WO2010118705A1 - 资源调度方法和***以及基站和中继节点 - Google Patents

资源调度方法和***以及基站和中继节点 Download PDF

Info

Publication number
WO2010118705A1
WO2010118705A1 PCT/CN2010/071864 CN2010071864W WO2010118705A1 WO 2010118705 A1 WO2010118705 A1 WO 2010118705A1 CN 2010071864 W CN2010071864 W CN 2010071864W WO 2010118705 A1 WO2010118705 A1 WO 2010118705A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
backhaul link
uplink
downlink
downlink subframe
Prior art date
Application number
PCT/CN2010/071864
Other languages
English (en)
French (fr)
Inventor
张文健
潘学明
沈祖康
肖国军
王立波
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN200910082030A external-priority patent/CN101867944B/zh
Priority claimed from CN200910082260A external-priority patent/CN101867406B/zh
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to KR1020117027401A priority Critical patent/KR101224098B1/ko
Priority to EP10764118.5A priority patent/EP2421299B1/en
Publication of WO2010118705A1 publication Critical patent/WO2010118705A1/zh
Priority to US13/275,285 priority patent/US20120044852A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/15542Selecting at relay station its transmit and receive resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to mobile communication technologies, and in particular, to a resource scheduling method and system, and a base station and a relay node. Background of the invention
  • the introduction of the relay node makes three wireless links appear in the Relay-based mobile communication system, namely: eNB-macro UE direct link (direct link), eNB-RN backhaul link (backhaul link) And the RN-relay UE access link (access link), which is referred to as a direct link, a backhaul link, and an access link.
  • the transceiver of the RN uses the time division dual (TDD) mode of operation, that is, reception and transmission cannot be performed simultaneously.
  • TDD time division dual
  • the Backhaul link and the access link can use the same spectrum, but since the RN transmitter has interference with its own receiver (unless it can provide sufficient isolation for incoming and outgoing signals), the downlink backhaul link and the downlink access link are usually Not suitable for simultaneous presence on the same frequency resource, as is the uplink.
  • the following processing manner is generally adopted in the prior art: If the RN receives data from the base station (eNB), it does not send data to the UE, that is, utilizes the multicast single frequency network (MBSFN, Multicast) in the downlink access transmission time. /Broadcast over a Single Frequency Network ) Subton creates "gap".
  • MBSFN multicast single frequency network
  • FIG. 1 is a schematic diagram of a conventional downlink transmission of a relay link using MBFSN subframes.
  • the RN will only receive data from the eNB without sending data to the UE;
  • “Ctrl” is used by the RN to send control signaling to the UE, that is, to schedule the UE.
  • FIG. 2 is a schematic diagram of a conventional resource scheduling manner.
  • the UE receives downlink control information (DCI, Downlink Control Information) sent by the RN through a Physical Downlink Control Channel (PDCCH), where the RN scheduling UE is in the subframe.
  • DCI downlink control information
  • PDCCH Physical Downlink Control Channel
  • the uplink scheduling information of the uplink data transmission is performed in the n+k, and the UE sends the uplink data to the RN through the Physical Uplink Shared Channel (PUSCH) in the subframe n+k.
  • PUSCH Physical Uplink Shared Channel
  • the RN After the RN sends the DCI to the UE, Receiving, by the eNB, a DCI sent by a relay physical downlink control channel (R-PDCCH, Relay Physical Downlink Control Channel), where the eNB schedules uplink scheduling information for performing uplink data transmission in the subframe n+k, and correspondingly, the RN
  • R-PDCCH relay physical downlink control channel
  • R-PUSCH relay physical uplink shared channel
  • the RN performs both the sending operation for the eNB and the receiving operation for the UE in the same subframe. Uplink transmission conflict.
  • the present invention provides a resource scheduling method and system, and a base station and a relay node, which can indicate an MBSFN subframe to an RN and can avoid an uplink transmission collision.
  • a resource scheduling method includes:
  • the base station eNB allocates an uplink subframe for performing backhaul uplink transmission of the backhaul link and a downlink subframe for performing downlink transmission of the backhaul link, and notifying the relay node RN of the allocation information of the backhaul link uplink subframe and the downlink subframe, so that the RN does not schedule the user terminal UE that is serving itself Performing uplink data transmission in the uplink sub-frame of the backhaul link, and configuring the backhaul link downlink subframe as a multicast single-frequency network MBSFN subframe.
  • a resource scheduling method includes:
  • the relay node RN receives the allocation information of the uplink subframe for the backhaul link uplink transmission and the downlink subframe for the backhaul link downlink transmission notified by the base station eNB;
  • the RN configures the backhaul link downlink subframe as a multicast single frequency network MBSFN subframe, and does not schedule the user terminal UE serving by itself to perform uplink data transmission in the backhaul link uplink subframe.
  • a resource scheduling system comprising:
  • the base station eNB is configured to allocate an uplink subframe for performing backhaul link uplink transmission and a downlink subframe for performing backhaul link downlink transmission, and allocate allocation information of the backhaul link uplink subframe and downlink subframe Notifying to the relay node RN;
  • the RN is configured to receive allocation information of a backhaul link uplink subframe and a downlink subframe notified by the eNB, and determine a backhaul link uplink subframe position and a downlink subframe position, where the backhaul link downlink subframe is configured
  • the user terminal UE configured as a multicast single-frequency network MBSFN subframe does not schedule its own service to perform uplink data transmission in the uplink subframe of the backhaul link.
  • a base station eNB includes:
  • a first allocation unit configured to allocate an uplink subframe for performing backhaul link uplink transmission and a downlink subframe for performing backhaul link downlink transmission
  • a first notification unit configured to notify the relay node RN of the allocation information of the backhaul link uplink subframe and the downlink subframe, so that the RN does not schedule the user terminal UE that is serving itself to be in the backhaul link uplink
  • the uplink data transmission is performed in the frame, and the backhaul link downlink subframe is configured as a multicast single frequency network MBSFN subframe.
  • a relay node RN comprising:
  • a first receiving unit configured to receive, by the base station eNB, allocation information of an uplink subframe for uplink backhaul link uplink transmission and a downlink subframe for backhaul link downlink transmission;
  • a first determining unit configured to determine, according to the received allocation information of the backhaul link uplink subframe and the downlink subframe, a backhaul link uplink subframe position and a downlink subframe position;
  • a first control unit configured to configure the backhaul link downlink subframe as a multicast single frequency network MBSFN subframe, and not to schedule the user terminal UE to perform uplink data transmission in the backhaul link uplink subframe .
  • a resource scheduling method includes:
  • the base station eNB allocates an uplink subframe for performing backhaul link uplink transmission and a downlink subframe for performing backhaul link downlink transmission, and notifies the allocation information of the backhaul link uplink subframe or downlink subframe to the medium Following the node RN, the RN determines an unannounced backhaul link downlink subframe or an uplink subframe according to a predefined timing relationship.
  • a resource scheduling method includes:
  • the relay node RN receives the allocation information of the uplink subframe for the backhaul link uplink transmission or the downlink subframe for the backhaul link downlink transmission notified by the base station eNB, and determines the notified backhaul link according to the received allocation information.
  • the predefined timing relationship determines an unannounced backhaul link downlink subframe or uplink subframe.
  • a resource scheduling system comprising:
  • the base station eNB is configured to allocate an uplink subframe for performing backhaul link uplink transmission and a downlink subframe for performing backhaul link downlink transmission, and allocate allocation information of the backhaul link uplink subframe or downlink subframe Notifying to the relay node RN;
  • the RN is configured to receive allocation information of a backhaul link uplink subframe or a downlink subframe notified by the eNB, and determine, according to the allocation information, the notified backhaul link uplink subframe position or downlink subframe position, and according to the The predefined timing relationship determines an unannounced backhaul link downlink subframe or uplink subframe.
  • a base station eNB includes:
  • a second allocation unit configured to allocate an uplink subframe for performing backhaul link uplink transmission and a downlink subframe for performing backhaul link downlink transmission; and assigning information to the relay node RN, so that the RNRN according to the pre- The defined timing relationship determines the unreported backhaul link downlink subframe or uplink subframe.
  • a relay node RN comprising:
  • a second receiving unit configured to receive, by the base station eNB, allocation information of an uplink subframe for uplink backhaul link uplink transmission or a downlink subframe for backhaul link downlink transmission;
  • a second determining unit configured to determine, according to the allocation information, the notified backhaul link uplink subframe position or downlink subframe position, and determine an unannounced backhaul link downlink subframe or uplink subframe according to a predefined timing relationship .
  • the eNB notifies the RN of the allocated uplink subframe for performing the backhaul link uplink transmission and the downlink subframe for performing the backhaul link downlink transmission, so that, in the subsequent process, the RN
  • the backhaul link downlink subframe can be configured as an MBSFN subframe, and the UE that is serving itself is not scheduled to be in the configured backhaul link.
  • the uplink data transmission is performed in the uplink subframe to avoid the uplink transmission conflict.
  • the eNB may only notify the RN of one of the allocated uplink subframe for the backhaul link uplink transmission or the downlink subframe for the backhaul link downlink transmission, and the subsequent RN According to the received notification message and the predefined timing relationship, the unrecognized downlink subframe for the backhaul link downlink transmission or the uplink subframe for the backhaul link uplink transmission may be determined by itself, so that the allocated Two sub-frames are uplink and downlink, which reduces signaling overhead.
