WO2009096301A1 - 重合体微粒子の製造方法 - Google Patents

重合体微粒子の製造方法 Download PDF

Info

Publication number
WO2009096301A1
WO2009096301A1 PCT/JP2009/050927 JP2009050927W WO2009096301A1 WO 2009096301 A1 WO2009096301 A1 WO 2009096301A1 JP 2009050927 W JP2009050927 W JP 2009050927W WO 2009096301 A1 WO2009096301 A1 WO 2009096301A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
polymer fine
water
vinyl monomer
dispersion
Prior art date
Application number
PCT/JP2009/050927
Other languages
English (en)
French (fr)
Inventor
Shinji Hibino
Hideo Matsuzaki
Akihiro Gotou
Original Assignee
Toagosei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40912654&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009096301(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toagosei Co., Ltd. filed Critical Toagosei Co., Ltd.
Priority to US12/811,948 priority Critical patent/US8058370B2/en
Priority to EP09705228.6A priority patent/EP2239278B2/en
Priority to PL09705228T priority patent/PL2239278T5/pl
Priority to JP2009551482A priority patent/JP5499712B2/ja
Publication of WO2009096301A1 publication Critical patent/WO2009096301A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/32Polymerisation in water-in-oil emulsions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/40Redox systems

Definitions

  • the present invention relates to a method for producing polymer fine particles. More specifically, the vinyl-based monomer emulsified in advance in a dispersion tank is subjected to continuous reversed-phase suspension polymerization using a continuous tank reactor to obtain a specific range of particle diameters.
  • the present invention relates to a method for producing high-quality polymer fine particles having high productivity in a stable state even when scaled up without causing aggregation of particles.
  • Micron-sized spherical polymer particles are used for cosmetic additives, various chemical substances, spacers, column fillers for chromatography, light diffusing agents, porosifying agents, lightening agents, anti-blocking agents, and recording paper. It is used as a surface modifier.
  • hydrophilic crosslinked polymer fine particles can be used as hydrogel fine particles, and are useful as cosmetic additives, carriers, porogens, lightening agents, and surface modifiers for recording paper.
  • a monomer emulsion is continuously supplied to a reactor heated to a high temperature of 70 ° C. or more for 1 hour or more, and polymerized and aged in a tank as it is without taking out polymer fine particles.
  • aggregation between particles is likely to occur, resulting in uneven polymer particle sizes, and when a large amount of cross-linking agent such as a polyfunctional vinyl monomer is used, unreacted cross-linking It is considered that most of the agent is easily eluted to the continuous phase side, and the polymerization is continued in this state, whereby the particles are aggregated and the quality of the polymer particles as described above is deteriorated.
  • the reactor is a tubular reactor and has a structure that does not stir during polymerization, it is not suitable for continuous reversed-phase suspension polymerization, and thus has a specific range of particle sizes that are uniform in particle size. It is not an apparatus that can produce high-quality polymer particles.
  • the continuous operation continuously supplies the reaction raw material to the reactor inlet and continuously supplies the product from the reactor outlet. Both the tank reactor and the tubular reactor can be operated continuously.
  • the semi-batch operation is an operation method having an intermediate character between batch and continuous operation.
  • Patent Documents 1 to 3 correspond to this semi-batch operation.
  • the object of the present invention is to obtain high-quality polymer fine particles having a particle size of several ⁇ m to several tens of ⁇ m on the order of particles by continuous reversed-phase suspension polymerization using a continuous tank reactor. It is an object to provide a method for producing with increased productivity while maintaining good dispersion stability without causing aggregation or the like.
  • the present invention provides a high-quality polymer having a uniform particle size while maintaining suspension stability with high polymerization stability even when producing hydrophilic crosslinked polymer fine particles having a high degree of crosslinking.
  • An object of the present invention is to provide a method capable of producing fine particles smoothly with good productivity.
  • the present inventors have intensively studied in order to achieve the above object.
  • the conditions for continuous reverse-phase suspension polymerization which is superior in productivity compared to the batch production formula of the prior art, are set.
  • several ⁇ m was obtained by polymerizing the emulsion continuously in a continuous tank reactor while making the water-in-oil (W / O type) emulsion of a vinyl monomer in a dispersion tank in advance.
  • High-quality spherical polymer particles with a particle size on the order of tens of ⁇ m and uniform particle size can be aggregated, agglomerated and adhered to the polymerization equipment during and after polymerization. It has been found that it can be produced with extremely high productivity while maintaining good dispersion stability and polymerization stability.
  • a first invention is a method for producing polymer fine particles by subjecting a vinyl monomer to reverse phase suspension polymerization, wherein an organic solvent is used as a continuous phase in a dispersion tank in advance, and an aqueous vinyl monomer solution is dispersed in the dispersion phase.
  • a water-in-oil type (W / O type) emulsion is prepared, and the water-in-oil type (W / O type) emulsion is continuously fed to a continuous tank reactor to carry out reverse phase suspension polymerization. This is a method for producing fine particles.
  • a second invention is the method for producing polymer fine particles according to the first invention, wherein a redox polymerization catalyst is used as a polymerization initiator.
  • 3rd invention is a manufacturing method of the polymer microparticles
  • a fourth invention is the method for producing polymer fine particles according to any one of the first to third inventions, wherein a reaction tank in which at least two continuous tank reactors are connected in series is used. is there.
  • a fifth invention is the method for producing polymer fine particles according to any one of the first to fourth inventions, wherein the residence time of the reaction liquid in the first reaction tank is at least 10 minutes.
  • a sixth invention is the method for producing polymer fine particles according to any one of the first to fifth inventions, wherein the volume ratio of the dispersed phase in the reaction solution is 30% or less in each reaction tank. is there.
  • a seventh invention is characterized in that a water-in-oil type (W / O type) emulsion is prepared using a dispersion tank having at least one stirring device and a dispersion tank having at least one membrane emulsification device.
  • the water-in-oil (W / O) emulsion is degassed at any stage after the membrane emulsification apparatus. This is a method for producing polymer fine particles.
