WO2009145280A1 - モノ低級アルキルモノアルカノールアミンの製造方法及び装置 - Google Patents

モノ低級アルキルモノアルカノールアミンの製造方法及び装置 Download PDF

Info

Publication number
WO2009145280A1
WO2009145280A1 PCT/JP2009/059819 JP2009059819W WO2009145280A1 WO 2009145280 A1 WO2009145280 A1 WO 2009145280A1 JP 2009059819 W JP2009059819 W JP 2009059819W WO 2009145280 A1 WO2009145280 A1 WO 2009145280A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
mono
lower alkyl
raw material
producing
Prior art date
Application number
PCT/JP2009/059819
Other languages
English (en)
French (fr)
Inventor
晋也 立花
達也 辻内
剛司 大石
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2009145280A1 publication Critical patent/WO2009145280A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/04Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reaction of ammonia or amines with olefin oxides or halohydrins

Definitions

  • the present invention relates to a method and an apparatus for producing a mono-lower alkyl monoalkanolamine obtained by reacting a mono-lower alkyl monoalkanolamine having a high commercial demand by the reaction of a mono-lower alkyl amine and an alkylene oxide.
  • Mono lower alkyl monoalkanolamines are common organic synthetic intermediate materials, such as cationic flocculants, intermediates for medical and agricultural chemicals, etching solutions for resins, softeners for synthetic fibers, corrosion inhibitors, petroleum refining or petroleum processes. It is a useful compound with high commercial demand such as a neutralizing agent and a dispersing agent.
  • zeolite catalyst method using zeolite as a catalyst has been proposed as a method for producing mono-lower alkyl monoalkanolamine by reacting mono-lower alkylamine and alkylene oxide (Patent Document 1).
  • reference numeral 1 denotes a liquid / liquid reaction tower as a reactor, which is filled with a zeolite catalyst, and is supplied with raw material I (mono-lower alkylamine) and raw material II (alkylene oxide),
  • reaction is performed by a zeolite catalyst method to obtain a product 2 containing unreacted raw materials.
  • the product 2 containing the unreacted raw material contains unreacted mono-lower alkylamine (unreacted raw material I) and alkylene oxide (unreacted raw material II) as the unreacted raw material, these and the reaction product 3 Are separated by the unreacted raw material recovery distillation column 4 and the separated and recovered unreacted mono-lower alkylamine (raw material I) and alkylene oxide (raw material II) are sent back to the reactor 1 as unreacted raw materials 5. Yes.
  • non-water distillation column 6 removes water and light components 7 from the reaction product 3 derived from the unreacted raw material recovery distillation column 4 by distillation, and the reaction after these water and light components 7 are removed.
  • the product 3a is sent to the purification distillation column 8.
  • non-water indicates a state where the amount of water contained in the component is 1000 ppm or less.
  • reaction product 3a after removing the water and the light component 7 is sent to the purification distillation column 8, where mono-lower alkyl monoalkanolamine and mono-lower alkyl dialkanolamine (residue dimer) produced by the reaction. Are separated by distillation to recover the mono-lower alkyl monoalkanolamine as the target reaction product 9.
  • Patent Document 2 a method of producing under supercritical conditions (temperature conditions of 100 to 200 ° C. and pressure conditions of 17 to 24 MPa) has been proposed (Patent Document 2).
  • Patent Document 3 a method for producing monomethylaminoethanol from monomethylamine and ethylene oxide is disclosed (Patent Document 3).
  • unreacted monomethylamine is recovered by mixing the crude liquid with alcohol in an amine recovery distillation column or by charging the crude liquid and alcohol in a separate line.
  • JP 2004-275933 A JP 59-13751 A JP-A-8-333310
  • the “zeolite catalyst method” according to Patent Document 1 has a problem in that the reaction rate and selectivity are lowered due to catalyst deterioration. Moreover, since it is difficult to keep the temperature in the reactor 1 uniform, there is a problem that the product cannot be stably produced. Further, the zeolite catalyst method has a problem that it is necessary to use a cooling facility such as a condenser in the distillation column for separating the mono-lower alkylamine in the distillation step, resulting in an increase in energy consumption.
  • the “supercritical method” according to Patent Document 2 has a problem that the temperature condition needs to be 100 to 200 ° C. and the pressure condition needs to be 17 to 24 MPa, which increases the power and cost required for operation.
  • the present invention is to provide a production method and apparatus for a mono-lower alkyl monoalkanolamine capable of producing a mono-lower alkyl monoalkanol amine with energy saving.
  • the first invention of the present invention for solving the above-mentioned problem is a method for producing a mono-lower alkyl monoalkanolamine by reacting a mono-lower alkyl amine (AA) with an alkylene oxide (AO).
  • a mono-lower alkylamine (AA) and an alkylene oxide (AO) are supplied, and the reaction product is reacted in a gas-liquid mixed phase in the reaction column, and the reaction product is separated from the reaction column in a liquid state. It exists in the manufacturing method of mono lower alkyl monoalkanolamine.
  • the second invention is the method for producing mono-lower alkyl monoalkanolamine according to the first invention, wherein the reaction tower is a reaction / distillation tower.
  • the third invention is the method for producing a mono-lower alkyl monoalkanolamine according to the second invention, wherein the reaction / distillation tower is a multistage type.
  • the reaction temperature of the reaction / distillation tower is 40 to 200 ° C.
  • the top temperature of the reaction / distillation tower is 40 to 100 ° C.
  • the method for producing a mono-lower alkyl monoalkanolamine is characterized in that the column bottom temperature is 120 to 200 ° C. and the pressure in the reaction / distillation column is 0.45 to 1.3 MPa.
  • the fifth invention is the method for producing mono-lower alkylmonoalkanolamine according to the first invention, wherein the reaction tower is a gas-liquid mixed phase reaction tower.
  • a mono-lower alkylamine (AA) and an alkylene oxide (AO) are reacted in a gaseous state at a reaction temperature of 80 to 200 ° C. and a pressure of 0.2 to 0.8 MPa.
  • the method for producing a mono-lower alkylmonoalkanolamine is characterized in that the reaction product is used as a liquid and the reaction product is separated from the liquid phase.
  • a mono lower alkyl monoalkanolamine according to the second or fifth aspect, wherein the mono lower alkyl amine (AA) is separated and recovered from the top of the reaction / distillation tower and reused. In the manufacturing method.
  • the separated unreacted raw material is returned to the raw material main supply part, or the separated unreacted raw material is returned to the top of the reaction / distillation column from the supply position of the raw material main supply part.
  • the present invention provides a method for producing a mono-lower alkyl monoalkanolamine, characterized in that the mono lower alkyl monoalkanolamine is supplied into the inside from the side portion.
