WO2009150519A2 - Emulsion de liant synthetique clair - Google Patents

Emulsion de liant synthetique clair Download PDF

Info

Publication number
WO2009150519A2
WO2009150519A2 PCT/IB2009/005905 IB2009005905W WO2009150519A2 WO 2009150519 A2 WO2009150519 A2 WO 2009150519A2 IB 2009005905 W IB2009005905 W IB 2009005905W WO 2009150519 A2 WO2009150519 A2 WO 2009150519A2
Authority
WO
WIPO (PCT)
Prior art keywords
synthetic binder
weight
clear synthetic
emulsion
clear
Prior art date
Application number
PCT/IB2009/005905
Other languages
English (en)
Other versions
WO2009150519A3 (fr
Inventor
Charlotte Godivier
Sophie Mariotti
Joël HERAULT
Audrey Merluzzi
Original Assignee
Total Raffinage Marketing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total Raffinage Marketing filed Critical Total Raffinage Marketing
Priority to DK09744440.0T priority Critical patent/DK2303950T3/en
Priority to EP09744440.0A priority patent/EP2303950B1/fr
Publication of WO2009150519A2 publication Critical patent/WO2009150519A2/fr
Publication of WO2009150519A3 publication Critical patent/WO2009150519A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/003Oil-based binders, e.g. containing linseed oil
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/26Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/05Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from solid polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • C08L21/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • C08L9/08Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • C08L93/04Rosin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch
    • C08L95/005Aqueous compositions, e.g. emulsions
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/30Coherent pavings made in situ made of road-metal and binders of road-metal and other binders, e.g. synthetic material, i.e. resin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/80Optical properties, e.g. transparency or reflexibility
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/80Optical properties, e.g. transparency or reflexibility
    • C04B2111/805Transparent material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2393/00Characterised by the use of natural resins; Derivatives thereof
    • C08J2393/04Rosin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2395/00Bituminous materials, e.g. asphalt, tar or pitch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch

Definitions

  • the present invention relates to novel aqueous emulsi ⁇ ns clear synthetic binder comprising on the one hand, a clear synthetic binder comprising a resin of plant origin and an oil of petroleum origin, and secondly, a latex.
  • the invention also relates to surface coatings and cold bituminous mixes obtained from said emulsion, such as bituminous grouts, cold-cast asphalts, low-emulsions, cold-drawn bituminous concretes, and in particular cold-mix asphalts. .
  • the invention also relates to the process for the preparation of aqueous emulsions of clear synthetic binder, the process for the preparation of surface coatings and the process for the preparation of cold bituminous mixes such as cold-cast asphalts.
  • the invention finally relates to the use of aqueous emulsions of clear synthetic binder for the manufacture of surface coatings and cold bituminous mixes such as cold-cast asphalts, for the manufacture of colored coatings.
  • asphaltene-rich "black” asphalts are used instead of clear asphaltenes-free synthetic binders to prepare colored coatings.
  • These colored coatings are used for example for sidewalks, pedestrian streets, garden and park alleys, public squares, parking and rest areas, building and school courtyards, bike paths, tunnels. These colored coatings improve the living environment from an aesthetic point of view, as well as from a safety point of view.
  • the clear synthetic binders currently available on the market are for the most part formulated from petroleum-based resin and petroleum-based oil.
  • clear synthetic binders are prepared by mixing an extract of mineral lubricating oil and a modified resin. These resins are chosen from resins of petroleum origin and coumarone-indene resins of fossil origin. The addition of a synthetic rubber to the clear synthetic binders can be provided.
  • the applicant company has sought to replace a portion of the oil-based constituents of clear synthetic binders with renewable constituents of plant origin.
  • the Applicant Company has established, surprisingly, that the substitution of a resin of petroleum origin with a plant-based resin in a clear synthetic binder emulsion, made it possible to obtain a clear synthetic binder emulsion having physical properties. mechanical equivalent or superior to that of a clear synthetic binder emulsion entirely of petroleum origin.
  • the invention provides a clear synthetic binder emulsion comprising a clear synthetic binder based on a resin of plant origin and an oil of petroleum origin, said emulsion further comprising a latex.
  • One of the objectives of the present invention is therefore to provide a clear synthetic binder emulsion formulated, in part, from renewable raw materials, and in particular from a resin of plant origin.
  • Another objective of the present invention is therefore to provide a clear synthetic binder emulsion formulated, in part, from renewable raw materials, which has equivalent or improved chemical, physical and mechanical properties, especially in terms of shear stability, compared to a clear synthetic binder emulsion formulated from petroleum materials.
  • Another object of the present invention is therefore to provide a clear synthetic binder emulsion formulated, in part, from renewable raw materials, for the manufacture of surface coatings or cold mixes, which have chemical, physical properties and mechanical equivalents or improved over surface coatings or cold mixes obtained from a formulated clear synthetic binder emulsion from petroleum materials.
  • one of the objectives of the present invention is to provide a cold-cast mix obtained from a clear synthetic binder emulsion formulated, in part, from renewable raw materials, having a rapid cohesion increase, allowing reopening to fast traffic.
  • the coating according to the invention has a cohesive rise rate measured according to standard NF EN 12274-4 greater than 1.1 Nm, preferably greater than 1.3 Nm at 30 minutes.
  • one of the objectives of the present invention is to provide a cold-cast mix obtained from a clear synthetic binder emulsion formulated, in part, from renewable raw materials, having good mechanical strength to withstand attacks. generated by the tires of the vehicles.
  • the coating according to the invention has an abrasion resistance measured according to the NF EN 12274-5 standard of less than 5%, preferably less than 1% or even less than 0.5%.
  • an aqueous emulsion of clear synthetic binder comprising: a clear synthetic binder comprising at least one oil of petroleum origin and at least one resin of plant origin,
  • the plant-based resin is chosen from rosin esters, such as rosin methyl esters, glycerol and rosin esters, and pentaerythritol and rosin esters, taken alone or as a mixture.
  • rosin esters such as rosin methyl esters, glycerol and rosin esters, and pentaerythritol and rosin esters, taken alone or as a mixture.
  • the oil of petroleum origin is an aromatic oil comprising aromatic extracts of petroleum residues, obtained by extraction or dearomatization of distillation residues of petroleum fractions, in particular residues of vacuum distillation of petroleum fractions.
  • the oil of petroleum origin has a content of aromatic compounds greater than 30% by weight, preferably greater than 50% by weight, more preferably greater than 70% by weight.
  • the latex is chosen from acrylic polymer latices, natural rubber latices, and synthetic rubber latices, such as styrene-butadiene rubber (SBR) synthetic rubbers, alone or as a mixture.
  • SBR styrene-butadiene rubber
  • the clear synthetic binder comprises from 10 to 70% by weight of resin of plant origin, relative to the weight of clear synthetic binder, preferably from 20 to 60% by weight of resin of plant origin, more preferably from 30 to 50% by weight of resin of plant origin.
  • the clear synthetic binder comprises from 20 to 90% by weight of oil of petroleum origin, relative to the weight of clear synthetic binder, preferably from 30 to 80% by weight of oil of petroleum origin, plus preferably from 40 to 70% by weight of oil of petroleum origin.
  • the clear synthetic binder emulsion comprises from 30 to 70% by weight of clear synthetic binder, relative to the weight of clear synthetic binder emulsion, preferably from 40 to 60% by weight of clear synthetic binder, more preferably from 50 to 55% by weight of clear synthetic binder.
  • the clear synthetic binder emulsion comprises from 1 to 20% by weight of latex, relative to the weight of clear synthetic binder emulsion, preferably from 3 to 10% by weight of latex, more preferably from 5 to 8% by weight of latex.
  • the clear synthetic binder further comprises a polymer.
  • the invention also relates to the process for preparing a clear synthetic binder emulsion as defined above comprising:
  • step (iii) mixing the clear synthetic binder of step (i) and the emulsifying solution of step (ii).
  • the invention also relates to a cold mix, in particular a cold-cast mix, obtained by mixing granules with a clear synthetic binder emulsion as defined above.
  • the invention also relates to the process for preparing a cold mix as defined above, especially a cold-poured mix comprising:
  • step (iii) dispersing the clear synthetic binder of step (i) in the emulsifying solution of step (ii); (iv) mixing the clear synthetic binder emulsion obtained in step (iii) with aggregates.
  • the invention also relates to the use of a clear synthetic binder emulsion as defined above, for the preparation of colored coatings, chosen from superficial coatings, cold mixes such as bituminous grouts, bituminous castings. cold, severe-emulsion, cold bituminous concretes, in particular cold-mix asphalt.
  • the invention relates to an aqueous emulsion of clear synthetic binder comprising a clear synthetic binder dispersed in water.
  • the clear synthetic binder emulsion according to the invention also comprises at least one latex dispersed in water.
  • the clear synthetic binder emulsion according to the invention is therefore a biphasic emulsion comprising two phases dispersed in water, the first being the clear synthetic binder and the second the latex.
  • the clear synthetic binder comprises at least one resin of plant origin and at least one oil of petroleum origin.
  • Resins suitable for the present invention are resins of plant origin, obtained from plants and / or plants. They can be called harvest, that is to say harvested from the living plant. They can be used as they are, we speak then of natural resins or be transformed chemically, one speaks then of modified natural resins. Among the harvest resins, there are the enhanced resins, dammar, natural rosins, modified rosins, rosin esters and metal resinates. These can be taken alone or mixed.
  • Natural rosins include gem and wood rosin, especially pine, and / or tall oil. These natural rosins can be taken alone or as a mixture.
  • Modified rosins include hydrogenated rosins, disproportionated rosins, polymerized rosins and / or maleic rosins. These modified natural rosins can be taken alone or as a mixture, and undergo one or more disproportionation, polymerization and / or maleization treatment.
  • rosin esters mention may be made of the natural rosin methyl esters, the hydrogenated rosin methyl esters, the natural glycerol and rosin esters, the hydrogenated glycerol and rosin esters and the disubstituted glycerol and rosin esters, esters of glycerol and of polymerized rosins, esters of glycerol and of maleated rosin, esters of pentaerythritol and natural rosins and esters of pentaerythritol and hydrogenated rosins.
  • These rosin esters can be taken alone or as a mixture and come from rosins having undergone one or more disproportionation, polymerization and / or maleization treatment.
  • Esters of pentaerythritol and natural rosins and esters of pentaerythritol and hydrogenated rosins are the preferred rosin esters.
  • metal resinates there may be mentioned metal carboxylates, for example of Ca, Zn, Mg, Ba, Pb, Co, obtained from natural rosins or modified rosins.
  • metal carboxylates for example of Ca, Zn, Mg, Ba, Pb, Co, obtained from natural rosins or modified rosins.
  • the resins according to the invention have a softening temperature of between 60 ° C. and 200 ° C., preferably between 80 ° C. and 150 ° C., more preferably between 90 ° C. and 110 ° C., and even more preferentially between 100 0 C and 105 0 C.
  • the resins according to the invention have an acid number of between 2 mg KOH / g and 25 mg KOH / g, preferably between 5 mg KOH / g and 20 mg KOH / g, more preferably between 6 mg KOH. and 16 mg KOH / g.
  • the resins according to the invention have a viscosity at 140 ° C. of between 500 mPa.s and 5000 mPa.s, preferably between 1000 mPa.s and 3000 mPa.s, more preferably between 2000 mPa.s and 2500 mPa.s. mPa.s.
  • the resins according to the invention have a viscosity at 160 ° C. of between 100 mPa.s and 1000 mPa.s, preferably between 200 mPa.s and 600 mPa.s, more preferably between 300 mPa.s and 500 mPa.s. mPa.s.
  • the resins according to the invention have a viscosity at 180 ° C. of between 50 mPa.s and 300 mPa.s, preferably between 100 mPa.s and 200 mPa.s, more preferably between 120 mPa.s and 150 mPa.s. mPa.s.
  • the clear synthetic binder comprises from 10 to 70% by weight of resin, preferably from 20 to 60% by weight of resin, more preferably from 30 to 50% by weight of resin, still more preferably from 40 to 45% by weight of resin. resin. These percentages are calculated with respect to the weight of clear synthetic binder.
  • oils suitable for the present invention are oils of petroleum origin, obtained from crude oil. These oils are aromatic oils, very rich in aromatic compounds because they are obtained by extracting aromatic compounds from petroleum cuts using a solvent.
  • oils therefore consist of aromatic extracts of petroleum fractions, and in particular aromatic extracts of residues of petroleum fractions, ie aromatic extracts of the residues of the atmospheric distillation and / or aromatic extracts of the residues. vacuum distillation, and in particular aromatic extracts of the residues of the vacuum distillation.
  • the oils therefore come from the dearomatization (or extraction) of residues from the vacuum distillation of several petroleum fractions.
  • the solvents used to extract the aromatics from the residues of the vacuum distillation are furfural and / or N-methylpyrrolidone.
  • the residues of petroleum fractions which are desaromatic to obtain the oil are in particular lubricating bases, taken alone or as a mixture.
  • Residues of petroleum fractions that are desaromaticized to obtain the oil may also have undergone before or after extraction of the aromatic compounds, a deasphalting operation.
  • oils according to the invention are therefore particularly rich in aromatic compounds.
  • the oils have a content of aromatic compounds of between 30% and 95% by weight, preferably between 50% and 90% by weight, more preferably between 60% and 85% (SARA Saturated / Aromatic / Resins method). / asphaltenes).
  • the oils have a content of aromatic compounds greater than 30% by weight, preferably greater than 50% by weight, more preferably greater than 70% by weight, even more preferably greater than 80% (Saturated / Aromatic SARA method). Resins / Asphaltenes).
  • the oils have a content of saturated compounds of between 1% and 20% by weight, preferably of between 3% and 15% by weight, more preferably between 5% and 10% (Saturated / Aromatic SARA method / Resins). / asphaltenes).
  • the oils have a content of resin compounds of between 1% and 10% by weight, preferably between 3% and 5% by weight (SARA method S atures / Aromatic / Resins / Asphaltenes).
  • the oils have a kinematic viscosity at 100 ° C of between 10 mm 2 / s and 120 mm 2 / s, preferably between 20 mm 2 / s and 100 mm 2 / s, more preferably between 50 nWVs and 85 nWVs (EN ISO 3104).
  • the oils have a kinematic viscosity at 50 ° C of between 300 mm 2 / s and 5000 mm / s, preferably between 500 mm / s and 4000 mm / s, more preferably between 1000 mm 2 / s and 2500 mm 2 / s (EN ISO 3104).
  • the oils have a Cleaveland flash point between 15O 0 C and 600 0 C, preferably between 200 0 C and 400 0 C, more preferably between 250 ° C and 350 0 C (EN ISO 2592).
  • the oils have a Cleaveland flash point greater than 15O 0 C, preferably greater than 200 0 C, more preferably greater than 250 ° C, more preferably greater than 300 0 C (EN ISO 2592).
  • the oils have an aniline point between 20 ° C. and 100 ° C., preferably between 40 ° C. and 180 ° C., more preferably between 50 ° C. and 60 ° C. (NF M 07-021).
  • the oils have a density at 15 0 C of between 400 kg / m 3 and 1500 kg / m 3 , preferably between 600 kg / m 3 and 1200 kg / m 3 , more preferably between 800 kg / m 3. m 3 and 1000 kg / m 3 (EN ISO 12185).