  • a ninth invention is the method for producing polymer fine particles according to any one of the first to eighth inventions, wherein the continuous phase component is continuously supplied to the wall surface of the gas phase part of the continuous tank reactor. is there.
  • a tenth aspect of the invention is any one of the first to ninth aspects of the invention, wherein either one of an oxidizing agent or a reducing agent is mixed in a water-in-oil (W / O type) emulsion in a dispersion tank. This is a method for producing polymer fine particles.
  • An eleventh aspect of the invention is any one of the first to tenth aspects of the invention, characterized in that a water-in-oil type (W / O type) emulsion having an average particle size of a dispersed phase of 100 ⁇ m or less is prepared in a dispersion tank. This is a method for producing polymer fine particles.
  • a twelfth aspect of the invention is any one of the first to eleventh aspects, wherein a macromonomer having a radically polymerizable unsaturated group at the end of a polymer derived from a vinyl monomer is used as a dispersion stabilizer. A method for producing polymer fine particles.
  • a thirteenth invention is a method for producing polymer fine particles according to any one of the first to twelfth inventions, wherein at least a part of the vinyl monomer has a polar group selected from a carboxyl group, a sulfone group and an amide group. It is.
  • a fourteenth invention is the invention according to any one of the first to thirteenth inventions, wherein the vinyl monomer includes a polyfunctional vinyl monomer having two or more radically polymerizable unsaturated groups. This is a method for producing polymer fine particles.
  • a fifteenth invention is the method for producing polymer fine particles according to the fourteenth invention, wherein the molar ratio of the monofunctional vinyl monomer to the polyfunctional vinyl monomer is 100: 0.1 to 100: 10.
  • a sixteenth aspect of the invention is the polymer fine particle according to any one of the first to fifteenth aspects, wherein the polymer fine particle produced by reverse phase suspension polymerization is a polymer fine particle having a crosslinking density of 0.5 mol% or more. It is a manufacturing method.
  • polymer fine particles produced by reversed-phase suspension polymerization have an average particle size of 2 to 100 ⁇ m in a state of saturated swelling with water and a particle size of 150 ⁇ m or more in a state of saturated swelling with water.
  • the method for producing polymer fine particles according to any one of the first to sixteenth inventions, wherein the fine particles are polymer fine particles having a proportion of particles of 1.0% by mass or less.
  • polymer fine particles produced by reversed-phase suspension polymerization have a water absorption ratio of 5 to 50 times, an average particle diameter in a state of saturated swelling with water is 5 to 70 ⁇ m, and
  • high-quality spherical hydrophilic polymer fine particles having extremely uniform particle diameters of polymer fine particles compared with the conventional method are obtained with extremely high dispersion stability and polymerization stability.
  • it can be produced with extremely high productivity as compared with the batch production method without causing aggregation or agglomeration of polymer particles or adhesion to a polymerization apparatus during or after polymerization.
  • hydrophilic crosslinked polymer fine particles having a high degree of crosslinking are produced using a large amount of polyfunctional vinyl monomer, the polymer particles are aggregated, agglomerated and polymerized.
  • High-quality hydrophilic crosslinked polymer fine particles having a uniform particle size can be produced with high productivity without causing adhesion to the apparatus. Furthermore, even when the production is carried out under scaled up conditions in order to increase productivity, the production method of the present invention can produce high-quality polymer particles with high productivity. Furthermore, according to the continuous reversed-phase suspension polymerization of the present invention, the polymer reaction can be carried out in a reactor having a small capacity as compared with the batch production method, so that polymer fine particles having a sharp particle size distribution can be obtained.
  • Microscope photograph of polymer fine particle RT-1 (after polymerization, dispersion in oil)
  • Microscope photograph of polymer fine particle RT-1 (after polymerization, dispersion in water)
  • Microscope photograph of polymer fine particle RT-2 (after polymerization, dispersion in oil)
  • Microscope photograph of polymer fine particle RT-2 (after polymerization, dispersion in water) It is a figure which shows the apparatus used for the measurement of the water absorption rate of a polymer microparticle. It is the flowchart which connected the continuous tank type reactor in series.
  • the “reverse phase suspension polymerization of vinyl monomer” in the present invention means reverse phase suspension polymerization in which an oil phase is a dispersion medium and an aqueous phase is a dispersoid.
  • an aqueous phase an aqueous solution of a hydrophilic vinyl monomer
  • an oil phase a dispersion medium composed of a hydrophobic organic solvent.
  • Polymer fine particles are produced by water-in-oil type (W / O type) reverse phase suspension polymerization in which water) is suspended in the form of water droplets.
  • W / O type water-in-oil type reverse phase suspension polymerization in which water) is suspended in the form of water droplets.
  • the water-in-oil emulsion prepared in advance is continuously fed to the continuous tank reactor and continuously extracted, while the vinyl monomer is in reverse phase suspension. Polymerization is performed.
  • a preferable method as the production method of the present invention is to use a continuous reaction apparatus as shown in FIG. 6 in advance in a dispersion tank (13: first dispersion tank and 14: second dispersion tank) in advance.
  • a water-in-oil emulsion was prepared from the continuous phase (oil phase) and the vinyl monomer aqueous solution (dispersed phase) prepared by the above, and a dispersion (emulsion) charged with an oxidizing agent was further converted into a continuous tank reactor (15 : The first reaction tank), and then the polymerization is started by supplying the reducing agent to the continuous tank reactor.
  • the reaction liquid overflowed from the first reaction tank is continuously transferred to the second reaction tank and further to the third reaction tank, and a polymerization reaction is performed.
  • an oxidizing agent is added to the second reaction tank and the third reaction tank as necessary in order to increase the polymerization rate.
  • a dispersion tank having at least one stirring device and a dispersion tank having at least one membrane emulsifier is preferable, and a water-in-oil (W / O) emulsion having a uniform particle diameter is obtained.
  • a multistage dispersion tank is preferred.