  • the ninth invention is the invention according to the second or fifth invention, wherein the supply ratio of the alkylene oxide (AO) is divided and a part of the divided alkylene oxide (AO) is supplied from the raw material main supply section into the reaction / distillation column. And the remainder is fed into the reaction / distillation column from the sub-feeding portion located on the top side of the column from the feed position of the raw material main feeding portion.
  • the supply ratio of the alkylene oxide (AO) is divided and a part of the divided alkylene oxide (AO) is supplied from the raw material main supply section into the reaction / distillation column. And the remainder is fed into the reaction / distillation column from the sub-feeding portion located on the top side of the column from the feed position of the raw material main feeding portion.
  • a tenth aspect of the invention is an apparatus for producing a mono-lower alkyl monoalkanolamine by reaction of a mono-lower alkyl amine and an alkylene oxide, and supplies the mono-lower alkyl amine (AA) and the alkylene oxide (AO),
  • the reaction product is reacted in a liquid mixed phase and the reaction product is separated from the bottom of the column in a liquid state, and the reaction / distillation tower recovers the unreacted raw material in a gas state, and the product separated in the liquid state is purified to produce a target product.
  • a purification distillation column for distilling the product.
  • An eleventh aspect of the invention is that in the tenth aspect of the invention, the reaction temperature of the reaction / distillation column is 40 to 200 ° C., and the top temperature of the reaction / distillation column is 40 to 100 ° C.
  • the mono-lower alkyl monoalkanolamine production apparatus is characterized in that the column bottom temperature is 120 to 200 ° C. and the pressure in the reaction / distillation column is 0.45 to 1.3 MPa.
  • the twelfth invention is characterized in that, in the tenth or eleventh invention, the ratio of the mono-lower alkylamine raw material to the alkylene oxide raw material (alkylene oxide raw material / mono-lower alkylamine raw material) is 0.05 to 0.5.
  • the ratio of the mono-lower alkylamine raw material to the alkylene oxide raw material is 0.05 to 0.5.
  • a thirteenth aspect of the present invention is the apparatus for producing a mono-lower alkyl monoalkanolamine according to any one of the tenth to twelfth aspects of the present invention, wherein the amount of water supplied to the reaction / distillation column is 20% or less. It is in.
  • a fourteenth aspect of the invention is the mono lower alkyl monoalkanolamine according to the tenth aspect of the invention, wherein the reaction / distillation column is filled with a zeolite catalyst and the raw material is supplied in a non-aqueous state. In production equipment.
  • a mono-lower alkyl monoalkanolamine can be produced with high yield and energy saving.
  • FIG. 1 is a schematic view of an apparatus for producing a mono-lower alkyl monoalkanolamine according to Example 1.
  • FIG. 2 is a schematic view of an apparatus for producing mono-lower alkyl monoalkanolamine according to Example 2.
  • FIG. 3 is a schematic view of an apparatus for producing mono-lower alkyl monoalkanolamine according to Example 3.
  • FIG. 4 is a schematic view of an apparatus for producing mono-lower alkyl monoalkanolamine according to Example 4.
  • FIG. 5 is a schematic view of an apparatus for producing mono-lower alkyl monoalkanolamine according to Example 5.
  • FIG. 6 is a relationship diagram between the molar fraction and the number of stages of the reaction tower.
  • FIG. 7 is a schematic view of a mono-lower alkyl monoalkanolamine production apparatus according to a test example.
  • FIG. 8 is a view showing an example of an apparatus for producing a mono-lower alkyl monoalkanolamine using a conventional zeolite catalyst.
  • the method for producing a mono-lower alkyl monoalkanolamine according to the present invention is a method for producing a mono-lower alkyl monoalkanolamine by reacting a mono-lower alkylamine (raw material I: AA) and an alkylene oxide (raw material II: AO).
  • the raw material I (AA) and the raw material II (AO) are supplied to the reaction tower and reacted in a gas-liquid mixed phase in the reaction tower, and the reaction product (amine monomer) is separated from the reaction tower in a liquid state.
  • the reaction tower that is reacted in a gas-liquid mixed phase state in the reaction tower is preferably a reaction / distillation tower or a gas-liquid mixed phase reaction tower.
  • the reaction product is reacted in a gas-liquid mixed phase state in the reaction tower to obtain the target product in the liquid state, so that the reaction yield is improved.
  • the ratio of the alkylene oxide raw material to the mono-lower alkylamine raw material is not reduced, the amount of reboiler recovered as an unreacted raw material can be reduced. Become.
  • reaction columns specific examples of a reaction / distillation column and a gas-liquid mixed phase reaction column will be described in detail as reaction columns.
  • FIG. 1 is a schematic view of an apparatus for producing a mono-lower alkyl monoalkanolamine according to Example 1.
  • a mono-lower alkylmonoalkanolamine production apparatus 10-1 according to Example 1 is a mixed raw material 11 of mono-lower alkylamine (AA: raw material I) and alkylene oxide (AO: raw material II).
  • reaction-distillation column 12 which is formed by supplying a raw material main supply line L 0, separating the desired reaction products 20 by distilling the reaction product 13 which is separated in liquid form (monomer), and a residue (dimer) 21 And a refining distillation column 19.
  • Reference numeral 18 denotes a reboiler.
  • reaction-distillation column 12 as well as separating the unreacted raw materials 16 through a line L 1 from the top of the column 12a, to separate the reaction product 13 via the line L 2 from the bottom 12b Is.
  • the unreacted raw material 16 is cooled by the cooler 14 interposed in the line L 1 , becomes liquid in the flash drum 15, and is sent to the storage tank 17 for temporary storage through the line L 3 . . And since most of the raw material I is from the storage tank 17 via the line L 4 , it is returned to the supply line side of the raw material I.
  • the reaction / distillation tower of this example is a multistage type, and it is, for example, about 10 to 20 stages depending on the scale of the distillation amount.
  • the reaction temperature of the reaction / distillation column 12 is preferably set to 40 to 200 ° C., for example.
  • the top temperature of the reaction / distillation column 12 is, for example, 40 to 100 ° C., preferably 70 to 80 ° C.
  • the bottom temperature of the reaction / distillation column 12 is, for example, 120 to 200 ° C., preferably 140 to 180 ° C.
  • the pressure of the reaction / distillation column 12 is, for example, preferably 0.45 to 1.3 MPa, and more preferably 0.6 to 1.0 MPa. This is defined because the reaction does not proceed efficiently if the reaction temperature and the pressure are outside the above ranges.
  • the mono-lower alkylamine of the raw material I used in the present invention is not particularly limited.
  • monomethylamine, monoethylamine, mono-n-propylamine, monoisopropylamine, mono-n-butylamine, monoisobutylamine, monosec Linear or branched monoalkylamines having 1 to 6 carbon atoms, such as -butylamine, mono-t-butylamine, mono-n-pentylamine, isopentylamine, mono-n-hexylamine can be used .
  • Monomethylamine, monoethylamine, mono-n-propylamine, monoisopropylamine, mono-n-butylamine, monoisobutylamine, mono-t-butylamine can be preferably used, and monomethylamine, monoethylamine, monon are particularly preferred.
