as lithium aluminium hydride, diisobutylaluminium hydride or boron hy- drides. The resulting hydroxyl group is then converted into a halogen group by known methods.
Scheme 8
Figure imgf000066_0001
11 16 4
Compounds of formula I, wherein R6 is different from hydrogen and m is 0, can be prepared from compounds I (wherein R6 = H and m = 0).
Compounds of formula I, wherein m is 0 and R6 is Ci-Cio-alkyl, Ci-Cio-haloalkyl, C2- Cio-alkenyl, C2-Cio-haloalkenyl, C2-Cio-alkynyl, C2-Cio-haloalkynyl, C3-Cio-cycloalkyl, C3-Cio-halocycloalkyl, phenyl, phenyl-Ci-C4-alkyl, where the phenyl moiety in the 2 last- mentioned radicals may be substituted as described above, and a 5- or 6-membered saturated, partially unsaturated or aromatic heterocyclic ring containing 1 , 2 or 3 het- eroatoms selected from N, O and S as ring members, where the heterocyclic ring may be substituted as described above, may be prepared in analogy to the method de- scribed in DE-A-19520098 by reacting a compound I, wherein m is O and R6 is H, with a compound R6-LG, where R6 has one of the above meanings and LG is a leaving group, such as a halide (e.g. Cl, Br, I), a tosylate or a mesylate, in the presence of a base. Suitable bases are, for example, alkali metal hydrides (e.g. sodium hydride, po- tassium hydride), alkali metal hydroxides (e.g. sodium hydroxide, potassium hydroxide), alkali metal carbonates (e.g. sodium carbonate, potassium carbonate, caesium carbonate), alkali metal alkoxides (e.g. sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, potassium tert-butoxide) or organolithium bases (e.g. n-butyl lithium, sec-butyl lithium, tert-butyl lithium and lithium diisopropylamine.). The reaction is generally carried out in a suitable solvent. Suitable solvents are, for example, toluene, N-methylpyrrolidinone, ethers (e.g. diethyl ether, tetrahydrofuran, dioxane, 1 ,2-dimethoxyethane), acetonitrile, N,N-dimethylformamide or dimethylsulfox- ide.
Alternatively, compounds of formula I, wherein m is 0 and R6 is Ci-Cio-alkyl, C1-C10- haloalkyl, C2-Cio-alkenyl, C2-Cio-haloalkenyl, C2-Cio-alkynyl, C2-Cio-haloalkynyl, C3-C10- cycloalkyl, C3-Cio-halocycloalkyl, phenyl, phenyl-Ci-C4-alkyl, where the phenyl moiety in the 2 last-mentioned radicals may be substituted as described above, and a 5- or 6- membered saturated, partially unsaturated or aromatic heterocyclic ring containing 1 , 2 or 3 heteroatoms selected from N, O and S as ring members, where the heterocyclic ring may be substituted as described above, may be prepared in analogy to the method described in Heterocycles, 23(7), 1645-1649, 1985 by reacting compound IV with a disulfide R6-S-S-R6 in the presence of a strong base under conditions similar to those described for scheme 1.
Compounds of formulae I, wherein m is 0 and R6 is -C(=O)R12 or -C(=S)R12, may be prepared in analogy to the method described in DE-A-19617461 by reacting a compound I, wherein m is 0 and R6 is H, with a compound R12-C(=O)-W, R12-C(=S)-W, R12'- N=C=O or R12'-N=C=S, wherein R12 has one of the above meanings, R12' is C1-C10- alkyl or Ci-Cio-haloalkyl and W is a good leaving group, such as a halide (e.g. Cl, Br, I), an alkoxide (e.g. methoxide, ethoxide) or pentafluorophenoxide, in the presence of a base. Suitable bases are, for example, alkali metal hydrides (e.g. sodium hydride, potassium hydride), alkali metal hydroxides (e.g. sodium hydroxide, potassium hydroxide), alkali metal carbonates (e.g. sodium carbonate, potassium carbonate, caesium carbonate), alkali metal alkoxides (e.g. sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, potassium tert-butoxide) or organolithium bases (e.g. n-butyl lithium, sec-butyl lithium, tert-butyl lithium, lithium diisopropylamine). The reaction is generally carried out in a suitable solvent. Suitable solvents are, for exam- pie, toluene, N-methylpyrrolidinone, ethers (e.g. diethyl ether, tetrahydrofuran, dioxane, 1 ,2-dimethoxyethane), acetonitrile, N,N-dimethylformamide or dimethylsulfoxide.
Compounds of formula I, wherein m is 0 and R6 is -SO2R12, may be prepared in anal- ogy to the method described in DE-A-19620590 by reacting a compound I, wherein m is 0 and R6 is H, with a compound R12-Sθ2-W, wherein R12 has one of the above meanings and W is a good leaving group, such as a halide (e.g. Cl, Br, I), an alkoxide (e.g. methoxide, ethoxide) or pentafluorophenoxide, in the presence of a base. Suitable bases are, for example, alkali metal hydrides (e.g. sodium hydride, potassium hydride), alkali metal hydroxides (e.g. sodium hydroxide, potassium hydroxide), alkali metal carbonates (e.g. sodium carbonate, potassium carbonate, caesium carbonate), alkali metal alkoxides (e.g. sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, potassium tert-butoxide) or organolithium bases (e.g. n-butyl lithium, sec-butyl lithium, tert-butyl lithium, lithium diisopropylamine). The reaction is generally carried out in a suitable solvent. Suitable solvents are, for example, toluene, N- methylpyrrolidinone, ethers (e.g. diethyl ether, tetrahydrofuran, dioxane, 1 ,2- dimethoxyethane), acetonitrile, N,N-dimethylformamide or dimethylsulfoxide.
Compounds of formula I, wherein m is 0 and R6 is -CN, may be prepared in analogy to the method described in DE-A-19620407 by reacting a compound I, wherein m is 0 and R6 is H, with a compound CN-W, wherein W is a good leaving group, such as a halide (e.g. Cl, Br, I), in the presence of a base. Suitable bases are, for example, alkali metal hydrides (e.g. sodium hydride, potassium hydride), alkali metal hydroxides (e.g. sodium hydroxide, potassium hydroxide), alkali metal carbonates (e.g. sodium carbonate, po- tassium carbonate, caesium carbonate), alkali metal alkoxides (e.g. sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, potassium tert-butoxide) or organolithium bases (e.g. n-butyl lithium, sec-butyl lithium, tert-butyl lithium, lithium diisopropylamine). The reaction is generally carried out in a suitable solvent. Suitable solvents are, for example, toluene, N-methylpyrrolidinone, ethers (e.g. diethyl ether, tetrahydrofuran, dioxane, 1 ,2-dimethoxyethane), acetonitrile, N,N-dimethylformamide or dimethylsulfoxide.
Compounds of formula I, wherein m is 0 and R6 is M, may be prepared in analogy to the method described in DE-A-19617282 by reacting a compound I with an amine NRaRbRc, wherein Ra, Rb and Rc are as defined above, or with a metal salt, such as sodium hydroxide, potassium hydroxide or copper acetate.
Compounds of formula I, wherein m is 0 and R6 is a group of formula III, may be prepared in analogy to the method described in WO 97/43269 by reacting a compound I, wherein m is 0 and R6 is H, with a halogen, especially iodine, in the presence of a base. Suitable bases are, for example, alkali metal hydrides (e.g. sodium hydride, potassium hydride), alkali metal hydroxides (e.g. sodium hydroxide, potassium hydroxide), alkali metal carbonates (e.g. sodium carbonate, potassium carbonate, caesium carbonate), alkali metal alkoxides (e.g. sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, potassium tert-butoxide) or organolithium bases (e.g. n-butyl lithium, sec-butyl lithium, tert-butyl lithium, lithium diisopropylamine). The reaction is generally carried out in a suitable solvent. Suitable solvents are, for example, toluene, N-methylpyrrolidinone, ethers (e.g. diethyl ether, tetrahydrofuran, dioxane, 1 ,2-dimethoxyethane), acetonitrile, N,N-dimethylformamide or dimethylsulfoxide.
Compounds of formula I, wherein m is 0 and R6 is -P(=Q)R13R14, may be prepared in analogy to the method described in WO 99/05149.
Compounds of formula II, wherein R6a is hydrogen (or compounds of formula I, wherein m is 0 and R6 is hydrogen), can be prepared in analogy to the method described in WO 99/18087 by reacting a triazolidinthione 9 with an oxidizing agent, optionally in the presence of a catalyst. Suitable oxidizing agents are, for example, oxygen, sulfur and potassium superoxide. Especially in case oxygen is used as oxidizing agent, it is ad- vantageous to carry out the oxidation reaction in the presence of a catalyst. A suitable catalyst is, for example, a mixture of powdery sulfur and KOH. The reaction is generally carried out in a suitable solvent. Suitable solvents are, for example, aliphatic hydrocarbons (e.g. pentane, hexane), cycloaliphatic hydrocarbons (e.g. cyclohexane), aromatic hydrocarbons (e.g. bemzene, toluene, the xylenes), ethers (e.g. diethylether, methyl- tert-butylether), and esters (e.g. ethylecetate, propylacetate, n-butylacetate).
The oxidation of the triazolidinthione 9 may also be carried out with ferric chloride (FeCb) in an acidic aqueous solution in analogy to the method described in WO 01/46158. The reaction is generally carried out in a suitable solvent. Suitable solvents are, for example, ethanol, ethylacetate and mixtures of ethanol with toluene.
The oxidation of the triazolidinthione 9 may also be carried out with formic acid, optionally in the presence of a catalyst, in analogy to the method described in WO 99/18086 or WO 99/18088. Suitable catalysts are, for example, acids, like hydrochloric acid, sul- furic acid or p-toluenesulfonic acid, and metal oxides, like amorphous titanium dioxide. The reaction is generally carried out in a suitable solvent. Suitable solvents are weakly polar solvents like, for example, alcohols such as propanol, butanol and pentanol, esters, like ethyl acetate, butyl acetate and isobutyl formate, ethers, like 1 ,2- dimethoxyethane, methyl-tert-butyl ether and methyl-tert-amylether, and formic acid used in excess.
Compounds of formula II, wherein R6a is different from hydrogen, can be prepared by reacting the NR6a group, wherein R6a is H, in analogy to the above-described conversion of compounds I, wherein R6 is H, into compounds, wherein R6 is different from H.
Compounds I, wherein m is 1 or 2, can be prepared from respective compounds I, wherein m is 0, by oxidation. Alternatively, compounds I, wherein m is 2, can be pre- pared from compounds IV by first deprotonating the triazolyl ring and then reacting with a sulfonyl chloride R6SC^CI. Compounds I, wherein m is 3, can be prepared from compounds IV by first deprotonating the triazolyl ring and then reacting with sulfuric acid chloride or a sulfuric ester chloride of formula R6OSC^CI, wherein R6 is selected from hydrogen, Ci-Cio-alkyl, Ci-Cio-haloalkyl, C2-Cio-alkenyl, C2-Cio-haloalkenyl, C2-C10- alkynyl, C2-Cio-haloalkynyl, C3-Cio-cycloalkyl, C3-Cio-halocycloalkyl, phenyl, phenyl-Ci- C4-alkyl, where the phenyl moiety in the 2 last-mentioned radicals may be substituted as mentioned above, and a 5- or 6-membered saturated, partially unsaturated or aromatic heterocyclic ring containing 1 , 2 or 3 heteroatoms selected from N, O and S, wherein the heterocyclic ring may be substituted as mentioned above.
Compounds of formula I or II, wherein R2 is different from hydrogen, can be prepared by introducing a protective group R2 by known means in any reaction step in which the protection of the OH group is required or advantageous. Deprotection to R2 = H can be carried out by any known means.
If individual compounds cannot be prepared via the above-described routes, they can be prepared by derivatization of other compounds I and Il or by customary modifications of the synthesis routes described.
The reaction mixtures are worked up in the customary manner, for example by mixing with water, separating the phases, and, if appropriate, purifying the crude products by chromatography, for example on alumina or silica gel. Some of the intermediates and end products may be obtained in the form of colorless or pale brown viscous oils, which are freed or purified from volatile components under reduced pressure and at moder- ately elevated temperature. If the intermediates and end products are obtained as solids, they may be purified by recrystallization or digestion.
A further aspect of the invention relates to compounds of formula IV
Figure imgf000071_0001
wherein R1, R2, R3, R4, R5 and n have one of the general or, in particular, one of the preferred meanings given above for compounds I and II, with the proviso that n is not 3 if R5 is phenyl optionally substituted by one or more chlorine atoms and simultaneously R1 is tert-butyl.
A yet further aspect of the invention relates to compounds of formula IV
Figure imgf000071_0002
wherein R1, R2, R3, R4 and R5 have one of the general or, in particular, one of the preferred meanings given above for compounds I and II, and n is 4, 5, 6 or 7, preferably 4 or 5.
Preferably, in compounds IV R1 is selected from tert-butyl, phenyl, cyclopropyl, 1- methylcyclopropyl, i-chlorocyclopropyl and 1-cyclopropylethyl and is specifically tert- butyl.
Compounds IV are on the one side valuable intermediates in the preparation of com- pounds I and Il (see above schemes), but on the other side show a remarkable fungicidal activity, too.
Particularly preferred compounds IV are compounds of formulae IV.1 , IV.2, IV.3, IV.4, IV.5, IV.6 and IV.7 (for IV.2, IV.3 and IV.4 see however the above proviso), wherein the combination of R91, R92, R93, R94 and R95 corresponds in each case to one row in table A above and R1 is tert-butyl, cyclopropyl, 1-methylcyclopropyl, 1-chlorocyclopropyl, cyclopropylmethyl or 1-cyclopropylethyl and especially tert-butyl.
Figure imgf000072_0001
(IV 4) (IV 5)
Figure imgf000072_0002
More preference is given to compounds of formula IV.6 and IV.7, wherein the combination of R91, R92, R93, R94 and R95 corresponds in each case to one row in table A above and R1 is tert-butyl, cyclopropyl, 1-methylcyclopropyl, 1-chlorocyclopropyl, cyclopro- pylmethyl or 1-cyclopropylethyl and especially tert-butyl.
A further aspect of the invention relates to compounds of formula 7
Figure imgf000072_0003
wherein R1, R3, R4, R5 and n have one of the general or, in particular, one of the preferred meanings given above for compounds I and II.
Compounds 7 are valuable intermediates in the preparation of compounds I and Il (see above schemes).
A further aspect of the invention relates to compounds of formula 1
Figure imgf000073_0001
wherein R1, R3, R4, R5 and n have one of the general or, in particular, one of the preferred meanings given above for compounds I and II.
Compounds 1 are valuable intermediates in the preparation of compounds I and Il (see above schemes).
The invention further refers to an agricultural composition comprising at least one compound of formula I, Il and/or IV as defined above or an agriculturally acceptable salt thereof and a liquid or solid carrier. Suitable carriers, as well as auxiliaries and further active compounds which may also be contained in the composition of the invention are defined below.
The compounds I and Il as well as IV and the compositions according to the invention, respectively, are suitable as fungicides. They are distinguished by an outstanding effectiveness against a broad spectrum of phytopathogenic fungi, including soil-borne fungi, which derive especially from the classes of the Plasmodiophoromycetes, Per- onosporomycetes (syn. Oomycetes), Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes (syn. Fungi imperfecti). Some are systemically effective and they can be used in crop protection as foliar fungicides, fungicides for seed dressing and soil fungicides. Moreover, they are suitable for controlling harmful fungi, which inter alia occur in wood or roots of plants.
The compounds I, Il and IV and the compositions according to the invention are par- ticularly important in the control of a multitude of phytopathogenic fungi on various cultivated plants, such as cereals, e. g. wheat, rye, barley, triticale, oats or rice; beet, e. g. sugar beet or fodder beet; fruits, such as pomes, stone fruits or soft fruits, e. g. apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries, blackberries or gooseberries; leguminous plants, such as lentils, peas, alfalfa or soybeans; oil plants, such as rape, mustard, olives, sunflowers, coconut, cocoa beans, castor oil plants, oil palms, ground nuts or soybeans; cucurbits, such as squashes, cucumber or melons; fiber plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grapefruits or mandarins; vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, cucurbits or paprika; lauraceous plants, such as avocados, cinnamon or camphor; energy and raw material plants, such as corn, soybean, rape, sugar cane or oil palm; corn; tobacco; nuts; coffee; tea; bananas; vines (table grapes and grape juice grape vines); hop; turf; natural rubber plants or ornamental and forestry plants, such as flowers, shrubs, broad-leaved trees or evergreens, e. g. conifers; and on the plant propagation material, such as seeds, and the crop material of these plants.
Preferably, compounds 1, 11 and IV and compositions thereof, respectively are used for controlling a multitude of fungi on field crops, such as potatoes sugar beets, tobacco, wheat, rye, barley, oats, rice, corn, cotton, soybeans, rape, legumes, sunflowers, coffee or sugar cane; fruits; vines; ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes.
The term "plant propagation material" is to be understood to denote all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e. g. potatoes), which can be used for the multiplication of the plant. This in- eludes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants, including seedlings and young plants, which are to be transplanted after germination or after emergence from soil. These young plants may also be protected before transplantation by a total or partial treatment by immersion or pouring.
Preferably, treatment of plant propagation materials with compounds I, Il and IV and compositions thereof, respectively, is used for controlling a multitude of fungi on cereals, such as wheat, rye, barley and oats; rice, corn, cotton and soybeans.
The term "cultivated plants" is to be understood as including plants which have been modified by breeding, mutagenesis or genetic engineering including but not limiting to agricultural biotech products on the market or in development (cf. http://www.bio.org/speeches/pubs/er/agrLproducts.asp). Genetically modified plants are plants, which genetic material has been so modified by the use of recombinant DNA techniques that under natural circumstances cannot readily be obtained by cross breeding, mutations or natural recombination. Typically, one or more genes have been integrated into the genetic material of a genetically modified plant in order to improve certain properties of the plant. Such genetic modifications also include but are not limited to targeted post-translational modification of protein(s), oligo- or polypeptides e. g. by glycosylation or polymer additions such as prenylated, acetylated or farnesylated moieties or PEG moieties.
Plants that have been modified by breeding, mutagenesis or genetic engineering, e. g. have been rendered tolerant to applications of specific classes of herbicides, such as hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors; acetolactate synthase (ALS) inhibitors, such as sulfonyl ureas (see e. g. US 6,222,100, WO 01/82685, WO 00/26390, WO 97/41218, WO 98/02526, WO 98/02527, WO 04/106529, WO 05/20673, WO 03/14357, WO 03/13225, WO 03/14356, WO 04/16073) or imida- zolinones (see e. g. US 6,222,100, WO 01/82685, WO 00/026390, WO 97/41218, WO 98/002526, WO 98/02527, WO 04/106529, WO 05/20673, WO 03/014357,
WO 03/13225, WO 03/14356, WO 04/16073); enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibitors, such as glyphosate (see e. g. WO 92/00377); glutamine synthetase (GS) inhibitors, such as glufosinate (see e.g. EP-A 242 236, EP-A 242 246) or oxynil herbicides (see e. g. US 5,559,024) as a result of conventional methods of breeding or genetic engineering. Several cultivated plants have been rendered tolerant to herbicides by conventional methods of breeding (mutagenesis), e. g. Clearfield® summer rape (Canola, BASF SE, Germany) being tolerant to imidazolinones, e. g. imazamox. Genetic engineering methods have been used to render cultivated plants, such as soybean, cotton, corn, beets and rape, tolerant to herbicides such as glypho- sate and glufosinate, some of which are commercially available under the trade names RoundupReady® (glyphosate-tolerant, Monsanto, U.S.A.) and LibertyLink® (glufosinate- tolerant, Bayer CropScience, Germany).
Furthermore, plants are also covered that, by the use of recombinant DNA techniques, are capable to synthesize one or more insecticidal proteins, especially those known from the bacterial genus Bacillus, particularly from Bacillus thuringiensis, such as δ-endotoxins, e. g. CrylA(b), CrylA(c), CrylF, CrylF(a2), CryllA(b), CrylllA, CrylllB(bi ) or Cryθc; vegetative insecticidal proteins (VIP), e. g. VIP1 , VIP2, VIP3 or VIP3A; insecticidal proteins of bacteria colonizing nematodes, e. g. Photorhabdus spp. or Xenor- habdus spp.; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins, or other insect-specific neurotoxins; toxins produced by fungi, such Strep- tomycetes toxins, plant lectins, such as pea or barley lectins; agglutinins; proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin or papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bryodin; steroid metabolism enzymes, such as 3-hydroxysteroid oxidase, ecdysteroid-IDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors or HMG-CoA-reductase; ion channel blockers, such as blockers of sodium or calcium channels; juvenile hormone esterase; diuretic hormone receptors (helicokinin receptors); stilben synthase, bibenzyl synthase, chitinases or glucanases. In the context of the present invention these insecticidal proteins or toxins are to be understood expressly also as pre-toxins, hybrid proteins, truncated or otherwise modified proteins. Hybrid proteins are characterized by a new combination of protein domains, (see, e. g. WO 02/015701 ). Further examples of such toxins or genetically modified plants capable of synthesizing such toxins are disclosed, e. g., in EP-A 374 753, WO 93/007278, WO 95/34656, EP-A 427 529, EP-A 451 878, WO 03/18810 und WO 03/52073. The methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, e. g., in the publications mentioned above. These insecticidal proteins contained in the genetically modified plants impart to the plants producing these proteins tolerance to harmful pests from all taxonomic groups of arthropods, especially to beetles (Coleoptera), two-winged insects (Diptera), and moths (Lepidoptera) and to nematodes (Nematoda). Genetically modified plants capable to synthesize one or more insecticidal proteins are, e. g., described in the publications mentioned above, and some of them are commercially available such as YieldGard® (corn cultivars producing the CryiAb toxin), YieldGard® Plus (corn cultivars producing CrylAb and Cry3Bb1 toxins), Starlink® (corn cultivars producing the Cry9c toxin), Her- culex® RW (corn cultivars producing Cry34Ab1 , Cry35Ab1 and the enzyme Phosphi- nothricin-N-Acetyltransferase [PAT]); NuCOTN® 33B (cotton cultivars producing the Cry1 Ac toxin), Bollgard® I (cotton cultivars producing the CryiAc toxin), Bollgard® Il (cotton cultivars producing CryiAc and Cry2Ab2 toxins); VIPCOT® (cotton cultivars producing a VIP-toxin); NewLeaf® (potato cultivars producing the Cry3A toxin); Bt- Xtra®, NatureGard®, KnockOut®, BiteGard®, Protecta®, Bt 1 1 (e. g. Agrisure® CB) and Bt176 from Syngenta Seeds SAS, France, (corn cultivars producing the CrylAb toxin and PAT enyzme), MIR604 from Syngenta Seeds SAS, France (corn cultivars produc- ing a modified version of the Cry3A toxin, c.f. WO 03/018810), MON 863 from Monsanto Europe S.A., Belgium (corn cultivars producing the Cry3Bb1 toxin), IPC 531 from Monsanto Europe S.A., Belgium (cotton cultivars producing a modified version of the CryiAc toxin) and 1507 from Pioneer Overseas Corporation, Belgium (corn cultivars producing the Cry1 F toxin and PAT enzyme).
