WO2010118558A1 - 中继用户选择以及下行资源分配的方法、装置及设备 - Google Patents

中继用户选择以及下行资源分配的方法、装置及设备 Download PDF

Info

Publication number
WO2010118558A1
WO2010118558A1 PCT/CN2009/000409 CN2009000409W WO2010118558A1 WO 2010118558 A1 WO2010118558 A1 WO 2010118558A1 CN 2009000409 W CN2009000409 W CN 2009000409W WO 2010118558 A1 WO2010118558 A1 WO 2010118558A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
mobile terminal
relay
specific reference
relay station
Prior art date
Application number
PCT/CN2009/000409
Other languages
English (en)
French (fr)
Inventor
张晓博
尤明礼
Original Assignee
上海贝尔股份有限公司
阿尔卡特朗讯
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海贝尔股份有限公司, 阿尔卡特朗讯 filed Critical 上海贝尔股份有限公司
Priority to JP2012505024A priority Critical patent/JP5814225B2/ja
Priority to US13/264,540 priority patent/US9094093B2/en
Priority to BRPI0925013-1A priority patent/BRPI0925013B1/pt
Priority to KR1020117027147A priority patent/KR101274458B1/ko
Priority to EP09843192.7A priority patent/EP2421307A4/en
Priority to PCT/CN2009/000409 priority patent/WO2010118558A1/zh
Priority to CN200980155711.3A priority patent/CN102301797B/zh
Publication of WO2010118558A1 publication Critical patent/WO2010118558A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • H04B7/2606Arrangements for base station coverage control, e.g. by using relays in tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Definitions