  • -Propylamine, monoisopropylamine, mono-n-butylamine can be used.
  • the alkylene oxide of the raw material II used in the present invention is not particularly limited, but an alkylene oxide having 2 to 4 carbon atoms such as ethylene oxide, propylene oxide, butylene oxide can be preferably used, and particularly preferably. Ethylene oxide and propylene oxide can be used.
  • the water concentration in the raw material supplied to the reactor is preferably in the range of 1 to 40% by weight.
  • a preferable water concentration range is 5 to 30% by weight, and a particularly preferable water concentration is 5 to 20% by weight.
  • the reaction rate varies depending on the water concentration, and the higher the water concentration, the greater the reaction rate.
  • the supply ratio of raw materials is also specified. That is, the molar ratio of alkylene oxide raw material to mono-lower alkylamine raw material (alkylene oxide (AO: raw material II) / mono-lower alkylamine (AA: raw material I)) is in the range of 0.05 to 0.5, more preferably A range of 0.1 to 0.3 is preferable.
  • the purification distillation column 19 is provided to remove the residue (dimer) 21, but the residue (dimer) 21 may be mixed in the monomer of the target reaction product 20. Alternatively, only the reaction / distillation column 12 may be used.
  • a cooling means may be provided inside or outside the reaction / distillation column 12 to remove heat to a predetermined temperature.
  • the reaction / distillation tower 12 reacts the raw material in the gas-liquid mixed phase state in the reaction tower, and the reaction product 13 in the liquid state.
  • the unreacted raw material is separated in a gaseous state, so that there is no need to provide a separate distillation column as in the prior art, and mono-lower alkyl monoalkanolamine is produced with high yield and energy saving. Can do.
  • the reaction between the monomer and the unreacted raw material 16 is suppressed, and the production of dimer as the residue 21 is suppressed. This also contributes to an improvement in the yield of the target reaction product 20.
  • FIG. 2 is a schematic view of an apparatus for producing mono-lower alkyl monoalkanolamine according to Example 2.
  • the production apparatus 10-2 for mono-lower alkyl monoalkanolamine according to Example 2 is a reaction / mixture of a raw material 11 and a raw material II supplied from a raw material main supply line L 0.
  • the reaction of the raw material in the gas-liquid mixed phase state in the reaction column in the reaction / distillation column and the distillation of the supply of the raw material II -Since the reaction is divided into the reaction towers, the reaction efficiency is improved, and the mono-lower alkyl monoalkanolamine can be produced with high yield and energy saving.
  • FIG. 3 is a schematic view of an apparatus for producing mono-lower alkyl monoalkanolamine according to Example 3.
  • the production apparatus 10-3 for mono-lower alkylmonoalkanolamine according to Example 3 is the same as the production apparatus 10-1 for mono-lower alkylmonoalkanolamine according to Example 1 in the reaction product 13.
  • a non-aqueous distillation column 22 for removing water mixed in is provided, and the reaction product 13a from which water 23 has been removed is sent to the purification distillation column 19 to obtain the target reaction product 20. Thereby, the target reaction product 20 from which moisture has been removed can be obtained.
  • the non-aqueous distillation tower 22 is provided to remove moisture, so that the mono-lower alkyl monoalkanol amine in the non-aqueous state is removed. Can be produced with high yield and energy saving.
  • FIG. 4 is a schematic view of an apparatus for producing mono-lower alkyl monoalkanolamine according to Example 4.
  • the mono-lower alkyl monoalkanolamine production apparatus 10-4 according to Example 4 is the same as the reaction / distillation column 12 in the mono-lower alkyl monoalkanolamine production apparatus 10-1 according to Example 1.
  • the catalyst filling tanks 30a and 30b are filled therein, and the reaction product 13 is generated by the catalytic reaction filled in the catalyst filling tanks 30a and 30b.
  • examples of the catalyst filled in the catalyst filling tank include ZSM-5 known as a known synthetic zeolite used in the zeolite catalyst method.
  • ZSM is an abbreviation of ZAOlItAOf Socony MobIl derived from the name of the developed company.
  • Examples of those having a MEL structure include ZSM-11, also known as a synthetic zeolite.
  • the catalyst is a non-aqueous reaction
  • the raw material I is an aqueous solution (for example, 40% moisture)
  • a non-aqueous distillation column 31 is provided to remove the moisture 23 in advance. It is necessary to.
  • the reaction / distillation tower is filled with the zeolite catalyst and the raw material is reacted in the gas-liquid mixed phase state in the reaction tower by the zeolite method. Therefore, the reaction efficiency is improved, and a mono-lower alkyl monoalkanolamine can be produced with high yield and energy saving.
  • FIG. 5 is a schematic view of an apparatus for producing mono-lower alkyl monoalkanolamine according to Example 5.
  • the production apparatus 10-5 for mono-lower alkylmonoalkanolamine according to Example 5 is a gas-liquid produced by supplying a mixed raw material 11 of a raw material I and a raw material II through a raw material main supply line L 0. It comprises a mixed phase reaction column 40 and a purification distillation column 19 for separating the target reaction product 20 (monomer) and the residue (dimer) 21 by distilling the reaction product 13 separated in liquid form.
  • the a raw material I and the raw material II is reacted in gaseous state inside the reaction products it by the line L 2 because the reaction product 13 obtained is accumulated in the bottom portion The product 13 is separated.
  • the reaction temperature of the gas-liquid mixed phase reaction tower is, for example, 80 to 200 ° C.
  • the pressure is, for example, 0.2 to 0.8 MPa.
  • the unreacted raw material 16 is cooled by the cooler 14 interposed in the line L 1 , converted into liquid in the flash drum 15, and sent to the storage tank 17 for temporary storage through the line L 3 . . And since most of the raw material I is from the storage tank 17 via the line L 4 , it is returned to the supply line side of the raw material I.
  • the raw material I and the raw material are mixed in the gas-liquid mixed phase reaction column 40 using the gas-liquid mixed phase reaction column 40. Since the mixed raw material 11 with II is reacted, the reaction efficiency is improved, and a mono-lower alkyl monoalkanolamine can be produced with high yield and energy saving.
  • the amine production apparatus 10-3 having the same configuration as in Example 3 shown in FIG. 7 was used.
  • the operating conditions (temperature, pressure) of the reaction / distillation column 12, the nonaqueous distillation column 22, and the purification distillation column 19 are shown in FIG. In FIG. 7, the temperature (° C.) is enclosed by a square, and the pressure (MPa) is enclosed by a circle.
  • the amount of reboiler was reduced by about 20% compared to the conventional case, thereby reducing the amount of reboiler.
  • the temperature at the bottom outlet of the reaction / distillation tower 12 was 173 ° C. (pressure 1.02 MPa), and the temperature at the top outlet of the tower 40 was 40 ° C. (pressure 1.0 MPa).
  • a mono-lower alkyl monoalkanolamine can be produced with high yield and energy saving.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