Furthermore, plants are also covered that, by the use of recombinant DNA techniques, are capable to synthesize one or more proteins to increase the resistance or tolerance of those plants to bacterial, viral or fungal pathogens. Examples of such proteins are the so-called "pathogenesis-related proteins" (PR proteins, see, e. g. EP-A 392 225), plant disease resistance genes (e. g. potato cultivars, which express resistance genes acting against Phytophthora infestans derived from the Mexican wild potato Solarium bulbocastanum) or T4-lysozym (e. g. potato cultivars capable of synthesizing these proteins with increased resistance against bacteria such as Erwinia amylvora). The methods for producing such genetically modified plants are generally known to the per- son skilled in the art and are described, e. g., in the publications mentioned above.
Furthermore, plants are also covered that, by the use of recombinant DNA techniques, are capable to synthesize one or more proteins to increase the productivity (e. g. bio mass production, grain yield, starch content, oil content or protein content), tolerance to drought, salinity or other growth-limiting environmental factors or tolerance to pests and fungal, bacterial or viral pathogens of those plants.
Furthermore, plants are also covered that, by the use of recombinant DNA techniques, contain a modified amount of substances of content or new substances of content, specifically to improve human or animal nutrition, e. g. oil crops that produce health- promoting long-chain omega-3 fatty acids or unsaturated omega-9 fatty acids (e. g. Nexera® rape, DOW Agro Sciences, Canada).
Furthermore, plants are also covered that, by the use of recombinant DNA techniques, contain a modified amount of substances of content or new substances of content, specifically to improve raw material production, e. g. potatoes that produce increased amounts of amylopectin (e. g. Amflora® potato, BASF SE, Germany).
The compounds I, Il and IV and compositions thereof, respectively, are particularly suitable for controlling the following plant diseases:
Albugo spp. (white rust) on ornamentals, vegetables (e. g. A. Candida) and sunflowers (e. g. A. tragopogonis); Altemaria spp. (Alternaria leaf spot) on vegetables, rape {A. brassicola or brassicae), sugar beets {A. tenuis), fruits, rice, soybeans, potatoes (e. g. A. solani or A. altemata), tomatoes (e. g. A. solanior A. altemata) and wheat; Aphano- myces spp. on sugar beets and vegetables; Ascochyta spp. on cereals and vegetables, e. g. A. tritici (anthracnose) on wheat and A. hordei on barley; Bipolaris and Drechslera spp. (teleomorph: Cochliobolus spp.), e. g. Southern leaf blight (D. maydis) or Northern leaf blight (β. zeicola) on corn, e. g. spot blotch (β. sorokiniana) on cereals and e.g. B. oryzae on rice and turfs; Blumeria (formerly Erysiphe) graminis (powdery mildew) on cereals (e. g. on wheat or barley); Botrytis cinerea (teleomorph: Botryotinia fuckeliana: grey mold) on fruits and berries (e. g. strawberries), vegetables (e. g. lettuce, carrots, celery and cabbages), rape, flowers, vines, forestry plants and wheat; Bremia lactucae (downy mildew) on lettuce; Ceratocystis (syn. Ophiostoma) spp. (rot or wilt) on broad- leaved trees and evergreens, e. g. C. ulmi (Dutch elm disease) on elms; Cercospora spp. (Cercospora leaf spots) on corn (e.g. Gray leaf spot: C. zeae-maydis), rice, sugar beets (e. g. C. beticola), sugar cane, vegetables, coffee, soybeans (e. g. C. sojina or C. kikuchii) and rice; Cladosporium spp. on tomatoes (e. g. C. fulvum: leaf mold) and ce- reals, e. g. C. herbarum (black ear) on wheat; Claviceps purpurea (ergot) on cereals; Cochliobolus (anamorph: Helminthosporium of Bipolaris) spp. (leaf spots) on corn (C. carbonum), cereals (e. g. C. sativus, anamorph: B. sorokiniana) and rice (e. g. C. miy- abeanus, anamorph: H. oryzae); Colletotrichum (teleomorph: Glomerella) spp. (anthracnose) on cotton (e. g. C. gossypii), corn (e. g. C. graminicola: Anthracnose stalk rot), soft fruits, potatoes (e. g. C. coccodes: black dot), beans (e. g. C. lindemuthianum) and soybeans (e. g. C. truncatum or C. gloeosporioides); Corticium spp., e. g. C. sa- sakii (sheath blight) on rice; Corynespora cassiicola (leaf spots) on soybeans and ornamentals; Cycloconium spp., e. g. C. oleaginum on olive trees; Cylindrocarpon spp. (e. g. fruit tree canker or young vine decline, teleomorph: Nectria or Neonectria spp.) on fruit trees, vines (e. g. C. liriodendri, teleomorph: Neonectria liriodendrf. Black Foot Disease) and ornamentals; Dematophora (teleomorph: Rosellinia) necatrix (root and stem rot) on soybeans; Diaporthe spp., e. g. D. phaseolorum (damping off) on soybeans; Drechslera (syn. Helminthosporium, teleomorph: Pyrenophora) spp. on corn, cereals, such as barley (e. g. D. teres, net blotch) and wheat (e. g. D. tritici-repentis: tan spot), rice and turf; Esca (dieback, apoplexy) on vines, caused by Formitiporia (syn. Phellinus) punctata, F. mediterranea, Phaeomoniella chlamydospora (earlier Phaeo- acremonium chlamydosporum), Phaeoacremonium aleophilum and/or Botryosphaeria obtusa; Elsinoe spp. on pome fruits (E. pyri), soft fruits (E. veneta: anthracnose) and vines (E ampelina: anthracnose); Entyloma oryzae (leaf smut) on rice; Epicoccum spp. (black mold) on wheat; Erysiphe spp. (powdery mildew) on sugar beets (E. betae), vegetables (e. g. E. pisi), such as cucurbits (e. g. E. cichoracearum), cabbages, rape (e. g. E. cruciferarum); Eutypa lata (Eutypa canker or dieback, anamorph: Cytosporina lata, syn. Libertella blepharis) on fruit trees, vines and ornamental woods; Exserohilum (syn. Helminthosporium) spp. on corn (e. g. E. turcicum); Fusarium (teleomorph: Gib- berella) spp. (wilt, root or stem rot) on various plants, such as F. graminearum or F. culmorum (root rot, scab or head blight) on cereals (e. g. wheat or barley), F. oxy- sporum on tomatoes, F. solani on soybeans and F. verticillioides on corn; Gaeumanno- myces graminis (take-all) on cereals (e. g. wheat or barley) and corn; Gibberella spp. on cereals (e. g. G. zeae) and rice (e. g. G. fujikuroϊ. Bakanae disease); Glomerella cingulata on vines, pome fruits and other plants and G. gossypii on cotton; Grain- staining complex on rice; Guignardia bidwellii (black rot) on vines; Gymnosporangium spp. on rosaceous plants and junipers, e. g. G. sabinae (rust) on pears; Helminthosporium spp. (syn. Drechslera, teleomorph: Cochliobolus) on corn, cereals and rice; Hemileia spp., e. g. H. vastatrix (coffee leaf rust) on coffee; lsariopsis clavispora (syn. Cladosporium vitis) on vines; Macrophomina phaseolina (syn. phaseoli) (root and stem rot) on soybeans and cotton; Microdochium (syn. Fusarium) nivale (pink snow mold) on cereals (e. g. wheat or barley); Microsphaera diffusa (powdery mildew) on soybeans; Monilinia spp., e. g. M. laxa, M. fructicola and M. fructigena (bloom and twig blight, brown rot) on stone fruits and other rosaceous plants; Mycosphaerella spp. on cereals, bananas, soft fruits and ground nuts, such as e. g. M. graminicola (anamorph: Septoria tritici, Septoria blotch) on wheat or M. fijiensis (black Sigatoka disease) on bananas; Peronospora spp. (downy mildew) on cabbage (e. g. P. brassicae), rape (e. g. P. parasitica), onions (e. g. P. destructor), tobacco (P. tabacina) and soybeans (e. g. P. manshurica); Phakopsora pachyrhizi and P. meibomiae (soybean rust) on soybeans; Phialophora spp. e. g. on vines (e. g. P. tracheiphila and P. tetraspora) and soybeans (e. g. P. gregata: stem rot); Phoma lingam (root and stem rot) on rape and cabbage and P. betae (root rot, leaf spot and damping-off) on sugar beets; Phomopsis spp. on sunflowers, vines (e. g. P. viticola: can and leaf spot) and soybeans (e. g. stem rot: P. phaseoli, teleomorph: Diaporthe phaseolorum); Physoderma maydis (brown spots) on corn; Phytophthora spp. (wilt, root, leaf, fruit and stem root) on various plants, such as paprika and cucurbits (e. g. P. capsici), soybeans (e. g. P. megasperma, syn. P. sojae), potatoes and tomatoes (e. g. P. infestans: late blight) and broad-leaved trees (e. g. P. ramorum: sudden oak death); Plasmodiophora brassicae (club root) on cabbage, rape, radish and other plants; Plasmopara spp., e. g. P. viticola (grapevine downy mildew) on vines and P. halstedii on sunflowers; Podosphaera spp. (powdery mildew) on rosaceous plants, hop, pome and soft fruits, e. g. P. leucotricha on apples; Polymyxa spp., e. g. on cereals, such as barley and wheat (P. graminis) and sugar beets (P. betae) and thereby transmitted viral diseases; Pseudocercosporella herpotrichoides (eyespot, teleomorph: Tapesia yallundae) on cereals, e. g. wheat or barley; Pseudoperonospora (downy mildew) on various plants, e. g. P. cubensis on cucurbits or P. humili ou hop; Pseudopezicula tracheiphila (red fire disease or , rotbrenner' , anamorph: Phialophora) on vines; Puccinia spp. (rusts) on various plants, e. g. P. triticina (brown or leaf rust), P. striiformis (stripe or yellow rust), P. hordei (dwarf rust), P. graminis (stem or black rust) or P. recondita (brown or leaf rust) on cereals, such as e. g. wheat, barley or rye, and asparagus (e. g. P. asparagi); Pyrenophora (anamorph: Drechslera) tritici- repentis (tan spot) on wheat or P. feres (net blotch) on barley; Pyricularia spp., e. g. P. oryzae (teleomorph: Magnaporthe grisea, rice blast) on rice and P. grisea on turf and cereals; Pythium spp. (damping-off) on turf, rice, corn, wheat, cotton, rape, sunflowers, soybeans, sugar beets, vegetables and various other plants (e. g. P. ultimum or P. aphanidermatum); Ramularia spp., e. g. R. collo-cygni (Ra mu Ia ria leaf spots, Physiological leaf spots) on barley and R. beticola on sugar beets; Rhizoctonia spp. on cotton, rice, potatoes, turf, corn, rape, potatoes, sugar beets, vegetables and various other plants, e. g. R. solani (root and stem rot) on soybeans, R. so/an/ (sheath blight) on rice or R. cerealis (Rhizoctonia spring blight) on wheat or barley; Rhizopus stolonifer (black mold, soft rot) on strawberries, carrots, cabbage, vines and tomatoes; Rhynchosporium secalis (scald) on barley, rye and triticale; Sarocladium oryzae and S. attenuatum (sheath rot) on rice; Sclerotica spp. (stem rot or white mold) on vegetables and field crops, such as rape, sunflowers (e. g. S. sclerotiorum) and soybeans (e. g. S. rolfsii or S. sclerotiorum); Septoria spp. on various plants, e. g. S. glycines (brown spot) on soybeans, S. tritici (Septoria blotch) on wheat and S. (syn. Stagonospora) nodorum (Stagonospora blotch) on cereals; Uncinula (syn. Erysiphe) necator (powdery mildew, anamorph: Oidium tuckeri) on vines; Setospaeria spp. (leaf blight) on corn (e. g. S. turcicum, syn. Helminthosporium turcicum) and turf; Sphacelotheca spp. (smut) on corn, (e. g. S. miliaria: head smut), sorghum und sugar cane; Sphaerotheca fuliginea (powdery mildew) on cucurbits; Spongospora subterranea (powdery scab) on potatoes and thereby transmitted viral diseases; Stagonospora spp. on cereals, e. g. S. nodorum (Stagonospora blotch, teleomorph: Leptosphaeria [syn. Phaeosphaeria] nodorum) on wheat; Synchytrium endobioticum on potatoes (potato wart disease); Taphrina spp., e. g. T. deformans (leaf curl disease) on peaches and T. pruni (plum pocket) on plums; Thielaviopsis spp. (black root rot) on tobacco, pome fruits, vegetables, soybeans and cotton, e. g. T. basicola (syn. Chalara elegans); Tilletia spp. (common bunt or stinking smut) on cereals, such as e. g. T. tritici (syn. T. caries, wheat bunt) and T. controversa (dwarf bunt) on wheat; Typhula incarnata (grey snow mold) on barley or wheat; Um- cystis spp., e. g. U. occulta (stem smut) on rye; Ummyces spp. (rust) on vegetables, such as beans (e. g. U. appendiculatus, syn. U. phaseoli) and sugar beets (e. g. U. betae); Ustilago spp. (loose smut) on cereals (e. g. U. nuda and U. avaenae), corn (e. g. U. maydis: corn smut) and sugar cane; Venturia spp. (scab) on apples (e. g. V. inaequalis) and pears; and Verticillium spp. (wilt) on various plants, such as fruits and ornamentals, vines, soft fruits, vegetables and field crops, e. g. V. dahliae on strawberries, rape, potatoes and tomatoes.
The compounds I, Il and IV and compositions thereof, respectively, are also suitable for controlling harmful fungi in the protection of stored products or harvest and in the protection of materials. The term "protection of materials" is to be understood to denote the protection of technical and non-living materials, such as adhesives, glues, wood, paper and paperboard, textiles, leather, paint dispersions, plastics, colling lubricants, fiber or fabrics, against the infestation and destruction by harmful microorganisms, such as fungi and bacteria. As to the protection of wood and other materials, the particular attention is paid to the following harmful fungi: Ascomycetes such as Ophio- stoma spp., Ceratocysf/s spp., Aureobasidium pullulans, Sclemphoma spp., Chae- tomium spp., Humicola spp., Petriella spp., Trichurus spp.; Basidiomycetes such as Coniophora spp., Coriolus spp., Gloeophyllum spp., Lentinus spp., Pleumtus spp., Po- ria spp., Serpula spp. and Tymmyces spp., Deuteromycetes such as Aspergillus spp., Cladosporium spp., Penicillium spp., Trichorma spp., Altemaria spp., Paecilomyces spp. and Zygomycetes such as /Wucorspp., and in addition in the protection of stored products and harvest the following yeast fungi are worthy of note: Candida spp. and Sacchammyces cerevisae.
The compounds I, Il and IV and compositions thereof, respectively, may be used for improving the health of a plant. The invention also relates to a method for improving plant health by treating a plant, its propagation material and/or the locus where the plant is growing or is to grow with an effective amount of compounds 1, 11 and/or IV and compositions thereof, respectively.
The term "plant health" is to be understood to denote a condition of the plant and/or its products which is determined by several indicators alone or in combination with each other such as yield (e. g. increased biomass and/or increased content of valuable ingredients), plant vigor [e. g. improved plant growth and/or greener leaves ("greening effect")], quality (e. g. improved content or composition of certain ingredients) and tolerance to abiotic and/or biotic stress. The above identified indicators for the health condition of a plant may be interdependent or may result from each other.
The compounds of formula I, Il and IV can be present in different crystal modifications whose biological activity may differ. They are likewise subject matter of the present invention.
The compounds I, Il and IV are employed as such or in form of compositions by treating the fungi or the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms to be protected from fungal attack with a fungicidally effective amount of the active substances. The application can be carried out both before and after the infection of the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms by the fungi.
Plant propagation materials may be treated with compounds I, Il and/or IV as such or a composition comprising at least one compound I, Il and/or IV prophylactically either at or before planting or transplanting.
The invention also relates to agrochemical compositions comprising a solvent or solid carrier and at least one compound I, Il and/or IV and to the use for controlling harmful fungi.
An agrochemical composition comprises a fungicidally effective amount of a compound I, Il and/or IV. The term "effective amount" denotes an amount of the composition or of the compounds I, Il and/or IV, which is sufficient for controlling harmful fungi on cultivated plants or in the protection of materials and which does not result in a substantial damage to the treated plants. Such an amount can vary in a broad range and is dependent on various factors, such as the fungal species to be controlled, the treated cultivated plant or material, the climatic conditions and the specific compound I used. The compounds 1, 11 and IV and salts thereof can be converted into customary types of agrochemical compositions, e. g. solutions, emulsions, suspensions, dusts, powders, pastes and granules. The composition type depends on the particular intended purpose; in each case, it should ensure a fine and uniform distribution of the compound according to the invention.
Examples for composition types are suspensions (SC, OD, FS), emulsifiable concentrates (EC), emulsions (EW, EO, ES), pastes, pastilles, wettable powders or dusts (WP, SP, SS, WS, DP, DS) or granules (GR, FG, GG, MG), which can be water- soluble or wettable, as well as gel formulations for the treatment of plant propagation materials such as seeds (GF).
Usually the composition types (e. g. SC, OD, FS, EC, WG, SG, WP, SP, SS, WS, GF) are employed diluted. Composition types such as DP, DS, GR, FG, GG and MG are usually used undiluted.
The compositions are prepared in a known manner (cf. US 3,060,084, EP-A 707 445 (for liquid concentrates), Browning: "Agglomeration", Chemical Engineering, Dec. 4, 1967, 147-48, Perry's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, pp. 8-57 et seq., WO 91/13546, US 4,172,714, US 4,144,050, US 3,920,442, US 5,180,587, US 5,232,701 , US 5,208,030, GB 2,095,558, US 3,299,566, Klingman: Weed Control as a Science (J. Wiley & Sons, New York, 1961 ), Hance et al.: Weed Control Handbook (8th Ed., Blackwell Scientific, Oxford, 1989) and Mollet, H. and Grubemann, A.: Formulation technology (Wiley VCH Verlag, Weinheim, 2001 ).
The agrochemical compositions may also comprise auxiliaries which are customary in agrochemical compositions. The auxiliaries used depend on the particular application form and active substance, respectively.
Examples for suitable auxiliaries are solvents, solid carriers, dispersants or emulsifiers (such as further solubilizers, protective colloids, surfactants and adhesion agents), organic and inorganic thickeners, bactericides, anti-freezing agents, anti-foaming agents, if appropriate colorants and tackifiers or binders (e. g. for seed treatment formulations).
Suitable solvents are water, organic solvents such as mineral oil fractions of medium to high boiling point, such as kerosene or diesel oil, furthermore coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, e.g. toluene, xylene, paraffin, tetrahydronaphthalene, alkylated naphthalenes or their derivatives, alcohols such as methanol, ethanol, propanol, butanol and cyclohexanol, glycols, ke- tones such as cyclohexanone and gamma-butyrolactone, fatty acid dimethylamides, fatty acids and fatty acid esters and strongly polar solvents, e. g. amines such as N- methylpyrrolidone.
Solid carriers are mineral earths such as silicates, silica gels, talc, kaolins, limestone, lime, chalk, bole, loess, clays, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertilizers, such as, e. g., ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas, and products of vegetable origin, such as cereal meal, tree bark meal, wood meal and nutshell meal, cellulose powders and other solid carriers.
Suitable surfactants (adjuvants, wtters, tackifiers, dispersants or emulsifiers) are alkali metal, alkaline earth metal and ammonium salts of aromatic sulfonic acids, such as ligninsoulfonic acid (Borresperse® types, Borregard, Norway) phenolsulfonic acid, naphthalenesulfonic acid (Morwet® types, Akzo Nobel, U.S.A.), dibutylnaphthalene- sulfonic acid (Nekal® types, BASF, Germany), and fatty acids, alkylsulfonates, alkyl- arylsulfonates, alkyl sulfates, laurylether sulfates, fatty alcohol sulfates, and sulfated hexa-, hepta- and octadecanolates, sulfated fatty alcohol glycol ethers, furthermore condensates of naphthalene or of naphthalenesulfonic acid with phenol and formal- dehyde, polyoxy-ethylene octylphenyl ether, ethoxylated isooctylphenol, octylphenol, nonylphenol, alkylphenyl polyglycol ethers, tributylphenyl polyglycol ether, tristearyl- phenyl polyglycol ether, alkylaryl polyether alcohols, alcohol and fatty alcohol/ethylene oxide condensates, ethoxylated castor oil, polyoxyethylene alkyl ethers, ethoxylated polyoxypropylene, lauryl alcohol polyglycol ether acetal, sorbitol esters, lignin-sulfite waste liquors and proteins, denatured proteins, polysaccharides (e. g. methylcellulose), hydrophobically modified starches, polyvinyl alcohols (Mowiol® types, Clariant, Switzerland), polycarboxylates (Sokolan® types, BASF, Germany), polyalkoxylates, polyvinyl- amines (Lupasol® types, BASF, Germany), polyvinylpyrrolidone and the copolymers therof.
Examples for thickeners (i. e. compounds that impart a modified flowability to compositions, i. e. high viscosity under static conditions and low viscosity during agitation) are polysaccharides and organic and anorganic clays such as Xanthan gum (Kelzan®, CP Kelco, U.S.A.), Rhodopol® 23 (Rhodia, France), Veegum® (RT. Vanderbilt, U.S.A.) or Attaclay® (Engelhard Corp., NJ, USA).
Bactericides may be added for preservation and stabilization of the composition. Examples for suitable bactericides are those based on dichlorophene and benzylalcohol hemi formal (Proxel® from ICI or Acticide® RS from Thor Chemie and Kathon® MK from Rohm & Haas) and isothiazolinone derivatives such as alkylisothiazolinones and ben- zisothiazolinones (Acticide® MBS from Thor Chemie).
Examples for suitable anti-freezing agents are ethylene glycol, propylene glycol, urea and glycerin.
Examples for anti-foaming agents are silicone emulsions (such as e. g. Silikon® SRE, Wacker, Germany or Rhodorsil®, Rhodia, France), long chain alcohols, fatty acids, salts of fatty acids, fluoroorganic compounds and mixtures thereof.
