WO2010067555A1 - 情報記録媒体、再生装置および再生方法 - Google Patents

情報記録媒体、再生装置および再生方法 Download PDF

Info

Publication number
WO2010067555A1
WO2010067555A1 PCT/JP2009/006607 JP2009006607W WO2010067555A1 WO 2010067555 A1 WO2010067555 A1 WO 2010067555A1 JP 2009006607 W JP2009006607 W JP 2009006607W WO 2010067555 A1 WO2010067555 A1 WO 2010067555A1
Authority
WO
WIPO (PCT)
Prior art keywords
information recording
recording layer
layer
information
reproducing
Prior art date
Application number
PCT/JP2009/006607
Other languages
English (en)
French (fr)
Inventor
中尾政仁
日野泰守
金馬慶明
山崎文朝
佐野晃正
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to RU2010141539/28A priority Critical patent/RU2511612C2/ru
Priority to BRPI0911631A priority patent/BRPI0911631A2/pt
Priority to EP09831663.1A priority patent/EP2360692A4/en
Priority to US12/936,939 priority patent/US8144563B2/en
Priority to MX2010010979A priority patent/MX2010010979A/es
Priority to AU2009325765A priority patent/AU2009325765A1/en
Priority to CA2719731A priority patent/CA2719731A1/en
Priority to JP2010541997A priority patent/JP5563480B2/ja
Priority to CN200980111252.9A priority patent/CN101981623B/zh
Publication of WO2010067555A1 publication Critical patent/WO2010067555A1/ja
Priority to ZA2011/04623A priority patent/ZA201104623B/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00736Auxiliary data, e.g. lead-in, lead-out, Power Calibration Area [PCA], Burst Cutting Area [BCA], control information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • G11B7/1267Power calibration