 本発明のモノ低級アルキルモノアルカノールアミンの製造装置は、モノ低級アルキルアミン(AA:原料I)とアルキレンオキシド(AO:原料II)との混合原料(11)を原料主供給ライン(L0)により供給してなる反応・蒸留塔(12)と、液状で分離された反応生成物(13)を蒸留して目的反応生成物(20)(モノマー)と、残渣(ダイマー)(21)とを分離する精製蒸留塔(19)とを具備し、塔頂部(12a)からライン(L1)を介して未反応原料(16)を分離すると共に、その塔底部(12b)からライン(L2)を介して反応生成物(13)を分離する。

Description

モノ低級アルキルモノアルカノールアミンの製造方法及び装置
 本発明は、商業的需要が高いモノ低級アルキルモノアルカノールアミンをモノ低級アルキルアミンとアルキレンオキシドとの反応により得るモノ低級アルキルモノアルカノールアミンの製造方法及び装置に関するものである。
 モノ低級アルキルモノアルカノールアミンは、一般的な有機合成の中間原料、例えば、カチオン系凝集剤や医農薬中間体、樹脂用エッチング液、合成繊維用の柔軟剤、腐蝕防止剤、石油精製又は石油プロセス用中和剤、分散剤など商業的需要が高い有用な化合物である。
 モノ低級アルキルアミンとアルキレンオキシドの反応によるモノ低級アルキルモノアルカノールアミンの製造については古くから文献等で報告されている(例えば、非特許文献1)。
 モノ低級アルキルアミンとアルキレンオキシドとの反応では、モノ低級アルキルモノアルカノールアミンとモノ低級アルキルジアルカノールアミンとが並行して生成される。この反応において、モノ低級アルキルモノアルカノールアミンを選択的に得るためには、アルキレンオキシドに対しモノ低級アルキルアミンを大過剰に使用する必要がある。そのため、この反応では、未反応のモノ低級アルキルアミンが大量に残存する。
 また、モノ低級アルキルアミンとアルキレンオキシドとを反応させて、モノ低級アルキルモノアルカノールアミンを製造する方法として、ゼオライトを触媒として用いるゼオライト触媒法が提案されている(特許文献1)。
 ここで、従来のゼオライト触媒を用いたモノ低級アルキルモノアルカノールアミンの製造装置の一例を図8に示す。図8に示すように、符号1は反応器である液・液反応塔であり、ゼオライト触媒が充填されており、原料I(モノ低級アルキルアミン)と原料II(アルキレンオキシド)とが供給され、ここでゼオライト触媒法により反応して、未反応原料を含む生成物2を得る。この未反応原料を含む生成物2には、未反応の原料として未反応のモノ低級アルキルアミン(未反応原料I)及びアルキレンオキシド(未反応原料II)を含むので、これらと反応生成物3とを未反応原料回収蒸留塔4により蒸留分離すると共に、前記分離回収した未反応のモノ低級アルキルアミン(原料I)及びアルキレンオキシド(原料II)を未反応原料5として前記反応器1に送り戻している。
 そして、非水蒸留塔6により、前記未反応原料回収蒸留塔4から導出された反応生成物3から水及び軽質分7を蒸留法により除去し、これら水及び軽質分7を除去した後の反応生成物3aを精製蒸留塔8に送るようにしている。ここで、非水とは、成分中に含まれる水分量が1000ppm以下となっている状態を示す。
 その後、水及び軽質分7を除去した後の反応生成物3aを精製蒸留塔8に送り、ここで、反応により生成したモノ低級アルキルモノアルカノールアミンとモノ低級アルキルジアルカノールアミン(残渣であるダイマー)とを蒸留法により分離して、前記モノ低級アルキルモノアルカノールアミンを目的反応生成物9として回収するようにしている。
 一方、前記ゼオライト触媒を用いない方法としては、例えば超臨界条件(温度条件が100~200℃、圧力条件が17~24MPa)で製造する方法が提案されている(特許文献2)。
 また、モノ低級アルキルアミンとアルキレンオキシドの反応によるモノ低級アルキルモノアルカノールアミンの製造方法としては、この反応を水の存在下で行う製造方法(水触媒法と称す。)が広く知られている。しかし、この方法には、精製系で大量の水を蒸留除去するために大きな熱負荷が必要であるという問題があった。
 さらに、モノメチルアミンとエチレンオキサイドからモノメチルアミノエタノールを製造する方法が開示されている(特許文献3)。この特許文献3に記載の方法では、アミン回収系の蒸留塔に粗液をアルコールと混合後、または別ラインで粗液とアルコールを仕込むことによって、未反応のモノメチルアミンを回収している。
特開2004-275933号公報 特開昭59-13751号公報 特開平8-333310号公報
小田良平、寺村一広、「界面活性剤」、槇書店、1965年、p.262~263
 しかしながら、特許文献1にかかる「ゼオライト触媒法」では、触媒の劣化により反応率の低下や選択率の低下が起こる、という問題がある。また、反応器1内の温度を均一に保持することが困難であるので、生成物を安定して製造することができない、という問題がある。さらに、ゼオライト触媒法では、蒸留工程にてモノ低級アルキルアミンを分離する蒸留塔において、コンデンサー等の冷却設備を使用する必要があり、エネルギー消費が大きくなる、という問題がある。これは、前記ゼオライト触媒法では、固体(ゼオライト触媒)と液体(原料)とが接触して反応が起こり、固体と液体が接触しない位置では反応が進行しないため、不均一反応となるからである。
 また、特許文献2にかかる「超臨界法」では、温度条件が100~200℃、圧力条件が17~24MPaとする必要があり、運転に必要な動力・コストが大きくなる、という問題がある。
 また、特許文献3にかかる技術では、モノメチルアミンを回収するために、アルコールと混合する必要があり、また、モノメチルアミンを再利用するためには、更なる蒸留塔が必要である等、工程が煩雑であり、しかも、設備費が高くなるという問題があった。
 そして、そのためのより効率的な製造方法及び装置が提供されることが要望される。
 また、前述した水触媒法によりモノ低級アルキルモノアルカノールアミンの収率を向上させるためには、モノ低級アルキルアミンとアルキレンオキシドとのモル比を小さくする必要があり、この場合モノ低級アルキルアミンを循環使用することになるため、蒸留塔のリボイラー負荷が増大し、エネルギー消費が大きくなる、という問題がある。
 本発明は、前記問題に鑑み、省エネルギーでモノ低級アルキルモノアルカノールアミンを製造できるモノ低級アルキルモノアルカノールアミンの製造方法及び装置を提供することにある。
 上述した課題を解決するための本発明の第1の発明は、モノ低級アルキルアミン(AA)とアルキレンオキシド(AO)とを反応させてモノ低級アルキルモノアルカノールアミンを製造する方法において、反応塔にモノ低級アルキルアミン(AA)とアルキレンオキシド(AO)とを供給すると共に、反応塔内において気液混相状態で反応させ、前記反応塔内から反応生成物を液体状態で分離することを特徴とするモノ低級アルキルモノアルカノールアミンの製造方法にある。
 第2の発明は、第1の発明において、前記反応塔が、反応・蒸留塔であることを特徴とするモノ低級アルキルモノアルカノールアミンの製造方法にある。
 第3の発明は、第2の発明において、前記反応・蒸留塔が多段式であることを特徴とするモノ低級アルキルモノアルカノールアミンの製造方法にある。
 第4の発明は、第2の発明において、前記反応・蒸留塔の反応温度が40~200℃であると共に、反応・蒸留塔の塔頂温度が40~100℃であり、反応・蒸留塔の塔底温度が120~200℃であり、反応・蒸留塔の圧力が0.45~1.3MPaであることを特徴とするモノ低級アルキルモノアルカノールアミンの製造方法にある。
 第5の発明は、第1の発明において、反応塔が、気液混相反応塔であることを特徴とするモノ低級アルキルモノアルカノールアミンの製造方法にある。
 第6の発明は、第4の発明において、反応温度が80~200℃、圧力0.2~0.8MPaにおいて、モノ低級アルキルアミン(AA)とアルキレンオキシド(AO)とを気体状態で反応させ、反応生成物を液体として、該反応生成物を液相から分離することを特徴とするモノ低級アルキルモノアルカノールアミンの製造方法にある。
 第7の発明は、第2又は5の発明において、モノ低級アルキルアミン(AA)を反応・蒸留塔の塔頂から分離・回収し、再利用することを特徴とするモノ低級アルキルモノアルカノールアミンの製造方法にある。
 第8の発明は、第2又は5の発明において、分離した未反応原料を原料主供給部に戻すか、又は分離した未反応原料を反応・蒸留塔の原料主供給部の供給位置より塔頂側の箇所から内部に供給することを特徴とするモノ低級アルキルモノアルカノールアミンの製造方法にある。