Suitable colorants are pigments of low water solubility and water-soluble dyes. Examples to be mentioned und the designations rhodamin B, C. I. pigment red 112, C. I. solvent red 1 , pigment blue 15:4, pigment blue 15:3, pigment blue 15:2, pigment blue 15:1 , pigment blue 80, pigment yellow 1 , pigment yellow 13, pigment red 112, pigment red 48:2, pigment red 48: 1 , pigment red 57: 1 , pigment red 53: 1 , pigment orange 43, pigment orange 34, pigment orange 5, pigment green 36, pigment green 7, pigment white 6, pigment brown 25, basic violet 10, basic violet 49, acid red 51 , acid red 52, acid red 14, acid blue 9, acid yellow 23, basic red 10, basic red 108.
Examples for tackifiers or binders are polyvinylpyrrolidons, polyvinylacetates, polyvinyl alcohols and cellulose ethers (Tylose®, Shin-Etsu, Japan).
Powders, materials for spreading and dusts can be prepared by mixing or concomitantly grinding the compounds I and, if appropriate, further active substances, with at least one solid carrier.
Granules, e. g. coated granules, impregnated granules and homogeneous granules, can be prepared by binding the active substances to solid carriers. Examples of solid carriers are mineral earths such as silica gels, silicates, talc, kaolin, attaclay, limestone, lime, chalk, bole, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials, fertilizers, such as, e. g., ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas, and products of vegetable origin, such as cereal meal, tree bark meal, wood meal and nutshell meal, cellulose powders and other solid carriers.
Examples for composition types are:
1. Composition types for dilution with water i) Water-soluble concentrates (SL, LS)
10 parts by weight of a compound I according to the invention are dissolved in 90 parts by weight of water or in a water-soluble solvent. As an alternative, wetting agents or other auxiliaries are added. The active substance dissolves upon dilution with water. In this way, a composition having a content of 10% by weight of active substance is obtained.
ii) Dispersible concentrates (DC)
20 parts by weight of a compound I according to the invention are dissolved in 70 parts by weight of cyclohexanone with addition of 10 parts by weight of a dispersant, e. g. polyvinylpyrrolidone. Dilution with water gives a dispersion. The active substance content is 20% by weight.
iii) Emulsifiable concentrates (EC) 15 parts by weight of a compound I according to the invention are dissolved in 75 parts by weight of xylene with addition of calcium dodecylbenzenesulfonate and castor oil ethoxylate (in each case 5 parts by weight). Dilution with water gives an emulsion. The composition has an active substance content of 15% by weight.
iv) Emulsions (EW, EO, ES)
25 parts by weight of a compound I according to the invention are dissolved in 35 parts by weight of xylene with addition of calcium dodecylbenzenesulfonate and castor oil ethoxylate (in each case 5 parts by weight). This mixture is introduced into 30 parts by weight of water by means of an emulsifying machine (Ultraturrax) and made into a ho- mogeneous emulsion. Dilution with water gives an emulsion. The composition has an active substance content of 25% by weight.
v) Suspensions (SC, OD, FS)
In an agitated ball mill, 20 parts by weight of a compound I according to the invention are comminuted with addition of 10 parts by weight of dispersants and wetting agents and 70 parts by weight of water or an organic solvent to give a fine active substance suspension. Dilution with water gives a stable suspension of the active substance. The active substance content in the composition is 20% by weight.
vi) Water-dispersible granules and water-soluble granules (WG, SG)
50 parts by weight of a compound I according to the invention are ground finely with addition of 50 parts by weight of dispersants and wetting agents and prepared as water-dispersible or water-soluble granules by means of technical appliances (e. g. extrusion, spray tower, fluidized bed). Dilution with water gives a stable dispersion or solu- tion of the active substance. The composition has an active substance content of 50% by weight.
vii) Water-dispersible powders and water-soluble powders (WP, SP, SS, WS) 75 parts by weight of a compound I according to the invention are ground in a rotor- stator mill with addition of 25 parts by weight of dispersants, wetting agents and silica gel. Dilution with water gives a stable dispersion or solution of the active substance. The active substance content of the composition is 75% by weight.
viii) GeI (GF)
In an agitated ball mill, 20 parts by weight of a compound I according to the invention are comminuted with addition of 10 parts by weight of dispersants, 1 part by weight of a gelling agent wetters and 70 parts by weight of water or of an organic solvent to give a fine suspension of the active substance. Dilution with water gives a stable suspension of the active substance, whereby a composition with 20% (w/w) of active substance is obtained.
2. Composition types to be applied undiluted
ix) Dustable powders (DP, DS)
5 parts by weight of a compound I according to the invention are ground finely and mixed intimately with 95 parts by weight of finely divided kaolin. This gives a dustable composition having an active substance content of 5% by weight.
x) Granules (GR, FG, GG, MG)
0.5 parts by weight of a compound I according to the invention is ground finely and associated with 99.5 parts by weight of carriers. Current methods are extrusion, spray- drying or the fluidized bed. This gives granules to be applied undiluted having an active substance content of 0.5% by weight.
xi) ULV solutions (UL)
10 parts by weight of a compound I according to the invention are dissolved in 90 parts by weight of an organic solvent, e. g. xylene. This gives a composition to be applied undiluted having an active substance content of 10% by weight.
The agrochemical compositions generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, most preferably between 0.5 and 90%, by weight of active substance. The active substances are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum). Water-soluble concentrates (LS), flowable concentrates (FS), powders for dry treatment (DS), water-dispersible powders for slurry treatment (WS), water-soluble powders (SS), emulsions (ES) emulsifiable concentrates (EC) and gels (GF) are usually em- ployed for the purposes of treatment of plant propagation materials, particularly seeds. These compositions can be applied to plant propagation materials, particularly seeds, diluted or undiluted. The compositions in question give, after two-to-tenfold dilution, active substance concentrations of from 0.01 to 60% by weight, preferably from 0.1 to 40% by weight, in the ready-to-use preparations. Application can be carried out before or during sowing. Methods for applying or treating agrochemical compounds and compositions thereof, respectively, on to plant propagation material, especially seeds, are known in the art, and include dressing, coating, pelleting, dusting, soaking and in- furrow application methods of the propagation material. In a preferred embodiment, the compounds or the compositions thereof, respectively, are applied on to the plant propagation material by a method such that germination is not induced, e. g. by seed dressing, pelleting, coating and dusting.
In a preferred embodiment, a suspension-type (FS) composition is used for seed treatment. Typcially, a FS composition may comprise 1-800 g/l of active substance, 1-200 g/l Surfactant, 0 to 200 g/l antifreezing agent, 0 to 400 g/l of binder, 0 to 200 g/l of a pigment and up to 1 liter of a solvent, preferably water.
The active substances can be used as such or in the form of their compositions, e. g. in the form of directly sprayable solutions, powders, suspensions, dispersions, emulsions, oil dispersions, pastes, dustable products, materials for spreading, or granules, by means of spraying, atomizing, dusting, spreading, brushing, immersing or pouring. The application forms depend entirely on the intended purposes; it is intended to ensure in each case the finest possible distribution of the active substances according to the invention.
Aqueous application forms can be prepared from emulsion concentrates, pastes or wettable powders (sprayable powders, oil dispersions) by adding water. To prepare emulsions, pastes or oil dispersions, the substances, as such or dissolved in an oil or solvent, can be homogenized in water by means of a wetter, tackifier, dispersant or emulsifier. Alternatively, it is possible to prepare concentrates composed of active substance, wetter, tackifier, dispersant or emulsifier and, if appropriate, solvent or oil, and such concentrates are suitable for dilution with water. The active substance concentrations in the ready-to-use preparations can be varied within relatively wide ranges. In general, they are from 0.0001 to 10%, preferably from 0.001 to 1 % by weight of active substance.
The active substances may also be used successfully in the ultra-low-volume process (ULV), it being possible to apply compositions comprising over 95% by weight of active substance, or even to apply the active substance without additives.
When employed in plant protection, the amounts of active substances applied are, de- pending on the kind of effect desired, from 0.001 to 2 kg per ha, preferably from 0.005 to 2 kg per ha, more preferably from 0.05 to 0.9 kg per ha, in particular from 0.1 to 0.75 kg per ha.
In treatment of plant propagation materials such as seeds, e. g. by dusting, coating or drenching seed, amounts of active substance of from 0.1 to 1000 g, preferably from 1 to 1000 g, more preferably from 1 to 100 g and most preferably from 5 to 100 g, per 100 kilogram of plant propagation material (preferably seed) are generally required.
When used in the protection of materials or stored products, the amount of active sub- stance applied depends on the kind of application area and on the desired effect. Amounts customarily applied in the protection of materials are, e. g., 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active substance per cubic meter of treated material.
Various types of oils, wetters, adjuvants, herbicides, bactericides, other fungicides and/or pesticides may be added to the active substances or the compositions comprising them, if appropriate not until immediately prior to use (tank mix). These agents can be admixed with the compositions according to the invention in a weight ratio of 1 :100 to 100:1 , preferably 1 :10 to 10:1.
Adjuvants which can be used are in particular organic modified polysiloxanes such as Break Thru S 240®; alcohol alkoxylates such as Atplus 245®, Atplus MBA 1303®, PIu- rafac LF 300® and Lutensol ON 30®; EO/PO block polymers, e. g. Pluronic RPE 2035® and Genapol B®; alcohol ethoxylates such as Lutensol XP 80®; and dioctyl sulfosucci- nate sodium such as Leophen RA®.
The compositions according to the invention can, in the use form as fungicides, also be present together with other active substances, e. g. with herbicides, insecticides, growth regulators, fungicides or else with fertilizers, as pre-mix or, if appropriate, not until immediately prior to use (tank mix). Mixing the compounds 1, 11 and/or IV or the compositions comprising them in the use form as fungicides with other fungicides results in many cases in an expansion of the fungicidal spectrum of activity being obtained or in a prevention of fungicide resistance development. Furthermore, in many cases, synergistic effects are obtained.
The following list of active substances, in conjunction with which the compounds according to the invention can be used, is intended to illustrate the possible combinations but does not limit them:
A) strobilurins azoxystrobin, dimoxystrobin, enestroburin, fluoxastrobin, kresoxim-methyl, meto- minostrobin, orysastrobin, picoxystrobin, pyraclostrobin, pyribencarb, triflox- ystrobin, 2-(2-(6-(3-chloro-2-methyl-phenoxy)-5-fluoro-pyrimidin-4-yloxy)-phenyl)- 2-methoxyimino-N-methyl-acetamide, 3-methoxy-2-(2-(N-(4-methoxy-phenyl)- cyclopropane-carboximidoylsulfanylmethyl)-phenyl)-acrylic acid methyl ester, methyl (2-chloro-5-[1-(3-methylbenzyloxyimino)ethyl]benzyl)carbamate and 2-(2- (3-(2,6-dichlorophenyl)-1-methyl-allylideneaminooxymethyl)-phenyl)-2- methoxyimino-N-methyl-acetamide; B) carboxamides carboxanilides: benalaxyl, benalaxyl-M, benodanil, bixafen, boscalid, carboxin, fenfuram, fenhexamid, flutolanil, furametpyr, isopyrazam, isotianil, kiralaxyl, me- pronil, metalaxyl, metalaxyl-M (mefenoxam), ofurace, oxadixyl, oxycarboxin, pen- thiopyrad, sedaxane, tecloftalam, thifluzamide, tiadinil, 2-amino-4-methyl- thiazole-5-carboxanilide, 2-chloro-N-(1 ,1 ,3-trimethyl-indan-4-yl)-nicotinamide, N-
(3',4',5'-trifluorobiphenyl-2-yl)-3-difluoromethyl-1-methyl-1 H-pyrazole- 4-carboxamide, N-(4'-trifluoromethylthiobiphenyl-2-yl)-3-difluoromethyl-1-methyl- 1 H-pyrazole-4-carboxamide, N-(2-(1 ,3-dimethyl-butyl)-phenyl)-1 ,3-dimethyl-5- fluoro-1 H-pyrazole-4-carboxamide and N-(2-(1 ,3,3-trimethyl-butyl)-phenyl)-1 ,3- dimethyl-5-fluoro-1 H-pyrazole-4-carboxamide; carboxylic morpholides: dimethomorph, flumorph, pyrimorph; benzoic acid amides: flumetover, fluopicolide, fluopyram, zoxamide, N-(3-Ethyl-
3,5,5-trimethyl-cyclohexyl)-3-formylamino-2-hydroxy-benzamide; other carboxamides: carpropamid, dicyclomet, mandiproamid, oxytetracyclin, silthiofarm and N-(6-methoxy-pyridin-3-yl) cyclopropanecarboxylic acid amide;
C) azoles triazoles: azaconazole, bitertanol, bromuconazole, cyproconazole, difenocona- zole, diniconazole, diniconazole-M, epoxiconazole, fenbuconazole, fluquincona- zole, flusilazole, flutriafol, hexaconazole, imibenconazole, ipconazole, metcona- zole, myclobutanil, oxpoconazole, paclobutrazole, penconazole, propiconazole, prothioconazole, simeconazole, tebuconazole, tetraconazole, triadimefon, triadi- menol, triticonazole, uniconazole, 1-(4-chloro-phenyl)-2-([1 ,2,4]triazol-1-yl)- cycloheptanol; - imidazoles: cyazofamid, imazalil, pefurazoate, prochloraz, triflumizol; benzimidazoles: benomyl, carbendazim, fuberidazole, thiabendazole; others: ethaboxam, etridiazole, hymexazole and 2-(4-chloro-phenyl)-N-[4-(3,4-di- methoxy-phenyl)-isoxazol-5-yl]-2-prop-2-ynyloxy-acetamide;
D) heterocyclic compounds - pyridines: fluazinam, pyrifenox, 3-[5-(4-chloro-phenyl)-2,3-dimethyl-isoxazolidin- 3-yl]-pyridine, 3-[5-(4-methyl-phenyl)-2,3-dimethyl-isoxazolidin-3-yl]-pyridine, 2,3,5,6-tetra-chloro-4-methanesulfonyl-pyridine, 3 ,4 , 5-trichloropyrid ine-2 ,6-d i- carbonitrile, N-(1-(5-bromo-3-chloro-pyridin-2-yl)-ethyl)-2,4-dichloronicotinamide, N-[(5-bromo-3-chloro-pyridin-2-yl)-methyl]-2,4-dichloro-nicotinamide; - pyrimidines: bupirimate, cyprodinil, diflumetorim, fenarimol, ferimzone, mepani- pyrim, nitrapyrin, nuarimol, pyrimethanil; piperazines: triforine; pyrroles: fenpiclonil, fludioxonil; morpholines: aldimorph, dodemorph, dodemorph-acetate, fenpropimorph, tride- morph; piperidines: fenpropidin; dicarboximides: fluoroimid, iprodione, procymidone, vinclozolin; non-aromatic 5-membered heterocycles: famoxadone, fenamidone, flutianil, oc- thilinone, probenazole, 5-amino-2-isopropyl-3-oxo-4-ortho-tolyl-2,3-dihydro- pyrazole-1-carbothioic acid S-allyl ester; others: acibenzolar-S-methyl, amisulbrom, anilazin, blasticidin-S, captafol, cap- tan, chinomethionat, dazomet, debacarb, diclomezine, difenzoquat, difenzoquat- methylsulfate, fenoxanil, Folpet, oxolinic acid, piperalin, proquinazid, pyroquilon, quinoxyfen, triazoxide, tricyclazole, 2-butoxy-6-iodo-3-propylchromen-4-one, 5- chloro-1 -(4,6-dimethoxy-pyrimidin-2-yl)-2-methyl-1 H-benzoimidazole, 5-chloro-
7-(4-methylpiperidin-1 -yl)-6-(2,4,6-trifluorophenyl)-[1 ,2,4]triazolo[1 ,5-a]pyrimidine and 5-ethyl-6-octyl-[1 ,2,4]triazolo[1 ,5-a]pyrimidine-7-ylamine;
E) carbamates thio- and dithiocarbamates: ferbam, mancozeb, maneb, metam, methasulpho- carb, metiram, propineb, thiram, zineb, ziram; carbamates: benthiavalicarb, diethofencarb, iprovalicarb, propamocarb, propamo- carb hydrochlorid, valiphenal and N-(1-(1-(4-cyano-phenyl)ethanesulfonyl)-but-2- yl) carbamic acid-(4-fluorophenyl) ester;
F) other active substances guanidines: guanidine, dodine, dodine free base, guazatine, guazatine-acetate, iminoctadine, iminoctadine-triacetate, iminoctadine-tris(albesilate); antibiotics: kasugamycin, kasugamycin hydrochloride-hydrate, streptomycin, pol- yoxine, validamycin A; - nitrophenyl derivates: binapacryl, dinobuton, dinocap, nitrthal-isopropyl, tecna- zen, organometal compounds: fentin salts, such as fentin-acetate, fentin chloride or fentin hydroxide; sulfur-containing heterocyclyl compounds: dithianon, isoprothiolane; - organophosphorus compounds: edifenphos, fosetyl, fosetyl-aluminum, iproben- fos, phosphorous acid and its salts, pyrazophos, tolclofos-methyl; organochlorine compounds: chlorothalonil, dichlofluanid, dichlorophen, flusul- famide, hexachlorobenzene, pencycuron, pentachlorphenole and its salts, phthalide, quintozene, thiophanate-methyl, tolylfluanid, N-(4-chloro-2-nitro- phenyl)-N-ethyl-4-methyl-benzenesulfonamide; inorganic active substances: Bordeaux mixture, copper acetate, copper hydroxide, copper oxychloride, basic copper sulfate, sulfur; others: biphenyl, bronopol, cyflufenamid, cymoxanil, diphenylamin, metrafenone, mildiomycin, oxin-copper, prohexadione-calcium, spiroxamine, tolylfluanid, N- (cyclopropylmethoxyimino-(6-difluoro-methoxy-2,3-difluoro-phenyl)-methyl)-2- phenyl acetamide, N'-(4-(4-chloro-3-trifluoromethyl-phenoxy)-2,5-dimethyl- phenyl)-N-ethyl-N-methyl formamidine, N'-(4-(4-fluoro-3-trifluoromethyl-phenoxy)- 2,5-dimethyl-phenyl)-N-ethyl-N-methyl formamidine, N'-(2-methyl-5- trifluoromethyl-4-(3-trimethylsilanyl-propoxy)-phenyl)-N-ethyl-N-methyl forma- midine, N'-(5-difluoromethyl-2-methyl-4-(3-trimethylsilanyl-propoxy)-phenyl)-N- ethyl-N-methyl formamidine,
2-{1-[2-(5-methyl-3-trifluoromethyl-pyrazole-1-yl)-acetyl]-piperidin-4-yl}-thiazole-4- carboxylic acid methyl-(1 ,2,3,4-tetrahydro-naphthalen-1-yl)-amide, 2-{1-[2-(5- methyl-S-trifluoromethyl-pyrazole-i-yO-acety^-piperidin^-ylJ-thiazole^-carboxylic acid methyl-(R)-1 ,2,3,4-tetrahydro-naphthalen-1-yl-amide, acetic acid 6-tert-butyl-
8-fluoro-2,3-dimethyl-quinolin-4-yl ester and methoxy-acetic acid 6-tert-butyl-8- fluoro-2,3-dimethyl-quinolin-4-yl ester. G) growth regulators abscisic acid, amidochlor, ancymidol, 6-benzylaminopurine, brassinolide, butralin, chlormequat (chlormequat chloride), choline chloride, cyclanilide, daminozide, dikegulac, dimethipin, 2,6-dimethylpuridine, ethephon, flumetralin, flurprimidol, fluthiacet, forchlorfenuron, gibberellic acid, inabenfide, indole-3-acetic acid , maleic hydrazide, mefluidide, mepiquat (mepiquat chloride), naphthaleneacetic acid, N-6-benzyladenine, paclobutrazol, prohexadione (prohexadione-calcium), prohydrojasmon, thidiazuron, triapenthenol, tributyl phosphorotrithioate,
2,3,5-tri-iodobenzoic acid , trinexapac-ethyl and uniconazole; H) herbicides acetamides: acetochlor, alachlor, butachlor, dimethachlor, dimethenamid, flufen- acet, mefenacet, metolachlor, metazachlor, napropamide, naproanilide, pethox- amid, pretilachlor, propachlor, thenylchlor; amino acid derivatives: bilanafos, glyphosate, glufosinate, sulfosate; aryloxyphenoxypropionates: clodinafop, cyhalofop-butyl, fenoxaprop, fluazifop, haloxyfop, metamifop, propaquizafop, quizalofop, quizalofop-P-tefuryl; - Bipyridyls: diquat, paraquat;
(thio)carbamates: asulam, butylate, carbetamide, desmedipham, dimepiperate, eptam (EPTC), esprocarb, molinate, orbencarb, phenmedipham, prosulfocarb, pyributicarb, thiobencarb, triallate; cyclohexanediones: butroxydim, clethodim, cycloxydim, profoxydim, sethoxydim, tepraloxydim, tralkoxydim; dinitroanilines: benfluralin, ethalfluralin, oryzalin, pendimethalin, prodiamine, triflu- ralin; diphenyl ethers: acifluorfen, aclonifen, bifenox, diclofop, ethoxyfen, fomesafen, lactofen, oxyfluorfen; - hydroxybenzonitriles: bomoxynil, dichlobenil, ioxynil; imidazolinones: imazamethabenz, imazamox, imazapic, imazapyr, imazaquin, imazethapyr; phenoxy acetic acids: clomeprop, 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4-
DB, dichlorprop, MCPA, MCPA-thioethyl, MCPB, Mecoprop; - pyrazines: chloridazon, flufenpyr-ethyl, fluthiacet, norflurazon, pyridate; pyridines: aminopyralid, clopyralid, diflufenican, dithiopyr, fluridone, fluroxypyr, picloram, picolinafen, thiazopyr; sulfonyl ureas: amidosulfuron, azimsulfuron, bensulfuron, chlorimuron-ethyl, chlorsulfuron, cinosulfuron, cyclosulfamuron, ethoxysulfuron, flazasulfuron, fluce- tosulfuron, flupyrsulfuron, foramsulfuron, halosulfuron, imazosulfuron, iodosulfu- ron, mesosulfuron, metsulfuron-methyl, nicosulfuron, oxasulfuron, primisulfuron, prosulfuron, pyrazosulfuron, rimsulfuron, sulfometuron, sulfosulfuron, thifensulfu- ron, triasulfuron, tribenuron, trifloxysulfuron, triflusulfuron, tritosulfuron, 1-((2- chloro-6-propyl-imidazo[1 ,2-b]pyridazin-3-yl)sulfonyl)-3-(4,6-dimethoxy-pyrimidin- 2-yl)urea; triazines: ametryn, atrazine, cyanazine, dimethametryn, ethiozin, hexazinone, metamitron, metribuzin, prometryn, simazine, terbuthylazine, terbutryn, triaziflam; ureas: chlorotoluron, daimuron, diuron, fluometuron, isoproturon, linuron, metha- benzthiazuron,tebuthiuron; other acetolactate synthase inhibitors: bispyribac-sodium, cloransulam-methyl, diclosulam, florasulam, flucarbazone, flumetsulam, metosulam, ortho-sulfamuron, penoxsulam, propoxycarbazone, pyribambenz-propyl, pyribenzoxim, pyriftalid, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyroxasulfone, pyroxsulam; - others: amicarbazone, aminotriazole, anilofos, beflubutamid, benazolin, bencar- bazone,benfluresate, benzofenap, bentazone, benzobicyclon, bromacil, bromo- butide, butafenacil, butamifos, cafenstrole, carfentrazone, cinidon-ethlyl, chlor- thal, cinmethylin, clomazone, cumyluron, cyprosulfamide, dicamba, difenzoquat, diflufenzopyr, Drechslera monoceras, endothal, ethofumesate, etobenzanid, fen- trazamide, flumiclorac-pentyl, flumioxazin, flupoxam, flurochloridone, flurtamone, indanofan, isoxaben, isoxaflutole, lenacil, propanil, propyzamide, quinclorac, quinmerac, mesotrione, methyl arsonic acid, naptalam, oxadiargyl, oxadiazon, oxaziclomefone, pentoxazone, pinoxaden, pyraclonil, pyraflufen-ethyl, pyrasulfo- tole, pyrazoxyfen, pyrazolynate, quinoclamine, saflufenacil, sulcotrione, sulfentra- zone, terbacil, tefuryltrione, tembotrione, thiencarbazone, topramezone, 4- hydroxy-3-[2-(2-methoxy-ethoxymethyl)-6-trifluoromethyl-pyridine-3-carbonyl]- bicyclo[3.2.1]oct-3-en-2-one, (3-[2-chloro-4-fluoro-5-(3-methyl-2,6-dioxo-4- trifluoromethyl-3,6-dihydro-2H-pyrimidin-1-yl)-phenoxy]-pyridin-2-yloxy)-acetic a- cid ethyl ester, 6-amino-5-chloro-2-cyclopropyl-pyrimidine-4-carboxylic acid methyl ester, 6-chloro-3-(2-cyclopropyl-6-methyl-phenoxy)-pyridazin-4-ol, 4- amino-3-chloro-6-(4-chloro-phenyl)-5-fluoro-pyridine-2-carboxylic acid, 4-amino- 3-chloro-6-(4-chloro-2-fluoro-3-methoxy-phenyl)-pyridine-2-carboxylic acid methyl ester, and 4-amino-3-chloro-6-(4-chloro-3-dimethylamino-2-fluoro-phenyl)- pyridine-2-carboxylic acid methyl ester. I) insecticides organo(thio)phosphates: acephate, azamethiphos, azinphos-methyl, chlorpyrifos, chlorpyrifos-methyl, chlorfenvinphos, diazinon, dichlorvos, dicrotophos, dimethoa- te, disulfoton, ethion, fenitrothion, fenthion, isoxathion, malathion, methamido- phos, methidathion, methyl-parathion, mevinphos, monocrotophos, oxydemeton- methyl, paraoxon, parathion, phenthoate, phosalone, phosmet, phosphamidon, phorate, phoxim, pirimiphos-methyl, profenofos, prothiofos, sulprophos, tetra- chlorvinphos, terbufos, triazophos, trichlorfon; carbamates: alanycarb, aldicarb, bendiocarb, benfuracarb, carbaryl, carbofuran, carbosulfan, fenoxycarb, furathiocarb, methiocarb, methomyl, oxamyl, pirimicarb, propoxur, thiodicarb, triazamate; pyrethroids: allethrin, bifenthrin, cyfluthrin, cyhalothrin, cyphenothrin, cyperme- thrin, alpha-cypermethrin, beta-cypermethrin, zeta-cypermethrin, deltamethrin, esfenvalerate, etofenprox, fenpropathrin, fenvalerate, imiprothrin, lambda- cyhalothrin, permethrin, prallethrin, pyrethrin I and II, resmethrin, silafluofen, tau- fluvalinate, tefluthrin, tetramethrin, tralomethrin, transfluthrin, profluthrin, dimeflu- thrin; insect growth regulators: a) chitin synthesis inhibitors: benzoylureas: chlorfluazu- ron, cyramazin, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenu- ron, novaluron, teflubenzuron, triflumuron; buprofezin, diofenolan, hexythiazox, etoxazole, clofentazine; b) ecdysone antagonists: halofenozide, methoxyfenozi- de, tebufenozide, azadirachtin; c) juvenoids: pyriproxyfen, methoprene, feno- xycarb; d) lipid biosynthesis inhibitors: spirodiclofen, spiromesifen, spirotetramat; nicotinic receptor agonists/antagonists compounds: clothianidin, dinotefuran, imi- dacloprid, thiamethoxam, nitenpyram, acetamiprid, thiacloprid, 1-(2-chloro- thiazol-5-ylmethyl)-2-nitrimino-3,5-dimethyl-[1 ,3,5]triazinane; GABA antagonist compounds: endosulfan, ethiprole, fipronil, vaniliprole, pyraflu- prole, pyriprole, 5-amino-1 -(2,6-dichloro-4-methyl-phenyl)-4-sulfinamoyl- 1 H-pyrazole-3-carbothioic acid amide; - macrocyclic lactone insecticides: abamectin, emamectin, milbemectin, lepimectin, spinosad, spinetoram; mitochondrial electron transport inhibitor (METI) I acaricides: fenazaquin, pyrida- ben, tebufenpyrad, tolfenpyrad, flufenerim;