  • the oils have an initial distillation point greater than 200 ° C., preferably greater than 250 ° C., more preferably greater than 300 ° C.
  • the oils are therefore qualified as “heavy” oils, as opposed to “oils”. "light” whose initial point of distillation is much lower.
  • the clear synthetic binder comprises from 20 to 90% by weight of oil, preferably from 30 to 80% by weight of oil, more preferably from 40 to 70% by weight of oil, even more preferably from 50 to 60% by weight. by weight of oil. These percentages are calculated with respect to the weight of clear synthetic binder.
  • latex means an aqueous dispersion of natural or synthetic polymers in the form of extremely fine particles, most often of a diameter of less than 1 ⁇ .
  • the latexes that are suitable for the present invention are chosen from acrylic polymer latices, natural rubber latices and synthetic rubber latices, taken alone or as a mixture.
  • Natural rubber latexes come from the latex produced by certain trees, especially Hevea brasiliensis.
  • the structure and chemical composition of natural rubber are those of a cis-1,4 polyisoprene. Molecular weights are between 200,000
  • Synthetic rubber latices are, for example, polychloroprene synthetic rubbers such as 2-chloro-1,3-butadiene polymers, polybutadiene synthetic rubbers, polyisobutylene synthetic rubbers, synthetic polyisoprene rubbers, styrene synthetic rubbers -butadiene rubber (SBR), styrene-butadiene-styrene synthetic rubbers (SBS), styrene-isoprene-styrene synthetic rubbers (SIS), alone or as a mixture.
  • polychloroprene synthetic rubbers such as 2-chloro-1,3-butadiene polymers, polybutadiene synthetic rubbers, polyisobutylene synthetic rubbers, synthetic polyisoprene rubbers, styrene synthetic rubbers -butadiene rubber (SBR), styrene-butadiene-styrene synthetic rubbers (SBS), styrene-iso
  • the preferred latexes are SBR synthetic rubbers.
  • the solids content (or solids content) of the latex is preferably between 50 and 80% by weight, more preferably between 60 and 70% by weight.
  • the styrene content of the latex is preferably between 10 and 40% by weight, more preferably between 20 and 30% by weight.
  • the clear synthetic binder emulsion comprises from 30 to 70% by weight of clear synthetic binder, preferably from 40 to 60% by weight of clear synthetic binder, more preferably from 50 to 55% by weight of clear synthetic binder. These percentages are calculated based on the weight of the clear synthetic binder emulsion.
  • the clear synthetic binder emulsion comprises from 1 to 20% by weight of latex, preferably from 3 to 10% by weight of latex, more preferably from 5 to 8% by weight of latex. These percentages are calculated based on the weight of the clear synthetic binder emulsion.
  • the clear synthetic binder emulsion comprises from 0.5 to 16% by weight of latex solids, preferably from 3 to 12% by weight of latex solids. more preferably from 5 to 10% by weight of latex solids. These percentages are calculated based on the weight of the clear synthetic binder emulsion.
  • Polymers may also be added in addition to the latex. These polymers may be added to the clear synthetic binder, that is to say in a mixture with the oil and the resin, before emulsification.
  • the emulsion will comprise two types of polymers, those in direct dispersion in water (latex) and those in the clear synthetic binder itself in dispersion in water.
  • latex the latex content in the emulsion may be decreased.
  • the polymers may be chosen from ethylene-vinyl acetate copolymers (EVA) and styrene-butadiene copolymers.
  • the clear synthetic binder optionally comprises from 0.1 to 10% by weight of polymer, preferably from 1 to 5% by weight of polymer, more preferably from 2 to 3% by weight of polymer. These percentages are calculated with respect to the weight of clear synthetic binder.
  • the clear synthetic binder emulsion may also include emulsifiers (or surfactants). These are preferably of a cationic nature. They are chosen from alkylamine derivatives, alkylamidopolyamine derivatives and quaternary ammonium salt derivatives, taken alone or as a mixture. The most used are tallow propylene diamines, tallow amido amines, quaternary ammoniums obtained by quaternization of tallow propylene diamines, tallow propylenes-polyamines.
  • emulsifiers or surfactants
  • the clear synthetic binder emulsion comprises from 0.1 to 2% by weight of emulsifier, more preferably from 0.2 to 1% by weight of emulsifier. These percentages are calculated based on the weight of the clear synthetic binder emulsion.
  • the emulsifiers are added to the emulsifying solution.
  • the clear synthetic binder emulsion or the clear synthetic binder may also comprise tackifiers chosen from alkyl-polyamines such as alkyl amido-polyamines or alkyl imidazo-polyamines.
  • tackifiers chosen from alkyl-polyamines such as alkyl amido-polyamines or alkyl imidazo-polyamines.
  • the tackifying dopes are added to the clear synthetic binder and / or in the clear synthetic binder emulsion.
  • the clear synthetic binder comprises from 0.1 to 1% by weight of adhesive dope, more preferably from 0.2 to 0.5% by weight of adhesiveness dope. These percentages are calculated with respect to the weight of clear synthetic binder.
  • acids are chosen from hydrochloric acid and / or phosphoric acid, taken alone or as a mixture.
  • the acids are added to the emulsifying solution.
  • the clear synthetic binder emulsion comprises from 0.1 to 5% by weight of acid, more preferably from 0.5 to 2% by weight of acid. These percentages are calculated based on the weight of the clear synthetic binder emulsion.
  • the clear synthetic binder emulsion comprises from 10 to 60% by weight of water, more preferably from 20 to 50% by weight of water, even more preferably from 30 to 40% by weight of water. These percentages are calculated based on the weight of the clear synthetic binder emulsion.
  • water is meant water added in addition to the latex, water which includes emulsifiers.
  • a clear binder emulsion according to the preferred invention comprises:
  • the clear synthetic binder itself comprising from 30 to 50% by weight resin weight and 40 to 70% by weight of oil, based on the weight of clear synthetic binder, and
  • an emulsifying solution comprising itself from 3 to 10% by weight of latex, from 0.1 to 2 % by weight of emulsifier, from 0.5 to 2% by weight of acid and from 30 to 40% of water, based on the weight of the clear synthetic binder emulsion.
  • the invention also relates to the process for preparing a clear synthetic binder emulsion comprising the following essential steps:
  • step (iii) the dispersion of the clear synthetic binder of step (i) in the emulsifying solution of step (ii).
  • Step (i) is carried out by mixing at a temperature of between 80 and 200 ° C., preferably between 120 and 170 ° C. It is also possible to add to the oil and to the resin additives such as tackifiers, surfactants and / or styrene-butadiene polymers.
  • Step (ii) is carried out by mixing at a temperature of between 40 and 100 ° C., preferably between 50 and 70 ° C. It is also possible to add the emulsifiers to water and / or to the latex. and / or acids.
  • Step (iii) is by dispersion, for example in an emulsifier, at a temperature of between 60 and 120 ° C., preferably between 80 and 100 ° C.
  • the clear synthetic binder emulsion according to the invention is intended to be used for the preparation of colored surface coatings and / or colored cold mixes.
  • the surface coatings are prepared from the emulsion according to the invention on which granules are laid.
  • the emulsion is applied to the surface to be coated by a spreader; the aggregates are then applied by a chip on the emulsion, the assembly is finally compacted.
  • Cold mixes are prepared by mixing (or kneading) aggregates with the emulsion according to the invention.
  • cold mixes are bituminous grouts, cold-mix asphalt, low-emulsion and cold bituminous concrete.
  • ECF Cold-Poured Asphalt
  • SETRA Road and Motorway Technical Studies Department
  • SETRA Road Directorate of the Ministry of Equipment
  • ECFs will be understood here as all variants of this technology, for example bituminous grouts (CB) also described in the aforementioned SETRA note.
  • BBF Cold bituminous concrete
  • Serious-emulsion are they, defined in the standard NF P 98-121.
  • the process for preparing the cold-cast mixes from the clear synthetic binder emulsion according to the invention comprises the following essential steps:
  • step (iii) the dispersion of the clear synthetic binder of step (i) in the emulsifying solution of step (ii), for example in an emulsifier,
  • step (iv) mixing the clear synthetic binder emulsion obtained in step (iii) with aggregates.
  • Step (i) is carried out by mixing at a temperature of between 80 and 200 ° C., preferably between 120 and 170 ° C. It is also possible to add to the oil and to the resin additives such as tackifiers, surfactants and / or styrene-butadiene polymers.
  • Step (ii) is carried out by mixing at a temperature between 40 and 100 ° C, preferably between 50 and 70 ° C. It is also possible to add water and / or latex, emulsifiers and / or acids.
  • Step (iii) is by dispersion for example in an emulsifier at a temperature between 60 and 120 ° C, preferably between 80 and 100 ° C.
  • Step (iv) is by mixing at room temperature. It is also possible to add in step (iv) water and / or lime.
  • the pigments are selected according to the color, the color, which one wants to give to the coatings.
  • metal oxides such as iron oxides, chromium oxides, cobalt oxides, titanium oxides will be used to obtain the colors red, yellow, gray, green, blue or white.
  • the pigments may be added in one or more of the steps (i) to (iv) above. Preferably, the pigments are added in step (iv).
  • the aggregates that can be used according to the invention also contribute to the color of the desired coating. Preferably, fairly light aggregates are selected.
  • the clear synthetic binder comprises:
  • oil of petroleum origin oil of aromatic nature
  • resin of vegetable origin ester of pentaerythritol and rosin
  • the clear synthetic binder is prepared by mixing at 160 ° C., for one hour, the various constituents, at the end of which a homogeneous mixture is obtained.
  • An emulsifying solution is prepared by mixing 37.88 parts by weight of water and 5 parts by weight of SBR type latex having a solids content of between 63% and 65% by weight, based on the weight of the latex. 1.1 parts by weight of emulsifier (mixture of N-alkyl tallow N-dimethylamino propyl N-trimethylammonium dichloride and N-alkyl-tallow dipropylene triamine) and 1.02 parts by weight of phosphoric acid. The emulsifying solution is heated to a temperature in the region of 60 ° C.
  • the clear synthetic binder emulsion is prepared by mixing 55% by weight of clear synthetic binder L) at 140-150 ° C and 45% by weight of emulsifying solution SE] at 40-50 ° C.
  • the clear synthetic binder is dispersed by the supply of mechanical energy, for example in a colloid mill or a turbine.
  • the rupture index represents the amount of fines to be brought to break 100 g of emulsion.
  • the clear synthetic control binder L 2 comprises: - 65% by weight of oil of petroleum origin (oil of aromatic nature),
  • control clear synthetic binder L 3 comprises:
  • oil of petroleum origin oil of aromatic nature
  • the clear synthetic control binders L 2 and L 3 are prepared by mixing at 160 ° C., for one hour, the various constituents, at the end of which homogeneous mixtures are obtained.
  • a control emulsifying solution SE 2 is prepared by mixing with 37.88 parts by weight of water, 1.1 parts by weight of emulsifier (mixture of N-alkyl tallow N-dimethylamino propyl N-trimethyl ammonium dichloride and N-alkyl tallow dipropylene triamine) and 1.02 parts by weight of phosphoric acid.
  • the emulsifying solution is heated to a temperature in the region of 60 ° C.
  • a control emulsifying solution SE 3 is prepared by mixing with 37.88 parts by weight of water, 1.1 parts by weight of emulsifier (mixture of N-alkyl tallow N-dimethylamino propyl N-trimethyl ammonium dichloride and N-alkyl tallow dipropylene triamine) and 1.02 parts by weight of phosphoric acid.
  • the emulsifying solution is heated to a temperature in the region of 60 ° C.
  • the control clear synthetic binder emulsion E 2 is prepared by mixing 60% by mass of clear synthetic binder L 2 at 140-150 ° C. and 40% by weight of emulsifying solution.
  • the clear synthetic binder is dispersed by the supply of mechanical energy, for example in a colloid mill or a turbine.
  • the control clear synthetic binder emulsion E 3 is prepared by mixing 60% by mass of light synthetic binder L 3 at 140 ° -15 ° C. and 40% by weight of emulsifying solution. SE 3 between 40-50 ° C.
  • the clear synthetic binder is dispersed by the supply of mechanical energy, for example in a colloid mill or a turbine.
  • the stability of the clear synthetic binder emulsions vis-à-vis the shear is evaluated during their passage through a pump. Indeed, before being applied on the road, clear synthetic binder emulsions are stored in bins or in trucks and must then be pumped to be applied on the road.
  • the clear synthetic binder emulsion E 2 is not shear stable and ruptured in the pump unlike clear synthetic binder emulsions E 1 and E 3 which are shear stable and do not break in the pump.
  • a cold-poured mix according to the invention ECF 1 is prepared by mixing at room temperature:
  • An ECF 3 control cold poured mix is prepared by mixing at ambient temperature:
  • the cold-cast asphalt according to the invention ECF 1 has a cohesive rise rate ensuring a rapid setting time and therefore a relatively short recirculation time, unlike the control cold-cast asphalt ECF 3 which has much lower cohesion values.
  • the cold-poured mix according to the invention has a very negligible mass loss during the WTAT test (loss of mass of 0.03%).
  • the cold-poured mix according to the invention is therefore very resistant to abrasion and has good mechanical strength.
  • the clear synthetic binder emulsion E 1 according to the invention is therefore stable in shear, and makes it possible to obtain a cold-cast mix ECF 1 according to the invention which has a good cohesion increase and good resistance to abrasion. unlike the control clear synthetic binder emulsion E 2 which is not shear stable and in contrast to the clear synthetic clear binder emulsion E 3 which, although stable in shear, does not conduct an ECF control cold poured mix 3 having a good increase in cohesion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Civil Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Architecture (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