  • FIG. 1 is a schematic diagram of a conventional downlink transmission of a relay link by using an MBFSN subframe
  • FIG. 2 is a schematic diagram of a conventional resource scheduling manner
  • FIG. 3 is a flowchart of a first method embodiment of a resource scheduling method according to the present invention.
  • FIG. 4 is a schematic structural diagram of a first embodiment of a resource scheduling system according to the present invention
  • FIG. 5 is a schematic structural diagram of a first embodiment of an eNB according to the present invention
  • FIG. 6 is a schematic structural diagram of a first embodiment of an RN according to the present invention.
  • FIG. 7 is a flowchart of a second embodiment of a resource scheduling method according to the present invention.
  • FIG. 8 is a schematic structural diagram of a second embodiment of an eNB according to the present invention.
  • FIG. 9 is a schematic structural diagram of a second embodiment of the RN of the present invention. Mode for carrying out the invention
  • a novel resource scheduling scheme is proposed in the present invention: before the RN initially accesses the network, before the actual communication has begun, the eNB allocates the uplink transmission for the backhaul link. Uplink subframes and for performing backhaul links The downlink subframe of the downlink transmission is notified to the RN, and the RN does not schedule the self-serving UE to perform uplink data transmission in the backhaul link uplink subframe, and configures the backhaul link downlink subframe as the MBSFN subframe.
  • the eNB may separately notify the RN of an uplink subframe for performing backhaul link uplink transmission and a downlink subframe for performing backhaul link downlink transmission, or may only be used for performing backhaul link.
  • the uplink subframe for uplink transmission or the downlink subframe for performing downlink transmission of the backhaul link is notified to the RN, and the RN determines the unannounced backhaul according to the notified backhaul link uplink subframe or downlink subframe, and a predefined timing relationship.
  • Link downlink subframe or uplink subframe may separately notify the RN of an uplink subframe for performing backhaul link uplink transmission and a downlink subframe for performing backhaul link downlink transmission, or may only be used for performing backhaul link.
  • the uplink subframe for uplink transmission or the downlink subframe for performing downlink transmission of the backhaul link is notified to the RN, and the RN determines the unannounced backhaul according to the notified backhaul link
  • FIG. 3 is a flowchart of a first embodiment of a resource scheduling method according to the present invention. It is assumed that in this embodiment, the allocated backhaul link uplink subframe and downlink subframe are respectively notified to the RN. As shown in Figure 3, the following steps are included:
  • Step 301 The eNB allocates an uplink subframe for performing backhaul link uplink transmission and a downlink subframe for performing backhaul link downlink transmission, and notifies the RN of allocation information of the backhaul link uplink subframe and the downlink subframe.
  • One notification method is to directly notify the RN of the backhaul link uplink subframe position information and the downlink subframe position information.
  • a mature MBSFN subframe notification mode is available in the prior art, but is not applied to the eNB and the RN.
  • the notification mode is a bitmap method, and specifically includes two types:
  • the downlink subframes 0, 4, 5, and 9 need to transmit synchronization signals and broadcast messages, and therefore cannot be configured as MBSFN subframes, and cannot be used for backhaul link downlink data transmission;
  • the backhaul link downlink subframe indication adopts 6 bits; for the backhaul link uplink subframe allocation, since there is no limitation, a 10-bit indication is required in a single radio frame, and each bit corresponds to 0 or 1. When the corresponding subframe is a backhaul link subframe, the corresponding bit is set to 1.
  • the uplink operation and the downlink operation are in the same frequency band, so the backhaul link uplink subframe and the downlink subframe indication can adopt a unified bitmap. It is considered that subframes 0, 1, 5, and 6 cannot be configured as MBSFN subframes. Therefore, in a single radio frame, the uplink and downlink subframes of the backhaul link indicate that 6 bits are used.
  • the uplink subframe for performing backhaul link uplink transmission and the downlink subframe for performing backhaul link downlink transmission, which are notified by the eNB to the RN, are implemented by means of the existing notification manner. .
  • Another notification manner is that if the allocated backhaul link subframe is a subset of the predefined subframe allocation set, the base station notifies the index value of the backhaul link subframe in the subframe allocation set to RN.
  • different subframe allocations may be predefined according to different subframe ratios to form a subframe allocation set. If the backhual link subframe allocated by the base station is one of the set, only The index value of the backhaul link subframe in the set is sent to the RN, and the RN may determine, according to the pre-stored subframe allocation set. The assigned backhaul link subframe.
  • TDD configuration 1 describes TDD configuration 1 as an example.
  • TDD configuration 1 For TDD configuration 1, according to different subframe allocation ratios and subframe positions, there may be five kinds of backhaul link subframe allocation modes, thereby forming a predefined subframe allocation set.
  • the first allocation mode the uplink subframe 3 and the downlink subframe 9 are allocated as backhaul link subframes;
  • the second allocation mode the downlink subframe 4 and the uplink subframe 8 are allocated as backhaul link subframes;
  • the third allocation mode the uplink subframes 3, 8 and the downlink subframes 4, 9 are allocated as backhaul link subframes;
  • the fourth allocation mode the uplink subframe 3 and the downlink subframe 4, 9 are allocated as backhaul link subframes;
  • the fifth allocation mode the uplink subframe 8 and the downlink subframe 4, 9 are allocated as backhaul link subframes;
  • the base station allocates the downlink subframe 4 and the uplink subframe 8 as the backhaul link subframe, and the base station notifies the RN of the index value 2, and the RN can be pre-stored according to the RN.
  • the set of subframe allocations determines that the downlink subframe 4 and the uplink subframe 8 are backhaul link subframes.
  • the base station may notify the RN of the backhaul link subframe position or the index value by using the broadcast message or the high layer signaling.
  • the eNB may send the broadcast message to save signaling overhead.
  • the eNB separately notifies each RN through high layer signaling, which includes but is not limited to radio resource control RRC (Radio Resourc Control) signaling.
  • RRC Radio Resourc Control
  • the eNB may also perform uplink transmission on the backhaul link to the RN according to the backhaul link quality between itself and the RN and the amount of data to be transmitted.
  • the uplink subframe and the downlink subframe used for downlink transmission of the backhaul link are re-allocated, and the reallocation may be triggered by the eNB, or may be triggered by the RN:
  • the eNB counts the buffer status report (BSR) reported by the RN within a predetermined time period, and adjusts the number of uplink subframes allocated to the RN for performing backhaul link uplink transmission according to the BSR, that is, if the buffer status indicates that the RN is to be sent to If the amount of data of the eNB is large, the number of uplink subframes allocated to the RN is increased, and vice versa.
  • the eNB counts the buffer state that is transmitted to the RN within a predetermined time, and adjusts the buffer allocated to the RN for performing the backhaul chain according to the buffer state.
  • the number of downlink subframes transmitted by the downlink; the above process of changing the number of subframes can be regarded as a process of reallocating backhaul link subframes.
  • the RN sends an adjustment request to the eNB according to the BSR condition reported by the eNB to the eNB in a predetermined time, requesting to increase or decrease the number of required subframes, and the eNB adjusts the uplink transmission for the backhaul link allocated to the RN according to the adjustment request.
  • the number of uplink subframes at the same time, the eNB counts the buffer state that is transmitted to the RN in a predetermined time, and adjusts the number of downlink subframes allocated to the RN for downlink transmission of the backhaul link according to the buffer state.
  • the above process of changing the number of subframes can be regarded as a process of reallocating backhaul link subframes.
  • Step 302 The RN receives the allocation information of the uplink subframe for the backhaul link uplink transmission and the downlink subframe for the backhaul link downlink transmission, and determines the backhaul link uplink subframe position and the downlink according to the allocation information.
  • the sub-frame position is configured to configure the backhaul link downlink subframe as an MBSFN subframe, and does not schedule the UE to serve itself.
  • the RN determines backhaul according to the received information.
  • Link uplink subframe position and downlink subframe position configure the backhaul link downlink subframe as an MBSFN subframe, and according to the determined backhaul chain
  • the uplink subframe of the uplink determines the uplink scheduling information in advance, and the UE that does not schedule the RN's own service performs uplink data transmission in the uplink subframe of the backhaul link to avoid uplink transmission conflict.
  • FIG. 4 is a schematic structural diagram of a first embodiment of a resource scheduling system according to the present invention. As shown in Figure 4, it includes:
  • the eNB 41 is configured to allocate an uplink subframe for performing backhaul link uplink transmission and a downlink subframe for performing backhaul link downlink transmission, and notify the allocation information of the backhaul link uplink subframe and the downlink subframe to RN42;
  • FIG. 5 is a schematic structural diagram of a first embodiment of an eNB according to the present invention. As shown in Figure 5, it includes:
  • a first allocation unit 51 configured to allocate an uplink subframe for performing backhaul link uplink transmission and a downlink subframe for performing backhaul link downlink transmission;
  • the first notification unit 52 is configured to notify the RN of the allocation information of the backhaul link uplink subframe and the downlink subframe, so that the RN does not schedule the self-served UE to perform uplink data transmission in the backhaul link uplink subframe. And configure the backhaul link downlink subframe as an MBSFN subframe.