METI Il and III compounds: acequinocyl, fluacyprim, hydramethylnon; - Uncouplers: chlorfenapyr; oxidative phosphorylation inhibitors: cyhexatin, diafenthiuron, fenbutatin oxide, propargite; moulting disruptor compounds: cryomazine; mixed function oxidase inhibitors: piperonyl butoxide; - sodium channel blockers: indoxacarb, metaflumizone; others: benclothiaz, bifenazate, cartap, flonicamid, pyridalyl, pymetrozine, sulfur, thiocyclam, flubendiamide, chlorantraniliprole, cyazypyr (HGW86), cyenopyrafen, flupyrazofos, cyflumetofen, amidoflumet, imicyafos, bistrifluron, and pyrifluquina- zon.
The present invention furthermore relates to agrochemical compositions comprising a mixture of at least one compound I, Il and/or IV (component 1 ) and at least one further active substance useful for plant protection, e. g. selected from the groups A) to I) (component 2), in particular one further fungicide, e. g. one or more fungicide from the groups A) to F), as described above, and if desired one suitable solvent or solid carrier. Those mixtures are of particular interest, since many of them at the same application rate show higher efficiencies against harmful fungi. Furthermore, combating harmful fungi with a mixture of compounds I, Il and/or IV and at least one fungicide from groups A) to F), as described above, is more efficient than combating those fungi with individ- ual compounds I, Il or IV or individual fungicides from groups A) to F). By applying compounds I, Il and/or IV together with at least one active substance from groups A) to I) a synergistic effect can be obtained, i.e. more then simple addition of the individual effects is obtained (synergistic mixtures).
According to this invention, applying the compounds I, Il and/or IV together with at least one further active substance is to be understood to denote that at least one compound of formula 1, 11 and/or IV and at least one further active substance occur simultaneously at the site of action (i.e. the harmful fungi to be controlled or their habitats such as in- fected plants, plant propagation materials, particularly seeds, surfaces, materials or the soil as well as plants, plant propagation materials, particularly seeds, soil, surfaces, materials or rooms to be protected from fungal attack) in a fungicidally effective amount. This can be obtained by applying the compounds I, Il and/or IV and at least one further active substance simultaneously, either jointly (e. g. as tank-mix) or sper- ately, or in succession, wherein the time interval between the individual applications is selected to ensure that the active substance applied first still occurs at the site of action in a sufficient amount at the time of application of the further active substance(s). The order of application is not essential for working of the present invention.
In binary mixtures, i.e. compositions according to the invention comprising one compound I, Il or IV (component 1 ) and one further active substance (component 2), e. g. one active substance from groups A) to I), the weight ratio of component 1 and component 2 generally depends from the properties of the active substances used, usually it is in the range of from 1 :100 to 100:1 , regularly in the range of from 1 :50 to 50:1 , pref- erably in the range of from 1 :20 to 20: 1 , more preferably in the range of from 1 : 10 to 10:1 and in particular in the range of from 1 :3 to 3:1.
In ternary mixtures, i.e. compositions according to the invention comprising one compound I (component 1 ) and a first further active substance (component 2) and a second further active substance (component 3), e. g. two active substances from groups A) to I), the weight ratio of component 1 and component 2 depends from the properties of the active substances used, preferably it is in the range of from 1 :50 to 50:1 and particularly in the range of from 1 :10 to 10:1 , and the weight ratio of component 1 and component 3 preferably is in the range of from 1 :50 to 50:1 and particularly in the range of from 1 :10 to 10:1.
The components can be used individually or already partially or completely mixed with one another to prepare the composition according to the invention. It is also possible for them to be packaged and used further as combination composition such as a kit of parts.
In one embodiment of the invention, the kits may include one or more, including all, components that may be used to prepare a subject agrochemical composition. E. g., kits may include one or more fungicide component(s) and/or an adjuvant component and/or an insecticide component and/or a growth regulator component and/or a her- bicde. One or more of the components may already be combined together or pre- formulated. In those embodiments where more than two components are provided in a kit, the components may already be combined together and as such are packaged in a single container such as a vial, bottle, can, pouch, bag or canister. In other embodiments, two or more components of a kit may be packaged separately, i. e., not pre- formulated. As such, kits may include one or more separate containers such as vials, cans, bottles, pouches, bags or canisters, each container containing a separate com- ponent for an agrochemical composition. In both forms, a component of the kit may be applied separately from or together with the further components or as a component of a combination composition according to the invention for preparing the composition according to the invention.
The user applies the composition according to the invention usually from a predosage device, a knapsack sprayer, a spray tank or a spray plane. Here, the agrochemical composition is made up with water and/or buffer to the desired application concentration, it being possible, if appropriate, to add further auxiliaries, and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus ob- tained. Usually, 50 to 500 liters of the ready-to-use spray liquor are applied per hectare of agricultural useful area, preferably 100 to 400 liters.
According to one embodiment, individual components of the composition according to the invention such as parts of a kit or parts of a binary or ternary mixture may be mixed by the user himself in a spray tank and further auxiliaries may be added, if appropriate (tank mix).
In a further embodiment, either individual components of the composition according to the invention or partially premixed components, e. g. components comprising com- pounds I, Il and/or IV and/or active substances from the groups A) to I), may be mixed by the user in a spray tank and further auxiliaries and additives may be added, if appropriate (tank mix). In a further embodiment, either individual components of the composition according to the invention or partially premixed components, e. g. components comprising compounds 1, 11 and/or IV and/or active substances from the groups A) to I), can be applied jointly (e. .g. after tankmix) or consecutively.
Preference is also given to mixtures comprising a compound I, Il and/or IV (component 1 ) and at least one active substance selected from the strobilurines of group A) (component 2) and particularly selected from azoxystrobin, dimoxystrobin, fluoxastrobin, kresoxim-methyl, orysastrobin, picoxystrobin, pyraclostrobin and trifloxystrobin.
Preference is also given to mixtures comprising a compound I, Il and/or IV (component 1 ) and at least one active substance selected from the carboxamides of group B) (component 2) and particularly selected from bixafen, boscalid, sedaxane, fenhexamid, metalaxyl, isopyrazam, mefenoxam, ofurace, dimethomorph, flumorph, fluopicolid (pi- cobenzamid), zoxamide, carpropamid, mandipropamid and N-(3',4',5'-trifluorobiphenyl- 2-yl)-3-difluoromethyl-1 -methyl-1 H-pyrazole-4-carboxamide.
Preference is given to mixtures comprising a compound of formula I, Il and/or IV (component 1 ) and at least one active substance selected from the azoles of group C) (component 2) and particularly selected from cyproconazole, difenoconazole, epoxi- conazole, fluquinconazole, flusilazole, flutriafol, metconazole, myclobutanil, pencona- zole, propiconazole, prothioconazole, triadimefon, triadimenol, tebuconazole, tetra- conazole, triticonazole, prochloraz, cyazofamid, benomyl, carbendazim and eth- aboxam.
Preference is also given to mixtures comprising a compound I, Il and/or IV (component 1 ) and at least one active substance selected from the heterocyclic compounds of group D) (component 2) and particularly selected from fluazinam, cyprodinil, fenarimol, mepanipyrim, pyrimethanil, triforine, fludioxonil, dodemorph, fenpropimorph, tride- morph, fenpropidin, iprodione, vinclozolin, famoxadone, fenamidone, probenazole, pro- quinazid, acibenzolar-S-methyl, captafol, folpet, fenoxanil, quinoxyfen and 5-ethyl- 6-octyl-[1 ,2,4]triazolo[1 ,5-a]pyrimidine-7-ylamine.
Preference is also given to mixtures comprising a compound I, Il and/or IV (component 1 ) and at least one active substance selected from the carbamates of group E) (component 2) and particularly selected from mancozeb, metiram, propineb, thiram, iprovali- carb, benthiavalicarb and propamocarb. Preference is also given to mixtures comprising a compound I, Il and/or IV (component 1 ) and at least one active substance selected from the fungicides given in group F) (component 2) and particularly selected from dithianon, fentin salts, such as fentin acetate, fosetyl, fosetyl-aluminium, H3PO3 and salts thereof, chlorthalonil, dichlofluanid, thiophanat-methyl, copper acetate, copper hydroxide, copper oxychloride, copper sulfate, sulfur, cymoxanil, metrafenone and spiroxamine.
Accordingly, the present invention furthermore relates to compositions comprising one compound I, Il and/or IV (component 1 ) and one further active substance (component 2), which further active substance is selected from the column "Component 2" of the lines B-1 to B-346 of Table B.
A further embodiment relates to the compositions B-1 to B-346 listed in Table B, where a row of Table B corresponds in each case to a fungicidal composition comprising one of the in the present specification individualized compounds of formula I or Il (component 1 ) and the respective further active substance from groups A) to I) (component 2) stated in the row in question. Preferably, the compositions described comprise the active substances in synergistically effective amounts.
Table B: Composition comprising one indiviualized compound I or Il and one further active substance from groups A) to I)
Figure imgf000098_0001
Figure imgf000099_0001
Figure imgf000100_0001
Figure imgf000101_0001
Figure imgf000102_0001
Figure imgf000103_0001
Figure imgf000104_0001
Figure imgf000105_0001
Mixture Component 1 Component 2
B-225 one individualized compound or Il basic Copper sulfate
B-226 one individualized compound or Il Sulfur
B-227 one individualized compound or Il Biphenyl
B-228 one individualized compound or Il Bronopol
B-229 one individualized compound or Il Cyflufenamid
B-230 one individualized compound or Il Cymoxanil
B-231 one individualized compound or Il Diphenylamin
B-232 one individualized compound or Il Metrafenone
B-233 one individualized compound or Il Mildiomycin
B-234 one individualized compound or Il Oxin-copper
B-235 one individualized compound or Il Prohexadione calcium
B-236 one individualized compound or Il Spiroxamine
B-237 one individualized compound or Il Tolylfluanid
N-(Cyclopropylmethoxyimino-(6- difluoromethoxy-2,3-difluoro-
B-238 one individualized compound or Il phenyl)-methyl)-2-phenyl acetamide
N'-(4-(4-chloro-3-trifluoromethyl-
B-239 one individualized compound or Il phenoxy)-2,5-dimethyl-phenyl)-N- ethyl-N-methyl formamidine
N'-(4-(4-fluoro-3-trifluoromethyl-
B-240 one individualized compound or Il phenoxy)-2,5-dimethyl-phenyl)-N- ethyl-N-methyl formamidine
N'-(2-methyl-5-trifluoromethyl-4-
(3-trimethylsilanyl-propoxy)-
B-241 one individualized compound or Il phenyl)-N-ethyl-N-methyl formamidine
N'-(5-difluoromethyl-2-methyl-4-
(3-trimethylsilanyl-propoxy)-
B-242 one individualized compound or Il phenyl)-N-ethyl-N-methyl formamidine
2-{1-[2-(5-Methyl-3- trifluoromethyl-pyrazole-1 -yl)-
B-243 one individualized compound or Il acetyl]-piperidin-4-yl}-thiazole-4- carboxylic acid methyl-(1 , 2,3,4- tetrahydro-naphthalen-1-yl)-amide
Figure imgf000107_0001
Figure imgf000108_0001
Figure imgf000109_0001
The active substances referred to as component 2, their preparation and their activity against harmful fungi is known (cf.: http://www.alanwood.net/pesticides/); these substances are commercially available. The compounds described by IUPAC nomencla- ture, their preparation and their fungicidal activity are also known (cf. Can. J. Plant Sci. 48(6), 587-94, 1968; EP-A 141 317; EP-A 152 031 ; EP-A 226 917; EP-A 243 970; EP-A 256 503; EP-A 428 941 ; EP-A 532 022; EP-A 1 028 125; EP-A 1 035 122; EP-A 1 201 648; EP-A 1 122 244, JP 2002316902; DE 19650197; DE 10021412; DE 102005009458; US 3,296,272; US 3,325,503; WO 98/46608; WO 99/14187; WO 99/24413; WO 99/27783; WO 00/29404; WO 00/46148; WO 00/65913; WO 01/54501 ; WO 01/56358; WO 02/22583; WO 02/40431 ; WO 03/10149; WO 03/11853; WO 03/14103; WO 03/16286; WO 03/53145; WO 03/61388; WO 03/66609; WO 03/74491 ; WO 04/49804; WO 04/83193; WO 05/120234; WO 05/123689; WO 05/123690; WO 05/63721 ; WO 05/87772; WO 05/87773; WO 06/15866; WO 06/87325; WO 06/87343; WO 07/82098; WO 07/90624).
The mixtures of active substances can be prepared as compositions comprising besides the active ingredients at least one inert ingredient by usual means, e. g. by the means given for the compositions of compounds I, Il and/or IV.
Concerning usual ingredients of such compositions reference is made to the explanations given for the compositions containing compounds I, Il and/or IV.
The mixtures of active substances according to the present invention are suitable as fungicides, as are the compounds of formula I, Il ad IV. They are distinguished by an outstanding effectiveness against a broad spectrum of phytopathogenic fungi, especially from the classes of the Ascomycetes, Basidiomycetes, Deuteromycetes and Per- onosporomycetes (syn. Oomycetes ). In addition, it is referred to the explanations regarding the fungicidal activity of the compounds and the compositions containing com- pounds I, Il and/or IV respectively.
The compounds I, Il and IV and pharmaceutically acceptable salts thereof are also suitable for treating diseases in men and animals, especially as antimycotics, for treating cancer and for treating virus infections. The term "antimycotic", as distinguished from the term "fungicide", refers to a medicament for combating zoopathogenic or hu- manpathogenic fungi, i.e. for combating fungi in animals, especially in mammals (including humans) and birds. Thus, a further aspect of the present invention relates to a medicament comprising at least one compound of the formulae I, Il and/or IV and/or at least one pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier.
Suitable pharmaceutically acceptable salts are especially physiologically tolerated salts of the compound I, in particular the acid addition salts with physiologically acceptable acids. Examples of suitable organic and inorganic acids are hydrochloric acid, hydro- bromic acid, phosphoric acid, sulfuric acid, Ci-C4-alkylsulfonic acids, such as methane- sulfonic acid, aromatic sulfonic acids, such as benzenesulfonic acid and toluenesulfo- nic acid, oxalic acid, maleic acid, fumaric acid, lactic acid, tartaric acid, adipic acid and benzoic acid. Further suitable acids are described, for example, in Fortschritte der Arzneimittelforschung, Volume 10, pages 224 ff., Birkhauser Verlag, Basle and Stuttgart, 1966, the entire contents of which is expressly incorporated herein by way of reference.
Suitable carriers are, for example, solvents, carriers, excipients, binders and the like customarily used for pharmaceutical formulations, which are described below in an exemplary manner for individual types of administration.
A further aspect of the present invention relates to the use of compounds I, Il and IV or of pharmaceutically acceptable salts thereof for preparing an antimycotic medicament; i.e. for preparing a medicament for the treatment and/or prophylaxis of infections with humanpathogenic and/or zoopathogenic fungi. Another aspect of the present invention relates to the use of compounds of formulae I, Il and/or IV or of pharmaceutically ac- ceptable salts thereof for preparing a medicament for the treatment of cancer. Another aspect of the present invention relates to the use of compounds of formulae I, Il and/or IV or of pharmaceutically acceptable salts thereof for preparing a medicament for the treatment or prophylaxis of virus infections.
The compounds of formulae I, Il and IV and/or their pharmaceutically acceptable salts are suitable for the treatment, inhibiton or control of growth and/or propagation of tumor cells and the disorders associated therewith. Accordingly, they are suitable for cancer therapy in warm-blooded vertebrates, for example mammals and birds, in particular man, but also other mammals, in particular useful and domestic animals, such as dogs, cats, pigs, ruminants (cattle, sheep, goats, bison, etc.), horses and birds, such as chicken, turkey, ducks, geese, guineafowl and the like.
The compounds of formulae I, Il and IV and/or their pharmaceutically acceptable salts are suitable for the therapy of cancer or cancerous disorders of the following organs: breast, lung, intestine, prostate, skin (melanoma), kidney, bladder, mouth, larynx, oesophagus, stomach, ovaries, pancreas, liver and brain or CNS.
The compounds of formulae I, Il and IV and/or their pharmaceutically acceptable salts are suitable for the treatment of virus infections in warm-blooded vertebrates, for example mammals and birds, in particular man, but also other mammals, in particular useful and domestic animals, such as dogs, cats, pigs, ruminants (cattle, sheep, goats, bison, etc.), horses and birds, such as chicken, turkey, ducks, geese, guineafowl and the like. They are suitable for treating virus infections like retrovirus infections such as HIV and HTLV, influenza virus infection, rhinovirus infections, herpes and the like.
The compounds according to the invention can be administered in a customary manner, for example orally, intravenously, intramuscularly or subcutaneously. For oral administration, the active compound can be mixed, for example, with an inert diluent or with an edible carrier; it can be embedded into a hard or soft gelatin capsule, it can be compressed to tablets or it can be mixed directly with the food/feed. The active compound can be mixed with excipients and administered in the form of indigestible tablets, buccal tablets, pastilles, pills, capsules, suspensions, potions, syrups and the like. Such preparations should contain at least 0.1 % of active compound. The composition of the preparation may, of course, vary. It usually comprises from 2 to 60% by weight of active compound, based on the total weight of the preparation in question (dosage unit). Preferred preparations of the compound I according to the invention comprise from 10 to 1000 mg of active compound per oral dosage unit.
The tablets, pastilles, pills, capsules and the like may furthermore comprise the following components: binders, such as traganth, gum arabic, corn starch or gelatin, excipients, such as dicalcium phosphate, disintegrants, such as corn starch, potato starch, alginic acid and the like, glidants, such as magnesium stearate, sweeteners, such as sucrose, lactose or saccharin, and/or flavors, such as peppermint, vanilla and the like. Capsules may furthermore comprise a liquid carrier. Other substances which modify the properties of the dosage unit may also be used. For example, tablets, pills and capsules may be coated with schellack, sugar or mixtures thereof. In addition to the active compound, syrups or potions may also comprise sugar (or other sweeteners), methyl- or propylparaben as preservative, a colorant and/or a flavor. The components of the active compound preparations must, of course, be pharmaceutically pure and nontoxic at the quantities employed. Furthermore, the active compounds can be formulated as preparations with a controlled release of active compound, for example as delayed-release preparations. The active compounds can also be administered parenterally or intraperitoneal^. Solutions or suspensions of the active compounds or their salts can be prepared with water using suitable wetting agents, such as hydroxypropylcellulose. Dispersions can also be prepared using glycerol, liquid polyethylene glycols and mixtures thereof in oils. Fre- quently, these preparations furthermore comprise a preservative to prevent the growth of microorganisms.
