WO2009099056A1 - 包絡線追跡電源回路及びそれを含む高周波増幅器 - Google Patents

包絡線追跡電源回路及びそれを含む高周波増幅器 Download PDF

Info

Publication number
WO2009099056A1
WO2009099056A1 PCT/JP2009/051771 JP2009051771W WO2009099056A1 WO 2009099056 A1 WO2009099056 A1 WO 2009099056A1 JP 2009051771 W JP2009051771 W JP 2009051771W WO 2009099056 A1 WO2009099056 A1 WO 2009099056A1
Authority
WO
WIPO (PCT)
Prior art keywords
envelope
power supply
output
supply circuit
voltage
Prior art date
Application number
PCT/JP2009/051771
Other languages
English (en)
French (fr)
Inventor
Akihiro Kanbe
Masato Kaneta
Haruo Kobayashi
Hitoshi Hirata
Tatsuhiro Shimura
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to US12/866,676 priority Critical patent/US8587271B2/en
Priority to CN2009801043868A priority patent/CN101939900A/zh
Priority to EP09707832A priority patent/EP2244366A1/en
Publication of WO2009099056A1 publication Critical patent/WO2009099056A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • H03F1/0227Continuous control by using a signal derived from the input signal using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/04Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in discharge-tube amplifiers
    • H03F1/06Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in discharge-tube amplifiers to raise the efficiency of amplifying modulated radio frequency waves; to raise the efficiency of amplifiers acting also as modulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0045Converters combining the concepts of switch-mode regulation and linear regulation, e.g. linear pre-regulator to switching converter, linear and switching converter in parallel, same converter or same transistor operating either in linear or switching mode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/102A non-specified detector of a signal envelope being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/195A hybrid coupler being used as power measuring circuit at the input of an amplifier circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to an envelope tracking power supply circuit and a high-frequency amplifier including the same.
  • a power supply circuit for improving the efficiency of a high-frequency power amplifier is an envelope tracking power supply circuit that changes the power supply voltage applied to the high-frequency amplifier following the envelope of a radio signal input to the high-frequency amplifier.
  • the envelope tracking power supply circuit receives a signal corresponding to the envelope of the input signal of the power amplifier, and includes a portion including an operational amplifier that is a wide-band power supply and a narrow-band but high-efficiency power supply compared to the operational amplifier. And a portion including a switching converter.
  • Such an envelope tracking power supply circuit amplifies a signal whose peak power is higher than the average power when used for a communication method such as WCDMA (Wideband Code Division Multiple Access) or OFDM (Orthogonal Frequency Division Multiplexing). This is effective when used as a power amplifier for a radio base station.
  • WCDMA Wideband Code Division Multiple Access
  • OFDM Orthogonal Frequency Division Multiplexing
  • the slew rate of the input envelope signal is widely distributed, and the conventional envelope tracking power supply circuit described above is designed to be optimized for the average value of the slew rate.
  • Efficiency drops in many time zones that deviate from the average slew rate. That is, when the slew rate of the envelope signal exceeds the slew rate that can be handled by the switching converter, the efficiency decreases because all the alternating current is covered by the operational amplifier.
  • the slew rate of the envelope signal is lower than the slew rate that can be handled by the switching converter, the efficiency is reduced by the amount that the switching converter is designed for the average slew rate. Even if it is small, it is kept constant with its low efficiency.
  • the present invention has been made in view of such problems, and provides an envelope tracking power supply circuit and a high frequency amplifier that can maintain high efficiency even for a high frequency signal having a broadband envelope. For the purpose.
  • an envelope tracking power supply circuit is an envelope tracking power supply circuit that generates an output voltage corresponding to an envelope of a high-frequency signal, and an envelope signal corresponding to the envelope is input.
  • a voltage follower circuit section that outputs a voltage according to the envelope signal, first and second parallel resistors connected in parallel between the output of the voltage follower circuit and the output terminal of the output voltage, The first and second hysteresis comparator units that detect the respective voltage drops in the first and second parallel resistors and generate a voltage corresponding to the voltage drop, and the first and second hysteresis comparator units, respectively, And first and second switching converter units that switch in accordance with the output voltage and output the voltage to the output terminal.
  • the current output from the voltage follower circuit unit via the first parallel resistor and the first switching that is performed according to the detection of the current by the first hysteresis comparator unit.
  • a second switching converter that switches according to a current output from the switching converter unit, a current output from the voltage follower circuit unit via the second parallel resistor, and detection of the current by the second hysteresis comparator unit The current output from the unit is combined and output to the output terminal.
  • an output corresponding to the level of the envelope signal is obtained at the output terminal, a circuit unit including the first hysteresis comparator unit and the first switching converter unit, a second hysteresis comparator unit, and a second hysteresis comparator unit.
  • the envelope tracking power supply circuit of the present invention high efficiency can be maintained even for a high-frequency signal having a broadband envelope.
  • FIG. 1 is a circuit diagram showing a schematic configuration of a high-frequency amplifier according to a preferred embodiment of the present invention. It is a graph which shows the time change of the voltage of the output RF signal of the power amplifier of FIG. 1, and the output voltage of an envelope tracking power supply circuit. It is a basic circuit diagram for demonstrating the principle of an envelope tracking system. It is a graph which shows the spectrum distribution of the envelope signal in the mobile communication system of WCDMA.
  • (A) is a graph which shows the time change of the output voltage from the switching converter of FIG. 3
  • (b) is a graph which shows the time change of the output current from the switching converter of FIG.
  • It is a graph which shows the input-output waveform in the basic circuit of FIG.
  • SYMBOLS 1 High frequency amplifier, 5 ... Envelope tracking power supply circuit, 7 ... Voltage follower circuit, 9a, 9b ... Hysteresis comparator, 11a, 11b ... Switching converter, 13a, 13b ... Semiconductor switch, 17a, 17b ... Inductor, 19a, 19b ... Power generation unit, R sense ... parallel resistance.
  • FIG. 1 is a circuit diagram showing a schematic configuration of a high-frequency amplifier 1 according to a preferred embodiment of the present invention.
  • a high-frequency amplifier 1 shown in FIG. 1 is for amplifying a radio signal in a radio base station for mobile communication, and includes an envelope detector 3, an envelope tracking power supply circuit 5, and a power amplifier 4. .
  • the power amplifier 4 receives power supplied from the envelope tracking power supply circuit 5 and amplifies and outputs an input high-frequency radio signal (hereinafter referred to as an RF signal).
  • the envelope detector 3 detects an envelope by detection or the like, and inputs an envelope signal to the envelope tracking power supply circuit 5.
  • FIG. 2 shows an example of temporal changes in the voltage S out0 of the output RF signal of the power amplifier 4 and the output voltage S out1 of the envelope tracking power supply circuit 5.
  • the envelope tracking power supply circuit 5 generates an output voltage corresponding to the time variation of the envelope of the RF signal.
  • FIG. 3 is a basic circuit diagram for explaining the principle of the envelope tracking method.
  • An envelope tracking basic circuit 905 includes a voltage follower circuit 907 composed of an operational amplifier to which an envelope signal S E is input, and a resistance element R sense connected between the voltage follower circuit 907 and the output of the basic circuit 905.
  • a hysteresis comparator 909 that detects a voltage drop in the resistance element R sense and compares the potentials at both ends thereof, and a switching converter 911 that receives and switches the output of the hysteresis comparator 909.
  • the switching converter 911 has a semiconductor switch 913 such as a power MOSFET in which a bias voltage V dd is applied to the drain terminal and an output of the hysteresis comparator 909 is connected to the gate terminal, an anode terminal is grounded, and a cathode terminal is the semiconductor switch 913.
  • the diode 915 is connected to the source terminal, and the inductor 917 is connected between the source terminal of the semiconductor switch 913 and the output of the basic circuit 905.
  • the power amplifier 4 is equivalently replaced with a load resistance R load .
  • the semiconductor switch 913 when the output voltage of the hysteresis comparator 909 is high and the semiconductor switch 913 is in the on state, the current from the switching converter 911 increases and accordingly flows from the voltage follower circuit 907 to the load resistance R load . The current decreases. As a result, the voltage drop of the resistance element R sense is reduced and the output of the hysteresis comparator 909 becomes low, so that the semiconductor switch 913 is turned off. When the semiconductor switch 913 is in the OFF state, the current from the switching converter 911 decreases, and accordingly, the current flowing from the voltage follower circuit 907 to the load resistor R load increases. As a result, the voltage drop of the resistance element R sense increases and the output voltage of the hysteresis comparator 909 becomes high, so that the semiconductor switch 913 is turned on.
  • the high frequency component (ripple) of the output voltage in the switching converter 911 is complemented (cancelled) by the output voltage of the voltage follower circuit 907, and the output voltage corresponding to the envelope signal S E is loaded. Resistor R load is generated.
  • the voltage follower circuit 907 composed of an operational amplifier is a power supply having a wide band but a low efficiency, while the switching converter 911 is a power supply having a narrow band but a high efficiency.
  • the spectrum distribution of the envelope signal in the WCDMA mobile communication system is concentrated in a low frequency band including a DC component. Therefore, power is supplied from the high-efficiency switching converter 911 for the DC component and low-frequency component of the envelope, and power is supplied from the broadband voltage follower circuit 907 for the high-frequency component of the envelope. Thus, the efficiency of the entire power supply circuit is maintained.