  • the stirring device include stirring by a stirring blade, homogenizer, stirring by ultrasonic waves, and an emulsifier. Among these, it is more preferable to use a dispersion tank having an emulsifier and a dispersion tank having a membrane emulsifier in multiple stages.
  • the membrane emulsification apparatus is a device in which a water-in-oil type (W / O type) emulsion is passed through a hydrophobic microporous membrane body to obtain a finer water-in-oil type (W / O type) emulsion.
  • W / O type water-in-oil type
  • W / O type water-in-oil type
  • the droplet size of the vinyl monomer can be adjusted.
  • fine-particles can be obtained by starting superposition
  • a water-in-oil type in which the average diameter of the dispersed phase is 100 ⁇ m or less in a dispersion tank. It is preferable to prepare a (W / O type) emulsion.
  • the vinyl monomer used in the reverse phase suspension polymerization of the present invention may be any radically polymerizable hydrophilic vinyl monomer, and is not particularly limited.
  • a hydrophilic vinyl monomer having a hydrophilic group such as a carboxyl group, amino group, phosphoric acid group, sulfonic acid group, amide group, hydroxyl group or quaternary ammonium group can be used.
  • vinyl monomers having a carboxyl group, a sulfonic acid group, and an amide group are preferable because polymer particles having high hydrophilicity and excellent water absorption performance and water retention performance can be obtained.
  • hydrophilic vinyl monomers include (meth) acrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, itaconic acid monobutyl, maleic acid monobutyl, cyclohexanedicarboxylic acid and other vinyl-based vinyl compounds.
  • N N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylate, N , N-dimethylaminopropyl (meth) acrylamide and other vinyl-based monomers or their (partial) acid neutralized products or (partial) quaternized products; N-vinylpyrrolidone, acryloylmorpholine; acid phospho Oxyethyl methacrylate, acid phosphooxypro Vinyl monomers having a phosphoric acid group, such as dimethacrylate, 3-chloro-2-acid phosphooxypropyl methacrylate, or (partial) alkali neutralized products thereof; 2- (meth) acrylamido-2-methylpropanesulfonic acid 2-sulfoethyl (meth) acryl
  • the reverse phase suspension polymerization using one or more of (meth) acrylic acid, (meth) acrylamide and 2-acrylamido-2-methylpropanesulfonic acid is excellent in polymerizability.
  • the polymer fine particles obtained are more preferred from the viewpoint of excellent water absorption properties, and (meth) acrylic acid is particularly preferred.
  • the vinyl monomer in carrying out the reverse phase suspension polymerization, as the vinyl monomer, together with one or more of the above-mentioned monofunctional hydrophilic vinyl monomers, radical polymerizable non-polymerization is performed.
  • a polyfunctional vinyl monomer having two or more saturated groups can be used. Therefore, the “vinyl monomer” referred to in the present invention is a general term for monofunctional vinyl monomers and polyfunctional vinyl monomers.
  • the polyfunctional vinyl monomer may be any vinyl monomer having at least two radically polymerizable groups with the hydrophilic vinyl monomer. Specific examples thereof include polyethylene glycol di (meta ) Acrylate, polypropylene glycol di (meth) acrylate, glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane ethylene oxide modified tri (meth) acrylate and other di- or tri- (meta) ) Bisamides such as acrylate and methylene bis (meth) acrylamide, divinylbenzene, allyl (meth) acrylate, and the like, and one or more of these may be used.
  • polyethylene glycol diacrylate and methylene bisacrylamide are used as the polyfunctional vinyl monomer to obtain a high crosslinking density with excellent solubility in a mixture of the hydrophilic hydrophilic vinyl monomer and water. It is advantageous and preferably used when increasing the amount, and polyethylene glycol di (meth) acrylate is particularly preferred.
  • the ratio of the polyfunctional vinyl monomer used may vary depending on the type of vinyl monomer used, the intended use of the resulting polymer fine particles, etc.
  • the amount of the monofunctional vinyl monomer used is preferably 0.1 to 10 mol, more preferably 0.2 to 8 mol, and more preferably 0.5 to 5 mol based on 100 mol of the total amount More preferably it is.
  • hydrophobic organic solvent that forms the oil phase (dispersion medium) in the reversed-phase suspension polymerization of the present invention include, for example, aliphatic hydrocarbon solvents having 6 or more carbon atoms, and aromatic hydrocarbon solvents such as benzene, toluene, xylene, and ethylbenzene.
  • aromatic hydrocarbon solvents such as benzene, toluene, xylene, and ethylbenzene.
  • silicone solvents such as octamethylcyclotetrasiloxane can be used.
  • hexane, cyclohexane and n-heptane have low solubility in vinyl monomers and water and can be easily removed after polymerization. It is preferably used because of its existence.
  • the hydrophilic vinyl monomer (and its neutralized salt) is preferably dissolved in water to form an aqueous solution and added to the polymerization system.
  • concentration of the hydrophilic vinyl monomer in the aqueous solution in which the hydrophilic vinyl monomer is dissolved is 5 to 80% by mass, particularly 20 to 60% by mass. And good productivity.
  • the hydrophilic vinyl monomer used for the reverse phase suspension polymerization is a vinyl monomer having an acidic group such as a carboxyl group or a sulfonic acid group, the hydrophilic vinyl monomer was added to water.
  • aqueous alkaline solution such as aqueous ammonia, aqueous sodium hydroxide, or aqueous potassium hydroxide to prepare an aqueous solution that dissolves the hydrophilic vinyl monomer well.
  • the dispersion stabilizer is an essential component.
  • the dispersion stabilizer include macromonomer type dispersion stabilizers, sorbitan fatty acid esters, polyglycerin fatty acid esters, sucrose fatty acid esters, sorbitol fatty acid esters, polyoxyethylene alkyl ethers and other nonionic surfactants.
  • macromonomer type dispersion stabilizer it is preferable to use a macromonomer type dispersion stabilizer.
  • the macromonomer type dispersion stabilizer has a radically polymerizable unsaturated group at the end of a polymer derived from a vinyl monomer.