Preparations intended for injections comprise sterile aqueous solutions and dispersions and also sterile powders for preparing sterile solutions and dispersions. The prepara- tion has to be sufficiently liquid for injection. It has to be stable under the preparation and storage conditions and it has to be protected against contamination by microorganisms. The carrier may be a solvent or a dispersion medium, for example, water, etha- nol, a polyol (for example glycerol, propylene glycol or liquid polyethylene glycol), a mixture thereof and/or a vegetable oil.
The invention is further illustrated by the following, non-limiting examples.
I. Synthesis examples
1. Preparation of 1 -(2-tert-Butyl-2-hydroxy-6-phenoxyhexyl)-1 H- 1 ,2,4-triazole-5(4H)- thione (compound I.A.47)
1.1 1-(4-Bromobutoxy) benzene
Potassium carbonate (22.0 g, 159.5 mmol, 1.5 equiv.) was added to a stirred solution of phenol (10.0 g, 106.3 mmol, 1.0 equiv.) in dimethylformamide (DMF) (15 ml_). The mixture was stirred at room temperature for 1 h. 1 ,4-Dibromobutane (45.9 g, 212.7 mmol, 2.0 equiv.) was added dropwise to the reaction mixture, followed by the addition of potassium iodide (176 mg, 1.06 mmol, 0.01 equiv.) in one portion. Stirring at room temperature was continued for 16 h; then the solids were filtered off and rinsed with ethyl acetate (EtOAc) (2x150 ml_). The filtrate was washed with water (3x100 ml_), brine (1 x100 ml_), dried over anhydrous Na2SU4 and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (eluent: 1 % EtOAc/hexanes) to afford the title bromide in a yield of 12.1 g (50%).
1H NMR (400 MHz, CDCI3) δ 7.32-7.27 (m, 2H), 6.98-6.89 (m, 3H), 4.01 (t, J = 6.0 Hz, 2H), 3.51 (t, J = 6.4 Hz, 2H), 2.12-2.05 (m, 2H), 1.99-1.92 (m, 2H).
1.2 2,2-Dimethyl-7-phenoxyheptan-3-ol To a small portion of the bromide from example 1.1 (1.00 g) in ether (10 ml.) was added Mg powder (1.33 g, 55.0 mmol, 1.05 equiv.) in ether (10 ml_). The resulting suspension was heated to reflux, and a drop of bromine was added to initiate the reaction. Within 10 min upon reaction commencement, the remaining bromide (1 1.0 g, total of 52.4 mmol, 1.0 equiv.) in ether (40 ml.) was then added. After refluxing for 1 h, the reaction mixture was cooled to room temperature, and trimethylacetaldehyde (4.96 g, 57.6 mmol, 1.1 equiv.) in ether (10 ml.) was added. The mixture was refluxed for an additional 2 h. The reaction mixture was cooled, quenched with saturated NH4CI solu- tion (250 ml.) and extracted with ether (3x250 ml_). Upon separation, the combined organic layers were dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (eluent: 10% EtOAc/hexanes) to afford the title alcohol in a yield of 4.92 g (40%).
1H NMR (400 MHz, CDCI3) δ 7.30-7.27 (m, 2H), 6.96-6.90 (m, 3H), 3.99 (t, J = 6.4 Hz, 2H), 3.25-3.22 (d, J = 10 Hz, 1 H), 1.88-1.73 (m, 3H), 1.64-1.50 (m, 2H), 1.42-1.32 (m, 2H), 0.91 (s, 9H).
1.3 2,2-Dimethyl-7-phenoxyheptan-3-one
Sodium dichromate dihydrate (34.8 g, 1 1.7 mmol, 0.55 equiv.) was dissolved in a 1 :10 (v/v) mixture of 96% H2SO4 and water (27.5 ml_). This solution was added dropwise to a cooled (10 0C) solution of the alcohol from example 1.2 (5.00 g, 21.2 mmol, 1.0 equiv.) in ether (30 ml_). The reaction mixture was allowed to warm to room tempera- ture and stirred for 2 h. After this time, the mixture was diluted with ether (100 ml.) and washed with water (2x50 ml.) and brine (1 x50 ml_). The organic layer was separated, dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (eluent: 2% EtOAc/hexanes) to afford the title ketone in a yield of 3.00 g (61 %).
1H NMR (400 MHz, CDCI3) δ 7.30-7.26 (m, 2H), 6.96-6.89 (m, 3H), 3.97 (t, J = 6.4 Hz, 2H), 2.58 (t, J = 6.8 Hz, 2H), 1.77-1.76 (m, 4H), 1.15 (s, 9H).
1.4 2-fe/t-Butyl-2-(4-phenoxybutyl)oxirane
A solution of dimethyl sulfide (2.70 g, 43.0 mmol, 3.38 equiv.) in acetonitrile (5 ml.) was added to a solution of dimethyl sulfate (4.82 g, 38.1 mmol, 3.0 equiv) in acetonitrile (5 ml.) at 0 0C. The mixture was warmed to room temperature and stirred for 16 h. After this time, the ketone from example 1.3 (3.00 g, 12.7 mmol, 1.0 equiv.) in DMSO (5 ml.) was added, followed by the addition of powdered KOH (3.61 g, 64.3 mmol, 5.0 equiv.). The mixture was stirred at room temperature for an additional 16 h. After this time, the reaction mixture was diluted with water (50 ml.) and extracted with EtOAc (3x100 ml_). Upon separation, the combined organic layers were dried over anhydrous Na2SU4 and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (eluent: 2% EtOAc/hexanes) to afford the title oxirane in a yield of 2.06 g (65%).
1H NMR (400 MHz, CDCI3) δ 7.30-7.26 (m, 2H), 6.96-6.88 (m, 3H), 3.99-3.91 (m, 2H), 2.74 (d, J = 4.4 Hz, 1 H), 2.61 (d, J = 4.4 Hz, 1 H), 1.95-1.87 (m, 1 H), 1.81-1.74 (m, 3H), 1.42-1.35 (m, 2H), 0.96 (s, 9H).
1.5 3-[(1 H-1 ,2,4-TriazoM -yl)methyl]-2,2-dimethyl-7-phenoxyheptan-3-ol
A solution of 1 ,2,4-triazole (419 mg, 6.07 mmol, 1.5 equiv.) in DMF (5 ml.) was added to a chilled (0 0C) suspension of NaH (145 mg, 6.07 mmol, 1.5 equiv.) in DMF (5 ml_). After stirring at 0 0C for 1 h, the reaction mixture was warmed to room temperature and stirred for an additional 1 h. A solution of the oxirane from example 1.4 (1.00 g, 4.04 mmol, 1.0 equiv.) in DMF (5 ml.) was added to the reaction mixture, which was then stirred and heated at 120 0C for 7 h. After this time, the mixture was poured into cold water (25 ml.) and extracted with EtOAc (3x30 ml_). Upon separation, the combined organic layers were dried over anhydrous Na2SU4 and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (eluent: 40% EtOAc/hexanes) to afford the title compound in a yield of 250 mg (20%).
1H NMR (400 MHz, CDCI3) δ 8.16 (s, 1 H), 7.94 (s, 1 H), 7.30-7.26 (m, 2H), 6.95-6.86 (m, 3H), 4.31 (s, 2H), 3.86 (t, J = 6.4 Hz, 2H), 2.90 (s, 1 H), 1.66-1.54 (m, 5H), 1.41- 1.36 (m, 1 H), 1.01 (s, 9H).
1.6 1 -(2-tert-Butyl-2-hydroxy-6-phenoxyhexyl)-1 H-1 ,2,4-triazole-5(4H)-thione
A solution of n-BuLi in hexane (1.6M, 3.46 ml_, 5.50 mmol, 2.5 equiv.) was added to a solution of the triazole obtained in example 1.5 (700 mg, 2.20 mmol, 1.0 equiv.) in THF (15 ml.) at -20 0C. After stirring at -20 0C for 1 h, the reaction mixture was warmed to 0 0C and stirred for an additional 1 h. At this time, sulfur powder (105 mg, 3.31 mmol, 1.5 equiv.) was added, and stirring was continued for an additional 2 h at 0 0C. The reaction mixture was diluted with EtOAc (30 ml.) and washed with saturated NH4CI solution (1 x25 ml.) and brine (1 x25 ml_). The organic layer was separated, dried over anhydrous Na2SO4 and concentrated under reduced pressure. The crude product was puri- tied by silica gel column chromatography (eluent: 35% EtOAc/hexanes) to afford the title thiotriazole in a yield of 230 mg (30%).
1H NMR (400 MHz, CDCI3) δ 12.55 (bs, 1 H), 7.70 (bs, 1 H), 7.29-7.25 (m, 2H), 6.95- 6.86 (m, 3H), 4.38 (d, J = 4.4 Hz, 2H), 3.90 (t, J = 6.0 Hz, 2H), 3.58 (bs, 1 H), 1.69-1.52 (m, 5 H), 1.26-1.10 (m, 1 H), 1.05 (s, 9H).
MS (ESI) m/z 351.1 [M+H].
The compounds of the following examples were prepared analogously.
2. Preparation of 1 -[2-fe/t-Butyl-6-(2-fluorophenoxy)-2-hydroxyhexyl]-1 H- 1 ,2,4- triazole-5(4H)-thione (compound I.A.48)
2.1 1-(4-Bromobutoxy)-2-fluorobenzene
Yield: 45%.
1H NMR (400 MHz, CDCI3) δ 7.11-7.04 (m, 2H), 6.98-6.88 (m, 2H), 4.07 (t, J = 6.0 Hz, 2H), 3.51 (t, J = 6.4 Hz, 2H), 2.14-2.07 (m, 2H), 2.02-1.96 (m, 2H).
2.2 7-(2-Fluorophenoxy)-2,2-dimethylheptan-3-ol
Yield: 37%.
1H NMR (400 MHz, CDCI3) δ 7.10-7.03 (m, 2H), 6.98-6.94 (m, 1 H), 6.91-6.86 (m, 1 H), 4.07-4.03 (m, 2H), 3.22 (d, J = 10 Hz, 1 H), 1.92-1.72 (m, 3H), 1.65-1.50 (m, 2H), 1.44- 1.26 (m, 2H), 0.90 (s, 9H).
2.3 7-(2-Fluorophenoxy)-2,2-dimethylheptan-3-one
Yield: 75%.
1H NMR (400 MHz, CDCI3) δ 7.09-7.03 (m, 2H), 6.95-6.93 (m, 1 H), 6.90-6.86 (m, 1 H),
4.04 (t, J = 6.0 Hz, 2H), 2.60 (t, J = 6.8 Hz, 2H), 1.83-1.74 (m, 4H), 1.15 (s, 9H).
2.4 2-fe/t-Butyl-2-(4-(2-fluorophenoxy)butyl)oxirane
Yield: 65%.
1H NMR (400 MHz, CDCI3) δ 7.10-7.03 (m, 2H), 6.97-6.91 (m, 1 H), 6.89-6.87 (m, 1 H), 4.05- 3.99 (m, 2H), 2.73 (d, J = 4.0 Hz, 1 H), 2.60 (d, J = 4.0 Hz, 1 H), 1.96-1.88 (m, 1 H), 1.84-1.71 (m, 4H), 1.43-1.35 (m, 2H), 0.96 (s, 9H). 2.5 3-[(1 H- 1 ,2,4-TriazoM -yl)methyl]-7-(2-fluorophenoxy)-2,2-dimethylheptan-3-ol
Yield: 60%. 1H NMR (400 MHz, CDCI3) δ 8.17 (s, 1 H), 7.94 (s, 1 H), 7.09- 7.03 (m, 2H), 6.94- 6.86 (m, 2H), 4.32 (s, 2H), 3.93 (t, J = 6.0 Hz, 2H), 2.93 (s,1 H), 1.69- 1.55 (m, 6H), 1.01 (s, 9H).
2.6 1 -[2-fe/t-Butyl-6-(2-fluorophenoxy)-2-hydroxyhexyl]-1 H-1 ,2,4-triazole-5(4H)-thione
Yield: 25%.
1H NMR (400 MHz, CDCI3) δ 12.56 (bs, 1 H), 7.80 (s, 1 H), 7.07-7.00 (m, 2H), 6.93-6.86 (m, 2H), 4.38 (s, 2H), 4.00-3.89 (m, 2H), 3.68 (s,1 H), 1.74-1.69 (m, 4H), 1.55-1.47 (m, 1 H), 1.05 (s, 9H).
MS (ESI) m/z 368.1 [M+H] +.
3. Preparation of 1 -[2-fe/t-Butyl-6-(2,4-difluorophenoxy)-2-hydroxyhexyl]-1 H-1 ,2,4- triazole-5(4H)-thione (compound I. A. 52)
3.1 1-(4-Bromobutoxy)-2,4-difluorobenzene
Yield: 44%.
1H NMR (400 MHz, CDCI3) δ 6.94-6.83 (m, 2H), 6.81-6.75 (m, 1 H), 4.01 (t, J = 6.0 Hz, 2H), 3.50 (t, J = 6.4 Hz, 2H), 2.12-2.06 (m, 2H), 2.00-1.93 (m, 2H).
3.2 7-(2,4-Difluorophenoxy)-2,2-dimethylheptan-3-ol
Yield: 46%. 1H NMR (400 MHz, CDCI3) δ 6.91-6.82 (m, 2H), 6.80-6.74 (m, 1 H), 4.03-3.99 (m, 2H), 3.22 (d, J = 10.4 Hz, 1 H), 1.88-1.76 (m, 3H), 1.64-1.32 (m, 4H), 0.90 (s, 9H).
3.3 7-(2,4-Difluorophenoxy)-2,2-dimethylheptan-3-one
Yield: 71 %.
1H NMR (400 MHz, CDCI3) δ 6.92-6.82 (m, 2H), 6.79-6.74 (m, 1 H), 3.99 (t, J = 6.0 Hz 2H), 2.59 (t, J = 6.4 Hz, 2H), 1.80-1.72 (m, 4H), 1.14 (s, 9H).
3.4 2-fe/t-Butyl-2-(4-(2,4-difluorophenoxy)butyl)oxirane Yield: 68%.
1H NMR (400 MHz, CDCI3) δ 6.92-6.82 (m, 2H), 6.79-6.75 (m, 1 H), 4.02- 3.93 (m, 2H), 2.73 (d, J = 4.4 Hz, 1 H), 2.59 (d, J = 4.4 1 H), 1.94-1.86 (m, 1 H), 1.81-1.71 (m, 3H), 1.42- 1.34 (m, 2H), 0.95 (s, 9H).
3.5 3-[(1 H-1 ,2,4-TriazoM -yl)methyl]-7-(2,4-difluorophenoxy)-2,2-dimethylheptan-3-ol
Yield: 50%. 1H NMR (400 MHz, CDCI3) δ 8.17 (s, 1 H), 7.92 (s, 1 H), 6.88-6.81 (m, 2H), 6.78-6.73 (m, 1 H), 4.31 (s, 2H), 3.87 (t, J= 6.0 Hz, 2H), 3.00 (bs,1 H), 2.59 (d, J = 4.4 1 H), 1.64- 1.53 (m, 4H), 1.44-1.33 (m, 1 H), 1.00 (s, 9H), 0.91-0.89 (m, 1 H).
3.6 1 -[2-fe/t-Butyl-6-(2,4-difluorophenoxy)-2-hydroxyhexyl]-1 H-1 ,2,4-triazole-5(4H)- thione
Yield: 25%.
1H NMR (400 MHz, CDCI3) δ 12.19 (bs, 1 H), 7.81 (s, 1 H), 6.89-6.82 (m, 2H), 6.79-6.76 (m, 1 H), 4.39 (d, J = 4.4 Hz, 2H), 3.98- 3.87 (m, 2H), 3.58 (s,1 H), 1.74-1.68 (m, 5H), 1.55-1.46 (m, 1 H), 1.12-1.06 (m, 10H). MS (ESI) m/z 386.1 [M+H]+.
4. Preparation of 1 -[2-fe/t-Butyl-6-(2-chlorophenoxy)-2-hydroxyhexyl]-1 H-1 ,2,4- triazole-5(4H)-thione (compound I.A.58)
4.1 1-(4-Bromobutoxy)-2-chlorobenzene
Yield: 55%.
1H NMR (400 MHz, CDCI3): δ 7.37-7.36 (m, 1 H), 7.23-7.19 (m, 1 H), 6.93-6.88 (m, 3 H), 4.07 (t, J = 6 Hz, 2H), 3.54 (t, J = 6.4 Hz, 2H), 2.17-2.10 (m, 2H), 2.05-1.98 (m, 2H).
4.2 7-(2-Chlorophenoxy)-2,2-dimethylheptan-3-ol
Yield: 25%. 1H NMR (400 MHz, CDCI3): δ 7.36 (d, J = 7.6 Hz, 1 H), 7.20 (t, J = 8.0 Hz, 1 H), 6.93-
6.86 (m, 2H), 4.05 (d, J = 2.8 Hz, 2H), 3.23 (t, J = 8.8 Hz, 2 H), 1.93-1.74 (m, 2H), 1.58- 1.48 (m, 2H), 1.43- 1.21 (m, 2H), 0.91 (s, 9H).
4.3 7-(2-Chlorophenoxy)-2,2-dimethylheptan-3-one Yield: 77%.
1H NMR (400 MHz, CDCI3): δ 7.35 (d, J = 7.6 Hz, 1 H), 7.22-7.18 (m, 1 H), 6.92-6.80 (m, 2H), 4.04 (t, J = 6.0 Hz, 2H), 2.63 (t, J = 6.8 Hz, 2H), 1.87-1.74 (m, 4 H), 1.15 (s, 9 H).
4.4 2-tert-Butyl-2-(4-(2-chlorophenoxy)-butyl)-oxirane
Yield: 61 %.
1H NMR (400 MHz, CDCI3): δ 7.36 (dd, Ji = 1.6 Hz, J2 = 7.6 Hz, 1 H), 7.22-7.18 (m, 1 H), 6.91-6.86 (m, 2H), 4.05-3.97 (m, 2H), 2.74 (d, J = 4.4 Hz, 1 H), 2.61 (d, J = 4.0 Hz, 1 H), 1.98-1.90 (m, 1 H), 1.85-1.72 (m, 3H), 1.46-1.38 (m, 2H), 0.96 (s, 9H).
4.5 3-[(1 H-1 ,2,4-Triazol-1 -yl)methyl]-7-(2-chlorophenoxy)-2,2-dimethylheptan-3-ol
Yield: 61 %.
1H NMR (400 MHz, CDCI3): δ 8.16 (s, 1 H), 7.93 (s, 1 H), 7.35 (d, J = 8.0 Hz, 1 H), 7.22- 7.17 (m, 1 H), 6.90-6.86 (m, 2H), 4.36-4.28 (m, 2H), 3.93 (t, J = 6.4 Hz, 2H), 2.97 (s, 1 H), 1.72-1.43 (m, 6H), 1.01 (s, 9H).
4.6 1-[2-fe/t-Butyl-6-(2-chlorophenoxy)-2-hydroxyhexyl]-1 H-1 ,2,4-triazole-5(4H)- thione
Yield: 34%.
1H NMR (400 MHz, CDCI3): δ 12.26 (bs, 1 H), 7.74 (s, 1 H), 7.34 (dd, Ji = 1.6 Hz, J2 = 7.6 Hz, 1 H), 7.21-7.17 (m, 1 H), 6.90-6.85 (m, 2H), 4.44-4.36 (m, 2H), 4.02- 3.93 (m, 2H), 3.59 (s, 1 H), 1.80-1.56 (m, 5H), 1.23-1.17 (m, 2H), 1.06 (s, 9H). MS (ESI) m/z 386.1 [M +2H]+.
5. Preparation of 1 -[2-fe/t-Butyl-6-(2,4-dichlorophenoxy)-2-hydroxyhexyl]-1 H-1 ,2,4- triazole-5(4H)-thione (compound I.A.61)
5.1 1-(4-Bromobutoxy)-2,4-dichlorobenzene
Yield: 58%. 1H NMR (400 MHz, CDCI3) δ 7.36 (d, J = 2.4 Hz, 1 H), 7.17 (dd, J = 8.8, 2.4 Hz, 1 H), 6.82 (d, J = 8.8 Hz, 1 H), 4.04 (t, J = 6.0 Hz, 2H), 3.52 (t, J = 6.4 Hz, 2H), 2.14-2.08 (m, 2H), 2.03- 1.97 (m, 2H).
5.2 7-(2,4-Dichlorophenoxy)-2,2-dimethylheptan-3-ol Yield: 41 %.
1H NMR (400 MHz, CDCI3) 5 7.36 (d, J = 2.4 Hz, 1 H), 7.17 (dd, J = 8.8, 2.4 Hz, 1 H), 6.84 (d, J = 8.8 Hz, 1 H), 4.04-4.00 (m, 2H), 3.22 (d, J = 10.4 Hz, 1 H), 1.95-1.72 (m, 3H), 1.64-1.47 (m, 2H), 1.43-1.17 (m, 4H), 0.90 (s, 9H).
5.3 7-(2,4-Dichlorophenoxy)-2,2-dimethylheptan-3-one
Yield: 70%. 1H NMR (400 MHz, CDCI3) δ 7.36 (d, J = 2.8 Hz, 1 H), 7.17 (dd, J = 8.8, 2.8 Hz, 1 H), 6.83 (d, J = 8.8 Hz, 1 H), 4.01 (t, J = 6.0 Hz, 2H), 2.61 (t, J = 6.8 Hz, 2H), 1.85-1.75 (m, 4H), 1.51 (s, 9H).
5.4 2-fe/t-Butyl-2-(4-(2,4-dichlorophenoxy)butyl)oxirane
Yield: 62%.
1H NMR (400 MHz, CDCI3) δ 7.36 (d, J = 2.4 Hz, 1 H), 7.17 (dd, J = 8.8, 2.4 Hz, 1 H), 6.82 (d, J = 8.8 Hz, 1 H), 4.04-3.94 (m, 2H), 2.75 (d, J = 4.4 Hz, 1 H), 2.60 (d, J= 4.4 Hz, 1 H), 1.96-1.88 (m, 1 H), 1.85-1.72 (m, 3H), 1.45-1.37 (m, 2H), 0.96 (s, 9H), 0.90-0.83 (m, 1 H).
5.5 3-[(1 H-1 ,2,4-TriazoM -yl)methyl]-7-(2,4-dichlorophenoxy)-2,2-dimethylheptan-3-ol
Yield: 55%. 1H NMR (400 MHz, CDCI3) δ 8.17 (s, 1 H), 7.94 (s, 1 H), 7.36 (d, J = 2.4 Hz, 1 H), 7.17 (dd, J = 8.8, 2.4 Hz, 1 H), 6.79 (d, J = 8.8 Hz, 1 H), 4.32 (s, 2H), 3.89 (t, J = 6.0 Hz 2H), 2.94 (s, 1 H), 1.71-1.54 (m, 4H), 1.49-1.40 (m, 1 H), 1.01 (s, 9H), 0.98-0.96 (m, 1 H).
5.6 1 -[2-fe/t-Butyl-6-(2,4-dichlorophenoxy)-2-hydroxyhexyl]-1 H-1 ,2,4-triazole-5(4H)- thione
Yield: 20%.
1H NMR (400 MHz, CDCI3) δ 12.45 (bs, 1 H), 7.81 (s, 1 H), 7.33 (d, J = 2.4 Hz, 1 H), 7.14 (dd, J = 8.8, 2.4 Hz, 1 H), 6.79 (d, J = 8.8 Hz, 1 H), 4.39 (d, J = 7.6 Hz, 2H), 3.95-3.91 (m, 2H), 1.73-1.66 (m, 4H), 1.63-1.55 (m, 1 H), 1.01 (s, 9H). MS (ESI) m/z 420 [M+ 2H]+.
6. Preparation of 1 -[2-fe/t-Butyl-6-(3-chlorophenoxy)-2-hydroxyhexyl]-1 H-1 ,2,4- triazole-5(4H)-thione (compound I.A.59) 6.1 1 -(4-Bromobutoxy)-3-chlorobenzene
Yield: 40%. 1H NMR (400 MHz, CDCI3): δ 7.20 (t, J = 8.2 Hz, 1 H), 6.93 (d, J = 7.6 Hz, 1 H), 6.89 (bs, 1 H), 6.77 (dd, J = 6.8 Hz, 1 H), 3.99 (t, J = 6 Hz, 2H), 3.49 (t, J = 6.6 Hz, 2H), 2.10- 2.04 (m, 2H), 1.98- 1.92 (m, 2H).
6.2 7-(3-Chlorophenoxy)-2,2-dimethylheptan-3-ol
Yield: 50%.
1H NMR (400 MHz, CDCI3): 5 7.18 (t, J = 8.2 Hz, 1 H), 6.92-6.89 (m, 2H), 6.78 (d, J = 8.4 Hz, 1 H), 3.96 (t, J = 6 Hz, 2H), 3.22 (d, J = 10.4 Hz, 1 H), 1.80-1.26 (m, 6H), 0.91 (s, 9H).
6.3 7-(3-Chlorophenoxy)-2,2-dimethylheptan-3-one
Yield: 65%.
1H NMR (400 MHz, CDCI3): 5 7.18 (t, J = 8.0 Hz, 1 H), 6.91 (d, J = 8 Hz, 1 H), 6.88 (s, 1 H), 6.77 (d, J = 8.4 Hz, 1 H), 3.94 (t, J = 5.6 Hz, 2H), 2.57 (t, J = 6.4 Hz, 2H), 1.75 (bs, 4 H), 1.15 (s, 9H).
6.4 2-fe/t-Butyl-2-(4-(3-chlorophenoxy)butyl)oxirane
Yield: 75%.
1H NMR (400 MHz, CDCI3): 5 7.18 (t, J = 8.0 Hz, 1 H), 6.90 (d, J = 8 Hz, 1 H), 6.88 (s, 1 H), 6.77 (d, J = 8.4 Hz, 1 H), 3.94- 3.90 (m, 2H), 2.74 (d, J = 4.4 Hz, 1 H), 2.59 (d, J = 4.4 Hz, 1 H), 1.93-1.88 (m, 1 H), 1.78-1.71 (m, 3H), 1.40-1.32 (m, 1 H), 0.96 (s, 9H).
6.5 3-[(1 H-1 ,2,4-Triazol-1-yl)methyl]-7-(3-chlorophenoxy)-2,2-dimethylheptan-3-ol
Yield: 45%.
1H NMR (400 MHz, CDCI3): 5 8.16 (s, 1 H), 7.94 (s, 1 H),7.18 (t, J = 8.0 Hz, 1 H), 6.91 (d, J = 8 Hz, H), 6.85 (s, 1 H), 6.75 (dd, Ji = 2.4 Hz, J2 = 8.4 Hz, 1 H),4.31 (s, 2H), 3.82 (t, J = 6.4 Hz, 2H), 2.94 (s, 1 H), 1.64-1.53 (m, 4H), 1.43-1.34 (m, 1 H), 0.91-0.86 (m, 1 H), 1.01 (s, 9H).
6.6 1 -[2-fe/t-Butyl-6-(3-chlorophenoxy)-2-hydroxyhexyl]-1 H-1 ,2,4-triazole-5(4H)- thione Yield: 24%.
1H NMR (400 MHz, CDCI3): δ 12.39 (s, 1 H), 7.77 (s, 1 H), 7.18 (t, J = 8.4 Hz, 1 H), 6.90 (d, J = 7.6 Hz, 1 H), 6.86 (t, J = 2.0 Hz, 1 H), 6.75 (dd, Ji = 2.0 Hz, J2 = 8.4 Hz, 1 H),4.39 (m, 2H), 3.88 (t, J = 6.0 Hz, 2H), 3.56 (s, 1 H), 1.80-1.68 (m, 4H), 1.62-1.54 (m, 1 H), 1.20-1.12 (m, 1 H), 1.06 (s, 9H), .MS (ESI) m/z 386.1 [M+2H]+.
7. Preparation of 1 -[2-fe/t-butyl-5-(2,4-difluorophenoxy)-2-hydroxypentyl]-1 H-1 ,2,4- triazole-5(4/-/)-thione (compound I.A.6)
HPLC/MS: M = 372 (3.38 min)
8. Preparation of 1-[2-fe/t-butyl-5-(2-chloro-4-fluorophenoxy)-2-hydroxypentyl]-1 H- 1 ,2,4-triazole-5(4H)-thione (compound I.A.28)
HPLC/MS: M = 388 (3.58 min)
9. Preparation of 1 -[2-fe/t-butyl-5-(2,4-dichlorophenoxy)-2-hydroxypentyl]-1 H-1 ,2,4- triazole-5(4H)-thione (compound I. A.15)
HPLC/MS: M = 404 (3.83 min)
10. Preparation of 1 -[2-fe/t-butyl-5-(4-chloro-2-fluorophenoxy)-2-hydroxypentyl]-1 H- 1 ,2,4-triazole-5(4H)-thione (compound I.A.22)
HPLC/MS: M = 388 (3.63 min)
1 1. Preparation of 1 -[2-fe/t-butyl-7-(2-fluorophenoxy)-2-hydroxyheptyl]-1 H-1 ,2,4- triazole-5(4H)-thione (compound I.A.95)
HPLC/MS: M = 364 (3.699 min) (M-18)
12. Preparation of 1 -[2-fe/t-butyl-7-(4-fluorophenoxy)-2-hydroxyheptyl]-1 H-1 ,2,4- triazole-5(4H)-thione (compound I.A.97)
HPLC/MS: M = 364 (3.562 min) (M-18)
13. Preparation of 1 -[2-fe/t-butyl-7-(2,4-difluorophenoxy)-2-hydroxyheptyl]-1 H-1 ,2,4- triazole-5(4H)-thione (compound I.A.99) HPLC/MS: M = 400 (3.506 min)
14. Preparation of 1 -[2-fe/t-butyl-7-(2,6-difluorophenoxy)-2-hydroxyheptyl]-1 H-1 ,2,4- triazole-5(4H)-thione (compound I.A.101 )
HPLC/MS: M = 382 (3.798 min) (M-18)
15. Preparation of 1 -[2-fe/t-butyl-7-(4-chloro-2-fluorophenoxy)-2-hydroxyheptyl]-1 H- 1 ,2,4-triazole-5(4H)-thione (compound I.A.116)
HPLC/MS: M = 398 (4.038 min) (M-18)
16. Preparation of 1 -[2-fe/t-butyl-7-(2-chlorophenoxy)-2-hydroxyheptyl]-1 H-1 ,2,4- triazole-5(4H)-thione (compound I.A.105)
HPLC/MS: M = 398 (3.661 min)
17. Preparation of 1 -[2-fe/t-butyl-7-(3-chlorophenoxy)-2-hydroxyheptyl]-1 H-1 ,2,4- triazole-5(4H)-thione (compound I.A.106)
HPLC/MS: M = 380 (3.988 min) (M-18)
18. Preparation of 1 -[2-fe/t-butyl-7-(4-chlorophenoxy)-2-hydroxyheptyl]-1 H-1 ,2,4- triazole-5(4H)-thione (compound I.A.107)
HPLC/MS: M = 398 (3.784 min)
19. Preparation of 1 -[2-fe/t-butyl-7-(2,4-dichlorophenoxy)-2-hydroxyheptyl]-1 H-1 ,2,4- triazole-5(4H)-thione (compound I.A.109)
HPLC/MS: M = 414 (3.967 min) (M-18)
20. Preparation of 1 -[2-fe/t-butyl-7-(4-methylphenoxy)-2-hydroxyheptyl]-1 H-1 ,2,4- triazole-5(4H)-thione (compound I.A.127)
HPLC/MS: M = 378 (3.879 min) II. Examples of the action against harmful fungi
The fungicidal action of the compounds of the formulae I and Il was demonstrated by the following experiments:
A) Greenhouse tests
The spray soultions were prepared in several steps:
The stock solution were prepared by adding a mixture of acetone and/or dimethylsul- foxide and the wetting agent/emulsifier Wettol, which is based on ethoxylated alkylphe- noles, in a relation (volume) solvent-emulsifier of 99 to 1 to 25 mg of the compound to give a total of 10 ml. Water was then added to total volume of 100 ml. This stock solution was diluted with the described solvent-emulsifier-water mixture to the given concentration.
1. Curative control of soy bean rust on soy beans caused by Phakopsora pachyrhizi
Leaves of pot-grown soy bean seedlings were inoculated with spores of Phakopsora pachyrhizi . To ensure the success of the artificial inoculation, the plants were trans- ferred to a humid chamber with a relative humidity of about 95 % and 20 to 24°C for 24 h. The next day the plants were cultivated for 2 days in a greenhouse chamber at 23- 27°C and a relative humidity between 60 and 80 %. Then the plants were sprayed to run-off with an aqueous suspension, containing the concentration of active ingredient or their mixture as described below. The plants were allowed to air-dry. Then the trial plants were cultivated for 14 days in a greenhouse chamber at 23-27°C and a relative humidity between 60 and 80 %. The extent of fungal attack on the leaves was visually assessed as % diseased leaf area. The plants which had been treated with an aqueous active compound preparation comprising 300 ppm of the active compounds of examples 1 , 2, 3, 4, 5, 6, 11 , 13, 16, 17, 18 and 20 showed an infection of 0%, whereas the untreated plants were 60% infected.
2. Preventative control of leaf blotch on wheat caused by Septoria tritici
Leaves of pot-grown wheat seedling were sprayed to run-off with an aqueous suspen- sion of the active compound or their mixture, prepared as described. The plants were allowed to air-dry. At the following day the plants were inoculated with an aqueous spore suspension of Septoria tritici. Then the trial plants were immediately transferred to a humid chamber at 18-22°C and a relative humidity close to 100 %. After 4 days the plants were transferred to a chamber with 18-22°C and a relative humidity close to 70 %. After 4 weeks the extent of fungal attack on the leaves was visually assessed as % diseased leaf area. The plants which had been treated with an aqueous active compound preparation comprising 300 ppm of the active compounds of examples 3, 4, 5, 6, 7, 9, 10, 12, 13, 16 and 18 showed an infection of at most 15%, whereas the untreated plants were 90% infected.
3. Preventative control of grey mold (Botrytis cinerea) on leaves of green pepper
Young seedlings of green pepper were grown in pots to the 2 to 3 leaf stage. These plants were sprayed to run-off with an aqueous suspension, containing the concentration of active ingredient or their mixture mentioned in the table below. The next day the treated plants were inoculated with a spore suspension of Botrytis cinerea in a 2 % aqueous biomalt solution. Then the trial plants were immediately transferred to a dark, humid chamber. After 5 days at 22 to 24°C and a relative humidity close to 100 % the extent of fungal attack on the leaves was visually assessed as % diseased leaf area. The plants which had been treated with an aqueous active compound preparation comprising 300 ppm of the active compounds of examples 12, 17, 19 and 20 showed an infection of at most 10%, whereas the untreated plants were 100% infected.