Definitions

  • the present invention relates to a multilayer recording medium having a plurality of recording layers, a reproducing apparatus for reproducing the multilayer recording medium, and a reproducing method.
  • the numerical aperture NA of the objective lens mounted on the optical head is increased and the wavelength ⁇ of the light of the light source is shortened to make the spot diameter of the light collected by the objective lens It has been reduced.
  • a multilayer recording medium having a plurality of recording layers has been proposed.
  • FIG. 2 shows a conventional multilayer recording medium described in Patent Document 1 mentioned above.
  • the multilayer recording medium shown in FIG. 2 eight information recording layers L0, L1,..., L7 are sequentially stacked in order from the farthest side from the reading side, and the thickness is t0 to t6 between each information recording layer. Seven spacers are arranged.
  • the intensity reflectances R (n + 2) and R (n + 3) of the reflective film formed on the L (n + 2) layer and the L (n + 3) layer located in front of the L (n) layer are R (n + 2) ⁇ R (n + 3) ⁇ 0.01
  • the optimum read power in each recording layer may differ due to the difference in laser light transmittance between the layer on the back side and the layer on the front side as viewed from the optical pickup side. (See, for example, Patent Document 2).
  • each recording layer As the characteristics of each recording layer, when reproduction is performed using a laser beam of a predetermined reproduction power or more, the recorded data is deteriorated, so the reproduction power needs to be within a certain reproduction power. However, when the recording layer is increased to increase the capacity per disc, many recording layers are arranged so that the more layers that are farther from the reading side are arranged in front of each other. It is necessary to perform reproduction with the transmitted light. For example, in a multi-layered optical disc in which the recording layers L0, L1,..., L7 are sequentially stacked, the transmissivity of each layer is T0 to T7, and the individual reflectance of each layer is R0 to R7.
  • the reflectance TR (L0) of the L0 layer is represented by the following equation (1).
  • TR (L0) R0 x T1 2 x T2 2 x T3 2 x T4 2 x T5 2 x T6 2 x T7 2 (1)
  • the reflectance of the L0 layer is the product of the square of the transmittance of the previous layer. For this reason, when the reflectance of a single layer, R0 to R7, is constant, the reflectance decreases toward the back layer. As the reflectance decreases, the amount of light returning from each layer to the light detector decreases, and the S / N decreases, which makes reproduction difficult. In order to cope with the problem, an approach has been taken to make the reflection of each layer substantially constant by increasing the reflectance as it goes to the back. With an optical disc of about two layers, this balance can be easily made to determine the optical structure of the disc.
  • the reproduction power of the laser beam emitted from the optical pickup and incident on the optical disk is Pw
  • the light P (L0) irradiated to the L0 layer of the optical disk formed of eight layers L0 to L7 has the formula It is represented by (2).
  • P (L0) Pw x T1 x T2 x T3 x T4 x T5 x T6 x T7 (2)
  • the light irradiated to the back layer is represented by the product of the transmittance T of the front layer and the reproduction power Pw. Since T is smaller than 1, the power of light irradiated to the layer decreases as the layer goes back. The fact that the power of light irradiated during reproduction decreases as the back layer decreases the possibility of deterioration of the recorded data due to the irradiation of reproduction light, so in principle the reproduction power is increased toward the back layer It becomes possible.
  • the present invention is for solving the above-mentioned problems, and provides an information recording medium which does not deteriorate the recording data of the recording layer even when an unintended interlayer jump occurs in the multilayer recording medium. Further, the present invention provides an optical disk apparatus having a low error rate by reproducing such a multilayer optical disk with good S / N.
  • the information recording medium of the present invention is a multilayer information recording medium provided with a plurality of information recording layers in which information is recorded, and at least one of the information recording layers has other reproduction power used when reproducing information. It differs from the information recording layer, and the substrate thickness between each information recording layer is equal to or more than a predetermined thickness.
  • the substrate thickness is a thickness at which a light intensity reduction amount due to aberration is a predetermined value or more.
  • the information recording medium of the present invention is an information recording medium provided with three or more information recording layers, and the n-th information recording layer L (counting in order from the information recording layer farthest from the reading side of the information recording medium)
  • the reproduction power of the laser beam when reproducing information from n) is Pw (n) (here, n is an integer of 0 or more), and reproduces information from the n + a-th information recording layer L (n + a)
  • the reproduction power of the laser beam at this time is Pw (n + a) (where a is an integer satisfying n + a 0 0 and a ⁇ 0), and the substrate thickness between the information recording layers is the reproduction power Pw (
  • the light intensity when the information recording layer L (n + a) is irradiated with the laser beam n) is the light intensity when the information recording layer L (n + a) is irradiated with the laser beam with the reproduction power Pw (n + a)
  • the thickness is as follows.
  • the information recording medium of the present invention is an information recording medium provided with three or more information recording layers, and the n-th information recording layer L (counting in order from the information recording layer farthest from the reading side of the information recording medium)
  • Pw (n) is the reproduction power of laser light when reproducing information from n) (where n is an integer greater than or equal to 0), and when reproducing information from the n + a-th information recording layer L (n + a)
  • the reproduction power of the laser beam is Pw (n + a) (where a is an integer satisfying n + a ⁇ 0 and a ⁇ 0), and the information recording layer L (n) and the information recording layer L (n + a)
  • the information recording medium has a substrate thickness D between 100 ⁇ Pw (n) / Pw (n + a) ⁇ -0.1238 ⁇ D 2 - 2.772 ⁇ D + 106.56 And Pw (n) P Pw (n + a) Meet.
  • the reproduction method of the present invention is a reproduction method for reproducing information from the information recording medium, and when reproducing information from the information recording layer L (n), the laser beam of the reproduction power Pw (n) is The step of irradiating the information recording layer L (n) and the step of irradiating the information recording layer L (n + a) with the laser beam of the reproducing power Pw (n + a) when the information is reproduced from the information recording layer L (n + a) And the step of
  • the reproducing apparatus is a reproducing apparatus for reproducing information from the information recording medium, comprising: an irradiating section for irradiating the information recording medium with a laser beam, the irradiating section comprising the information recording layer L (n)
  • the information recording layer L (n) is irradiated with the laser beam of the reproducing power Pw (n)
  • the irradiating unit reproduces the information from the information recording layer L (n + a)
  • the laser beam of the reproduction power Pw (n + a) is irradiated to the information recording layer L (n + a).
  • the method of manufacturing an information recording medium according to the present invention is a method of manufacturing an information recording medium including k information recording layers (k is an integer of 3 or more), and an objective lens having a numerical aperture of 0.84 to 0.86.
  • k information recording layers in which information can be reproduced using a laser beam having a wavelength of 400 to 410 nm on a substrate having a thickness of 1.1 mm, and between the information recording layer and the information recording layer Forming k-1 intermediate layers, and forming a protective layer having a thickness of 0.1 mm or less on the k-th information recording layer counted from the substrate side.
  • the reproduction direction of one of the odd-numbered information recording layer and the even-numbered information recording layer counted from the substrate side is the inner peripheral side from the outer peripheral side of the information recording medium
  • the other reproduction direction of the odd-numbered and even-numbered information recording layers is from the inner circumference side to the outer circumference side of the information recording medium.
  • the optimum reproduction powers of the respective recording layers are all different from one another or differ only in part of the recording layers, and the substrate thickness between the respective recording layers is equal to or more than the predetermined thickness. According to this configuration, it is possible to realize an information recording medium in which the recording data is not deteriorated or erased even if the relationship between the reproduction powers of the recording layers is unintentionally caused by the interlayer jump.
  • FIG. 1 shows a playback device according to an embodiment of the present invention.
  • FIG. 1 is a diagram showing an exemplary configuration of a multilayer disc according to an embodiment of the present invention.
  • FIG. 2 is a view showing an example of the configuration of a single layer disc according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an exemplary configuration of a dual layer disc according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of the configuration of a three-layer disc according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing an example of the configuration of a four-layer disc according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a physical configuration of an optical disc according to an embodiment of the present invention.
  • FIG. 13 (a) is a diagram showing an example of a 25 GB BD according to an embodiment of the present invention, and FIG.
  • FIG. 13 (b) is a diagram showing an example of an optical disc with a higher recording density than the 25 GB BD according to an embodiment of the present invention. It is. It is a figure which shows a mode that the light beam is irradiated to the mark row recorded on the track
  • FIG. 7 is a diagram showing the relationship between OTF and shortest recording mark in the case of 25 GB recording capacity according to an embodiment of the present invention.
  • FIG. 7 is a diagram showing an example in which the spatial frequency of the shortest mark (2T) is higher than the OTF cutoff frequency and the amplitude of the 2T reproduction signal is 0 according to the embodiment of the present invention.
  • FIG. 1 shows the structure of a multilayer information recording medium (optical disc) 100 according to an embodiment of the present invention.
  • Constituent elements of the same type as the constituent elements of the multilayer information recording medium shown in FIG. 2 are assigned the same reference numerals, and the detailed description will not be repeated.
  • the multilayer information recording medium 100 includes three or more recording layers in which information is recorded.
  • L0 to L3 indicate the respective recording layers
  • t0 to t2 indicate the substrate thickness between the respective recording layers. Since an intermediate layer (Spacer Layer) is provided between the recording layer and the recording layer, the substrate thickness means the thickness of the intermediate layer.
  • Pw0 to Pw3 indicate the optimum reproduction powers in the recording layers L0 to L3.
  • FIG. 3 is a view showing the relationship between the substrate thickness and the light intensity.
  • the light intensity represents the power of light incident per unit area of the recording layer.
  • the light intensity at the substrate thickness at which the laser beam is most efficiently condensed on the target recording layer is It is 100%.
  • a change in light intensity is a phenomenon substantially equivalent to a change in reproduction power. That is, for the recording layer, it can be said that a change in light intensity due to a change in substrate thickness and a change in laser light output under a constant substrate thickness condition are substantially equivalent events.
  • This change in light intensity is roughly proportional to the cube of NA and the wavelength.
  • the layer thickness is 20 to 30 ⁇ m or less and the base layer thickness of the recording layer with the largest base thickness is about 100 ⁇ m and the recording layer is disposed on the thinner side than 100 ⁇ m.
  • NA> 0.8 a change in light intensity of about 30% occurs even between layers separated by about 10 ⁇ m.
  • the substrate thickness between the recording layers is determined from the relationship between the substrate thickness and the light intensity.
  • the predetermined thickness is a thickness at which the amount of decrease in light intensity due to aberration is equal to or greater than a predetermined value. Details will be described later.
  • FIG. 4 is a view showing the relationship between the substrate thickness and the light intensity.
  • the optimum reproduction power of the laser beam when reproducing information from the recording layer L0 is Pw0, and the light intensity when the laser beam is condensed on the recording layer L0 is 100%.
  • the optimum reproduction powers of the laser beam when reproducing information from the recording layers L1, L2 and L3 are Pw1, Pw2 and Pw3, respectively.
  • the light intensity when the laser beam of reproduction power Pw1 is condensed on the recording layer L1 is represented by 80%.
  • the substrate thickness is set such that the light intensity when the laser beam of the reproduction power Pw0 is condensed on the recording layer L1 is 80% or less. That is, the substrate thickness is set such that the light intensity when the laser beam of the reproduction power Pw1 is condensed on the recording layer L1 is equal to or less than the light intensity.
  • the light intensity when the laser beam with the reproduction power Pw2 is condensed on the recording layer L2 is represented by 70%.
  • the substrate thickness is set such that the light intensity when the laser beam of the reproduction power Pw1 is condensed on the recording layer L2 is 70% or less. That is, the substrate thickness is set such that the light intensity when the laser beam of the reproduction power Pw2 is condensed on the recording layer L2 is equal to or less than the light intensity.
  • the substrate thickness may be set such that the light intensity after the interlayer jump matches the optimum light intensity of the recording layer, or the substrate thickness is set so as to be smaller than the optimum light intensity. May be
  • the substrate thickness is set such that the light intensity after the interlayer jump is equal to or less than the optimum light intensity of the recording layer, but the light intensity or less at which data deterioration occurs in the recording layer
  • the substrate thickness may be set to be
  • the thickness between the recording layers is obtained using the relationship between the substrate thickness change and the light intensity change
  • the thickness may be obtained using a simple approximation.
  • BD Blu-ray Disc
  • approximate equations (3) and (4) are obtained from the relationship between substrate thickness, light intensity and reproduction power, and these equations are used to It becomes possible to determine the substrate thickness.
  • FIG. 5 is a diagram showing the relationship between the substrate thickness and the light intensity by an approximate expression.
  • S -0.1238 ⁇ d 2 - 2.772 ⁇ d + 106.56 (3)
  • S is the light intensity [%]
  • d is the substrate thickness change amount [um] from the substrate thickness at which the light intensity is 100%.
  • d is a positive integer.
  • the reproduction power of the laser light when reproducing information from the n-th information recording layer L (n) in order from the recording layer farthest from the reading side of the optical disc 100 (upper side in FIG. 1) is Pw (n) I assume.
  • n is an integer of 0 or more.
  • the recording layer L0 farthest from the reading side (the deepest side) is represented by L (0)
  • the reproduction power Pw0 is represented by Pw (0).
  • the reproduction power of the laser beam when reproducing information from the n + a-th information recording layer L (n + a) is Pw (n + a).
  • a is an integer that satisfies n + a ⁇ 0 and a ⁇ 0.
  • the recording layer L1 corresponds to that recording layer.
  • the reproduction power Pw (n) is larger than the reproduction power Pw (n + a)
  • the light intensity when the laser beam of the reproduction power Pw (n) is irradiated to the information recording layer L (n + a) is the reproduction power Pw (n + a).
  • the substrate thickness D is set such that the left side of the equation (4) has an appropriate ratio.