La présente invention concerne de nouvelles émulsions aqueuses de liant synthétique clair comprenant d'une part un liant synthétique clair à base d'une résine d'origine végétale et d'une huile d'origine pétrolière et d'autre part un latex. L'invention concerne aussi les enduits superficiels colorés et les enrobés bitumineux a froid colorés obtenus à partir de ladite émulsion comme les coulis bitumineux, les enrobés coulés a froid, les graves-émulsion, les bétons bitumineux a froid, et en particulier les enrobés coulés à froid.

Description

EMULSION DE LIANT SYNTHETIQUE CLAIR
DOMAINE TECHNIQUE
La présente invention concerne de nouvelles émulsiσns aqueuses de liant synthétique clair comprenant d'une part, un liant synthétique clair comprenant une résine d'origine végétale et une huile d'origine pétrolière, et d'autre part, un latex. L'invention concerne aussi les enduits superficiels et les enrobés bitumineux à froid obtenus à partir de ladite émulsion comme les coulis bitumineux, les enrobés coulés à froid, les graves-émulsion, les bétons bitumineux à froid, et en particulier les enrobés coulés à froid.
L'invention concerne également le procédé de préparation des émulsions aqueuses de liant synthétique clair, le procédé de préparation des enduits superficiels et le procédé de préparation des enrobés bitumineux à froid tels que les enrobés coulés à froid.
L'invention concerne enfin l'utilisation des émulsions aqueuses de liant synthétique clair pour la fabrication d'enduits superficiels et d'enrobés bitumineux à froid tels que les enrobés coulés à froid, pour la fabrication de revêtements colorés. CONTEXTE TECHNIQUE
Dans certaines applications routières, notamment dans la voirie urbaine où les sollicitations du trafic sont moins importantes, on utilise en remplacement des bitumes « noirs » traditionnels riches en asphaltènes, des liants synthétiques clairs exempts d'asphaltènes, pour préparer des revêtements colorés. Ces revêtements colorés sont utilisés par exemple pour les trottoirs, les rues piétonnes, les allées de jardins et de parcs, les places publiques, les aires de parking et de repos, les cours d'immeubles et d'écoles, les pistes cyclables, les tunnels. Ces revêtements colorés permettent d'améliorer le cadre de vie d'un point de vue esthétique, ainsi que d'un point de vue sécurité. ART ANTERIEUR ET PROBLEME TECHNIQUE
Les liants synthétiques clairs, actuellement disponibles sur le marché, sont pour la plupart d'entre eux, formulés à partir de résine d'origine pétrolière et d'huile d'origine pétrolière.
Dans le brevet européen EPl 79510, les liants synthétiques clairs sont préparés par mélange d'un extrait d'huile lubrifiante minérale et d'une résine modifiée. Ces résines sont choisies parmi les résines d'origine pétrolière et les résines coumarone-indène d'origine fossile. On peut prévoir l'addition d'un caoutchouc synthétique aux liants synthétiques clairs.
Pour préserver les ressources pétrolières mondiales, on cherche à trouver des produits de substitution au pétrole et à tous ses dérivés. RESUME DE L'INVENTION
Dans cette perspective, la société demanderesse a cherché à remplacer une partie des constituants d'origine pétrolière des liants synthétiques clairs par des constituants renouvelables d'origine végétale. La société demanderesse a établi de façon surprenante, que la substitution d'une résine d'origine pétrolière par une résine d'origine végétale dans une émulsion de liant synthétique clair, permettait d'obtenir une émulsion de liant synthétique clair ayant des propriétés physico-mécaniques équivalentes ou supérieures à celles d'une émulsion de liant synthétique clair entièrement d'origine pétrolière.
A cette fin, l'invention propose une émulsion de liant synthétique clair comprenant un liant synthétique clair à base d'une résine d'origine végétale et d'une huile d'origine pétrolière, ladite émulsion comprenant en outre un latex. OBJECTIFS DE L'INVENTION
Un des objectifs de la présente invention est donc de proposer une émulsion de liant synthétique clair formulée, en partie, à partir de matières premières renouvelables, et en particulier à partir d'une résine d'origine végétale.
Un autre objectif de la présente invention est donc de proposer une émulsion de liant synthétique clair formulée, en partie, à partir de matières premières renouvelables, qui présente des propriétés chimiques, physiques et mécaniques équivalentes ou améliorées, notamment en termes de stabilité au cisaillement, par rapport à une émulsion de liant synthétique clair formulée, à partir de matières d'origine pétrolière.
Un autre objectif de la présente invention est donc de proposer une émulsion de liant synthétique clair formulée, en partie, à partir de matières premières renouvelables, pour la fabrication d'enduits superficiels ou d'enrobés à froid, qui présentent des propriétés chimiques, physiques et mécaniques équivalentes ou améliorées par rapport à des enduits superficiels ou des enrobés à froid obtenus à partir d'une émulsion de liant synthétique clair formulée, à partir de matières d'origine pétrolière.
En particulier, un des objectifs de la présente invention est de proposer un enrobé coulé à froid obtenu à partir d'une émulsion de liant synthétique clair formulée, en partie, à partir de matières premières renouvelables, ayant une montée en cohésion rapide, permettant une réouverture au trafic rapide. De préférence l'enrobé selon l'invention présente une vitesse de montée en cohésion mesurée selon la norme NF EN 12274-4 supérieure à 1,1 N.m, de préférence supérieure à 1,3 N.m à 30 minutes.
En particulier, un des objectifs de la présente invention est de proposer un enrobé coulé à froid obtenu à partir d'une émulsion de liant synthétique clair formulée, en partie, à partir de matières premières renouvelables, ayant une bonne tenue mécanique pour résister aux agressions engendrées par les pneumatiques des véhicules. De préférence l'enrobé selon l'invention présente une résistance à l'abrasion mesurée selon la norme NF EN 12274-5 inférieure à 5 %, de préférence inférieure à 1 % ou encore inférieure à 0,5 %.
Ces objectifs, et d'autres, sont atteints par la formulation d'une émulsion aqueuse de liant synthétique clair comprenant : - un liant synthétique clair comprenant au moins une huile d'origine pétrolière et au moins une résine d'origine végétale,
- et au moins un latex.
De préférence, la résine d'origine végétale est choisie parmi les esters de colophanes, tels que les esters méthyliques de colophanes, les esters du glycérol et de colophanes, les esters du pentaérythritol et de colophanes, pris seuls ou en mélange.
De préférence, l'huile d'origine pétrolière est une huile aromatique comprenant des extraits aromatiques de résidus de pétrole, obtenus par extraction ou désaromatisation de résidus de distillation de coupes pétrolières, en particulier de résidus de distillation sous-vide de coupes pétrolières.
De préférence, l'huile d'origine pétrolière a une teneur en composés aromatiques supérieure à 30 % en poids, de préférence supérieure à 50 % en poids, plus préférentiellement supérieure à 70 % en poids.
De préférence, le latex est choisi parmi les latex de polymères acryliques, les latex de caoutchouc naturel, les latex de caoutchouc synthétiques, tels que les caoutchoucs synthétiques styrène-butadiène-rubber (SBR), pris seuls ou en mélange.
De préférence, le liant synthétique clair comprend de 10 à 70 % en poids de résine d'origine végétale, par rapport au poids de liant synthétique clair, de préférence de 20 à 60 % en poids de résine d'origine végétale, plus préférentiellement de 30 à 50 % en poids de résine d'origine végétale.
De préférence, le liant synthétique clair comprend de 20 à 90 % en poids d'huile d'origine pétrolière, par rapport au poids de liant synthétique clair, de préférence de 30 à 80 % en poids d'huile d'origine pétrolière, plus préférentiellement de 40 à 70 % en poids d'huile d'origine pétrolière.
De préférence, Pémulsion de liant synthétique clair comprend de 30 à 70 % en poids de liant synthétique clair, par rapport au poids d'émulsion de liant synthétique clair, de préférence de 40 à 60 % en poids de liant synthétique clair, plus préférentiellement de 50 à 55 % en poids de liant synthétique clair.
De préférence, l'émulsion de liant synthétique clair comprend de 1 à 20 % en poids de latex, par rapport au poids d'émulsion de liant synthétique clair, de préférence de 3 à 10 % en poids de latex, plus préférentiellement de 5 à 8 % en poids de latex.
De préférence, le liant synthétique clair comprend en outre un polymère.
L'invention concerne aussi le procédé de préparation d'une émulsion de liant synthétique clair telle que définie ci-dessus comprenant :
- (i) la préparation d'un liant synthétique clair par mélange d'au moins une huile d'origine pétrolière et d'au moins une résine d'origine végétale, - (ii) la préparation d'une solution émulsifiante par mélange d'eau et d'au moins un latex,
- (iii) le mélange du liant clair synthétique de l'étape (i) et de la solution émulsifiante de l'étape (ii).
L'invention concerne aussi un enrobé à froid, en particulier un enrobé coulé à froid, obtenu par mélange de granulats avec une émulsion de liant clair synthétique telle que définie ci -dessus.
L'invention concerne aussi le procédé de préparation d'un enrobé à froid tel que défini ci-dessus, notamment d'un enrobé coulé à froid comprenant :
- (i) la préparation d'un liant clair synthétique par mélange d'au moins une huile d'origine pétrolière et d'au moins une résine d'origine végétale,
- (ii) la préparation d'une solution émulsifiante par mélange d'eau et d'au moins un latex,
- (iii) la dispersion du liant synthétique clair de l'étape (i) dans la solution émulsifiante de l'étape (ii), - (iv) le mélange de Pémulsion de liant synthétique clair obtenue à l'étape (iii) avec des granulats.
L'invention concerne aussi l'utilisation d'une émulsion de liant synthétique clair telle que définie ci-dessus, pour la préparation de revêtements colorés, choisis parmi les enduits superficiels, les enrobés à froid tels que les coulis bitumineux, les enrobés coulés à froid, les graves-émulsion, les bétons bitumineux à froid, en particulier les enrobés coulés à froid.
DESCRIPTION DETAILLEE
L'invention concerne une émulsion aqueuse de liant synthétique clair comprenant un liant synthétique clair en dispersion dans de l'eau. L' émulsion de liant synthétique clair selon l'invention comprend aussi au moins un latex en dispersion dans de l'eau. L'émulsion de liant synthétique clair selon l'invention est donc une émulsion biphasique comprenant deux phases dispersées dans de l'eau, la première étant le liant synthétique clair et la deuxième le latex.
Le liant synthétique clair comprend au mois une résine d'origine végétale et au moins une huile d'origine pétrolière.
Les résines convenant pour la présente invention sont des résines d'origine végétale, obtenues à partir de végétaux et/ou de plantes. Elles peuvent être dites de récolte, c'est-à-dire récoltées à partir, du végétal vivant. Elles peuvent être utilisées telles quelles, on parle alors de résines naturelles ou être transformées chimiquement, on parle alors de résines naturelles modifiées. Parmi les résines de récolte, on trouve les résines accroïdes, le dammar, les colophanes naturelles, les colophanes modifiées, les esters de colophane et les résinâtes métalliques. Celles-ci peuvent être prises seules ou en mélange.
Parmi les colophanes naturelles, on peut citer les colophanes de gemme et de bois, en particulier de pin, et/ou de tall oil. Ces colophanes naturelles peuvent être prises seules ou en mélange.
Parmi les colophanes modifiées, on peut citer les colophanes hydrogénées, les colophanes dismutées, les colophanes polymérisées et/ou les colophanes maléisées. Ces colophanes naturelles modifiées peuvent être prises seules ou en mélange, et subir un ou plusieurs traitement de dismutation, polymérisation et/ou maléisation.
Parmi les esters de colophanes, on peut citer les esters méthyliques de colophanes naturelles, les esters méthyliques de colophanes hydrogénées, les esters du glycérol et de colophanes naturelles, les esters du glycérol et de colophanes hydrogénées, les esters du glycérol et de colophanes dismutées, les esters du glycérol et de colophanes polymérisées, les esters du glycérol et de colophanes maléisées, les esters du pentaérythritol et de colophanes naturelles et les esters du pentaérythritol et de colophanes hydrogénées. Ces esters de colophanes peuvent être pris seuls ou en mélange et provenir de colophanes ayant subi un ou plusieurs traitement de dismutation, polymérisation et/ou maléisation.