Claims

We claim:
1. Triazole compounds of the formulae I and Il
Figure imgf000126_0001
wherein
R1 is selected from Ci-Cio-alkyl, Ci-Cio-haloalkyl, C2-Cio-alkenyl, C2-C10- haloalkenyl, C2-Cio-alkynyl, C2-Cio-haloalkynyl, C3-Cio-cycloalkyl, C3-C10- halocycloalkyl, C3-Cio-cycloalkyl-Ci-C4-alkyl, C3-Cio-halocycloalkyl-Ci-C4- alkyl, where the cycloalkyl moiety in the 4 last-mentioned radicals may carry 1 , 2, 3 or 4 substituents R8, phenyl which may carry 1 , 2, 3, 4 or 5 substituents R7, and a saturated, partially unsaturated or maximum unsaturated 3-, 4-, 5-, 6- or 7-membered heterocyclic ring containing 1 , 2 or 3 het- eroatoms or heteroatom-containing groups selected from N, O, S, SO and
SO2 as ring members, where the heterocyclic ring may carry 1 , 2 or 3 substituents R7;
R2 is selected from hydrogen and a protective group;
R3 and R4, independently of each other and independently of each occurrence, are selected from hydrogen, halogen, Ci-C4-alkyl, Ci-C4-haloalkyl, C2-C4- alkenyl, C2-C4-haloalkenyl, C2-C4-alkynyl, C2-C4-haloalkynyl, Ci-C4-alkoxy and Ci-C4-haloalkoxy;
or R3 and R4, together with the carbon atom to which they are bound, form a saturated, partially unsaturated or maximum unsaturated 3-, 4-, 5-, 6- or 7-membered carbocyclic or heterocyclic ring, where the heterocyclic ring contains 1 , 2 or 3 heteroatoms or heteroatom-containing groups selected from N, O, S, SO and SO2 as ring members; R5 is selected from C3-Cio-cycloalkyl, C3-Cio-halocycloalkyl, where the cycloal- kyl moiety in the 2 last-mentioned radicals may carry 1 , 2, 3 or 4 substitu- ents R8, C3-Cio-cycloalkenyl, C3-Cio-halocycloalkenyl, where the cycloal- kenyl moiety in the 2 last-mentioned radicals may carry 1 , 2, 3 or 4 sub- stituents R8, aryl which may carry 1 , 2 or 3 substituents R9, and a saturated, partially unsaturated or maximum unsaturated 3-, 4-, 5-, 6- or 7-membered heterocyclic ring containing 1 , 2 or 3 heteroatoms or heteroatom-containing groups selected from N, O, S, SO and SO2 as ring members, where the heterocyclic ring may carry 1 , 2 or 3 substituents R10;
R6 is selected from hydrogen, Ci-Cio-alkyl, Ci-Cio-haloalkyl, C2-Cio-alkenyl, C2-Cio-haloalkenyl, C2-Cio-alkynyl, C2-Cio-haloalkynyl, C3-Cio-cycloalkyl, C3-Cio-halocycloalkyl, phenyl, phenyl-Ci-C4-alkyl, where the phenyl moiety in the 2 last-mentioned radicals may carry 1 , 2, 3, 4 or 5 substituents R11, and a 5- or 6-membered saturated, partially unsaturated or aromatic heterocyclic ring containing 1 , 2 or 3 heteroatoms selected from N, O and S as ring members, where the heterocyclic ring may carry 1 , 2 or 3 substituents R11; or, in case m is 0, may also be selected from -C(=O)R12, -C(=S)R12, -S(O)2R12, -CN, -P(=Q)R13R14, M and a group of the formula III
Figure imgf000127_0001
wherein
R1, R2, R3, R4, R5 and n are as defined for formulae I and II; and
# is the attachment point to the remainder of the molecule;
R6a is selected from hydrogen, Ci-Cio-alkyl, Ci-Cio-haloalkyl, C2-Cio-alkenyl, C2-Cio-haloalkenyl, C2-Cio-alkynyl, C2-Cio-haloalkynyl, C3-Cio-cycloalkyl, C3-Cio-halocycloalkyl, phenyl, phenyl-Ci-C4-alkyl, where the phenyl moiety in the 2 last-mentioned radicals may carry 1 , 2, 3, 4 or 5 substituents R11, a 5- or 6-membered saturated, partially unsaturated or aromatic heterocyclic ring containing 1 , 2 or 3 heteroatoms selected from N, O and S as ring members, where the heterocyclic ring may carry 1 , 2 or 3 substituents R11, -C(=O)R12, -C(=S)R12, -S(O)2R12, -CN, -P(=Q)R13R14 and M; each R7 is independently selected from halogen, nitro, CN, Ci-C4-alkyl, CrC4- haloalkyl, Ci-C4-alkoxy, Ci-C4-haloalkoxy and NR15R16;
each R8 is independently selected from nitro, CN, Ci-C4-alkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy, Ci-C4-haloalkoxy and NR15R16;
each R9 is independently selected from halogen, nitro, CN, Ci-C4-alkyl, C1-C4- haloalkyl, Ci-C4-alkoxy, Ci-C4-haloalkoxy and NR15R16;
each R10 is independently selected from halogen, nitro, CN, Ci-C4-alkyl, C1-C4- haloalkyl, Ci-C4-alkoxy, Ci-C4-haloalkoxy and NR15R16;
each R11 is independently selected from halogen, nitro, CN, Ci-C4-alkyl, C1-C4- haloalkyl, Ci-C4-alkoxy, Ci-C4-haloalkoxy and NR15R16;
R12 is selected from hydrogen, Ci-Cio-alkyl, Ci-Cio-haloalkyl, Ci-Cio-alkoxy, Ci- Cio-haloalkoxy, Ci-Cio-aminoalkyl, C3-Cio-cycloalkyl, C3-Cio-halocycloalkyl, phenyl, phenyl-Ci-C4-alkyl, where the phenyl moiety in the 2 last-mentioned radicals may carry 1 , 2, 3, 4 or 5 substituents R11, a 5- or 6-membered saturated, partially unsaturated or aromatic heterocyclic ring containing 1 , 2 or 3 heteroatoms selected from N, O and S as ring members, where the heterocyclic ring may carry 1 , 2 or 3 substituents R11, and NR15R16;
R13 and R14, independently of each other, are selected from Ci-Cio-alkyl, C1-C10- haloalkyl, C2-Cio-alkenyl, C2-Cio-haloalkenyl, C2-Cio-alkynyl, C2-C10- haloalkynyl, C3-Cio-cycloalkyl, C3-Cio-halocycloalkyl, Ci-Cio-alkoxy, C1-C10- haloalkoxy, Ci-C4-alkoxy-Ci-Cio-alkyl, Ci-C4-alkoxy-Ci-Cio-alkoxy, C1-C10- alkylthio, Ci-Cio-haloalkylthio, C2-Cio-alkenyloxy, C2-Cio-alkenylthio, C2-C10- alkynyloxy, C2-Cio-alkynylthio, C3-Cio-cycloalkoxy, C3-Cio-cycloalkylthio, phenyl, phenyl-Ci-C4-alkyl, phenylthio, phenyl-Ci-C4-alkoxy, and NR15R16;
each R15 is independently selected from hydrogen and d-Cs-alkyl;
each R16 is independently selected from hydrogen, Ci-Cs-alkyl, phenyl, and phenyl-Ci-C4-alkyl;
or R15 and R16 together form a linear C4- or Cs-alkylene bridge or a group -CH2CH2OCH2CH2- or -CH2CH2NR17CH2CH2-; each R17 is independently selected from hydrogen and Ci-C4-alkyl;
Q is O or S;
M is a metal cation equivalent or an ammonium cation of formula
(NRaRbRcRd)+, wherein Ra, Rb, Rc and Rd, independently of each other, are selected from hydrogen, Ci-Cio-alkyl, phenyl and benzyl, where the phenyl moiety in the 2 last-mentioned radicals may carry 1 , 2 or 3 substituents independently selected from halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy, Ci-C4-haloalkoxy and NR15R16;
m is 0, 1 , 2 or 3; and
n is 2, 3, 4, 5, 6 or 7;
and the agriculturally acceptable salts thereof.
2. The compounds of formulae I and Il as claimed in claim 1 , where R1 is selected from Ci-Cβ-alkyl, Ci-C4-haloalkyl, Cs-Cβ-cycloalkyl, Cs-Cβ-halocycloalkyl, C3-C6- cycloalkyl-d^-alkyl, C3-C6-halocycloalkyl-Ci-C2-alkyl, where the cycloalkyl moiety in the 4 last-mentioned radicals may carry 1 or 2 substituents selected from methyl, difluoromethyl and trifluoromethyl, phenyl which may carry 1 , 2, 3, 4 or 5 substituents R7, and a 5- or 6-membered heteroaromatic ring containing 1 , 2 or 3 heteroatoms selected from N, O and S as ring members, where the heteroaro- matic ring may carry 1 , 2 or 3 substituents R7.
3. The compounds of formulae I and Il as claimed in claim 2, where R1 is selected from tert-butyl, phenyl, cyclopropyl, 1-methylcyclopropyl, 1-chlorocyclopropyl and 1-cyclopropylethyl and is preferably tert-butyl.
4. The compounds of formulae I and Il as claimed in any of the preceding claims, where the protective group in the definition of R2 is selected from d-Cε-alkyl, Ci- C4-haloalkyl, C2-C6-alkenyl, C2-C4-haloalkenyl, Ci-C4-alkylcarbonyl, C1-C4- haloalkylcarbonyl, Ci-C4-alkoxycarbonyl, Ci-C4-haloalkoxycarbonyl, C1-C4- alkylaminocarbonyl, and di-(Ci-C4-alkyl)-aminocarbonyl.
5. The compounds of formulae I and Il as claimed in any of the preceding claims, where R2 is hydrogen.
6. The compounds of formulae I and Il as claimed in any of the preceding claims, where R3 and R4, independently of each other and independently of each occur- ence, are selected from hydrogen, halogen and Ci-C4-alkyl, preferably from hydrogen, F, Cl, methyl and ethyl, and more preferably one of R3 and R4 is methyl and the remaining radicals R3 and R4 are all hydrogen or all radicals R3 and R4 are hydrogen.
7. The compounds of formulae I and Il as claimed in any of the preceding claims, where R5 is selected from phenyl which may carry 1 , 2 or 3 substituents R9, and a 5- or 6-membered heteroaromatic ring containing 1 , 2 or 3 heteroatoms selected from N, O and S as ring members, where the heteroaromatic ring may carry 1 , 2 or 3 substituents R10.
8. The compounds of formulae I and Il as claimed in claim 7, where R5 is phenyl which may carry 1 , 2 or 3 substituents R9.
9. The compounds of formulae I and Il as claimed in any of the preceding claims, where R9 is selected from halogen, methyl, difluoromethyl, trifluoromethyl, meth- oxy, difluoromethoxy and trifluoromethoxy and preferably from halogen.
10. The compounds of formulae I and Il as claimed in claim 8, wherein R5 is phenyl which carries one fluorine substituent.
1 1. The compounds of formulae I and Il as claimed in claim 8, wherein R5 is phenyl which may carry 1 , 2 or 3 substituents R9 selected from nitro, CN, Ci-C4-alkyl,
Ci-C4-haloalkyl, Ci-C4-alkoxy, Ci-C4-haloalkoxy and NR15R16.
12. The compounds of formulae I and Il as claimed in claim 1 1 , wherein R5 is phenyl which may carry 1 , 2 or 3 substituents R9 selected from Ci-C4-alkyl, CrC4- haloalkyl, Ci-C4-alkoxy and Ci-C4-haloalkoxy.
13. The compounds of formulae I and Il as claimed in claim 12, wherein R5 is phenyl which may carry 1 , 2 or 3 substituents R9 selected from methyl and trifluoromethyl.
14. The compounds of formulae I and Il as claimed in claim 8, wherein R5 is phenyl which carries 2 or 3 substituents selected from halogen, nitro, CN, Ci-C4-alkyl, Ci-C4-haloalkyl, Ci-C4-alkoxy, Ci-C4-haloalkoxy and NR15R16.
15. The compounds of formulae I and Il as claimed in claim 14, wherein at least one substituent is fluorine.
16. The compounds of formulae I and Il as claimed in claim 8, wherein R5 is phenyl which carries 1 or 2 substituents selected from 2-CI, 3-CI, 2,3-Cl2, 2,4-Cl2, 2,5-Cl2,
3,4-Cl2 and 3,5-Cl2, relative to the 1 -position of the attachment point of the phenyl ring to the remainder of the molecule.
17. The compounds of formulae I and Il as claimed in any of the preceding claims, where R12 is selected from Ci-C4-alkyl, Ci-C2-haloalkyl, Ci-C4-alkoxy, CrC2- haloalkoxy, phenyl, phenoxy and NR15R16, where R15 is hydrogen and R16 is selected from hydrogen, Ci-C4-alkyl and phenyl or the two of R15 and R16 are CTC4- alkyl.
18. The compounds of formulae I and Il as claimed in any of the preceding claims, where R6 is selected from hydrogen, Ci-C4-alkyl, -C(=O)R12, -S(O)2R12, -CN, M and a group of the formula III and preferably from hydrogen, CN, -C(=O)CH3, -C(=O)OCH3 and methyl.
19. The compounds of formulae I and Il as claimed in any of the preceding claims, where R6a is selected from hydrogen, Ci-C4-alkyl and -C(=O)R12.
20. The compounds of formulae I and Il as claimed in any of the preceding claims, where m is 0.
21. The compounds of formulae I and Il as claimed in any of the preceding claims, where n is 2, 3, 4, 5 or 6, preferably 3, 4 or 5.
22. The compounds of formulae I and Il as claimed in claim 21 , wherein n is 4 or 5.
23. Compounds of formula IV
Figure imgf000131_0001
where R1, R2, R3, R4, R5 and n are as defined in any of claims 1 to 16, 21 and 22, with the proviso that n is not 3 if R5 is phenyl optionally substituted by one or more chlorine atoms and R1 is tert-butyl.
24. Compounds of formula IV
Figure imgf000132_0001
where R1, R2, R3, R4 and R5 are as defined in any of claims 1 to 16 and n is 4, 5, 6 or 7.
25. An agricultural composition comprising at least one compound of formula IJI and/or IV as defined in any of claims 1 to 24 or an agriculturally acceptable salt thereof and a liquid or solid carrier.
26. The use of a compound of formula IJI and/or IV as defined in any of claims 1 to 24 for controlling harmful fungi.
27. A method for controlling harmful fungi, wherein the fungi, their habitat or the materials or plants to be protected against fungal attack, or the soil or propagation material are treated with an effective amount of at least compound of formula IJI and/or IV, where compounds I, Il and IV are as defined in any of claims 1 to 24.
28. Seed, comprising at least compound of formula I, Il and/or IV, where compounds IJI and IV are as defined in any of claims 1 to 24, in an amount of from 0.1 g to 10 kg per 100 kg of seeds.
29. A pharmaceutical composition comprising at least one compound of formula I, Il and/or IV as defined in any of claims 1 to 24 or a pharmaceutically acceptable salt thereof and at least one pharmaceutically acceptable carrier.
30. The use of a compound of formula I, Il or IV as defined in any of claims 1 to 24 or a pharmaceutically acceptable salt thereof for preparing a medicament for the treatment of cancer or virus infections or for preparing an antimycotic medica- merit.
31. A method for treating cancer or virus infections or for combating zoopathogenic or humanpathogenic fungi, which comprises treating an individual in need thereof with at least one compound of formula IJI and/or IV as defined in any of claims 1 to 1624 with at least one pharmaceutically acceptable salt thereof or with a pharmaceutical composition as defined in claim 29.
PCT/EP2010/058536 2009-06-18 2010-06-17 Antifungal 1, 2, 4-triazolyl derivatives WO2010146112A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BRPI1009656A BRPI1009656A2 (en) 2009-06-18 2010-06-17 triazole compound of formulas ie ii, agricultural composition, use of a compound of formula i, ii and / or iv, method for the control of harmful fungi, seed, pharmaceutical composition and method for treatment against cancer or viral infections, or for combating zoopathogenic or humanopathogenic fungi
US13/377,654 US20120088660A1 (en) 2009-06-18 2010-06-17 Antifungal 1,2,4-triazolyl Derivatives
EP10725703A EP2443098A1 (en) 2009-06-18 2010-06-17 Antifungal 1, 2, 4-triazolyl derivatives
JP2012515492A JP2012530110A (en) 2009-06-18 2010-06-17 Antibacterial 1,2,4-triazolyl derivative
CN2010800268848A CN102803231A (en) 2009-06-18 2010-06-17 Antifungal 1,2,4-triazolyl derivatives