  • a macromonomer type dispersion stabilizer in combination with a relatively hydrophobic nonionic surfactant having an HLB of 3 to 8, such as sorbitan monooleate and sorbitan monopalmitate. May be used in combination, or two or more may be used in combination.
  • a macromonomer having an acryloyl group is suitable because of its excellent function as a dispersion stabilizer.
  • the macromonomer preferably has a weight average molecular weight of 1,000 to 30,000, and the macromonomer is derived from a hydrophilic vinyl monomer. It is preferable to have both a structural unit and a structural unit derived from a hydrophobic vinyl monomer, and the structural unit derived from the hydrophobic vinyl monomer at that time is (meth) acrylic acid.
  • a structural unit derived from an alkyl ester having 8 or more carbon atoms is preferred, and a structural unit derived from a vinyl monomer having a carboxyl group is preferred as the structural unit derived from a hydrophilic vinyl monomer.
  • hydrophilic polymer fine particle is produced by reverse-phase suspension polymerization of a hydrophilic vinyl monomer using a macromonomer type dispersion stabilizer
  • a polyfunctional vinyl monomer is used together with a monofunctional compound. It is preferable to use a monomer, whereby hydrophilic cross-linked polymer fine particles having improved strength and shape retention are obtained.
  • the dispersion stabilizer is preferably added to the polymerization system after being dissolved or uniformly dispersed in a hydrophobic organic solvent forming a dispersion medium (oil phase).
  • the amount of the dispersion stabilizer used is 0.1 with respect to a total of 100 parts by mass of the vinyl monomer.
  • the amount is preferably ⁇ 50 parts by mass, more preferably 0.2 to 20 parts by mass, and still more preferably 0.5 to 10 parts by mass.
  • the amount of the dispersion stabilizer used is too small, the dispersion stability of the vinyl monomer in the polymerization system and the generated polymer particles will be poor, and the generated polymer particles will aggregate, settle, and the particle size will vary. Is likely to occur. On the other hand, if the amount of the dispersion stabilizer used is too large, the amount of by-product fine particles (1 ⁇ m or less) produced may increase.
  • the mass ratio of the oil phase (dispersion medium): water phase (dispersoid) in the polymerization system is 99: 1 to 20:80, particularly 95: 5 to 30:70. It is preferable to carry out the polymerization from the viewpoint of achieving both productivity, dispersion stability during polymerization, and control of the particle size of the polymer fine particles.
  • the aqueous phase (dispersoid) indicates the total of the vinyl-based monomer and water before polymerization and the generated polymer fine particles and water.
  • a dispersion stabilizer is added to a hydrophobic organic solvent forming a continuous phase (oil phase), while an aqueous vinyl monomer solution is prepared (dispersion phase), and a dispersion tank is prepared in advance. It is necessary to prepare a water-in-oil type (W / O type) emulsion.
  • the water-in-oil type (W / O type) emulsion is continuously fed to a continuous tank reactor to initiate the polymerization reaction.
  • the reverse phase suspension polymerization of the present invention is preferably carried out with stirring.
  • the stirring blade an anchor blade and a paddle blade are preferable, and a paddle blade is particularly preferable.
  • suspension polymerization depends on the stirring power, and if the stirring power is low, polymer fine particles having a target particle size cannot be obtained, or coalescence of monomer aqueous solution droplets cannot be suppressed, and a clean spherical shape is obtained. There may be a problem that fine particles cannot be obtained or a large number of aggregated particles are generated.
  • the stirring power per unit volume in a continuous tank reactor of the present invention is 0.5 kw / m 3 or more, and particularly preferably 1.0 kw / m 3 or more.
  • a redox polymerization initiator that uses an oxidizing agent and a reducing agent as the polymerization initiator.
  • the redox reaction can be initiated at low temperature, and the vinyl monomer concentration in the polymerization reaction solution can be increased and the polymerization rate can be increased.
  • the molecular weight of can be increased.
  • an oil-soluble oxidizing agent is preferably used.
  • the hydrophobic organic solvent in which the dispersion stabilizer is dissolved or dispersed is used as the continuous phase (oil phase) in the reverse phase suspension polymerization, the oil-soluble oxidant is contained in these continuous phases. It means an oxidizing agent that dissolves.
  • the oil-soluble oxidizing agent preferably has an octanol / water partition coefficient (logPow) of ⁇ 1.4 or more, more preferably 0.0 or more, as defined in Japanese Industrial Standard Z7260-107 and OECD TEST Guideline 107. Those of 1.0 or more are particularly preferable.
  • logPow octanol / water partition coefficient
  • reducing agent known reducing agents can be used.
  • sodium sulfite, sodium hydrogen sulfite, and sodium hydrosulfite are preferable, and sodium hydrosulfite is particularly preferable.
  • the method for supplying the oxidizing agent and the reducing agent is such that either a water-in-oil type (W / O type) emulsion prepared in a dispersion tank is mixed with either an oxidizing agent or a reducing agent in the dispersion tank, while a continuous tank type is used. It is preferred to start the polymerization by feeding the other initiator in the reactor. Particularly preferably, an oxidizing agent is mixed in advance with a water-in-oil type (W / O type) emulsion, and the reducing agent is supplied in a continuous tank reactor.
  • W / O type water-in-oil type
  • the amount of the polymerization initiator used can be adjusted according to the type of vinyl monomer used, the particle size and molecular weight of the resulting polymer fine particles, etc., but the total amount of vinyl monomers is 100 mol.
  • the amount of the oxidizing agent used is preferably 0.001 to 0.15 mol, particularly preferably 0.003 to 0.07 mol.
  • the ratio of the oxidizing agent and the reducing agent is not particularly limited, but the oxidizing agent: reducing agent is preferably 1.0: 0.25 to 15.0, and particularly preferably 1.0: 1. 0 to 10.0. If it is out of the above range, the reaction rate of the monomer is reduced, the chain length of the polymer constituting the particles is shortened, or the catalyst remains even after the end of the weight, etc. May occur.
  • the temperature of the reaction solution at the start of the polymerization is preferably 0 to 40 ° C, more preferably 5 to 30 ° C, and more preferably 10 to 25 ° C. Particularly preferred.