  • the present invention relates to a relay communication system, and more particularly to a relay user selection and downlink resource allocation technique in a relay communication system. Background technique
  • the existing LTE system uses a Cell-specific Reference Signal (CRS) for downlink channel detection and demodulation.
  • CRS Cell-specific Reference Signal
  • the cell-specific reference signal covers all the bandwidth of the cell and is transmitted with the same power, and all users served by the cell know the cell-specific reference signal of the cell. Therefore, users can typically use cell-specific reference signals as channel estimates.
  • a cell-specific reference signal used by a user for channel detection includes not only cell-specific reference signals within its resource blocks, but also cell-specific other than its resource blocks.
  • Reference signal As shown in FIG. 1, a blank square indicates a resource unit of data, a square with a grid pattern indicates a resource unit of a cell-specific reference signal, a gray area indicates a resource block allocated to a user, and a square labeled 1 indicates the resource.
  • a cell-specific reference signal resource unit within a block, the blocks labeled 2, 3, 4 represent cell-specific reference signal resource elements adjacent to the resource block.
  • the set of cell-specific reference signals that the user can use in channel estimation includes the following: signals of resource elements labeled 1 and 2; signals of resource elements labeled 1 and 3; 2, 3 resource unit signals; signals labeled 1, 2, 3, 4 resource units; and so on.
  • a corresponding two-dimensional filtering algorithm can be used in the July 1998 paper "Robust Channel Estimation in OFDM Systems with Fast Dispersive Fading Channels ( Ye Li, LJ. Cimini, and N R. Sollenberger, Robust Channel Estimation For OFDM Systems with Rapid Dispersive Fading Channels, IEEE Trans. Commun., vol. 46, No. 7, pp. 902-915, July 1998)" found.
  • the cell-specific reference signal resource unit outside the resource block is contaminated by the cell-specific reference signal transmitted by the relay station, an error will occur in the channel estimation.
  • a transparent relay will be included in the LTE-A specification, 'that is, the relay needs to transmit a cell-specific reference signal in the same resource unit as the base station.
  • the relay station needs to transmit cell-specific reference signals and physical downlink control channels on all bandwidths for relaying user demodulation.
  • a cell-specific reference signal used by a user for channel estimation typically includes not only cell-specific reference signals within its resource blocks, but also cell-specific reference signals outside of its resource blocks to improve channel estimation performance.
  • a base station user not only receives the cell-specific reference signal from the base station, but also receives the cell-specific reference signal from the relay station.
  • the cell-specific reference signal used by the user to demodulate the received data may include the cell-specific reference signal transmitted by the overlapping base station and the cell-specific reference signal transmitted by the relay station, thereby causing a decrease in the reception demodulation performance.
  • a primary object of the present invention is to solve the above problems in the prior art.
  • a user who directly serves a base station is referred to as a base station user
  • a user who serves the relay station is referred to as a relay user or a relay station user.
  • the cell-specific reference signal transmitted by the base station is simply referred to as a base station cell-specific reference signal
  • the cell-specific reference signal transmitted by the relay station is simply referred to as a relay station cell-specific reference signal.
  • the base station will transmit cell-specific reference signals in all of its frequency bands, and there are multiple candidates for the bandwidth occupied by the cell-specific reference signals transmitted by the relay stations.
  • the bandwidth occupied by the cell-specific reference signal and data signal of the relay station may include the following three situations:
  • Case 2 the data signal of the relay station occupies part of the bandwidth, and the cell-specific reference signal of the relay station occupies the entire bandwidth; at this time, the cell-specific reference signals of the base station and the relay station overlap on the entire bandwidth, so that the relay user can perform channel on all bandwidths. estimate; Case 3, both the data signal of the relay station and the cell-specific reference signal occupy only part of the bandwidth allocated to the relay station.
  • the frequency band occupied by the cell-specific reference signal and data signal of the relay station may also include the following three situations:
  • both the data signal of the relay station and the cell-specific reference signal occupy only part of the frequency band allocated to the relay station.
  • the relay user uses the overlapping cell-specific reference signals for channel estimation and detection; if the base station and the relay station cooperate to transmit downlink data for the relay users, no interference occurs; if the base station does not transmit the coordinated data, interference occurs. . However, because the user is close to the relay station, the base station cell-specific reference signal power is lower relative to the relay station cell-specific reference signal, so the interference is not very significant.
  • h 2 is difficult to ignore, and using h to resume transmitting data s will produce an unacceptable error.
  • the present invention proposes a method and apparatus for relaying user selection and downlink resource allocation in a relay communication system.
  • a method for relaying user selection and downlink resource allocation in a base station of a relay communication system wherein the base station is in accordance with its cell-specific reference signal pattern and/or The receiving demodulation scheme of the mobile terminal determines the relay user and performs downlink resource allocation.
  • a processing apparatus for relaying user selection and downlink resource allocation in a base station of a relay communication system, wherein the processing apparatus is based on a cell-specific reference of the base station
  • the signal pattern and/or the receive demodulation scheme of the mobile terminal determines the relay user and performs downlink resource allocation.
  • a base station for a relay communication system comprising the processing device of the second aspect of the invention.
  • FIG. 1 shows an exemplary pattern of a cell-specific reference signal used for channel estimation
  • FIG. 2 shows a schematic diagram of a mobile terminal receiving a cell-specific reference signal from a base station and a relay station;
  • FIG. 3 is a schematic diagram showing a transition of a channel parameter solved by a mobile terminal between a base station frequency band and a relay station frequency band;
  • FIG. 4 shows a schematic diagram of a relay communication system according to an embodiment of the present invention
  • FIG. 5 shows a base station in a relay communication system for use in a base station of a relay communication system and a relay station thereof according to an embodiment of the present invention.
  • a flow chart of a method for selecting a service device for a mobile terminal 6 shows a flow chart of a method for performing downlink resource allocation in a base station of a relay communication system according to an embodiment of the present invention;
  • FIG. 7 is a diagram showing a cell-specific reference signal in a downlink frequency band of a relay station according to an embodiment of the present invention.
  • FIG. 8 is a diagram showing a transition of a channel parameter solved by a mobile terminal between a base station band and a relay station band, according to an embodiment of the present invention
  • FIG. 9 is a flow chart showing a method for performing downlink resource allocation in a base station of a relay communication system according to an embodiment of the present invention.
  • Figure 10 is a block diagram showing a downlink resource allocation according to an embodiment of the present invention
  • Figure 11 is a block diagram showing the structure of a processing device in a base station for a relay communication system according to an embodiment of the present invention
  • Figure 12 is a block diagram showing the structure of a processing device in a base station for a relay communication system according to an embodiment of the present invention
  • Figure 13 is a block diagram showing the structure of a processing device in a base station for a relay communication system according to an embodiment of the present invention
  • the relay communication system in this embodiment includes a base station 10, a relay station 20, a relay station 21, and a mobile terminal 30.
  • the relay stations 20, 21 are located within the service range of the base station 10. Since the transmission power of the relay station is usually lower than that of the base station, the service range of the relay stations 20, 21 is smaller than that of the base station 10.
  • FIG. 5 is a flow chart showing a method for selecting a service device for a mobile terminal from a base station and one of its relay stations in a base station of a relay communication system in accordance with an embodiment of the present invention.
  • the relay station 20 based on the base station 10
  • the mobile terminal 30 This embodiment will be explained.
  • the base station 10 will determine its received power from the mobile terminal 30 and the received power from the mobile terminal 30 of the relay station 20.
  • the base station 10 acquires the received power from the mobile terminal 30 of the relay station 20 through the interaction with the control information between the relay stations 20.
  • the base station 10 compares the difference between the power received from the mobile terminal 30 and the power received from the mobile terminal 30 by the relay station 20 with a threshold value.
  • the threshold value herein is determined based on the cell-specific reference signal pattern of the base station 10 and/or the reception demodulation scheme of the mobile terminal 30.
  • the selection of the relay user takes into account the received power from the mobile terminal 30 of the base station 10 and the relay station 20.
  • the relay user selection in the prior art does not consider the cell-specific reference signal pattern of the base station 10 and/or the reception demodulation scheme of the mobile terminal 30, especially when the mobile terminal 30 receives the demodulation based on the cell-specific reference signal.
  • the threshold value in step S12 includes a tolerance item which is determined according to the cell-specific reference signal pattern of the base station 10 and/or the reception demodulation scheme of the mobile terminal 30.
  • This tolerance term relates to the receive demodulation scheme of the mobile terminal 30, and in particular to the channel detection scheme employed by the mobile terminal 30 based on the cell-specific reference signal.
  • the service range of the relay station 20 can be expanded compared to the service range in the prior art, so that the interference caused by the overlap of the cell-specific reference signals received by the base station users close to the relay station service range can be reduced.
  • step S13 the base station 10 selects the service device of the mobile terminal 30 in accordance with the comparison result of step S12. Specifically, in sub-step S131, if the difference between the power received by the base station 10 from the mobile terminal 30 and the power received by the relay station 20 from the mobile terminal 30 is greater than the threshold, the base station 10 is selected as the mobile terminal.
  • the service device of 30 in sub-step S132, if the difference between the power received by the base station 10 from the mobile terminal 30 and the power received by the relay station 20 from the mobile terminal 30 is less than or equal to the threshold value, the relay station 20 is selected. It is a service device of the mobile terminal 30.
  • the base station 10 will also perform a step of comparing the power received by the plurality of relay stations from the mobile terminal 30 and determining which of the received relays having the highest power from the mobile terminal 30. . Specifically, for example, the base station 10 acquires the received power from the mobile terminal 30 of the relay station 20 and the received power from the mobile terminal 30 of the relay station 21 through interaction with the control information between the relay stations 20, 21, and determines that the relay station 20 receives by comparison. The power from the mobile terminal 30 is higher than the received power from the mobile terminal 30 received by the relay station 21. Through steps S11 to S13, the base station 10 selects the serving device of the mobile terminal 30 among the base station 10 and the one of the received relays having the highest power from the mobile terminal 30.
  • the present embodiment further includes a step: the base station 10 will send a control command to the relay station 20, instructing the relay station 20 to transmit the cell specific in its downlink resource block using the same pattern as the cell-specific reference signal pattern of the base station 10. Reference signal.
  • the received power from the mobile terminal 30 of the base station 10 is determined according to the downlink transmit power derivation of the downlink signal sent by the base station 10 to the mobile terminal 30, and the received power from the mobile terminal 30 of the relay station 20 is ⁇ It is determined based on the downlink transmission power derivation of the downlink signal transmitted by the relay station 20 to the mobile terminal 30.
  • a back derivation can be used in a TDD system because parameters such as upstream channel response and path loss in the TDD system can be considered identical to parameters such as downlink channel response and path loss.
  • FIG. 6 is a flow chart showing a method of performing downlink resource allocation in a base station of a relay communication system according to an embodiment of the present invention.
  • 7 is a diagram showing a cell-specific reference signal in a downlink frequency band of a relay station, in which a blank square represents a resource unit of data, and a square with a grid represents a resource unit of a cell-specific reference signal, according to an embodiment of the present invention.
  • a square with a dot pattern indicates a blank resource unit, and a square with vertical stripes indicates a resource unit of a relay-specific reference signal.
  • step S21 the base station 10 allocates a downlink frequency band to the relay station 20, This is shown, for example, in Figure 7.
  • the base station 10 determines a guard band in the downlink frequency band of the relay station 20 based on the cell-specific reference signal pattern of the base station 10 and/or the reception demodulation scheme of the mobile terminal in the cell. For example, as shown in Fig. 7, the guard band is located at the edge of the downlink band of the relay station 20.
  • step S23 the base station 10 instructs the relay station 20 to cancel the cell-specific reference signal of the base station 10 in its guard band when forwarding the downlink signal.
  • a square with a dot pattern and a number 2 in the guard band of the relay station 20 indicates blank resource units, which are originally used to transmit cell-specific reference signals, and the base station 10 will indicate that the relay station 20 is present. Cell-specific reference signal patterns for these resource elements are eliminated when forwarding downlink data.
  • the relay station 20 does not transmit any signals at these resource elements numbered 2 when forwarding downlink data.
  • the cell-specific reference signal used for channel detection includes cell-specific reference signals in resource elements labeled 1, 2, 3, and curve 1 and curve 2 in FIG. 8 respectively show the location of the cell-specific reference signal.
  • the channel parameters solved by the base station user will still be affected by the small amount of overlapping cell-specific reference signals in the frequency hopping band; if the base station user receives the channel in the receiving demodulation scheme If the cell-specific reference signal used in the detection includes the cell-specific reference signal in the resource unit labeled 1 and 2 and does not include the cell-specific reference signal in the resource unit labeled 3, the channel parameter solved by the base station user does not Subject to overlapping cell-specific reference signals.
  • the base station 10 further determines a minimum protection bandwidth according to a receiving demodulation scheme adopted by the mobile terminal in the cell, and the bandwidth of the guard band in the downlink frequency band of the relay station 20 is not less than the minimum protection. bandwidth.
  • the minimum guard bandwidth is equal to the maximum frequency interval between the cell-specific reference signal and its downlink resource block except for a downlink resource block used by the user for channel detection.
  • the base station 10 further performs a step, indicating The relay station 20 transmits a relay-specific reference signal in the guard band using a pattern different from the cell-specific reference signal pattern of the base station 10, the relay-specific reference signal being used for relay station downlink data demodulation.
  • the relay unit 20 transmits relay-specific reference signals in resource units marked with vertical stripes in its guard band, and these relay-specific reference signals are used by the mobile terminal to receive and demodulate data in the guard band.
  • relay station 20 may also transmit relay-specific reference signals in a pattern different from the cell-specific reference signal pattern of base station 10 throughout its downlink frequency band.
  • Figure 9 is a flow chart showing a method of performing downlink resource allocation in a base station of a relay communication system in accordance with one embodiment of the present invention.
  • Figure 10 shows a schematic diagram of downlink resource allocation in accordance with one embodiment of the present invention. The embodiment will be described below based on the base station 10, the relay station 20, the relay station 21, and the mobile terminal 30 in conjunction with Figs.