  • a is a negative integer and the reproduction power Pw (n + a) is larger than the reproduction power Pw (n)
  • the light intensity when the information recording layer L (n) is irradiated with the laser light of the reproduction power Pw (n + a) is The light intensity when the information recording layer L (n) is irradiated with the laser beam of the reproduction power Pw (n) can be obtained.
  • the reproduction power Pw (n + a) is larger than the reproduction power Pw (n)
  • the intensity may be equal to or less than the light intensity when the information recording layer L (n) is irradiated with the laser beam of the reproduction power Pw (n).
  • fills such conditions can be calculated
  • FIG. 6 shows a playback device 400 according to an embodiment of the present invention.
  • the reproduction device 400 is a device that reproduces information from the optical disc 100.
  • the reproducing apparatus 400 includes an optical pickup 402, a semiconductor laser control unit 403 and a servo processing unit 404 for controlling the optical pickup 402, a reproduction signal processing unit 405 for processing a reproduction signal output from the optical pickup, and a central processing unit 406. And The central processing unit 406 controls the operation of a plurality of components included in the playback device 400.
  • the central control unit 406 controls the semiconductor laser control unit 403, the servo processing unit 404, and the reproduction signal processing unit 405 based on a control signal output from an external computer (not shown).
  • the semiconductor laser control unit 403 sets the reproduction power and the high frequency superimposition, causes the optical pickup (irradiation unit) 402 to emit laser light with a predetermined laser power, and irradiates the optical disk 100 with the laser light.
  • the optical pickup 402 irradiates the information recording layer L (n) with laser light of reproduction power Pw (n).
  • the optical pickup 402 irradiates the information recording layer L (n + a) with a laser beam of reproduction power Pw (n + a).
  • the servo processing unit performs tracking control and focus control using the signal detected by the optical pickup 402, and performs control such that the optical pickup 402 accurately focuses and tracks on the information recording medium 100.
  • the reproduction signal processing unit 405 performs data reproduction signal processing and wobble signal processing, and performs processing such as data reproduction and physical address reproduction.
  • the recording medium has a portion where various information related to the recording medium is stored, and the type of the recording medium is determined based on the information read from the portion, and setting is performed so as to have a predetermined reproduction power.
  • the reproduction power may be changed according to each recording layer. In the case where an unintended interlayer jump occurs in such a multilayer recording medium, the reproduction power to the recording layer after the interlayer jump may be increased to cause deterioration of the recorded data.
  • the reproduction power in each recording layer is determined using a phenomenon in which the light intensity decreases due to the change in the substrate thickness between the recording layers.
  • the semiconductor laser control unit 403 can irradiate each recording layer with a laser beam having an appropriate light intensity by setting the reproduction power according to the specified substrate thickness.
  • the reproduction power information of each recording layer may be stored in the memory of the central control unit 406.
  • the reproduction power information is the light intensity when the laser light of the reproduction power for one recording layer is condensed on another recording layer using the relationship between the substrate thickness and the light intensity shown in FIG.
  • the reproduction power is calculated and stored so that the laser light of the reproduction power for the other recording layer has the same light intensity as when it is condensed on the other recording layer.
  • the reproduction power may be set after the determination.
  • the reproduction power information is the light intensity when the laser light of the reproduction power for one recording layer is focused on another recording layer, and the laser light of the reproduction power for the other recording layer is another recording It may indicate the reproduction power to be equal to or less than the light intensity when condensed on the layer.
  • the reproduction power information indicates the reproduction power so that the light intensity after the interlayer jump is less than the appropriate light intensity of the recording layer
  • the reproduction power information is less than the light intensity at which the deterioration occurs in the recording layer. It may indicate the reproduction power.
  • the reproduction power may be determined and stored using the relationship between the substrate thickness change and the light intensity as shown in FIG. 3 and FIG. 4, or as shown in FIG. 5 or equation (3) or equation (4).
  • the reproduction power may be determined and stored using the approximate expression shown in equation (5).
  • the reproduction power that can be set for each recording layer of the recording medium ranges from the reproduction power as small as the reproduction signal quality does not deteriorate to the reproduction power as large as the deterioration of the recording data does not occur. It may be defined. In that case, the reproduction power of each recording layer may be set so that deterioration of the recording data does not occur within the reproduction power range that can be set in each recording layer. In the case where the reproduction power is set close to the upper limit, there is a possibility that deterioration of the recorded data can not be completely avoided when an unintended interlayer jump occurs, but it is possible to reduce the deterioration.
  • BD Blu-ray Disc
  • BD-ROM which is a reproduction only type
  • BD-R which is a write-once recording type and write-once type
  • BD-RE which is a rewrite recording type according to the characteristics of the recording film.
  • the present invention is applicable to any type of recording medium such as ROM (reproduction only type), R (write-once type / write once type), and RE (rewritable type) in optical disks of BD and other standards.
  • the main optical constants and physical formats of Blu-ray Disc can be found in the white paper published on “Blu-ray Disc Reader” (Am Publishing) or on the website of the Blu-ray Association (http://www.blu-raydisc.com/). It is disclosed.
  • BD laser light with a wavelength of approximately 405 nm (400 to 410 nm if the tolerance of the error range is ⁇ 5 nm with respect to the standard value of 405 nm) and the numerical aperture (NA: Numerical Aperture) is approximately 0.85 (standard value) Assuming that the tolerance of the error range is ⁇ 0.01 with respect to 0.85, an objective lens of 0.84 to 0.86) is used.
  • the track pitch of BD is approximately 0.32 ⁇ m (0.310 to 0.330 ⁇ m when the tolerance of the error range is ⁇ 0.010 ⁇ m with respect to the standard value 0.320 ⁇ m), and the recording layer has one or two layers. Layers are provided.
  • the recording surface of the recording layer has a single-sided or single-sided two-layer structure from the laser incident side, and the distance from the surface of the protective layer of BD to the recording surface is 75 ⁇ m to 100 ⁇ m.
  • the modulation method of the recording signal uses 17PP modulation, and the mark of the shortest mark (2T mark: T is the period of the reference clock (the reference period of modulation when recording the mark according to a predetermined modulation rule)) of the mark to be recorded
  • T is the period of the reference clock (the reference period of modulation when recording the mark according to a predetermined modulation rule)) of the mark to be recorded
  • the length is 0.149 ⁇ m (or 0.138 ⁇ m) (channel bit length: T is 74.50 nm (or 69.00 nm)).
  • Recording capacity is single-sided single layer 25GB (or 27GB) (more specifically, 25.025GB (or 27.020GB)), or single-sided two-layer 50GB (or 54GB) (more specifically, 50.050GB (or 54) .040 GB)).
  • the channel clock frequency is 66 MHz (channel bit rate 66.000 Mbit / s) at the standard speed (BD1x) transfer rate, 264 MHz (channel bit rate 264.000 Mbit / s) at the quadruple speed (BD4 x), 6
  • the transfer rate of double speed (BD6x) is 396 MHz (channel bit rate 396.000 Mbit / s), and that of 8-fold speed (BD8x) is 528 MHz (channel bit rate 528.000 Mbit / s).
  • the standard linear velocity (reference linear velocity, 1x) is 4.917 m / sec (or 4.554 m / sec).
  • the linear velocities of 2.times. (2.times.), 4.times. (4.times.), 6.times. (6.times.) And 8.times. (8.times.) are 9.834 m / sec, 19.668 m / sec, 29.502 m / sec and 39. 9 m. It is 336 m / sec.
  • the linear velocity higher than the standard linear velocity is generally a positive integer multiple of the standard linear velocity, but is not limited to an integer, and may be a positive real multiple.
  • a linear velocity slower than standard linear velocity may also be defined, such as 0.5x (0.5x).
  • BD BD of about 25 GB (or about 27 GB) per layer
  • it is mainly for recording of 1 layer or 2 layers as a further increase in capacity.
  • High-density BDs having a capacity of approximately 32 GB or approximately 33.4 GB, and BDs having three or four layers have also been studied, and these will also be described below.
  • the illustrated optical disc is configured of an information recording layer 502 of (n + 1) layers (n is an integer of 0 or more).
  • the structure of the optical disk is such that a cover layer 501, (n + 1) information recording layers (Ln to L0 layers) 502, and a substrate 500 are sequentially stacked from the surface on which the laser beam 505 is incident. It is done.
  • an interlayer 503 serving as an optical buffer is inserted between the (n + 1) information recording layers 502. That is, the reference layer (L0) is provided at the farthest position (the position farthest from the light source) at a predetermined distance from the light incident surface, and recording is performed so as to increase the layer from the reference layer (L0) to the light incident surface side. Layers are stacked (L1, L2,..., Ln).
  • the distance from the light incident surface to the reference layer L0 in the multilayer disc is made substantially the same as the distance from the light incident face to the recording layer in the single layer disc (for example, about 0.1 mm). May be
  • the distance to the deepest layer is made constant (that is, almost the same distance as in the single layer disc), regardless of whether it is a single layer or multiple layers. Compatibility with respect to access to the reference layer can be maintained.
  • the innermost layer is most affected by the tilt, but the number of layers increases by making the distance to the innermost layer approximately the same distance as the single layer disc. However, the distance to the innermost layer will not increase.
  • the traveling direction of the spot (or also referred to as track direction or spiral direction), it may be a parallel path or an opposite path.
  • the reproduction direction is the same in all layers. That is, the traveling direction of the spot proceeds from the inner periphery to the outer periphery in all layers, or from the outer periphery to the inner periphery in all layers.
  • the reproduction direction is reversed between a certain layer and a layer adjacent to that layer. That is, when the reproduction direction in the reference layer (L0) is a direction from the inner periphery to the outer periphery, the reproduction direction in the recording layer L1 is a direction from the outer periphery to the inner periphery, and in the recording layer L2, from the inner periphery to the outer periphery It is a direction. That is, the reproduction direction is a direction from the inner periphery to the outer periphery in the recording layer Lm (m is 0 and an even number), and is a direction from the outer periphery to the inner periphery in the recording layer Lm + 1.
  • the recording layer Lm (m is 0 and an even number), it is a direction from the outer periphery to the inner periphery and in the recording layer Lm + 1, it is a direction from the inner periphery to the outer periphery.
  • the thickness of the protective layer (cover layer) is set thinner as the numerical aperture NA increases, so that the focal length becomes shorter and the influence of the spot distortion due to the tilt can be suppressed.
  • the numerical aperture NA is set to 0.45 for CD, 0.65 for DVD, and approximately 0.85 for BD.
  • the thickness of the protective layer may be 10 to 200 ⁇ m. More specifically, a transparent protective layer of about 0.1 mm in the case of a single-layer disc, and an intermediate layer of about 0.025 mm in the case of a double-layer disc of about 0.075 mm. ) May be provided. If the disc has three or more layers, the thickness of the protective layer and / or the intermediate layer may be thinner.
  • FIG. 8 shows an example of the configuration of a single-layer disc
  • FIG. 9 shows an example of the configuration of a two-layer disc
  • FIG. 10 shows an example of the configuration of a three-layer disc
  • FIG. 8 when the distance from the light irradiation surface to the reference layer L0 is constant, the total thickness of the disc is approximately 1.2 mm in any of FIGS. 9 to 11 (when including label printing and the like, 1
  • the thickness of the substrate 500 is approximately 1.1 mm
  • the distance from the light irradiation surface to the reference layer L0 is approximately 0.1 mm.
  • These multilayer disks (disks having a recording layer of k layers, k is an integer of 1 or more) can be manufactured by the following process.
  • information can be reproduced by irradiating a laser with a wavelength of 400 nm or more and 410 nm or less through an objective lens with a numerical aperture of 0.84 or more and 0.86 or less on a substrate with a thickness of approximately 1.1 mm.
  • K recording layers are formed.
  • k ⁇ 1 intermediate layers are formed between the recording layer and the recording layer.
  • a protective layer having a thickness of 0.1 mm or less is formed on the k-th recording layer (in the case of a multilayer disc, the recording layer farthest from the substrate) counting from the substrate side.
  • the reproduction direction is from the inner peripheral side to the outer peripheral side of the disc.
  • Concentric or spiral tracks are formed in the direction of.
  • the j-th (j is 1 or more and k or less even numbered) recording layers are formed counting from the substrate side, concentric circles are formed so that the reproduction direction is from the outer peripheral side to the inner peripheral side of the disc. Or a spiral track is formed.
  • the information recording layers Pw (n) are the reproduction power of the n-th information recording layer L (n) in order from the recording layer farthest from the reading side of the information recording medium, and the information recording layer is the most reading side of the information recording medium.
  • Pw (n + a) is the reproduction power of the n + a-th information recording layer L (n + a), counted sequentially from the distant recording layer, and the substrate thickness between the information recording layer L (n) and the information recording layer L (n + a)
  • D 100 ⁇ Pw (n) / Pw (n + a) ⁇ ⁇ 0.1238 ⁇ D 2 ⁇ 2.772 ⁇ D + 106.56
  • Pw (n) P Pw (n + a) (Here, n is an integer of 0 or more, a is an integer satisfying n + a ⁇ 0 and
  • Reproduction of such a multi-layered disc (a disc having a recording layer of k layers, k is an integer of 1 or more) is performed by a reproducing apparatus (or reproducing method) having the following configuration.
  • a track is formed in each of the k recording layers, and various regions can be assigned to at least one of the tracks.
  • the k recording layers are formed by an optical head that emits a laser having a wavelength of 400 nm or more and 410 nm or less through an objective lens having a numerical aperture of 0.84 or more and 0.86 or less from the surface side of the protective layer. Information can be reproduced from each of them.
  • the reproduction apparatus includes an irradiation unit that emits a laser beam.
  • the irradiation means reproduces information by irradiating the n-th information recording layer L (n) in order from the recording layer farthest from the reading side of the information recording medium to the n-th information recording layer L (n) Do. Further, the irradiating means irradiates the laser light of reproduction power Pw (n + a) to the n + a information recording layer L (n + a) in order from the recording layer farthest from the reading side of the information recording medium.
  • n is an integer of 0 or more
  • a is an integer satisfying n + a ⁇ 0, and a ⁇ 0.
  • FIG. 12 shows the physical configuration of an optical disc 100 according to an embodiment of the present invention.
  • a large number of tracks 2 are formed concentrically or spirally on the disk-shaped optical disc 100, and a large number of finely divided sectors are formed on each track 2.
  • data is recorded on each track 2 in units of blocks 3 of a predetermined size.
  • the recording capacity per information recording layer is expanded as compared with a conventional optical disc (for example, a 25 GB BD).
