WO2010006522A1 - 同步时钟的传递方法、装置和*** - Google Patents

同步时钟的传递方法、装置和*** Download PDF

Info

Publication number
WO2010006522A1
WO2010006522A1 PCT/CN2009/071382 CN2009071382W WO2010006522A1 WO 2010006522 A1 WO2010006522 A1 WO 2010006522A1 CN 2009071382 W CN2009071382 W CN 2009071382W WO 2010006522 A1 WO2010006522 A1 WO 2010006522A1
Authority
WO
WIPO (PCT)
Prior art keywords
clock
synchronous clock
data stream
physical
optical network
Prior art date
Application number
PCT/CN2009/071382
Other languages
English (en)
French (fr)
Inventor
李昆
周建林
邹世敏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2010006522A1 publication Critical patent/WO2010006522A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0652Synchronisation among time division multiple access [TDMA] nodes, e.g. time triggered protocol [TTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects

Definitions

  • the present invention relates to the field of optical communication technologies, and in particular, to a method, device and system for transmitting a synchronous clock.
  • GP0N gigabit-Capable Passive Optical Network
  • PON Passive Optical Network
  • GP0N is also a passive optical access technology using a point-to-multipoint topology, including an OLT (Optical Line Terminals) installed at a central control station.
  • OLT Optical Line Terminals
  • ONU Optical Network Unit
  • 0DN Optical Distribution Network
  • the TDM (Time Division Multiplex) circuit emulation method is mainly used to transmit the TDM service data stream, and the TDM service data stream is used to transmit the synchronous clock.
  • the TDM circuit emulation is mainly used in the packet switching network.
  • the TDM service data is encapsulated by the circuit emulation packet header, and the encapsulated packet is a PW (pseudo wire) packet.
  • the PW packet When used in a GP0N network, the PW packet is usually encapsulated into a GPON Encapsulation Mode (GEM) for transmission.
  • GEM GPON Encapsulation Mode
  • the key technology of TDM circuit simulation is adaptive recovery algorithm.
  • the specific process of adaptive recovery algorithm applied in GP0N network is:
  • the TDM device sends the TDM service data stream to the TDM circuit of the OLT.
  • the TDM circuit first simulates the data stream to obtain the PW packet, and then encapsulates the PW packet into the GEM frame.
  • the PW in the GEM frame is ⁇ The text is transmitted to the ONU through the GP0 network.
  • the 0NU decapsulates the PW packet in the GEM frame to obtain a PW packet, and uses a buffer to temporarily store the PW packet and then send it out.
  • the TDM device is provided with a first clock fs. Through the control of the clock, the TDM device sends the service data stream to the TDM circuit of the 0LT.
  • the 0NU device is provided with the second clock fd. Through the control of the clock, the 0NU device will The PW packet is sent out.
  • the inventors have found that at least the following problems exist in the prior art: Since the encapsulation rates of the TDM data stream and the PW packet are different, the slight rate difference between the two may be accumulated to a certain extent before being concentrated. It is shown that these differences will cause a large change in the amount of data in the cache.
  • the second clock fd has a great relationship with the amount of data in the buffer.
  • a large change in the amount of data in the cache will cause a large change in fd, which results in a large jitter and drift of fd, which cannot be achieved.
  • a clock fs is synchronized. Therefore, when the service data stream output by the ONU after the TDM circuit simulation processing is transmitted, the synchronous clock cannot be simultaneously transmitted. In other words, the traditional GP0N network cannot pass the synchronous clock.
  • Embodiments of the present invention provide a method, apparatus, and system for transmitting a synchronous clock capable of delivering a synchronous clock with high quality in a GPON network.
  • a method for transmitting a synchronous clock including:
  • the optical line terminal determines a preferred synchronous clock
  • the optical line terminal generates a physical clock of the GP0N based on the preferred synchronous clock
  • the optical network unit acquires the physical clock through the GP0N;
  • the optical network unit is based on the physical clock and generates a clock synchronized with the preferred synchronized clock.
  • An optical line terminal includes:
  • a clock determining unit configured to determine a preferred synchronous clock; to generate a physical clock of the GP0N.
  • An optical network unit comprising:
  • a physical clock acquisition unit configured to acquire, by using the GP0N, a physical clock of the GP0N generated by the optical line terminal;
  • a clock generating unit configured to acquire, by using the physical clock acquisition unit, a physical clock of the GP0N For reference, a clock synchronized with the preferred synchronous clock is generated.
  • a synchronous clock delivery system includes:
  • an optical network unit configured to acquire, by using the GP0N, the physical clock generated by the optical line terminal, and generate a clock synchronized with the preferred synchronous clock based on the physical clock.
  • the optical line terminal determines a preferred synchronous clock
  • the physical clock of the GP0N is generated by the preferred synchronous clock
  • the optical network unit recovers the physical clock through the GP0N
  • the physical clock is a reference
  • a clock synchronized with the preferred synchronous clock is generated.
  • FIG. 1 is a flowchart of a method for transmitting a synchronous clock according to an embodiment of the present invention
  • Embodiment 2 is a flowchart of Embodiment 1 of a method for transmitting a synchronous clock according to the present invention
  • Embodiment 3 is a flowchart of Embodiment 2 of a method for transmitting a synchronous clock according to the present invention
  • Embodiment 4 is a flow chart of Embodiment 4 of a method for transmitting a synchronous clock according to the present invention
  • FIG. 5 is a flowchart of Embodiment 6 of a method for transmitting a synchronous clock according to the present invention
  • Embodiment 7 is a flowchart of Embodiment 7 of a method for transmitting a synchronous clock according to the present invention
  • FIG. 7 is a schematic structural diagram of an optical line terminal according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an optical network unit according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a synchronous clock transmission system according to an embodiment of the present invention.
  • embodiments of the present invention provide a method, apparatus and system for transmitting a synchronous clock.
  • Embodiments of the present invention provide a method of transmitting a synchronous clock that is capable of transmitting a synchronous clock with high quality.
  • the method includes:
  • the optical line terminal determines a preferred synchronous clock.
  • the optical line terminal generates a physical clock of the Gigabit Passive Optical Network (GP0N) based on the preferred synchronous clock.
  • GPS0N Gigabit Passive Optical Network
  • the optical network unit acquires the physical clock by using GP0.
  • the optical network unit generates a clock synchronized with the preferred synchronous clock based on the physical clock.
  • the optical line terminal determines a preferred synchronous clock
  • the physical clock of the GP0N is generated by the preferred synchronous clock
  • the optical network unit recovers the physical clock by using the GP0N, and uses the physical clock
  • a clock synchronized with the preferred synchronous clock is generated.
  • the present invention can realize the whole network synchronization of the clock in the GP0N in a simple manner, can meet the requirements of the synchronous clock for jitter, drift and frequency precision performance, and thereby transmit the synchronous clock with high quality.
  • the step of determining, by the optical line terminal, a preferred synchronization clock includes:
  • Optical line terminal from BITS Bui lding Integrated Timing Supply System
  • E1 physical clock internal clock source
  • SDH Synchronous Dig ligated Hierarchy
  • GPS Global Pos it The ionization System (GPS) link or other GP0N network selects one of the best synchronous clocks with the best quality information as the preferred synchronous clock; or, the optical line terminal selects one synchronous clock according to the set priority.
  • the 0LT has a BITS synchronous clock port and two E1 service inputs
  • the 0NU has a BITS synchronous clock port and two E1 service outputs.
  • the synchronous clock input module of 0LT sends the input of BITS or a certain path E1 as a synchronous clock source according to the synchronous clock quality information or according to the user setting, and sends it to the synchronous clock processing module;
  • S202 Generate a synchronization timing signal inside the 0LT according to the selected synchronous clock
  • S203 Generate an 8KHz and 155.52MHz GPON physical clock synchronized with the synchronous clock according to the selected synchronous clock, or a GPON physical clock with a frequency of 8KHz and 155.552MHz synchronized with the synchronous clock, and send it to the 0LT GTC (GPON Transmi ss ion Convergence layer) processing module;
  • 0LT GTC GPON Transmi ss ion Convergence layer
  • the calculated E1 rate difference and the synchronous clock quality information are sent to the GEM encapsulation module, and the E1 encapsulation module encapsulates the E1 rate difference, the synchronization clock quality information, and the E1 service data stream into the GEM frame, and transmits the E1 packet to the GEM frame.