  • step S31 the base station 10 allocates a first frequency band for downlink transmission for one of its first relay stations, for example, the relay station 20.
  • the first frequency band marked by the horizontal stripes is assigned to the relay station 20 for downlink transmission.
  • step S32 the base station 10 allocates a second frequency band immediately adjacent to the first frequency band to the user remote from the first relay station, and the minimum width of the second frequency band is based on the cell-specific reference signal pattern of the base station 10 and/or the movement within the cell.
  • the terminal's receive demodulation scheme is determined.
  • the second frequency band marked by the diagonal stripes is assigned to the user who is away from the relay station 20.
  • the minimum bandwidth of the second frequency band is equal to the maximum frequency interval between the cell-specific reference signal and the downlink resource block except the user downlink resource block used for channel detection in a user's receiving demodulation scheme.
  • each relay station transmits a cell-specific reference signal only in the respective downlink frequency band
  • the user using the second frequency band is far away from the relay station 20
  • the user served by the user and the relay station 20 is affected by the overlapping cell-specific reference signals received during demodulation. It is relatively small.
  • the minimum bandwidth of the second frequency band is determined according to the reception demodulation scheme of the user in the cell
  • the cell-specific reference signal used when the user using the first frequency band performs channel detection does not exceed the range of the first frequency band and the second frequency band. For example, as shown in FIG.
  • the third frequency band is adjacent to the second frequency band on the other side opposite to the first frequency band, regardless of the third frequency band allocated to Users, users using the third frequency band and users using the first frequency band are not affected by cell-specific reference signals that overlap each other when receiving demodulation.
  • the user assigned to use the second frequency band may be a base station user or a relay station user.
  • the specific execution of step S32 is also different depending on the user assigned to use the second frequency band.
  • the base station 10 directly assigns the second frequency band to the relay station serving the user.
  • step S32 if the distance between the second relay stations of the base station 10 and the first relay station exceeds a threshold value, the second frequency band is allocated to the second relay station. For example, the distance between the relay station 21 and the relay station 20 exceeds a threshold value, and the base station 10 assigns the second frequency band to the relay station 21. This threshold is used to ensure that the cell-specific reference signals transmitted by the two relay stations have little effect on the receiving user's demodulation performance.
  • the base station 10 also needs to judge the condition of the user.
  • step S32 if a mobile terminal, such as the mobile terminal 30, the distance from the base station 10 is less than a distance threshold or the power received by the base station 10 from the read mobile terminal is greater than a power threshold, the base station 10 will The frequency is assigned to the mobile terminal.
  • Both the distance threshold and the power threshold are here to ensure that the cell-specific reference signal of the relay station 20 is sufficiently small to affect the reception demodulation performance of the user to whom the second frequency band is allocated. More specifically, both the distance threshold and the power threshold are determined based on the cell-specific reference signal pattern of the base station 10 and/or the receive demodulation scheme of the mobile terminal 30.
  • FIG. 11 is a block diagram showing the structure of a processing device in a base station for a relay communication system in accordance with one embodiment of the present invention.
  • the processing apparatus 100 in this embodiment includes: a first determining means 101, a first comparing means 102, and a selecting means 103.
  • the processing device 100 is disposed in the base station 10. This embodiment will be described below based on the base station 10, the relay station 20, the mobile terminal 30, and the processing device 100 in conjunction with FIG.
  • the first determining means 101 in the processing device 100 will determine the received power from the mobile terminal 30 of the base station 10 and the reception from the mobile terminal 30 of the relay station 20. Power. Among them, the first determining means 101 acquires the received power from the mobile terminal 30 of the relay station 20 by the interaction with the control information between the relay stations 20.
  • the first comparing means 102 in the processing device 100 compares the difference between the power received from the mobile terminal 30 and the power received by the relay station 20 from the mobile terminal 30, determined by the first determining means 101, with a gate. Limits are compared.
  • the threshold value herein is determined based on the cell-specific reference signal pattern of the base station 10 and/or the receive demodulation scheme of the mobile terminal 30.
  • the selection of the relay user takes into account the received power from the mobile terminal 30 of the base station 10 and the relay station 20.
  • the relay user selection in the prior art does not consider the cell-specific reference signal pattern of the base station 10 and/or the reception demodulation scheme of the mobile terminal 30, especially when the mobile terminal 30 receives the demodulation based on the cell-specific reference signal.
  • the threshold value adopted by the first comparing means 102 includes a tolerance term according to the cell-specific reference signal pattern of the base station 10 and/or the receiving demodulation of the mobile terminal 30.
  • the tolerance term relates to the receive demodulation scheme of the mobile terminal 30, and in particular to the channel detection scheme employed by the mobile terminal 30 based on the cell-specific reference signal.
  • the selection means 103 in the processing means 100 will select the service device of the mobile terminal 30 based on the comparison result of the first comparison means 102. Specifically, if the difference between the power received by the base station 10 from the mobile terminal 30 and the power received by the relay station 20 from the mobile terminal 30 is greater than the threshold value, the selecting device 103 selects the base station 10 as the service of the mobile terminal 30. The device 103 selects the relay station 20 as the service of the mobile terminal 30 if the difference between the power received by the base station 10 from the mobile terminal 30 and the power received by the relay station 20 from the mobile terminal 30 is less than or equal to the threshold value. device.
  • the processing device 100 is further The power received from the mobile terminal 30 by the plurality of relay stations is compared, and the received relay station having the highest power from the mobile terminal 30 is determined.
  • the first determining means 101 acquires the received power from the mobile terminal 30 of the relay station 20 and the received power from the mobile terminal 30 of the relay station 21 by the interaction with the control information between the relay stations 20, 21, by comparison
  • the power received from the mobile terminal 30 by the relay station 20 is higher than the received power from the mobile terminal 30 received by the relay station 21.
  • the processing means 100 selects the serving device of the mobile terminal 30 among the base station 10 and the one of the received relays having the highest power from the mobile terminal 30. .
  • the processing apparatus 100 in this embodiment further includes a first indication means for transmitting a control command to the relay station 20, instructing the relay station 20 to adopt the same cell-specific reference signal pattern as the base station 10 in its downlink resource block. The pattern to send a cell-specific reference signal.
  • the first determining apparatus 101 determines the received power from the mobile terminal 30 of the base station 10 according to the downlink transmit power derivation of the downlink signal sent by the base station 10 to the mobile terminal 30, and sends the downlink signal to the mobile terminal 30 according to the downlink of the downlink signal.
  • the transmit power derivation determines the received power from the mobile terminal 30 of the relay station 20.
  • such a back derivation can be used in a TDD system because parameters such as upstream channel response and path loss in the TDD system can be considered the same as parameters such as downlink channel response and path loss.
  • FIG. 12 is a block diagram showing the structure of a processing device in a base station for a relay communication system according to an embodiment of the present invention.
  • the processing device 200 in this embodiment includes: a first distribution device 201, a second determination device 202, and a second indication device 203.
  • processing device 200 is disposed in base station 10. The embodiment will be described below with reference to Figs. 7 and 11, based on the base station 10, the relay station 20, and the processing device 200.
  • the first distribution device 201 in the processing device 200 allocates a downlink frequency band to the relay station 20, such as shown in FIG.
  • the second determining device 202 in the processing device 200 is at the downstream of the relay station 20.
  • a guard band is determined according to the cell-specific reference signal pattern of the base station 10 and/or the reception demodulation scheme of the mobile terminal in the cell. For example, as shown in FIG. 7, the guard band is located at the edge of the downlink band of the relay station 20.
  • the second indication means 203 in the processing means 200 instructs the relay station 20 to cancel the cell-specific reference signal of the base station 10 within its guard band when forwarding the downlink signal.
  • a square with a dot pattern and a number 2 in the guard band of the relay station 20 indicates blank resource units, which are originally used to transmit a cell-specific reference signal, and the second indicating means 203 will indicate
  • the relay station 20 eliminates cell-specific reference signal patterns of these resource elements when forwarding downlink data.
  • the relay station 20 does not transmit any signals at these resource elements numbered 2 when forwarding the downlink data.
  • the cell-specific reference signal used for channel detection includes cell-specific reference signals in resource elements labeled 1, 2, 3, and curve 1 and curve 2 in FIG. 8 respectively show the location of the cell-specific reference signal.
  • the channel parameters solved by the base station user will still be affected by the small amount of overlapping cell-specific reference signals in the frequency hopping band; if the base station user receives the channel in the receiving demodulation scheme If the cell-specific reference signal used in the detection includes the cell-specific reference signal in the resource unit labeled 1, 2 and does not include the cell-specific reference signal in the resource unit labeled 3, the channel parameter solved by the base station user does not Subject to overlapping cell-specific reference signals. Therefore, the second determining device 202 is further configured to determine a minimum protection bandwidth according to a receiving demodulation scheme adopted by the mobile terminal in the cell, and the bandwidth of the guard band in the downlink frequency band of the relay station 20 is not less than the minimum protection bandwidth. . Specifically, for example, the minimum guard bandwidth is equal to the maximum frequency interval between the cell-specific reference signal and its downlink resource block except for a downlink resource block used by the user for channel detection.
  • the processing device 200 further includes a third indication device, configured to indicate that the relay station 20 adopts a cell-specific reference signal pattern different from the base station 10 in the guard band.
  • the pattern is used to transmit a relay-specific reference signal, which is used for relay station downlink data demodulation.
  • the relay unit 20 transmits relay-specific reference signals in resource units marked with vertical stripes in its guard band, and these relay-specific reference signals are used by the mobile terminal to receive and demodulate data in the guard band.
  • the relay station 20 may also transmit a relay-specific reference signal in a pattern different from the cell-specific reference signal pattern of the base station 10 in all of its downlink frequency bands.
  • FIG. 13 is a block diagram showing the structure of a processing device in a base station for a relay communication system in accordance with one embodiment of the present invention.
  • the processing apparatus 300 in this embodiment includes: a second distribution device 301, and a third distribution device 302.
  • processing device 300 is disposed in base station 10. The embodiment will be described below based on the base station 10, the relay station 20, the relay station 21, the mobile terminal 30, and the processing device 300 in conjunction with Figs. 10 and 13.
  • the second distribution device 301 in the processing device 300 is a first relay station of the base station 10, such as the relay station 20, which allocates the first frequency band for downlink transmission.
  • the first frequency band marked by the horizontal stripes is assigned to the relay station 20 for downlink transmission.
  • the third allocating device 302 in the processing device 300 allocates a second frequency band immediately adjacent to the first frequency band to the user remote from the first relay station, the minimum width of the second frequency band being according to the cell-specific reference signal pattern of the base station 10 and / Or a receiving demodulation scheme of the mobile terminal within the cell to determine.
  • the second frequency band marked by the diagonal stripes is assigned to the user who is away from the relay station 20.
  • the minimum bandwidth of the second frequency band is equal to the maximum frequency interval between the cell-specific reference signal and the downlink resource block except the user downlink resource block used for channel detection in a user's receiving demodulation scheme.
  • each relay station transmits a cell-specific reference signal only in the respective downlink frequency band
  • the user and the user served by the relay station 20 are affected by the overlapping cell-specific reference signals received at the time of receiving the demodulation. It is relatively small.
  • the minimum bandwidth of the second frequency band is determined according to the reception demodulation scheme of the user in the cell, the cell-specific reference signal used when the user using the first frequency band performs channel detection does not exceed the range of the first frequency band and the second frequency band. For example, as shown in FIG.
  • the third frequency band is adjacent to the second frequency band on the other side opposite to the first frequency band, regardless of the third frequency band allocated to Users, users using the third frequency band and users using the first frequency band are not affected by cell-specific reference signals that overlap each other when receiving demodulation.
  • the user assigned to use the second frequency band may be a base station user or a relay station user.
  • the third distribution device 302 directly assigns the second frequency band to the relay station serving the user.
  • the third allocating means 302 will perform a determination to assign the second frequency band to the second relay station if the distance of a second relay station of the base station 10 from the first relay station exceeds a threshold. For example, the distance between the relay station 21 and the relay station 20 exceeds a threshold value, and the third distribution device 302 assigns the second frequency band to the relay station 21.
  • This threshold is used to ensure that the cell-specific reference signals transmitted by the two relay stations have little effect on the receiving user's demodulation performance.
  • the third distribution device 302 also needs to determine the condition of the user. If a mobile terminal, such as mobile terminal 30, has a distance to base station 10 that is less than a distance threshold or base station 10 receives more power than the power threshold from the mobile terminal, third distribution device 302 assigns the second frequency. Give the mobile terminal.
  • the distance threshold and the power threshold are both to ensure that the cell-specific reference signal of the relay station 20 is sufficiently small to affect the reception demodulation performance of the user to whom the second frequency band is allocated. More specifically, both the distance threshold and the power threshold are determined based on the cell-specific reference signal pattern of the base station 10 and/or the receive demodulation scheme of the mobile terminal 30.
  • each device referred to in the present invention can be implemented by a hardware device, a functional module in software, or a hardware device integrated with a software function module.
  • the devices may also be combined, decomposed, and reorganized according to the interrelationship between the functions performed by the devices.
  • the second distribution device 301 and the third distribution device 302 in the processing device 300 may be combined into one device.
  • the selection of the relay user is determined by the evolved Node B, that is, the base station, and therefore the method, device and device in the present invention are particularly suitable for the specification of LTE-A.
  • the method, device and device in the present invention are particularly suitable for the specification of LTE-A.
  • the terminal actively initiates the execution of the relay user selection function or the downlink resource allocation function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