  • the expansion of the recording capacity is realized by improving the recording linear density, for example, by shortening the mark length of the recording mark recorded on the optical disc.
  • "improving the recording linear density” means shortening the channel bit length.
  • the channel bit has a length corresponding to the period T of the reference clock (the reference period T of modulation in the case of recording a mark according to a predetermined modulation rule).
  • the optical disc 100 may be multilayered. However, in the following, for convenience of description, only one information recording layer is mentioned.
  • the mark length differs for each layer, and the mark length is uniform in the same layer.
  • the recording linear density may be made different for each layer.
  • the track 2 is divided into blocks for each recording unit 64 kB (kilobyte) of data, and block address values are assigned in order.
  • the blocks are divided into subblocks of a predetermined length, and three subblocks constitute one block.
  • the sub-blocks are assigned sub-block numbers 0 to 2 sequentially from the front.
  • FIG. 13A shows an example of a 25 GB BD.
  • the wavelength of the laser 123 is 405 nm
  • the numerical aperture (Numeric Aperture; NA) of the objective lens 220 is 0.85.
  • the recording data is recorded on the track 2 of the optical disc as a mark train 120, 121 of physical change.
  • the shortest one of the mark lines is called the "shortest mark”.
  • the mark 121 is the shortest mark.
  • the physical length of the shortest mark 121 is 0.149 um. This corresponds to about 1 / 2.7 of DVD, and the light beam identifies the recording mark even if the laser resolution is increased by changing the wavelength parameter (405 nm) and the NA parameter (0.85) of the optical system. It is approaching the limit of optical resolution which is the limit that can be done.
  • FIG. 14 shows a state in which a light beam is irradiated to a mark row recorded on a track.
  • the light spot 30 becomes about 0.39 um by the above-mentioned optical system parameter.
  • the recording mark becomes relatively smaller than the spot diameter of the light spot 30, so that the resolution of reproduction is deteriorated.
  • FIG. 13 (b) shows an example of an optical disc having a higher recording density than a 25 GB BD.
  • the wavelength of the laser 123 is 405 nm
  • the numerical aperture (NA) of the objective lens 220 is 0.85.
  • the physical length of the shortest mark 125 is 0.1115 um (or 0.11175 um) among the mark rows 125 and 124 of this disk.
  • the spot diameter is about 0.39 um, but the recording mark becomes relatively small and the mark interval becomes narrow, so that the resolution of reproduction becomes worse.
  • the amplitude of the reproduction signal when the recording mark is reproduced by the light beam decreases as the recording mark becomes shorter, and becomes zero at the limit of the optical resolution.
  • the reciprocal of the period of the recording mark is called a spatial frequency, and the relationship between the spatial frequency and the signal amplitude is called OTF (Optical Transfer Function).
  • OTF Optical Transfer Function
  • the signal amplitude decreases approximately linearly as the spatial frequency increases.
  • the limit frequency of reproduction at which the signal amplitude becomes zero is called OTF cutoff.
  • FIG. 15 is a graph showing the relationship between OTF and the shortest recording mark in the case of 25 GB recording capacity.
  • the spatial frequency of the shortest mark of BD is about 80% with respect to the OTF cutoff, and is close to the OTF cutoff. Also, it can be seen that the amplitude of the reproduction signal of the shortest mark is also very small, about 10% of the maximum detectable amplitude.
  • the recording capacity of the BD corresponds to about 31 GB.
  • the resolution of the laser may be limited or exceeded, and the reproduction amplitude of the reproduction signal may be reduced. It becomes an area where the SN ratio is rapidly deteriorated.
  • the recording linear density of the high recording density optical disc shown in FIG. 13 (b) is such that the frequency of the shortest mark of the reproduction signal is near the OTF cutoff frequency (if it is below the OTF cutoff frequency but not significantly below the OTF cutoff frequency). And the OTF cut-off frequency or higher.
  • FIG. 16 is a graph showing an example of the relationship between the signal amplitude and the spatial frequency when the spatial frequency of the shortest mark (2T) is higher than the OTF cutoff frequency and the amplitude of the 2T reproduction signal is 0. It is.
  • the spatial frequency of 2T of the shortest mark length is 1.12 times the OTF cut-off frequency.
  • P (TM + TS) nm when “P” represents (shortest mark length + shortest space length).
  • the reference T becomes smaller to become, the spatial frequency of the shortest mark will exceed the OTF cut-off frequency.
  • the SN ratio deterioration due to the multi-layering of the information recording layer may not be acceptable from the viewpoint of the system margin.
  • the frequency of the shortest recording mark exceeds the OTF cutoff frequency, the SN ratio deterioration becomes remarkable.
  • the frequency of the reproduction signal of the shortest mark and the OTF cut-off frequency are compared and described regarding the recording density, but when the density is further advanced, the next shortest mark (and the shortest one after another) Recording density (recording linear density, recording capacity) corresponding to the relationship between the frequency of the reproduced signal of the mark (more than the next shortest mark) and the OTF cut-off frequency, based on the same principle as above May be set.
  • a specific recording capacity per layer in a BD having specifications such as a wavelength of 405 nm and a numerical aperture of 0.85 for example, when the spatial frequency of the shortest mark is near the OTF cutoff frequency, for example, 29 GB (for example, 29.0 GB ⁇ 0.5 GB, or 29 GB ⁇ 1 GB) or more, or approximately 30 GB (eg, 30.0 GB ⁇ 0.5 GB, or 30 GB ⁇ 1 GB) or more, or approximately 31 GB (or more).
  • the recording capacity per layer when the spatial frequency of the shortest mark is equal to or higher than the OTF cutoff frequency
  • approximately 32 GB for example, 32.0 GB ⁇ 0.5 GB, or 32 GB ⁇ 1 GB
  • Approximately 33 GB for example, 33.0 GB ⁇ 0.5 GB, or 33 GB ⁇ 1 GB
  • approximately 33.3 GB for example, 33.3 GB ⁇ 0.5 GB, or 33.3 GB ⁇ 1 GB or more
  • approximately 33.4 GB eg, 33.4 GB ⁇ 0.5 GB, or 33.4 GB ⁇ 1 GB
  • approximately 34 GB eg, 34.0 GB ⁇ 0.5 GB, or 34 GB ⁇ 1 GB
  • 35GB for example, 35.0GB ⁇ 0.5GB, or 35GB It is possible to assume ⁇ 1 GB or more.
  • the recording capacity of about 100 GB (99.9 GB) can be realized with three layers, and if about 33.4 GB, the recording capacity of 100 GB (100.2 GB) or more with three layers is realized. realizable. This is almost the same as the recording capacity when the 25 GB BD has four layers.
  • the disk configuration there is an option of setting the disk configuration to a four-layer structure of 25 GB per layer or a three-layer structure of 33 to 34 GB per layer.
  • the multi-layering is accompanied by the reduction of the reproduction signal amplitude in each recording layer (the deterioration of the SN ratio), the influence of multilayer stray light (a signal from an adjacent recording layer) and the like. Therefore, by using a 33-34 GB triple-layer disc instead of a 25-GB 4-layer disc, the influence of such stray light is minimized, ie, with a smaller number of layers (three layers instead of four layers). It becomes possible to realize 100 GB.
  • a disc manufacturer who wants to realize about 100 GB while avoiding the multi-layering as much as possible can select the 33-34 GB triple-layering.
  • a disc manufacturer who wants to realize about 100 GB with the conventional format (recording density 25 GB) can select 25 GB 4-layer. In this way, manufacturers having different purposes can realize their respective goals by providing different configurations, and can provide a degree of freedom in disk design.
  • the recording density per layer is about 30 to 32 GB, although it does not reach 100 GB (about 90 to 96 GB) in a three-layer disc, 120 GB or more can be realized in a four-layer disc.
  • the recording density is approximately 32 GB, a four-layer disc can realize a recording capacity of approximately 128 GB.
  • the number 128 is also a number matched to a power of 2 (2 to the power of 7) which is convenient for computer processing.
  • the reproduction characteristic for the shortest mark is not severer here.
  • the disc manufacturer is provided with a combination of the plurality of types of recording density and the number of layers.
  • Design freedom can be given. For example, for manufacturers wishing to increase the capacity while suppressing the influence of multi-layering, the option of manufacturing an about 100 GB three-layer disc by tri-layering of 33 to 34 GB is given an option to suppress the influence of reproduction characteristics. For manufacturers wishing to increase the capacity, it is possible to give an option to manufacture a four-layer disc of about 120 GB or more by making four layers of 30 to 32 GB.
  • the information recording medium of the present invention is a multilayer information recording medium provided with a plurality of information recording layers in which information is recorded, and at least one of the information recording layers is used to reproduce information.
  • the reproduction power used is different from that of the other information recording layers, and the substrate thickness between the information recording layers is equal to or greater than a predetermined thickness.
  • the substrate thickness is a thickness at which a light intensity reduction amount due to aberration is a predetermined value or more.
  • the information recording medium of the present invention is an information recording medium provided with three or more information recording layers, and the n-th information recording layer L (counting in order from the information recording layer farthest from the reading side of the information recording medium)
  • the reproduction power of the laser beam when reproducing information from n) is Pw (n) (here, n is an integer of 0 or more), and reproduces information from the n + a-th information recording layer L (n + a)
  • the reproduction power of the laser beam at this time is Pw (n + a) (where a is an integer satisfying n + a 0 0 and a ⁇ 0), and the substrate thickness between the information recording layers is the reproduction power Pw (
  • the light intensity when the information recording layer L (n + a) is irradiated with the laser beam n) is the light intensity when the information recording layer L (n + a) is irradiated with the laser beam with the reproduction power Pw (n + a)
  • the thickness is as follows.
  • the information recording medium of the present invention is an information recording medium provided with three or more information recording layers, and the n-th information recording layer L (counting in order from the information recording layer farthest from the reading side of the information recording medium)
  • Pw (n) is the reproduction power of laser light when reproducing information from n) (where n is an integer greater than or equal to 0), and when reproducing information from the n + a-th information recording layer L (n + a)
  • the reproduction power of the laser beam is Pw (n + a) (where a is an integer satisfying n + a ⁇ 0 and a ⁇ 0), and the information recording layer L (n) and the information recording layer L (n + a)
  • the information recording medium has a substrate thickness D between 100 ⁇ Pw (n) / Pw (n + a) ⁇ -0.1238 ⁇ D 2 - 2.772 ⁇ D + 106.56 And Pw (n) P Pw (n + a) Meet.
  • the reproduction method of the present invention is a reproduction method for reproducing information from the information recording medium, and when reproducing information from the information recording layer L (n), the laser beam of the reproduction power Pw (n) is The step of irradiating the information recording layer L (n) and the step of irradiating the information recording layer L (n + a) with the laser beam of the reproducing power Pw (n + a) when the information is reproduced from the information recording layer L (n + a) And the step of
  • the reproducing apparatus is a reproducing apparatus for reproducing information from the information recording medium, comprising: an irradiating section for irradiating the information recording medium with a laser beam, the irradiating section comprising the information recording layer L (n)
  • the information recording layer L (n) is irradiated with the laser beam of the reproducing power Pw (n)
  • the irradiating unit reproduces the information from the information recording layer L (n + a)
  • the laser beam of the reproduction power Pw (n + a) is irradiated to the information recording layer L (n + a).
  • the method of manufacturing an information recording medium according to the present invention is a method of manufacturing an information recording medium including k information recording layers (k is an integer of 3 or more), and an objective lens having a numerical aperture of 0.84 to 0.86.
  • k information recording layers in which information can be reproduced using a laser beam having a wavelength of 400 to 410 nm on a substrate having a thickness of 1.1 mm, and between the information recording layer and the information recording layer Forming k-1 intermediate layers, and forming a protective layer having a thickness of 0.1 mm or less on the k-th information recording layer counted from the substrate side.
  • the reproduction direction of one of the odd-numbered information recording layer and the even-numbered information recording layer counted from the substrate side is the inner peripheral side from the outer peripheral side of the information recording medium
  • the other reproduction direction of the odd-numbered and even-numbered information recording layers is from the inner circumference side to the outer circumference side of the information recording medium.
  • the optical recording medium of the present invention is a multilayer recording medium in which a plurality of recording layers in which information is recorded is formed, and the reproduction power at the time of reproducing each recording layer is different from all or only a part of the recording layers.
  • the substrate thickness between the recording layers is set to a predetermined thickness or more.
  • the substrate thickness between the recording layers is a thickness at which the amount of decrease in light intensity due to aberration is a predetermined value or more.
  • the light intensity at the n + a layer is n + a-th when the reproduction power is Pw (n) in the n-th recording layer L (n).
  • the thickness is the same as the reproduction power Pw (n + a) of the layer L (n + a) (here, n is an integer of 0 or more and a is an integer of 0 to n or more).
  • the light intensity at the n + a layer is n + a-th when the reproduction power is Pw (n) in the n-th recording layer L (n).
  • the thickness is equal to or less than the reproduction power Pw (n + a) of the layer L (n + a) (here, n is an integer of 0 or more and a is an integer of 0 to n or more).
  • the reproducing method according to the present invention is a reproducing method for reproducing a multilayer recording medium in which a plurality of recording layers in which information is recorded is formed, and the reproduction power of each recording layer is set to be different only in all or a part of the layers.
  • the reproduction power of each recording layer is obtained from the substrate thickness information between the recording layers.
  • the reproduction power of each recording layer is the n + a-th recording at the light intensity at the n + a layer.
  • the reproduction power is the same as the reproduction power Pw (n + a) of the layer L (n + a) (here, n is an integer of 0 or more and a is an integer of 0 to n or more).
  • the reproduction power of each recording layer is the n + a-th recording at the light intensity at the n + a layer.
  • the reproduction power is set to be equal to or less than the reproduction power Pw (n + a) of the layer L (n + a) (here, n is an integer of 0 or more and a is an integer of 0 to n or more).
  • the reproducing apparatus is a reproducing apparatus for reproducing a multilayer recording medium in which a plurality of recording layers in which information is recorded is formed, wherein the reproduction power of each recording layer is set to be different only in all or part of the layers.
  • the reproduction power of each recording layer is obtained from the substrate thickness information between the recording layers.
  • the reproduction power of each recording layer is the n + a-th recording at the light intensity at the n + a layer.
  • the reproduction power is the same as the reproduction power Pw (n + a) of the layer L (n + a) (here, n is an integer of 0 or more and a is an integer of 0 to n or more).
  • the reproduction power of each recording layer is the n + a-th recording at the light intensity at the n + a layer.
  • the reproduction power is set to be equal to or less than the reproduction power Pw (n + a) of the layer L (n + a) (here, n is an integer of 0 or more and a is an integer of 0 to n or more).
  • the recording medium according to the present invention can avoid deterioration of recording data even when an unintended interlayer jump occurs, and is particularly useful in an optical disc system using a multilayer recording medium.