  • D in FIG. 5A is a duty ratio, which means a value obtained by dividing the DC component of the envelope signal by the power supply voltage V dd .
  • D in FIG. 5A is a duty ratio, which means a value obtained by dividing the DC component of the envelope signal by the power supply voltage V dd .
  • FIG. 6 shows the voltage V E of the envelope signal S E in the basic circuit 905, the output current I OP from the voltage follower circuit 907, the output voltage V C from the hysteresis comparator 909, the output current I O of the switching converter 911, and the load. It shows the measurement result of the time variation of the output current I out to the resistor R load.
  • the basic circuit 905 causes internal oscillation, but the ripple is removed from the output current Iout .
  • the switching frequency of the switching converter 911 at this time is determined by the inductance L and the hysteresis width h, and is inversely proportional to each.
  • FIG. 7 is a circuit diagram showing a configuration of the envelope tracking power supply circuit 5.
  • the envelope tracking power supply circuit 5 has two systems including a hysteresis comparator and a switching converter. Specifically, the envelope tracking power supply circuit 5 includes a voltage follower circuit 7 for outputting a voltage corresponding to the voltage V E of the envelope signal S E, the output terminal connected to the output and the load resistance R load of the voltage follower circuit 7 Two parallel resistances R sense connected between PO and two systems of power generation units 19a and 19b provided corresponding to the two parallel resistances R sense are provided.
  • the power generation unit 19a is composed of a hysteresis comparator 9a and a switching converter 11a.
  • Hysteresis comparator 9a has an input terminal connected to both ends of one parallel resistor R sense, to detect a voltage drop in the parallel resistor R sense, it generates a voltage of a high state or low state in accordance with the voltage drop To do.
  • the hysteresis comparator 9a is a hysteresis width is set to h 1.
  • Switching converter 11a by being switching drive according to the voltage output of the hysteresis comparator 9a, a power supply circuit for outputting a voltage to the output terminal P O.
  • a bias voltage Vdd1 is applied to the drain terminal
  • a semiconductor switch 13a such as a power MOSFET having the gate terminal connected to the output of the hysteresis comparator 9a, an anode terminal is grounded, and a cathode terminal is the semiconductor switch 13a.
  • a diode 15a connected to the source terminal of, and a source terminal of the semiconductor switch 13a and an inductor connected 17a between an output terminal P O.
  • the semiconductor switch 13a is turned on / off according to the output voltage of the hysteresis comparator 9a, and the inductor 17a functions to receive a current flowing through the semiconductor switch 13a and suppress a change in the current.
  • the inductance of the inductor 17a is set to L 1.
  • the power generation unit 19b has the same configuration as the power generation unit 19a, and includes a hysteresis comparator 9b connected to both ends of the other parallel resistor Rsense , and a switching converter 11b that is driven to be switched by the hysteresis comparator 9b. I have.
  • the switching converter 11b the bias voltage Vdd2 is applied to the drain terminal, the semiconductor switch 13b having the gate terminal connected to the output of the hysteresis comparator 9b, the anode terminal grounded, and the cathode terminal connected to the source terminal of the semiconductor switch 13b.
  • a diode 15b which is, and a source terminal of the semiconductor switch 13b and an inductor connected 17b between the output terminal P O.
  • the hysteresis width h 2 of the hysteresis comparator 9b is set to a value smaller than the hysteresis width h 1 of the hysteresis comparator 9a
  • the inductance L 2 of the inductor 17b is set to a value greater than the inductance L 1 of the inductor 17a ing.
  • parameters that can be adjusted during circuit design are an inductance L and a hysteresis width h.
  • the inductance L is reduced, a wide band can be secured.
  • the switching frequency increases, which may exceed the upper limit value in the switching converter.
  • the hysteresis width h is increased corresponding to the value of L, the current supplied from the voltage follower circuit is increased and the efficiency is lowered. Therefore, it can be seen that the efficiency and bandwidth of the entire circuit are in a trade-off relationship.
  • the following equation (1) is used by using the condition that the efficiency is highest when the average slew rate of the envelope signal S E matches the slew rate of the switching converter.
  • the optimum value of the inductance L is determined.
  • V s_dc represents a DC component of the envelope signal S E
  • D represents an average duty ratio calculated by V s_dc / V dd
  • the denominator represents a time change of the envelope signal S E.
  • the averaged amount is shown.
  • the switching frequency at this time is expressed by the following formula (2); Is represented by In equation (2), V s_rms represents the mean square of the envelope signal S E.
  • the basic circuit 905 in average slew rate It is only optimized for this, and the efficiency drops significantly in many time zones that deviate from the average slew rate. Further, when the slew rate of the envelope signal S E is lower than the slew rate of the switching converter, the efficiency is reduced by reducing the inductance L in order to obtain a wide band, and the input slew rate is low no matter how small. It will remain constant with efficiency.
  • a power generation unit 19a including a hysteresis comparator 9a and a switching converter 11a, and a power generation unit 19b including a hysteresis comparator 9b and a switching converter 11b are provided.
  • response against the band of the envelope signal S E is designed differently, can be operated with complement each other two power generating section 19a, and 19b in a wide band.
  • the overall efficiency can be maintained high with respect to a broadband envelope input.
  • the inductance L 1 of the power generation portion 19a is smaller than the inductance L 2 of the power generation unit 19b
  • the hysteresis width h 1 of the power generation portion 19a is larger than the hysteresis width h 2 of the power generation unit 19b.
  • the power generation unit 19a operates as a broadband and low-efficiency power supply
  • the power generation unit 19b operates as a narrow-band and high-efficiency power supply and can also bring the switching frequencies close to each other.
  • FIG. 8 is a diagram showing the measurement result of the output waveform in the envelope tracking power supply circuit 5 when the slew rate of the envelope signal S E is low, and I OP is the output current from the voltage follower circuit 7, V C1 , V C2 represents output voltages from the hysteresis comparators 9a and 9b, and I O1 and I O2 represent output currents of the switching converters 11a and 11b, respectively.
  • the operation is switched to the operation of only the narrow band / high efficiency power generation unit 19b with a large inductance and a small hysteresis width as time elapses from the start of the operation. At that time, the wideband / low efficiency power generation unit 19b having a small inductance and a large hysteresis width does not operate.
  • FIG. 9 is a diagram showing measurement results of output waveforms in the envelope tracking power supply circuit 5 when a high slew rate of the envelope signal S E, in this case the power generating unit 19a is both 19b operate However, the output current is large in the power generation unit 19a having a small inductance and a large hysteresis width.
  • the envelope tracking power supply circuit 5 of this embodiment includes two power generation units 19a and 19b, but includes three or more power generation units in which inductance and hysteresis width are changed in multiple stages. Also good.
  • the power generation unit 19a, 19b of the present embodiment has a small inductance L 1 is than the inductance L 2, the hysteresis width h 1 is greater than the hysteresis width h 2, it may be set to various inductances and hysteresis widths However, in terms of facilitating the design by adopting the same device for the semiconductor switches 13a, 13b, etc. by bringing the switching frequency closer, the product of the inductance L and the hysteresis width h may be set to be substantially the same. preferable.
  • the first and second switching converter units respectively include a first switch and a second switch that are turned on / off according to voltages output from the first and second hysteresis comparator units, and a first switch and a second switch. It is preferable that the first and second inductors that receive a flowing current are included, and the inductance of the first inductor is smaller than the inductance of the second inductor.
  • the first switching converter unit has a wider response band to the envelope, while the second switching converter unit has a narrower band to respond to the envelope, but compared to the first switching converter unit.
  • Efficiency since the output current is supplied while the first and second switching converter units complement each other in accordance with the slew rate of the envelope, the output current from the voltage follower circuit unit does not increase, and the broadband envelope The overall efficiency can be kept high with respect to the line input.
  • the hysteresis width of the first hysteresis comparator unit is larger than the hysteresis width of the second hysteresis comparator unit.
  • the switching frequency of the first switching converter unit that operates when the slew rate of the envelope is large and the switching frequency of the second switching converter unit that operates when the slew rate of the envelope is small are obtained. Since they can be close to each other, circuit design can be facilitated by sharing circuit elements constituting the switching converter.
  • a high-frequency amplifier includes the envelope tracking power supply circuit described above and an amplifier that amplifies a high-frequency signal upon receiving an output voltage from an output terminal of the envelope tracking power supply circuit. According to such a high-frequency amplifier, the overall efficiency can be maintained high with respect to a high-frequency signal input having a broadband envelope.
  • the present invention uses an envelope tracking power supply circuit and a high-frequency amplifier including the same, and maintains high efficiency even for a high-frequency signal having a wide-band envelope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 広帯域な包絡線を有する高周波信号に対しても効率を高く維持することを目的とする。この包絡線追跡電源回路5は、高周波信号の包絡線に応じた出力電圧を生成する電源回路であって、包絡線信号が入力されて、該包絡線信号SEに応じた電圧を出力するボルテージフォロア回路7と、ボルテージフォロア回路7の出力と出力端子POとの間に並列に接続された2つの並列抵抗Rsenseと、並列抵抗Rsenseにおけるそれぞれの電圧降下を検出して、該電圧降下に応じた電圧を生成するヒステリシスコンパレータ9a,9bと、ヒステリシスコンパレータ9a,9bのそれぞれが出力する電圧に応じてスイッチングして、出力端子POに電圧を出力するスイッチングコンバータ11a,11bとを備える。