本发明提出了在中继通信***中用于中继用户选择以及下行资源分配的方法、装置及设备。具体地,基站根据其小区特定参考信号图案和/或移动终端的接收解调方案来进行中继用户选择以及下行资源分配。通过使用本发明的方法、装置或设备,可以减轻甚至消除重叠的小区特定参考信号对用户终端的接收解调性能的影响。

Description

中继用户选择以及下行资源分配的方法、 装置及设备 技术领域
本发明涉及中继通信***, 尤其涉及中继通信***中的中继用户 选择和下行资源分配技术。 背景技术
现有 LTE ***采用小区特定参考信号 (Cell-specific Reference Signal, CRS )用于下行信道检测和解调。根据 3GPP TS36.211 ( v8.5.0 ) 协议的描述, 小区特定参考信号覆盖小区的所有带宽并以相同功率发 送, 该小区所服务的所有用户均知道该小区的小区特定参考信号。 因 此, 用户通常可以将小区特定参考信号用作信道估计。
通常, 作为接收解调方案的一部分, 为了提高数据接收的质量, 一个用户做信道检测所用的小区特定参考信号不仅包括其资源块内 的小区特定参考信号, 还包括其资源块之外的小区特定参考信号。 如 图 1所示, 空白方块表示数据的资源单元, 带有网状花紋的方块表示 小区特定参考信号的资源单元,灰色区域表示分配给某一用户的资源 块, 标号为 1的方块表示该资源块内的小区特定参考信号资源单元, 标号为 2、 3、 4的方块表示与该资源块邻近的小区特定参考信号资源 单元。 为解调数据, 该用户在信道估计时可以采用的小区特定参考信 号集合包括以下多种: 标号为 1、 2的资源单元的信号; 标号为 1、 3 的资源单元的信号; 标号为 1、 2、 3的资源单元的信号; 标号为 1、 2、 3、 4的资源单元的信号; 等。 一种相应的二维滤波算法可以在发表于 1998年 7月的论文 "具有快速色散衰落信道的 OFDM***中的鲁棒 信道估计 ( Ye Li, LJ. Cimini, and N R. Sollenberger, Robust Channel Estimation for OFDM Systems with Rapid Dispersive Fading Channels, IEEE Trans. Commun., vol. 46, No. 7, pp. 902-915, July 1998 )" 中找到。 然而, 当资源块之外的小区特定参考信号资源单元受到中继站发送的 小区特定参考信号的污染, 则信道估计将发生错误。
确认本 根据关于中继的最新协议, 在 LTE-A规范中将包括透明中继, '即 中继需要与基站在相同的资源单元发送小区特定参考信号。 中继站需 要在所有的带宽上发送小区特定参考信号以及物理下行控制信道以 用于中继用户的解调。
如前面描述的, 一个用户做信道估计所用的小区特定参考信号通 常不仅包括其资源块内的小区特定参考信号, 还包括其资源块之外的 小区特定参考信号, 以提高信道估计的性能。 如图 2所示, 一个基站 用户不仅收到来自基站的小区特定参考信号, 还将收到来自中继站的 小区特定参考信号。 当基站和中继站的下行频带邻近, 用户解调接收 数据时采用的小区特定参考信号可能包括重叠的基站发送的小区特 定参考信号和中继站发送的小区特定参考信号 , 从而导致接收解调性 能的下降。 发明内容
本发明的一个主要目的就在于解决现有技术中存在的上述问题。 在本发明中, 将基站直接服务的用户称为基站用户, 将中继站服 务的用户称为中继用户或中继站用户。基站所发送的小区特定参考信 号被简称为基站小区特定参考信号, 中继站所发送的小区特定参考信 号被简称为中继站小区特定参考信号。
对于下行共享物理信道, 基站将在其全部频带中发送小区特定参 考信号, 而由中继站所发送的小区特定参考信号占用的带宽有多种候 选方案。
在采用单载频发射时, 中继站的小区特定参考信号和数据信号占 用的带宽可能包括以下三种情形:
情形 1, 中继站的数据信号占用全部带宽, 中继站的小区特定参 考信号也占用全部带宽;
情形 2, 中继站的数据信号占用部分带宽, 中继站的小区特定参 考信号占用全部带宽; 此时, 基站与中继站的小区特定参考信号在全 部带宽上交叠, 从而中继用户可以在全部带宽上进行信道估计; 情形 3, 中继站的数据信号和小区特定参考信号均仅占用分配给 中继站的部分带宽。
当扩展到多载频发射时, 中继站的小区特定参考信号和数据信号 占用的频带也可能包括以下三种情形:
情形 4, 中继站的数据信号占用所有频带, 中继站的小区特定参 考信号也占用所有频带;
情形 5 , 中继站的数据信号占用部分频带, 中继站的小区特定参 考信号占用所有频带;
情形 6, 中继站的数据信号和小区特定参考信号均仅占用分配给 中继站的部分频带。
当中继站的小区特定参考信号和数据信号占用的频带 /带宽满足 上述情形 3、 6时, 当基站用户靠近中继站服务区时, 因为基站小区 特定参考信号与中继站小区特定参考信号的交叠, 基站用户所接收到 的中继站频带上的小区特定参考信号电平将明显增强, 如图 3中曲线 1 所示。 因此, 在基站频带和中继站频带边缘的边缘小区特定参考信 号将检测到信道参数的 "跳变频点", 在二维滤波之后, "跳变频点" 扩展成了 "跳变频带,,, 如图 3 中曲线 2所示。 因而在检测 "跳变频 带" 的数据时, 基站用户和中继站用户均会受到影响。
当中继站的小区特定参考信号和数据信号占用的频带 /带宽满足 上述情形 2、 5、 6时, 只要一个用户靠近中继站服务区, 就将受到基 站小区特定参考信号与中继站小区特定参考信号的交叠引起的干扰。
对于中继用户: 中继用户利用交叠的小区特定参考信号进行信道 估计和检测; 如果基站和中继站协同为中继用户发送下行数据, 则不 发生干扰; 如果基站不发送协同数据, 则产生干扰。 然而因为用户靠 近中继站, 基站小区特定参考信号功率相对于中继站小区特定参考信 号功率较低, 因此千扰不是非常显著。
对于基站用户: 基站用户解出的信道参数为 h = 1^ + 112, 其中 lh、 h2分别为基站到基站用户的信道参数和中继站到基站用户的信道参 数。 基站用户接收到的数据为 y = hlS, 其中 y、 s分别为接收信号、 发送信号。 当基站用户靠近中继站服务区, h2难以忽略, 使用 h来恢 复发送数据 s将产生不可接受的错误。
为了解决上述问题, 本发明提出了在中继通信***中用于中继用 户选择以及下行资源分配的方法和装置。
根据本发明的第一方面, 提供了一种在中继通信***的基站中用 于中继用户选择以及下行资源分配的方法, 其特征在于, 所述基站根 据其小区特定参考信号图案和 /或移动终端的接收解调方案来确定中 继用户以及进行下行资源分配。
根据本发明的第二方面, 提供了一种在中继通信***的基站中用 于中继用户选择以及下行资源分配的处理装置, 其特征在于, 所述处 理装置根据所述基站的小区特定参考信号图案和 /或移动终端的接收 解调方案来确定中继用户以及进行下行资源分配。
根据本发明的第三方面, 提供了一种用于中继通信***的基站, 其包括本发明第二方面的处理装置。
通过使用本发明的方法、 装置或设备, 可以减轻甚至消除重叠的 小区特定参考信号对用户终端的接收解调性能的影响。 附图说明
通过阅读以下参照附图对非限制性实施例所作的详细描述, 本发 明的其它特征、 目的和优点将会变得更明显。
图 1示出了用作信道估计的小区特定参考信号的示例性图案; 图 2示出了移动终端接收到来自基站以及中继站的小区特定参考 信号的示意图;
图 3示出了移动终端解出的信道参数在基站频带和中继站频带间 跳变的示意图;
图 4示出了根据本发明一个实施例的中继通信***的示意图; 图 5示出了根据本发明的一个实施例的在中继通信***的基站中 用于从该基站及其一个中继站中为一个移动终端选择服务设备时的 方法流程图; 图 6示出了根据本发明的一个实施例的在中继通信***的基站中 进行下行资源分配的方法流程图;
图 7示出了根据本发明的一个实施例的中继站下行频带中的小区 特定参考信号的示意图;
图 8示出了根据本发明的一个实施例的, 移动终端所解出的信道 参数在基站频带和中继站频带间跳变的示意图;
图 9示出了根据本发明的一个实施例的在中继通信***的基站中 进行下行资源分配的方法流程图;
图 10示出了根据本发明的一个实施例的下行资源分配的示意图; 图 11 示出了根据本发明的一个实施例的用于中继通信***的基 站中的处理装置的结构框图;
图 12 示出了根据本发明的一个实施例的用于中继通信***的基 站中的处理装置的结构框图;
图 13 示出了根据本发明的一个实施例的用于中继通信***的基 站中的处理装置的结构框图;
其中, 相同或相似的附图标记表示相同或相似的步骤特征或装置 (模块)。 具体实施方式
图 4示出了根据本发明一个实施例的中继通信***的示意图。 如 图 4所示, 本实施例中的中继通信***包括基站 10、 中继站 20、 中 继站 21、 移动终端 30。 中继站 20、 21位于基站 10的服务范围之内。 因为中继站的发射功率通常低于基站, 中继站 20、 21 的服务范围均 小于基站 10。
下文中, 将结合图 4对本发明的各示例性实施例进行说明。
实施例 1
图 5示出了根据本发明的一个实施例的在中继通信***的基站中 用于从该基站及其一个中继站中为一个移动终端选择服务设备时的 方法流程图。 以下结合图 5 , 基于基站 10、 中继站 20、 移动终端 30 来说明该实施例。
首先, 在步骤 S11 中, 基站 10将确定其来自移动终端 30的接收 功率以及中继站 20的来自移动终端 30的接收功率。 其中, 基站 10 通过与中继站 20之间的控制信息的交互来获取中继站 20的来自移动 终端 30的接收功率。
然后, 在步驟 S12中, 基站 10将其接收到的来自移动终端 30的 功率和中继站 20接收到的来自移动终端 30的功率的差值与一个门限 值进行比较。 这里的门限值是根据基站 10的小区特定参考信号图案 和 /或移动终端 30的接收解调方案来确定的。
在现有技术中, 中继用户的选择会考虑基站 10、 中继站 20的来 自移动终端 30的接收功率。 然而, 现有技术中进行中继用户选择却 没有考虑基站 10的小区特定参考信号图案和 /或移动终端 30的接收解 调方案, 尤其是移动终端 30接收解调时基于小区特定参考信号所采 用的信道检测方案, 以及由此可能带来的基站 10发送的小区特定参 考信号和中继站 20发送的小区特定参考信号的重叠造成的干扰。