 第9の発明は、第2又は5の発明において、アルキレンオキシド(AO)の供給割合を分割すると共に、アルキレンオキシド(AO)の分割した一部を原料主供給部から反応・蒸留塔内に供給すると共に、その残りを該原料主供給部の供給位置より塔頂側に位置する副供給部から反応・蒸留塔内に供給することを特徴とするモノ低級アルキルモノアルカノールアミンの製造方法にある。
 第10の発明は、モノ低級アルキルアミンとアルキレンオキシドの反応によるモノ低級アルキルモノアルカノールアミンの製造装置において、モノ低級アルキルアミン(AA)とアルキレンオキシド(AO)とを供給すると共に、塔内において気液混相状態で反応させ、該塔底部から反応生成物を液体状態で分離すると共に、未反応原料を気体状態で回収する反応・蒸留塔と、液体状態で分離した生成物を精製して目的生成物を蒸留する精製蒸留塔とを具備することを特徴とするモノ低級アルキルモノアルカノールアミンの製造装置にある。
 第11の発明は、第10の発明において、前記反応・蒸留塔の反応温度が40~200℃であると共に、反応・蒸留塔の塔頂温度が40~100℃であり、反応・蒸留塔の塔底温度が120~200℃であり、反応・蒸留塔の圧力が0.45~1.3MPaであることを特徴とするモノ低級アルキルモノアルカノールアミンの製造装置にある。
 第12の発明は、第10又は11の発明において、モノ低級アルキルアミン原料とアルキレンオキシド原料との比率(アルキレンオキシド原料/モノ低級アルキルアミン原料)が0.05~0.5であることを特徴とするモノ低級アルキルモノアルカノールアミンの製造装置にある。
 第13の発明は、第10乃至12のいずれか一つの発明において、前記反応・蒸留塔に供給する原料の水分量が20%以下であることを特徴とするモノ低級アルキルモノアルカノールアミンの製造装置にある。
 第14の発明は、第10の発明において、前記反応・蒸留塔にゼオライト系触媒を充填してなると共に、原料を非水状態で供給してなることを特徴とするモノ低級アルキルモノアルカノールアミンの製造装置にある。
 前記構成の本発明によれば、モノ低級アルキルモノアルカノールアミンを高い収率でしかも省エネルギーで製造することができる。
図1は、実施例1に係るモノ低級アルキルモノアルカノールアミンの製造装置の概略図である。 図2は、実施例2に係るモノ低級アルキルモノアルカノールアミンの製造装置の概略図である。 図3は、実施例3に係るモノ低級アルキルモノアルカノールアミンの製造装置の概略図である。 図4は、実施例4に係るモノ低級アルキルモノアルカノールアミンの製造装置の概略図である。 図5は、実施例5に係るモノ低級アルキルモノアルカノールアミンの製造装置の概略図である。 図6は、モル分率と反応塔の段数との関係図である。 図7は、試験例に係るモノ低級アルキルモノアルカノールアミンの製造装置の概略図である。 図8は、従来のゼオライト触媒を用いたモノ低級アルキルモノアルカノールアミンの製造装置の一例を示す図である。
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
 以下、本発明に係るモノ低級アルキルモノアルカノールアミンの製造方法について説明する。本発明に係るモノ低級アルキルモノアルカノールアミンの製造方法は、モノ低級アルキルアミン(原料I:AA)とアルキレンオキシド(原料II:AO)とを反応させてモノ低級アルキルモノアルカノールアミンを製造する方法において、反応塔に原料I(AA)と原料II(AO)とを供給すると共に、反応塔内において気液混相状態で反応させ、該反応塔内から反応生成物(アミンモノマー)を液体状態で分離するようにしている。ここで、反応塔内において気液混相状態で反応させる前記反応塔としては、反応・蒸留塔又は気液混相反応塔であることが好ましい。
 本発明では、反応塔内において気液混相状態で反応させるようにして、液体状態で目的生成物を得るようにしているので、反応収率が向上する。また、アルキレンオキシド原料とモノ低級アルキルアミン原料との比率(アルキレンオキシド原料/モノ低級アルキルアミン原料)も小さくすることがないので、未反応原料として回収するリボイラー量の低減も図ることができるものとなる。
 以下、反応塔として、反応・蒸留塔及び気液混相反応塔の具体的な実施例について詳細に説明する。
 本発明による実施例に係るモノ低級アルキルモノアルカノールアミンの製造装置について、図面を参照して説明する。
 図1は、実施例1に係るモノ低級アルキルモノアルカノールアミンの製造装置の概略図である。
 図1に示すように、実施例1に係るモノ低級アルキルモノアルカノールアミンの製造装置10-1は、モノ低級アルキルアミン(AA:原料I)とアルキレンオキシド(AO:原料II)との混合原料11を原料主供給ラインL0により供給してなる反応・蒸留塔12と、液状で分離された反応生成物13を蒸留して目的反応生成物20(モノマー)と、残渣(ダイマー)21とを分離する精製蒸留塔19とを具備するものである。なお、符号18はリボイラーを図示する。
 ここで、前記反応・蒸留塔12においては、その塔頂部12aからラインL1を介して未反応原料16を分離すると共に、その塔底部12bからラインL2を介して反応生成物13を分離するものである。
 また、未反応原料16はラインL1に介装された冷却器14により冷却され、フラッシュドラム15において液体となり、ラインL3を介して一時的に貯留するために貯留槽17に送られている。そして、該貯留槽17からラインL4を介して、そのほとんどが原料Iであるので原料Iの供給ライン側に戻すようにしている。
 本実施例では、前記フラッシュドラム15からラインL5を介して反応・蒸留塔12の内部に再投入原料16aを供給して、その未反応原料16の一部を原料主供給ラインL0側に戻すことなく、直ちに再利用するようにしている。
 本実施例の反応・蒸留塔は多段式であり、蒸留量の規模によるが、例えば10~20段程度としている。
 ここで、本実施例においては、前記反応・蒸留塔12の反応温度を例えば40~200℃とするのが好ましい。
 また、前記反応・蒸留塔12の塔頂温度を例えば40~100℃、好ましくは70~80℃とするのが好ましい。
 また、反応・蒸留塔12の塔底温度を例えば120~200℃、好ましくは140~180℃とするのが好ましい。
 また、反応・蒸留塔12の圧力を例えば0.45~1.3MPa、好ましくは0.6~1.0MPaとするのが好ましい。
 このように規定するのは、反応温度等及び圧力が上記範囲外であると効率的な反応が進行しないからである。
 ここで、本発明で使用する原料Iのモノ低級アルキルアミンに特に制限はないが、例えばモノメチルアミン、モノエチルアミン、モノn-プロピルアミン、モノイソプロピルアミン、モノn-ブチルアミン、モノイソブチルアミン、モノsec-ブチルアミン、モノt-ブチルアミン、モノn-ペンチルアミン、イソペンチルアミン、モノn-ヘキシルアミンなどの1~6個の炭素原子を有する直鎖状または分枝鎖状モノアルキルアミンを用いることができる。好適にはモノメチルアミン、モノエチルアミン、モノn-プロピルアミン、モノイソプロピルアミン、モノn-ブチルアミン、モノイソブチルアミン、モノt-ブチルアミンを用いることができ、特に好適にはモノメチルアミン、モノエチルアミン、モノn-プロピルアミン、モノイソプロピルアミン、モノn-ブチルアミンを用いることができる。
 本発明で使用する原料IIのアルキレンオキシドに特に制限はないが、好適にはエチレンオキシド、プロピレンオキシド、ブチレンオキシドなどの2~4個の炭素原子を有するアルキレンオキシドを用いることができ、特に好適にはエチレンオキシド及びプロピレンオキシドを用いることができる。
 また、本発明の水触媒法において、反応器に供給する原料中の水濃度は、水濃度が1~40重量%の範囲で行うことが好ましい。また、好適な水濃度範囲は5~30重量%であり、特に好適な水濃度は5~20重量%である。
 本発明の水触媒法によるモノ低級アルキルモノアルカノールアミンの製造においては、水の濃度によって反応速度が異なり、水の濃度が高いほど反応速度が大きくなるので好ましい。
 また、本発明では原料の供給比率も規定している。すなわち、アルキレンオキシド原料とモノ低級アルキルアミン原料とのモル比(アルキレンオキシド(AO:原料II)/モノ低級アルキルアミン(AA:原料I))が0.05~0.5の範囲、より好ましくは0.1~0.3の範囲とすることが好ましい。
 これはモル比が0.5を超える場合では、未反応原料を回収する未反応原料回収蒸留塔のリボイラー負荷は低減されるが、反応に時間を要し、一方、0.05未満の場合には、反応時間の短縮を図ることはできるものの大幅なリボイラー負荷となり、好ましくないからである。