Description

包絡線追跡電源回路及びそれを含む高周波増幅器
 本発明は、包絡線追跡電源回路及びそれを含む高周波増幅器に関するものである。
 近年、移動通信用の無線基地局等において使用される高周波増幅器の高効率化、および広帯域化に対する要望が高まっている。高周波パワーアンプの効率化を図るための電源回路の一例としては、高周波増幅器に入力される無線信号の包絡線に追随して高周波増幅器に印加する電源電圧を変化させる包絡線追跡電源回路が知られている(下記非特許文献1~4参照)。包絡線追跡電源回路は、パワーアンプの入力信号の包絡線に対応する信号が入力され、広帯域な電源であるオペアンプを含む部分と、狭帯域であるがオペアンプに比較して高効率な電源であるスイッチングコンバータを含む部分とからなる。このような包絡線追跡電源回路は、WCDMA(Wideband Code Division Multiple Access)やOFDM(Orthogonal Frequency Division Multiplexing)などの通信方式に使用する場合であって、平均電力に対してピーク電力が高い信号を増幅する無線基地局用パワーアンプとして使用する場合に効果的である。
D. F. Kimball, et al., "High-Efficiency Envelope-Tracking W-CDMA Base-Station Amplifier Using GaN HFETs", IEEE Trans. on Microwave Theory and Techniques, vol.54, no.11, November 2006 F. Wang, "High Efficiency Linear Envelope Tracking and Envelope Elimination and Restoration Power Amplifier for WLAN OFDM Applications", Ph.D. Dissertation, University of California, San Diego, 2006 P. Draxler, S. Lanfranco, et al., "High Efficiency Envelope Tracking LDMOS Power Amplifier for W-CDMA", IEEE MTT-S International Microwave Symposium, pp.1534-1537, June 2006 P. Asbeck, D. Kimball, et al., "Next Genaration High-Efficiency RF Transmitter Technology for Basestations", Extended Abstracts of 2007 International Conference on Solid Sate Devices and Materials, pp. 146-147, Tsukuba, September 2007
 しかしながら、一般に入力される包絡線信号のスルーレートは広く分布しており、上述した従来の包絡線追跡電源回路においてはスルーレートの平均値に対して最適化されるように設計されているため、平均スルーレートから外れるような多くの時間帯では効率が低下してしまう。すなわち、包絡線信号のスルーレートがスイッチングコンバータで対応できるスルーレートを超えた場合、オペアンプから全ての交流電流を賄うため効率が低下する。これに対して、包絡線信号のスルーレートがスイッチングコンバータで対応できるスルーレートを下回る場合、スイッチングコンバータを平均スルーレートに合わせて設計した分だけ効率が低下しており、どんなに包絡線信号のスルーレートが小さくてもその低い効率で一定に保たれてしまう。
 そこで、本発明は、かかる課題に鑑みて為されたものであり、広帯域な包絡線を有する高周波信号に対しても効率を高く維持することが可能な包絡線追跡電源回路及び高周波増幅器を提供することを目的とする。
 上記課題を解決するため、本発明の包絡線追跡電源回路は、高周波信号の包絡線に応じた出力電圧を生成する包絡線追跡電源回路であって、包絡線に対応する包絡線信号が入力されて、該包絡線信号に応じた電圧を出力するボルテージフォロア回路部と、ボルテージフォロア回路の出力と出力電圧の出力端子との間に並列に接続された第1及び第2の並列抵抗と、第1及び第2の並列抵抗におけるそれぞれの電圧降下を検出して、該電圧降下に応じた電圧を生成する第1及び第2のヒステリシスコンパレータ部と、第1及び第2のヒステリシスコンパレータ部のそれぞれが出力する電圧に応じてスイッチングして、出力端子に電圧を出力する第1及び第2のスイッチングコンバータ部と、を備える。
 このような包絡線追跡電源回路によれば、ボルテージフォロア回路部から第1の並列抵抗を介して出力される電流と、その電流の第1のヒステリシスコンパレータ部による検出に応じてスイッチングする第1のスイッチングコンバータ部から出力される電流と、ボルテージフォロア回路部から第2の並列抵抗を介して出力される電流と、その電流の第2のヒステリシスコンパレータ部による検出に応じてスイッチングする第2のスイッチングコンバータ部から出力される電流とが合成されて出力端子に出力される。これにより、出力端子には包絡線信号のレベルに応じた出力が得られるとともに、第1のヒステリシスコンパレータ部と第1のスイッチングコンバータ部とからなる回路部と、第2のヒステリシスコンパレータ部と第2のスイッチングコンバータ部とからなる回路部とを包絡線信号の帯域に対する応答特性が異なるように設計することで、2つの回路部を広い帯域で補完しながら動作させることができる。その結果、広帯域な包絡線入力に対して全体の効率を高く維持することができる。
 本発明の包絡線追跡電源回路によれば、広帯域な包絡線を有する高周波信号に対しても効率を高く維持することができる。
本発明の好適な一実施形態にかかる高周波増幅器の概略構成を示す回路図である。 図1のパワーアンプの出力RF信号の電圧及び包絡線追跡電源回路の出力電圧の時間変化を示すグラフである。 包絡線追跡方式の原理を説明するための基本回路図である。 WCDMAの移動通信方式における包絡線信号のスペクトル分布を示すグラフである。 (a)は、図3のスイッチングコンバータからの出力電圧の時間変化を示すグラフ、(b)は、図3のスイッチングコンバータからの出力電流の時間変化を示すグラフである。 図3の基本回路における入出力波形を示すグラフである。 図1の包絡線追跡電源回路の構成を示す回路図である。 図7の包絡線追跡電源回路における出力波形を示すグラフである。 図7の包絡線追跡電源回路における出力波形を示すグラフである。
符号の説明
 1…高周波増幅器、5…包絡線追跡電源回路、7…ボルテージフォロア回路、9a,9b…ヒステリシスコンパレータ、11a,11b…スイッチングコンバータ、13a,13b…半導体スイッチ、17a,17b…インダクタ、19a,19b…電力発生部、Rsense…並列抵抗。
 以下、図面を参照しつつ本発明に高周波増幅器の好適な実施形態について詳細に説明する。なお、図面の説明においては同一又は相当部分には同一符号を付し、重複する説明を省略する。
 [第1実施形態]
 図1は、本発明の好適な一実施形態にかかる高周波増幅器1の概略構成を示す回路図である。同図に示す高周波増幅器1は、移動通信用の無線基地局において無線信号を増幅するためのものであり、包絡線検出部3と包絡線追跡電源回路5とパワーアンプ4とによって構成されている。