  • FIG. 6 is a schematic structural diagram of a first embodiment of the RN of the present invention. As shown in Figure 6, it includes:
  • a first receiving unit 61 configured to receive, by the eNB, allocation information of an uplink subframe for backhaul link uplink transmission and a downlink subframe for backhaul link downlink transmission; and a first determining unit 62, configured to receive according to The allocation information of the uplink and downlink subframes of the backhaul link determines the uplink subframe position and the downlink subframe position of the backhaul link;
  • the first control unit 63 is configured to configure the determined backhaul link downlink subframe as an MBSFN subframe, and does not schedule the self-served UE to perform uplink data transmission in the backhaul link uplink subframe.
  • the eNB After the scheme shown in FIG. 3 to FIG. 6 is used, the eNB notifies the RN of the allocated uplink subframe for performing the backhaul link uplink transmission and the downlink subframe for performing the backhaul link downlink transmission, so that, in the subsequent process, The RN can configure the downlink sub-frame of the backhaul link as an MBSFN sub-frame, and does not schedule the self-serving UE to perform uplink data transmission on the backhaul link uplink sub-frame to avoid an uplink transmission conflict.
  • the above solution may also have a certain problem in practical applications, that is, signaling is required to be notified to the RN by using an uplink subframe for the backhaul link uplink transmission and a downlink subframe for the backhaul link downlink transmission.
  • the overhead will be large, especially if FDD mode is used.
  • the eNB allocates an uplink subframe for performing backhaul link uplink transmission and a downlink subframe for performing backhaul link downlink transmission, and the backhaul link uplink subframe or downlink sub-frame
  • the allocation information of the frame is notified to the RN, so that the RN determines an unannounced backhaul link downlink subframe or an uplink subframe according to a predefined timing relationship.
  • FIG. 7 is a flowchart of a second embodiment of a resource scheduling method according to the present invention. As shown in Figure 7, the following steps are included:
  • Step 701 The eNB allocates an uplink subframe for performing backhaul link uplink transmission and a downlink subframe for performing backhaul link downlink transmission, and notifies the RN of allocation information of the backhaul link uplink subframe or the downlink subframe.
  • the eNB only needs to notify the RN of one of the allocated backhaul link subframes, that is, the uplink subframe for the backhaul link uplink transmission or the allocation information for the downlink transmission of the backhaul link.
  • the RN may be notified by using a high layer signaling or a broadcast message, where the high layer signaling includes, but is not limited to, RRC signaling.
  • Step 702 The RN receives the allocation information of the uplink subframe used for the backhaul link uplink transmission or the downlink subframe used for the backhaul link downlink transmission, and determines the notified backhaul link uplink subframe according to the allocation information. Frame position or downlink subframe position.
  • the eNB notifies the allocation information of the backhaul link uplink subframe or the downlink subframe by means of a bitmap, and then the RN can determine the position corresponding to the bit set to 1 in the bitmap as the notified backhaul link. Uplink subframe or downlink subframe position.
  • Step 703 The RN determines, according to the determined backhaul link uplink subframe position or downlink subframe position, and a predefined timing relationship, an unannounced backhaul link downlink subframe or a downlink subframe.
  • the predefined timing relationship mentioned here includes the HARQ timing relationship between the downlink subframe in which the uplink scheduling information is transmitted and the corresponding uplink subframe in which the PUSCH is transmitted, or the HARQ timing relationship transmitted, or the uplink subframe in which the PUSCH is transmitted.
  • the uplink scheduling information is sent by the eNB in a downlink subframe, corresponding to
  • the PUSCH is transmitted by the RN in the uplink subframe; the PDSCH is transmitted by the eNB in the downlink subframe, and the corresponding ACK/NACK feedback is sent by the eNB in the uplink subframe; the PUSCH is transmitted by the RN in the uplink subframe, and the corresponding ACK/NACK is downlinked by the eNB. Subframe transmission.
  • the RN can determine the unannounced use according to any of the above timing relationships.
  • the feedback position of the ACK/NACK and the uplink scheduling position are related to the uplink and downlink timing configuration, for example:
  • the corresponding subframe in which the PDSCH is transmitted is 2-6 (assuming configuration mode 0 is selected), that is, the sixth subframe in a radio frame before the radio frame in which the subframe 2 is located.
  • configuration mode 0 is selected
  • Table 1 a total of seven configuration modes are provided (usually 0 and 5 are not used). In actual applications, the specific configuration mode may be determined according to actual needs, and subsequent similar situations are not described herein. If the uplink scheduling information is sent in the subframe n, the corresponding subframe in which the PUSCH is transmitted, that is, the scheduled uplink subframe is n+k, and the value of k is as shown in Table 2:
  • Table 2 Timing relationship between the downlink subframe and the scheduled uplink subframe in which the uplink scheduling information is transmitted. If the PUSCH is scheduled in the subframe n, the corresponding subframe for transmitting the ACK/NACK is n+k, and k is taken as Table 3. Show:
  • one of the above three forms that need to be applied may be stored in the RN, and then the RN uses the extracted information to perform a table lookup, thereby determining an unannounced downlink subframe for the downlink transmission of the backhaul link. Or an uplink subframe used for backhaul link uplink transmission.
  • the RN may directly directly report the uplink subframe for the uplink transmission of the backhaul link.
  • the position of the frame differs by four subframes is determined as an unannounced downlink subframe for the backhaul link downlink transmission; likewise, the position of the four subframes that are different from the notified downlink subframe for the backhaul link downlink transmission is determined as An unsolicited uplink subframe for backhaul link uplink transmission.
  • the corresponding uplink and downlink subframes need to be determined by querying a specific table.
  • subframes 0, 1, 5, and 6 cannot be configured as downlink subframes for downlink transmission of the backhaul link, that is, MBSFN.
  • Subframe After determining the backhaul link uplink subframe or the downlink subframe notified by the eNB, the RN performs a search according to the selected table, and can determine the unreported backhaul link downlink subframe or uplink subframe.
  • the eNB allocates the downlink subframe 3 of each radio frame to the backhaul link downlink subframe, and according to the HARQ timing relationship in the FDD mode, it can be determined that the subframe 7 of each radio frame is the backhaul link uplink. Subframe, this subframe configuration mode has no effect on the HARQ timing relationship of the access link.
  • the eNB allocates the subframe 4 of each radio frame as the backhaul link downlink subframe, and adopts the HARQ timing relationship between the downlink subframe in which the uplink scheduling information is transmitted and the corresponding uplink subframe in which the PUSCH is transmitted. , or sending the downlink relationship of the PDSCH, can determine that the subframe 8 of each radio frame is a backhaul link uplink subframe.
  • uplink and downlink subframe allocations of the foregoing FDD and TDD are only examples, and the specific allocation includes but is limited to the above two modes.
  • the present invention further provides a resource scheduling system, including: an eNB, configured to allocate an uplink subframe for performing backhaul link uplink transmission, and a downlink subframe for performing backhaul link downlink transmission, and The allocation information of the backhaul link uplink subframe or the downlink subframe is notified to the RN;
  • a resource scheduling system including: an eNB, configured to allocate an uplink subframe for performing backhaul link uplink transmission, and a downlink subframe for performing backhaul link downlink transmission, and The allocation information of the backhaul link uplink subframe or the downlink subframe is notified to the RN;
  • the RN is configured to receive a backhaul link uplink subframe notified by the eNB or And determining, by the allocation information, the notified backhaul link uplink subframe position or the downlink subframe position, and determining, according to the predefined timing relationship, the unannounced backhaul link downlink subframe or uplink subframe. .
  • FIG. 8 is a schematic structural diagram of a second embodiment of an eNB according to the present invention. As shown in Figure 12, it includes:
  • a second allocation unit 81 configured to allocate an uplink subframe for performing backhaul link uplink transmission and a downlink subframe for performing backhaul link downlink transmission; and assigning information to the RN, so that the RN is according to a predefined timing
  • the relationship determines the unreported backhaul link downlink subframe or uplink subframe.
  • FIG. 9 is a schematic structural diagram of a second embodiment of the RN of the present invention. As shown in Figure 9, it includes:
  • a second receiving unit 91 configured to receive, by the eNB, allocation information of an uplink subframe for backhaul link uplink transmission or a downlink subframe for backhaul link downlink transmission; a second determining unit 92, configured to The allocation information determines the notified backhaul link uplink subframe or downlink subframe position, and determines an unannounced backhaul link downlink subframe or uplink subframe according to a predefined timing relationship.
  • the eNB After adopting the schemes shown in FIG. 7 to FIG. 9, the eNB only needs to notify the RN of one of the allocated uplink subframe for the backhaul link uplink transmission or the downlink subframe for the backhaul link downlink transmission, and the subsequent RN may Determining, according to the received notification message and the pre-defined predefined timing relationship, the downlink subframe for the backhaul link downlink transmission or the uplink subframe for the backhaul link uplink transmission, so that it is not necessary to simultaneously Notifying the configured uplink and downlink subframes reduces the signaling overhead.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