 ここで、本実施例では、精製蒸留塔19を設けて、残渣(ダイマー)21を除去するようにしているが、目的反応生成物20のモノマーにおいて残渣(ダイマー)21が混入しても良い場合には、反応・蒸留塔12だけとしてもよい。
 また、この反応は発熱反応であるので、反応・蒸留塔12の内部又は外部に冷却手段を設けて所定温度に除熱するようにしてもよい。
 このように、実施例1に係るモノ低級アルカノールアミンの製造装置によれば、反応・蒸留塔12で反応塔内において気液混相状態で原料を反応させていると共に、液体状態で反応生成物13を回収すると共に、未反応原料を気体状態で分離することとなるので、従来のような別途の蒸留塔を設ける必要がなくなり、モノ低級アルキルモノアルカノールアミンを高い収率でしかも省エネルギーで製造することができる。
 また、反応・蒸留塔12内から生成したモノマーを反応系から積極的に抜出すことにより、モノマーと未反応原料16との反応が抑制され、残渣21であるダイマーの生成が抑制されるので、目的反応生成物20の収率向上にも寄与することとなる。
 また、モノ低級アルキルアミン原料とアルキレンオキシド原料との比率(アルキレンオキシド原料/モノ低級アルキルアミン原料)を大きくすることができるので、設備がコンパクトになり、ユーティリティー消費量も低減することとなり、廉価にモノ低級アルキルモノアルカノールアミンを製造することができる。
 本実施例について図2を参照して説明する。
 図2は、実施例2に係るモノ低級アルキルモノアルカノールアミンの製造装置の概略図である。
 図2に示すように、実施例2に係るモノ低級アルキルモノアルカノールアミンの製造装置10-2は、原料Iと原料IIとの混合原料11を原料主供給ラインL0により供給してなる反応・蒸留塔12と、分離された反応生成物13を蒸留して目的反応生成物20(モノマー)と、残渣(ダイマー)21とを分離する精製蒸留塔19とを具備すると共に、原料II(AO)の供給割合を分割すると共に、原料II(AO)の分割した一部を原料主供給ラインL0から供給すると共に、原料II(AO)の残りを該原料主供給ラインL0の供給位置より塔頂側に位置する副供給ラインL6から内部に供給するようにしている。
 これは、図6に示すように、反応・蒸留塔が複数段(図6では13段)の場合、塔頂側にいくにつれて原料I(AA)のモル分率が増加するので、原料II(AO)を分けて供給することで反応効率を上昇させるようにしている。
 このように、実施例2に係るモノ低級アルキルモノアルカノールアミンの製造装置によれば、反応・蒸留塔で反応塔内において気液混相状態で原料を反応させていると共に、原料IIの供給を蒸留・反応塔の塔内に分けて入れることとなるので、反応効率が向上し、モノ低級アルキルモノアルカノールアミンを高い収率でしかも省エネルギーで製造することができる。
 本実施例について図3を参照して説明する。
 図3は、実施例3に係るモノ低級アルキルモノアルカノールアミンの製造装置の概略図である。
 図3に示すように、実施例3に係るモノ低級アルキルモノアルカノールアミンの製造装置10-3は、実施例1に係るモノ低級アルキルモノアルカノールアミンの製造装置10-1において、反応生成物13中に混入している水分を除去する非水蒸留塔22を設け、水23を除去した反応生成物13aを精製蒸留塔19に送り、目的反応生成物20を得るようにしている。
 これにより、水分を除去した目的反応生成物20を得ることができる。
 このように、実施例3に係るモノ低級アルキルモノアルカノールアミンの製造装置によれば、非水蒸留塔22を設けて、水分を除去することとなるので、非水状態のモノ低級アルキルモノアルカノールアミンを高い収率でしかも省エネルギーで製造することができる。
 本実施例について図4を参照して説明する。
 図4は、実施例4に係るモノ低級アルキルモノアルカノールアミンの製造装置の概略図である。
 図4に示すように、実施例4に係るモノ低級アルキルモノアルカノールアミンの製造装置10-4は、実施例1に係るモノ低級アルキルモノアルカノールアミンの製造装置10-1において、反応・蒸留塔12内に触媒充填槽30a、30bを充填してなり、触媒充填槽30a、30bに充填された触媒反応により反応生成物13を生成するようにしている。
 ここで、触媒充填槽に充填する触媒としては、ゼオライト触媒法で用いる公知の合成ゼオライトとして知られるZSM-5が挙げられる。なお、ZSMとは、開発した会社の名に由来したZAOlItAOf Socony MobIlの略である。またMEL構造を有するものとしては、同じく合成ゼオライトとして知られるZSM-11が挙げられる。本発明では、ゼオライトを用いることが好ましく、特に、ZSM-5を用いることが好ましい。
 ここで、前記触媒としては、非水系での反応となるので、原料Iが水溶液(例えば水分40%)の場合には、非水蒸留塔31を設け、水分23をあらかじめ除去しておくようにすることが必要である。
 このように、実施例4に係るモノ低級アルキルモノアルカノールアミンの製造装置によれば、反応・蒸留塔にゼオライト系触媒を充填してゼオライト法により、反応塔内において気液混相状態で原料を反応させているので、反応効率が向上し、モノ低級アルキルモノアルカノールアミンを高い収率でしかも省エネルギーで製造することができる。
 本発明による実施例に係るモノ低級アルキルモノアルカノールアミンの製造装置について、図面を参照して説明する。
 図5は、実施例5に係るモノ低級アルキルモノアルカノールアミンの製造装置の概略図である。
 図5に示すように、実施例5に係るモノ低級アルキルモノアルカノールアミンの製造装置10-5は、原料Iと原料IIとの混合原料11を原料主供給ラインL0により供給してなる気液混相反応塔40と、液状で分離された反応生成物13を蒸留して目的反応生成物20(モノマー)と、残渣(ダイマー)21とを分離する精製蒸留塔19とを具備するものである。
 ここで、前記気液混相反応塔40においては、その内部では気体状態で原料Iと原料IIとが反応し、得られた反応生成物13が塔底部に貯まるのでそれをラインL2により反応生成物13を分離するものである。
 ここで、前記気液混相反応塔の反応温度としては、例えば80~200℃、圧力としては例えば0.2~0.8MPaとするのが好ましい。
 なお、未反応原料16はラインL1に介装された冷却器14により冷却され、フラッシュドラム15において液体とし、ラインL3を介して一時的に貯留するために貯留槽17に送られている。そして、該貯留槽17からラインL4を介して、そのほとんどが原料Iであるので原料Iの供給ライン側に戻すようにしている。
 このように、実施例5に係るモノ低級アルキルモノアルカノールアミンの製造装置によれば、気液混相反応塔40を用いて、該気液混相反応塔40内において気液混相状態で原料Iと原料IIとの混合原料11を反応させているので、反応効率が向上し、モノ低級アルキルモノアルカノールアミンを高い収率でしかも省エネルギーで製造することができる。
[試験例]
 以下、試験例により本発明をさらに具体的に説明するが、本発明はこれにより限定されるものではない。
 図7に示す実施例3と同様の構成のアミンの製造装置10-3を用いた。反応・蒸留塔12、非水蒸留塔22、精製蒸留塔19の運転条件(温度、圧力)を図7及び下記に示す。図7では、四角で囲っているのが温度(℃)であり、丸で囲っているのが圧力(MPa)である。
(反応・蒸留塔12)
 入口:温度80℃(圧力2.6MPa)
 塔底部出口:温度163℃(圧力0.82MPa)
 塔頂部出口:温度40℃(圧力0.80MPa)
 反応・蒸留塔12入口における(原料II/原料I)モル比:0.1
 反応・蒸留塔12入口における水分濃度:8重量%
 原料のモル比を0.1とすることでリボイラー量が従来に較べて、2割割程度減少し、これにより、リボイラー量の低減を図ることができた。
 なお、ゼオライト触媒法の場合には、反応・蒸留塔12の塔底部出口の温度が173℃(圧力1.02MPa)、塔頂部出口の温度が40℃(圧力1.0MPa)とした。
 以上のように、本発明に係るモノ低級アルキルモノアルカノールアミンの製造方法及び装置によれば、モノ低級アルキルモノアルカノールアミンを高い収率でしかも省エネルギーで製造することができる。
 10-1~10-5 モノ低級アルキルモノアルカノールアミンの製造装置
 11 混合原料
 12 反応・蒸留塔
 13 反応生成物
 15 フラッシュドラム
 16 未反応原料
 17 貯留槽
 18 リボイラー
 19 精製蒸留塔
 20 目的反応生成物