 パワーアンプ4は、包絡線追跡電源回路5からの電力の供給を受けて、入力された高周波の無線信号(以下、RF信号という)を増幅して出力する。包絡線検出部3は、検波等により包絡線を検出し包絡線信号を包絡線追跡電源回路5に入力する。図2には、パワーアンプ4の出力RF信号の電圧Sout0及び包絡線追跡電源回路5の出力電圧Sout1の時間変化の一例を示す。このように、包絡線追跡電源回路5は、RF信号の包絡線の時間変化に応じた出力電圧を生成する。これにより、パワーアンプ4に固定電圧の電源回路を接続した場合に比較して、全体の消費電力を削減することが可能になる。
 以下、本実施形態にかかる包絡線追跡電源回路5の構成を説明する前に、包絡線追跡方式の原理について説明する。図3は、包絡線追跡方式の原理を説明するための基本回路図である。
 包絡線追跡方式の基本回路905は、包絡線信号Sが入力されるオペアンプからなるボルテージフォロア回路907と、ボルテージフォロア回路907と基本回路905の出力との間に接続された抵抗素子Rsenseと、抵抗素子Rsenseにおける電圧降下を検出してその両端の電位を比較するヒステリシスコンパレータ909と、このヒステリシスコンパレータ909の出力を受けてスイッチングするスイッチングコンバータ911によって構成されている。スイッチングコンバータ911は、ドレイン端子にバイアス電圧Vddが印加され、ゲート端子にヒステリシスコンパレータ909の出力が接続されたパワーMOSFET等の半導体スイッチ913と、アノード端子が接地され、カソード端子が半導体スイッチ913のソース端子に接続されたダイオード915と、半導体スイッチ913のソース端子と基本回路905の出力との間に接続されたインダクタ917とから構成されている。同図においては、パワーアンプ4を負荷抵抗Rloadに等価的に置き換えている。
 このような基本回路905は、ボルテージフォロア回路907から負荷抵抗Rloadに供給される電流と、スイッチングコンバータ911から負荷抵抗Rloadに供給される電流が合成されることによって、包絡線信号Sに対応した出力電圧を負荷抵抗Rloadに生成して出力する。
 具体的には、ヒステリシスコンパレータ909の出力電圧がハイであり半導体スイッチ913がオン状態にある場合は、スイッチングコンバータ911からの電流が増加し、それに伴ってボルテージフォロア回路907から負荷抵抗Rloadに流れる電流が減少する。その結果、抵抗素子Rsenseの電圧降下が低下してヒステリシスコンパレータ909の出力がローになることにより、半導体スイッチ913がオフ状態となる。半導体スイッチ913がオフ状態にある場合は、スイッチングコンバータ911からの電流が減少し、それに伴ってボルテージフォロア回路907から負荷抵抗Rloadに流れる電流が増加する。その結果、抵抗素子Rsenseの電圧降下が上昇してヒステリシスコンパレータ909の出力電圧がハイになることにより、半導体スイッチ913がオン状態となる。
 上記のような動作を繰り返すことにより、スイッチングコンバータ911における出力電圧の高周波成分(リップル)がボルテージフォロア回路907の出力電圧によって補完(キャンセル)されて、包絡線信号Sに対応した出力電圧が負荷抵抗Rloadに生成される。このとき、オペアンプからなるボルテージフォロア回路907は、広帯域であるが低効率な電源である一方、スイッチングコンバータ911は、狭帯域であるが高効率な電源である。ここで、図4に示すように、WCDMAの移動通信方式における包絡線信号のスペクトル分布は、直流成分を含む低周波帯に集中している。従って、包絡線の直流成分および低周波成分に対しては、高効率なスイッチングコンバータ911から電力を供給し、包絡線の高周波成分に対しては、広帯域なボルテージフォロア回路907から電力を供給することにより、電源回路全体で効率を維持する。
 次に、基本回路905の動作について各回路部が出力する信号波形を参照しながら、より詳細に説明する。今、基本回路905のインダクタ917のインダクタンスをL、ヒステリシスコンパレータ909のヒステリシス幅をhとする。
 図5には、(a)スイッチングコンバータ911からの出力電圧V(t)、及び(b)スイッチングコンバータ911からの出力電流I(t)を簡略化して示している。ここで、図5(a)におけるDはデューティ比であり、包絡線信号の直流成分を電源電圧Vddで除した値を意味している。このように、時間t=0で半導体スイッチ913がオンすると出力電流Iが増え始め、ヒステリシスコンパレータ909のヒステリシス幅hによって決まる上限値h/Rsenseに達すると、ヒステリシスコンパレータ909の出力が反転し、半導体スイッチ913がオフになる(時間t=T)。半導体スイッチ913がオフになると、スイッチングコンバータ911からの出力電流Iが減り始め、ヒステリシス幅hによって決まる下限値-h/Rsenseに達すると、ヒステリシスコンパレータ909の出力が反転し、半導体スイッチ913がオンになる(時間t=T)。
 図6は、基本回路905における包絡線信号Sの電圧V、ボルテージフォロア回路907からの出力電流IOP、ヒステリシスコンパレータ909からの出力電圧V、スイッチングコンバータ911の出力電流I、及び負荷抵抗Rloadへの出力電流Ioutの時間変化の測定結果を示している。このように、基本回路905は内部発振を起こすが、出力電流Ioutにおいてはリップルが除去されている。このときのスイッチングコンバータ911のスイッチング周波数は、インダクタンスLとヒステリシス幅hによって決まり、それぞれに反比例する。
 次に、本実施形態にかかる包絡線追跡電源回路5の構成について説明する。図7は、包絡線追跡電源回路5の構成を示す回路図である。
 同図に示すように、包絡線追跡電源回路5は、ヒステリシスコンパレータ及びスイッチングコンバータを含む回路を2系統有している。具体的には、包絡線追跡電源回路5は、包絡線信号Sの電圧Vに応じた電圧を出力するボルテージフォロア回路7と、ボルテージフォロア回路7の出力と負荷抵抗Rloadに繋がる出力端子Pとの間に接続された2つの並列抵抗Rsenseと、2つの並列抵抗Rsenseのそれぞれに対応して設けられた2系統の電力発生部19a,19bとを備えている。
 この電力発生部19aは、ヒステリシスコンパレータ9aとスイッチングコンバータ11aとから構成されている。ヒステリシスコンパレータ9aは、その入力端子が一方の並列抵抗Rsenseの両端に接続されて、その並列抵抗Rsenseにおける電圧降下を検出して、その電圧降下に応じてハイ状態またはロー状態の電圧を生成する。なお、ヒステリシスコンパレータ9aは、ヒステリシス幅がhに設定されている。
 スイッチングコンバータ11aは、ヒステリシスコンパレータ9aの出力する電圧に応じてスイッチング駆動されることにより、出力端子Pに電圧を出力する電源回路である。このスイッチングコンバータ11aは、ドレイン端子にバイアス電圧Vdd1が印加され、ゲート端子にヒステリシスコンパレータ9aの出力が接続されたパワーMOSFET等の半導体スイッチ13aと、アノード端子が接地され、カソード端子が半導体スイッチ13aのソース端子に接続されたダイオード15aと、半導体スイッチ13aのソース端子と出力端子Pとの間に接続されたインダクタ17aとから構成されている。半導体スイッチ13aは、ヒステリシスコンパレータ9aの出力電圧に応じてオン/オフし、インダクタ17aは、半導体スイッチ13aを流れる電流を受けてその電流の変化を抑制するように機能する。なお、インダクタ17aのインダクタンスはLに設定されている。
 また、電力発生部19bは、電力発生部19aと同様な構成を有し、他方の並列抵抗Rsenseの両端に接続されたヒステリシスコンパレータ9bと、ヒステリシスコンパレータ9bによってスイッチング駆動されるスイッチングコンバータ11bとを備えている。スイッチングコンバータ11bは、ドレイン端子にバイアス電圧Vdd2が印加され、ゲート端子にヒステリシスコンパレータ9bの出力が接続された半導体スイッチ13bと、アノード端子が接地され、カソード端子が半導体スイッチ13bのソース端子に接続されたダイオード15bと、半導体スイッチ13bのソース端子と出力端子Pとの間に接続されたインダクタ17bとから構成されている。なお、ヒステリシスコンパレータ9bのヒステリシス幅hはヒステリシスコンパレータ9aのヒステリシス幅hよりも小さい値に設定されており、インダクタ17bのインダクタンスLは、インダクタ17aのインダクタンスLよりも大きい値に設定されている。