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09163167 2009-06-18
EP09163167.1 2009-06-18

Publications (1)

Publication Number Publication Date
WO2010146112A1 true WO2010146112A1 (en) 2010-12-23

Family

ID=42140330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/058536 WO2010146112A1 (en) 2009-06-18 2010-06-17 Antifungal 1, 2, 4-triazolyl derivatives

Country Status (6)

Country Link
US (1) US20120088660A1 (en)
EP (1) EP2443098A1 (en)
JP (1) JP2012530110A (en)
CN (1) CN102803231A (en)
BR (1) BRPI1009656A2 (en)
WO (1) WO2010146112A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746256A1 (en) 2012-12-19 2014-06-25 Basf Se Fungicidal imidazolyl and triazolyl compounds
EP2746258A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746260A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746257A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746259A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
WO2014095249A1 (en) 2012-12-19 2014-06-26 Basf Se Fungicidal imidazolyl and triazolyl compounds

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2491108C1 (en) * 2012-04-26 2013-08-27 Алексей Георгиевич Бородкин Method for antiseptic skin preparation
JP2016522800A (en) * 2013-04-12 2016-08-04 バイエル・クロップサイエンス・アクチェンゲゼルシャフト New triazoline thione derivatives
CN112442018B (en) * 2019-08-27 2024-02-02 东莞市东阳光农药研发有限公司 Triazole-1, 3-disulfonamide derivative and application thereof in agriculture
EP4194445A1 (en) * 2020-08-06 2023-06-14 Kureha Corporation Method for producing compound

Citations (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3060084A (en) 1961-06-09 1962-10-23 Du Pont Improved homogeneous, readily dispersed, pesticidal concentrate
US3296272A (en) 1965-04-01 1967-01-03 Dow Chemical Co Sulfinyl- and sulfonylpyridines
US3299566A (en) 1964-06-01 1967-01-24 Olin Mathieson Water soluble film containing agricultural chemicals
US3325503A (en) 1965-02-18 1967-06-13 Diamond Alkali Co Polychloro derivatives of mono- and dicyano pyridines and a method for their preparation
US3920442A (en) 1972-09-18 1975-11-18 Du Pont Water-dispersible pesticide aggregates
US4144050A (en) 1969-02-05 1979-03-13 Hoechst Aktiengesellschaft Micro granules for pesticides and process for their manufacture
US4172714A (en) 1976-12-20 1979-10-30 E. I. Du Pont De Nemours And Company Dry compactible, swellable herbicidal compositions and pellets produced therefrom
IL50898A (en) * 1972-11-20 1980-05-30 Ciba Geigy Ag Thiophosphoric and phosphoric acid 3-(1-(2-methoxy-1-methyl)--5-(lower alkylthio)-h-1,2,4-triazol-3-yl)ester,their manufacture and their use as pesticides
GB2095558A (en) 1981-03-30 1982-10-06 Avon Packers Ltd Formulation of agricultural chemicals
EP0084834A2 (en) * 1982-01-27 1983-08-03 Bayer Ag Substituted 1-hydroxyalkyl-azolyl-derivatives, process for their preparation and use as fungicides and plant-growth regulation
EP0085842A1 (en) * 1982-01-27 1983-08-17 Bayer Ag Antimycosic agents
DE3222166A1 (en) * 1982-06-12 1983-12-15 Bayer Ag, 5090 Leverkusen Antimycotic agents
EP0096801A1 (en) * 1982-06-12 1983-12-28 Bayer Ag Azolylmethyl ketones, method for their production and their use as intermediates
EP0111234A2 (en) * 1982-12-09 1984-06-20 Bayer Ag Fungicidal agents, their preparation and use
EP0132508A2 (en) * 1983-04-30 1985-02-13 Bayer Ag Hydroxyethyl-azolyl derivatives, their use and antiviral agents containing them
EP0141317A2 (en) 1983-10-21 1985-05-15 BASF Aktiengesellschaft 7-Amino-azolo[1,5-a]pyrimidines and fungicides containing them
EP0150036A1 (en) * 1984-01-23 1985-07-31 Hoechst Aktiengesellschaft Azolyl-aryl-alkanole-derivatives, processes for their preparation and their use
EP0152031A2 (en) 1984-02-03 1985-08-21 Shionogi & Co., Ltd. Azolyl cycloalkanol derivatives and agricultural fungicides
EP0226917A1 (en) 1985-12-20 1987-07-01 BASF Aktiengesellschaft Acrylic acid esters and fungicides containing these compounds
DE3702301A1 (en) 1986-03-06 1987-09-10 Bayer Ag 2-HYDROXYETHYL AZOL DERIVATIVES
EP0236913A2 (en) * 1986-03-12 1987-09-16 Hoechst Aktiengesellschaft Aryl-azolylmethyl-benzocyclo-alkene derivatives, process for their preparation and their use
EP0242246A1 (en) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Plant cells resistant to glutamine synthetase inhibitors, made by genetic engineering
EP0243970A1 (en) 1986-05-02 1987-11-04 Stauffer Chemical Company Fungicidal pyridyl imidates
EP0254797A1 (en) * 1986-03-06 1988-02-03 Bayer Ag 2-Hydroxyethyl-azole derivatives
EP0256503A2 (en) 1986-08-12 1988-02-24 Mitsubishi Kasei Corporation Pyridinecarboxamide derivatives and their use as fungicide
EP0267778A2 (en) 1986-11-10 1988-05-18 Kureha Kagaku Kogyo Kabushiki Kaisha Azole derivatives useful in controlling plant diseases and regulating plant growth
EP0291795A2 (en) 1987-05-18 1988-11-23 Bayer Ag Hydroxyalkyl triazolyl derivatives
EP0338344A2 (en) * 1988-04-20 1989-10-25 Bayer Ag Substituted triazolyl methyl carbinoles
DE3824891A1 (en) * 1988-07-22 1990-01-25 Bayer Ag Use of substituted triazolylmethylcarbinols for the treatment of diseases
EP0374753A2 (en) 1988-12-19 1990-06-27 American Cyanamid Company Insecticidal toxines, genes coding therefor, antibodies binding them, transgenic plant cells and plants expressing these toxines
EP0392225A2 (en) 1989-03-24 1990-10-17 Ciba-Geigy Ag Disease-resistant transgenic plants
EP0427529A1 (en) 1989-11-07 1991-05-15 Pioneer Hi-Bred International, Inc. Larvicidal lectins and plant insect resistance based thereon
EP0428941A1 (en) 1989-11-10 1991-05-29 Agro-Kanesho Co., Ltd. Hexahydrotriazine compounds and insecticides
EP0440949A2 (en) * 1990-02-03 1991-08-14 Bayer Ag Halogenallyl-azolyl derivatives
WO1991013546A1 (en) 1990-03-12 1991-09-19 E.I. Du Pont De Nemours And Company Water-dispersible or water-soluble pesticide granules from heat-activated binders
EP0451878A1 (en) 1985-01-18 1991-10-16 Plant Genetic Systems, N.V. Modifying plants by genetic engineering to combat or control insects
WO1992000377A1 (en) 1990-06-25 1992-01-09 Monsanto Company Glyphosate tolerant plants
US5180587A (en) 1988-06-28 1993-01-19 E. I. Du Pont De Nemours And Company Tablet formulations of pesticides
EP0532022A1 (en) 1991-09-13 1993-03-17 Ube Industries, Ltd. Acrylate compound, preparation process thereof and fungicide using the same
WO1993007278A1 (en) 1991-10-04 1993-04-15 Ciba-Geigy Ag Synthetic dna sequence having enhanced insecticidal activity in maize
US5208030A (en) 1989-08-30 1993-05-04 Imperial Chemical Industries Plc Active ingredient dosage device
US5232701A (en) 1990-10-11 1993-08-03 Sumitomo Chemical Company, Limited Boron carbonate and solid acid pesticidal composition
EP0655443A2 (en) 1993-11-11 1995-05-31 Kureha Chemical Industry Co., Ltd. Process for the preparation of azolylmethylcycloalkanol derivatives
WO1995034656A1 (en) 1994-06-10 1995-12-21 Ciba-Geigy Ag Novel bacillus thuringiensis genes coding toxins active against lepidopteran pests
EP0707445A1 (en) 1993-07-03 1996-04-24 Basf Ag Stable, ready-to-use, multi-phase aqueous pesticide formulations and methods of preparing them
DE19528046A1 (en) 1994-11-21 1996-05-23 Bayer Ag New sulphur substd tri:azole derivs
US5559024A (en) 1988-03-23 1996-09-24 Rhone-Poulenc Agrochimie Chimeric nitrilase-encoding gene for herbicidal resistance
DE19520098A1 (en) 1995-06-01 1996-12-05 Bayer Ag Triazolylmethyl-cyclopentanols
WO1997041107A1 (en) * 1996-04-30 1997-11-06 Bayer Aktiengesellschaft Triazolyl mercaptides and their use as microbicides
DE19617461A1 (en) 1996-05-02 1997-11-06 Bayer Ag Acylmercapto triazolyl derivatives
WO1997041218A1 (en) 1996-04-29 1997-11-06 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Herbicide resistant rice
WO1997043269A1 (en) 1996-05-15 1997-11-20 Bayer Aktiengesellschaft Triazolyl disulphides
DE19620590A1 (en) 1996-05-22 1997-11-27 Bayer Ag Sulfonyl-mercapto-triazolyl derivatives
DE19620407A1 (en) 1996-05-21 1997-11-27 Bayer Ag Thiocyano-triazolyl derivatives
WO1998002527A1 (en) 1996-07-17 1998-01-22 Michigan State University Imidazolinone herbicide resistant sugar beet plants
WO1998002526A1 (en) 1996-07-17 1998-01-22 Michigan State University Imidazolinone herbicide resistant sugar beet plants
DE19650197A1 (en) 1996-12-04 1998-06-10 Bayer Ag 3-thiocarbamoylpyrazole derivatives
WO1998046608A1 (en) 1997-04-14 1998-10-22 American Cyanamid Company Fungicidal trifluoromethylalkylamino-triazolopyrimidines
WO1999005149A1 (en) 1997-07-25 1999-02-04 Bayer Aktiengesellschaft Triazoline-thion-phosphoric acid derivatives
WO1999014187A1 (en) 1997-09-18 1999-03-25 Basf Aktiengesellschaft Benzamidoxim derivatives, intermediate products and methods for preparing and using them as fungicides
WO1999018088A1 (en) 1997-10-08 1999-04-15 Bayer Aktiengesellschaft Method for producing triazolinthion derivatives
WO1999018087A1 (en) 1997-10-08 1999-04-15 Bayer Aktiengesellschaft Method for producing triazolinthion derivatives
WO1999018086A1 (en) 1997-10-08 1999-04-15 Bayer Aktiengesellschaft Method for producing triazolinethione derivatives
WO1999024413A2 (en) 1997-11-12 1999-05-20 Bayer Aktiengesellschaft Isothiazole carboxylic acid amides and the application thereof in order to protect plants
WO1999027783A1 (en) 1997-12-04 1999-06-10 Dow Agrosciences Llc Fungicidal compositions and methods, and compounds and methods for the preparation thereof
WO2000026390A2 (en) 1998-10-29 2000-05-11 American Cyanamid Company Genes and vectors for conferring herbicide resistance in plants
WO2000029404A1 (en) 1998-11-17 2000-05-25 Kumiai Chemical Industry Co., Ltd. Pyrimidinylbenzimidazole and triazinylbenzimidazole derivatives and agricultura/horticultural bactericides
WO2000046148A1 (en) 1999-02-02 2000-08-10 Sintokogio, Ltd. Silica gel carrying titanium oxide photocatalyst in high concentration and method for preparation thereof
EP1028125A1 (en) 1998-11-30 2000-08-16 Isagro Ricerca S.r.l. Dipeptide compounds having fungicidal activity and their agronomic use
EP1035122A1 (en) 1999-03-11 2000-09-13 Rohm And Haas Company Heterocyclic subsituted isoxazolidines and their use as fungicides
WO2000065913A1 (en) 1999-04-28 2000-11-09 Takeda Chemical Industries, Ltd. Sulfonamide derivatives
US6222100B1 (en) 1984-03-06 2001-04-24 Mgi Pharma, Inc. Herbicide resistance in plants
DE10021412A1 (en) 1999-12-13 2001-06-21 Bayer Ag Fungicidal active ingredient combinations
WO2001046158A1 (en) 1999-12-21 2001-06-28 Bayer Aktiengesellschaft Method for production of a triazolinethione derivative
WO2001054501A2 (en) 2000-01-25 2001-08-02 Syngenta Participations Ag Herbicidal composition
EP1122244A1 (en) 2000-02-04 2001-08-08 Sumitomo Chemical Company, Limited Uracil compounds and their use
WO2001056358A2 (en) 2000-01-28 2001-08-09 Rohm And Haas Company Enhanced propertied pesticides
WO2001082685A1 (en) 2000-04-28 2001-11-08 Basf Aktiengesellschaft Use of the maize x112 mutant ahas 2 gene and imidazolinone herbicides for selection of transgenic monocots, maize, rice and wheat plants resistant to the imidazolinone herbicides
WO2002015701A2 (en) 2000-08-25 2002-02-28 Syngenta Participations Ag Bacillus thuringiensis crystal protein hybrids
WO2002022583A2 (en) 2000-09-18 2002-03-21 E. I. Du Pont De Nemours And Company Pyridinyl amides and imides for use as fungicides
EP1201648A1 (en) 1999-08-05 2002-05-02 Kumiai Chemical Industry Co., Ltd. Carbamate derivatives and agricultural/horticultural bactericides
WO2002040431A2 (en) 2000-11-17 2002-05-23 Dow Agrosciences Llc Compounds having fungicidal activity and processes to make and use same
JP2002316902A (en) 2001-04-20 2002-10-31 Sumitomo Chem Co Ltd Plant blight-preventing agent composition
WO2003010149A1 (en) 2001-07-25 2003-02-06 Bayer Cropscience Ag Pyrazolylcarboxanilides as fungicides
WO2003011853A1 (en) 2001-07-30 2003-02-13 Dow Agrosciences Llc 6-aryl-4-aminopicolinates and their use as herbicides
WO2003014103A1 (en) 2001-08-03 2003-02-20 Bayer Cropscience S.A. Iodobenzopyran-4-one derivatives having fungicidal activity
WO2003013225A2 (en) 2001-08-09 2003-02-20 Northwest Plant Breeding Company Wheat plants having increased resistance to imidazolinone herbicides
WO2003014356A1 (en) 2001-08-09 2003-02-20 University Of Saskatchewan Wheat plants having increased resistance to imidazolinone herbicides
WO2003014357A1 (en) 2001-08-09 2003-02-20 University Of Saskatchewan Wheat plants having increased resistance to imidazolinone herbicides
WO2003016286A1 (en) 2001-08-17 2003-02-27 Sankyo Agro Company, Limited 3-phenoxy-4-pyridazinol derivative and herbicide composition containing the same
WO2003018810A2 (en) 2001-08-31 2003-03-06 Syngenta Participations Ag Modified cry3a toxins and nucleic acid sequences coding therefor
WO2003052073A2 (en) 2001-12-17 2003-06-26 Syngenta Participations Ag Novel corn event
WO2003053145A1 (en) 2001-12-21 2003-07-03 Nissan Chemical Industries, Ltd. Bactericidal composition
WO2003061388A1 (en) 2002-01-18 2003-07-31 Sumitomo Chemical Takeda Agro Company, Limited Fused heterocyclic sulfonylurea compound, herbicide containing the same, and method of controlling weed with the same
WO2003066609A1 (en) 2002-02-04 2003-08-14 Bayer Cropscience Aktiengesellschaft Disubstituted thiazolyl carboxanilides and their use as microbicides
WO2003074491A1 (en) 2002-03-05 2003-09-12 Syngenta Participations Ag O-cyclopropyl-carboxanilides and their use as fungicides
WO2004016073A2 (en) 2002-07-10 2004-02-26 The Department Of Agriculture, Western Australia Wheat plants having increased resistance to imidazolinone herbicides
WO2004049804A2 (en) 2002-11-29 2004-06-17 Syngenta Participations Ag Fungicidal combinations for crop potection
WO2004083193A1 (en) 2003-03-17 2004-09-30 Sumitomo Chemical Company, Limited Amide compound and bactericide composition containing the same
WO2004106529A2 (en) 2003-05-28 2004-12-09 Basf Aktiengesellschaft Wheat plants having increased tolerance to imidazolinone herbicides
WO2005020673A1 (en) 2003-08-29 2005-03-10 Instituto Nacional De Technologia Agropecuaria Rice plants having increased tolerance to imidazolinone herbicides
WO2005063721A1 (en) 2003-12-19 2005-07-14 E.I. Dupont De Nemours And Company Herbicidal pyrimidines
WO2005087773A1 (en) 2004-03-10 2005-09-22 Basf Aktiengesellschaft 5,6-dialkyl-7-amino-triazolopyrimidines, method for their production, their use for controlling pathogenic fungi and agents containing said compounds
WO2005087772A1 (en) 2004-03-10 2005-09-22 Basf Aktiengesellschaft 5,6-dialkyl-7-amino-triazolopyrimidines, method for their production, their use for controlling pathogenic fungi and agents containing said compounds
WO2005120234A2 (en) 2004-06-03 2005-12-22 E.I. Dupont De Nemours And Company Fungicidal mixtures of amidinylphenyl compounds
WO2005123690A1 (en) 2004-06-18 2005-12-29 Basf Aktiengesellschaft 1-methyl-3-difluoromethyl-pyrazol-4-carbonic acid-(ortho-phenyl)-anilides, and use thereof as a fungicide
WO2005123689A1 (en) 2004-06-18 2005-12-29 Basf Aktiengesellschaft 1-methyl-3-trifluoromethyl-pyrazole-4-carboxylic acid (ortho-phenyl)-anilides and to use thereof as fungicide
WO2006015866A1 (en) 2004-08-12 2006-02-16 Syngenta Participations Ag Method for protecting useful plants or plant propagation material
WO2006087343A1 (en) 2005-02-16 2006-08-24 Basf Aktiengesellschaft Pyrazole carboxylic acid anilides, method for the production thereof and agents containing them for controlling pathogenic fungi
WO2006087325A1 (en) 2005-02-16 2006-08-24 Basf Aktiengesellschaft 5-alkoxyalkyl-6-alkyl-7-amino-azolopyrimidines, method for their production, their use for controlling pathogenic fungi and agents containing said substances
DE102005009458A1 (en) 2005-03-02 2006-09-07 Bayer Cropscience Ag pyrazolylcarboxanilides
WO2007082098A2 (en) 2006-01-13 2007-07-19 Dow Agrosciences Llc 6-(poly-substituted aryl)-4-aminopicolinates and their use as herbicides
WO2007090624A2 (en) 2006-02-09 2007-08-16 Syngenta Participations Ag A method of protecting a plant propagation material, a plant, and/or plant organs
WO2008151437A1 (en) * 2007-06-14 2008-12-18 Osta Biotechnologies Heme-oxygenase inhibitors and use of the same in the treatment of cancer and diseases of the central nervous system