针对现有技术的上述问题, 步骤 S12中的门限值中包含了一个容 限项, 该容限项根据基站 10的小区特定参考信号图案和 /或移动终端 30的接收解调方案来确定。 该容限项与移动终端 30的接收解调方案 有关, 尤其是与移动终端 30的基于小区特定参考信号所采用的信道 检测方案有关。 通过引入该容限项, 可以使得中继站 20的服务范围 较之现有技术中的服务范围有所扩大, 从而使得靠近中继站服务范围 的基站用户受到的小区特定参考信号的重叠造成的干扰得以降低。
在步骤 S 13 中, 基站 10将根据步骤 S12的比较结果来选择移动 终端 30的服务设备。 具体地, 在子步骤 S131 中, 如果基站 10接收 到的来自移动终端 30的功率和中继站 20接收到的来自移动终端 30 的功率的差值大于所述门限值, 则选择基站 10为移动终端 30的服务 设备; 在子步骤 S132中, 如果基站 10接收到的来自移动终端 30的 功率和中继站 20接收到的来自移动终端 30的功率的差值小于等于所 述门限值, 则选择中继站 20为移动终端 30的服务设备。 根据本实施例的一个变化例, 基站 10还将执行一个步骤, 将其 多个中继站接收到的来自移动终端 30的功率进行比较, 并确定接收 到的来自移动终端 30的功率最高的那一个中继站。 具体地, 例如, 基站 10通过与中继站 20、21之间的控制信息的交互来获取中继站 20 的来自移动终端 30的接收功率以及中继站 21 的来自移动终端 30的 接收功率, 通过比较确定中继站 20接收到的来自移动终端 30的功率 高于中继站 21接收到的来自移动终端 30的接收功率。 通过步骤 S11 至 S13, 基站 10将在基站 10以及接收到的来自移动终端 30的功率 最高的那一个中继站中选择移动终端 30的服务设备。
一些中继站仅对接收到的信号进行放大和转发。 另一些中继站将 对接收到的信号进行解调、 重新调制、 以及转发。 因而优选地, 本实 施例中还包括一个步骤: 基站 10将发送一个控制指令给中继站 20, 指示中继站 20在其下行资源块中采用与基站 10的小区特定参考信号 图案相同的图案来发送小区特定参考信号。
可选地, 在步骤 Si l , 基站 10的来自移动终端 30的接收功率 是根据基站 10向移动终端 30发送下行信号的下行发射功率推导确定 的, 中继站 20的来自移动终端 30的接收功率是 ^^据中继站 20向移 动终端 30发送下行信号的下行发射功率推导确定的。 通常, 在 TDD ***中可以运用这样的反向推导, 因为在 TDD ***中上行信道响应 和路径损耗等参数与下行信道响应和路径损耗等参数均可视为相同。
实施例 2
图 6示出了根据本发明的一个实施例的在中继通信***的基站中 进行下行资源分配的方法流程图。 图 7示出了根据本发明的一个实施 例的中继站下行频带中的小区特定参考信号的示意图, 其中, 空白方 块表示数据的资源单元, 带有网状花紋的方块表示小区特定参考信号 的资源单元, 带有点状花紋的方块表示空白资源单元, 带有竖条紋的 方块表示中继站专用参考信号的资源单元。 以下结合图 6、 图 7, 基 于基站 10、 中继站 20来说明该实施例。
首先, 在步骤 S21中, 基站 10为中继站 20分配一个下行频带, 例如图 7中所示。
在步骤 S22中, 基站 10在中继站 20的下行频带中, 根据基站 10 的小区特定参考信号图案和 /或该小区中的移动终端的接收解调方案 来确定一个保护频带。 例如图 7所示, 保护频带位于中继站 20的下 行频带的边缘。
在步骤 S23中, 基站 10指示中继站 20转发下行信号时在其保护 频带内消除基站 10的小区特定参考信号。 例如图 7中所示, 中继站 20 的保护频带内的带有点状花紋且标号为 2 的方块表示空白资源单 元, 这些资源单元原来是用于发送小区特定参考信号的, 基站 10将 指示中继站 20在转发下行数据时消除这些资源单元的小区特定参考 信号图案。 根据基站 10的指示, 中继站 20在转发下行数据时在这些 标号为 2的资源单元不发送任何信号。
应用了本实施例中的方法之后, 对于一个下行频带位于图 7中所 示基站频带的基站用户, 当中继站 20仅在其下行频带发送小区特定 参考信号时; 如果该基站用户的接收解调方案中进行信道检测所采用 的小区特定参考信号包括标号为 1、 2、 3的资源单元中的小区特定参 考信号, 图 8中曲线 1、 曲线 2分别示出了在小区特定参考信号的位 置检测出的信道参数和二维滤波后的信道参数, 该基站用户解出的信 道参数在跳变频带中仍将受到重叠的小区特定参考信号的少量影响; 如果该基站用户的接收解调方案中进行信道检测所采用的小区特定 参考信号包括标号为 1、 2的资源单元中的小区特定参考信号而不包 括标号为 3的资源单元中的小区特定参考信号, 则该基站用户解出的 信道参数不会受到重叠的小区特定参考信号的影响。 因而, 可选地, 在步骤 S22中, 基站 10还将根据小区内的移动终端采用的接收解调 方案来确定一个最小保护带宽, 中继站 20的下行频带中的保护频带 的带宽不小于这个最小保护带宽。 具体地, 例如, 最小保护带宽等于 一个用户进行信道检测所采用的其下行资源块之外的小区特定参考 信号与其下行资源块之间的最大频率间隔。
可选地, 在步骤 S22之后, 基站 10还将执行一个步骤, 指示中 继站 20在所述保护频带中采用与基站 10的小区特定参考信号图案不 同的图案来发送中继站专用参考信号, 所述中继站专用参考信号用于 中继站下行数据解调。 例如图 7中所示, 中继站 20在其保护频带内 标记有竖条纹的资源单元发送中继站专用参考信号, 这些中继站专用 参考信号用于移动终端对保护频带内的数据进行接收解调。 本领域技 术人员应能理解, 中继站 20也可以在其全部下行频带内采用与基站 10的小区特定参考信号图案不同的图案来发送中继站专用参考信号。
实施例 3
图 9示出了根据本发明的一个实施例的在中继通信***的基站中 进行下行资源分配的方法流程图。 图 10示出了根据本发明的一个实 施例的下行资源分配的示意图。 以下结合图 9、 图 10, 基于基站 10、 中继站 20、 中继站 21、 移动终端 30来说明该实施例。
首先, 在步骤 S31 中, 基站 10为其一个第一中继站, 例如中继 站 20, 分配第一频带用于下行传输。 例如图 10中所示, 由横条纹标 记的第一频带被分配给中继站 20用于下行传输。
在步驟 S32中, 基站 10将与第一频带紧邻的第二频带分配给远 离第一中继站的用户, 所述第二频带的最小宽度根据基站 10的小区 特定参考信号图案和 /或小区内的移动终端的接收解调方案来确定。例 如图 10中所示, 由斜条紋标记的第二频带被分配给远离中继站 20的 用户。 具体地, 例如, 第二频带的最小带宽等于一个用户的接收解调 方案中进行信道检测所采用的该用户下行资源块之外的小区特定参 考信号与其下行资源块之间的最大频率间隔。
当各中继站仅在各自的下行频带发送小区特定参考信号时, 因为 使用第二频带的用户远离中继站 20 , 该用户和中继站 20服务的用户 在接收解调时受到的重叠的小区特定参考信号的影响就比较小。 又因 为第二频带的最小带宽根据小区内用户的接收解调方案来确定, 使得 使用第一频带的用户进行信道检测时使用的小区特定参考信号不会 超出第一频带和第二频带的范围。 例如图 10 中所示, 与第一频带相 对的在另一侧与第二频带紧邻的是第三频带, 无论第三频带分配给什 么用户, 使用第三频带的用户与使用第一频带的用户在接收解调时不 会受到相互之间的重叠的小区特定参考信号的影响。
被分配使用第二频带的用户可以是一个基站用户, 也可以是一个 中继站用户。 根据被分配使用第二频带的用户的不同, 步骤 S32的具 体执行也有所不同。
如果被分配使用第二频带的用户是一个中继站用户, 基站 10 直 接将第二频带分配给服务于该用户的中继站。 在步骤 S32中, 如果基 站 10的- -个第二中继站与第一中继站的距离超过一个门限值, 将所 述第二频带分配给所述第二中继站。 例如, 中继站 21与中继站 20的 距离超过了一个门限值, 基站 10将第二频带分配给中继站 21。 这个 门限值用于保证两个中继站发送的小区特定参考信号对对方的用户 接收解调性能的影响足够小。
如果被分配使用第二频带的用户是一个基站用户, 基站 10还需 对该用户的条件进行判断。 在步骤 S32中, 如果一个移动终端, 例如 移动终端 30,到基站 10的距离小于一个距离门限值或者基站 10接收 到的来自读移动终端的功率大于一个功率门限值, 基站 10将笫二频 率分配给该移动终端。 这里的距离门限和功率门限均是为了保证中继 站 20 的小区特定参考信号对被分配了第二频带的用户的接收解调性 能的影响足够小。 更具体地, 这里的距离门限和功率门限均是根据基 站 10的小区特定参考信号图案和 /或移动终端 30的接收解调方案来确 定的。
实施例 4
图 11 示出了根据本发明的一个实施例的用于中继通信***的基 站中的处理装置的结构框图。 如图 11 所示, 该实施例中的处理装置 100包括: 第一确定装置 101、 第一比较装置 102、 选择装置 103。 典 型地, 处理装置 100设置于基站 10中。 以下结合图 11,基于基站 10、 中继站 20、 移动终端 30、 处理装置 100来说明该实施例。
首先, 处理装置 100中的第一确定装置 101将确定基站 10的来 自移动终端 30的接收功率以及中继站 20的来自移动终端 30的接收 功率。 其中, 第一确定装置 101通过与中继站 20之间的控制信息的 交互来获取中继站 20的来自移动终端 30的接收功率。
然后, 处理装置 100中的第一比较装置 102将第一确定装置 101 所确定的基站 10接收到的来自移动终端 30的功率和中继站 20接收 到的来自移动终端 30 的功率的差值与一个门限值进行比较。 这里的 门限值是根据基站 10的小区特定参考信号图案和 /或移动终端 30的接 收解调方案来确定的。