Claims (14)

  1.  モノ低級アルキルアミン(AA)とアルキレンオキシド(AO)とを反応させてモノ低級アルキルモノアルカノールアミンを製造する方法において、
     反応塔にモノ低級アルキルアミン(AA)とアルキレンオキシド(AO)とを供給すると共に、反応塔内において気液混相状態で反応させ、前記反応塔内から反応生成物を液体状態で分離することを特徴とするモノ低級アルキルモノアルカノールアミンの製造方法。
  2.  請求項1において、
     前記反応塔が、反応・蒸留塔であることを特徴とするモノ低級アルキルモノアルカノールアミンの製造方法。
  3.  請求項2において、
     前記反応・蒸留塔が多段式であることを特徴とするモノ低級アルキルモノアルカノールアミンの製造方法。
  4.  請求項2において、
     前記反応・蒸留塔の反応温度が40~200℃であると共に、
     反応・蒸留塔の塔頂温度が40~100℃であり、
     反応・蒸留塔の塔底温度が120~200℃であり、
     反応・蒸留塔の圧力が0.45~1.3MPaであることを特徴とするモノ低級アルキルモノアルカノールアミンの製造方法。
  5.  請求項1において、
     反応塔が、気液混相反応塔であることを特徴とするモノ低級アルキルモノアルカノールアミンの製造方法。
  6.  請求項4において、
     反応温度が80~200℃、圧力0.2~0.8MPaにおいて、モノ低級アルキルアミン(AA)とアルキレンオキシド(AO)とを気体状態で反応させ、反応生成物を液体として、該反応生成物を液相から分離することを特徴とするモノ低級アルキルモノアルカノールアミンの製造方法。
  7.  請求項2又は5において、
     モノ低級アルキルアミン(AA)を反応・蒸留塔の塔頂から分離・回収し、再利用することを特徴とするモノ低級アルキルモノアルカノールアミンの製造方法。
  8.  請求項2又は5において、
     分離した未反応原料を原料主供給部に戻すか、
     又は分離した未反応原料を反応・蒸留塔の原料主供給部の供給位置より塔頂側の箇所から内部に供給することを特徴とするモノ低級アルキルモノアルカノールアミンの製造方法。
  9.  請求項2又は5において、
     アルキレンオキシド(AO)の供給割合を分割すると共に、
     アルキレンオキシド(AO)の分割した一部を原料主供給部から反応・蒸留塔内に供給すると共に、
     その残りを該原料主供給部の供給位置より塔頂側に位置する副供給部から反応・蒸留塔内に供給することを特徴とするモノ低級アルキルモノアルカノールアミンの製造方法。
  10.  モノ低級アルキルアミンとアルキレンオキシドの反応によるモノ低級アルキルモノアルカノールアミンの製造装置において、
     モノ低級アルキルアミン(AA)とアルキレンオキシド(AO)とを供給すると共に、塔内において気液混相状態で反応させ、塔底部から反応生成物を液体状態で分離すると共に、未反応原料を気体状態で回収する反応・蒸留塔と、
     液体状態で分離した生成物を精製して目的生成物を蒸留する精製蒸留塔とを具備することを特徴とするモノ低級アルキルモノアルカノールアミンの製造装置。
  11.  請求項10において、
     前記反応・蒸留塔の反応温度が40~200℃であると共に、
     反応・蒸留塔の塔頂温度が40~100℃であり、
     反応・蒸留塔の塔底温度が120~200℃であり、
     反応・蒸留塔の圧力が0.45~1.3MPaであることを特徴とするモノ低級アルキルモノアルカノールアミンの製造装置。
  12.  請求項10又は11において、
     モノ低級アルキルアミン原料とアルキレンオキシド原料との比率(アルキレンオキシド原料/モノ低級アルキルアミン原料)が0.05~0.5であることを特徴とするモノ低級アルキルモノアルカノールアミンの製造装置。
  13.  請求項10乃至12のいずれか一つにおいて、
     前記反応・蒸留塔に供給する原料の水分量が20%以下であることを特徴とするモノ低級アルキルモノアルカノールアミンの製造装置。
  14.  請求項10において、
     前記反応・蒸留塔にゼオライト系触媒を充填してなると共に、原料を非水状態で供給してなることを特徴とするモノ低級アルキルモノアルカノールアミンの製造装置。
PCT/JP2009/059819 2008-05-26 2009-05-28 モノ低級アルキルモノアルカノールアミンの製造方法及び装置 WO2009145280A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008137277A JP2009280555A (ja) 2008-05-26 2008-05-26 モノ低級アルキルモノアルカノールアミンの製造方法及び装置
JP2008-137277 2008-05-26