  • the synchronous clock quality information is optional content
  • the detailed process of the GEM encapsulation is: encapsulating the information to be encapsulated into a GEM frame according to a format defined by the ITU-T (International Telecommunication Union Telecommunications Standard Telecommunications Standards Bureau) G. 984
  • the therein includes a 5-byte GEM frame header, 1-byte synchronization quality information, a 1-byte rate difference, and a variable-length E1 data stream.
  • the length of the synchronous clock quality information and the rate difference can be reduced, and the synchronous clock quality information and the rate difference are respectively represented by 4 bits, which can reduce the frame length of the GEM and improve the bandwidth utilization.
  • the 0NU synchronous clock processing module recovers the 8KHz and 155.52MHz GPON physical clocks from the received GTC frame;
  • the 8KHz clock recovery process is: 0NU searches for the GTC frame header from the received data stream, and when the GTC frame header 0xB6AB31E0 is found, sends a flag signal, which is sent by the 0LT.
  • the GTC frames are co-frequency, resulting in a 8 GP GP0N physical clock.
  • the GTC frame header is defined in ITU-T G.984.3 as a 4-byte 0xB6AB31E0, and the 8 kHz GTC frame rate is derived from the 125us GTC frame period defined by ITU-T G.984.3.
  • the 155.52MHz clock recovery process is as follows: The optical signal received by the 0NU is optical-electrically converted by the optical module and sent to the CDR (clock and data recovery) device, and the CDR device is separated from the serial data stream. Clock and data are output, and 1:16 string conversion is performed to obtain a 155.52 MHz line clock.
  • the 155.52MHz is determined by the parallel-to-serial conversion device on the 0LT and the serial-to-parallel converter at 0NU, which can be 2/4/8/16/32 of the 2.48832G line rate or other multiples. Usually 1: 16, 1: 8, 1: 4, if 1: 8 is used, the 311MHz clock will be recovered, and the 311Hz clock will be divided by 2 to get the 155.52MHz GP0N physical clock.
  • S207 Generate, according to the GP0N physical clock, an ONU internal timing signal synchronized with the GP0N physical clock, and a clock synchronized with the preferred synchronous clock;
  • S209 Calculate an original input rate of the two E1 service data streams at the E1 line interface of the 0LT according to the rate difference between the two E1 service data streams and the synchronization timing signal of the 0NU;
  • S210 Generate an output physical clock synchronized with an input physical clock of the two E1 service data streams according to the two original input rates and the 0NU internal synchronization timing signal, and output two E1 service data streams respectively.
  • the synchronous clock output module of the 0NU selects one of the output physical clocks of the two E1 services or the clock synchronized with the preferred synchronous clock, and determines whether to add synchronous clock quality information, and outputs the synchronous clock interface from the 0NU.
  • two service data streams with different clocks are simultaneously transmitted, and two service data streams are output through the differential mode, wherein the output physical clocks of the two service data streams are respectively synchronized with the input physical clock.
  • the invention can be implemented in a simple manner
  • the synchronous clock is transmitted in the GPON, and the optical line terminal can select the preferred synchronous clock from the plurality of synchronous clock sources.
  • the synchronous clock distribution network does not need to be established separately, and the service and the clock can be transmitted through the same network, which can satisfy the synchronous clock. The requirements for jitter, drift, and frequency accuracy performance, and thus the synchronous clock is delivered with high quality.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • this embodiment two E1 services are simultaneously transmitted, and the two E1 services respectively carry different synchronous clocks when the 0NU is output.
  • this embodiment directly encapsulates and decapsulates the original input rate of E1 without calculating the rate difference between E1 and the synchronization timing signal.
  • the specific implementation process of this embodiment is as follows:
  • S304 Send the original input rate of the E1 and the synchronous clock quality information to the GEM encapsulation module, and the GEM encapsulation module encapsulates the original input rate, the synchronous clock quality information, and the E1 service data flow of the E1 into the GEM frame.
  • the process is transmitted to the ONU, where the synchronous clock quality information is optional.
  • the process of the GEM encapsulation is the same as that in the first embodiment, and details are not described herein again.
  • the 0NU synchronous clock processing module recovers the GP0N physical clock from the received GTC frame
  • S306 generating, according to the GP0N physical clock, an ONU internal timing signal synchronized with the GP0N physical clock, and a clock synchronized with the preferred synchronous clock;
  • the synchronous clock output module of the 0NU selects one of the output physical clocks of the two E1 services or the clock synchronized with the preferred synchronous clock, and determines whether to add synchronous clock quality information, and outputs the synchronous clock interface from the ONU.
  • two service data streams with different clocks are simultaneously transmitted, and two service data streams are output by encapsulating and decapsulating the input rates of the two service data streams, where the two service data are output.
  • the output physical clock of the stream is synchronized with its input physical clock.
  • the present invention can realize the transmission of the synchronous clock in the GP0N in a simple manner, and the optical line terminal can select the preferred synchronous clock from the plurality of synchronous clock sources, and does not need to separately establish the synchronous clock distribution network.
  • the service and clock can be delivered over the same network, meeting the requirements of the synchronous clock for jitter, drift, and frequency accuracy performance, and delivering high-quality synchronous clocks.
  • the GP0N network simultaneously transmits two E1 services, and the two E1 services carry the same synchronous clock at the 0NU output.
  • the implementation process of the embodiment is the same as that of the first embodiment, and details are not described herein again.
  • the rate difference between the two E1 services and the synchronization timing signal in the step S204 is always zero.
  • the embodiment may also directly encapsulate and decapsulate the original input rate of the E1, and calculate the rate difference between the E1 and the synchronization timing signal, and the specific implementation process refers to the first embodiment and the implementation. Example 2, I will not repeat them here.
  • the synchronous clock quality information carried by the E1 is transmitted.
  • the specific implementation process of this embodiment is as follows:
  • the synchronous clock input module of 0LT selects the input of one channel E1 as a synchronous clock source, and sends it to the synchronous clock processing module;
  • the synchronous clock processing module generates a synchronization timing signal inside the 0LT according to the selected synchronous clock;
  • S403 generating, according to the synchronization timing signal, a GP0N physical clock synchronized with the synchronization timing signal, and sending the GP0N physical clock to the 0LT GTC processing module;
  • S405 Send the calculated E1 rate difference and the synchronous clock quality information to the GEM package module Block, the ELTE encapsulation module encapsulates the El rate difference, the synchronization clock quality information, and the E1 service data stream into a GEM frame, and transmits the result to the ONU, where the synchronous clock quality information is optional content;
  • the synchronous clock processing module recovers the GP0N physical clock from the received GTC frame
  • S407 Generate, according to the GP0N physical clock, an ONU internal timing signal synchronized with the GP0N physical clock, and a clock synchronized with the preferred synchronous clock;
  • S408 Decompose the GEM encapsulation to obtain a rate difference and synchronous clock quality information of the E1 service data stream calculated by the 0LT;
  • S409 Calculate, according to the rate difference of the E1 service data stream and the synchronization timing signal inside the 0NU, an original input rate of the E1 service data stream at the E1 line interface of the 0LT;
  • S410 Generate an output physical clock synchronized with an input physical clock of the E1 service data stream according to the original input rate and the 0NU internal synchronization timing signal, and output an E1 service data stream.
  • the synchronous clock output module of the 0NU selects one of the output physical clocks of the E1 service or the clock synchronized with the preferred synchronous clock, and determines whether to add synchronous clock quality information, and outputs the synchronous clock interface from the 0NU.
  • the original input rate of the E1 can be directly encapsulated and decapsulated, and the rate difference between the E1 and the synchronization timing signal is not calculated.