在现有技术中, 中继用户的选择会考虑基站 10、 中继站 20的来 自移动终端 30的接收功率。 然而, 现有技术中进行中继用户选择却 没有考虑基站 10的小区特定参考信号图案和 /或移动终端 30的接收解 调方案, 尤其是移动终端 30接收解调时基于小区特定参考信号所采 用的信道检测方案, 以及由此可能带来的由基站 10发送的小区特定 参考信号和中继站 20发送的小区特定参考信号的重叠造成的干扰。
针对现有技术的上述问题, 第一比较装置 102所采用的门限值中 包含了一个容限项, 该容限项根据基站 10 的小区特定参考信号图案 和 /或移动终端 30 的接收解调方案来确定。 该容限项与移动终端 30 的接收解调方案有关, 尤其是与移动终端 30的基于小区特定参考信 号所采用的信道检测方案有关。 通过引入该容限项, 可以使得中继站 20的服务范围较之现有技术中的服务范围有所扩大,从而使得靠近中 继站服务范围的基站用户受到的小区特定参考信号的重叠造成的干 扰得以降低。
接着, 处理装置 100中的选择装置 103将根据第一比较装置 102 的比较结果来选择移动终端 30的服务设备。 具体地, 如果基站 10接 收到的来自移动终端 30的功率和中继站 20接收到的来自移动终端 30 的功率的差值大于所述门限值, 则选择装置 103选择基站 10为移动 终端 30的服务设备; 如果基站 10接收到的来自移动终端 30的功率 和中继站 20接收到的来自移动终端 30的功率的差值小于等于所述门 限值, 则选择装置 103选择中继站 20为移动终端 30的服务设备。
根据本实施例的一个变化例, 处理装置 100还用于将基站 10的 多个中继站接收到的来自移动终端 30的功率进行比较, 并确定接收 到的来自移动终端 30的功率最高的那一个中继站。 具体地, 例如, 第一确定装置 101通过与中继站 20、 21之间的控制信息的交互来获 取中继站 20的来自移动终端 30的接收功率以及中继站 21的来自移 动终端 30的接收功率, 通过比较确定中继站 20接收到的来自移动终 端 30的功率高于中继站 21接收到的来自移动终端 30的接收功率。 通过第一确定装置 101、 第一比较装置 102、 选择装置 103执行的操 作, 处理装置 100将在基站 10以及接收到的来自移动终端 30的功率 最高的那一个中继站中选择移动终端 30的服务设备。
一些中继站仅对接收到的信号进行放大和转发。 另一些中继站将 对接收到的信号进行解调、 重新调制、 以及转发。 因而优选地, 本实 施例中的处理装置 100还包括一个第一指示装置: 用于发送一个控制 指令给中继站 20, 指示中继站 20在其下行资源块中采用与基站 10 的小区特定参考信号图案相同的图案来发送小区特定参考信号。
可选地, 在第一确定装置 101根据基站 10向移动终端 30发送下 行信号的下行发射功率推导确定基站 10的来自移动终端 30的接收功 率, 并根据中继站 20向移动终端 30发送下行信号的下行发射功率推 导确定中继站 20的来自移动终端 30的接收功率。 通常, 在 TDD系 统中可以运用这样的反向推导, 因为在 TDD ***中上行信道响应和 路径损耗等参数与下行信道响应和路径损耗等参数均可视为相同。
实施例 5
图 12 示出了根据本发明的一个实施例的用于中继通信***的基 站中的处理装置的结构框图。 如图 12所示, 该实施例中的处理装置 200包括: 第一分配装置 201、 第二确定装置 202、第二指示装置 203。 典型地, 处理装置 200设置于基站 10中。 以下结合图 7、 图 11, 基 于基站 10、 中继站 20、 处理装置 200来说明该实施例。
首先, 处理装置 200中的第一分配装置 201为中继站 20分配一 个下行频带, 例如图 7中所示。
然后, 处理装置 200中的第二确定装置 202在中继站 20的下行 频带中, 根据基站 10的小区特定参考信号图案和 /或该小区中的移动 终端的接收解调方案来确定一个保护频带。 例如图 7所示, 保护频带 位于中继站 20的下行频带的边缘。
接着, 处理装置 200中的第二指示装置 203指示中继站 20转发 下行信号时在其保护频带内消除基站 10的小区特定参考信号。 例如 图 7中所示, 中继站 20的保护频带内的带有点状花紋且标号为 2的 方块表示空白资源单元, 这些资源单元原来是用于发送小区特定参考 信号的, 第二指示装置 203将指示中继站 20在转发下行数据时消除 这些资源单元的小区特定参考信号图案。根据第二指示装置 203的指 示, 中继站 20在转发下行数据时在这些标号为 2的资源单元不发送 任何信号。
使用了本实施例中的装置之后, 对于一个下行频带位于图 7中所 示基站频带的基站用户, 当中继站 20仅在其下行频带发送小区特定 参考信号时; 如果该基站用户的接收解调方案中进行信道检测所采用 的小区特定参考信号包括标号为 1、 2、 3的资源单元中的小区特定参 考信号, 图 8中曲线 1、 曲线 2分别示出了在小区特定参考信号的位 置检测出的信道参数和二维滤波后的信道参数, 该基站用户解出的信 道参数在跳变频带中仍将受到重叠的小区特定参考信号的少量影响; 如果该基站用户的接收解调方案中进行信道检测所采用的小区特定 参考信号包括标号为 1、 2 的资源单元中的小区特定参考信号而不包 括标号为 3的资源单元中的小区特定参考信号, 则该基站用户解出的 信道参数不会受到重叠的小区特定参考信号的影响。 因而, 可选地, 第二确定装置 202还用于根据小区内的移动终端采用的接收解调方案 来确定一个最小保护带宽, 中继站 20的下行频带中的保护频带的带 宽不小于这个最小保护带宽。 具体地, 例如, 最小保护带宽等于一个 用户进行信道检测所采用的其下行资源块之外的小区特定参考信号 与其下行资源块之间的最大频率间隔。
可选地, 处理装置 200还包括一个第三指示装置, 用于指示中继 站 20在所述保护频带中采用与基站 10的小区特定参考信号图案不同 的图案来发送中继站专用参考信号, 所述中继站专用参考信号用于中 继站下行数据解调。 例如图 7中所示, 中继站 20在其保护频带内标 记有竖条纹的资源单元发送中继站专用参考信号, 这些中继站专用参 考信号用于移动终端对保护频带内的数据进行接收解调。 本领域技术 人员应能理解, 中继站 20也可以在其全部下行频带内采用与基站 10 的小区特定参考信号图案不同的图案来发送中继站专用参考信号。
实施例 6
图 13 示出了根据本发明的一个实施例的用于中继通信***的基 站中的处理装置的结构框图。 如图 13 所示, 该实施例中的处理装置 300包括: 第二分配装置 301、 第三分配装置 302。 典型地, 处理装置 300设置于基站 10中。 以下结合图 10、 图 13 , 基于基站 10、 中继站 20、 中继站 21、 移动终端 30、 处理装置 300来说明该实施例。
首先, 处理装置 300中的第二分配装置 301为基站 10的一个第 一中继站, 例如中继站 20, 分配第一频带用于下行传输。 例如图 10 中所示, 由横条紋标记的第一频带被分配给中继站 20用于下行传输。
然后, 处理装置 300中的第三分配装置 302将与第一频带紧邻的 第二频带分配给远离第一中继站的用户, 所述第二频带的最小宽度根 据基站 10的小区特定参考信号图案和 /或小区内的移动终端的接收解 调方案来确定。 例如图 10 中所示, 由斜条紋标记的第二频带被分配 给远离中继站 20的用户。 具体地, 例如, 第二频带的最小带宽等于 一个用户的接收解调方案中进行信道检测所采用的该用户下行资源 块之外的小区特定参考信号与其下行资源块之间的最大频率间隔。
当各中继站仅在各自的下行频带发送小区特定参考信号时, 因为 使用第二频带的用户远离中继站 20, 该用户和中继站 20服务的用户 在接收解调时受到的重叠的小区特定参考信号的影响就比较小。 又因 为第二频带的最小带宽根据小区内用户的接收解调方案来确定, 使得 使用第一频带的用户进行信道检测时使用的小区特定参考信号不会 超出第一频带和第二频带的范围。 例如图 10 中所示, 与第一频带相 对的在另一侧与第二频带紧邻的是第三频带, 无论第三频带分配给什 么用户,使用第三频带的用户与使用第一频带的用户在接收解调时不 会受到相互之间的重叠的小区特定参考信号的影响。
被分配使用第二频带的用户可以是一个基站用户, 也可以是一个 中继站用户。 根据被分配使用第二频带的用户的不同, 第三分配装置
302的具体操作也有所不同。
如果被分配使用第二频带的用户是一个中继站用户, 第三分配装 置 302直接将第二频带分配给服务于该用户的中继站。 第三分配装置 302将执行一个判断,如果基站 10的一个第二中继站与第一中继站的 距离超过一个门限值, 则将所述第二频带分配给所述第二中继站。 例 如, 中继站 21与中继站 20的距离超过了一个门限值, 第三分配装置 302将第二频带分配给中继站 21。 这个门限值用于保证两个中继站发 送的小区特定参考信号对对方的用户接收解调性能的影响足够小。
如果被分配使用第二频带的用户是一个基站用户, 第三分配装置 302还需对该用户的条件进行判断。 如果一个移动终端, 例如移动终 端 30,到基站 10的距离小于一个距离门限值或者基站 10接收到的来 自该移动终端的功率大于一个功率门限值, 第三分配装置 302将第二 频率分配给该移动终端。 这里的距离门限和功率门限均是为了保证中 继站 20 的小区特定参考信号对被分配了第二频带的用户的接收解调 性能的影响足够小。 更具体地, 这里的距离门限和功率门限均是根据 基站 10的小区特定参考信号图案和 /或移动终端 30的接收解调方案来 确定的。
本领域技术人员应能理解, 本发明中所称的各装置既可以由硬件 装置实现, 也可以由软件中的功能模块实现, 还可以由集成了软件功 能模块的硬件装置实现。 根据各装置所执行的功能之间的相互关系, 还可以对各装置进行合并、 分解、 重组, 例如, 处理装置 300中的第 二分配装置 301和第三分配装置 302可以合并为一个装置。
根据 LTE-A的规范, 中继用户的选择由演进型 Node B , 也就是 基站,来决定,因此本发明中的方法、装置以及设备尤其适用于 LTE-A 的规范。 当然, 本领域技术人员应能理解, 也可以由中继站或移动终 端来主动发起执行中继用户选择功能或下行资源分配功能。 以上对本发明的非限定性实施例进行了描述, 但是本发明并不局 限于特定的***、 设备和具体协议, 本领域内技术人员可以在所附权 利要求的范围内做出各种变形或修改。