 以下、本実施形態にかかる高周波増幅器1の作用効果について、基本回路905を用いた場合と比較しながら述べる。
 基本回路905を用いる場合に回路設計時に調整可能なパラメータとしては、インダクタンスLとヒステリシス幅hが考えられる。ここで、負荷抵抗Rloadへの電流の供給はなるべくスイッチングコンバータから行う方が効率が良いので、インダクタンスLを小さくすれば帯域を広く確保することができる。しかしながら、インダクタンスLを小さくするとスイッチング周波数が上がってしまい、スイッチングコンバータにおける上限値を超えてしまう場合がある。これに対して、Lの値に対応してヒステリシス幅hを大きくするとボルテージフォロア回路から供給する電流が増加して効率が低下する。従って、回路全体の効率と帯域とはトレードオフの関係になっていることがわかる。
 そこで、基本回路905を用いる場合は、包絡線信号Sの平均スルーレートとスイッチングコンバータのスルーレートが一致するときが最も効率が高いという条件を利用して、下記式(1); 
Figure JPOXMLDOC01-appb-M000001
により、インダクタンスLの最適値を決定する。式(1)において、Vs_dcは、包絡線信号Sの直流成分を示し、Dは、Vs_dc/Vddで計算される平均デューティ比を示し、分母は、包絡線信号Sの時間変化量を平均化したものを示している。また、このときのスイッチング周波数は、下記式(2);
Figure JPOXMLDOC01-appb-M000002
により表される。式(2)において、Vs_rmsは、包絡線信号Sの2乗平均を示している。これにより、ヒステリシス幅h以外は既知であるので、スイッチング周波数を決めるとヒステリシス幅hの最適値を決定できる。
 上記のような設計手法を用いてヒステリシス幅h及びインダクタンスLを設計した場合でも、包絡線信号Sのスルーレートは広く分布しているので(図4参照)、基本回路905は平均スルーレートに対してのみ最適化されているだけであり、平均スルーレートから外れる多くの時間帯では効率が大幅に低下する。また、包絡線信号Sのスルーレートがスイッチングコンバータのスルーレートを下回る場合は、広帯域にするためにインダクタンスLを小さくした分だけ効率が低下しており、入力スルーレートがどんなに小さくてもその低い効率で一定に保たれてしまう。
 それに対して、本実施形態の包絡線追跡電源回路5においては、ヒステリシスコンパレータ9aとスイッチングコンバータ11aとからなる電力発生部19aと、ヒステリシスコンパレータ9bとスイッチングコンバータ11bとからなる電力発生部19bとを、包絡線信号Sの帯域に対する応答特性が異なるように設計することで、2つの電力発生部19a,19bを広い帯域で互いに補完しながら動作させることができる。その結果、広帯域な包絡線入力に対して全体の効率を高く維持することができる。
 すなわち、電力発生部19aのインダクタンスLは電力発生部19bのインダクタンスLよりも小さく、電力発生部19aのヒステリシス幅hは、電力発生部19bのヒステリシス幅hよりも大きくなっている。これにより、電力発生部19aは、広帯域で低効率な電源として動作し、電力発生部19bは、狭帯域で高効率な電源として動作するとともに、それぞれのスイッチング周波数を近づけることもできる。
 図8は、包絡線信号Sのスルーレートが低い場合の包絡線追跡電源回路5における出力波形の測定結果を示す図であり、IOPはボルテージフォロア回路7からの出力電流、VC1,VC2はそれぞれヒステリシスコンパレータ9a,9bからの出力電圧、IO1,IO2はスイッチングコンバータ11a,11bの出力電流を示している。このように、動作開始から時間が経過するとインダクタンスが大きくヒステリシス幅が小さい狭帯域/高効率の電力発生部19bのみの動作に切り替わることが分かる。その際、インダクタンスが小さくヒステリシス幅が大きい広帯域/低効率の電力発生部19bは動作しなくなる。
 一方、図9は、包絡線信号Sのスルーレートが高い場合の包絡線追跡電源回路5における出力波形の測定結果を示す図であり、この場合は電力発生部19a,19bの両方が動作するが、出力電流が大きいのはインダクタンスが小さくヒステリシス幅の大きい電力発生部19aのほうになる。
 これらの測定結果を見てもわかるように、入力スルーレートが小さいときは狭帯域/高効率のスイッチングコンバータに切り替え、入力スルーレートが大きいときは広帯域なスイッチングコンバータが動作して最も低効率なボルテージフォロア回路からの電流が増大することを防げるので、入力スルーレートによらず一定の低効率となる基本回路905に比較して、効率の大幅な改善が実現される。
 なお、本発明は、前述した実施形態に限定されるものではない。例えば、本実施形態の包絡線追跡電源回路5は2系統の電力発生部19a,19bを備えていたが、インダクタンス及びヒステリシス幅を多段階に変化させた3系統以上の電力発生部を備えていてもよい。
 また、本実施形態の電力発生部19a,19bは、インダクタンスLがインダクタンスLより小さく、ヒステリシス幅hがヒステリシス幅hよりも大きければ、様々なインダクタンス及びヒステリシス幅に設定してもよいが、スイッチング周波数を近づけて半導体スイッチ13a,13b等に同一のデバイスを採用して設計を容易にするという点では、インダクタンスLとヒステリシス幅hとの積がほぼ同一となるように設定することが好ましい。
 第1及び第2のスイッチングコンバータ部は、それぞれ、第1及び第2のヒステリシスコンパレータ部の出力する電圧に応じてオン/オフする第1及び第2のスイッチと、第1及び第2のスイッチを流れる電流を受ける第1及び第2のインダクタとを有し、第1のインダクタのインダクタンスは、第2のインダクタのインダクタンスよりも小さい、ことが好ましい。
 この場合、第1のスイッチングコンバータ部は包絡線に対して応答する帯域が広くなる一方、第2のスイッチングコンバータ部は包絡線に対して応答する帯域が狭いが、第1のスイッチングコンバータ部に比較して効率が高くなる。その結果、包絡線のスルーレートに対応して第1及び第2のスイッチングコンバータ部が補完しながら出力電流を供給するので、ボルテージフォロア回路部からの出力電流が増大することがなく、広帯域な包絡線入力に対して全体の効率を高く維持することができる。
 また、第1のヒステリシスコンパレータ部のヒステリシス幅は、第2のヒステリシスコンパレータ部のヒステリシス幅よりも大きい、ことも好ましい。
 かかる構成を採れば、包絡線のスルーレートが大きいときに動作する第1のスイッチングコンバータ部のスイッチング周波数と、包絡線のスルーレートが小さいときに動作する第2のスイッチングコンバータ部のスイッチング周波数とを近づけることができるので、スイッチングコンバータを構成する回路素子の共通化により回路設計を容易にすることができる。
 或いは、本発明の高周波増幅器は、上述した包絡線追跡電源回路と、包絡線追跡電源回路の出力端子からの出力電圧の供給を受けて、高周波信号を増幅する増幅器と、を備える。このような高周波増幅器によれば、広帯域な包絡線を有する高周波信号入力に対して全体の効率を高く維持することができる。
 本発明は、包絡線追跡電源回路及びそれを含む高周波増幅器を使用用途とし、広帯域な包絡線を有する高周波信号に対しても効率を高く維持するものである。