  • the specific implementation process is referred to the second embodiment, and details are not described herein again.
  • a service data stream is transmitted, and the service data stream is output through a differential mode, wherein an output physical clock of the service data stream is synchronized with an input physical clock.
  • the present invention can realize the transmission of the synchronous clock in the GP0N in a simple manner, and the optical line terminal can select the preferred synchronous clock from the plurality of synchronous clock sources, and does not need to separately establish the synchronous clock distribution network.
  • the service and clock can be delivered over the same network, meeting the requirements of the synchronous clock for jitter, drift, and frequency accuracy performance, and delivering high-quality synchronous clocks.
  • the synchronous clock output module of the 0NU selects the synchronous clock carried by the E1 service, and outputs the synchronous clock from the ONU.
  • the original input rate of the E1 can be directly encapsulated and decapsulated, and the rate difference between the E1 and the synchronization timing signal is not calculated.
  • the specific implementation process is referred to the second embodiment, and details are not described herein again.
  • the BITS sync clock of the 0 0 MHZ input of the 0LT input is passed to the sync clock output of the 0NU, excluding the valid traffic data stream.
  • the specific implementation process of this embodiment is as follows:
  • the synchronous clock processing module generates a GP0N physical clock synchronized with the synchronous clock according to the selected synchronous clock, and sends the GP0N physical clock to the 0LT GTC processing module.
  • the 0NU synchronous clock processing module recovers the GP0N physical clock from the received GTC frame
  • S504 Generate, according to the GP0N physical clock, a synchronous clock of 2. 048 MHz synchronized with the physical clock of the GP0N;
  • S505 Select this 2.
  • the 048MHZ synchronous clock is output from the 0NU synchronous clock port.
  • the synchronous clock port output of the B I TS synchronous clock to the 0NU is transmitted, and the valid service data stream is not included.
  • the 0NU directly generates the output physical clock from the acquired physical clock of the GP0N.
  • the present invention can realize the whole network synchronization of the clock in the GP0N in a single program, and can meet the requirements of the synchronous clock for jitter, drift and frequency precision performance, and then pass the synchronous clock with high quality.
  • Example 7 the BI TS synchronization clock of the 0. 048 Mbi t/s of the 0LT input is transmitted to the synchronous clock port output of the 0NU. At this time, the 2.48 Mb it/s data stream of the BITS output needs to be transmitted. As shown in FIG. 6, the specific implementation process of this embodiment is as follows:
  • the synchronous clock processing module generates a GPON physical clock synchronized with the synchronous clock according to the selected synchronous clock, and sends the GPON physical clock to the 0LT GTC processing module.
  • the 0NU synchronous clock processing module recovers the GP0N physical clock from the received GTC frame
  • the synchronous clock processing module performs the GEM encapsulation of the 2. 048 Mb i t/s data stream input by the BITS, and sends the data stream to the 0NU through the GP0N network, where the data stream of the B I TS includes the quality information of the synchronous clock;
  • S605 Generate, according to the GP0N physical clock, a synchronous clock of 2. 048 Mb i t/s synchronized with the GP0N physical clock;
  • the 0NU synchronous clock processing module decapsulates the data stream to obtain a BITS input data stream input by the 0LT, and sends the data stream to the 0NU synchronous clock output module for output.
  • Embodiments of the present invention also provide an optical line terminal capable of transmitting a synchronous clock with high quality.
  • the optical line terminal includes:
  • the clock determining unit 701 is configured to determine a preferred synchronous clock; the clock is used as a reference to generate a physical clock of the GP0N.
  • the optical line terminal provided by the embodiment of the present invention first determines a preferred synchronous clock, and generates a physical clock of the GP0N by the preferred synchronous clock, and recovers the physical clock by the optical network unit through the GP0N. And generating a clock synchronized with the preferred synchronous clock based on the physical clock.
  • the present invention can realize the whole network synchronization of the clock in the GP0N in a simple manner, can meet the requirements of the synchronous clock for jitter, drift and frequency precision performance, and thereby pass the synchronous clock with high quality.
  • the optical line terminal further includes:
  • the receiving unit 703 is configured to receive a service data stream.
  • a first timing signal generating unit 704 configured to generate a first timing signal based on the preferred synchronous clock
  • a rate difference calculation unit 705, configured to calculate a rate difference between the service data stream received by the receiving unit 703 and the first timing signal generated by the first timing signal generating unit 704;
  • the encapsulating unit 706 is configured to perform GEM encapsulation of the service data stream, rate difference, or rate and transmit the data to the optical network unit.
  • the requirements of the synchronous clock for jitter, drift, and frequency accuracy performance can be satisfied, and the synchronous clock can be transmitted with high quality in the GP0N network.
  • Embodiments of the present invention also provide an optical network unit that is capable of transmitting a synchronous clock with high quality.
  • the optical network unit includes:
  • the physical clock acquisition unit 801 is configured to acquire, by using the GP0N, a physical clock of the GP0N generated by the optical line terminal;
  • the clock generating unit 802 is configured to generate a clock synchronized with the preferred synchronous clock based on the physical clock of the GP0N acquired by the physical clock acquiring unit 801.
  • the optical network unit recovers the physical clock of the GP0N generated by the optical line terminal through the GP0N, and generates a clock synchronized with the preferred synchronous clock based on the physical clock.
  • the present invention can realize the whole network synchronization of the clock in the GP0N in a simple manner, can meet the requirements of the synchronous clock for jitter, drift and frequency precision performance, and thereby pass the synchronous clock with high quality.
  • the optical network unit further includes:
  • a second timing signal generating unit 803, configured to generate a second timing signal based on a physical clock of the GP0N acquired by the physical clock acquiring unit 801;
  • Decapsulating unit 804 configured to decapsulate the GEM-encapsulated service data stream, rate difference, or rate;
  • a rate calculation unit 805, configured to calculate an original input rate of the service data stream according to the decapsulated rate difference and the second timing signal generated by the second timing signal generating unit 803;
  • the service output unit 806 is configured to generate the physical clock synchronized with the input physical clock of the service data stream, and output the service data stream.
  • the optical network unit further includes:
  • the clock output unit 807 is configured to select one of the clocks of the preferred synchronous clock synchronization and the output physical clock of the service data stream, and is output by the synchronous clock port of the optical network unit.
  • the requirements of the synchronous clock for jitter, drift, and frequency accuracy performance can be satisfied, and the synchronous clock can be transmitted with high quality in the GP0N network.
  • Embodiments of the present invention also provide a synchronous clock delivery system that is capable of delivering a synchronous clock with high quality.
  • the system includes:
  • the optical line terminal 901 is configured to determine a preferred synchronous clock, and generate a physical clock of the GP0N based on the preferred synchronous clock;
  • the optical network unit 902 is configured to obtain the physical clock generated by the optical line terminal 901 through the GP0N, and generate a clock synchronized with the preferred synchronous clock based on the physical clock.
  • the optical line terminal determines a preferred synchronous clock
  • the physical clock of the GP0N is generated by the preferred synchronous clock
  • the optical network unit recovers the physical clock through the GP0N, and uses the physical clock.
  • a clock synchronized with the preferred synchronous clock is generated.
  • the present invention can realize the full clock in the GP0N in a simple manner.
  • the network synchronization can meet the requirements of the synchronous clock for jitter, drift and frequency accuracy performance, and then pass the synchronous clock with high quality.
  • the optical line terminal 901 is further configured to generate a first timing signal based on the preferred synchronous clock when the service data stream is simultaneously transmitted;
  • the optical network unit 902 is further configured to generate a second timing signal based on the physical clock.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Optical Communication System (AREA)