Claims

权 利 要 求 书
1. 一种在中继通信***的基站中用于中继用户选择以及下行资 源分配的方法, 其特征在于, 所述基站根据其小区特定参考信号图案 和 /或移动终端的接收解调方案来确定中继用户以及进行下行资源分 配。
2. 根据权利要求 1 所述的方法, 其特征在于, 当所述基站从所 述基站及其一个中继站中为一个移动终端选择服务设备时, 所述方法 包括以下步骤:
确定所述基站和所述中继站的来自所述移动终端的接收功率; 将所述基站接收到的来自所述移动终端的功率和所述中继站接 收到的来自所述移动终端的功率的差值与一个门限值进行比较, 所述 门限值根据所述基站的小区特定参考信号图案和 /或移动终端的接收 解调方案来确定;
如果所述差值大于所述门限值, 则选择所述基站为所述移动终端 的服务设备, 否则选择所述中继站为所述移动终端的服务设备。
3. 根据权利要求 2所述的方法, 其特征在于, 还包括步骤: 指示所述中继站在其下行资源块中采用与所述基站的小区特定 参考信号图案相同的图案来发送小区特定参考信号。
4. 根据权利要求 2 所述的方法, 其特征在于, 所述中继站接收 到的来自所述移动终端的功率高于所述基站的其他中继站接收到的 来自所述移动终端的接收功率。
5. 根据权利要求 2至 4 中任一项所述的方法, 其特征在于, 所 述确定步驟中根据所述移动终端接收到的来自所述基站的下行的发 射功率以及来自所述中继站的下行的发射功率来确定所述基站收到 的来自所述移动终端的功率和所述中继站收到的来自所述移动终端 的功率。
6. 根据权利要求 1 所述的方法, 其特征在于, 当所述基站进行 下行资源分配时, 所述方法包括以下步骤: 为一个中继站分配下行频带;
在所述中继站的下行频带中, 根据所述基站的小区特定参考信号 图案和 /或移动终端的接收解调方案来确定一个保护频带;
指示所述中继站转发下行信号时在所述保护频带消除所述基站 的小区特定参考信号。
'
7. 根据权利要求 6 所述的方法, 其特征在于, 所述确定步骤之 后还包括:
指示所述中继站在所述保护频带中采用与所述基站的小区特定 参考信号图案不同的图案来发送中继站专用参考信号, 所述中继站专 用参考信号用于中继站下行数据解调。
8. 根据权利要求 6或 7所述的方法, 其特征在于, 所述确定步 驟中包括:
根据移动终端的接收解调方案来确定一个最小保护带宽, 所述保 护频带的带宽不小于所述最小保护带宽。
9. 根据权利要求 1 所述的方法, 其特征在于, 当所述基站进行 下行资源分配时, 所述方法包括以下步骤:
A. 为所述基站的一个第一中继站分配第一频带用于下行传输;
B. 将与第一频带紧邻的第二频带分配给远离第一中继站的用户, 所述第二频带的最小宽度根据所述基站的小区特定参考信号图案和 / 或移动终端的接收解调方案来确定。
10. 根据权利要求 9所述的方法,其特征在于, 所述步骤 B包括: 如果所述基站的一个第二中继站与所述第一中继站的距离超过 一个门限值, 将所述第二频带分配给所述第二中继站。
11. 根据权利要求 9所述的方法,其特征在于, 所述步骤 B包括: 如果一个移动终端到所述基站的距离小于一个门限值或者所述 基站接收到的来自该移动终端的功率高于一个门限值, 将所述第二频 带分配给该移动终端。
12. 一种在中继通信***的基站中用于中继用户选择以及下行资 源分配的处理装置, 其特征在于, 所述处理装置根据所述基站的小区 特定参考信号图案和 /或移动终端的接收解调方案来确定中继用户以 及进行下行资源分配。
13. 根据权利要求 12所述的处理装置, 其特征在于, 当所述处 理装置从所述基站及其一个中继站中为一个移动终端选择服务设备 时, 所述处理装置包括:
第一确定装置, 用于确定所述基站和所述中继站的来自所述移动 终端的接收功率;
第一比较装置, 用于将所述基站接收到的来自所述移动终端的功 率和所述中继站接收到的来自所述移动终端的功率的差值与一个门 限值进行比较, 所述门限值根据所述基站的小区特定参考信号图案和 /或移动终端的接收解调方案来确定;
选择装置, 用于如果所述差值大于所述门限值, 则选择所述基站 为所述移动终端的服务设备, 否则选择所述中继站为所述移动终端的 服务设备。
14. 根据权利要求 13所述的处理装置, 其特征在于, 还包括: 第一指示装置, 用于指示所述中继站在其下行资源块中采用与所 述基站的小区特定参考信号图案相同的图案来发送小区特定参考信
15. 根据权利要求 13 所述的处理装置, 其特征在于, 所述中继 站接收到的来自所述移动终端的功率高于所述基站的其他中继站接 收到的来自所述移动终端的接收功率。
16. 根据权利要求 13至 15中任一项所述的处理装置, 其特征在 于, 所述第一确定装置根据所述移动终端接收到的来自所述基站的下 行的发射功率以及来自所述中继站的下行的发射功率来确定所述基 站收到的来自所述移动终端的功率和所述中继站收到的来自所述移 动终端的功率。
17. 根据权利要求 12 所述的处理装置, 其特征在于, 当所述处 理装置进行下行资源分配时, 所述处理装置包括:
第一分配装置, 用于为一个中继站分配下行频带; 第二确定装置, 用于在所述中继站的下行频带中, 根据所述基站 的小区特定参考信号图案和 /或移动终端的接收解调方案来确定一个 保护频带;
第二指示装置, 用于指示所述中继站转发下行信号时在所述保护 频带消除所述基站的小区特定参考信号。
18. 根据权利要求 17所述的处理装置, 其特征在于, 还包括: 第三指示装置, 用于指示所述中继站在所述保护频带中采用与所 述基站的小区特定参考信号图案不同的图案来发送中继站专用参考 信号, 所述中继站专用参考信号用于中继站下行数据解调。
19, 根据权利要求 17或 18所述的处理装置, 其特征在于, 所述 第二确定装置还用于: 根据移动终端的接收解调方案来确定一个最小 保护带宽, 所述保护频带的带宽不小于所述最小保护带宽。
20. 根据权利要求 12所述的处理装置, 其特征在于, 当所述处 理装置进行下行资源分配时, 所述处理装置包括:
第二分配装置, 用于为所述基站的一个第一中继站分配第一频带 用于下行传输;
第三分配装置, 用于将与第一频带紧邻的第二频带分配给远离第 一中继站的用户, 所述第二频带的最小宽度根据所述基站的小区特定 参考信号图案和 /或移动终端的接收解调方案来确定。
21. 根据权利要求 20所述的处理装置, 其特征在于, 所述第三 分配装置还用于: 如果所述基站的一个第二中继站与所述第一中继站 的距离超过一个门限值, 将所述第二频带分配给所述第二中继站。
22. 根据权利要求 20所述的处理装置, 其特征在于, 所述第三 分配装置还用于: 如果一个移动终端到所述基站的距离小于一个门限 值或者所述基站接收到的来自该移动终端的功率高于一个门限值, 将 所述第二频带分配给该移动终端。
23. 一种用于中继通信***的基站, 其包括权利要求 12至 22中 任一项所述的处理装置。
PCT/CN2009/000409 2009-04-17 2009-04-17 中继用户选择以及下行资源分配的方法、装置及设备 WO2010118558A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012505024A JP5814225B2 (ja) 2009-04-17 2009-04-17 リレー・ユーザ選択およびダウンリンク・リソース割当の方法、装置、およびデバイス
US13/264,540 US9094093B2 (en) 2009-04-17 2009-04-17 Method, apparatus and device for relay user selection and downlink resource allocation
BRPI0925013-1A BRPI0925013B1 (pt) 2009-04-17 2009-04-17 método e aparelho de processamento para seleção de usuário de retransmissão e alocação de recurso de enlace descendente em uma estação base de um sistema de comunicação de retransmissão e estação base para um sistema de comunicação de retransmissão
KR1020117027147A KR101274458B1 (ko) 2009-04-17 2009-04-17 중계 이용자를 선택하고 다운링크 리소스를 할당하기 위한 방법, 장치 및 디바이스
EP09843192.7A EP2421307A4 (en) 2009-04-17 2009-04-17 METHOD, DEVICE AND DEVICE FOR RELAY SELECTION AND DOWNSTREAM DELIVERY PROCESS
PCT/CN2009/000409 WO2010118558A1 (zh) 2009-04-17 2009-04-17 中继用户选择以及下行资源分配的方法、装置及设备
CN200980155711.3A CN102301797B (zh) 2009-04-17 2009-04-17 中继用户选择以及下行资源分配的方法、装置及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/000409 WO2010118558A1 (zh) 2009-04-17 2009-04-17 中继用户选择以及下行资源分配的方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2010118558A1 true WO2010118558A1 (zh) 2010-10-21