Publications (1)

Publication Number Publication Date
WO2009145280A1 true WO2009145280A1 (ja) 2009-12-03

Family

ID=41119649

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/059819 WO2009145280A1 (ja) 2008-05-26 2009-05-28 モノ低級アルキルモノアルカノールアミンの製造方法及び装置
PCT/IB2009/005943 WO2009147524A1 (en) 2008-05-26 2009-06-15 Method and apparatus for producing mono(lower alkyl)monoalkanolamine

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/IB2009/005943 WO2009147524A1 (en) 2008-05-26 2009-06-15 Method and apparatus for producing mono(lower alkyl)monoalkanolamine

Country Status (2)

Country Link
JP (1) JP2009280555A (ja)
WO (2) WO2009145280A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061219A1 (ja) * 2012-10-17 2014-04-24 広栄化学工業株式会社 2-(エチルアミノ)エタノールの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539707A (en) * 1976-07-15 1978-01-28 Nippon Shokubai Kagaku Kogyo Co Ltd Method and reactor for preparation of ethanolamines
JPS53130611A (en) * 1977-04-16 1978-11-14 Bayer Ag Process for preparing aminoethanol
JP2004275933A (ja) * 2003-03-18 2004-10-07 Nippon Nyukazai Kk モノ低級アルキルモノアルカノールアミン製造用触媒、モノ低級アルキルモノアルカノールアミンの製造方法およびモノ低級アルキルモノアルカノールアミン製造装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08333310A (ja) * 1995-06-08 1996-12-17 Daicel Chem Ind Ltd モノメチルアミノエタノ−ルの製造方法
DE10143424A1 (de) * 2001-09-05 2003-03-20 Basf Ag Kontinuierliches Verfahren zur Herstellung von Monoethanolamin, Diethanolamin und Triethanolamin
US6846959B2 (en) * 2002-10-07 2005-01-25 Air Products And Chemicals, Inc. Process for producing alkanolamines
JP5072251B2 (ja) * 2006-04-06 2012-11-14 三菱重工業株式会社 モノ低級アルキルモノアルカノールアミンの製造方法および装置
WO2008068927A1 (ja) * 2006-12-07 2008-06-12 Mitsubishi Heavy Industries, Ltd. モノ低級アルキルモノアルカノールアミンの製造方法及び装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS539707A (en) * 1976-07-15 1978-01-28 Nippon Shokubai Kagaku Kogyo Co Ltd Method and reactor for preparation of ethanolamines
JPS53130611A (en) * 1977-04-16 1978-11-14 Bayer Ag Process for preparing aminoethanol
JP2004275933A (ja) * 2003-03-18 2004-10-07 Nippon Nyukazai Kk モノ低級アルキルモノアルカノールアミン製造用触媒、モノ低級アルキルモノアルカノールアミンの製造方法およびモノ低級アルキルモノアルカノールアミン製造装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061219A1 (ja) * 2012-10-17 2014-04-24 広栄化学工業株式会社 2-(エチルアミノ)エタノールの製造方法
US9365492B2 (en) 2012-10-17 2016-06-14 Koei Chemical Company, Limited 2-(ethylamino)ethanol production method
JPWO2014061219A1 (ja) * 2012-10-17 2016-09-05 広栄化学工業株式会社 2−(エチルアミノ)エタノールの製造方法

Also Published As

Publication number Publication date
WO2009147524A1 (en) 2009-12-10
JP2009280555A (ja) 2009-12-03

Similar Documents

Publication Publication Date Title
US7312364B2 (en) Equilibrium reaction and gas/liquid reaction in a loop reactor
TWI453181B (zh) 製備純三乙醇胺(teoa)之方法
EP2177501B1 (en) Method and plant for the production of ethanol amines
JP6169151B2 (ja) エチレンジアミン、n−メチルエチレンジアミンおよび水を含有する混合物を蒸留する方法、およびそれによって得られた、僅かなn−メチルエチレンジアミン含量を有する、エチレンジアミンとn−メチルエチレンジアミンとの混合物
JP5107260B2 (ja) モノ低級アルキルモノアルカノールアミンの製造方法及び装置
CN111032616B (zh) 将环状亚烷基脲转化为其相应亚烷基胺的多步法
JP5890850B2 (ja) グリコールモノ−tert−ブチルエーテル化合物の製造方法
KR102067307B1 (ko) 단열 니트로화에 의한 니트로벤젠의 제조방법
JP2007217344A (ja) モノ低級アルキルモノアルカノールアミンの製造方法および装置
TWI768094B (zh) 將伸乙基胺化合物之環狀單脲轉變成該伸乙基胺化合物之方法
CA2707719A1 (en) Process for the continuous production of high purity phenolic glycol ether
KR20150003818A (ko) 방향족 아민을 포함하는 물질 혼합물, 특히 미정제 아닐린의 물질 혼합물의 처리방법
CN108698979B (zh) 烷醇胺类的制造方法
WO2009145280A1 (ja) モノ低級アルキルモノアルカノールアミンの製造方法及び装置
KR102243717B1 (ko) 니트로벤젠 제조로부터의 폐수의 후처리 방법
US9102586B2 (en) Method for producing DADPM
CN101379021B (zh) 纯苯二甲胺(xda)的制备方法
JP2008184409A (ja) アルキルアミン含有混合物の蒸留法及びアルキルアミン類の製造方法
JP5330735B2 (ja) モノ低級アルキルモノアルカノールアミンの製造方法及び装置
US6063965A (en) Production of diethanolamine
US20140271381A1 (en) Apparatus for producing mono-lower-alkyl monoalkanolamine
JP5072251B2 (ja) モノ低級アルキルモノアルカノールアミンの製造方法および装置
Wieszczycka Novel technologies of nitrogen-based compounds
CN101065173A (zh) 在塔中化学反应和分离混合物的方法
KR20030038375A (ko) 메틸아민의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09754788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09754788

Country of ref document: EP

Kind code of ref document: A1