Description

同步时钟的传递方法、 装置和*** 技术领域
本发明涉及光通信技术领域, 尤其涉及一种同步时钟的传递方法、 装置 和***。
背景技术
GP0N( Gigabit-Capable Passive Optical Network, 吉比特无源光网 έ各) 技术是 PON (Passive Optical Network, 无源光网络) 家族中一个重要的技 术分支。 和其它 P0N技术类似, GP0N也是一种采用点到多点拓朴结构的无源 光接入技术, 包括一个安装于中心控制站的 OLT (Optical Line Terminals, 光线路终端)、 一 ^比配套地安装于用户场所的 ONU (Optical Network Unit, 光网洛单元) 以及 0DN ( Optical Distribution Network, 光分配网洛)。
目前, 在 GP0N网络中, 主要采用 TDM (Time Division Multiplex, 时分 复用) 电路仿真方式来传递 TDM业务数据流, 并以此 TDM业务数据流来传递 同步时钟。 TDM电路仿***要是在包交换网络中使用 , 将 TDM业务数据用电路 仿真报文头进行封装, 封装后的报文为 PW ( pseudo wire )报文。 当用于 GP0N 网络时, 通常将 PW报文再封装到 GP0N封装模式(GPON Encapsulation Mode, GEM) 中传送。 TDM 电路仿真的关键技术是自适应恢复算法, 自适应恢复算法 应用在 GP0N网络中的具体过程为:
TDM设备将 TDM业务数据流发送到 0LT的 TDM电路, TDM电路先对该数据 流进行仿真处理, 得到 PW报文, 然后将 PW报文封装到 GEM帧中; 所述 GEM 帧中的 PW才艮文通过 GP0 网络传送到 ONU, 0NU将该 GEM帧中的 PW 艮文解封 装, 得到 PW报文, 并用一个緩存暂存 PW报文后, 将其发送出去。
其中, 所述 TDM设备置有第一时钟 fs, 通过该时钟的控制, TDM设备将 业务数据流发送到 0LT的 TDM电路; 0NU设备置有第二时钟 fd, 通过该时钟 的控制, 0NU设备将 PW报文发送出去。 在实现本发明的过程中, 发明人发现现有技术中至少存在如下问题: 由于 TDM数据流和 PW报文的封装速率不同, 两者之间的微小速率差, 会累 积到一定程度后才能集中表现出来, 这些差异会引起 0而緩存中数据量的较大 变化。 而第二时钟 fd和緩存中的数据量有很大的关系, 緩存中数据量较大的 变化, 将会引起 fd的较大变化, 从而导致 fd有较大的抖动和漂移, 不能实现 与第一时钟 f s同步。 因此, 在传递经过 TDM电路仿真处理后由 0NU输出的业务 数据流时, 不能同时传递同步时钟。 也就是说, 传统的 GP0N网络不能传递同 步时钟。
发明内容
本发明的实施例提供一种同步时钟的传递方法、装置和***,能够在 GP0N 网络中高质量地传递同步时钟。
为达到上述目的, 本发明的实施例采用如下技术方案:
一种同步时钟的传递方法, 包括:
光线路终端确定一优选同步时钟;
光线路终端以所述优选同步时钟为基准产生 GP0N的物理时钟;
光网络单元通过 GP0N获取所述物理时钟;
光网络单元以所述物理时钟为基准, 产生与所述优选同步时钟同步的时 钟。
一种光线路终端, 包括:
时钟确定单元, 用于确定一优选同步时钟; 准产生 GP0N的物理时钟。
一种光网络单元, 包括:
物理时钟获取单元, 用于通过 GP0N获取所述光线路终端产生的 GP0N的物 理时钟;
时钟产生单元, 用于以所述物理时钟获取单元获取到的 GP0N的物理时钟 为基准, 产生与所述优选同步时钟同步的时钟。
一种同步时钟的传递***, 包括:
光线路终端, 用于确定一优选同步时钟, 以此优选同步时钟为基准产生
GPON的物理时钟;
光网络单元, 用于通过 GP0N获取光线路终端产生的所述物理时钟, 以所 述物理时钟为基准, 产生与所述优选同步时钟同步的时钟。
本发明实施例提供的同步时钟的传递方法、 装置和***, 光线路终端确 定一优选同步时钟, 由所述优选同步时钟产生 GP0N的物理时钟, 光网络单元 通过 GP0N恢复所述物理时钟, 并以所述物理时钟为基准, 产生与所述优选同 步时钟同步的时钟。 与现有技术相比, 本发明能够以简单的方式实现时钟在 GPON中的全网同步, 能够满足同步时钟对于抖动、 漂移和频率精度性能的要 求, 进而高质量地传递同步时钟。
附图说明
图 1为本发明实施例提供的同步时钟的传递方法流程图;
图 2为本发明同步时钟的传递方法实施例一流程图;
图 3为本发明同步时钟的传递方法实施例二流程图;
图 4为本发明同步时钟的传递方法实施例四流程图;
图 5为本发明同步时钟的传递方法实施例六流程图;
图 6为本发明同步时钟的传递方法实施例七流程图;
图 7为本发明实施例提供的光线路终端结构示意图;
图 8为本发明实施例提供的光网络单元结构示意图;
图 9为本发明实施例提供的同步时钟的传递***结构示意图。
具体实施方式
为了解决现有技术中传递同步时钟质量不高的问题, 本发明的实施例提 供一种同步时钟的传递方法、 装置和***。
为使本发明技术方案的优点更加清楚, 下面结合附图和实施例对本发明 作详细说明。
本发明的实施例提供一种同步时钟的传递方法, 该方法能够高质量地传 递同步时钟。
如图 1所示, 所述方法包括:
S101 : 光线路终端确定一优选同步时钟;
S102 : 光线路终端以所述优选同步时钟为基准产生吉比特无源光网络 ( GP0N ) 的物理时钟;
S103: 光网络单元通过 GP0 获取所述物理时钟;
S104 : 光网络单元以所述物理时钟为基准, 产生与所述优选同步时钟同 步的时钟。
本发明实施例提供的同步时钟的传递方法, 光线路终端确定一优选同步 时钟, 由所述优选同步时钟产生 GP0N的物理时钟, 光网络单元通过 GP0N恢复 所述物理时钟, 并以所述物理时钟为基准, 产生与所述优选同步时钟同步的 时钟。 与现有技术相比, 本发明能够以简单的方式实现时钟在 GP0N中的全网 同步, 能够满足同步时钟对于抖动、 漂移和频率精度性能的要求, 进而高质 量地传递同步时钟。
下面结合具体实施例对所述同步时钟的传递方法进行详细介绍。