Family

ID=42982107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000409 WO2010118558A1 (zh) 2009-04-17 2009-04-17 中继用户选择以及下行资源分配的方法、装置及设备

Country Status (7)

Country Link
US (1) US9094093B2 (zh)
EP (1) EP2421307A4 (zh)
JP (1) JP5814225B2 (zh)
KR (1) KR101274458B1 (zh)
CN (1) CN102301797B (zh)
BR (1) BRPI0925013B1 (zh)
WO (1) WO2010118558A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103238285A (zh) * 2010-12-03 2013-08-07 三星电子株式会社 用于分布式天线***中的参考信令分配和信道估计的方法和设备
US20140226558A1 (en) * 2011-08-19 2014-08-14 Sca Ipla Holdings Inc. Wireless communications system and method

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2434796A1 (en) * 2009-05-19 2012-03-28 Fujitsu Limited Base station, relay station, communication system, and communication method
KR101782640B1 (ko) * 2009-07-16 2017-09-28 엘지전자 주식회사 다중 반송파 시스템에서 harq 수행 장치 및 방법
JPWO2012020539A1 (ja) * 2010-08-09 2013-10-28 パナソニック株式会社 基地局、移動局、パワーヘッドルーム用算出パラメータの送信方法、及びパワーヘッドルームの送信方法
EP2810490A4 (en) * 2012-02-03 2015-12-02 Nokia Technologies Oy METHOD AND APPARATUS FOR MANAGING CARRIERS
WO2013165062A1 (ko) * 2012-05-02 2013-11-07 엘지전자 주식회사 무선 접속 시스템에서 채널 추정 방법 및 이를 위한 장치
CN103974374B (zh) * 2013-01-29 2018-02-23 ***通信集团公司 一种接入控制方法及装置
JP6222996B2 (ja) * 2013-05-29 2017-11-01 京セラ株式会社 通信システム、基地局、及び通信制御方法
WO2016043018A1 (ja) * 2014-09-19 2016-03-24 シャープ株式会社 端末装置、基地局装置、および通信方法
KR102294742B1 (ko) * 2015-03-09 2021-08-27 삼성전자 주식회사 멀티캐리어 시스템에서의 기준 신호 패턴 디자인 방법 및 장치
WO2016180450A1 (en) * 2015-05-08 2016-11-17 Huawei Technologies Co., Ltd. Apparatus and method for controlling resource allocation in a wireless communication network
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
CN107306417B (zh) * 2016-04-17 2019-09-06 上海朗帛通信技术有限公司 一种窄带移动通信的ue和基站中的方法和装置
CA3025664A1 (en) * 2016-06-10 2017-12-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
AU2017277418A1 (en) * 2016-06-10 2019-01-24 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
KR102520883B1 (ko) * 2016-07-26 2023-04-13 삼성전자주식회사 무선 통신 시스템에서 간섭 완화 장치 및 방법
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064901A (zh) * 2006-04-29 2007-10-31 上海贝尔阿尔卡特股份有限公司 无线多跳中继接入网的接入方法、中继站、基站和***
US20080025251A1 (en) * 2006-01-06 2008-01-31 Samsung Electronics Co., Ltd. Apparatus and method of providing relay service in broadband wireless access (BWA) communication system
CN101119153A (zh) * 2006-08-03 2008-02-06 中兴通讯股份有限公司 一种无线数字中继***和传输时间间隔选取方法
US20080056175A1 (en) * 2006-09-06 2008-03-06 Samsung Electronics Co., Ltd. Relay system and method in a communication system
CN101304304A (zh) * 2008-05-30 2008-11-12 北京北方烽火科技有限公司 一种ofdm移动中继网络中动态协同传输方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4027818B2 (ja) 2003-02-21 2007-12-26 株式会社エヌ・ティ・ティ・ドコモ マルチホップ通信システム、無線制御局、無線局及びマルチホップ通信方法
KR20070068350A (ko) * 2004-09-29 2007-06-29 마츠시타 덴끼 산교 가부시키가이샤 무선 통신 장치 및 무선 통신 방법
EP2059059B1 (en) 2006-10-13 2013-12-25 Fujitsu Limited Radio base station and communication control method
KR101434585B1 (ko) * 2008-01-03 2014-08-27 삼성전자주식회사 협력 통신 릴레이를 이용하여 데이터를 전송하는 통신시스템
JP5038924B2 (ja) * 2008-01-25 2012-10-03 株式会社エヌ・ティ・ティ・ドコモ リレー伝送システム、基地局、中継局及び方法
JP5251191B2 (ja) 2008-03-19 2013-07-31 富士通株式会社 移動通信端末装置及び通信制御方法
US20100022184A1 (en) * 2008-07-22 2010-01-28 Sharp Laboratories Of America, Inc. Systems and methods for selective relaying in wireless networks
KR101719995B1 (ko) * 2009-02-20 2017-03-27 엘지전자 주식회사 릴레이 방식의 통신 시스템에서 백홀 링크의 기준신호 할당 방법 및 이를 통한 데이터 송수신 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080025251A1 (en) * 2006-01-06 2008-01-31 Samsung Electronics Co., Ltd. Apparatus and method of providing relay service in broadband wireless access (BWA) communication system
CN101064901A (zh) * 2006-04-29 2007-10-31 上海贝尔阿尔卡特股份有限公司 无线多跳中继接入网的接入方法、中继站、基站和***
CN101119153A (zh) * 2006-08-03 2008-02-06 中兴通讯股份有限公司 一种无线数字中继***和传输时间间隔选取方法
US20080056175A1 (en) * 2006-09-06 2008-03-06 Samsung Electronics Co., Ltd. Relay system and method in a communication system
CN101304304A (zh) * 2008-05-30 2008-11-12 北京北方烽火科技有限公司 一种ofdm移动中继网络中动态协同传输方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2421307A4
YE LI, L.J. CIMINI, N R. SOLLENBERGER, IN IEEE TRANS. COMMUN., vol. 46, no. 7, July 1998 (1998-07-01), pages 902 - 915

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103238285A (zh) * 2010-12-03 2013-08-07 三星电子株式会社 用于分布式天线***中的参考信令分配和信道估计的方法和设备
CN103238285B (zh) * 2010-12-03 2017-06-09 三星电子株式会社 用于分布式天线***中的参考信令分配和信道估计的方法和设备
US9780901B2 (en) 2010-12-03 2017-10-03 Samsung Electronics Co., Ltd Method and apparatus for reference signaling allocation and channel estimation in distributed antenna systems
US20140226558A1 (en) * 2011-08-19 2014-08-14 Sca Ipla Holdings Inc. Wireless communications system and method
US9532357B2 (en) * 2011-08-19 2016-12-27 Sca Ipla Holdings Inc. Wireless communications system and method
US10492202B2 (en) 2011-08-19 2019-11-26 Sca Ipla Holdings Inc. Wireless communications system and method

Also Published As

Publication number Publication date
JP2012524431A (ja) 2012-10-11
US20120026936A1 (en) 2012-02-02
US9094093B2 (en) 2015-07-28
KR20120018325A (ko) 2012-03-02
EP2421307A4 (en) 2014-11-12
BRPI0925013B1 (pt) 2021-01-12
CN102301797A (zh) 2011-12-28
KR101274458B1 (ko) 2013-06-17
BRPI0925013A8 (pt) 2016-09-13
JP5814225B2 (ja) 2015-11-17
CN102301797B (zh) 2015-03-11
EP2421307A1 (en) 2012-02-22
BRPI0925013A (pt) 2012-11-13

Similar Documents

Publication Publication Date Title
WO2010118558A1 (zh) 中继用户选择以及下行资源分配的方法、装置及设备
US9936521B2 (en) User equipment configured to provide synchronization information for sidelink D2D Communications using allocated resource units
EP2702820B1 (en) Generating uplink signals from user equipment nodes to identify interferers to a network node
EP2253112B1 (en) Sub-carrier alignment mechanism for ofdm multi-carrier systems
JP4875504B2 (ja) Ofdma無線システム及び中継局
WO2015065631A1 (en) Synchronization of device to device communication
JP2009518966A (ja) Ofdmチャンネルのチャンネル割当てを行なうための方法およびシステム
WO2015020473A1 (en) Method and apparatus for supporting device to device communication service in wireless communication system
CN107911325B (zh) 一种频偏预补偿方法及装置、通信设备
WO2020029276A1 (zh) 干扰检测方法、装置及存储介质
WO2018058375A1 (zh) 通信方法及终端
WO2009119855A1 (ja) 割当方法およびそれを利用した基地局装置
WO2009124454A1 (zh) 多载波mimo***的基站中为移动终端确定导频图案的方法
WO2023250252A1 (en) Group based cell configuration for inter-cell mobility
JPWO2020166088A5 (ja) 端末、通信システム、及び通信方法
WO2009119854A1 (ja) 割当方法およびそれを利用した基地局装置
JP5839608B2 (ja) 無線通信システム及び受信装置
CN115226219A (zh) 一种增强同频抗干扰能力的方法和***
WO2013105274A1 (ja) 無線通信システム及び受信装置
WO2013105275A1 (ja) 無線通信システム及び受信装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980155711.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843192

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13264540

Country of ref document: US

Ref document number: 2009843192

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012505024

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117027147

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 8402/CHENP/2011

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0925013

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0925013

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111014