Les esters du pentaérythritol et de colophanes naturelles et les esters du pentaérythritol et de colophanes hydrogénées sont les esters de colophanes préférés.
Parmi les résinâtes métalliques, on peut citer les carboxylates métalliques, par exemple de Ca, Zn, Mg, Ba, Pb, Co, obtenus à partir de colophanes naturelles ou de colophanes modifiées. On préfère les résinâtes de calcium, les résinâtes de zinc, les résinâtes mixtes calcium/zinc, pris seuls ou en mélange.
Pour plus d'informations sur les résines utilisables selon l'invention, on peut se référer à l'article K340 de Bernard Delmond publié dans les « Techniques de l'ingénieur ».
De préférence, les résines selon l'invention ont une température de ramollissement comprise entre 600C et 2000C, de préférence entre 800C et 150°C, plus préférentiellement entre 900C et 1100C, encore plus préférentiellement entre 1000C et 1050C.
De préférence, les résines selon l'invention ont un indice d'acidité compris entre 2 mg KOH/g et 25 mg KOH/g, de préférence entre 5 mg KOH/g et 20 mg KOH/g, plus préférentiellement entre 6 mg KOH/g et 16 mg KOH/g.
De préférence, les résines selon l'invention ont une viscosité à 14O0C comprise entre 500 mPa.s et 5000 mPa.s, de préférence entre 1000 mPa.s et 3000 mPa.s, plus préférentiellement entre 2000 mPa.s et 2500 mPa.s. De préférence, les résines selon l'invention ont une viscosité à 16O0C comprise entre 100 mPa.s et 1000 mPa.s, de préférence entre 200 mPa.s et 600 mPa.s, plus préférentiellement entre 300 mPa.s et 500 mPa.s.
De préférence, les résines selon l'invention ont une viscosité à 1800C comprise entre 50 mPa.s et 300 mPa.s, de préférence entre 100 mPa.s et 200 mPa.s, plus préférentiellement entre 120 mPa.s et 150 mPa.s.
Le liant synthétique clair comprend de 10 à 70 % en poids de résine, de préférence de 20 à 60 % en poids de résine, plus préférentiellement de 30 à 50 % en poids de résine, encore plus préférentiellement de 40 à 45 % en poids de résine. Ces pourcentages sont calculés par rapport au poids de liant synthétique clair.
Les huiles convenant pour la présente invention sont des huiles d'origine pétrolière, obtenues à partir de pétrole brut. Ces huiles sont des huiles aromatiques, très riches en composés aromatiques car elles sont obtenues par extraction des composés aromatiques de coupes pétrolières à l'aide d'un solvant.
Ces huiles sont donc constituées d'extraits aromatiques de coupes pétrolières, et en particulier d'extraits aromatiques de résidus de coupes pétrolières, c'est à dire d'extraits aromatiques des résidus de la distillation atmosphérique et/ou d'extraits aromatiques des résidus de la distillation sous-vide, et en particulier d'extraits aromatiques des résidus de la distillation sous-vide.
Les huiles proviennent donc de la désaromatisation (ou extraction) de résidus de la distillation sous-vide de plusieurs coupes pétrolières.
Les solvants utilisés pour extraire les aromatiques des résidus de la distillation sous- vide sont le furfural et/ou la N-méthylpyrrolidone.
Les résidus de coupes pétrolières que l'on désaromatise pour obtenir l'huile sont en particulier des bases lubrifiantes, prises seules ou en mélange.
Les résidus de coupes pétrolières que l'on désaromatise pour obtenir l'huile peuvent aussi avoir subis avant ou après extraction des composés aromatiques, une opération de désasphaltage.
Les huiles selon l'invention sont donc particulièrement riches en composés aromatiques. De préférence, les huiles ont une teneur en composés aromatiques comprise entre 30 % et 95 % en poids, de préférence comprise entre 50 % et 90 % en poids, plus préférentiellement comprise entre 60 % et 85 % (méthode SARA Saturés/Aromatiques/Résines/Asphaltènes).
De préférence, les huiles ont une teneur en composés aromatiques supérieure à 30 % en poids, de préférence supérieure à 50 % en poids, plus préférentiellement supérieure à 70 % en poids, encore plus préférentiellement supérieure à 80 % (méthode SARA Saturés/ Aromatiques/Résines/ Asphaltènes). De préférence, les huiles ont une teneur en composés saturés comprise entre 1 % et 20 % en poids, de préférence comprise entre 3 % et 15 % en poids, plus préférentiellement comprise entre 5 % et 10 % (méthode SARA Saturés/Aromatiques/Résines/Asphaltènes).
De préférence, les huiles ont une teneur en composés résiniques comprise entre 1 % et 10 % en poids, de préférence comprise entre 3 % et 5 % en poids (méthode SARA S aturés/ Aromatiques/Résines/ Asphaltènes) .
De préférence, les huiles ont une viscosité cinématique à 100°C comprise entre 10 mm2/s et 120 mm2/s, de préférence comprise entre 20 mm2/s et 100 mm2/s, plus préférentiellement comprise entre 50 nWVs et 85 nWVs (EN ISO 3104).
De préférence, les huiles ont une viscosité cinématique à 50°C comprise entre 300 mm2/s et 5000 mm /s, de préférence comprise entre 500 mm /s et 4000 mm /s, plus préférentiellement comprise entre 1000 mm2/s et 2500 mm2/s (EN ISO 3104).
De préférence, les huiles ont un point éclair Cleaveland compris entre 15O0C et 6000C, de préférence compris entre 2000C et 4000C, plus préférentiellement compris entre 250°C et 3500C (EN ISO 2592).
De préférence, les huiles ont un point éclair Cleaveland supérieur à 15O0C, de préférence supérieure à 2000C, plus préférentiellement supérieur à 250°C, plus préférentiellement supérieur à 3000C (EN ISO 2592).
De préférence, les huiles ont un point aniline compris entre 200C et 1000C, de préférence compris entre 400C et 1800C, plus préférentiellement compris entre 50°C et 600C (NF M 07-021).
De préférence, les huiles ont une masse volumique à 150C comprise entre 400 kg/m3 et 1500 kg/m3, de préférence comprise entre 600 kg/m3 et 1200 kg/m3, plus préférentiellement comprise entre 800 kg/m3 et 1000 kg/m3 (EN ISO 12185).
De préférence, les huiles ont un point initial de distillation supérieur à 2000C, de préférence supérieur à 2500C, plus préférentiellement supérieur à 3000C. Les huiles sont donc qualifiées d'huiles « lourdes », par opposition aux huiles « légères » dont le point initial de distillation est beaucoup plus bas.
Le liant synthétique clair comprend de 20 à 90 % en poids d'huile, de préférence de 30 à 80 % en poids d'huile, plus préférentiellement de 40 à 70 % en poids d'huile, encore plus préférentiellement de 50 à 60 % en poids d'huile. Ces pourcentages sont calculés par rapport au poids de liant synthétique clair.
Par latex au sens de l'invention, on entend une dispersion aqueuse de polymères naturels ou synthétiques sous la forme de particules extrêmement fines, le plus souvent d'un diamètre inférieur à 1 μ. Les latex convenant pour la présente invention sont choisis parmi les latex de polymères acryliques, les latex de caoutchouc naturel, les latex de caoutchouc synthétiques, pris seuls ou en mélange.
Les latex de caoutchouc naturel proviennent du latex produit par certains arbres en particulier l'Hevea brasiliensis. La structure et la composition chimique du caoutchouc naturel sont celles d'un polyisoprène cis-1,4. Les masses moléculaires sont comprises entre 200 000
Figure imgf000009_0001
Les latex de caoutchouc synthétiques sont par exemple des caoutchoucs synthétiques de polychloroprène tels que les polymères de 2-chlore-l,3-butadiène, des caoutchoucs synthétiques de polybutadiène, des caoutchoucs synthétiques de polyisobutylène, des caoutchoucs synthétiques de polyisoprène, des caoutchoucs synthétiques styrène-butadiène- rubber (SBR), des caoutchoucs synthétiques styrène-butadiène-styrène (SBS), des caoutchoucs synthétiques styrène-isoprène-styrène (SIS), pris seuls ou en mélange.
Les latex préférés sont les caoutchoucs synthétiques SBR.
La teneur en solides (ou teneur en matière sèche) du latex est de préférence comprise entre 50 et 80 % en poids, plus préférentiellement comprise entre 60 et 70 % en poids.
La teneur en styrène des latex est de préférence comprise entre 10 et 40 % en poids, plus préférentiellement comprise entre 20 et 30 % en poids.
L'émulsion de liant synthétique clair comprend de 30 à 70 % en poids de liant synthétique clair, de préférence de 40 à 60 % en poids de liant clair synthétique, plus préférentiellement de 50 à 55 % en poids de liant clair synthétique. Ces pourcentages sont calculés par rapport au poids de l'émulsion de liant synthétique clair.
L'émulsion de liant synthétique clair comprend de 1 à 20 % en poids de latex, de préférence de 3 à 10 % en poids de latex, plus préférentiellement de 5 à 8 % en poids de latex. Ces pourcentages sont calculés par rapport au poids de l'émulsion de liant synthétique clair. Compte tenu de la teneur en matière sèche indiquée ci -dessus, l'émulsion de liant synthétique clair comprend de 0,5 à 16 % en poids de matière sèche de latex, de préférence de 3 à 12 % en poids de matière sèche de latex, plus préférentiellement de 5 à 10 % en poids de matière sèche de latex. Ces pourcentages sont calculés par rapport au poids de l'émulsion de liant synthétique clair.
Des polymères peuvent également être ajoutés en plus du latex. Ces polymères pourront être ajoutés au liant synthétique clair, c'est-à-dire en mélange avec l'huile et la résine, avant la mise en émulsion.
L'émulsion comprendra deux types de polymères, ceux en dispersion directe dans l'eau (latex) et ceux dans le liant synthétique clair lui-même en dispersion dans de l'eau. Quand on ajoute au liant synthétique clair des polymères, la teneur en latex dans l'émulsion pourra être diminuée. Les polymères pourront être choisis parmi les copolymères de type éthylène-acétate de vinyle (EVA), les copolymères de type styrène-butadiène.
Le liant synthétique clair comprend éventuellement de 0,1 à 10 % en poids de polymère, de préférence de 1 à 5 % en poids de polymère, plus préférentiellement de 2 à 3 % en poids de polymère. Ces pourcentages sont calculés par rapport au poids de liant synthétique clair.
L'émulsion de liant synthétique clair pourra également comprendre des émulsifiants (ou tensioactifs). Ceux-ci sont de préférence de nature cationique. Ils sont choisis parmi les dérivés d'alkylamines, les dérivés d'alkylamidopolyamines et les dérivés de sels d'ammonium quaternaire, pris seuls ou en mélange. Les plus utilisés sont les propylènes-diamines de suif, les amido-amines de suif, les ammoniums quaternaires obtenus par quaternisation des propylènes-diamines de suif, les propylènes-polyamines de suif.
De préférence, l'émulsion de liant synthétique clair comprend de 0,1 à 2 % en poids d'émulsifiant, plus préférentiellement de 0,2 à 1 % en poids d'émulsifiant. Ces pourcentages sont calculés par rapport au poids de l'émulsion de liant synthétique clair. De préférence, les émulsifiants sont ajoutés à la solution émulsifiante.
L'émulsion de liant synthétique clair ou le liant synthétique clair pourront également comprendre des dopes d'adhésivité choisis parmi les alkyl-polyamines telles que les alkyl amido-poly aminés ou les alkyl imidazo-polyamine. Les dopes d'adhésivité sont ajoutés au liant synthétique clair et/ou dans l'émulsion de liant synthétique clair.
De préférence, le liant synthétique clair comprend de 0,1 à 1 % en poids de dope d'adhésivité, plus préférentiellement de 0,2 à 0,5 % en poids de dope d'adhésivité. Ces pourcentages sont calculés par rapport au poids de liant synthétique clair.
On peut aussi ajouter à l'émulsion de liant synthétique clair, des acides. Ces acides sont choisis parmi l'acide chlorhydrique et/ou l'acide phosphorique pris seuls ou en mélange. De préférence, les acides sont ajoutés à la solution émulsifiante.
De préférence, l'émulsion de liant synthétique clair comprend de 0,1 à 5 % en poids d'acide, plus préférentiellement de 0,5 à 2 % en poids d'acide. Ces pourcentages sont calculés par rapport au poids de l'émulsion de liant synthétique clair.
De préférence, l'émulsion de liant synthétique clair comprend de 10 à 60 % en poids d'eau, plus préférentiellement de 20 à 50 % en poids d'eau, encore plus préférentiellement de 30 à 40 % en poids d'eau. Ces pourcentages sont calculés par rapport au poids de l'émulsion de liant synthétique clair. On entend par eau, l'eau ajoutée en plus du latex, l'eau qui comprend les émulsifiants.
Une émulsion de liant clair selon l'invention préférée comprend :
- de 50 à 55 % en poids de liant synthétique clair, par rapport au poids de l'émulsion de liant synthétique clair, le liant synthétique clair comprenant lui-même de 30 à 50 % en poids de résine et de 40 à 70 % en poids d'huile, par rapport au poids de liant synthétique clair, et
- de 45 à 50 % en poids d'une solution émulsifiante, par rapport au poids de l'émulsion de liant synthétique clair, la solution émulsifiante comprenant elle-même de 3 à 10 % en poids de latex, de 0,1 à 2 % en poids d'émulsifiant, de 0,5 à 2 % en poids d'acide et de 30 à 40 % d'eau, par rapport au poids de l'émulsion de liant synthétique clair.