其中, 所述光线路终端确定一优选同步时钟的步驟包括:
光线路终端从 BITS ( Bui lding Integrated Timing Supply Sys tem, 通 信楼综合定时供给***)、E1物理时钟、内部时钟源、 SDH( Synchronous Dig i tal Hierarchy, 同步数字体系)链路、 GPS ( Global Pos i t ioning Sys tem, 全球 定位***)链路或其他 GP0N网络中选取一路质量信息最好的同步时钟, 作为 优选同步时钟; 或者, 光线路终端按照设定的优先级选取一路同步时钟。
在下述所有实施例中, 0LT有一个 BITS同步时钟口和两个 E1业务输入, 0NU 有一个 BITS同步时钟口和两个 E1业务输出。
其中, 若 BITS配置是 2Mb i t/s时, 光线路终端同时输入 BITS的数据流。 实施例一
在该实施例中, 同时传递两路 E1业务, 所述两路 E1业务在 0NU输出时分别 携带了不同的同步时钟。 如图 2所示, 本实施例的具体实现过程如下:
S201 : 0LT的同步时钟输入模块根据同步时钟质量信息, 或者根据用户设 定, 选择 BITS或者某一路 E1的输入作为同步时钟源, 送到同步时钟处理模块;
S202 : 根据所选择的同步时钟, 产生 0LT内部的同步定时信号;
S203 : 根据所选择的同步时钟, 产生与此同步时钟同步的 8KHz和 155. 52MHz GPON物理时钟,或者与此同步时钟同步的、频率为 8KHz和 155. 52MHz 倍数的 GPON物理时钟,送到 0LT的 GTC( GPON Transmi s s ion Convergence layer , GPON传输汇聚层 )处理模块;
S204 : 计算两路 E 1业务和所述同步定时信号之间的速率差;
S205 : 将计算出来的 E1速率差和同步时钟质量信息一起, 送到 GEM封装模 块, 由 GEM封装模块将此 E1速率差、 同步时钟质量信息和 E1业务数据流封装到 GEM帧中, 并传送到 0NU, 其中, 所述同步时钟质量信息为可选内容;
其中, 所述 GEM封装的详细过程为: 将待封装的信息按照 ITU- T ( Internat ional Telecommunica t ion Union Telecommunicat ion Standardizat ion Sector , 国际电信联盟电信标准局) G. 984定义的格式封装到 GEM帧中, 其中 包括 5字节的 GEM帧头、 1字节的同步质量信息、 1字节的速率差和可变长度的 E1数据流。
其中, 在上述封装过程的基础上, 可以减少同步时钟质量信息和速率差 的长度, 分别用 4比特表示同步时钟质量信息和速率差, 能够减少 GEM的帧长 度, 提高带宽利用率。
S206 : 0NU的同步时钟处理模块从接收到的 GTC帧中恢复 8KHz和 155. 52MHz GPON物理时钟;
其中, 所述 8KHz时钟恢复过程为: 0NU从接收到的数据流中搜索 GTC帧头, 当搜到 GTC帧头 0xB6AB31E0时, 送出一个标志信号, 此标志信号和 0LT发出的 GTC帧同频, 从而得到 8ΚΗζ的 GP0N物理时钟。
GTC帧头在 ITU- T G.984.3中定义为 4字节的 0xB6AB31E0, 8KHz的 GTC帧频 来自 ITU- T G.984.3定义的 125us GTC帧周期。
所述 155.52MHz时钟恢复过程为: 0NU接收的光信号, 经过光模块做光-电 转换后送到 CDR ( clock and data recovery, 时钟和数据恢复) 器件, 此 CDR 器件从串行数据流中分离出时钟和数据, 并做 1: 16串并转换, 得到 155.52MHz 线路时钟。
155.52MHz是由位于 0LT上的并串转换器件, 以及位于 0NU上的串并转换器 件决定的, 具体可以为 2.48832G线路速率的 2/4/8/16/32分之 1或者其它倍数。 通常用 1: 16、 1: 8、 1: 4, 如果用 1: 8的, 将恢复出 311MHz的时钟, 将 311Hz时 钟做 2分频可得 155.52MHz的 GP0N物理时钟。
S207: 根据所述 GP0N物理时钟, 产生与此 GP0N物理时钟同步的 0NU内部定 时信号, 以及与所述优选同步时钟同步的时钟;
S208: 解 GEM封装, 得到 0LT计算的两路 E1业务数据流的速率差和同步时 钟质量信息;
S209: 根据所述两路 E1业务数据流的速率差和 0NU内部的同步定时信号, 计算得到两路 E1业务数据流在 0LT的 E1线路接口处的原始输入速率;
S210: 根据所述两路原始输入速率和 0NU内部同步定时信号, 分别产生与 所述两路 E1业务数据流的输入物理时钟同步的输出物理时钟, 分别输出两路 E1业务数据流;
S211: 0NU的同步时钟输出模块从上述两路 E1业务的输出物理时钟或者与 所述优选同步时钟同步的时钟中选择一路, 并确定是否添加同步时钟质量信 息 , 从 0NU的同步时钟口输出。
在本实施例中, 同时传递两路带有不同时钟的业务数据流, 通过差分模 式, 将两路业务数据流输出, 其中, 所述两路业务数据流的输出物理时钟分 别与其输入物理时钟同步。 与现有技术相比, 本发明能够以简单的方式实现 同步时钟在 GPON中的传递, 而且, 光线路终端能够从多种同步时钟源中选取 优选同步时钟, 不需要单独建立同步时钟分发网, 业务和时钟可以通过相同 的网络传递, 能够满足同步时钟对于抖动、 漂移和频率精度性能的要求, 进 而高质量地传递同步时钟。
实施例二:
在该实施例中, 同时传递两路 E1业务, 所述两路 E1业务在 0NU输出时分别 携带了不同的同步时钟。 与实施例一不同的是, 本实施例直接对 E1的原始输 入速率进行封装和解封装, 而不计算 E1和所述同步定时信号之间的速率差。 如图 3所示, 本实施例的具体实现过程如下:
S 301-S 303: 与步骤 S201- S203相同;
S 304 : 将所述 E1的原始输入速率和同步时钟质量信息一起, 送到 GEM封装 模块, 由 GEM封装模块将此 E1的原始输入速率、 同步时钟质量信息和 E1业务数 据流封装到 GEM帧中, 传送到 0NU, 其中, 所述同步时钟质量信息为可选内容; 其中, 所述 GEM封装的过程与实施例一中相同, 此处不再赘述。