Claims (4)

  1.  高周波信号の包絡線に応じた出力電圧を生成する包絡線追跡電源回路であって、
     前記包絡線に対応する包絡線信号が入力されて、該包絡線信号に応じた電圧を出力するボルテージフォロア回路部と、
     前記ボルテージフォロア回路の出力と前記出力電圧の出力端子との間に並列に接続された第1及び第2の並列抵抗と、
     前記第1及び第2の並列抵抗におけるそれぞれの電圧降下を検出して、該電圧降下に応じた電圧を生成する第1及び第2のヒステリシスコンパレータ部と、
     前記第1及び第2のヒステリシスコンパレータ部のそれぞれが出力する電圧に応じてスイッチングして、前記出力端子に電圧を出力する第1及び第2のスイッチングコンバータ部と、
    を備えることを特徴とする包絡線追跡電源回路。
  2.  前記第1及び第2のスイッチングコンバータ部は、それぞれ、前記第1及び第2のヒステリシスコンパレータ部の出力する電圧に応じてオン/オフする第1及び第2のスイッチと、前記第1及び第2のスイッチを流れる電流を受ける第1及び第2のインダクタとを有し、
     前記第1のインダクタのインダクタンスは、前記第2のインダクタのインダクタンスよりも小さい、
    ことを特徴とする請求項1記載の包絡線追跡電源回路。
  3.  前記第1のヒステリシスコンパレータ部のヒステリシス幅は、前記第2のヒステリシスコンパレータ部のヒステリシス幅よりも大きい、
    ことを特徴とする請求項2記載の包絡線追跡電源回路。
  4.  請求項1~3のいずれか1項に記載の包絡線追跡電源回路と、
     前記包絡線追跡電源回路の前記出力端子からの出力電圧の供給を受けて、前記高周波信号を増幅する増幅器と、
    を備えることを特徴とする高周波増幅器。
PCT/JP2009/051771 2008-02-08 2009-02-03 包絡線追跡電源回路及びそれを含む高周波増幅器 WO2009099056A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/866,676 US8587271B2 (en) 2008-02-08 2009-02-03 Envelope tracking power supply circuit and high-frequency amplifier including envelope tracking power supply circuit
CN2009801043868A CN101939900A (zh) 2008-02-08 2009-02-03 包络线跟踪电源电路及包括该电路的高频放大器
EP09707832A EP2244366A1 (en) 2008-02-08 2009-02-03 Envelope tracking power supply circuit and high-frequency amplifier including envelope tracking power supply circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008029333A JP5119961B2 (ja) 2008-02-08 2008-02-08 包絡線追跡電源回路及びそれを含む高周波増幅器
JP2008-029333 2008-02-08

Publications (1)

Publication Number Publication Date
WO2009099056A1 true WO2009099056A1 (ja) 2009-08-13

Family

ID=40952131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051771 WO2009099056A1 (ja) 2008-02-08 2009-02-03 包絡線追跡電源回路及びそれを含む高周波増幅器

Country Status (6)

Country Link
US (1) US8587271B2 (ja)
EP (1) EP2244366A1 (ja)
JP (1) JP5119961B2 (ja)
KR (1) KR20100108561A (ja)
CN (1) CN101939900A (ja)
WO (1) WO2009099056A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076139A (zh) * 2009-11-19 2011-05-25 群康科技(深圳)有限公司 Led照明电路
WO2012176578A1 (ja) * 2011-06-22 2012-12-27 株式会社村田製作所 高周波電力増幅回路用電源装置および高周波電力増幅装置
CN112290898A (zh) * 2020-09-15 2021-01-29 复旦大学 一种应用于包络跟踪电源调制器的降频采样与控制电路