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

 本発明の情報記録媒体は3層以上の情報記録層を備える。情報記録層L(n)から情報を再生するときのレーザー光の再生パワーをPw(n)とし、情報記録層L(n+a)から情報を再生するときのレーザー光の再生パワーをPw(n+a)としたとき、情報記録層間の基材厚は、再生パワーPw(n)のレーザー光が情報記録層L(n+a)に照射されたときの光強度が、再生パワーPw(n+a)のレーザー光が情報記録層L(n+a)に照射されたときの光強度以下となる厚みである。

Description

情報記録媒体、再生装置および再生方法
 本発明は、複数の記録層を有する多層記録媒体、多層記録媒体を再生する再生装置および再生方法に関する。
 近年、光ディスクの記録容量を高めるために、光ヘッドに搭載される対物レンズの開口数NAを大きくすると共に光源の光の波長λを短くして、対物レンズによって集光される光のスポット径が縮小されてきている。また、光ディスク媒体の記録容量を一層高くするために、記録層を複数持つ多層記録媒体が提案されてきている。
 従来の多層記録媒体としては、記録層の間に厚さの異なるスペーサーを互い違いに積層することによって、多重反射を軽減していた(例えば、特許文献1参照)。図2は、前記特許文献1に記載された従来の多層記録媒体を示すものである。
 図2に示す多層記録媒体では、読み取り側から最も遠い方から順に8個の情報記録層L0、L1、・・・、L7が順に積層され、各情報記録層の間に厚みがt0~t6の7個のスペーサーが配置されている。また、L(n)層よりも手前に位置するL(n+2)層およびL(n+3)層に形成された反射膜における強度反射率R(n+2)およびR(n+3)は、
R(n+2)×R(n+3)<0.01
を満たすため、t1>t0>t3=t5>t2=t4=t6の関係としている。そのため、t6=t4=t2且つt5=t3と設定することが可能となり、多重反射を軽減するために必要なスペーサーの種類を7種類から4種類に減らすことが可能となる。
 また、従来の多層記録媒体の再生時には、光ピックアップ側から見て奥側の層と手前の層でレーザー光の透過率が異なること等によって、各記録層での最適な再生パワーが異なる場合がある(例えば特許文献2参照)。
特開2006-40456号公報 特開2005-122862号公報
 各記録層の特性として、一定以上の再生パワーのレーザー光を用いて再生を行うと記録されたデータの劣化を引き起こしてしまうため、再生パワーは一定の再生パワー以内にする必要がある。しかしながら、記録層を増やしてディスク1枚あたりの容量を増加させると、読み取り側から遠い層ほど手前により多くの記録層が重なって配置された構成となるために、その多くの他の記録層を透過した光で再生を行う必要が出てくる。例えば記録層L0、L1、・・・、L7が順に積層された多層の光ディスクでは、各層の透過率をT0~T7、各層の単独の反射率をR0~R7とした場合、積層されたディスクのL0層の反射率TR(L0)は、以下の式(1)で表される。
 TR(L0) = R0× T12×T22×T32×T42×T52×T62×T72   (1)
 上記式(1)に示されるように、L0層の反射率は手前の層の透過率の2乗の積となる。このため、単独層の反射率であるR0~R7が一定の場合、反射率は奥の層ほど低くなる。反射率が低くなると、各層から光検出器に戻る光量が小さくなるためにS/Nが低下して再生が困難となる。この課題に対応するために、奥の層ほど反射率を大きくすることで、各層の反射をほぼ一定とするアプローチが行われてきた。2層程度の光ディスクであれば容易にこのバランスをとってディスクの光学的な構造を決めることが出来る。しかし、3層以上の光ディスクにおいては、手前の層の透過率を高くして奥の層の反射率を低くすることがより求められており、記録層の構成が非常に難しくなっていた。この課題は、記録膜のS/Nが確保しづらい書き換え型の光ディスクで特に顕著である。このような反射率が低い光ディスクを再生するためには、再生時の再生パワーを大きくして、各層から戻る光量を増加させることで、S/Nの改善を行うことができる。しかしながら、反射率の低い層ほど再生パワーを増加させてS/Nを確保した場合には以下の課題が生じ、従来はS/Nを十分に確保できる程度に再生パワーを増加させることが困難であった。
 例えば、光ピックアップから出射されて光ディスクに入射するレーザー光の再生パワーをPwとしたとき、L0~L7層の8層で構成された光ディスクのL0層に照射される光P(L0)は、式(2)で表される。
 P(L0) = Pw×T1×T2×T3×T4×T5×T6×T7   (2)
 式(2)に示されるように、奥の層に照射される光は、手前の層の透過率Tと再生パワーPwの積で表される。Tは1より小さいために、奥の層ほどその層に照射される光のパワーは小さくなる。奥の層ほど再生時に照射される光のパワーが小さくなるということは、記録データが再生光の照射によって劣化する可能性が低くなるために、原理的には奥の層ほど再生パワーを高くすることが可能となる。式(1)に示したように奥の層ほど反射率が低くなる関係にある多層の光ディスクにおいて、奥の層ほど再生パワーを高くすることは、S/Nの観点で有利となる。S/Nを確保するために再生パワーを高くしても、その層では記録データの劣化無しに再生をすることが可能である。しかし、光ディスクドライブに加わる外部からの衝撃やディスクの傷などによって制御が不安定となり、他の層に間違って光が集光された場合(意図しない層間ジャンプ)、他の層の記録データを劣化させてしまう可能性がある。このことを考慮すると、再生パワーをS/Nが確保できるに十分なパワーにまで上げて再生することが困難であった。
 本発明は、上記の課題を解決するためのものであり、多層記録媒体において意図しない層間ジャンプが発生した場合でも、記録層の記録データを劣化させることのない情報記録媒体を提供する。また、本発明は、そのような多層の光ディスクを良好なS/Nで再生してエラーレートの低い光ディスク装置を提供する。
 本発明の情報記録媒体は、情報が記録される情報記録層を複数備えた多層情報記録媒体であって、少なくとも1つの前記情報記録層は、情報を再生するときに用いられる再生パワーが他の情報記録層と異なっており、各情報記録層間の基材厚は所定の厚み以上である。
 ある実施形態によれば、前記基材厚は、収差による光強度減少量が所定以上となる厚みである。
 本発明の情報記録媒体は、3層以上の情報記録層を備えた情報記録媒体であって、前記情報記録媒体の読み取り側から最も遠い情報記録層から順に数えてn番目の情報記録層L(n)から情報を再生するときのレーザー光の再生パワーはPw(n)であり(ここで、nは0以上の整数である)、n+a番目の情報記録層L(n+a)から情報を再生するときのレーザー光の再生パワーはPw(n+a)であり(ここで、aはn+a≧0且つa≠0を満たす整数である)、前記各情報記録層間の基材厚は、前記再生パワーPw(n)のレーザー光が前記情報記録層L(n+a)に照射されたときの光強度が、前記再生パワーPw(n+a)のレーザー光が情報記録層L(n+a)に照射されたときの光強度以下となる厚みである。
 本発明の情報記録媒体は、3層以上の情報記録層を備えた情報記録媒体であって、前記情報記録媒体の読み取り側から最も遠い情報記録層から順に数えてn番目の情報記録層L(n)から情報を再生するときのレーザー光の再生パワーをPw(n)とし(ここで、nは0以上の整数である)、n+a番目の情報記録層L(n+a)から情報を再生するときのレーザー光の再生パワーをPw(n+a)とし(ここで、aはn+a≧0且つa≠0を満たす整数である)、前記情報記録層L(n)と前記情報記録層L(n+a)との間の基材厚をDとしたとき、前記情報記録媒体は、
 100 × Pw(n) / Pw(n+a) ≧ -0.1238 × D2 - 2.772 × D + 106.56
 および
 Pw(n) ≦ Pw(n+a)
 を満たす。
 本発明の再生方法は、前記情報記録媒体から情報を再生する再生方法であって、前記情報記録層L(n)から情報を再生するときに、前記再生パワーPw(n)のレーザー光を前記情報記録層L(n)に照射するステップと、前記情報記録層L(n+a)から情報を再生するときに、前記再生パワーPw(n+a)のレーザー光を前記情報記録層L(n+a)に照射するステップとを含む。
 本発明の再生装置は、前記情報記録媒体から情報を再生する再生装置であって、前記情報記録媒体にレーザー光を照射する照射部を備え、前記照射部は、前記情報記録層L(n)から情報を再生するときは、前記再生パワーPw(n)のレーザー光を前記情報記録層L(n)に照射し、前記照射部は、前記情報記録層L(n+a)から情報を再生するときは、前記再生パワーPw(n+a)のレーザー光を前記情報記録層L(n+a)に照射する。
 本発明の情報記録媒体の製造方法は、k個の情報記録層(kは3以上の整数)を備える情報記録媒体の製造方法であって、開口数0.84~0.86の対物レンズを介して、波長400~410nmのレーザー光を用いて情報が再生可能なk個の情報記録層を、厚さ1.1mmの基板上に形成するステップと、情報記録層と情報記録層との間にk-1個の中間層を形成するステップと、前記基板側から数えてk番目の情報記録層上に、厚さ0.1mm以下の保護層を形成するステップとを含む。前記情報記録層を形成するステップは、前記基板側から数えて奇数番目の情報記録層および偶数番目の情報記録層のうちの一方の再生方向が、前記情報記録媒体の外周側から内周側の方向となるように、同心円状またはスパイラル状のトラックを形成するステップと、前記奇数番目および偶数番目の情報記録層のうちの他方の再生方向が、前記情報記録媒体の内周側から外周側の方向となるように、同心円状またはスパイラル状のトラックを形成するステップとを含む。前記情報記録媒体の読み取り側から最も遠い情報記録層から順に数えてn番目の情報記録層L(n)から情報を再生するときのレーザー光の再生パワーをPw(n)とし(ここで、nは0以上の整数である)、前記情報記録媒体の読み取り側から最も遠い情報記録層から順に数えてn+a番目の情報記録層L(n+a)から情報を再生するときのレーザー光の再生パワーをPw(n+a)とし(ここで、aはn+a≧0且つa≠0を満たす整数である)、前記情報記録層L(n)と前記情報記録層L(n+a)との間の基材厚をDとしたとき、前記情報記録媒体は、
 100 × Pw(n) / Pw(n+a) ≧ -0.1238 × D2 - 2.772 × D + 106.56
 および
 Pw(n) ≦ Pw(n+a)
 を満たす。
 本発明によれば、各記録層の最適再生パワーは、そのすべてが互いに異なる、若しくは一部の記録層だけ異なり、各記録層間の基材厚は所定の厚み以上となっている。本構成によって、各記録層の再生パワーの関係を、意図せず層間ジャンプが発生した場合においても、記録データを劣化させる若しくは消去されてしまうことのない情報記録媒体を実現できる。
本発明の実施形態による記録媒体の構造の一例を示す図である。 記録媒体の構造の一例を示す図である。 本発明の実施形態による基材厚と光強度の関係を示す図である。 本発明の実施形態による記録媒体における基材厚と光強度の関係の一例を示す図である。 本発明の実施形態による基材厚と光強度の関係を近似式で示す図である。 本発明の実施形態による再生装置を示す図である。 本発明の実施形態による多層ディスクの構成例を示す図である。 本発明の実施形態による単層ディスクの構成例を示す図である。 本発明の実施形態による二層ディスクの構成例を示す図である。 本発明の実施形態による三層ディスクの構成例を示す図である。 本発明の実施形態による四層ディスクの構成例を示す図である。 本発明の実施形態による光ディスクの物理的構成を示す図である。 図13(a)は本発明の実施形態による25GBのBDの例を示す図であり、図13(b)は本発明の実施形態による25GBのBDよりも高記録密度の光ディスクの例を示す図である。 本発明の実施形態によるトラック上に記録されたマーク列に光ビームを照射させている様子を示す図である。 本発明の実施形態による25GB記録容量の場合のOTFと最短記録マークの関係を示す図である。 本発明の実施形態による最短マーク(2T)の空間周波数がOTFカットオフ周波数よりも高く、かつ、2Tの再生信号の振幅が0になっている例を示す図である。
 以下、図面を参照しながら、本発明の実施形態における多層情報記録媒体、再生方法および再生装置を説明する。
 (実施形態1)
 図1は、本発明の実施形態における多層情報記録媒体(光ディスク)100の構造を示す。図2に示す多層情報記録媒体の構成要素と同じ種類の構成要素に関しては、同じ符号を付し、詳細な説明の繰り返しは省略する。
 多層情報記録媒体100は、情報が記録される記録層を3層以上備える。図1において、L0~L3は各記録層を示し、t0~t2は各記録層間の基材厚を示している。記録層と記録層との間には中間層(Spacer Layer)が設けられるため、基材厚とは中間層の厚みを意味する。また、Pw0~Pw3は記録層L0~L3における最適再生パワーを示している。
 図3は、基材厚と光強度の関係を示す図である。光強度は記録層の単位面積あたりに入射される光のパワーを表しており、図3では、対象とする記録層にレーザー光が最も効率よく集光される基材厚のときの光強度を100%としている。図3に示すように、記録媒体の基材厚が変化すると、光ピックアップの対物レンズの設計上の値からずれて球面収差が発生し、光強度が変化する。光強度が変化することは、再生パワーが変化するのとほぼ等価の現象となる。すなわち、記録層にとっては、基材厚の変化により光強度が変化することと、基材厚一定の条件下でレーザー光出力が変化することとは、実質的には同等の事象と言える。
 基材厚と光強度の関係は、使用するレーザー光の波長に依存して変化する。図3では一例として、青白レーザー光を用いるBD(Blu-ray Disc)における上記関係を示しており、NA=0.85、レーザー光の波長405nmの条件下で、基材厚が変化した際の光強度の変化量を示している。この光強度の変化は、おおよそNAの3乗および波長に比例する。NAを大きくすることで、基材厚の変化がわずかでも光強度が大きく低下するので、記録層の間隔が狭い場合でも光強度の変化を大きく取れる。
 例えば、層の間隔が20~30μm以下であり、基材厚が最も厚くなる記録層の基材厚が100μm程度であって、100μmよりも薄い側に記録層が配置された多層の光ディスクの場合には、NA>0.8であれば、10μm程度離れた層の間でも30%程度の光強度の変化が発生する。例えば、L0層とL1層の間隔(基材厚)が10μmであった場合は、L0層の再生中にL1層への意図しない層間ジャンプが発生しても光強度が70%に低下する。このため、L0層の再生パワーをL1層の再生パワーの1/0.7=1.42倍に設定しても、L1層はダメージを受けない。
 この光強度の低下は、NAの3乗と光ビームの波長に比例するため、NA=0.85以上であれば図3で示した光量低下より大きな低下が発生するために、同じ基材厚でもより大きな効果を得ることができ、L0層の再生パワーを更に大きく設定することが可能となる。波長についても同様で、波長を短くすればより大きな効果が期待される。
 上述したように、最適な再生パワーが互いに異なる記録層の間で、意図しない層間ジャンプが発生した場合には、層間ジャンプ後の記録層に対する再生パワーが高くなり、記録データの劣化が発生する場合がある。このような問題を回避するためには、各記録層間の基材厚を所定の値以上にして、基材厚の変化に応じて光強度が減少する現象を利用することが有効となる。本実施形態では、そのような基材厚と光強度の関係から、各記録層間の基材厚を定める。情報を再生するときに用いられる再生パワーに関して、少なくとも1つの記録層は他の記録層と異なっているが、各記録層間の基材厚を所定の厚み以上にすることで対処する。その所定の厚みは、収差による光強度減少量が所定以上となる厚みである。詳細は後述する。
 図4を参照して、本実施形態における基材厚と光強度の関係に着目して設定した基材厚を説明する。図4は、基材厚と光強度の関係を示す図である。
 ここで、記録層L0から情報を再生するときのレーザー光の最適再生パワーはPw0であり、記録層L0にそのレーザー光が集光されたときの光強度を100%としている。
 また、記録層L1、L2、L3から情報を再生するときのレーザー光の最適再生パワーはそれぞれ、Pw1、Pw2、Pw3である。各記録層の再生パワーをそれぞれPw0=100、Pw1=80、Pw2=Pw3=70と規格化している。例えば、再生パワーPw1のレーザー光が記録層L1に集光したときの光強度は80%で表される。また、再生パワーPw0のレーザー光が記録層L1に集光したときの光強度が80%以下となるように基材厚が設定されている。すなわち、再生パワーPw1のレーザー光が記録層L1に集光したときの光強度以下となるように基材厚が設定されている。
 同様に、再生パワーPw2のレーザー光が記録層L2に集光したときの光強度は70%で表される。また、再生パワーPw1のレーザー光が記録層L2に集光したときの光強度が70%以下となるように基材厚が設定されている。すなわち、再生パワーPw2のレーザー光が記録層L2に集光されたときの光強度以下となるように基材厚が設定されている。
 このように、図3に示した現象を用いることによって、各記録層の再生パワーに応じて各記録層間の基材厚を設定することが可能となる。
 なお、本発明は上述した実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲内において適宜の変更が可能なものである。例えば、層間ジャンプ後の光強度が、その記録層の最適光強度と一致するように、基材厚を設定してもよいし、その最適光強度よりも小さくなるように基材厚を設定してもよい。
 また、本実施形態においては、層間ジャンプ後の光強度がその記録層の最適光強度以下となるように基材厚を設定しているが、その記録層でデータの劣化が発生する光強度以下となるように基材厚を設定してもよい。
 また、本実施形態においては、基材厚変化と光強度変化の関係を用いて各記録層間の基材厚を求めているが、簡易的な近似式を用いて求めてもよい。一例として、青色レーザー光を用いたBD(Blu-ray Disc)においては、基材厚と光強度と再生パワーの関係から近似式(3)および(4)が得られ、これらの式を用いて基材厚を求めることが可能となる。図5は、基材厚と光強度の関係を近似式で示す図である。
 S = -0.1238×d2 - 2.772×d + 106.56   (3)
ここで、Sは光強度[%]、dは光強度100%となる基材厚からの基材厚変化量[um]である。ここで、dは正の整数である。
 ここで、光ディスク100の読み取り側(図1の上側)から最も遠い記録層から順に数えてn番目の情報記録層L(n)から情報を再生するときのレーザー光の再生パワーをPw(n)とする。ここで、nは0以上の整数である。一例として、読み取り側から最も遠い(最も奥側の)記録層L0はL(0)で表され、再生パワーPw0はPw(0)で表される。また、n+a番目の情報記録層L(n+a)から情報を再生するときのレーザー光の再生パワーをPw(n+a)とする。ここで、aはn+a≧0且つa≠0を満たす整数である。一例として、n=0且つa=1のとき、記録層L1がその記録層に該当する。