S 305 : 0NU的同步时钟处理模块从接收到的 GTC帧中恢复所述 GP0N物理时 钟;
S 306 : 根据所述 GP0N物理时钟, 产生与此 GP0N物理时钟同步的 0NU内部定 时信号, 以及与所述优选同步时钟同步的时钟;
S 307 : 解 GEM封装, 得到 0LT计算的两路 E1业务数据流的原始输入速率和 同步时钟质量信息;
S 308 : 根据所述两路原始输入速率和 0NU内部同步定时信号, 分别产生与 所述两路 E1业务数据流的输入物理时钟同步的输出物理时钟, 分别输出两路 E1业务数据流;
S 309 : 0NU的同步时钟输出模块从上述两路 E 1业务的输出物理时钟或者与 所述优选同步时钟同步的时钟中选择一路, 并确定是否添加同步时钟质量信 息, 从 0NU的同步时钟口输出。 在本实施例中, 同时传递两路带有不同时钟的业务数据流, 通过对两路 业务数据流的输入速率进行封装和解封装, 将两路业务数据流输出, 其中, 所述两路业务数据流的输出物理时钟分别与其输入物理时钟同步。 与现有技 术相比, 本发明能够以简单的方式实现同步时钟在 GP0N中的传递, 而且, 光 线路终端能够从多种同步时钟源中选取优选同步时钟, 不需要单独建立同步 时钟分发网, 业务和时钟可以通过相同的网络传递, 能够满足同步时钟对于 抖动、 漂移和频率精度性能的要求, 进而高质量地传递同步时钟。
实施例三
在该实施例中, GP0N网络同时传递两路 E1业务, 所述两路 E1业务在 0NU输 出时携带了相同的同步时钟。 本实施例的具体实现过程与实施例一所述的实 现过程相同, 在此不再赘述。 其中, 所述步骤 S204中两路 E1业务和所述同步 定时信号之间的速率差恒定为零。
当然, 本实施例也可以与实施例二类似, 直接对 E1的原始输入速率进行 封装和解封装, 而不计算 E1和所述同步定时信号之间的速率差, 具体实现过 程参照实施例一和实施例二, 在此不再赘述。
实施例四
在该实施例中, 传递一路 E1携带的同步时钟质量信息, 如图 4所示, 本实 施例的具体实现过程如下:
S401 : 0LT的同步时钟输入模块选择一路 E1的输入作为同步时钟源, 送到 同步时钟处理模块;
S402 : 根据所选择的同步时钟, 同步时钟处理模块产生 0LT内部的同步定 时信号;
S403 : 根据所述同步定时信号, 产生与此同步定时信号同步的 GP0N物理 时钟, 送到 0LT的 GTC处理模块;
S404 : 计算所述 E 1业务和所述同步定时信号之间的速率差;
S405 : 将计算出来的 E1速率差和同步时钟质量信息一起, 送到 GEM封装模 块, 由 GEM封装模块将此 El速率差、 同步时钟质量信息和 E1业务数据流封装到 GEM帧中, 并传送到 0NU, 其中, 所述同步时钟质量信息为可选内容;
S406 : 0而的同步时钟处理模块从接收到的 GTC帧中恢复所述 GP0N物理时 钟;
S407 : 根据所述 GP0N物理时钟, 产生与此 GP0N物理时钟同步的 0NU内部定 时信号, 以及与所述优选同步时钟同步的时钟;
S408 : 解 GEM封装, 得到 0LT计算的 E1业务数据流的速率差和同步时钟质 量信息;
S409 : 根据所述 E1业务数据流的速率差和 0NU内部的同步定时信号, 计算 得到 E 1业务数据流在 0LT的 E 1线路接口处的原始输入速率;
S410: 根据所述原始输入速率和 0NU内部同步定时信号, 产生与所述 E1业 务数据流的输入物理时钟同步的输出物理时钟, 输出 E1业务数据流;
S411 : 0NU的同步时钟输出模块从上述 E1业务的输出物理时钟或者与所述 优选同步时钟同步的时钟中选择一路, 并确定是否添加同步时钟质量信息, 从 0NU的同步时钟口输出。
当然, 本实施例也可以直接对 E1的原始输入速率进行封装和解封装, 而 不计算 E 1和所述同步定时信号之间的速率差, 具体实现过程参照实施例二, 在此不再赘述。
在本实施例中, 传递一路业务数据流, 通过差分模式, 将所述业务数据 流输出, 其中, 所述业务数据流的输出物理时钟与其输入物理时钟同步。 与 现有技术相比, 本发明能够以简单的方式实现同步时钟在 GP0N中的传递, 而 且, 光线路终端能够从多种同步时钟源中选取优选同步时钟, 不需要单独建 立同步时钟分发网, 业务和时钟可以通过相同的网络传递, 能够满足同步时 钟对于抖动、 漂移和频率精度性能的要求, 进而高质量地传递同步时钟。
实施例五
在该实施例中, 同时传递两路 E1业务, 所述两路 E1业务在 0NU输出时分别 携带了不同的同步时钟, 从 0NU的同步时钟口输出一路 E1携带的同步时钟。 本 实施例的具体实现过程与实施例一所述的实现过程相同, 在此不再赘述。 其 中, 所述步骤 S21 1中, 0NU的同步时钟输出模块选择一路 E1业务携带的同步时 钟, 从 0NU的同步时钟口输出。
当然, 本实施例也可以直接对 E1的原始输入速率进行封装和解封装, 而 不计算 E 1和所述同步定时信号之间的速率差, 具体实现过程参照实施例二, 在此不再赘述。
实施例六
在该实施例中, 传递 0LT输入的 2. 048MHZ的 BITS同步时钟到 0NU的同步时 钟口输出, 不包括有效的业务数据流。 如图 5所示, 本实施例的具体实现过程 ^口下:
S 501: 0LT的同步时钟输入模块选择 B I TS的同步时钟口作为同步时钟源送 到同步时钟处理模块;
S502 : 根据所选择的同步时钟, 同步时钟处理模块产生与此同步时钟同 步的 GP0N物理时钟, 送到 0LT的 GTC处理模块;
S503 : 0NU的同步时钟处理模块从接收到的 GTC帧中恢复所述 GP0N物理时 钟;
S504 : 根据所述 GP0N物理时钟, 产生与此 GP0N物理时钟同步的 2. 048MHZ 的同步时钟;
S505 : 选择此 2. 048MHZ同步时钟从 0NU的同步时钟口输出。
在本实施例中, 传递 B I TS同步时钟到 0NU的同步时钟口输出, 不包括有效 的业务数据流, 0NU直接由获取到的 GP0N的物理时钟产生输出物理时钟。 与现 有技术相比, 本发明能够以筒单的方式实现时钟在 GP0N中的全网同步, 能够 满足同步时钟对于抖动、 漂移和频率精度性能的要求, 进而高质量地传递同 步时钟。