  • the reaction start temperature is lower than 0 ° C., freezing of the polymerization equipment and the reaction solution becomes a problem, and the cost required for cooling becomes great.
  • the reaction start temperature exceeds 40 ° C., it is necessary to reduce the amount of monomer to be supplied from the viewpoint of safety, resulting in a great production cost.
  • the residence time is shortened as much as possible by arranging them in multiple stages in series, and the coalescence frequency of polymer fine particles and vinyl monomers in the reactor is reduced. It is possible to prevent the formation of aggregates.
  • two or more tank reactors connected in series are used, and more preferably, two or more tank reactors connected in series.
  • the residence time of each reactor is shortened as much as possible, so that the coalescence frequency of the polymer fine particles and the vinyl monomer in the reactor is reduced, and the aggregation during the polymerization It is desirable to prevent the production of objects.
  • the residence time of at least the first reaction tank is preferably 10 minutes or less, more preferably 5 minutes or less, and particularly preferably 30 seconds or less. If the residence time exceeds 10 minutes, the formation of aggregates during polymerization may increase, and if the residence time is extremely shortened, the polymerization rate deteriorates and a large number of reactor stages are required. The above is preferable.
  • the volume fraction of the dispersed phase in the reactor prevents coalescence between the monomers in the reactor and the formation of aggregates and huge single particles during polymerization due to the coalescence of the polymer fine particles and the monomer. Is preferably 5 to 30%, more preferably 20 to 25%. If the volume fraction of the dispersed phase in the reactor exceeds 30%, the formation of aggregates during polymerization may increase, and if the volume fraction of the dispersed phase is less than 5%, productivity is lowered, which is not preferable. .
  • the dispersion medium is continuously supplied to the wall surface of the gas phase portion of the reactor for washing.
  • the dispersion medium (continuous phase) that is the cleaning liquid is preferably supplied by spraying, ringing, or the like, but more preferably, the cleaning liquid is sprayed onto the wall surface by supplying the cleaning liquid to the dispersion plate attached to the stirring shaft.
  • the average particle size of the polymer fine particles obtained is preferably 2 to 150 ⁇ m, more preferably 2 to 100 ⁇ m, and even more preferably 5 to 70 ⁇ m. If the average particle size is less than 2 ⁇ m, there is a risk that the particles will have insufficient slipperiness or anti-blocking function. May cause problems. In addition, since the interface area of a continuous phase and a dispersed phase becomes large, so that the magnitude
  • the size of the polymer fine particles is important under the conditions used. When the polymer fine particles are applied as water-swelling particles, the size at the time of water swelling is preferably in the above range.
  • the polymer fine particles are preferably crosslinked, and the polymer constituting the fine particles can be made into a crosslinked structure by copolymerizing the polyfunctional vinyl monomer as described above. It is also possible to adjust the degree of crosslinking by reacting a vinyl monomer having a functional group with reverse phase suspension polymerization and then reacting with a crosslinking agent. As an example, a method of crosslinking polymer fine particles of a monomer having a carboxyl group with ethylene glycol diglycidyl ether can be mentioned. In addition, the polymer can be cross-linked by a known method such as ion-bonding cross-linking via polyvalent metal ions or covalent cross-linking cross-linked by a method such as radiation irradiation.
  • the polymer fine particles obtained by the above crosslinking method are polymer fine particles having a crosslink density of 0.5 mol% or more, the characteristics can be exhibited in various applications as described above. Polymer fine particles having a crosslinking density of 5 mol% or more are preferred.
  • a dry powder of polymer fine particles can be obtained by a known method.
  • the dispersion is heated and decompressed to remove volatiles to obtain a dry powder.
  • solid dispersion and washing are performed by filtration and centrifugation to remove the dispersion stabilizer and unreacted monomers, followed by drying. You can also choose how to do. It is preferable to perform the washing step because the primary dispersibility of the fine particles after drying is improved.
  • reverse phase suspension polymerization since water is contained in the dispersed phase, it is preferable to remove water by azeotropic distillation or the like before drying. By removing water in advance, inter-particle fusion during drying can be prevented, and the primary dispersibility of the particles after drying is improved.
  • the average particle size in the state of saturated swelling with water is 2 to 100 ⁇ m, and the proportion of particles having a particle size of 150 ⁇ m or more in the state of saturated swelling with water is 1.0% by mass or less.
  • Certain polymer fine particles can be produced smoothly. Such polymer fine particles can remarkably exhibit the characteristics in various applications.
  • the proportion of particles having a water absorption ratio of 5 to 50 times, an average particle diameter of 5 to 70 ⁇ m when saturated and swollen with water, and a particle diameter of 150 ⁇ m or more when saturated and swollen with water It is also possible to produce polymer fine particles of 0.3% by mass or less, and this polymer becomes polymer fine particles that exhibit extremely excellent characteristics in various applications.
  • the water absorption ratio of the polymer fine particles in this specification the average particle size in the saturated swelling state with water, and the ratio of particles having a particle size of 150 ⁇ m or more in the saturated swelling state with water are described in the Examples section below. The value measured or determined by the method described.
  • part means part by mass
  • % means mass%
  • Production Example 1 Production of Macromonomer Compositions UM-1 and UM-1HP
  • LMA lauryl methacrylate
  • AA acrylic acid
  • MEK methyl ethyl ketone
  • DTBP ditertiary butylpar
  • the recovery start point was 60 minutes after the reactor internal temperature was stabilized at 235 ° C., and the reaction was continued for 48 minutes thereafter to recover the macromonomer composition UM-1. During this time, 2.34 kg of the monomer mixture was supplied to the reactor, and 1.92 kg of the macromonomer composition was recovered from the thin film evaporator. In addition, 0.39 kg of distillate was recovered in the distillate tank. When the distillate was analyzed by gas chromatography, LMA 31.1 parts, AA 16.4 parts, other solvents, etc. were 52.5 parts with respect to 100 parts of distillate.