Families Citing this family (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20070672A0 (fi) * 2007-09-04 2007-09-04 Efore Oyj Menetelmä vaihtosähkön muodostamiseksi
US8995691B2 (en) 2008-07-14 2015-03-31 Audera Acoustics Inc. Audio amplifier
US9112452B1 (en) 2009-07-14 2015-08-18 Rf Micro Devices, Inc. High-efficiency power supply for a modulated load
US8981848B2 (en) 2010-04-19 2015-03-17 Rf Micro Devices, Inc. Programmable delay circuitry
WO2011133542A1 (en) 2010-04-19 2011-10-27 Rf Micro Devices, Inc. Pseudo-envelope following power management system
US9099961B2 (en) 2010-04-19 2015-08-04 Rf Micro Devices, Inc. Output impedance compensation of a pseudo-envelope follower power management system
US9431974B2 (en) 2010-04-19 2016-08-30 Qorvo Us, Inc. Pseudo-envelope following feedback delay compensation
US8633766B2 (en) 2010-04-19 2014-01-21 Rf Micro Devices, Inc. Pseudo-envelope follower power management system with high frequency ripple current compensation
US8519788B2 (en) 2010-04-19 2013-08-27 Rf Micro Devices, Inc. Boost charge-pump with fractional ratio and offset loop for supply modulation
WO2011145710A1 (ja) 2010-05-18 2011-11-24 日本電気株式会社 電源装置、およびそれを用いた電力増幅装置
CN101867284B (zh) * 2010-05-31 2012-11-21 华为技术有限公司 快速跟踪电源的控制方法、快速跟踪电源及***
US8866549B2 (en) 2010-06-01 2014-10-21 Rf Micro Devices, Inc. Method of power amplifier calibration
WO2012027039A1 (en) 2010-08-25 2012-03-01 Rf Micro Devices, Inc. Multi-mode/multi-band power management system
US9954436B2 (en) 2010-09-29 2018-04-24 Qorvo Us, Inc. Single μC-buckboost converter with multiple regulated supply outputs
US9075673B2 (en) 2010-11-16 2015-07-07 Rf Micro Devices, Inc. Digital fast dB to gain multiplier for envelope tracking systems
WO2012079031A1 (en) * 2010-12-09 2012-06-14 Rf Micro Devices, Inc. Pseudo-envelope follower power management system with high frequency ripple current compensation
US8588713B2 (en) 2011-01-10 2013-11-19 Rf Micro Devices, Inc. Power management system for multi-carriers transmitter
US8611402B2 (en) 2011-02-02 2013-12-17 Rf Micro Devices, Inc. Fast envelope system calibration
US8624760B2 (en) 2011-02-07 2014-01-07 Rf Micro Devices, Inc. Apparatuses and methods for rate conversion and fractional delay calculation using a coefficient look up table
EP2673880B1 (en) 2011-02-07 2017-09-06 Qorvo US, Inc. Group delay calibration method for power amplifier envelope tracking
US9054937B2 (en) * 2011-04-29 2015-06-09 Fairchild Semiconductor Corporation Envelope extraction with reduced bandwidth for power modulation
US9247496B2 (en) 2011-05-05 2016-01-26 Rf Micro Devices, Inc. Power loop control based envelope tracking
US9246460B2 (en) 2011-05-05 2016-01-26 Rf Micro Devices, Inc. Power management architecture for modulated and constant supply operation
US9379667B2 (en) 2011-05-05 2016-06-28 Rf Micro Devices, Inc. Multiple power supply input parallel amplifier based envelope tracking
EP2715945B1 (en) 2011-05-31 2017-02-01 Qorvo US, Inc. Rugged iq receiver based rf gain measurements
US9019011B2 (en) 2011-06-01 2015-04-28 Rf Micro Devices, Inc. Method of power amplifier calibration for an envelope tracking system
US8760228B2 (en) 2011-06-24 2014-06-24 Rf Micro Devices, Inc. Differential power management and power amplifier architecture
US8952710B2 (en) 2011-07-15 2015-02-10 Rf Micro Devices, Inc. Pulsed behavior modeling with steady state average conditions
US8626091B2 (en) 2011-07-15 2014-01-07 Rf Micro Devices, Inc. Envelope tracking with variable compression
US8792840B2 (en) 2011-07-15 2014-07-29 Rf Micro Devices, Inc. Modified switching ripple for envelope tracking system
US9263996B2 (en) 2011-07-20 2016-02-16 Rf Micro Devices, Inc. Quasi iso-gain supply voltage function for envelope tracking systems
US8624576B2 (en) 2011-08-17 2014-01-07 Rf Micro Devices, Inc. Charge-pump system for providing independent voltages
US8942652B2 (en) 2011-09-02 2015-01-27 Rf Micro Devices, Inc. Split VCC and common VCC power management architecture for envelope tracking
US8957728B2 (en) 2011-10-06 2015-02-17 Rf Micro Devices, Inc. Combined filter and transconductance amplifier
CN103988406B (zh) 2011-10-26 2017-03-01 Qorvo美国公司 射频(rf)开关转换器以及使用rf开关转换器的rf放大装置
US9484797B2 (en) 2011-10-26 2016-11-01 Qorvo Us, Inc. RF switching converter with ripple correction
US9024688B2 (en) 2011-10-26 2015-05-05 Rf Micro Devices, Inc. Dual parallel amplifier based DC-DC converter
US8878606B2 (en) 2011-10-26 2014-11-04 Rf Micro Devices, Inc. Inductance based parallel amplifier phase compensation
US9515621B2 (en) 2011-11-30 2016-12-06 Qorvo Us, Inc. Multimode RF amplifier system
US8975959B2 (en) 2011-11-30 2015-03-10 Rf Micro Devices, Inc. Monotonic conversion of RF power amplifier calibration data
US9250643B2 (en) 2011-11-30 2016-02-02 Rf Micro Devices, Inc. Using a switching signal delay to reduce noise from a switching power supply
US9041365B2 (en) 2011-12-01 2015-05-26 Rf Micro Devices, Inc. Multiple mode RF power converter
US8947161B2 (en) 2011-12-01 2015-02-03 Rf Micro Devices, Inc. Linear amplifier power supply modulation for envelope tracking
WO2013082384A1 (en) 2011-12-01 2013-06-06 Rf Micro Devices, Inc. Rf power converter
US9280163B2 (en) 2011-12-01 2016-03-08 Rf Micro Devices, Inc. Average power tracking controller
US9256234B2 (en) 2011-12-01 2016-02-09 Rf Micro Devices, Inc. Voltage offset loop for a switching controller
US9494962B2 (en) 2011-12-02 2016-11-15 Rf Micro Devices, Inc. Phase reconfigurable switching power supply
US9813036B2 (en) 2011-12-16 2017-11-07 Qorvo Us, Inc. Dynamic loadline power amplifier with baseband linearization
US9298198B2 (en) 2011-12-28 2016-03-29 Rf Micro Devices, Inc. Noise reduction for envelope tracking
CN102624231A (zh) * 2012-04-10 2012-08-01 南京航空航天大学 一种并联结构包络线跟踪电源
CN102624339B (zh) * 2012-04-10 2014-10-15 南京航空航天大学 一种串联结构包络线跟踪电源及其控制***
US8816768B2 (en) 2012-04-12 2014-08-26 Mediatek Inc. Power module for envelope tracking
US9071200B2 (en) 2012-04-12 2015-06-30 Mediatek Inc. Power module for envelope tracking
WO2013168598A1 (ja) * 2012-05-08 2013-11-14 株式会社村田製作所 高周波電力増幅回路用電源装置および高周波電力増幅装置
US8981839B2 (en) 2012-06-11 2015-03-17 Rf Micro Devices, Inc. Power source multiplexer
US9020451B2 (en) 2012-07-26 2015-04-28 Rf Micro Devices, Inc. Programmable RF notch filter for envelope tracking
US8779860B2 (en) 2012-08-15 2014-07-15 Avago Technologies General Ip (Singapore) Ptd. Ltd. Power amplifier
US9225231B2 (en) 2012-09-14 2015-12-29 Rf Micro Devices, Inc. Open loop ripple cancellation circuit in a DC-DC converter
US9197256B2 (en) 2012-10-08 2015-11-24 Rf Micro Devices, Inc. Reducing effects of RF mixer-based artifact using pre-distortion of an envelope power supply signal
WO2014062902A1 (en) 2012-10-18 2014-04-24 Rf Micro Devices, Inc Transitioning from envelope tracking to average power tracking
CN103812334A (zh) * 2012-11-14 2014-05-21 立锜科技股份有限公司 多输出切换式电源供应器及多输出电源供应方法
US9627975B2 (en) 2012-11-16 2017-04-18 Qorvo Us, Inc. Modulated power supply system and method with automatic transition between buck and boost modes
US9300252B2 (en) 2013-01-24 2016-03-29 Rf Micro Devices, Inc. Communications based adjustments of a parallel amplifier power supply
US9178472B2 (en) 2013-02-08 2015-11-03 Rf Micro Devices, Inc. Bi-directional power supply signal based linear amplifier
US9608675B2 (en) 2013-02-11 2017-03-28 Qualcomm Incorporated Power tracker for multiple transmit signals sent simultaneously
WO2014152876A1 (en) 2013-03-14 2014-09-25 Rf Micro Devices, Inc Noise conversion gain limited rf power amplifier
US9197162B2 (en) 2013-03-14 2015-11-24 Rf Micro Devices, Inc. Envelope tracking power supply voltage dynamic range reduction
US9479118B2 (en) 2013-04-16 2016-10-25 Rf Micro Devices, Inc. Dual instantaneous envelope tracking
US9374005B2 (en) 2013-08-13 2016-06-21 Rf Micro Devices, Inc. Expanded range DC-DC converter
KR102114726B1 (ko) * 2013-10-23 2020-06-05 삼성전자주식회사 전력 증폭 장치 및 방법
CN103701089A (zh) * 2013-12-31 2014-04-02 昌辉汽车转向***(黄山)有限公司 一种硬件过载或短路保护电路及dc电源供电电路
US9473089B2 (en) 2014-05-08 2016-10-18 Mediatek Inc. Hybrid power module
US9614476B2 (en) 2014-07-01 2017-04-04 Qorvo Us, Inc. Group delay calibration of RF envelope tracking
CN105981450B (zh) * 2014-07-30 2020-04-14 华为技术有限公司 功率放大器的供电电压控制方法及电子设备
US9685864B2 (en) * 2015-03-31 2017-06-20 Qualcomm Incorporated Switching regulator circuits and methods with reconfigurable inductance
US9748901B2 (en) 2015-06-16 2017-08-29 Avago Technologies General Ip (Singapore) Pte. Ltd. Power amplifying apparatus
US9948240B2 (en) 2015-07-01 2018-04-17 Qorvo Us, Inc. Dual-output asynchronous power converter circuitry
US9912297B2 (en) 2015-07-01 2018-03-06 Qorvo Us, Inc. Envelope tracking power converter circuitry
US9973147B2 (en) 2016-05-10 2018-05-15 Qorvo Us, Inc. Envelope tracking power management circuit
CN105896983A (zh) * 2016-05-13 2016-08-24 南京航空航天大学 宽频带输出的包络线跟踪电源
US10411706B1 (en) 2017-10-20 2019-09-10 United States Of America As Represented By The Secretary Of The Air Force Wide-band digital buffer driver
US10476437B2 (en) 2018-03-15 2019-11-12 Qorvo Us, Inc. Multimode voltage tracker circuit
US10826439B2 (en) 2018-12-18 2020-11-03 Nxp Usa, Inc. Linearity enhancement of high power amplifiers
CN110635667B (zh) * 2019-09-03 2021-09-24 电子科技大学 一种用于包络跟踪***的三电平滞回控制电源调制器
KR20220102902A (ko) 2021-01-14 2022-07-21 삼성전자주식회사 전원 변조기 및 이를 포함하는 무선 통신 장치
CN112838748B (zh) * 2021-01-27 2022-04-12 陕西亚成微电子股份有限公司 一种包络追踪电源的控制方法及电路