 再生パワーPw(n)が再生パワーPw(n+a)より大きいときでも、再生パワーPw(n)のレーザ光が情報記録層L(n+a)に照射されたときの光強度が、再生パワーPw(n+a)のレーザー光が情報記録層L(n+a)に照射されたときの光強度以下となるようにする。
 なお、以下の式(4)において、読み取り側から遠い方の記録層用の再生パワーが低い場合は、aは正の整数となる。読み取り側から遠い方の記録層用の再生パワーの方が高い場合は、aは負の整数となる。aが負の整数のとき、記録層L(n+a)の方が読み取り側から遠い方の記録層となる。
 情報記録層L(n)と情報記録層L(n+a)との間の基材厚Dは、
 100×Pw(n)/Pw(n+a) = -0.1238×D2 - 2.772×D + 106.56   (4)
から求めることができる。ここで、Pw(n)≦Pw(n+a)であり、Pw(n)/Pw(n+a)の単位は[%]である。例えば、Pw(n)=Pw(n+a)のとき(すなわち、Pw(n)/Pw(n+a)の比率が1のとき)、式(4)の左辺は100[%]である。また、nは0以上の整数、aはn+a≧0、かつ、a≠0を満たす整数である。
 式(4)の左辺が適切な比率となるような基材厚Dに設定する。aが負の整数で、再生パワーPw(n+a)が再生パワーPw(n)より大きいときには、再生パワーPw(n+a)のレーザー光が情報記録層L(n)に照射されたときの光強度が、再生パワーPw(n)のレーザー光が情報記録層L(n)に照射されたときの光強度となるようにすることができる。
 また、aが負の整数で、再生パワーPw(n+a)が再生パワーPw(n)より大きいときには、再生パワーPw(n+a)のレーザー光が情報記録層L(n)に照射されたときの光強度は、再生パワーPw(n)のレーザー光が情報記録層L(n)に照射されたときの光強度以下となってもよい。そのような条件を満たす基材厚Dは、式(4)を変形した式(5)から求めることができる。
 100×Pw(n)/Pw(n+a) ≧ -0.1238×D2 - 2.772×D + 106.56  (5)
 (実施形態2)
 図6は、本発明の実施形態の再生装置400を示す。再生装置400は、光ディスク100から情報を再生する装置である。
 再生装置400は、光ピックアップ402と、光ピックアップ402を制御する半導体レーザー制御部403およびサーボ処理部404と、光ピックアップから出力された再生信号を処理する再生信号処理部405と、中央処理部406とを備える。中央処理部406は、再生装置400が備える複数の構成要素の動作を制御する。
 中央制御部406は、外部コンピュータ(不図示)から出力される制御信号に基づいて、半導体レーザー制御部403、サーボ処理部404および再生信号処理部405を制御する。
 半導体レーザー制御部403は、再生パワーや高周波重畳の設定を行い、光ピックアップ(照射部)402から所定のレーザーパワーでレーザー光を出射させ、光ディスク100に照射する。光ピックアップ402は、情報記録層L(n)から情報を再生するときは、再生パワーPw(n)のレーザー光を情報記録層L(n)に照射する。また、光ピックアップ402は、情報記録層L(n+a)から情報を再生するときは、再生パワーPw(n+a)のレーザー光を情報記録層L(n+a)に照射する。
 サーボ処理部は、光ピックアップ402によって検出した信号を用いてトラッキング制御およびフォーカス制御を行い、光ピックアップ402が情報記録媒体100上に正確にフォーカシングおよびトラッキングするように制御を行う。
 再生信号処理部405は、データ再生信号処理およびウォブル信号処理を行い、データの再生や物理アドレス再生等の処理を行う。
 通常、記録媒体には記録媒体に関する各種情報が記憶された部位があり、その部位から読み取った情報を元に記録媒体の種類を判別し、所定の再生パワーとなるように設定を行っている。そして、多層記録媒体によっては、各記録層に応じて再生パワーを変更する場合もある。このような多層記録媒体において意図しない層間ジャンプが発生した場合には、層間ジャンプ後の記録層に対する再生パワーが高くなり記録データの劣化が発生する場合がある。
 このような問題を回避するための手段として、判別した記録媒体の種類から各記録層間の基材厚を識別し、各記録層の再生パワーを設定することが有効となる。
 そこで、各記録層間の基材厚の変化によって光強度が減少する現象を用いて、各記録層における再生パワーを決定する。
 図3に示す関係から、各記録層間の基材厚から各記録層における再生パワーの比率関係を導き出すことは可能であり、各記録層の再生パワーの関係が適切な比率関係となるように設定する。例えば、図4に示したような比率関係に設定する。
 例えば、記録媒体の種類が判別されれば、その記録媒体の各記録層間の基材厚を特定することができる。そこで、中央制御部406のメモリ(図示せず)に各記録層の適切な光強度の情報を保存しておき、記録媒体判別後に中央制御部のメモリからその光強度の情報を読み出す。半導体レーザー制御部403は、特定した基材厚に応じた再生パワーを設定することで、各記録層に適切な光強度のレーザー光を照射することができる。あるいは、中央制御部406のメモリに各記録層の再生パワー情報を保存しておいてもよい。
 ここで、再生パワー情報は、図4で示される基材厚と光強度の関係を用いて、ある記録層用の再生パワーのレーザー光が別の記録層に集光されたときの光強度が、その別の記録層用の再生パワーのレーザー光がその別の記録層に集光されたときの光強度と同じになるように、再生パワーを算出して保存しておき、記録媒体の種類判別後に再生パワーを設定してもよい。
 以上、本発明の実施形態について説明したが、本発明は、これらの実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲内において適宜の変更が可能なものである。例えば、再生パワー情報は、ある記録層用の再生パワーのレーザー光が別の記録層に集光されたときの光強度が、その別の記録層用の再生パワーのレーザー光がその別の記録層に集光されたときの光強度以下になるような再生パワーを示していてもよい。
 また、再生パワー情報は、層間ジャンプ後の光強度がその記録層の適切な光強度以下となるように再生パワーを示しているが、その記録層で劣化が発生する光強度以下となるような再生パワーを示していてもよい。
 また、図3および図4に示したような基材厚変化と光強度の関係を用いて再生パワーを求めて保存しておいてもよいし、図5や式(3)、式(4)および式(5)に示す近似式を用いて再生パワーを求めて保存しておいてもよい。
 また、記録媒体のそれぞれの記録層に設定可能な再生パワーは、再生信号品質が劣化しない程度に小さい再生パワーから、記録データの劣化が発生しない程度に大きい再生パワーまでというように、その範囲が定められている場合もある。その場合は、各記録層で設定可能な再生パワー範囲内で、記録データの劣化が発生しないように各記録層の再生パワーを設定してもよい。再生パワーを上限近くに設定した場合においては、意図しない層間ジャンプが発生した場合に、記録データの劣化を完全に回避できない可能性があるが、劣化を軽減することは可能である。
 次に、本発明の情報記録媒体についてより詳細に説明する。
 (主要パラメータ)
 本発明が適用可能な記録媒体の一例として、ブルーレイディスク(BD)や他の規格の光ディスクがあるが、ここではBDに関して説明する。BDには、記録膜の特性に応じて、再生専用型であるBD-ROM,追記記録型・ライトワンス型であるBD-R,書換記録型であるBD-REなどのタイプがあり、本発明は、BDや他の規格の光ディスクにおけるROM(再生専用型),R(追記型・ライトワンス型),RE(書換型)のいずれのタイプの記録媒体にも適用可能である。ブルーレイディスクの主な光学定数と物理フォーマットについては、「ブルーレイディスク読本」(オーム社出版)やブルーレイアソシエーションのホームページ(http://www.blu-raydisc.com/)に掲載されているホワイトペーパに開示されている。
 BDでは、波長が略405nm(標準値405nmに対して誤差範囲の許容値を±5nmとすれば、400~410nm)のレーザー光および開口数(NA:Numerical Aperture)が略0.85(標準値0.85に対して誤差範囲の許容値を±0.01とすれば、0.84~0.86)の対物レンズを用いる。BDのトラックピッチは略0.32μm(標準値0.320μmに対して誤差範囲の許容値を±0.010μmとすれば、0.310~0.330μm)であり、記録層が1層または2層設けられている。記録層の記録面がレーザー入射側から片面1層あるいは片面2層の構成であり、BDの保護層の表面から記録面まで距離は75μm~100μmである。
 記録信号の変調方式は17PP変調を利用し、記録されるマークの最短マーク(2Tマーク:Tは基準クロックの周期(所定の変調則によってマークを記録する場合における、変調の基準周期))のマーク長は0.149μm(又は0.138μm)(チャネルビット長:Tが74.50nm(又は69.00nm))である。記録容量は片面単層25GB(又は27GB)(より詳細には、25.025GB(又は27.020GB))、または、片面2層50GB(又は54GB)(より詳細には、50.050GB(又は54.040GB))である。
 チャネルクロック周波数は、標準速度(BD1x)の転送レートでは66MHz(チャネルビットレート66.000Mbit/s)であり、4倍速(BD4x)の転送レートでは264MHz(チャネルビットレート264.000Mbit/s)、6倍速(BD6x)の転送レートでは396MHz(チャネルビットレート396.000Mbit/s)、8倍速(BD8x)の転送レートでは528MHz(チャネルビットレート528.000Mbit/s)である。
 標準線速度(基準線速度、1x)は4.917m/sec(又は、4.554m/sec)である。2倍(2x)、4倍(4x)、6倍(6x)および8倍(8x)の線速度は、それぞれ、9.834m/sec、19.668m/sec、29.502m/secおよび39.336m/secである。標準線速度よりも高い線速度は一般的には、標準線速度の正の整数倍であるが、整数に限られず、正の実数倍であってもよい。また、0.5倍(0.5x)など、標準線速度よりも遅い線速度も定義し得る。
 なお、上記は既に商品化が進んでいる、主に1層当たり約25GB(又は約27GB)の1層又は2層のBDに関するものであるが、更なる大容量化として、1層あたりの記録容量を略32GB又は略33.4GBとした高密度なBDや、層数を3層又は4層としたBDも検討されており、以降では、それらに関しても説明する。
 (多層について)
 レーザー光を保護層の側から入射して情報が再生及び/又は記録される片面ディスクとすると、記録層を二層以上にする場合、基板と保護層の間には複数の記録層が設けられることになるが、その場合における多層ディスクの一般的な構成例を図7に示す。図示された光ディスクは、(n+1)層の情報記録層502で構成されている(nは0以上の整数)。その構成を具体的に説明すると、光ディスクには、レーザー光505が入射する側の表面から順に、カバー層501、(n+1)枚の情報記録層(Ln~L0層)502、そして基板500が積層されている。また、(n+1)枚の情報記録層502の層間には、光学的緩衝材として働く中間層503が挿入されている。つまり、光入射面から所定の距離を隔てた最も奥側の位置(光源から最も遠い位置)に基準層(L0)を設け、基準層(L0)から光入射面側に層を増やすように記録層を積層(L1,L2,・・・,Ln)している。
 ここで、単層ディスクと比較した場合、多層ディスクにおける光入射面から基準層L0までの距離を、単層ディスクにおける光入射面から記録層までの距離とほぼ同じ(例えば0.1mm程度)にしてもよい。このように層の数に関わらず最奥層(最遠層)までの距離を一定にする(すなわち、単層ディスクにおける場合とほぼ同じ距離にする)ことで、単層か多層かに関わらず基準層へのアクセスに関する互換性を保つことができる。また、層数の増加に伴うチルト影響の増加を抑えることが可能となる。チルト影響の増加を抑えることが可能になるのは、最奥層が最もチルトの影響を受けるが、最奥層までの距離を、単層ディスクとほぼ同じ距離とすることで、層数が増加しても最奥層までの距離が増加することがなくなるからである。
 また、スポットの進行方向(あるいは、トラック方向,スパイラル方向とも言う)に関しては、パラレル・パスとしても、オポジット・パスとしてもよい。パラレル・パスでは、全ての層において、再生方向が同一である。つまり、スポットの進行方向は、全層にて内周から外周の方向へ、又は全層にて外周から内周の方向へ進行する。
 一方、オポジット・パスでは、ある層とその層に隣接する層とで、再生方向が逆になる。つまり、基準層(L0)における再生方向が、内周から外周へ向かう方向である場合、記録層L1における再生方向は外周から内周へ向かう方向であり、記録層L2では内周から外周へ向かう方向である。すなわち、再生方向は、記録層Lm(mは0及び偶数)では内周から外周へ向かう方向であって、記録層Lm+1では外周から内周へ向かう方向である。あるいは、記録層Lm(mは0及び偶数)では外周から内周へ向かう方向であって、記録層Lm+1では内周から外周へ向かう方向である。
 保護層(カバー層)の厚みは、開口数NAが上がることで、焦点距離が短くなるのに伴って、またチルトによるスポット歪みの影響を抑えられるよう、より薄く設定される。開口数NAは、CDでは0.45,DVDでは0.65に対して、BDでは略0.85に設定される。例えば記録媒体の総厚み1.2mm程度のうち、保護層の厚みを10~200μmとしてもよい。より具体的には、1.1mm程度の基板に、単層ディスクならば0.1mm程度の透明保護層、二層ディスクならば0.075mm程度の保護層に0.025mm程度の中間層(SpacerLayer)が設けられてもよい。三層以上のディスクならば、保護層及び/又は中間層の厚みはさらに薄くしてもよい。
 (1層から4層の各構成例)
 ここで、単層ディスクの構成例を図8に、二層ディスクの構成例を図9に、三層ディスクの構成例を図10に、四層ディスクの構成例を図11に示す。前述のように、光照射面から基準層L0までの距離を一定にする場合、図9から図11のいずれにおいても、ディスクの総厚みは略1.2mm(レーベル印刷なども含んだ場合、1.40mm以下にするのが好ましい)、基板500の厚みは略1.1mm、光照射面から基準層L0までの距離は略0.1mmとなる。図8の単層ディスク(図7においてn=0の場合)においては、カバー層5011の厚みは略0.1mm、また、図9の二層ディスク(図7においてn=1の場合)においては、カバー層5012の厚みは略0.075mm、中間層5302の厚みは略0.025mm、また、図10の三層ディスク(図7においてn=2の場合)や図11の四層ディスク(図7においてn=3の場合)においては、カバー層5013、5014の厚みや、中間層5303、5304の厚みは、更に薄くしても良い。
 これら多層のディスク(k層の記録層を有するディスク,kは1以上の整数)は、以下のような工程により製造することができる。
 つまり、厚みが略1.1mmの基板上に、開口数が0.84以上、0.86以下の対物レンズを介して、波長が400nm以上、410nm以下のレーザーを照射することにより情報が再生可能なk個の記録層が形成される。
 次に、記録層と記録層との間にはk-1個の中間層が形成される。なお、単層ディスクの場合、k=1となるので、k-1=0となり中間層は形成されない。
 次に、基板側から数えてk番目の記録層(多層ディスクの場合は、基板から最も遠い記録層)の上に、厚みが0.1mm以下の保護層が形成される。
 そして、記録層を形成する工程において、基板側から数えてi番目(iは1以上、k以下の奇数)の記録層が形成される際には、再生方向がディスクの内周側から外周側の方向となるように同心円状又はスパイラル状のトラックが形成される。また、基板側から数えてj番目(jは1以上、k以下の偶数)の記録層が形成される際には、再生方向がディスクの外周側から内周側の方向となるように同心円状又はスパイラル状のトラックが形成される。なお、単層ディスクの場合、k=1となるので、k=1における1以上、k以下を満たす奇数であるiは“1”しか存在しないため、i番目の記録層としては1つの記録層しか形成されず、また、k=1における1以上、k以下を満たす偶数であるjは存在しないため、j番目の記録層は形成されないことになる。なお再生方向は、奇数層と偶数層とで逆であってもよい。
 そして、これら情報記録層は、情報記録媒体の読み取り側から最も遠い記録層から順に数えてn番目の情報記録層L(n)の再生パワーをPw(n)、情報記録媒体の読み取り側から最も遠い記録層から順に数えてn+a番目の情報記録層L(n+a)の再生パワーをPw(n+a)、前記情報記録層L(n)と前記情報記録層L(n+a)との間の基材厚(情報記録層L(n)と情報記録層L(n+a)の間に存在する中間層の厚みの和)をDとした場合、
100 × Pw(n)/Pw(n+a) ≧ -0.1238 × D2 - 2.772 × D + 106.56
Pw(n)≦Pw(n+a)
(ここで、nは0以上の整数、aはn+a≧0、かつ、a≠0を満たす整数である)
の関係を有する。
 このような多層のディスク(k層の記録層を有するディスク,kは1以上の整数)の再生は、以下のような構成を有する再生装置(又は再生方法)によって行われる。
 ディスクの構成としては、厚みが略1.1mmの基板と、前記基板上にk個の記録層と、記録層と記録層との間にはk-1個の中間層と(なお、単層ディスクの場合、k=1となるので、k-1=0となり中間層は存在しない)、基板側から数えてk番目の記録層(多層ディスクの場合は、基板から最も遠い記録層)の上に、厚みが0.1mm以下の保護層と、を有する。k個の記録層のそれぞれにはトラックが形成され、そのうちの少なくとも1つのトラックには、各種の領域が割り当て可能である。
 そして、前記保護層の表面側から、開口数が0.84以上、0.86以下の対物レンズを介して、波長が400nm以上、410nm以下のレーザーを照射する光ヘッドによりk個の記録層のそれぞれから情報の再生が可能となる。
 そして、再生装置はレーザ光を照射する照射手段を備える。照射手段は、情報記録媒体の読み取り側から最も遠い記録層から順に数えてn番目の情報記録層L(n)に対して、再生パワーがPw(n)のレーザー光を照射して情報を再生する。また、照射手段は、情報記録媒体の読み取り側から最も遠い記録層から順に数えてn+a番目の情報記録層L(n+a)に対して、再生パワーがPw(n+a)のレーザ光を照射して情報を再生する。ここで、nは0以上の整数、aはn+a≧0、かつ、a≠0を満たす整数である。
 次に、光ディスク100の物理的構成をさらに説明する。
 図12は、本発明の実施形態による光ディスク100の物理的構成を示す。円盤状の光ディスク100には、たとえば同心円状またはスパイラル状に多数のトラック2が形成されており、各トラック2には細かく分けられた多数のセクタが形成されている。なお、後述するように、各トラック2には予め定められたサイズのブロック3を単位としてデータが記録される。