  • the monomer reaction rate is 90.2% from the supply amount and composition of the monomer mixture, the recovery amount of the macromonomer composition, the recovery amount and composition of the distillate, and the composition of the macromonomer composition UM-1
  • the molecular weight of the macromonomer composition UM-1 was measured by gel permeation chromatography (hereinafter referred to as GPC) using tetrahydrofuran as an eluent
  • Mw weight average molecular weight
  • Mn number average molecular weight in terms of polystyrene
  • Mn concentration of the terminal ethylenically unsaturated bond in the macromonomer composition was measured by 1 H-NMR measurement of the macromonomer composition.
  • the terminal ethylenically unsaturated bond introduction rate of macromonomer composition UM-1 (hereinafter, F value) was calculated to be 97%.
  • the prepared macromonomer composition UM-1 was dissolved in an appropriate amount of n-heptane by heating, and then n-heptane was added so that the solid content was 30.0 ⁇ 0.5%.
  • An n-heptane solution UM-1HP was prepared.
  • solid content was measured by the heating fraction after heating at 150 degreeC for 1 hour.
  • the commercially available industrial product was used as it was, without performing processes, such as refinement
  • Example 1 Production of polymer fine particles RT-1 The oil phase was adjusted by adjusting 6.3 parts of UM-1HP produced in Production Example 1 as a dispersion stabilizer (1.9 parts as a pure content of UM-1), and After 2.8 parts of sorbitan monooleate (Reodol AO-10 manufactured by Kao Corporation) and 554.5 parts of n-heptane as a polymerization solvent were added, the mixture was stirred and mixed for 30 minutes while maintaining the temperature of the solution at 40 ° C. And cooled to 20 ° C.
  • the aqueous phase was adjusted in a separate container with AA 100.0 parts, Aronix M-243 (manufactured by Toagosei Co., Ltd., polyethylene glycol diacrylate, average molecular weight 425) 15.9 parts (in monofunctional monomer) And 95.0 parts of ion-exchanged water were added and stirred and uniformly dissolved. Further, while cooling so that the temperature of the mixed solution was kept at 40 ° C. or lower, 70.8 parts of 25% aqueous ammonia was slowly added to neutralize to obtain a monomer mixed solution. The adjusted water phase and the adjusted oil phase were merged before the first dispersion tank and supplied to the multistage dispersion tank.
  • An emulsifier (Cleamix CLM-0.8S manufactured by M Technique Co., Ltd.) was disposed in the first dispersion tank, and a membrane emulsifier (SPG Techno Co., Ltd.) was disposed in the second dispersion tank.
  • a membrane emulsifier (SPG Techno Co., Ltd.) was disposed in the second dispersion tank.
  • SPG Shirasu porous glass
  • the reactor was equipped with a stirring mechanism consisting of one stage of a pitched paddle type stirring blade, and further equipped with a thermometer, a nitrogen introduction pipe, and a catalyst supply pipe. Three reactors (all of which had a capacity of 200 ml) were arranged in series.
  • the polymerization initiator was supplied from a supply pipe on the side of the reactor.
  • the rotational speed of the emulsifier was set to 2400 rpm, the SPG membrane pore size was set to 30 ⁇ m, and the stirring blades of each tank reactor were set to 510 rpm.
  • the prepared oil phase was supplied at 300 grams per minute, and the prepared water phase Is supplied at 150 g per minute, and oil-soluble oxidizer Parkmill H80 (manufactured by NOF Corporation, cumene hydroperoxide 0.027 parts, n-heptane 1.3 parts heptane solution of Parkmill H80) It was continuously fed at 1.3 grams per minute to the emulsifier which is one dispersion tank.
  • the internal temperature of the emulsifier was kept at 20 ° C.
  • the volume fraction of the dispersed phase in the reaction vessel is 25%.
  • the solution was passed through a membrane emulsifying device, and nitrogen was blown into a water-in-oil (W / O) emulsion having a dispersed droplet diameter to remove oxygen in the dispersion, and the mixture was supplied to the reactor by overflow.
  • An aqueous solution of 0.18 part of hydrosulfite sodium (Na) and 1.3 parts of ion-exchanged water was added to the first reaction tank at a rate of 1.4 grams per minute from the inlet provided on the side of the reactor.
  • n-heptane was supplied at 14 grams per minute to a dispersion plate attached to a stirring shaft.
  • the temperature in the first reaction tank reached 35 ° C.
  • the heptane solution of Parkmill H80 was added at 1.3 g per minute.
  • the park mill H80 was added to the third reaction tank at 1.3 g per minute. The residence time in each reactor was 20 seconds.
  • the dispersion in oil which is a mixture of the polymer fine particles of RT-1 and the oil phase
  • the dispersion was filtered using a filter having an opening of 75 ⁇ m.
  • the filterability was very good and it was possible to filter to the end without clogging.
  • the degree of resin adhesion to the inner wall surface of the reactor was confirmed after the completion of the extraction, but the adhesion was only slightly observed at the position in contact with the liquid surface of the dispersion, and it was confirmed that the polymer fine particles RT-1 can be stably produced. It was done.
  • a part of a dispersion of RT-1 in oil was sampled and observed with a digital microscope (Hilox, KH-3000) at a magnification of 420 times.
  • a group of spherical fine particles having a distribution centered around 10 to 20 ⁇ m was confirmed.
  • a photograph is shown in FIG. Aggregated particle groups in which a plurality of particles were combined were not observed.
  • the sample obtained by drying the dispersion in oil at 110 ° C. for 1 hour was measured for water absorption ratio (see Analytical condition (2) for polymer fine particles), and the result was 20.2 times.
  • the polymer fine particle RT-1 has a water absorption performance, maintains a spherical shape even during water absorption swelling, and is primarily dispersed in water. Further, the RT-1 dispersion was heated, and water and heptane contained in the particles were azeotropically dehydrated to a dehydration rate of 95%, and then the solvent was removed and the amount of wet sieve residue (polymer) As a result of measuring the analysis conditions (4) of the fine particles, it was 0.02% by mass. It was confirmed that the polymer fine particles RT-1 did not substantially contain coarse particles exceeding 150 ⁇ m even in the state of water saturation swelling after azeotropic dehydration.