资源调度方法和***以及基站和中继节点 技术领域
本发明涉及移动通信技术, 特别涉及资源调度方法和***以及基站 和中继节点。 发明背景
中继节点 (RN, Relay Node ) 的引入使得基于 Relay的移动通信系 统中出现了三条无线链路, 即: eNB-macro UE直射链路 ( direct link ) , eNB-RN回程链路 ( backhaul link ) 以及 RN-relay UE接入链路 ( access link ) , 以下分别筒称为 direct链路、 backhaul链路以及 access链路。 RN 的收发信机采用时分双工(TDD, Time Division Dual ) 的工作模式, 即 接收和发送不能同时进行。
Backhaul链路和 access链路可采用相同的频谱, 但由于 RN的发射 机对自己的接收机有干扰(除非能够对进出的信号提供足够的隔离 ) , 因此下行 backhaul链路与下行 access链路通常不适于在同样的频率资源 上同时存在, 上行亦然。 为避免上述干扰, 现有技术中通常采用如下的 处理方式: 如果 RN从基站 (eNB )接收数据, 则不向 UE发送数据, 即在下行 access 传输时间 内利用多播单频网络 ( MBSFN , Multicast/Broadcast over a Single Frequency Network )子顿创造 "gap" 。 图 1为现有利用 MBFSN子帧进行中继链路下行传输的示意图。 如图 1 所示, 在 "gap" 内, RN只会接收来自 eNB的数据, 而不会向 UE发送 数据; "Ctrl" 用于 RN向 UE发送控制信令, 即对 UE进行调度。
图 1所示方式虽然解决了干扰问题, 但是这种方式也带来了新的问 题, 比如: 图 2为现有一种资源调度方式示意图。 如图 2所示, 在子帧 n, UE 接收到 RN通过物理下行控制信道 ( PDCCH, Physical Downlink Control Channel )发送的下行控制信息 (DCI, Downlink Control Information ) , 其中携带有 RN调度 UE在子帧 n+k内进行上行数据传输的上行调度信 息,相应地, UE将在子帧 n+k内向 RN通过物理上行共享信道( PUSCH, Physical Uplink Shared Channel )发送上行数据; RN向 UE发送 DCI之 后, 接收 eNB通过中继物理下行控制信道(R-PDCCH, Relay Physical Downlink Control Channel )发送的 DCI, 其中携带有 eNB调度 RN在子 帧 n+k内进行上行数据传输的上行调度信息,相应地, RN将在子帧 n+k 内通过中继物理上行共享信道( R-PUSCH, Relay Physical Uplink Shared Channel )发送上行数据; 由于 backhaul链路或 access链路的上行数据 传输都是在整个子帧内进行的, 这样就会导致在同一个子帧内 RN既要 执行针对 eNB的发送操作, 又要执行针对 UE的接收操作, 从而造成上 行传输沖突。
另外, 采用图 1所示方式虽然能够解决干扰问题, 但是现有技术中 并未明确 RN如何获知将哪个子帧作为 MBSFN子帧, 因此无法获知何 时接收 eNB发送的携带上行调度信息的 R-PDCCH, 从而也无法确定何 时发生上行传输沖突, 以便进行解决。 发明内容
有鉴于此, 本发明提供了资源调度方法和***以及基站和中继节 点, 能够将 MBSFN子帧指示给 RN, 并能够避免上行传输沖突。
为达到上述目的, 本发明的技术方案是这样实现的:
一种资源调度方法, 包括:
基站 eNB分配用于进行回程 backhaul链路上行传输的上行子帧以及 用于进行 backhaul链路下行传输的下行子帧,并将所述 backhaul链路上 行子帧和下行子帧的分配信息通知给中继节点 RN, 以便所述 RN不调 度自身服务的用户终端 UE在所述 backhaul链路上行子帧内进行上行数 据传输, 并将所述 backhaul链路下行子帧配置为多播单频网络 MBSFN 子帧。
一种资源调度方法, 包括:
中继节点 RN接收基站 eNB通知的用于回程 backhaul链路上行传输 的上行子帧和用于 backhaul链路下行传输的下行子帧的分配信息;
所述 RN根据所述分配信息确定 backhaul链路上行子帧位置和下行 子帧位置;
所述 RN 将所述 backhaul 链路下行子帧配置为多播单频网络 MBSFN子帧, 并不调度自身服务的用户终端 UE在所述 backhaul链路 上行子帧内进行上行数据传输。
一种资源调度***, 包括:
基站 eNB ,用于分配用于进行回程 backhaul链路上行传输的上行子 帧以及用于进行 backhaul链路下行传输的下行子帧, 并将所述 backhaul 链路上行子帧和下行子帧的分配信息通知给中继节点 RN;
所述 RN, 用于接收所述 eNB通知的 backhaul链路上行子帧和下行 子帧的分配信息, 并确定 backhaul链路上行子帧位置和下行子帧位置, 将所述 backhaul链路下行子帧配置为多播单频网络 MBSFN子帧, 并不 调度自身服务的用户终端 UE在所述 backhaul链路上行子帧内进行上行 数据传输。
一种基站 eNB , 包括:
第一分配单元, 用于分配用于进行回程 backhaul链路上行传输的上 行子帧以及用于进行 backhaul链路下行传输的下行子帧; 第一通知单元, 用于将所述 backhaul链路上行子帧和下行子帧的分 配信息通知给中继节点 RN, 以便所述 RN不调度自身服务的用户终端 UE 在所述 backhaul 链路上行子帧内进行上行数据传输, 并将所述 backhaul链路下行子帧配置为多播单频网络 MBSFN子帧。
一种中继节点 RN, 包括:
第一接收单元,用于接收基站 eNB通知的用于回程 backhaul链路上 行传输的上行子帧和用于 backhaul链路下行传输的下行子帧的分配信 息;
第一确定单元, 用于根据接收到的 backhaul链路上行子帧和下行子 帧的分配信息确定 backhaul链路上行子帧位置和下行子帧位置;
第一控制单元, 用于将所述 backhaul链路下行子帧配置为多播单频 网络 MBSFN子帧, 并不调度自身服务的用户终端 UE在所述 backhaul 链路上行子帧内进行上行数据传输。
一种资源调度方法, 包括:
基站 eNB分配用于进行回程 backhaul链路上行传输的上行子帧以及 用于进行 backhaul链路下行传输的下行子帧,并将所述 backhaul链路上 行子帧或下行子帧的分配信息通知给中继节点 RN, 以便所述 RN根据 预定义的定时关系确定未通知的 backhaul链路下行子帧或上行子帧。
一种资源调度方法, 包括:
中继节点 RN接收基站 eNB通知的用于回程 backhaul链路上行传输 的上行子帧或用于 backhaul链路下行传输的下行子帧的分配信息, 根据 接收到的分配信息确定所通知的 backhaul链路上行子帧或下行子帧位 置; 预定义的定时关系确定未通知的 backhaul链路下行子帧或上行子帧。 一种资源调度***, 包括:
基站 eNB ,用于分配用于进行回程 backhaul链路上行传输的上行子 帧以及用于进行 backhaul链路下行传输的下行子帧, 并将所述 backhaul 链路上行子帧或下行子帧的分配信息通知给中继节点 RN;
所述 RN, 用于接收所述 eNB通知的 backhaul链路上行子帧或下行 子帧的分配信息, 根据所述分配信息确定所通知的 backhaul链路上行子 帧位置或下行子帧位置, 并根据预定义的定时关系确定未通知的 backhaul链路下行子帧或上行子帧。
一种基站 eNB , 包括:
第二分配单元, 用于分配用于进行回程 backhaul链路上行传输的上 行子帧以及用于进行 backhaul链路下行传输的下行子帧; 配信息通知给中继节点 RN, 以便所述 RNRN根据预定义的定时关系确 定未通知的 backhaul链路下行子帧或上行子帧。
一种中继节点 RN, 包括:
第二接收单元,用于接收基站 eNB通知的用于回程 backhaul链路上 行传输的上行子帧的或用于 backhaul链路下行传输的下行子帧的分配信 息;
第二确定单元, 用于根据所述分配信息确定所通知的 backhaul链路 上行子帧位置或下行子帧位置, 并根据预定义的定时关系确定未通知的 backhaul链路下行子帧或上行子帧。
可见, 采用本发明所述方案, 由 eNB 将分配的用于进行 backhaul 链路上行传输的上行子帧以及用于进行 backhaul链路下行传输的下行子 帧通知给 RN, 这样, 后续过程中, RN即可将 backhaul链路下行子帧配 置为 MBSFN子帧, 并不调度自身服务的 UE在所配置的 backhaul链路 上行子帧内进行上行数据传输, 从而避免造成上行传输沖突。
再有, 本发明所述方案中, eNB还可只将分配的用于 backhaul链路 上行传输的上行子帧或用于 backhaul链路下行传输的下行子帧中的一种 通知给 RN, 后续 RN可根据接收到的通知消息以及预定义的定时关系, 自行确定出未通知的用于 backhaul 链路下行传输的下行子帧或用于 backhaul链路上行传输的上行子帧, 从而无需通知所分配的上下行两种 子帧, 降低了信令开销。 附图简要说明
下面将通过参照附图详细描述本发明的示例性实施例, 使本领域的 普通技术人员更清楚本发明的上述及其它特征和优点, 附图中:
图 1为现有利用 MBFSN子帧进行中继链路下行传输的示意图; 图 2为现有一种资源调度方式示意图;
图 3为本发明资源调度方法第一方法实施例的流程图;
图 4为本发明资源调度***第一实施例的组成结构示意图; 图 5为本发明 eNB第一实施例的组成结构示意图;
图 6为本发明 RN第一实施例的组成结构示意图;
图 7为本发明资源调度方法第二实施例的流程图;