L'invention concerne aussi le procédé de préparation d'une émulsion de liant synthétique clair comprenant les étapes essentielles suivantes :
- (i) la préparation d'un liant synthétique clair par mélange d'au moins une huile d'origine pétrolière et d'au moins une résine d'origine végétale,
- (ii) la préparation d'une solution émulsifiante par mélange d'eau et de latex,
- (iii) la dispersion du liant synthétique clair de l'étape (i) dans la solution émulsifiante de l'étape (ii).
L'étape (i) se fait par mélange à une température comprise entre 80 et 2000C, de préférence entre 120 et 17O0C. On peut prévoir également l'addition à l'huile et à la résine d'additifs tels que des dopes d'adhésivité, des tensioactifs et/ou des polymères de type styrène-butadiène.
L'étape (ii) se fait par mélange à une température comprise entre 40 et 1000C, de préférence entre 50 et 700C. On peut prévoir également l'addition à l'eau et/ou au latex, d'émulsifiants et/ou d'acides.
L'étape (iii) se fait par dispersion, par exemple dans un émulsionneur, à une température comprise entre 60 et 1200C, de préférence entre 80 et 100°C.
L'émulsion de liant synthétique clair selon l'invention est destinée à être utilisée pour la préparation d'enduits superficiels colorés et/ou d'enrobés à froid colorés.
Les enduits superficiels, d'une part, sont préparés à partir de l'émulsion selon l'invention sur laquelle sont posés des granulats. L'émulsion est appliquée sur la surface à revêtir par une répandeuse ; les granulats sont ensuite appliqués par un gravillonneur sur l'émulsion, l'ensemble est enfin compacté.
Les enrobés à froid (ou enrobés bitumineux à froid), d'autre part, sont préparés par mélange (ou malaxage) de granulats avec l'émulsion selon l'invention.
Des exemples d'enrobé à froid, sont les coulis bitumineux, les enrobés coulés à froid, les graves-émulsion, les bétons bitumineux à froid.
Par enrobé coulé à froid (ECF), on entend des matériaux routiers tels que décrits dans la note d'information du Service d'Etudes Techniques des Routes et Autoroutes (SETRA) de la Direction des Routes du Ministère de l'Equipement (Note d'Information Chaussées Dépendances n°102 «Les enrobés coulés à froid » de Juin 1997), ou encore dans les directives éditées en mai 2003 par l'International Slurry Surfacing Association (Annapolis, MD USA). Les ECF seront entendus ici comme toutes les variantes de cette technologie, par exemple les coulis bitumineux (CB) également décrits dans la note du SETRA précitée.
Les bétons bitumineux à froid (BBF) quant à eux, sont définis dans la norme NF P 98-139.
Les graves-émulsion sont elles, définies dans la norme NF P 98-121.
Le procédé de préparation des enrobés coulés à froid à partir de l'émulsion de liant synthétique clair selon l'invention, comprend les étapes essentielles suivantes :
- (i) la préparation d'un liant synthétique clair par mélange d'au moins une huile d'origine pétrolière et d'au moins une résine d'origine végétale,
- (ii) la préparation d'une solution émulsifiante par mélange d'eau et d'au moins un latex ,
- (iii) la dispersion du liant synthétique clair de l'étape (i) dans la solution émulsifiante de l'étape (ii), par exemple dans un émulsionneur,
- (iv) le mélange de l'émulsion de liant synthétique clair obtenue à l'étape (iii) avec des granulats.
L'étape (i) se fait par mélange à une température comprise entre 80 et 200°C, de préférence entre 120 et 1700C. On peut prévoir également l'addition à l'huile et à la résine d'additifs tels que des dopes d'adhésivité, des tensioactifs et/ou des polymères de type styrène-butadiène.
L'étape (ii) se fait par mélange à une température comprise entre 40 et 100°C, de préférence entre 50 et 70°C. On peut prévoir également l'addition à l'eau et/ou au latex, d'émulsifiants et/ou d'acides.
L'étape (iii) se fait par dispersion par exemple dans un émulsionneur à une température comprise entre 60 et 120°C, de préférence entre 80 et 1000C.
L'étape (iv) se fait par mélange à température ambiante. On peut prévoir également l'addition à l'étape (iv) d'eau et/ou de chaux.
Les pigments sont sélectionnés suivant la teinte, la couleur, qu'on veut donner aux revêtements. On utilisera par exemple des oxydes métalliques tels que des oxydes de fer, des oxydes de chrome, des oxydes de cobalt, des oxydes de titane pour obtenir les couleurs rouge, jaune, gris, vert, bleu ou blanc. Les pigments pourront être ajoutés dans une ou plusieurs des étapes (i) à (iv) ci-dessus. De préférence, on ajoute les pigments à l'étape (iv).
Les granulats utilisables selon l'invention participent également à la couleur du revêtement désirée. On choisit de préférence des granulats assez clairs.
On peut aussi prévoir l'ajout aux granulats de fines spéciales telles que le ciment ou la chaux. EXEMPLES Préparation d'un liant synthétique clair selon l'invention L^
Le liant synthétique clair comprend :
- 55,5 % en masse d'huile d'origine pétrolière (huile de nature aromatique), - 44,3 % en masse de résine d'origine végétale (ester du pentaérythritol et de colophane) et
- 0,2 % en masse de dope d'adhésivité (mélange d'alkyl amido-polyatnine et d'alkyl imidazo-polyamine).
Le liant synthétique clair est préparé par mélange à 160°C, pendant une heure, des différents constituants, au bout de laquelle on obtient un mélange homogène.
Figure imgf000013_0001
On prépare une solution émulsifiante en mélangeant à 37,88 parties en masse d'eau, 5 parties en masse de latex de type SBR ayant une teneur en matière sèche entre 63 % et 65 % en masse, par rapport à la masse du latex, 1,1 parties en masse d'émulsifiant (mélange de dichlorure de N-alkyl suif N-diméthyl amino propyl N-triméthyl ammonium et de N-alkyl suif dipropylène triamine) et 1,02 parties en masse d'acide phosphorique. On chauffe la solution émulsifiante à une température voisine de 60°C.
Préparation d'une émulsion de liant synthétique clair selon l'invention E^
On prépare T émulsion de liant synthétique clair en mélangeant 55 % en masse de liant synthétique clair L) à 140-150°C et 45 % en masse de solution émulsifiante SE]_entre 40- 50°C. On réalise la dispersion du liant synthétique clair par apport d'énergie mécanique, par exemple dans un moulin colloïdal ou une turbine.
Tableau 1 — Propriétés de l'émulsion de liant synthétique clair selon l'invention
Figure imgf000013_0002
- 'dépôt sur tamis de 500 μm et sur tarais de 160 μm, mesuré selon la norme NF EN 1429. On fait passer pour cela une certaine quantité d'émulsion sur un tamis de 500 μm et sur tamis de 160 μm, on recueille les particules qui ne passent pas à travers le tamis. Cela donne une indication de la qualité de l'émulsion, plus la teneur en particules est faible plus l'émulsion est fine.
- 2pH de l'émulsion, mesuré selon la norme NF EN 12850.
- 3indice de rupture par méthode des fines minérales, mesuré selon la norme NF EN 13075. L'indice de rupture représente la quantité de fines à apporter pour rompre 100 g d'émulsion.
Préparation de deux liants synthétiques clairs témoins L? et L^ Le liant synthétique clair témoin L2 comprend : - 65 % en masse d'huile d'origine pétrolière (huile de nature aromatique),
- 31,8 % en masse de résine d'origine pétrolière à base de motifs coumarone et de motifs indène,
- 0,2 % en masse de dope d'adhésivité (mélange d'alkyl arnido-polyamine et d'alkyl imidazo-polyamine),
- 3 % en masse de polymère à base de motifs styrène et de motifs butadiène. Le liant synthétique clair témoin L3 comprend :
- 53,8 % en masse d'huile d'origine pétrolière (huile de nature aromatique),
- 43 % en masse de résine d'origine végétale (ester du pentaérythritol et de colophane) et
- 0,2 % en masse de dope d'adhésivité (mélange d'alkyl amido-polyamine et d'alkyl imidazo-polyamine),
- 3 % en masse de polymère à base de motifs styrène et de motifs butadiène.
Les liants synthétiques clairs témoins L2 et L3 sont préparés par mélange à 1600C, pendant une heure, des différents constituants, au bout de laquelle on obtient des mélanges homogènes.
Préparation de deux solutions émulsifiantes témoins SE? et SE3
On prépare une solution émulsifiante témoin SE2 en mélangeant à 37,88 parties en masse d'eau, 1,1 parties en masse d'émulsifiant (mélange de dichlorure de N-alkyl suif N- diméthyl amino propyl N-triméthyl ammonium et de N-alkyl suif dipropylène triamine) et 1,02 parties en masse d'acide phosphorique. On chauffe la solution émulsifiante à une température voisine de 60°C.
On prépare une solution émulsifiante témoin SE3 en mélangeant à 37,88 parties en masse d'eau, 1,1 parties en masse d'émulsifiant (mélange de dichlorure de N-alkyl suif N- diméthyl amino propyl N-triméthyl ammonium et de N-alkyl suif dipropylène triamine) et 1,02 parties en masse d'acide phosphorique. On chauffe la solution émulsifiante à une température voisine de 60°C.
Préparation de deux émulsions de liant synthétique clair témoins E? et E3
On prépare l'émulsion de liant synthétique clair témoin E2 en mélangeant 60 % en masse de liant synthétique clair L2 à 140-150°C et 40 % en masse de solution émulsifiante
SE2 entre 40-50°C. On réalise la dispersion du liant synthétique clair par apport d'énergie mécanique, par exemple dans un moulin colloïdal ou une turbine.
On prépare l'émulsion de liant synthétique clair témoin E3 en mélangeant 60 % en masse de liant synthétique clair L3 à 140-15O0C et 40 % en masse de solution émulsifiante SE3 entre 40-50°C. On réalise la dispersion du liant synthétique clair par apport d'énergie mécanique, par exemple dans un moulin colloïdal ou une turbine.
La stabilité des émulsions de liant synthétique clair vis-à-vis du cisaillement est évaluée lors de leur passage dans une pompe. En effet, avant d'être appliquées sur la route, les émulsions de liant synthétique clair sont stockées dans des bacs ou dans des camions et doivent ensuite être pompées pour être appliquées sur la route. L'émulsion de liant synthétique clair E2 n'est pas stable au cisaillement et a rompu dans la pompe contrairement aux émulsions de liant synthétique clair E1 et E3 qui sont stables au cisaillement et ne rompent pas dans la pompe.
Préparation d'un enrobé coulé à froid selon l'invention ECFx
On prépare un enrobé coulé à froid selon l'invention ECF1 en mélangeant à température ambiante :
- 100 parties en poids d'un mélange de granulats minéraux de couleur beige,
- 0,5 partie en poids de chaux,
- 2 parties en poids d'oxyde de titane (pigment de couleur blanche),
- 6 parties en poids d'eau,
- 11,5 parties en poids de l'émulsion de liant synthétique clair selon l'invention E1.
Préparation d'un enrobé coulé à froid témoin ECF^
On prépare un enrobé coulé à froid témoin ECF3 en mélangeant à température ambiante :
- 100 parties en poids d'un mélange de granulats minéraux de couleur beige,
- 0,5 partie en poids de chaux,
- 2 parties en poids d'oxyde de titane (pigment de couleur blanche),
- 6 parties en poids d'eau,
- 11,5 parties en poids de l'émulsion de liant synthétique clair témoin E3.
Préparation d'un enrobé coulé à froid témoin ECF?
Il n'est pas possible de préparer un enrobé coulé à froid ECF2 à partir de l'émulsion de liant clair synthétique E2 puisque l'émulsion de liant clair synthétique E2 n'est pas stable au cisaillement lors de son pompage et rompt dans la pompe. Tableau 2 - Propriétés de l'enrobé coulé à froid selon l'invention ECF1 et de l'enrobé coulé à froid témoin ECF3
Figure imgf000016_0001
- 4Vitesse de montée en cohésion, mesurée selon la norme NF EN 12274-4.
- 55RRééssiissttaannccee àà ll''aatbrasion, mesurée selon l'essai WTAT (Wet Track Abrasion Test) de la norme
NF EN 12274-5.
L'enrobé coulé à froid selon l'invention ECF1 présente une vitesse de montée en cohésion assurant un temps de prise rapide et donc un délai de remise en circulation relativement court, contrairement à l'enrobé coulé à froid témoin ECF3 qui présente des valeurs de montée en cohésion beaucoup plus faibles.
L'enrobé coulé à froid selon l'invention présente une perte de masse très négligeable lors de l'essai WTAT (perte de masse de 0,03 %). L'enrobé coulé à froid selon l'invention, est donc très résistant à l'abrasion et présente une bonne résistance mécanique.
L'émulsion de liant clair synthétique E1 selon l'invention est donc stable au cisaillement, et permet d'obtenir un enrobé coulé à froid ECF1 selon l'invention qui présente une bonne montée en cohésion et une bonne résistance à l'abrasion, contrairement à l'émulsion de liant clair synthétique témoin E2 qui n'est pas stable au cisaillement et contrairement à l'émulsion de liant clair synthétique témoin E3 qui bien que stable au cisaillement ne conduit pas un enrobé coulé à froid témoin ECF3 ayant une bonne montée en cohésion.