实施例七 在该实施例中, 传递 0LT输入的 2. 048Mbi t/ s的 BI TS同步时钟到 0NU的同步 时钟口输出, 此时, 需要传递 BITS输出的 2. 048Mb i t/ s数据流。 如图 6所示, 本实施例的具体实现过程如下:
S 601: 0LT的同步时钟输入模块选择 B I TS的同步时钟口作为同步时钟源送 到同步时钟处理模块;
S602 : 根据所选择的同步时钟, 同步时钟处理模块产生与此同步时钟同 步的 GPON物理时钟 , 送到 0LT的 GTC处理模块;
S603 : 0NU的同步时钟处理模块从接收到的 GTC帧中恢复所述 GP0N物理时 钟;
S604 : 同步时钟处理模块将 BITS输入的 2. 048Mb i t/ s数据流进行 GEM封装, 通过 GP0N网络发送到 0NU , 其中, 所述 B I TS的数据流中包含同步时钟的质量信 息;
S605: 根据所述 GP0N物理时钟, 产生与此 GP0N物理时钟同步的 2. 048Mb i t/ s的同步时钟;
S606 : 0NU的同步时钟处理模块将所述数据流进行解封装, 得到 0LT输入 的 BITS输入数据流, 送到 0NU的同步时钟输出模块进行输出。
因而, 利用本发明的实施例同步时钟的传递方法, 能够满足同步时钟对 于抖动、 漂移和频率精度性能的要求, 在 GP0N网络中高质量地传递同步时钟。
本发明的实施例还提供一种光线路终端, 该光线路终端能够高质量地传 递同步时钟。
如图 7所示, 所述光线路终端包括:
时钟确定单元 701 , 用于确定一优选同步时钟; 钟为基准产生 GP0N的物理时钟。
本发明实施例提供的光线路终端, 首先确定一优选同步时钟, 由所述优 选同步时钟产生 GP0N的物理时钟, 由光网络单元通过 GP0N恢复所述物理时钟, 并以所述物理时钟为基准, 产生与所述优选同步时钟同步的时钟。 与现有技 术相比, 本发明能够以简单的方式实现时钟在 GP0N中的全网同步, 能够满足 同步时钟对于抖动、 漂移和频率精度性能的要求, 进而高质量地传递同步时 钟。
如图 7所示, 所述光线路终端还包括:
接收单元 703 , 用于接收业务数据流;
第一定时信号产生单元 704 , 用于以所述优选同步时钟为基准产生第一定 时信号;
速率差计算单元 705, 用于计算所述接收单元 703接收的业务数据流与所 述第一定时信号产生单元 704产生的第一定时信号之间的速率差;
封装单元 706 , 用于将所述业务数据流、 速率差或速率进行 GEM封装后传 送到光网络单元。
因而, 利用本发明的实施例光线路终端, 能够满足同步时钟对于抖动、 漂移和频率精度性能的要求, 进而在 GP0N网络中高质量地传递同步时钟。
本发明的实施例还提供一种光网络单元, 该光网络单元能够高质量地传 递同步时钟。
如图 8所示, 所述光网络单元包括:
物理时钟获取单元 801 , 用于通过 GP0N获取所述光线路终端产生的 GP0N的 物理时钟;
时钟产生单元 802 , 用于以所述物理时钟获取单元 801获取到的 GP0N的物 理时钟为基准, 产生与所述优选同步时钟同步的时钟。
本发明实施例提供的光网络单元, 光网络单元通过 GP0N恢复光线路终端 产生的 GP0N的物理时钟, 并以所述物理时钟为基准, 产生与所述优选同步时 钟同步的时钟。 与现有技术相比, 本发明能够以简单的方式实现时钟在 GP0N 中的全网同步, 能够满足同步时钟对于抖动、 漂移和频率精度性能的要求, 进而高质量地传递同步时钟。 如图 8所示, 所述光网络单元还包括:
第二定时信号产生单元 803, 用于以所述物理时钟获取单元 801获取到的 GP0N的物理时钟为基准, 产生第二定时信号;
解封装单元 804 , 用于对所述经过 GEM封装的业务数据流、 速率差或速率 进行解封装;
速率计算单元 805, 用于才艮据所述解封装后的速率差和第二定时信号产生 单元 803产生的第二定时信号, 计算业务数据流的原始输入速率;
业务输出单元 806 , 用于 #居所述原始输入速率和所述第二定时信号, 产 生与所述业务数据流的输入物理时钟同步的输出物理时钟, 输出所述业务数 据流。
如图 8所示, 所述光网络单元还包括:
时钟输出单元 807, 用于从所述优选同步时钟同步的时钟和业务数据流的 输出物理时钟中选择一路, 由光网络单元的同步时钟口输出。
因而, 利用本发明的实施例光网络单元, 能够满足同步时钟对于抖动、 漂移和频率精度性能的要求, 进而在 GP0N网络中高质量地传递同步时钟。
本发明的实施例还提供一种同步时钟的传递***, 该***能够高质量地 传递同步时钟。
如图 9所示, 所述***包括:
光线路终端 901, 用于确定一优选同步时钟, 以此优选同步时钟为基准产 生 GP0N的物理时钟;
光网络单元 902 , 用于通过 GP0N获取光线路终端 9 01产生的所述物理时钟, 以所述物理时钟为基准, 产生与所述优选同步时钟同步的时钟。
本发明实施例提供的同步时钟的传递***, 光线路终端确定一优选同步 时钟, 由所述优选同步时钟产生 GP0N的物理时钟, 光网络单元通过 GP0N恢 复所述物理时钟, 并以所述物理时钟为基准, 产生与所述优选同步时钟同步 的时钟。 与现有技术相比, 本发明能够以简单的方式实现时钟在 GP0N中的全 网同步, 能够满足同步时钟对于抖动、 漂移和频率精度性能的要求, 进而高 质量地传递同步时钟。
其中, 当同时传递业务数据流时 , 所述光线路终端 901, 还用于以所述优 选同步时钟为基准产生第一定时信号;
所述光网络单元 902,还用于以所述物理时钟为基准,产生第二定时信号。 因而, 利用本发明的实施例同步时钟的传递***, 能够满足同步时钟对 于抖动、 漂移和频率精度性能的要求, 进而在 GP0N网络中高质量地传递同步 时钟。
以上所述, 仅为本发明实施例的具体实施方式, 但本发明实施例的保护 范围并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范 围内, 可轻易想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明实施例的保护范围应该以权利要求的保护范围为准。