图 8为本发明 eNB第二实施例的组成结构示意图;
图 9为本发明 RN第二实施例的组成结构示意图。 实施本发明的方式
针对现有技术中存在的问题, 本发明中提出一种全新的资源调度方 案: 在 RN初始接入网络, 还未开始实际的通讯之前, 由 eNB将分配的 用于进行 backhaul链路上行传输的上行子帧以及用于进行 backhaul链路 下行传输的下行子帧通知给 RN , RN 不调度自身服务的 UE在所述 backhaul链路上行子帧内进行上行数据传输, 并将 backhaul链路下行子 帧配置为 MBSFN子帧。
在实际应用中, eNB可以将用于进行 backhaul链路上行传输的上行 子帧以及用于进行 backhaul链路下行传输的下行子帧分别通知给 RN, 或者, 也可以只将用于进行 backhaul链路上行传输的上行子帧或用于进 行 backhaul链路下行传输的下行子帧通知给 RN, RN根据所通知的 backhaul链路上行子帧或下行子帧, 以及预定义的定时关系确定未通知 的 backhaul链路下行子帧或上行子帧。
为使本发明的目的、 技术方案及优点更加清楚明白, 以下参照附图 并举实施例, 对本发明作进一步地详细说明。
图 3为本发明资源调度方法第一实施例的流程图。假设本实施例中, 将分配的 backhaul链路上行子帧和下行子帧分别通知给 RN。 如图 3所 示, 包括以下步骤:
步骤 301 : eNB分配用于进行 backhaul链路上行传输的上行子帧以 及用于进行 backhaul链路下行传输的下行子帧,并将 backhaul链路上行 子帧和下行子帧的分配信息通知给 RN。
本步骤中, eNB如何分配用于进行 backhaul链路上行传输的上行子 帧以及用于进行 backhaul链路下行传输的下行子帧为现有技术, 不再赘 述, 下面重点介绍通知方式:
一种通知方式为直接将 backhaul链路上行子帧位置信息和下行子帧 位置信息通知给 RN。 现有技术中已经有了一种成熟的 MBSFN子帧通 知方式, 只是未应用于 eNB与 RN之间, 该通知方式为位图 ( bitmap ) 方式, 具体来说包括两种:
A、 单无线帧 bitmap oneFrame BIT STRING (SIZE(6)) B、 连续四个无线帧 bitmap fourFrames BIT STRING (SIZE(24)) 这种位图方式可以用来通知 backhaul链路上行子帧位置和下行子帧 位置。
对于采用频分双工(FDD, Frequency Division Dual )模式的***来 说, 由于上行操作和下行操作在不同的频带上, 因此需要采用两个位图 来分别通知 backhaul链路上行子帧位置和下行子帧位置。 其中, 在每个 无线帧内, 下行子帧 0、 4、 5、 9 需要传输同步信号和广播消息等, 因 此不能配置为 MBSFN子帧, 也不能用于 backhaul链路下行数据传输; 如果采用单无线帧 bitmap的方式, backhaul链路下行子帧指示采用 6比 特即可; 对于 backhaul链路上行子帧分配, 由于没有限制, 在单个无线 帧内需要采用 10比特指示,每比特对应 0或 1 ,当对应的子帧为 backhaul 链路子帧时, 将对应的比特置 1即可。
对于采用 TDD模式的***来说, 上行操作和下行操作在同一个频 带, 因此 backhaul链路上行子帧和下行子帧指示可以采用统一的位图。 考虑到子帧 0、 1、 5、 6不能配置为 MBSFN子帧, 因此, 在单个无线帧 内, backhaul链路上下行子帧指示采用 6比特即可。
本实施例中, 即借助于这种已有的通知方式, 来实现由 eNB向 RN 通知分配的用于进行 backhaul链路上行传输的上行子帧以及用于进行 backhaul链路下行传输的下行子帧。
另外一种通知方式是,如果分配的 backhaul链路子帧是预定义的子 帧分配集合中的子集,基站将所述 backhaul链路子帧在所述子帧分配集 合中的索引值通知给 RN。 例如, 对于 TDD某种配置, 根据不同的子帧 比例可以预定义不同的子帧分配, 形成子帧分配集合, 如果基站分配的 backhual链路子帧是该集合中的一种, 则只需要将该 backhaul链路子帧 在集合中的索引值发送给 RN , RN可以根据预存的子帧分配集合确定出 分配的 backhaul链路子帧。 下面以 TDD配置 1为例进行说明。
对于 TDD配置 1 , ^据不同的子帧分配比例和子帧位置, 可以有如 下五种 backhaul链路子帧分配方式,从而形成一个预定义子帧分配集合。
第一种分配方式: 上行子帧 3和下行子帧 9分配为 backhaul链路子 帧;
第二种分配方式: 下行子帧 4和上行子帧 8分配为 backhaul链路子 帧;
第三种分配方式: 上行子帧 3、 8和下行子帧 4、 9分配为 backhaul 链路子帧;
第四种分配方式: 上行子帧 3和下行子帧 4、 9分配为 backhaul链 路子帧;
第五种分配方式: 上行子帧 8和下行子帧 4、 9分配为 backhaul链 路子帧;
假设上述五种分配方式的索引值分别为 1-5 , 基站将下行子帧 4和 上行子帧 8分配为 backhaul链路子帧, 则基站将索引值 2通知给 RN即 可, RN可以根据预存的子帧分配集合确定出下行子帧 4和上行子帧 8 为 backhaul链路子帧。
值得注意的是, 上述说明仅是举例, 根据不同的情况有所变化。 基站可以通过广播消息或高层信令向 RN通知 backhaul链路子帧位 置或索引值, 当 eNB服务的小区内所有 RN都分配相同的子帧时, 可以 通过广播消息发送, 节省信令开销; 当不同的 RN分配不同的子帧时, eNB通过高层信令分别通知每个 RN, 高层信令包括但不限于无线资源 控制 RRC ( Radio Resourc Control )信令。
后续过程中, eNB还可根据自身与 RN之间的 backhaul链路质量以 及需要传输的数据量, 对配置给 RN的用于进行 backhaul链路上行传输 的上行子帧以及用于进行 backhaul链路下行传输的下行子帧进行重新分 配, 该重新分配可以是由 eNB触发的, 也可以是由 RN触发的:
A、 由 eNB触发:
eNB统计预定时间内 RN上报的緩沖状态报告 ( BSR, Buffer States Report ) , 根据该 BSR调整分配给 RN的用于进行 backhaul链路上行传 输的上行子帧数, 即如果 buffer状态显示 RN待发送给 eNB的数据量较 大, 则增加分配给 RN的上行子帧数, 反之减少; 同时, eNB统计预定 时间内自身向 RN传输的 buffer状态,根据该 buffer状态调整分配给 RN 的用于进行 backhaul链路下行传输的下行子帧数; 上述改变子帧数的过 程可以视作重新分配 backhaul链路子帧的过程。
B、 由 RN触发:
RN根据预定时间内自身向 eNB上报的 BSR情况, 向 eNB发送一 个调整请求, 请求增加或减少所需子帧数, eNB根据该调整请求, 调整 分配给 RN的用于进行 backhaul链路上行传输的上行子帧数;同时, eNB 统计预定时间内自身向 RN传输的 buffer状态, 根据该 buffer状态调整 分配给 RN的用于进行 backhaul链路下行传输的下行子帧数。 上述改变 子帧数的过程可以视作重新分配 backhaul链路子帧的过程。
步骤 302: RN接收 eNB通知的用于 backhaul链路上行传输的上行 子帧和用于 backhaul链路下行传输的下行子帧的分配信息, 根据所述分 配信息确定 backhaul 链路上行子帧位置和下行子帧位置, 将所述 backhaul链路下行子帧配置为 MBSFN子帧, 并不调度自身服务的 UE 本步骤中, RN接收到来自 eNB的 bitmap或索引值后,根据接收到 的信息分别确定 backhaul 链路上行子帧位置和下行子帧位置, 将 backhaul链路下行子帧配置为 MBSFN子帧, 并根据确定的 backhaul链 路上行子帧提前确定上行调度信息, 不调度 RN 自身服务的 UE 在 backhaul链路上行子帧内进行上行数据传输, 以避免上行传输沖突。
基于上述方法, 图 4为本发明资源调度***第一实施例的组成结构 示意图。 如图 4所示, 包括:
eNB41 , 用于分配用于进行 backhaul链路上行传输的上行子帧以及 用于进行 backhaul链路下行传输的下行子帧,并将所述 backhaul链路上 行子帧和下行子帧的分配信息通知给 RN42;
RN42, 用于接收 eNB41通知的 backhaul链路上行子帧和下行子帧 的分配信息, 并确定 backhaul链路上行子帧位置和下行子帧位置, 将所 述 backhaul链路下行子帧配置为 MBSFN子帧, 并不调度自身服务的 图 5为本发明 eNB第一实施例的组成结构示意图。如图 5所示, 包 括:
第一分配单元 51 ,用于分配用于进行 backhaul链路上行传输的上行 子帧以及用于进行 backhaul链路下行传输的下行子帧;
第一通知单元 52,用于将 backhaul链路上行子帧和下行子帧的分配 信息通知给 RN, 以便所述 RN不调度自身服务的 UE在所述 backhaul 链路上行子帧内进行上行数据传输, 并将 backhaul链路下行子帧配置为 MBSFN子帧。
图 6为本发明 RN第一实施例的组成结构示意图。 如图 6所示, 包 括:
第一接收单元 61 , 用于接收 eNB通知的用于 backhaul链路上行传 输的上行子帧和用于 backhaul链路下行传输的下行子帧的分配信息; 第一确定单元 62,用于根据接收到的 backhaul链路上行子帧和下行 子帧的分配信息确定 backhaul链路上行子帧位置和下行子帧位置; 第一控制单元 63 , 用于将确定的 backhaul链路下行子帧配置为 MBSFN子帧, 并不调度自身服务的 UE在所述 backhaul链路上行子帧 内进行上行数据传输。
图 4 ~ 6所示***和装置实施例的具体工作流程请参照图 3所示方 法实施例中的相应说明, 此处不再赘述。