Claims

REVENDICATIONS
1. Emulsion aqueuse de liant synthétique clair comprenant :
- un liant synthétique clair comprenant au moins une huile d'origine pétrolière et au moins une résine d'origine végétale,
- et au moins un latex.
2. Emulsion de liant synthétique clair selon la revendication 1 dans laquelle la résine d'origine végétale est choisie parmi les esters de colophanes, tels que les esters méthyliques de colophanes, les esters du glycérol et de colophanes, les esters du pentaérythritol et de colophanes, pris seuls ou en mélange.
3. Emulsion de liant synthétique clair selon la revendication 1 ou 2 dans laquelle l'huile d'origine pétrolière est une huile aromatique comprenant des extraits aromatiques de résidus de pétrole, obtenus par extraction ou désaromatisation de résidus de distillation de coupes pétrolières, en particulier de résidus de distillation sous-vide de coupes pétrolières.
4. Emulsion de liant synthétique clair selon l'une quelconque des revendications 1 à 3 dans laquelle l'huile d'origine pétrolière a une teneur en composés aromatiques supérieure à 30 % en poids, de préférence supérieure à 50 % en poids, plus préférentiellement supérieure à 70 % en poids.
5. Emulsion de liant synthétique clair selon l'une quelconque des revendications 1 à 4 dans laquelle le latex est choisi parmi les latex de polymères acryliques, les latex de caoutchouc naturel, les latex de caoutchouc synthétiques, tels que les caoutchoucs synthétiques styrène-butadiène-rubber (SBR), pris seuls ou en mélange.
6. Emulsion de liant synthétique clair selon l'une quelconque des revendications 1 à 5 dans laquelle le liant synthétique clair comprend de 10 à 70 % en poids de résine d'origine végétale, par rapport au poids de liant synthétique clair, de préférence de 20 à 60 % en poids de résine d'origine végétale, plus préférentiellement de 30 à 50 % en poids de résine d'origine végétale.
7. Emulsion de liant synthétique clair selon l'une quelconque des revendications 1 à 6 dans laquelle le liant synthétique clair comprend de 20 à 90 % en poids d'huile d'origine pétrolière, par rapport au poids de liant synthétique clair, de préférence de 30 à 80 % en poids d'huile d'origine pétrolière, plus préférentiellement de 40 à 70 % en poids d'huile d'origine pétrolière.
8. Emulsion de liant synthétique clair selon l'une quelconque des revendications 1 à 7 comprenant de 30 à 70 % en poids de liant synthétique clair, par rapport au poids d'émulsion de liant synthétique clair, de préférence de 40 à 60 % en poids de liant synthétique clair, plus préférentiellement de 50 à 55 % en poids de liant synthétique clair.
9. Emulsion de liant synthétique clair selon l'une quelconque des revendications 1 à 8 comprenant de 1 à 20 % en poids de latex, par rapport au poids d'émulsion de liant synthétique clair, de préférence de 3 à 10 % en poids de latex, plus préférentiellement de 5 à 8 % en poids de latex.
10. Emulsion de liant synthétique clair selon l'une quelconque des revendications 1 à 9 dans laquelle le liant synthétique clair comprend en outre un polymère.
11. Procédé de préparation d'une emulsion de liant synthétique clair selon l'une quelconque des revendications 1 à 10 comprenant :
- (i) la préparation d'un liant synthétique clair par mélange d'au moins une huile d'origine pétrolière et d'au moins une résine d'origine végétale,
- (ii) la préparation d'une solution émulsifiante par mélange d'eau et d'au moins un latex,
- (iii) la dispersion du liant synthétique clair de l'étape (i) dans la solution émulsifiante de l'étape (ii).
12. Enrobé à froid, en particulier enrobé coulé à froid, obtenu par mélange de granulats avec une emulsion de liant synthétique clair selon l'une quelconque des revendications 1 à 10.
13. Procédé de préparation d'un enrobé à froid selon la revendication 12, notamment d'un enrobé coulé à froid comprenant :
- (i) la préparation d'un liant synthétique clair par mélange d'au moins une huile d'origine pétrolière et d'au moins une résine d'origine végétale,
- (ii) la préparation d'une solution émulsifiante par mélange d'eau et d'au moins un latex,
- (iii) la dispersion du liant synthétique clair de l'étape (i) dans la solution émulsifiante de l'étape (ii),
- (iv) le mélange de l'émulsion de liant synthétique clair obtenue à l'étape (iii) avec des granulats.
14. Utilisation d'une emulsion de liant synthétique clair selon l'une quelconque des revendications 1 à 10, pour la préparation de revêtements colorés, choisis parmi les enduits superficiels, les enrobés à froid tels que les coulis bitumineux, les enrobés coulés à froid, les graves-émulsion, les bétons bitumineux à froid, en particulier les enrobés coulés à froid.
PCT/IB2009/005905 2008-06-12 2009-06-10 Emulsion de liant synthetique clair WO2009150519A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DK09744440.0T DK2303950T3 (en) 2008-06-12 2009-06-10 Clear synthetic binder emulsion
EP09744440.0A EP2303950B1 (fr) 2008-06-12 2009-06-10 Emulsion de liant synthetique clair