  • Example 2 Production of Polymer Fine Particles RT-2
  • the conditions were the same as those in Example 1 except that the rotational speed of the emulsifier was 4500 rpm and the SPG membrane pore diameter was 20 ⁇ m.
  • Part of a dispersion of RT-2 in oil was sampled and observed with a digital microscope (Hilox, KH-3000) at a magnification of 420 times.
  • a group of spherical fine particles having a distribution centered around 5 to 10 ⁇ m was confirmed.
  • a photograph is shown in FIG. Aggregated particle groups in which a plurality of particles were combined were not observed.
  • the obtained particle size distribution had a single peak, and the water-saturated swollen particle size was 19.1 ⁇ m on a volume basis and 15.5 ⁇ m on a number basis. Therefore, the ratio of the volume-based average particle size and the number-based average particle size representing the sharpness of the distribution is as small as 1.23.
  • the particle size range is 9 to 51 ⁇ m. It was confirmed that the polymer fine particle RT-2 has a water absorption performance, maintains a spherical shape even during water absorption swelling, and is primarily dispersed in water. Further, the RT-2 dispersion is heated to azeotropically evaporate water and heptane contained in the particles, thereby dehydrating to a dehydration rate of 95%.
  • the degree of resin adhesion to the inner wall surface of the reactor was confirmed after the completion of the extraction, but the adhesion was only slightly observed at the position in contact with the liquid surface of the dispersion, and it was confirmed that the polymer fine particles RT-2 could be produced stably. It was done.
  • Example 3 Production of Polymer Fine Particles RT-3
  • First reaction tank residence time was 1 minute, water-in-oil type (W / O type) emulsion supply amount and polymerization initiator supply amount were 1/0 of RT-2 production.
  • the swollen particle size which is a volume-based average particle size, was 14.1 ⁇ m, and the ratio of the volume-based swollen particle size to the number-based swollen particle size was 1.
  • Polymer fine particles to be 23 were produced.
  • the dispersion in oil which is a mixture of the polymer fine particles of RT-3 and the oil phase
  • the dispersion was filtered using a filter having an opening of 75 ⁇ m.
  • the filterability was very good and it was possible to filter to the end without clogging.
  • the degree of resin adhesion to the inner wall surface of the reactor was confirmed after the completion of the extraction, but the adhesion was only slightly observed at the position in contact with the liquid surface of the dispersion, and it was confirmed that polymer fine particles RT-3 could be stably produced. It was done.
  • Example 4 Production of Polymer Fine Particles RT-4 As a result of the same conditions as in Example 3 except that the residence time of the first reaction tank was 5 minutes and the capacity of the first reaction tank was 1000 ml, the volume-based average particles Polymer fine particles having a swelled particle size of 15.0 ⁇ m and a ratio of the volume-based swelled particle size to the number-based swelled particle size of 1.25 were obtained.
  • the dispersion in oil which is a mixture of the polymer fine particles of RT-4 and the oil phase, was extracted from the reactor, the dispersion was filtered using a filter having an opening of 75 ⁇ m. The filterability was very good and it was possible to filter to the end without clogging.
  • the degree of resin adhesion to the inner wall surface of the reactor was confirmed after the completion of the extraction, but the adhesion was only slightly observed at the position in contact with the liquid surface of the dispersion, and it was confirmed that the polymer fine particles RT-4 could be stably produced. It was done.
  • Example 5 Production of polymer fine particle RT-5 As a result of the same conditions as in Example 3 except that the residence time of the first reaction vessel was 10 minutes and the volume of the first reaction vessel was 2000 ml, the average particle diameter based on volume Polymer fine particles having a swelling particle size of 14.2 ⁇ m and a ratio of the volume-based swelling particle number to the number-based swelling particle size of 1.32 were obtained.
  • the dispersion in oil which is a mixture of the polymer particles of RT-5 and the oil phase, was withdrawn from the reactor, the dispersion was filtered using a filter having an opening of 75 ⁇ m. The filterability was very good and it was possible to filter to the end without clogging.
  • the degree of resin adhesion to the inner wall surface of the reactor was confirmed after the completion of the extraction, but the adhesion was only slightly observed at the position in contact with the liquid surface of the dispersion, and it was confirmed that the polymer fine particles RT-5 could be produced stably. It was done.
  • Example 6 Production of Polymer Fine Particles RT-6 First reaction tank residence time of 30 minutes, first reaction tank capacity of 3000 ml, water-in-oil (W / O type) emulsion supply amount and polymerization initiator supply As a result of using the same conditions as in Example 3 except that the amount was 1/2 of that of RT-3 production, the swollen particle size, which is the average particle size based on volume, was 14.2 ⁇ m, and the swollen particle size based on volume and the number basis swelling Polymer fine particles having a particle size ratio of 1.24 were produced.
  • W / O type water-in-oil
  • the dispersion in oil that is a mixture of the polymer fine particles of RT-6 and the oil phase was withdrawn from the reactor, the dispersion was filtered using a filter having an opening of 75 ⁇ m.
  • the filterability was very good and it was possible to filter to the end without clogging.
  • the degree of resin adhesion to the inner wall surface of the reactor was confirmed after completion of the extraction, a large amount of adhesion was confirmed at a position in contact with the liquid surface of the dispersion, and a large amount of adhesion was also confirmed at the tank outlet pipe.
  • Example 7 Production of Polymer Fine Particles RT-7 First reaction tank residence time of 60 minutes, first reaction tank capacity of 3000 ml, water-in-oil (W / O type) emulsion supply amount and supply of polymerization initiator As a result of using the same conditions as in Example 3 except that the amount was 1/4 of that of RT-3 production, the swollen particle size, which is a volume-based average particle size, was 13.4 ⁇ m, and the volume-based swollen particle size and number-based swelling Polymer fine particles having a particle size ratio of 1.31 were obtained.