采用图 3 ~ 6所示方案后, 由 eNB将分配的用于进行 backhaul链路 上行传输的上行子帧和用于进行 backhaul链路下行传输的下行子帧通知 给 RN, 这样, 后续过程中, RN即可将 backhaul链路下行子帧配置为 MBSFN子帧, 并不调度自身服务 UE在 backhaul链路上行子帧进行上 行数据传输, 以避免造成上行传输沖突。
但是, 上述方案在实际应用中也会存在一定的问题, 即由于需要将 用于 backhaul链路上行传输的上行子帧以及用于 backhaul链路下行传输 的下行子帧均通知给 RN, 因此信令开销会比较大, 特别是在采用 FDD 模式的情况下。
为此, 本发明所述方案中提出: eNB分配用于进行 backhaul链路上 行传输的上行子帧以及用于进行 backhaul链路下行传输的下行子帧, 并 将 backhaul链路上行子帧或下行子帧的分配信息通知给 RN, 以便 RN 根据预定义的定时关系确定未通知的 backhaul链路下行子帧或上行子 帧。
图 7为本发明资源调度方法第二实施例的流程图。 如图 7所示, 包 括以下步骤:
步骤 701 : eNB分配用于进行 backhaul链路上行传输的上行子帧以 及用于进行 backhaul链路下行传输的下行子帧,并将 backhaul链路上行 子帧或下行子帧的分配信息通知给 RN。
eNB 如何分配用于 backhaul 链路上行传输的上行子帧以及用于 backhaul链路下行传输的下行子帧为现有技术, 不再赘述。
本实施例中, eNB只需将所分配的 backhaul链路子帧中的一种, 即 用于 backhaul链路上行传输的上行子帧或用于 backhaul链路下行传输的 分配信息通知给 RN, 具体来说, 可以通过高层信令或广播消息通知给 RN, 其中高层信令包括但不限于 RRC信令。
步骤 702: RN接收 eNB通知的用于 backhaul链路上行传输的上行 子帧或用于 backhaul链路下行传输的下行子帧的分配信息, 并根据所述 分配信息确定所通知的 backhaul链路上行子帧位置或下行子帧位置。
本实施例中, 假设 eNB通过 bitmap的方式通知 backhaul链路上行 子帧或下行子帧的分配信息, 那么, RN可将 bitmap中设置为 1的比特 位对应的位置确定为所通知的 backhaul链路上行子帧或下行子帧位置。
步骤 703: RN根据确定的 backhaul链路上行子帧位置或下行子帧 位置, 以及预定义的定时关系确定未通知的 backhaul链路下行子帧或上 行子帧。
这里所提到的预定义的定时关系, 包括发送上行调度信息的下行子 帧与对应的发送 PUSCH 的上行子帧之间的 HARQ定时关系, 或发送 的 HARQ 定时关系, 或发送 PUSCH 的上行子帧与对应的发送下行
ACK/NACK反馈的下行子帧之间的 HARQ关系。
在 backhaul链路上,上行调度信息由 eNB在下行子帧发送,相应的
PUSCH由 RN在上行子帧发送; PDSCH由 eNB在下行子帧发送, 对应 的 ACK/NACK反馈由 eNB在上行子帧发送; PUSCH由 RN在上行子帧 发送, 对应的 ACK/NACK由 eNB在下行子帧发送。
上述几种定时关系均为现有技术中已经规定好的, 比如:
对于 FDD模式, 如果在子帧 n内发送 PDSCH或 PUSCH, 则在子 帧 n+4内反馈 ACK/NACK; 如果在子帧 n内发送上行调度信息, 则在 子帧 n+4内发送 PUSCH等。 也就是说, 在 FDD模式下, 无论上述哪种 定时关系,上下行子帧的位置始终只相差 4ms (每个子帧的长度为 1ms ) , 所以 RN可根据上述任一定时关系确定未通知的用于 backhaul链路上行 传输的上行子帧或用于 backhaul链路下行传输的下行子帧。 通常, 子帧 0、 4、 5和 9不能被配置为用于 backhaul链路下行传输的下行子帧, 即 MBSFN子帧。
对于 TDD模式, ACK/NACK的反馈位置以及上行调度位置等均与 上下行时序配置有关, 比如:
如果在子帧 n内反馈 ACK/NACK,则对应的发送 PDSCH的子帧为 n-k, k的取值如表一所示:
Figure imgf000016_0001
表一 ACK/NACK和 PDSCH的定时关系
即如果在子帧 2内反馈 ACK/NACK, 则对应的发送 PDSCH的子 帧为 2-6 (假设选用配置方式 0 ) , 即子帧 2所在无线帧之前的一个无线 帧内的第 6个子帧。 需要说明的是, 表一中共提供了 7种配置方式(通 常 0和 5不用) , 在实际应用中, 具体选用哪种配置方式可根据实际需 要而定, 后续类似情况不再赘述。 如果在子帧 n内发送上行调度信息,则对应的发送 PUSCH的子帧, 即被调度的上行子帧为 n+k, k的取值如表二所示:
Figure imgf000017_0001
表二发送上行调度信息的下行子帧与被调度的上行子帧的定时关系 如果在子帧 n调度 PUSCH, 则对应的发送 ACK/NACK的子帧为 n+k, k的取如表三所示:
Figure imgf000017_0002
表三 PUSCH与 ACK/NACK的定时关系
本实施例中,可将需要应用的上述三个表格中的一个保存在 RN中, 然后 RN利用提取出的信息进行查表,从而确定出未通知的用于 backhaul 链路下行传输的下行子帧或用于 backhaul链路上行传输的上行子帧。
由于对于 FDD模式来说, 上行子帧与下行子帧之间的位置是固定 的, 所以 RN可直接将与所通知的用于 backhaul链路上行传输的上行子 帧相差四个子帧的位置确定为未通知的用于 backhaul链路下行传输的下 行子帧; 同样, 将与所通知的用于 backhaul链路下行传输的下行子帧相 差四个子帧的位置确定为未通知的用于 backhaul链路上行传输的上行子 帧。
但对于 TDD模式, 则需要通过查询具体的表格来确定相应的上下 行子帧, 通常, 子帧 0、 1、 5和 6不能被配置为用于 backhaul链路下行 传输的下行子帧, 即 MBSFN子帧。 RN在确定 eNB通知的 backhaul链 路上行子帧或下行子帧后, 根据选定的表格进行查找, 则能确定未通知 的 backhaul链路下行子帧或上行子帧。
在 FDD模式下,假设 eNB分配每个无线帧的下行子帧 3为 backhaul 链路下行子帧, 则根据 FDD模式下的 HARQ定时关系, 可确定每个无 线帧的子帧 7为 backhaul链路上行子帧, 这种子帧配置方式对 access链 路的 HARQ定时关系没有影响。
在 TDD模式配置 1 下, 假设 eNB 分配每个无线帧的子帧 4 为 backhaul链路下行子帧, 采用发送上行调度信息的下行子帧与对应的发 送 PUSCH的上行子帧之间的 HARQ定时关系, 或发送 PDSCH的下行 关系, 都可以确定每个无线帧的子帧 8为 backhaul链路上行子帧。
需要说明的是, 上述 FDD和 TDD的上下行子帧分配仅为举例, 具 体的分配包括但与限于上述两种方式。
基于上述方法, 本发明同时提供了一种资源调度***, 包括: eNB , 用于分配用于进行 backhaul 链路上行传输的上行子帧以及用于进行 backhaul链路下行传输的下行子帧, 并将所述 backhaul链路上行子帧或 下行子帧的分配信息通知给 RN;
所述 RN, 用于用于接收所述 eNB通知的 backhaul链路上行子帧或 下行子帧的分配信息, 根据所述分配信息确定所通知的 backhaul链路上 行子帧位置或下行子帧位置, 并根据预定义的定时关系确定未通知的 backhaul链路下行子帧或上行子帧。
其中: 图 8为本发明 eNB第二实施例的组成结构示意图。 如图 12 所示, 包括:
第二分配单元 81 ,用于分配用于进行 backhaul链路上行传输的上行 子帧以及用于进行 backhaul链路下行传输的下行子帧; 分配信息通知给 RN, 以便所述 RN根据预定义的定时关系确定未通知 的 backhaul链路下行子帧或上行子帧。
图 9为本发明 RN第二实施例的组成结构示意图。 如图 9所示, 包 括:
第二接收单元 91 , 用于接收 eNB通知的用于 backhaul链路上行传 输的上行子帧或用于 backhaul链路下行传输的下行子帧的分配信息; 第二确定单元 92, 用于根据所述分配信息确定所通知的 backhaul 链路上行子帧或下行子帧位置, 并根据预定义的定时关系确定未通知的 backhaul链路下行子帧或上行子帧。
采用图 7 ~ 9所述方案后, eNB只需将分配的用于 backhaul链路上 行传输的上行子帧或用于 backhaul链路下行传输的下行子帧中的一种通 知给 RN, 后续 RN可根据接收到的通知消息以及自身预先保存的预定 义的定时关系, 自行确定出未通知的用于 backhaul链路下行传输的下行 子帧或用于 backhaul链路上行传输的上行子帧,从而无需同时通知所配 置的上下行两种子帧, 降低了信令开销。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡 在本发明的精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均 应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种资源调度方法, 其特征在于, 包括:
基站 eNB分配用于进行回程 backhaul链路上行传输的上行子帧以及 用于进行 backhaul链路下行传输的下行子帧,并将所述 backhaul链路上 行子帧和下行子帧的分配信息通知给中继节点 RN, 以便所述 RN不调 度自身服务的用户终端 UE在所述 backhaul链路上行子帧内进行上行数 据传输, 并将所述 backhaul链路下行子帧配置为多播单频网络 MBSFN 子帧。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述 eNB 将所述 backhaul链路上行子帧和下行子帧的分配信息通知给 RN包括:
所述 eNB将所述 backhaul链路上行子帧位置信息和下行子帧位置信 息通知给所述 RN。
3、 根据权利要求 1 所述的方法, 其特征在于, 所述 eNB 将所述 backhaul链路上行子帧和下行子帧的分配信息通知给 RN包括:
当所述 backhaul链路上行子帧和下行子帧是预定义的子帧分配集合 中的子集时, eNB将所述 backhaul链路上行子帧和下行子帧在所述预定 义的子帧分配集合中的索引值通知给所述 RN。
4、 根据权利要求 1 所述的方法, 其特征在于, 所述 eNB 将所述 backhaul链路上行子帧和下行子帧的分配信息通知给 RN包括:
所述 eNB通过高层信令或广播消息将所述 backhaul链路上行子帧和 下行子帧的分配信息通知给所述 RN。
5、 根据权利要求 1 ~ 4中任一项所述的方法, 其特征在于, 该方法 进一步包括:
所述 eNB根据 backhaul链路质量和 backhaul链路数据重新分配 backhaul链路上行子帧和下行子帧, 并将新的 backhaul链路上行子帧和 下行子帧的分配信息通知给所述 RN。
6、 一种资源调度方法, 其特征在于, 包括:
中继节点 RN接收基站 eNB通知的用于回程 backhaul链路上行传输 的上行子帧和用于 backhaul链路下行传输的下行子帧的分配信息;
所述 RN根据所述分配信息确定 backhaul链路上行子帧位置和下行 子帧位置;
所述 RN 将所述 backhaul 链路下行子帧配置为多播单频网络 MBSFN子帧, 并不调度自身服务的用户终端 UE在所述 backhaul链路 上行子帧内进行上行数据传输。
7、 根据权利要求 6所述的方法, 其特征在于, 所述 RN接收 eNB 通知的用于 backhaul链路上行传输的上行子帧和用于 backhaul链路下行 传输的下行子帧的分配信息包括:
所述 RN接收所述 eNB通知的所述 backhaul链路上行子帧位置信息 和下行子帧位置信息。
8、 根据权利要求 6所述的方法, 其特征在于, 所述 RN接收 eNB 通知的用于 backhaul链路上行传输的上行子帧和用于 backhaul链路下行 传输的下行子帧的分配信息包括:
当所述 backhaul链路上行子帧和下行子帧为预定义的子帧分配集合 中的子集时,所述 RN接收所述 eNB通知的所述 backhaul链路上行子帧 和下行子帧在所述预定义的子帧分配集合中的索引值。
9、 根据权利要求 6所述的方法, 其特征在于, 所述 RN接收 eNB 通知的用于 backhaul链路上行传输的上行子帧和用于 backhaul链路下行 传输的下行子帧的分配信息包括:
所述 RN 接收所述 eNB 通过高层信令或广播消息通知的所述 backhaul链路上行子帧和下行子帧的分配信息。
10、 根据权利要求 6 ~ 9 中任一项所述的方法, 其特征在于, 该方 法进一步包括:
所述 RN接收所述 eNB发送的重新分配的 backhaul链路上行子帧和 下行子帧的分配信息, 并再次确定 backhaul链路上行子帧位置和下行子 帧位置。
11、 一种资源调度***, 其特征在于, 包括:
基站 eNB ,用于分配用于进行回程 backhaul链路上行传输的上行子 帧以及用于进行 backhaul链路下行传输的下行子帧, 并将所述 backhaul 链路上行子帧和下行子帧的分配信息通知给中继节点 RN;
所述 RN, 用于接收所述 eNB通知的 backhaul链路上行子帧和下行 子帧的分配信息, 并确定 backhaul链路上行子帧位置和下行子帧位置, 将所述 backhaul链路下行子帧配置为多播单频网络 MBSFN子帧, 并不 调度自身服务的用户终端 UE在所述 backhaul链路上行子帧内进行上行 数据传输。
12、 一种基站 eNB , 其特征在于, 包括:
第一分配单元, 用于分配用于进行回程 backhaul链路上行传输的上 行子帧以及用于进行 backhaul链路下行传输的下行子帧;
第一通知单元, 用于将所述 backhaul链路上行子帧和下行子帧的分 配信息通知给中继节点 RN, 以便所述 RN不调度自身服务的用户终端 UE 在所述 backhaul 链路上行子帧内进行上行数据传输, 并将所述 backhaul链路下行子帧配置为多播单频网络 MBSFN子帧。
13、 一种中继节点 RN, 其特征在于, 包括:
第一接收单元,用于接收基站 eNB通知的用于回程 backhaul链路上 行传输的上行子帧和用于 backhaul链路下行传输的下行子帧的分配信 息;
第一确定单元, 用于根据接收到的 backhaul链路上行子帧和下行子 帧的分配信息确定 backhaul链路上行子帧位置和下行子帧位置;
第一控制单元, 用于将所述 backhaul链路下行子帧配置为多播单频 网络 MBSFN子帧, 并不调度自身服务的用户终端 UE在所述 backhaul 链路上行子帧内进行上行数据传输。
14、 一种资源调度方法, 其特征在于, 该方法包括:
基站 eNB分配用于进行回程 backhaul链路上行传输的上行子帧以及 用于进行 backhaul链路下行传输的下行子帧,并将所述 backhaul链路上 行子帧或下行子帧的分配信息通知给中继节点 RN, 以便所述 RN根据 预定义的定时关系确定未通知的 backhaul链路下行子帧或上行子帧。
15、 如权利要求 14 所述的方法, 其特征在于, 所述 eNB 将所述 backhaul链路上行子帧或下行子帧的分配信息通知给 RN包括:
所述 eNB通过高层信令或广播消息将所述 backhaul链路上行子帧或 下行子帧的分配信息通知给所述 RN。
16、 如权利要求 14或 15所述的方法, 其特征在于, 该方法进一步 包括:
所述 eNB根据 backhaul链路质量和 backhaul链路数据传输量重新 分配 backhaul链路上行子帧和下行子帧,并将新的 backhaul链路上行子 帧或下行子帧的分配信息通知给所述 RN。
17、 一种资源调度方法, 其特征在于, 该方法包括:
中继节点 RN接收基站 eNB通知的用于回程 backhaul链路上行传输 的上行子帧或用于 backhaul链路下行传输的下行子帧的分配信息, 根据 接收到的分配信息确定所通知的 backhaul链路上行子帧或下行子帧位 置; 位置, 以及 预定义的定时关系确定未通知的 backhaul链路下行子帧或上行子帧。
18、 如权利要求 17所述的方法, 其特征在于, 所述 RN接收 eNB 通知的用于 backhaul链路上行传输的上行子帧或用于 backhaul链路下行 传输的下行子帧的分配信息包括:
所述 RN 接收所述 eNB 通过高层信令或广播消息通知的所述 backhaul链路上行子帧或下行子帧的分配信息。
19、 如权利要求 17 所述的方法, 其特征在于, 所述预定义的定时 关系包括:
发送上行调度信息的下行子帧与对应的发送物理上行共享信道 PUSCH的上行子帧之间的混合自动重传请求 HARQ定时关系,
或发送物理下行共享信道 PDSCH的下行子帧与对应的发送上行确
Figure imgf000025_0001
行子帧之间的 HARQ关系。
20、 根据权利要求 17或 18所述的方法, 其特征在于, 该方法进一 步包括:
所述 RN接收所述 eNB发送的重新分配的 backhaul链路上行子帧或 下行子帧的分配信息, 并再次确定 backhaul链路上行子帧或下行子帧位
21、 一种资源调度***, 其特征在于, 包括:
基站 eNB ,用于分配用于进行回程 backhaul链路上行传输的上行子 帧以及用于进行 backhaul链路下行传输的下行子帧, 并将所述 backhaul 链路上行子帧或下行子帧的分配信息通知给中继节点 RN;
所述 RN, 用于接收所述 eNB通知的 backhaul链路上行子帧或下行 子帧的分配信息, 根据所述分配信息确定所通知的 backhaul链路上行子 帧位置或下行子帧位置, 并根据预定义的定时关系确定未通知的 backhaul链路下行子帧或上行子帧。
22、 一种基站 eNB , 其特征在于, 包括:
第二分配单元, 用于分配用于进行回程 backhaul链路上行传输的上 行子帧以及用于进行 backhaul链路下行传输的下行子帧; 配信息通知给中继节点 RN, 以便所述 RNRN根据预定义的定时关系确 定未通知的 backhaul链路下行子帧或上行子帧。
23、 一种中继节点 RN, 其特征在于, 包括:
第二接收单元,用于接收基站 eNB通知的用于回程 backhaul链路上 行传输的上行子帧的或用于 backhaul链路下行传输的下行子帧的分配信 息;
第二确定单元, 用于根据所述分配信息确定所通知的 backhaul链路 上行子帧位置或下行子帧位置, 并根据预定义的定时关系确定未通知的 backhaul链路下行子帧或上行子帧。
PCT/CN2010/071864 2009-04-17 2010-04-19 资源调度方法和***以及基站和中继节点 WO2010118705A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020117027401A KR101224098B1 (ko) 2009-04-17 2010-04-19 리소스 스케줄링 방법 및 시스템, 기지국 및 중계 노드
EP10764118.5A EP2421299B1 (en) 2009-04-17 2010-04-19 Resource scheduling method and system, base station and relay node
US13/275,285 US20120044852A1 (en) 2009-04-17 2011-10-17 Resource Scheduling Method and System, Base Station and Relay Node