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0803265 2008-06-12
FR0803265A FR2932487B1 (fr) 2008-06-12 2008-06-12 Emulsion de liant synthetique clair.

Publications (2)

Publication Number Publication Date
WO2009150519A2 true WO2009150519A2 (fr) 2009-12-17
WO2009150519A3 WO2009150519A3 (fr) 2010-02-25

Family

ID=40139203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2009/005905 WO2009150519A2 (fr) 2008-06-12 2009-06-10 Emulsion de liant synthetique clair

Country Status (5)

Country Link
EP (1) EP2303950B1 (fr)
DK (1) DK2303950T3 (fr)
FR (1) FR2932487B1 (fr)
PL (1) PL2303950T3 (fr)
WO (1) WO2009150519A2 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2995890A1 (fr) * 2012-09-26 2014-03-28 Colas Sa Liant hydrocarbone transparent et enrobes
FR3055623A1 (fr) * 2016-09-08 2018-03-09 Total Marketing Services Liant clair solide a froid
WO2018046837A1 (fr) 2016-09-08 2018-03-15 Total Marketing Services Procede de fabrication de materiau sous forme de granules utilisable comme liant routier ou liant d'etancheite et dispositif pour sa fabrication
WO2018115729A1 (fr) 2016-12-22 2018-06-28 Total Marketing Services Liant solide a température ambiante
WO2018115730A1 (fr) 2016-12-22 2018-06-28 Total Marketing Services Composition d'asphalte coulé pour la réalisation de revêtements
WO2018193209A1 (fr) 2017-04-21 2018-10-25 Total Marketing Services Procede de preparation de bitume solide a temperature ambiante en lit d'air fluidise
WO2018193211A1 (fr) 2017-04-21 2018-10-25 Total Marketing Services Bitume solide a temperature ambiante
WO2018193210A1 (fr) 2017-04-21 2018-10-25 Total Marketing Services Bitume solide a temperature ambiante
CN111320792A (zh) * 2020-04-14 2020-06-23 山东京博中聚新材料有限公司 一种道路乳化沥青用改性胶乳及其制备方法和道路乳化沥青
US11401449B2 (en) 2019-09-23 2022-08-02 Bmic Llc Methods of forming an adhesive composition from asphalt shingle waste powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3133858A1 (fr) * 2022-03-23 2023-09-29 Totalenergies Onetech Liant clair et ses applications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0179510A1 (fr) * 1984-10-15 1986-04-30 Shell Internationale Researchmaatschappij B.V. Composition de liant pigmentable
EP0304767A2 (fr) * 1987-08-27 1989-03-01 Ky, O Pinomaa Matériau de pavage apte à être coloré
EP1466878A1 (fr) * 2003-04-08 2004-10-13 Colas Liant de nature végétale pour la réalisation de matériaux pour le bâtiment et/ou les travaux publics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0179510A1 (fr) * 1984-10-15 1986-04-30 Shell Internationale Researchmaatschappij B.V. Composition de liant pigmentable
EP0304767A2 (fr) * 1987-08-27 1989-03-01 Ky, O Pinomaa Matériau de pavage apte à être coloré
EP1466878A1 (fr) * 2003-04-08 2004-10-13 Colas Liant de nature végétale pour la réalisation de matériaux pour le bâtiment et/ou les travaux publics

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2995890A1 (fr) * 2012-09-26 2014-03-28 Colas Sa Liant hydrocarbone transparent et enrobes
US11332606B2 (en) 2016-09-08 2022-05-17 Total Marketing Services Clear binder that is solid when cold
FR3055623A1 (fr) * 2016-09-08 2018-03-09 Total Marketing Services Liant clair solide a froid
WO2018046838A1 (fr) 2016-09-08 2018-03-15 Total Marketing Services Liant clair solide a froid
WO2018046837A1 (fr) 2016-09-08 2018-03-15 Total Marketing Services Procede de fabrication de materiau sous forme de granules utilisable comme liant routier ou liant d'etancheite et dispositif pour sa fabrication
WO2018115729A1 (fr) 2016-12-22 2018-06-28 Total Marketing Services Liant solide a température ambiante
WO2018115730A1 (fr) 2016-12-22 2018-06-28 Total Marketing Services Composition d'asphalte coulé pour la réalisation de revêtements
US11447418B2 (en) 2016-12-22 2022-09-20 Total Marketing Services Mastic asphalt composition for production of surfacings
US11753546B2 (en) 2016-12-22 2023-09-12 Total Marketing Services Binder that is solid at room temperature
WO2018193209A1 (fr) 2017-04-21 2018-10-25 Total Marketing Services Procede de preparation de bitume solide a temperature ambiante en lit d'air fluidise
WO2018193211A1 (fr) 2017-04-21 2018-10-25 Total Marketing Services Bitume solide a temperature ambiante
WO2018193210A1 (fr) 2017-04-21 2018-10-25 Total Marketing Services Bitume solide a temperature ambiante
US11292913B2 (en) 2017-04-21 2022-04-05 Total Marketing Services Bitumen solid at ambient temperature
US11447636B2 (en) 2017-04-21 2022-09-20 Total Marketing Services Bitumen solid at ambient temperature
US11401449B2 (en) 2019-09-23 2022-08-02 Bmic Llc Methods of forming an adhesive composition from asphalt shingle waste powder
US11802228B2 (en) 2019-09-23 2023-10-31 Bmic Llc Asphalt shingle waste adhesive compositions for roofing applications and related methods
CN111320792A (zh) * 2020-04-14 2020-06-23 山东京博中聚新材料有限公司 一种道路乳化沥青用改性胶乳及其制备方法和道路乳化沥青
CN111320792B (zh) * 2020-04-14 2022-03-04 山东京博中聚新材料有限公司 一种道路乳化沥青用改性胶乳及其制备方法和道路乳化沥青

Also Published As

Publication number Publication date
PL2303950T3 (pl) 2017-05-31
DK2303950T3 (en) 2017-02-13
EP2303950A2 (fr) 2011-04-06
FR2932487B1 (fr) 2010-08-27
WO2009150519A3 (fr) 2010-02-25
FR2932487A1 (fr) 2009-12-18
EP2303950B1 (fr) 2016-11-02

Similar Documents

Publication Publication Date Title
EP2303950B1 (fr) Emulsion de liant synthetique clair
EP1606344B1 (fr) Liant bitumineux et son procede de preparation
AU2008333168B2 (en) Binder composition and asphalt mixture
WO2010055491A1 (fr) Liant synthetique clair
EP2528876B1 (fr) Liant synthetique essentiellement a base de matieres issues de ressources renouvelables, en particulier d'origine vegetale, et ses applications en technique routiere
FR2930253A1 (fr) Enrobes bitumineux a froid.
WO2008009694A1 (fr) Composition bitumineuse, son procede de fabrication et son utilisation en technique routiere
EP2907853B1 (fr) Matériau bitumineux coulé à froid paraffinique à montée en cohésion rapide
EP1184423B1 (fr) Emulsions aqueuses de bitume synthétique, leur procédé de préparation et leurs applications
CA2981628C (fr) Liant clair et ses applications
WO2014096170A1 (fr) Composition de liant synthetique clair
EP3947315B1 (fr) Additifs pour matériau bitumineux coule a froid avec un liant paraffinique a montée en cohésion rapide
WO2014006340A2 (fr) Émulsifiants pour émulsions de bitume
WO2024141521A1 (fr) Liant clair et ses applications
WO2023046595A1 (fr) Liant clair et ses applications
FR3131920A1 (fr) Composition de liant clair et ses applications pour les revêtements routiers et d’aménagement
FR3144149A1 (fr) Liant clair et ses applications

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009744440

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009744440

Country of ref document: EP