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533116A (ja) * 2000-05-05 2003-11-05 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) 広帯域包絡線信号を効率的に増幅する装置と方法
JP2007531488A (ja) * 2004-03-31 2007-11-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 並列に配置した電源

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201818A (ja) * 1989-12-28 1991-09-03 Fujitsu Ltd 比較回路
US5905407A (en) * 1997-07-30 1999-05-18 Motorola, Inc. High efficiency power amplifier using combined linear and switching techniques with novel feedback system
US6565001B1 (en) * 2001-11-08 2003-05-20 Em Microelectronics-Us, Inc Receiver circuit and method for a contactless identification system
JP2009200944A (ja) * 2008-02-22 2009-09-03 Oki Semiconductor Co Ltd ヒステリシスコンパレータ
US7808323B2 (en) * 2008-05-23 2010-10-05 Panasonic Corporation High-efficiency envelope tracking systems and methods for radio frequency power amplifiers
US8030995B2 (en) * 2008-12-25 2011-10-04 Hitachi Kokusai Electric Inc. Power circuit used for an amplifier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533116A (ja) * 2000-05-05 2003-11-05 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) 広帯域包絡線信号を効率的に増幅する装置と方法
JP2007531488A (ja) * 2004-03-31 2007-11-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 並列に配置した電源

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
D. F. KIMBALL ET AL.: "High-Efficiency Envelope-Tracking W-CDMA Base-Station Amplifier Using GaN HFETs", IEEE TRANS. ON MICROWAVE THEORY AND TECHNIQUES, vol. 54, no. 11, November 2006 (2006-11-01)
F. WANG: "High Efficiency Linear Envelope Tracking and Envelope Elimination and Restoration Power Amplifier for WLAN OFDM Applications", PH.D. DISSERTATION, 2006
P. ASBECK; D. KIMBALL ET AL.: "Next Genaration High-Efficiency RF Transmitter Technology for Basestations", EXTENDED ABSTRACTS OF 2007 INTERNATIONAL CONFERENCE ON SOLID SATE DEVICES AND MATERIALS, September 2007 (2007-09-01), pages 146 - 147
P. DRAXLER; S. LANFRANCO ET AL.: "High Efficiency Envelope Tracking LDMOS Power Amplifier for W-CDMA", IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM, June 2006 (2006-06-01), pages 1534 - 1537

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076139A (zh) * 2009-11-19 2011-05-25 群康科技(深圳)有限公司 Led照明电路
WO2012176578A1 (ja) * 2011-06-22 2012-12-27 株式会社村田製作所 高周波電力増幅回路用電源装置および高周波電力増幅装置
JPWO2012176578A1 (ja) * 2011-06-22 2015-02-23 株式会社村田製作所 高周波電力増幅回路用電源装置および高周波電力増幅装置
US9148090B2 (en) 2011-06-22 2015-09-29 Murata Manufacturing Co., Ltd. Power supply device for high frequency power amplification circuit and high frequency power amplification device
CN112290898A (zh) * 2020-09-15 2021-01-29 复旦大学 一种应用于包络跟踪电源调制器的降频采样与控制电路
CN112290898B (zh) * 2020-09-15 2022-12-20 复旦大学 一种应用于包络跟踪电源调制器的降频采样与控制电路

Also Published As

Publication number Publication date
JP2009189215A (ja) 2009-08-20
CN101939900A (zh) 2011-01-05
JP5119961B2 (ja) 2013-01-16
US20110031953A1 (en) 2011-02-10
US8587271B2 (en) 2013-11-19
KR20100108561A (ko) 2010-10-07
EP2244366A1 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP5119961B2 (ja) 包絡線追跡電源回路及びそれを含む高周波増幅器
KR101467231B1 (ko) 포락선 추적 모드 또는 평균 전력 추적 모드로 동작하는 멀티 모드 바이어스 변조기 및 이를 이용한 포락선 추적 전력 증폭 장치
US9590563B2 (en) 2G support for 2G and 3G/4G envelope tracking modulator
US7949316B2 (en) High-efficiency envelope tracking systems and methods for radio frequency power amplifiers
JP6571071B2 (ja) 可変ブースト電源電圧を用いたエンベロープトラッカー
US7808323B2 (en) High-efficiency envelope tracking systems and methods for radio frequency power amplifiers
US9559637B2 (en) Multi-mode bias modulator and envelope tracking power amplifier using the same
JP2010166157A (ja) 包絡線追跡電源回路及び増幅装置
US9270241B2 (en) Power supply device, transmission device using same, and method for operating power supply device
KR101664718B1 (ko) 이중 구동 전압을 이용하는 평균 전력 추적 모드 전력 증폭 장치
JP2008035487A (ja) Rf電力増幅器
US9602070B2 (en) Power amplifying device
EP2602932A1 (en) Power modulator, and method for controlling same
JP2014045335A (ja) 変調電源回路
Kanbe et al. New architecture for envelope-tracking power amplifier for base station
US9577583B2 (en) Power amplifier
Xiong et al. A highly-applicable supply modulator with a highly-linear envelope detector for WCDMA envelope-tracking applications
Watkins et al. > 41% efficient 10W envelope modulated LTE downlink power amplifier
Hong et al. Optimum efficiency-tracking gate driver using adaptive deadtime control for single chip DC-DC converter
Kim et al. Wideband envelope amplifier for envelope-tracking operation of handset power amplifier
US10158331B2 (en) Power amplifying apparatus with boost function
Son et al. A hybrid envelope amplifier with switching-controlled structure for EDGE/WCDMA/LTE reconfigurable transmitters
Bae et al. CMOS dynamic supply switching power amplifier for LTE applications
JP2012023489A (ja) 変調電源
Kaneta et al. Architecture of wideband high-efficiency envelope tracking power amplifier for base station

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980104386.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707832

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107015825

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009707832

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12866676

Country of ref document: US