Patent Citations (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3060084A (en) 1961-06-09 1962-10-23 Du Pont Improved homogeneous, readily dispersed, pesticidal concentrate
US3299566A (en) 1964-06-01 1967-01-24 Olin Mathieson Water soluble film containing agricultural chemicals
US3325503A (en) 1965-02-18 1967-06-13 Diamond Alkali Co Polychloro derivatives of mono- and dicyano pyridines and a method for their preparation
US3296272A (en) 1965-04-01 1967-01-03 Dow Chemical Co Sulfinyl- and sulfonylpyridines
US4144050A (en) 1969-02-05 1979-03-13 Hoechst Aktiengesellschaft Micro granules for pesticides and process for their manufacture
US3920442A (en) 1972-09-18 1975-11-18 Du Pont Water-dispersible pesticide aggregates
IL50898A (en) * 1972-11-20 1980-05-30 Ciba Geigy Ag Thiophosphoric and phosphoric acid 3-(1-(2-methoxy-1-methyl)--5-(lower alkylthio)-h-1,2,4-triazol-3-yl)ester,their manufacture and their use as pesticides
US4172714A (en) 1976-12-20 1979-10-30 E. I. Du Pont De Nemours And Company Dry compactible, swellable herbicidal compositions and pellets produced therefrom
GB2095558A (en) 1981-03-30 1982-10-06 Avon Packers Ltd Formulation of agricultural chemicals
EP0084834A2 (en) * 1982-01-27 1983-08-03 Bayer Ag Substituted 1-hydroxyalkyl-azolyl-derivatives, process for their preparation and use as fungicides and plant-growth regulation
EP0085842A1 (en) * 1982-01-27 1983-08-17 Bayer Ag Antimycosic agents
DE3222166A1 (en) * 1982-06-12 1983-12-15 Bayer Ag, 5090 Leverkusen Antimycotic agents
EP0096801A1 (en) * 1982-06-12 1983-12-28 Bayer Ag Azolylmethyl ketones, method for their production and their use as intermediates
EP0111234A2 (en) * 1982-12-09 1984-06-20 Bayer Ag Fungicidal agents, their preparation and use
EP0132508A2 (en) * 1983-04-30 1985-02-13 Bayer Ag Hydroxyethyl-azolyl derivatives, their use and antiviral agents containing them
EP0141317A2 (en) 1983-10-21 1985-05-15 BASF Aktiengesellschaft 7-Amino-azolo[1,5-a]pyrimidines and fungicides containing them
EP0150036A1 (en) * 1984-01-23 1985-07-31 Hoechst Aktiengesellschaft Azolyl-aryl-alkanole-derivatives, processes for their preparation and their use
EP0152031A2 (en) 1984-02-03 1985-08-21 Shionogi & Co., Ltd. Azolyl cycloalkanol derivatives and agricultural fungicides
US6222100B1 (en) 1984-03-06 2001-04-24 Mgi Pharma, Inc. Herbicide resistance in plants
EP0451878A1 (en) 1985-01-18 1991-10-16 Plant Genetic Systems, N.V. Modifying plants by genetic engineering to combat or control insects
EP0226917A1 (en) 1985-12-20 1987-07-01 BASF Aktiengesellschaft Acrylic acid esters and fungicides containing these compounds
DE3702301A1 (en) 1986-03-06 1987-09-10 Bayer Ag 2-HYDROXYETHYL AZOL DERIVATIVES
EP0254797A1 (en) * 1986-03-06 1988-02-03 Bayer Ag 2-Hydroxyethyl-azole derivatives
EP0242246A1 (en) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Plant cells resistant to glutamine synthetase inhibitors, made by genetic engineering
EP0242236A1 (en) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Plant cells resistant to glutamine synthetase inhibitors, made by genetic engineering
EP0236913A2 (en) * 1986-03-12 1987-09-16 Hoechst Aktiengesellschaft Aryl-azolylmethyl-benzocyclo-alkene derivatives, process for their preparation and their use
EP0243970A1 (en) 1986-05-02 1987-11-04 Stauffer Chemical Company Fungicidal pyridyl imidates
EP0256503A2 (en) 1986-08-12 1988-02-24 Mitsubishi Kasei Corporation Pyridinecarboxamide derivatives and their use as fungicide
EP0267778A2 (en) 1986-11-10 1988-05-18 Kureha Kagaku Kogyo Kabushiki Kaisha Azole derivatives useful in controlling plant diseases and regulating plant growth
EP0291795A2 (en) 1987-05-18 1988-11-23 Bayer Ag Hydroxyalkyl triazolyl derivatives
US5559024A (en) 1988-03-23 1996-09-24 Rhone-Poulenc Agrochimie Chimeric nitrilase-encoding gene for herbicidal resistance
EP0338344A2 (en) * 1988-04-20 1989-10-25 Bayer Ag Substituted triazolyl methyl carbinoles
US5180587A (en) 1988-06-28 1993-01-19 E. I. Du Pont De Nemours And Company Tablet formulations of pesticides
DE3824891A1 (en) * 1988-07-22 1990-01-25 Bayer Ag Use of substituted triazolylmethylcarbinols for the treatment of diseases
EP0374753A2 (en) 1988-12-19 1990-06-27 American Cyanamid Company Insecticidal toxines, genes coding therefor, antibodies binding them, transgenic plant cells and plants expressing these toxines
EP0392225A2 (en) 1989-03-24 1990-10-17 Ciba-Geigy Ag Disease-resistant transgenic plants
US5208030A (en) 1989-08-30 1993-05-04 Imperial Chemical Industries Plc Active ingredient dosage device
EP0427529A1 (en) 1989-11-07 1991-05-15 Pioneer Hi-Bred International, Inc. Larvicidal lectins and plant insect resistance based thereon
EP0428941A1 (en) 1989-11-10 1991-05-29 Agro-Kanesho Co., Ltd. Hexahydrotriazine compounds and insecticides
EP0440949A2 (en) * 1990-02-03 1991-08-14 Bayer Ag Halogenallyl-azolyl derivatives
WO1991013546A1 (en) 1990-03-12 1991-09-19 E.I. Du Pont De Nemours And Company Water-dispersible or water-soluble pesticide granules from heat-activated binders
WO1992000377A1 (en) 1990-06-25 1992-01-09 Monsanto Company Glyphosate tolerant plants
US5232701A (en) 1990-10-11 1993-08-03 Sumitomo Chemical Company, Limited Boron carbonate and solid acid pesticidal composition
EP0532022A1 (en) 1991-09-13 1993-03-17 Ube Industries, Ltd. Acrylate compound, preparation process thereof and fungicide using the same
WO1993007278A1 (en) 1991-10-04 1993-04-15 Ciba-Geigy Ag Synthetic dna sequence having enhanced insecticidal activity in maize
EP0707445A1 (en) 1993-07-03 1996-04-24 Basf Ag Stable, ready-to-use, multi-phase aqueous pesticide formulations and methods of preparing them
EP0655443A2 (en) 1993-11-11 1995-05-31 Kureha Chemical Industry Co., Ltd. Process for the preparation of azolylmethylcycloalkanol derivatives
WO1995034656A1 (en) 1994-06-10 1995-12-21 Ciba-Geigy Ag Novel bacillus thuringiensis genes coding toxins active against lepidopteran pests
WO1996016048A1 (en) 1994-11-21 1996-05-30 Bayer Aktiengesellschaft Microbicidal triazolyl derivatives
DE19528046A1 (en) 1994-11-21 1996-05-23 Bayer Ag New sulphur substd tri:azole derivs
DE19520098A1 (en) 1995-06-01 1996-12-05 Bayer Ag Triazolylmethyl-cyclopentanols
WO1997041218A1 (en) 1996-04-29 1997-11-06 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Herbicide resistant rice
WO1997041107A1 (en) * 1996-04-30 1997-11-06 Bayer Aktiengesellschaft Triazolyl mercaptides and their use as microbicides
DE19617282A1 (en) 1996-04-30 1997-11-06 Bayer Ag Triazolyl mercaptide
DE19617461A1 (en) 1996-05-02 1997-11-06 Bayer Ag Acylmercapto triazolyl derivatives
WO1997042178A1 (en) * 1996-05-02 1997-11-13 Bayer Aktiengesellschaft Acyl mercapto-triazolyl derivatives and the use thereof as microbicides
WO1997043269A1 (en) 1996-05-15 1997-11-20 Bayer Aktiengesellschaft Triazolyl disulphides
DE19620407A1 (en) 1996-05-21 1997-11-27 Bayer Ag Thiocyano-triazolyl derivatives
WO1997044331A1 (en) * 1996-05-21 1997-11-27 Bayer Aktiengesellschaft Thiocyano-triazolyl derivatives and their use as microbicides
DE19620590A1 (en) 1996-05-22 1997-11-27 Bayer Ag Sulfonyl-mercapto-triazolyl derivatives
WO1997044332A1 (en) * 1996-05-22 1997-11-27 Bayer Aktiengesellschaft Sulphonyl-mercapto-triazolyl derivatives and their use as microbicides
WO1998002527A1 (en) 1996-07-17 1998-01-22 Michigan State University Imidazolinone herbicide resistant sugar beet plants
WO1998002526A1 (en) 1996-07-17 1998-01-22 Michigan State University Imidazolinone herbicide resistant sugar beet plants
DE19650197A1 (en) 1996-12-04 1998-06-10 Bayer Ag 3-thiocarbamoylpyrazole derivatives
WO1998046608A1 (en) 1997-04-14 1998-10-22 American Cyanamid Company Fungicidal trifluoromethylalkylamino-triazolopyrimidines
WO1999005149A1 (en) 1997-07-25 1999-02-04 Bayer Aktiengesellschaft Triazoline-thion-phosphoric acid derivatives
WO1999014187A1 (en) 1997-09-18 1999-03-25 Basf Aktiengesellschaft Benzamidoxim derivatives, intermediate products and methods for preparing and using them as fungicides
WO1999018086A1 (en) 1997-10-08 1999-04-15 Bayer Aktiengesellschaft Method for producing triazolinethione derivatives
WO1999018087A1 (en) 1997-10-08 1999-04-15 Bayer Aktiengesellschaft Method for producing triazolinthion derivatives
WO1999018088A1 (en) 1997-10-08 1999-04-15 Bayer Aktiengesellschaft Method for producing triazolinthion derivatives
WO1999024413A2 (en) 1997-11-12 1999-05-20 Bayer Aktiengesellschaft Isothiazole carboxylic acid amides and the application thereof in order to protect plants
WO1999027783A1 (en) 1997-12-04 1999-06-10 Dow Agrosciences Llc Fungicidal compositions and methods, and compounds and methods for the preparation thereof
WO2000026390A2 (en) 1998-10-29 2000-05-11 American Cyanamid Company Genes and vectors for conferring herbicide resistance in plants
WO2000029404A1 (en) 1998-11-17 2000-05-25 Kumiai Chemical Industry Co., Ltd. Pyrimidinylbenzimidazole and triazinylbenzimidazole derivatives and agricultura/horticultural bactericides
EP1028125A1 (en) 1998-11-30 2000-08-16 Isagro Ricerca S.r.l. Dipeptide compounds having fungicidal activity and their agronomic use
WO2000046148A1 (en) 1999-02-02 2000-08-10 Sintokogio, Ltd. Silica gel carrying titanium oxide photocatalyst in high concentration and method for preparation thereof
EP1035122A1 (en) 1999-03-11 2000-09-13 Rohm And Haas Company Heterocyclic subsituted isoxazolidines and their use as fungicides
WO2000065913A1 (en) 1999-04-28 2000-11-09 Takeda Chemical Industries, Ltd. Sulfonamide derivatives
EP1201648A1 (en) 1999-08-05 2002-05-02 Kumiai Chemical Industry Co., Ltd. Carbamate derivatives and agricultural/horticultural bactericides
DE10021412A1 (en) 1999-12-13 2001-06-21 Bayer Ag Fungicidal active ingredient combinations
WO2001046158A1 (en) 1999-12-21 2001-06-28 Bayer Aktiengesellschaft Method for production of a triazolinethione derivative
WO2001054501A2 (en) 2000-01-25 2001-08-02 Syngenta Participations Ag Herbicidal composition
WO2001056358A2 (en) 2000-01-28 2001-08-09 Rohm And Haas Company Enhanced propertied pesticides
EP1122244A1 (en) 2000-02-04 2001-08-08 Sumitomo Chemical Company, Limited Uracil compounds and their use
WO2001082685A1 (en) 2000-04-28 2001-11-08 Basf Aktiengesellschaft Use of the maize x112 mutant ahas 2 gene and imidazolinone herbicides for selection of transgenic monocots, maize, rice and wheat plants resistant to the imidazolinone herbicides
WO2002015701A2 (en) 2000-08-25 2002-02-28 Syngenta Participations Ag Bacillus thuringiensis crystal protein hybrids
WO2002022583A2 (en) 2000-09-18 2002-03-21 E. I. Du Pont De Nemours And Company Pyridinyl amides and imides for use as fungicides
WO2002040431A2 (en) 2000-11-17 2002-05-23 Dow Agrosciences Llc Compounds having fungicidal activity and processes to make and use same
JP2002316902A (en) 2001-04-20 2002-10-31 Sumitomo Chem Co Ltd Plant blight-preventing agent composition
WO2003010149A1 (en) 2001-07-25 2003-02-06 Bayer Cropscience Ag Pyrazolylcarboxanilides as fungicides
WO2003011853A1 (en) 2001-07-30 2003-02-13 Dow Agrosciences Llc 6-aryl-4-aminopicolinates and their use as herbicides
WO2003014103A1 (en) 2001-08-03 2003-02-20 Bayer Cropscience S.A. Iodobenzopyran-4-one derivatives having fungicidal activity
WO2003013225A2 (en) 2001-08-09 2003-02-20 Northwest Plant Breeding Company Wheat plants having increased resistance to imidazolinone herbicides
WO2003014356A1 (en) 2001-08-09 2003-02-20 University Of Saskatchewan Wheat plants having increased resistance to imidazolinone herbicides
WO2003014357A1 (en) 2001-08-09 2003-02-20 University Of Saskatchewan Wheat plants having increased resistance to imidazolinone herbicides
WO2003016286A1 (en) 2001-08-17 2003-02-27 Sankyo Agro Company, Limited 3-phenoxy-4-pyridazinol derivative and herbicide composition containing the same
WO2003018810A2 (en) 2001-08-31 2003-03-06 Syngenta Participations Ag Modified cry3a toxins and nucleic acid sequences coding therefor
WO2003052073A2 (en) 2001-12-17 2003-06-26 Syngenta Participations Ag Novel corn event
WO2003053145A1 (en) 2001-12-21 2003-07-03 Nissan Chemical Industries, Ltd. Bactericidal composition
WO2003061388A1 (en) 2002-01-18 2003-07-31 Sumitomo Chemical Takeda Agro Company, Limited Fused heterocyclic sulfonylurea compound, herbicide containing the same, and method of controlling weed with the same
WO2003066609A1 (en) 2002-02-04 2003-08-14 Bayer Cropscience Aktiengesellschaft Disubstituted thiazolyl carboxanilides and their use as microbicides
WO2003074491A1 (en) 2002-03-05 2003-09-12 Syngenta Participations Ag O-cyclopropyl-carboxanilides and their use as fungicides
WO2004016073A2 (en) 2002-07-10 2004-02-26 The Department Of Agriculture, Western Australia Wheat plants having increased resistance to imidazolinone herbicides
WO2004049804A2 (en) 2002-11-29 2004-06-17 Syngenta Participations Ag Fungicidal combinations for crop potection
WO2004083193A1 (en) 2003-03-17 2004-09-30 Sumitomo Chemical Company, Limited Amide compound and bactericide composition containing the same
WO2004106529A2 (en) 2003-05-28 2004-12-09 Basf Aktiengesellschaft Wheat plants having increased tolerance to imidazolinone herbicides
WO2005020673A1 (en) 2003-08-29 2005-03-10 Instituto Nacional De Technologia Agropecuaria Rice plants having increased tolerance to imidazolinone herbicides
WO2005063721A1 (en) 2003-12-19 2005-07-14 E.I. Dupont De Nemours And Company Herbicidal pyrimidines
WO2005087773A1 (en) 2004-03-10 2005-09-22 Basf Aktiengesellschaft 5,6-dialkyl-7-amino-triazolopyrimidines, method for their production, their use for controlling pathogenic fungi and agents containing said compounds
WO2005087772A1 (en) 2004-03-10 2005-09-22 Basf Aktiengesellschaft 5,6-dialkyl-7-amino-triazolopyrimidines, method for their production, their use for controlling pathogenic fungi and agents containing said compounds
WO2005120234A2 (en) 2004-06-03 2005-12-22 E.I. Dupont De Nemours And Company Fungicidal mixtures of amidinylphenyl compounds
WO2005123690A1 (en) 2004-06-18 2005-12-29 Basf Aktiengesellschaft 1-methyl-3-difluoromethyl-pyrazol-4-carbonic acid-(ortho-phenyl)-anilides, and use thereof as a fungicide
WO2005123689A1 (en) 2004-06-18 2005-12-29 Basf Aktiengesellschaft 1-methyl-3-trifluoromethyl-pyrazole-4-carboxylic acid (ortho-phenyl)-anilides and to use thereof as fungicide
WO2006015866A1 (en) 2004-08-12 2006-02-16 Syngenta Participations Ag Method for protecting useful plants or plant propagation material
WO2006087343A1 (en) 2005-02-16 2006-08-24 Basf Aktiengesellschaft Pyrazole carboxylic acid anilides, method for the production thereof and agents containing them for controlling pathogenic fungi
WO2006087325A1 (en) 2005-02-16 2006-08-24 Basf Aktiengesellschaft 5-alkoxyalkyl-6-alkyl-7-amino-azolopyrimidines, method for their production, their use for controlling pathogenic fungi and agents containing said substances
DE102005009458A1 (en) 2005-03-02 2006-09-07 Bayer Cropscience Ag pyrazolylcarboxanilides
WO2007082098A2 (en) 2006-01-13 2007-07-19 Dow Agrosciences Llc 6-(poly-substituted aryl)-4-aminopicolinates and their use as herbicides
WO2007090624A2 (en) 2006-02-09 2007-08-16 Syngenta Participations Ag A method of protecting a plant propagation material, a plant, and/or plant organs
WO2008151437A1 (en) * 2007-06-14 2008-12-18 Osta Biotechnologies Heme-oxygenase inhibitors and use of the same in the treatment of cancer and diseases of the central nervous system

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
BROWNING: "Agglomeration", CHEMICAL ENGINEERING, 4 December 1967 (1967-12-04), pages 147 - 48
CAN. J. PLANT SCI., vol. 48, no. 6, 1968, pages 587 - 94
HETEROCYCLES, vol. 23, no. 7, 1985, pages 1645 - 1649
J. AM. CHEM. SOC., 1975, pages 1353
J. ORG. CHEM., vol. 28, 1963, pages 1128
ORG. SYN. COLL., vol. 4, 1963, pages 552
ORG. SYN., vol. 40, 1966, pages 66
ORG. SYN., vol. 49, 1968, pages 78
TETRAHEDRON ASYMMETRY, vol. 12, no. 11, 2001, pages 1595 - 1602
TETRAHEDRON LETT., vol. 23, 1982, pages 5283
TETRAHEDRON, vol. 1259, 1985

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746256A1 (en) 2012-12-19 2014-06-25 Basf Se Fungicidal imidazolyl and triazolyl compounds
WO2014095249A1 (en) 2012-12-19 2014-06-26 Basf Se Fungicidal imidazolyl and triazolyl compounds
EP2746258A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746260A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746257A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds
EP2746259A1 (en) 2012-12-21 2014-06-25 Basf Se Substituted [1,2,4]triazole and imidazole compounds

Also Published As

Publication number Publication date
JP2012530110A (en) 2012-11-29
US20120088660A1 (en) 2012-04-12
CN102803231A (en) 2012-11-28
EP2443098A1 (en) 2012-04-25
BRPI1009656A2 (en) 2016-08-09

Similar Documents

Publication Publication Date Title
WO2010146113A1 (en) Antifungal 1, 2, 4-triazolyl derivatives having a 5- sulfur substituent
WO2010146114A1 (en) Triazole compounds carrying a sulfur substituent
WO2011006886A2 (en) Azole compounds carrying a sulfur substituent xiv
WO2010146115A1 (en) Triazole compounds carrying a sulfur substituent
WO2010142779A1 (en) Antifungal 1,2,4-triazolyl derivatives having a 5- sulfur substituent
EP2443098A1 (en) Antifungal 1, 2, 4-triazolyl derivatives
WO2010146116A1 (en) Triazole compounds carrying a sulfur substituent
WO2010029066A1 (en) Imidazole and triazole compounds, use thereof and agents containing said compounds
WO2010040718A1 (en) Triazole and imidazole compounds, use thereof and agents containing them
WO2010031721A1 (en) Imidazole and triazole compounds, their use and agents containing the same
WO2010031848A1 (en) Imidazole and triazole compounds, their use and agents containing the same
WO2010031847A1 (en) Imidazole and triazole compounds, their use and agents containing the same
EP2443097A1 (en) Antifungal 1, 2, 4-triazolyl derivatives
WO2010029003A1 (en) Triazole compounds, use thereof, and agents containing same
EP2334654A1 (en) Triazole compounds, the use thereof and preparations containing these compounds
EP2334656A1 (en) Triazole compounds, use thereof, and agents containing same
JP2012502001A (en) Triazole compounds, their use and formulations containing these compounds
WO2010149414A1 (en) 5-mercapto-[1, 2, 4] triazolylmethyl-cyclopentanol compounds and their agricultural and pharmaceutical uses
WO2010040717A1 (en) Triazole and imidazole compounds, use thereof and agents containing them
WO2010031842A1 (en) Imidazole and triazole compounds, their use and agents containing the same
WO2010149758A1 (en) Antifungal 1, 2, 4-triazolyl derivatives
WO2010122167A1 (en) 5 -mercapto- [1, 2, 4] triazolylmethyl-cyclopentanol compounds and their agricultural and pharmaceutical uses
WO2010122171A1 (en) 5-heteroarylmethyl-i- (b-mercapto- [1,2, 4 -triazolylmethyl) -cyclopentanol as fungicides
WO2010029065A1 (en) Imidazole and triazole compounds, use thereof and agents containing said compounds
WO2010031843A1 (en) Imidazole and triazole compounds, their use and agents containing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080026884.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10725703

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 4742/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13377654

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012515492

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010725703

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1009656

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1009656

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111214