 本実施形態による光ディスク100は、従来の光ディスク(たとえば25GBのBD)よりも情報記録層1層あたりの記録容量が拡張されている。記録容量の拡張は、記録線密度を向上させることによって実現されており、たとえば光ディスクに記録される記録マークのマーク長をより短くすることによって実現される。ここで「記録線密度を向上させる」とは、チャネルビット長を短くすることを意味する。このチャネルビットとは、基準クロックの周期T(所定の変調則によってマークを記録する場合における、変調の基準周期T)に相当する長さをいう。なお、光ディスク100は多層化されていてもよい。ただし、以下では説明の便宜のため、1つの情報記録層にのみ言及する。また、複数の情報記録層が設けられている場合において、各情報記録層に設けられたトラックの幅が同一であるときでも、層ごとにマーク長が異なり、同一層中ではマーク長が一様であることで、層ごとに記録線密度を異ならせてもよい。
 トラック2は、データの記録単位64kB(キロバイト)毎にブロックに分けられて、順にブロックアドレス値が割り振られている。ブロックは、所定の長さのサブブロックに分割され、3個のサブブロックで1ブロックを構成している。サブブロックは、前から順に0から2までのサブブロック番号が割り振られている。
 (記録密度について)
 次に、記録密度について、図13、図14、図15および図16を用いて説明する。
 図13(a)は25GBのBDの例を示す。BDでは、レーザー123の波長は405nm、対物レンズ220の開口数(Numerical Aperture;NA)は0.85である。
 DVD同様、BDにおいても、記録データは光ディスクのトラック2上に物理変化のマーク列120、121として、記録される。このマーク列の中で最も長さの短いものを「最短マーク」という。図では、マーク121が最短マークである。
 25GB記録容量の場合、最短マーク121の物理的長さは0.149umとなっている。これは、DVDの約1/2.7に相当し、光学系の波長パラメータ(405nm)とNAパラメータ(0.85)を変えて、レーザーの分解能を上げても、光ビームが記録マークを識別できる限界である光学的な分解能の限界に近づいている。
 図14は、トラック上に記録されたマーク列に光ビームを照射させている様子を示す。BDでは、上記光学系パラメータにより光スポット30は、約0.39um程度となる。光学系の構造は変えないで記録線密度向上させる場合、光スポット30のスポット径に対して記録マークが相対的に小さくなるため、再生の分解能は悪くなる。
 たとえば図13(b)は、25GBのBDよりも高記録密度の光ディスクの例を示す。このディスクでも、レーザー123の波長は405nm、対物レンズ220の開口数(Numerical Aperture;NA)は0.85である。このディスクのマーク列125、124のうち、最短マーク125の物理的長さは0.1115um(又は、0.11175um)となっている。図13(a)と比較すると、スポット径は同じ約0.39umである一方、記録マークが相対的に小さくなり、かつ、マーク間隔も狭くなるため、再生の分解能は悪くなる。
 光ビームで記録マークを再生した際の再生信号の振幅は記録マークが短くなるに従って低下し、光学的な分解能の限界でゼロとなる。この記録マークの周期の逆数を空間周波数といい、空間周波数と信号振幅の関係をOTF(Optical Transfer Function)という。信号振幅は、空間周波数が高くになるに従ってほぼ直線的に低下する。信号振幅がゼロとなる再生の限界周波数を、OTFカットオフ(cutoff)という。
 図15は、25GB記録容量の場合のOTFと最短記録マークとの関係を示すグラフである。BDの最短マークの空間周波数は、OTFカットオフに対して80%程度であり、OTFカットオフに近い。また、最短マークの再生信号の振幅も、検出可能な最大振幅の約10%程度と非常に小さくなっているこが分かる。BDの最短マークの空間周波数が、OTFカットオフに非常に近い場合、すなわち、再生振幅がほとんど出ない場合の記録容量は、BDでは、約31GBに相当する。最短マークの再生信号の周波数が、OTFカットオフ周波数付近である、または、それを超える周波数であると、レーザーの分解能の限界、もしくは超えていることもあり、再生信号の再生振幅が小さくなり、SN比が急激に劣化する領域となる。
 そのため、図13(b)の高記録密度光ディスクの記録線密度は、再生信号の最短マークの周波数が、OTFカットオフ周波数付近の場合(OTFカットオフ周波数以下だがOTFカットオフ周波数を大きく下回らない場合も含む)からOTFカットオフ周波数以上の場合が想定できる。
 図16は、最短マーク(2T)の空間周波数がOTFカットオフ周波数よりも高く、かつ、2Tの再生信号の振幅が0であるときの、信号振幅と空間周波数との関係の一例を示したグラフである。図16において、最短マーク長の2Tの空間周波数は、OTFカットオフ周波数の1.12倍である。
 (波長と開口数とマーク長との関係)
 また、高記録密度のディスクBにおける波長と開口数とマーク長/スペース長との関係は以下の通りである。
 最短マーク長をTMnm、最短スペース長をTSnmとしたとき、(最短マーク長+最短スペース長)を“P”で表すと、Pは、(TM+TS)nmである。17変調の場合、P=2T+2T=4Tとなる。レーザー波長λ(405nm±5nm、すなわち400~410nm)、開口数NA(0.85±0.01すなわち0.84~0.86)、最短マーク+最短スペース長P(17変調の場合、最短長は2Tとなるため、P=2T+2T=4T)の3つのパラメータを用いると、
  P ≦ λ/2NA
となるまで基準Tが小さくなると、最短マークの空間周波数は、OTFカットオフ周波数を超えることになる。
 NA=0.85,λ=405としたときの、OTFカットオフ周波数に相当する基準Tは、
  T = 405/(2x0.85)/4 = 59.558nm
となる(なお、逆に、P > λ/2NA である場合は、最短マークの空間周波数はOTFカットオフ周波数より低い)。
 このように、記録線密度を上げるだけでも、光学的な分解能の限界によりSN比が劣化する。よって、情報記録層の多層化によるSN比劣化は、システムマージンの観点で、許容できない場合がある。特に、上述のように、最短記録マークの周波数が、OTFカットオフ周波数を越える辺りから、SN比劣化が顕著になる。
 なお、以上では、最短マークの再生信号の周波数とOTFカットオフ周波数を比較して記録密度に関して述べたものであるが、更に高密度化が進んだ場合には、次最短マーク(更には次々最短マーク(更には次最短マーク以上の記録マーク))の再生信号の周波数とOTFカットオフ周波数との関係により、以上と同様の原理に基づき、それぞれに対応した記録密度(記録線密度,記録容量)を設定してもよい。
 (記録密度及び層数)
 ここで、波長405nm,開口数0.85等のスペックを有するBDにおける1層あたりの具体的な記録容量としては、最短マークの空間周波数がOTFカットオフ周波数付近である場合においては、例えば、略29GB(例えば、29.0GB±0.5GB,あるいは29GB±1GBなど)若しくはそれ以上、又は略30GB(例えば、30.0GB±0.5GB,あるいは30GB±1GBなど)若しくはそれ以上、又は略31GB(例えば、31.0GB±0.5GB,又は31GB±1GBなど)若しくはそれ以上、又は略32GB(例えば、32.0GB±0.5GB,あるいは32GB±1GBなど)若しくはそれ以上、などを想定することが可能である。
 また、最短マークの空間周波数がOTFカットオフ周波数以上における、1層あたりの記録容量としては、例えば、略32GB(例えば、32.0GB±0.5GB,あるいは32GB±1GBなど)若しくはそれ以上、又は略33GB(例えば、33.0GB±0.5GB,あるいは33GB±1GBなど)若しくはそれ以上、又は略33.3GB(例えば、33.3GB±0.5GB,あるいは33.3GB±1GBなど)若しくはそれ以上、又は略33.4GB(例えば、33.4GB±0.5GB,あるいは33.4GB±1GBなど)若しくはそれ以上、又は略34GB(例えば、34.0GB±0.5GB,あるいは34GB±1GBなど)若しくはそれ以上、又は略35GB(例えば、35.0GB±0.5GB,あるいは35GB±1GBなど)若しくはそれ以上、などを想定することが可能である。
 特に、記録密度が略33.3GBである場合、3層で約100GB(99.9GB)の記録容量が実現でき、略33.4GBとすると3層で100GB以上(100.2GB)の記録容量が実現できる。これは、25GBのBDを4層にした場合の記録容量とほぼ同じになる。例えば、記録密度を33GBとした場合、33x3=99GBで100GBとの差は1GB(1GB以下)、34GBとした場合、34x3=102GBで100GBとの差は2GB(2GB以下)、33.3GBとした場合、33.3x3=99.9GBで100GBとの差は0.1GB(0.1GB以下)、33.4GBとした場合、33.4x3=100.2GBで100GBとの差は0.2GB(0.2GB以下)となる。
 なお、記録密度が大幅に拡張されると、先に述べたように、最短マークの再生特性の影響により、精密な再生が困難になる。そこで、記録密度の大幅な拡張を抑えつつ、かつ100GB以上を実現する記録密度としては、略33.4GBが現実的である。
 ここで、ディスクの構成を、1層あたり25GBの4層構造とするか、1層あたり33~34GBの3層構造とするか、の選択肢が生じる。多層化には、各記録層における再生信号振幅の低下(SN比の劣化)や、多層迷光(隣接する記録層からの信号)の影響などが伴う。そのため、25GBの4層ディスクではなく、33~34GBの3層ディスクとすることにより、そのような迷光の影響を極力抑えつつ、即ち、より少ない層数(4層ではなく3層)で、約100GBを実現することが可能となる。そのため、多層化を極力避けつつ約100GBを実現したいディスクの製造者は、33~34GBの3層化を選択することが可能となる。一方、従来のフォーマット(記録密度25GB)のまま約100GBを実現したいディスク製造者は、25GBの4層化を選択することが可能となる。このように、異なる目的を有する製造者は、それぞれ異なる構成にすることによって、それぞれの目的を実現することが可能となり、ディスク設計の自由度を与えることができる。
 また、1層あたりの記録密度を30~32GB程度とすると、3層ディスクでは100GBに届かないものの(90~96GB程度)、4層ディスクでは120GB以上が実現できる。そのうち、記録密度を略32GBとすると、4層ディスクでは約128GBの記録容量が実現できる。この128という数字はコンピュータで処理するのに便利な2のべき乗(2の7乗)に整合した数値でもある。そして、3層ディスクで約100GBを実現する記録密度のものと比べると、最短マークに対する再生特性はこちらの方が厳しくない。
 このことから、記録密度の拡張にあたっては、記録密度を複数種類設けることで(例えば略32GBと略33.4GBなど)、複数種類の記録密度と層数との組み合わせにより、ディスクの製造者に対して設計の自由度を与えることが可能となる。例えば、多層化の影響を抑えつつ大容量化を図りたい製造者に対しては33~34GBの3層化による約100GBの3層ディスクを製造するという選択肢を与え、再生特性の影響を抑えつつ大容量化を図りたい製造者に対しては、30~32GBの4層化による約120GB以上の4層ディスクを製造するという選択肢を与えることが可能となる。
 以上、説明したように、本発明の情報記録媒体は、情報が記録される情報記録層を複数備えた多層情報記録媒体であって、少なくとも1つの前記情報記録層は、情報を再生するときに用いられる再生パワーが他の情報記録層と異なっており、各情報記録層間の基材厚は所定の厚み以上である。
 ある実施形態によれば、前記基材厚は、収差による光強度減少量が所定以上となる厚みである。
 本発明の情報記録媒体は、3層以上の情報記録層を備えた情報記録媒体であって、前記情報記録媒体の読み取り側から最も遠い情報記録層から順に数えてn番目の情報記録層L(n)から情報を再生するときのレーザー光の再生パワーはPw(n)であり(ここで、nは0以上の整数である)、n+a番目の情報記録層L(n+a)から情報を再生するときのレーザー光の再生パワーはPw(n+a)であり(ここで、aはn+a≧0且つa≠0を満たす整数である)、前記各情報記録層間の基材厚は、前記再生パワーPw(n)のレーザー光が前記情報記録層L(n+a)に照射されたときの光強度が、前記再生パワーPw(n+a)のレーザー光が情報記録層L(n+a)に照射されたときの光強度以下となる厚みである。
 本発明の情報記録媒体は、3層以上の情報記録層を備えた情報記録媒体であって、前記情報記録媒体の読み取り側から最も遠い情報記録層から順に数えてn番目の情報記録層L(n)から情報を再生するときのレーザー光の再生パワーをPw(n)とし(ここで、nは0以上の整数である)、n+a番目の情報記録層L(n+a)から情報を再生するときのレーザー光の再生パワーをPw(n+a)とし(ここで、aはn+a≧0且つa≠0を満たす整数である)、前記情報記録層L(n)と前記情報記録層L(n+a)との間の基材厚をDとしたとき、前記情報記録媒体は、
 100 × Pw(n) / Pw(n+a) ≧ -0.1238 × D2 - 2.772 × D + 106.56
 および
 Pw(n) ≦ Pw(n+a)
 を満たす。
 本発明の再生方法は、前記情報記録媒体から情報を再生する再生方法であって、前記情報記録層L(n)から情報を再生するときに、前記再生パワーPw(n)のレーザー光を前記情報記録層L(n)に照射するステップと、前記情報記録層L(n+a)から情報を再生するときに、前記再生パワーPw(n+a)のレーザー光を前記情報記録層L(n+a)に照射するステップとを含む。
 本発明の再生装置は、前記情報記録媒体から情報を再生する再生装置であって、前記情報記録媒体にレーザー光を照射する照射部を備え、前記照射部は、前記情報記録層L(n)から情報を再生するときは、前記再生パワーPw(n)のレーザー光を前記情報記録層L(n)に照射し、前記照射部は、前記情報記録層L(n+a)から情報を再生するときは、前記再生パワーPw(n+a)のレーザー光を前記情報記録層L(n+a)に照射する。
 本発明の情報記録媒体の製造方法は、k個の情報記録層(kは3以上の整数)を備える情報記録媒体の製造方法であって、開口数0.84~0.86の対物レンズを介して、波長400~410nmのレーザー光を用いて情報が再生可能なk個の情報記録層を、厚さ1.1mmの基板上に形成するステップと、情報記録層と情報記録層との間にk-1個の中間層を形成するステップと、前記基板側から数えてk番目の情報記録層上に、厚さ0.1mm以下の保護層を形成するステップとを含む。前記情報記録層を形成するステップは、前記基板側から数えて奇数番目の情報記録層および偶数番目の情報記録層のうちの一方の再生方向が、前記情報記録媒体の外周側から内周側の方向となるように、同心円状またはスパイラル状のトラックを形成するステップと、前記奇数番目および偶数番目の情報記録層のうちの他方の再生方向が、前記情報記録媒体の内周側から外周側の方向となるように、同心円状またはスパイラル状のトラックを形成するステップとを含む。前記情報記録媒体の読み取り側から最も遠い情報記録層から順に数えてn番目の情報記録層L(n)から情報を再生するときのレーザー光の再生パワーをPw(n)とし(ここで、nは0以上の整数である)、前記情報記録媒体の読み取り側から最も遠い情報記録層から順に数えてn+a番目の情報記録層L(n+a)から情報を再生するときのレーザー光の再生パワーをPw(n+a)とし(ここで、aはn+a≧0且つa≠0を満たす整数である)、前記情報記録層L(n)と前記情報記録層L(n+a)との間の基材厚をDとしたとき、前記情報記録媒体は、
 100 × Pw(n) / Pw(n+a) ≧ -0.1238 × D2 - 2.772 × D + 106.56
 および
 Pw(n) ≦ Pw(n+a)
 を満たす。
 また、本発明の光記録媒体は、情報が記録される記録層が複数形成された多層記録媒体において、各記録層を再生する際の再生パワーがすべて、もしくは一部の記録層だけ異なるとともに、各記録層間の基材厚を所定の厚み以上としている。
 ある実施形態によれば、前記各記録層間の基材厚は、収差による光強度減少量が所定以上となる厚みである。
 ある実施形態によれば、前記各記録層間の基材厚は、n番目の記録層L(n)において再生パワーをPw(n)とした場合のn+a層での光強度が、n+a番目の記録層L(n+a)の再生パワーPw(n+a)と同じになる厚みとする(ここで、nは0以上の整数、aは0-n以上の整数である)。
 ある実施形態によれば、前記各記録層間の基材厚は、n番目の記録層L(n)において再生パワーをPw(n)とした場合のn+a層での光強度が、n+a番目の記録層L(n+a)の再生パワーPw(n+a)以下となる厚みとする(ここで、nは0以上の整数、aは0-n以上の整数である)。
 本発明の再生方法は、情報が記録される記録層が複数形成された多層記録媒体を再生する再生方法であって、前記各記録層の再生パワーをすべて、もしくは一部の層だけ異なる設定にし、前記各記録層の再生パワーは前記各記録層間の基材厚情報から求める。
 ある実施形態によれば、前記各記録層の再生パワーは、n番目の記録層L(n)において、再生パワーをPw(n)とした場合のn+a層での光強度が、n+a番目の記録層L(n+a)の再生パワーPw(n+a)と同じになる再生パワーとする(ここで、nは0以上の整数、aは0-n以上の整数である)。
 ある実施形態によれば、前記各記録層の再生パワーは、n番目の記録層L(n)において、再生パワーをPw(n)とした場合のn+a層での光強度が、n+a番目の記録層L(n+a)の再生パワーPw(n+a)以下となる再生パワーとする(ここで、nは0以上の整数、aは0-n以上の整数である)。
 本発明の再生装置は、情報が記録される記録層が複数形成された多層記録媒体を再生する再生装置において、前記各記録層の再生パワーをすべて、もしくは一部の層だけ異なる設定にし、前記各記録層の再生パワーは前記各記録層間の基材厚情報から求める。
 ある実施形態によれば、前記各記録層の再生パワーは、n番目の記録層L(n)において、再生パワーをPw(n)とした場合のn+a層での光強度が、n+a番目の記録層L(n+a)の再生パワーPw(n+a)と同じになる再生パワーとする(ここで、nは0以上の整数、aは0-n以上の整数である)。
 ある実施形態によれば、前記各記録層の再生パワーは、n番目の記録層L(n)において、再生パワーをPw(n)とした場合のn+a層での光強度が、n+a番目の記録層L(n+a)の再生パワーPw(n+a)以下となる再生パワーとする(ここで、nは0以上の整数、aは0-n以上の整数である)。
 本発明にかかる記録媒体は、意図しない層間ジャンプが発生した場合にも記録データの劣化を回避することができ、多層記録媒体を使用する光ディスクシステムにおいて特に有用である。
 L0、L1、L2、L3、L4、L5、L6、L7 記録層
 t0、t1、t2、t3、t4、t5、t6 情報記録層間の基材厚
 Pw0、Pw1、Pw2、Pw3 再生パワー
 100 記録媒体
 400 再生装置
 402 光ピックアップ
 403 半導体レーザー制御部
 404 サーボ処理部
 405 信号処理部
 406 中央処理部