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200910082030.0 2009-04-17
CN200910082030A CN101867944B (zh) 2009-04-17 2009-04-17 资源调度方法和***以及基站和中继节点
CN200910082260.7 2009-04-20
CN200910082260A CN101867406B (zh) 2009-04-20 2009-04-20 子帧位置获取方法和***以及基站和中继节点

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/275,285 Continuation US20120044852A1 (en) 2009-04-17 2011-10-17 Resource Scheduling Method and System, Base Station and Relay Node

Publications (1)

Publication Number Publication Date
WO2010118705A1 true WO2010118705A1 (zh) 2010-10-21

Family

ID=42982136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071864 WO2010118705A1 (zh) 2009-04-17 2010-04-19 资源调度方法和***以及基站和中继节点

Country Status (4)

Country Link
US (1) US20120044852A1 (zh)
EP (1) EP2421299B1 (zh)
KR (1) KR101224098B1 (zh)
WO (1) WO2010118705A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011018722A1 (en) * 2009-08-14 2011-02-17 Nokia Corporation Flexible ways to indicate downlink/uplink backhaul subframe configurations in a relay system
WO2012110957A1 (en) 2011-02-14 2012-08-23 Telefonaktiebolaget L M Ericsson (Publ) Harq handling at relay node reconfiguration
CN110167174A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种中继传输方法及装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8861424B2 (en) * 2009-07-06 2014-10-14 Qualcomm Incorporated Downlink control channel for relay resource allocation
CN102378374B (zh) * 2010-08-23 2014-10-08 华为技术有限公司 一种回程链路资源的分配方法和设备
GB2498571A (en) 2012-01-20 2013-07-24 Intellectual Ventures Holding 81 Llc Base station able to communicate with a second device type on a narrow subset frequency band contained within a first main band
US20150009923A1 (en) * 2012-02-07 2015-01-08 Nokia Corporation Method and Apparatus to Report and Handle Buffer Status for User Equipment Working in Inter-Site Carrier Aggregation Mode
KR20140142231A (ko) 2012-03-26 2014-12-11 엘지전자 주식회사 무선 통신 시스템에서 무선 자원의 동적 자원 변경을 위한 harq 수행 방법 및 이를 위한 장치
US9801164B2 (en) 2013-04-18 2017-10-24 Lg Electronics Inc. Methods and devices for transmitting scheduling request in wireless access system
US10568111B2 (en) 2013-06-26 2020-02-18 Lg Electronics Inc. Method for supporting discontinuous reception and apparatus therefor in wireless communication system supporting reconfiguration of wireless resource
CN103338097B (zh) * 2013-07-23 2016-05-25 北京中科晶上科技有限公司 Harq数据处理的方法与***
CN106165469B (zh) * 2014-02-27 2019-07-12 华为技术有限公司 基站、小基站和通信链路资源的调度方法
KR102347405B1 (ko) 2015-01-19 2022-01-06 삼성전자주식회사 무선 통신 시스템에서 협력 전송을 위한 스케줄링 장치 및 방법
US10383136B2 (en) * 2015-08-24 2019-08-13 Qualcomm Incorporated Methods an apparatus for backhaul and access link scheduling in integrated access and backhaul network and synchronized networks
US9894679B2 (en) * 2016-03-18 2018-02-13 Qualcomm Incorporated Dynamic adjustment of downlink and uplink traffic scheduling
US10841942B2 (en) * 2018-04-05 2020-11-17 Qualcomm Incorporated Scheduling and time-domain configuration in integrated access and backhaul
WO2021193178A1 (ja) * 2020-03-25 2021-09-30 京セラ株式会社 通信制御方法及び中継ユーザ装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2406018A (en) * 2003-09-09 2005-03-16 Motorola Inc Cellular communication system using repeaters with frequency shifting
US20070060050A1 (en) * 2005-09-14 2007-03-15 Samsung Electronics Co., Ltd. Apparatus and method for supporting multi-link in multi-hop relay cellular network
CN101106794A (zh) * 2006-07-10 2008-01-16 华为技术有限公司 用于宽带无线接入的中继转发方法
CN101106807A (zh) * 2006-07-12 2008-01-16 株式会社Ntt都科摩 一种基于中继器的蜂窝网络以及空分双工通信方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2628086T3 (es) * 2007-03-19 2017-08-01 Telefonaktiebolaget Lm Ericsson (Publ) Emisión de la información de retorno del estado del canal en un sistema de telecomunicación
US8284754B2 (en) * 2007-09-08 2012-10-09 Samsung Electronics Co., Ltd. Apparatus and method for determining time to response of retransmission in a multihop relay wireless communication system
KR20090078723A (ko) * 2008-01-15 2009-07-20 삼성전자주식회사 무선 이동 통신 시스템에서 복합 자동 재송신 요구 방식에 기반한 신호 송수신 방법
US9294219B2 (en) * 2008-09-30 2016-03-22 Qualcomm Incorporated Techniques for supporting relay operation in wireless communication systems
US9203564B2 (en) * 2008-10-20 2015-12-01 Qualcomm Incorporated Data transmission via a relay station in a wireless communication system
KR101584814B1 (ko) * 2008-12-23 2016-01-13 엘지전자 주식회사 무선통신 시스템에서 스케줄링 요청 전송방법 및 장치
WO2010107230A2 (en) * 2009-03-18 2010-09-23 Lg Electronics Inc. Method and apparatus for transmitting reference signal in wireless communication system
US9143282B2 (en) * 2009-03-20 2015-09-22 Telefonaktiebolaget L M Ericsson (Publ) Uplink hybrid-ARQ mechanism for cooperative base stations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2406018A (en) * 2003-09-09 2005-03-16 Motorola Inc Cellular communication system using repeaters with frequency shifting
US20070060050A1 (en) * 2005-09-14 2007-03-15 Samsung Electronics Co., Ltd. Apparatus and method for supporting multi-link in multi-hop relay cellular network
CN101106794A (zh) * 2006-07-10 2008-01-16 华为技术有限公司 用于宽带无线接入的中继转发方法
CN101106807A (zh) * 2006-07-12 2008-01-16 株式会社Ntt都科摩 一种基于中继器的蜂窝网络以及空分双工通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2421299A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011018722A1 (en) * 2009-08-14 2011-02-17 Nokia Corporation Flexible ways to indicate downlink/uplink backhaul subframe configurations in a relay system
WO2012110957A1 (en) 2011-02-14 2012-08-23 Telefonaktiebolaget L M Ericsson (Publ) Harq handling at relay node reconfiguration
US8958364B2 (en) 2011-02-14 2015-02-17 Telefonaktiebolaget L M Ericsson (Publ) HARQ handling at relay node reconfiguration
CN110167174A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种中继传输方法及装置

Also Published As

Publication number Publication date
US20120044852A1 (en) 2012-02-23
EP2421299B1 (en) 2015-09-09
KR101224098B1 (ko) 2013-01-21
EP2421299A1 (en) 2012-02-22
KR20120005515A (ko) 2012-01-16
EP2421299A4 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
WO2010118705A1 (zh) 资源调度方法和***以及基站和中继节点
US10966199B2 (en) Method and apparatus for receiving or transmitting data
US20180255533A1 (en) Multiband-operation in wireless communication systems
CA2678411C (en) Data transmission and power control in a multihop relay communication system
AU2010284941B2 (en) Controlling a transmission of information in a wireless communication network with a relay node
US9794803B2 (en) System and methods of dynamic TDD configurations
US20100316096A1 (en) Method and apparatus for synchronous harq operation and interference avoidance
US10004068B2 (en) Method, device and system for uplink resource allocation
WO2007012264A1 (fr) Procédé de transmission pour système de communication mobile en mode duplex à répartition dans le temps
KR20160018288A (ko) 단말간 통신을 지원하는 무선 통신 시스템에서 신호의 송수신 방법 및 장치
CN101888661A (zh) 一种无线通信方法、***及装置
JP5514192B2 (ja) ネットワークにおいて通信するための方法及びそのための無線局
CN101867944B (zh) 资源调度方法和***以及基站和中继节点
KR20170088287A (ko) 데이터 송수신 방법 및 장치
WO2014000689A1 (zh) Tdd上下行配置的传输反馈方法及装置
WO2012130005A1 (zh) Tdd***中回程链路上行反馈信息的处理方法与***
WO2010070385A1 (en) Relay node sub-frame allocation
KR20170100110A (ko) 슬롯 기반 티티아이의 액세스 링크의 스케줄링 방법 및 그 장치
KR20150012805A (ko) 무선 통신 시스템에서 장치 간 통신을 위한 소프트 버퍼 관리 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 8405/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010764118

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117027401

Country of ref document: KR

Kind code of ref document: A