Claims

权利要求 书
1、 一种同步时钟的传递方法, 其特征在于, 包括:
光线路终端确定一优选同步时钟;
光线路终端以所述优选同步时钟为基准产生吉比特无源光网络(GP0N ) 的 物理时钟;
光网络单元通过 GP0N获取所述物理时钟;
光网络单元以所述物理时钟为基准, 产生与所述优选同步时钟同步的时钟。
2、 根据权利要求 1所述的同步时钟的传递方法, 其特征在于, 所述光线路 终端确定一优选同步时钟的步骤包括:
光线路终端从通信楼综合定时供给*** BITS、 El物理时钟、 内部时钟源、 SDH链路、 GPS链路或其他 GP0N网络中选取一路质量信息最好的同步时钟, 作为 优选同步时钟; 或
光线路终端按照设定的优先级选取一路同步时钟。
3、 根据权利要求 1所述的同步时钟的传递方法, 其特征在于, 在所述光线 路终端确定一优选同步时钟的步驟之前, 还包括:
光线路终端接收业务数据流。
4、 根据权利要求 3所述的同步时钟的传递方法, 其特征在于, 在所述光网 络单元通过 GP0N获取所述物理时钟的步骤之前, 还包括:
光线路终端以所述优选同步时钟为基准产生第一定时信号;
计算所述业务数据流与所述第一定时信号之间的速率差;
将所述速率差和业务数据流进行 GEM封装后传送到光网络单元。
5、 根据权利要求 4所述的同步时钟的传递方法, 其特征在于, 在所述光网 络单元通过 GP0N获取所述物理时钟的步骤之后 , 还包括:
光网络单元以所述物理时钟为基准, 产生第二定时信号;
光网络单元对所述经过 GEM封装的速率差和业务数据流进行解封装; 光网络单元根据所述速率差和第二定时信号, 计算得到所述业务数据流在 光线路终端处的原始输入速率;
光网络单元根据所述原始输入速率和第二定时信号, 产生与所述业务数据 流的输入物理时钟同步的输出物理时钟, 输出所述业务数据流。
6、 根据权利要求 3所述的同步时钟的传递方法, 其特征在于, 在所述光网 络单元通过 GP0N获取所述物理时钟的步骤之前, 还包括:
将业务数据流和所述业务数据流的原始输入速率进行 GEM封装传送到光网 络单元。
7、 根据权利要求 6所述的同步时钟的传递方法, 其特征在于, 在所述光网 络单元通过 GP0N获取所述物理时钟的步骤之后, 还包括:
光网络单元对所述经过 GEM封装的业务数据流和所述业务数据流的原始输 入速率进行解封装;
光网络单元根据所述原始输入速率和第二定时信号, 产生与所述业务数据 流的输入物理时钟同步的输出物理时钟, 输出所述业务数据流。
8、 根据权利要求 5或 7所述的同步时钟的传递方法, 其特征在于, 还包括: 从与所述优选同步时钟同步的时钟和业务数据流的输出物理时钟中选择一 路, 由光网络单元的同步时钟口输出。
9、 根据权利要求 1所述的同步时钟的传递方法, 其特征在于, 当光线路终 端所确定的优选同步时钟为 2Mb i t / s的 B I TS同步时钟时, 在所述光网络单元通过 GP0N获取所述物理时钟的步骤之前, 还包括:
输入 BITS的数据流;
光线路终端将所述 BITS的数据流进行 GEM封装, 通过 GP0N发送给光网络单 元, 所述 BITS的数据流中包含优选同步时钟的质量信息。
10、 根据权利要求 9所述的同步时钟的传递方法, 其特征在于, 在所述光网 络单元通过 GP0N获取所述物理时钟的步骤之后 , 还包括:
光网络单元对所述 B I TS的数据流进行解封装;
光网络单元输出所述 B I TS的数据流。
11、 根据权利要求 1 0所述的同步时钟的传递方法, 其特征在于, 还包括: 将与所述 2Mb i t / s的 B I TS同步时钟同步的时钟, 由光网络单元的同步时钟口 输出。
12、 一种光线路终端, 其特征在于, 包括:
时钟确定单元(701), 用于确定一优选同步时钟;
物理时钟产生单元(702) , 用于以所述时钟确定单元(701)确定的优选同步 时钟为基准产生 GP0N的物理时钟。
1 3、 根据权利要求 12所述的光线路终端, 其特征在于,还包括:
接收单元(703), 用于接收业务数据流;
第一定时信号产生单元(704) , 用于以所述优选同步时钟为基准产生第一定 时信号;
速率差计算单元(705), 用于计算所述接收单元(703)接收的业务数据流与 所述第一定时信号产生单元(704)产生的第一定时信号之间的速率差;
封装单元(706) , 用于将所述业务数据流、 速率差或速率进行 GEM封装后传 送到光网络单元。
14、 一种光网络单元, 其特征在于, 包括:
物理时钟获取单元(801) , 用于通过 GP0N获取所述光线路终端产生的 GP0N的 物理时钟;
时钟产生单元(802), 用于以所述物理时钟获取单元(801)获取到的 GP0N的 物理时钟为基准, 产生与所述优选同步时钟同步的时钟。
15、 根据权利要求 14所述的光网络单元, 其特征在于,还包括:
第二定时信号产生单元(803), 用于以所述物理时钟获取单元(801)获取到 的 GP0N的物理时钟为基准, 产生第二定时信号;
解封装单元(804) , 用于对所述经过 GEM封装的业务数据流、 速率差或速率 进行解封装;
速率计算单元(805), 用于根据所述速率差和第二定时信号产生单元(803) 产生的第二定时信号, 计算业务数据流的原始输入速率;
业务输出单元(806), 用于根据所述原始输入速率和所述第二定时信号, 产 生与所述业务数据流的输入物理时钟同步的输出物理时钟, 输出所述业务数据 流。
16、 根据权利要求 15所述的光网络单元, 其特征在于,还包括:
时钟输出单元(807) , 用于从所述优选同步时钟同步的时钟和业务数据流的 输出物理时钟中选择一路, 由光网络单元的同步时钟口输出。
17、 一种同步时钟的传递***, 其特征在于, 包括:
光线路终端(901) , 用于确定一优选同步时钟, 以此优选同步时钟为基准产 生 GP0N的物理时钟;
光网络单元(902) , 用于通过 GP0N获取光线路终端(901)产生的所述物理时 钟, 以所述物理时钟为基准, 产生与所述优选同步时钟同步的时钟。
18、 根据权利要求 17所述的同步时钟的传递***, 其特征在于,
所述光线路终端(901) , 还用于以所述优选同步时钟为基准产生第一定时信 号;
所述光网络单元(902) ,还用于以所述物理时钟为基准,产生第二定时信号。
PCT/CN2009/071382 2008-07-14 2009-04-21 同步时钟的传递方法、装置和*** WO2010006522A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810132786.7 2008-07-14
CN2008101327867A CN101631014B (zh) 2008-07-14 2008-07-14 同步时钟的传递方法、装置和***

Publications (1)

Publication Number Publication Date
WO2010006522A1 true WO2010006522A1 (zh) 2010-01-21

Family

ID=41550006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/071382 WO2010006522A1 (zh) 2008-07-14 2009-04-21 同步时钟的传递方法、装置和***

Country Status (2)

Country Link
CN (1) CN101631014B (zh)
WO (1) WO2010006522A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075969A1 (en) * 2001-03-20 2002-09-26 Alloptic, Inc. System and method for synchronizing telecom-related clocks in ethernet-based passive optical access network
CN1933367A (zh) * 2006-10-09 2007-03-21 广州市高科通信技术股份有限公司 一种基于以太网无源光网络的tdm业务实现方法
JP2007201842A (ja) * 2006-01-27 2007-08-09 Mitsubishi Electric Corp Ponシステム
CN101102158A (zh) * 2006-08-16 2008-01-09 华为技术有限公司 在无源光网络中传输同步数字体系业务的方法及装置
CN201039198Y (zh) * 2006-09-18 2008-03-19 中兴通讯股份有限公司 以太网方式无源光网络的网络定时分配***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075969A1 (en) * 2001-03-20 2002-09-26 Alloptic, Inc. System and method for synchronizing telecom-related clocks in ethernet-based passive optical access network
JP2007201842A (ja) * 2006-01-27 2007-08-09 Mitsubishi Electric Corp Ponシステム
CN101102158A (zh) * 2006-08-16 2008-01-09 华为技术有限公司 在无源光网络中传输同步数字体系业务的方法及装置
CN201039198Y (zh) * 2006-09-18 2008-03-19 中兴通讯股份有限公司 以太网方式无源光网络的网络定时分配***
CN1933367A (zh) * 2006-10-09 2007-03-21 广州市高科通信技术股份有限公司 一种基于以太网无源光网络的tdm业务实现方法

Also Published As

Publication number Publication date
CN101631014B (zh) 2012-04-04
CN101631014A (zh) 2010-01-20

Similar Documents

Publication Publication Date Title
US7555015B2 (en) System and method for synchronizing telecom-related clocks across an unsynchronized point-to-point network connection
CN101707505B (zh) 一种在无源光网络中时间同步的方法、装置及无源光网络
US8718482B1 (en) Transparent clock for precision timing distribution
US7949255B2 (en) System, device and method for transporting signals through passive optical network
US9071394B2 (en) Remote timing communications
JP5314768B2 (ja) パッシブ光ネットワークシステムの時間同期化方法及びその同期化システム
EP2323419B1 (en) A method, a device and a system for constant rate data stream transmission
US9497019B2 (en) Time domains in a PON
CN102273109B (zh) 具有嵌入信息的字段成帧
WO2010022607A1 (zh) 无源光网络中的时延控制方法、光线路终端和无源光网络
CN102292925B (zh) 用于动态均衡延迟无源光网络的方法和***
WO2011088727A1 (zh) 无源光网络的时间同步方法、装置及***
CN101640815B (zh) Pon的远程传输方法、装置和***
JP2009016925A (ja) パリティビット挿入方法およびパリティ検査方法,局側装置ならびに加入者装置
CN102237940A (zh) 在无源光网络中传递同步状态信息的方法、***和设备
US6792101B2 (en) Method to transport a reference clock signal
CN105323028B (zh) 一种时间同步方法、设备及***
WO2010006522A1 (zh) 同步时钟的传递方法、装置和***
US20100111114A1 (en) High quality timing distribution over dsl without ntr support
CN101630988A (zh) 同步时钟的传递方法、装置和***
US20080151864A1 (en) Network-Synchronous Data Interface
WO2009135415A1 (zh) 复帧处理的方法、装置和***
JP2006067354A (ja) Ponシステム及びtdm信号の伝送方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09797369

Country of ref document: EP

Kind code of ref document: A1