Claims (7)

  1.  情報が記録される情報記録層を複数備えた多層情報記録媒体であって、
     少なくとも1つの前記情報記録層は、情報を再生するときに用いられる再生パワーが他の情報記録層と異なっており、
     各情報記録層間の基材厚は所定の厚み以上である、情報記録媒体。
  2.  前記基材厚は、収差による光強度減少量が所定以上となる厚みである、請求項1に記載の情報記録媒体。
  3.  3層以上の情報記録層を備えた情報記録媒体であって、
     前記情報記録媒体の読み取り側から最も遠い情報記録層から順に数えてn番目の情報記録層L(n)から情報を再生するときのレーザー光の再生パワーはPw(n)であり(ここで、nは0以上の整数である)、
     n+a番目の情報記録層L(n+a)から情報を再生するときのレーザー光の再生パワーはPw(n+a)であり(ここで、aはn+a≧0且つa≠0を満たす整数である)、
     前記各情報記録層間の基材厚は、前記再生パワーPw(n)のレーザー光が前記情報記録層L(n+a)に照射されたときの光強度が、前記再生パワーPw(n+a)のレーザー光が情報記録層L(n+a)に照射されたときの光強度以下となる厚みである、情報記録媒体。
  4.  3層以上の情報記録層を備えた情報記録媒体であって、
     前記情報記録媒体の読み取り側から最も遠い情報記録層から順に数えてn番目の情報記録層L(n)から情報を再生するときのレーザー光の再生パワーをPw(n)とし(ここで、nは0以上の整数である)、
     n+a番目の情報記録層L(n+a)から情報を再生するときのレーザー光の再生パワーをPw(n+a)とし(ここで、aはn+a≧0且つa≠0を満たす整数である)、
     前記情報記録層L(n)と前記情報記録層L(n+a)との間の基材厚をDとしたとき、
     100 × Pw(n) / Pw(n+a) ≧ -0.1238 × D2 - 2.772 × D + 106.56
     および
     Pw(n) ≦ Pw(n+a)
     を満たす、情報記録媒体。
  5.  請求項4に記載の情報記録媒体から情報を再生する再生方法であって、
     前記情報記録層L(n)から情報を再生するときに、前記再生パワーPw(n)のレーザー光を前記情報記録層L(n)に照射するステップと、
     前記情報記録層L(n+a)から情報を再生するときに、前記再生パワーPw(n+a)のレーザー光を前記情報記録層L(n+a)に照射するステップと、
     を含む、再生方法。
  6.  請求項4に記載の情報記録媒体から情報を再生する再生装置であって、
     前記情報記録媒体にレーザー光を照射する照射部を備え、
     前記照射部は、前記情報記録層L(n)から情報を再生するときは、前記再生パワーPw(n)のレーザー光を前記情報記録層L(n)に照射し、
     前記照射部は、前記情報記録層L(n+a)から情報を再生するときは、前記再生パワーPw(n+a)のレーザー光を前記情報記録層L(n+a)に照射する、再生装置。
  7.  k個の情報記録層(kは3以上の整数)を備える情報記録媒体の製造方法であって、
     開口数0.84~0.86の対物レンズを介して、波長400~410nmのレーザー光を用いて情報が再生可能なk個の情報記録層を、厚さ1.1mmの基板上に形成するステップと、
     情報記録層と情報記録層との間にk-1個の中間層を形成するステップと、
     前記基板側から数えてk番目の情報記録層上に、厚さ0.1mm以下の保護層を形成するステップと、
     を含み、
     前記情報記録層を形成するステップは、
     前記基板側から数えて奇数番目の情報記録層および偶数番目の情報記録層のうちの一方の再生方向が、前記情報記録媒体の外周側から内周側の方向となるように、同心円状またはスパイラル状のトラックを形成するステップと、
     前記奇数番目および偶数番目の情報記録層のうちの他方の再生方向が、前記情報記録媒体の内周側から外周側の方向となるように、同心円状またはスパイラル状のトラックを形成するステップと、
     を含み、
     前記情報記録媒体の読み取り側から最も遠い情報記録層から順に数えてn番目の情報記録層L(n)から情報を再生するときのレーザー光の再生パワーをPw(n)とし(ここで、nは0以上の整数である)、
     前記情報記録媒体の読み取り側から最も遠い情報記録層から順に数えてn+a番目の情報記録層L(n+a)から情報を再生するときのレーザー光の再生パワーをPw(n+a)とし(ここで、aはn+a≧0且つa≠0を満たす整数である)、
     前記情報記録層L(n)と前記情報記録層L(n+a)との間の基材厚をDとしたとき、
     100 × Pw(n) / Pw(n+a) ≧ -0.1238 × D2 - 2.772 × D + 106.56
     および
     Pw(n) ≦ Pw(n+a)
     を満たす、情報記録媒体の製造方法。
PCT/JP2009/006607 2008-12-10 2009-12-03 情報記録媒体、再生装置および再生方法 WO2010067555A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
RU2010141539/28A RU2511612C2 (ru) 2008-12-10 2009-12-03 Носитель записи информации, устройство воспроизведения и способ воспроизведения
BRPI0911631A BRPI0911631A2 (pt) 2008-12-10 2009-12-03 meio de gravação de informação, dispositivo de reprodução e método de reproduçao
EP09831663.1A EP2360692A4 (en) 2008-12-10 2009-12-03 INFORMATION RECORDING MEDIA AND PLAYING DEVICE AND PLAYBACK METHOD
US12/936,939 US8144563B2 (en) 2008-12-10 2009-12-03 Information recording medium, reproducing device and reproducing method
MX2010010979A MX2010010979A (es) 2008-12-10 2009-12-03 Medio de grabacion de informacion, dispositivo de reproduccion y metodo de reproduccion.
AU2009325765A AU2009325765A1 (en) 2008-12-10 2009-12-03 Information recording medium, reproducing device and reproducing method
CA2719731A CA2719731A1 (en) 2008-12-10 2009-12-03 Information recording medium, reproducing device and reproducing method
JP2010541997A JP5563480B2 (ja) 2008-12-10 2009-12-03 情報記録媒体、再生装置および再生方法
CN200980111252.9A CN101981623B (zh) 2008-12-10 2009-12-03 信息记录介质、再生装置以及再生方法
ZA2011/04623A ZA201104623B (en) 2008-12-10 2011-06-22 Information recording medium,reproducing device and reproducing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-314493 2008-12-10
JP2008314493 2008-12-10

Publications (1)

Publication Number Publication Date
WO2010067555A1 true WO2010067555A1 (ja) 2010-06-17

Family

ID=42242551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006607 WO2010067555A1 (ja) 2008-12-10 2009-12-03 情報記録媒体、再生装置および再生方法

Country Status (14)

Country Link
US (1) US8144563B2 (ja)
EP (1) EP2360692A4 (ja)
JP (1) JP5563480B2 (ja)
KR (1) KR20110093605A (ja)
CN (1) CN101981623B (ja)
AU (1) AU2009325765A1 (ja)
BR (1) BRPI0911631A2 (ja)
CA (1) CA2719731A1 (ja)
MX (1) MX2010010979A (ja)
MY (1) MY152530A (ja)
RU (1) RU2511612C2 (ja)
TW (1) TWI466111B (ja)
WO (1) WO2010067555A1 (ja)
ZA (1) ZA201104623B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5638127B2 (ja) * 2011-04-11 2014-12-10 日立コンシューマエレクトロニクス株式会社 多層情報記録媒体,並びにそれを用いた情報再生方法及び情報記録方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342283A (ja) * 2002-07-31 2004-12-02 Ricoh Co Ltd 多層構成型光記録媒体
JP2005122862A (ja) 2003-10-20 2005-05-12 Pioneer Electronic Corp 多層光記録媒体および光ピックアップ装置
JP2006040456A (ja) 2004-07-29 2006-02-09 Sony Corp 多層光情報記録媒体

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677903A (en) * 1991-03-25 1997-10-14 U.S. Phillips Corporation Multi-layer information storage system with improved aberration correction
US6768710B2 (en) * 2000-12-18 2004-07-27 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, method for producing the same, and method and apparatus for recording information thereon
CN1264153C (zh) * 2001-03-28 2006-07-12 拜尔公司 光记录介质
JP2003036561A (ja) 2001-07-26 2003-02-07 Nec Corp 光学的情報記録媒体、光学的情報記録再生装置および光学的情報記録再生方法
KR100925213B1 (ko) 2002-06-07 2009-11-06 엘지전자 주식회사 고밀도 멀티 레이어 광디스크와, 그에 따른 광 파워조절방법
US20050213467A1 (en) 2002-12-17 2005-09-29 Yoshihiro Noda Optical recording medium, and recording/reading method and recording/reading apparatus for optical recording medium
US7286454B2 (en) 2003-06-30 2007-10-23 Samsung Electronics Co., Ltd. Information storage medium
JP2005122872A (ja) 2003-09-22 2005-05-12 Ricoh Co Ltd 2層相変化型情報記録媒体及びその記録再生方法
JP4253725B2 (ja) * 2003-10-31 2009-04-15 独立行政法人産業技術総合研究所 データ再生方法およびデータ記録再生装置
US7385891B2 (en) * 2004-03-03 2008-06-10 Samsung Electronics Co., Ltd. Method, a medium, and an apparatus to record/reproduce data on/from a portion of the medium through which a test beam is passed while determining an optimum power
JP4412101B2 (ja) * 2004-08-03 2010-02-10 Tdk株式会社 光記録媒体
JP4341505B2 (ja) 2004-08-19 2009-10-07 ソニー株式会社 多層光情報記録媒体
US7907502B2 (en) * 2004-11-08 2011-03-15 Panasonic Corporation Optical information recording medium, its information recording/reproducing method, and information recording/reproducing device
KR101120025B1 (ko) * 2005-03-10 2012-03-15 삼성전자주식회사 다층 기록 매체 및 그 제조 방법
WO2006132076A1 (ja) * 2005-06-07 2006-12-14 Matsushita Electric Industrial Co., Ltd. 情報記録媒体とその製造方法
JP4447574B2 (ja) * 2005-06-30 2010-04-07 シャープ株式会社 光ピックアップ、および光記録再生装置
JP2007250136A (ja) * 2006-03-17 2007-09-27 Toshiba Corp 光ディスク及び光ディスク装置
US20080062244A1 (en) * 2006-09-11 2008-03-13 Hewlett-Packard Development Company Lp Laser writing
JP4605148B2 (ja) * 2006-12-15 2011-01-05 Tdk株式会社 多層光記録媒体の光記録方法、光記録装置
US20080170485A1 (en) * 2007-01-15 2008-07-17 Tdk Corporation Optical recording medium
JP4792443B2 (ja) * 2007-09-28 2011-10-12 株式会社日立製作所 光情報再生方法、光情報再生装置及び光情報記録媒体
WO2010067556A1 (ja) 2008-12-11 2010-06-17 パナソニック株式会社 情報記録媒体、再生装置および再生方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342283A (ja) * 2002-07-31 2004-12-02 Ricoh Co Ltd 多層構成型光記録媒体
JP2005122862A (ja) 2003-10-20 2005-05-12 Pioneer Electronic Corp 多層光記録媒体および光ピックアップ装置
JP2006040456A (ja) 2004-07-29 2006-02-09 Sony Corp 多層光情報記録媒体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Blu-ray Disc Reader", OHMSHA, LTD.
See also references of EP2360692A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5638127B2 (ja) * 2011-04-11 2014-12-10 日立コンシューマエレクトロニクス株式会社 多層情報記録媒体,並びにそれを用いた情報再生方法及び情報記録方法

Also Published As

Publication number Publication date
AU2009325765A1 (en) 2010-06-17
MY152530A (en) 2014-10-15
TWI466111B (zh) 2014-12-21
US20110032805A1 (en) 2011-02-10
ZA201104623B (en) 2012-11-28
CN101981623A (zh) 2011-02-23
US8144563B2 (en) 2012-03-27
BRPI0911631A2 (pt) 2016-10-04
RU2511612C2 (ru) 2014-04-10
CA2719731A1 (en) 2010-06-17
EP2360692A1 (en) 2011-08-24
EP2360692A4 (en) 2014-08-27
MX2010010979A (es) 2010-10-26
KR20110093605A (ko) 2011-08-18
JPWO2010067555A1 (ja) 2012-05-17
TW201029004A (en) 2010-08-01
RU2010141539A (ru) 2013-02-10
CN101981623B (zh) 2014-05-21
JP5563480B2 (ja) 2014-07-30

Similar Documents

Publication Publication Date Title
JP4714303B2 (ja) 情報記録媒体および再生方法
WO2010050143A1 (ja) 情報記録媒体、記録装置および再生装置
JP5627687B2 (ja) 光情報記録媒体及び駆動装置
WO2010035444A1 (ja) 情報記録媒体、記録方法および再生方法
JPWO2007099835A1 (ja) 多層情報記録媒体、情報記録再生装置及び多層情報記録媒体の製造方法
WO2010067556A1 (ja) 情報記録媒体、再生装置および再生方法
WO2010103769A1 (ja) 情報記録媒体、情報記録媒体への情報の記録方法、情報記録媒体からの情報の再生方法および情報記録媒体の製造方法
WO2010067555A1 (ja) 情報記録媒体、再生装置および再生方法
JP4995611B2 (ja) 情報記録方法、情報記録装置
WO2010103770A1 (ja) 情報記録媒体、情報記録媒体への情報の記録方法、情報記録媒体からの情報の再生方法および情報記録媒体の製造方法
WO2013172285A1 (ja) 光記録装置および光記録方法
WO2010052820A1 (ja) 情報記録媒体、記録方法および再生方法
WO2010050144A1 (ja) 情報記録媒体、記録装置および再生装置
JP2008117502A (ja) 多層光記録媒体
JP2014207044A (ja) 光記録装置及び最高記録速度決定方法
JP2007207298A (ja) 多層光記録媒体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111252.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831663

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12010502081

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2009325765

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: PI 2010004369

Country of ref document: MY

WWE Wipo information: entry into national phase

Ref document number: 2719731

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010541997

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 6309/CHENP/2010

Country of ref document: IN

Ref document number: MX/A/2010/010979

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2009325765

Country of ref document: AU

Date of ref document: 20091203

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009831663

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107022538

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12936939

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010141539

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0911631

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101008