  • W / O type water-in-oil
  • the dispersion in oil which is a mixture of the polymer fine particles of RT-7 and the oil phase
  • the dispersion was filtered using a filter having an opening of 75 ⁇ m.
  • the filterability was very good and it was possible to filter to the end without clogging.
  • the degree of resin adhesion to the inner wall surface of the reactor was confirmed after completion of the extraction, a large amount of adhesion was confirmed at a position in contact with the liquid surface of the dispersion, and a large amount of adhesion was also confirmed at the tank outlet pipe.
  • Example 8 Production of polymer fine particles RT-8 As a result of the same conditions as in Example 2 except that the volume fraction of the dispersed phase in the reaction vessel was set to 30%, the swollen particle size, which is a volume-based average particle size, was obtained. 18.5 ⁇ m, and on a number basis, it is 11.8 ⁇ m. Therefore, the ratio of the volume-based average particle size to the number-based average particle size is as large as 1.57. Polymer fine particles having a wide particle size distribution with a particle size range of 8 to 262 ⁇ m were obtained.
  • Example 9 Production of Polymer Fine Particles RT-9
  • the results were the same as in Example 2 except that the oxidizing agent was perbutyl H69 (manufactured by NOF Corporation, 69% solution of t-butyl hydroperoxide).
  • the swollen particle diameter, which is an average particle diameter, is 19.2 ⁇ m, and the number standard is 14.7 ⁇ m. Therefore, the ratio of the volume-based average particle size to the number-based average particle size is 1.31. Polymer fine particles having a wide particle size distribution with a particle size range of 9 to 133 ⁇ m were obtained.
  • Example 10 Production of Polymer Fine Particles RT-10
  • the oxidizing agent was ammonium persulfate.
  • the average residence time in the first reaction tank is 30 minutes, the capacity of the first reaction tank is 3000 ml, the water-in-oil (W / O type) emulsion supply amount and the polymerization initiator supply amount are 1/3 of RT-3 production.
  • the swollen particle size which is an average particle size based on volume, was 11.5 ⁇ m, and the number basis was 8.60 ⁇ m.
  • the ratio of the volume-based average particle size to the number-based average particle size is 1.34. Polymer fine particles having a particle size range of 5 to 34 ⁇ m were obtained.
  • the dispersion in oil which is a mixture of the polymer particles of RT-10 and the oil phase
  • the dispersion was filtered using a filter having an opening of 75 ⁇ m.
  • the filterability was very good and it was possible to filter to the end without clogging.
  • the degree of resin adhesion to the inner wall surface of the reactor was confirmed after completion of the extraction, a large amount of adhesion was confirmed at a position in contact with the liquid surface of the dispersion, and a large amount of adhesion was also confirmed at the tank outlet pipe.
  • Comparative Example 1 Production of Polymer Fine Particles RT-11 The same conditions as in Example 3 were used except that a tubular reactor was used instead of the tank reactor. The residence time was also 1 minute as in Example 3. As a result, the swollen particle diameter, which is a volume-based average particle diameter, is 14.7 ⁇ m. The ratio of the volume-based swollen particle diameter to the number-based swollen particle diameter was 1.31, respectively, but the first reaction tube and the reaction tube outlet piping were blocked 60 minutes after the start of polymerization.
  • the water absorption ratio was measured by the following method.
  • a measuring apparatus is shown in FIG.
  • the measuring device is composed of ⁇ 1> to ⁇ 3> in FIG. ⁇ 1> It consists of a burette 1 with a branch pipe for venting air, a pinch cock 2, a silicon tube 3 and a polytetrafluoroethylene tube 4.
  • a support cylinder 8 having a large number of holes in the bottom surface on the funnel 5, and a filter paper 10 for the apparatus on the support cylinder 8.
  • a sample 6 of polymer fine particles is sandwiched between two sample fixing filter papers 7, and the sample fixing filter papers are fixed by an adhesive tape 9. All filter papers used are ADVANTEC No. 2 The inner diameter is 55 mm.
  • ⁇ 1> and ⁇ 2> are connected by the silicon tube 3. Further, the funnel 5 and the column cylinder 8 are fixed to the burette 1 at a fixed height, and the lower end of the polytetrafluoroethylene tube 4 installed inside the buret branch pipe and the bottom surface of the column cylinder 8 have the same height. (Dotted line in FIG. 3).
  • the measurement method will be described below.
  • the pinch cock 2 in ⁇ 1> is removed, and ion exchange water is poured from the upper part of the burette 1 through the silicon tube 3 so as to be filled with the ion exchange water 12 from the burette 1 to the filter paper 10 for the apparatus.
  • the pinch cock 2 is closed, and air is removed from the polytetrafluoroethylene tube 4 connected to the buret branch pipe with a rubber stopper.
  • the ion exchange water 12 is continuously supplied from the burette 1 to the filter paper 10 for the apparatus.
  • the reading (a) of the scale of the burette 1 is recorded.
  • the water absorption amount of only two filter papers 7 not including the water-absorbing polymer sample is measured (d).
  • the above operation was performed, and the water absorption ratio was calculated from the following formula.
  • the value measured by the method of (1) was used for solid content used for calculation.
  • the dispersion is poured through a sieve having a diameter of 70 mm and an opening of 150 ⁇ m, and the residue on the sieve is carefully spilled with a sufficient amount of water so as not to spill from the sieve. wash.
  • the sieve after measurement is dried at 150 ° C. for 30 minutes in a ventilation dryer, and then allowed to cool in a desiccator, and the sieve weight after drying (ie, sieve + residue weight) is measured.
  • the wet sieve residue (%) calculated by the following formula was used as the amount of particles having a water-swelled particle size of 150 ⁇ m or more.
  • the operations other than the above were in accordance with JIS K 0069-1992 (chemical product screening test method).
  • the production method of the present invention has no resin adhesion to the inner wall of the reactor accompanying the polymerization reaction, and the filterability of the polymerization slurry is good. Well, it was found that it can be produced without aggregation of particles. On the other hand, in Comparative Example 1 using a tubular reactor, as the polymerization reaction progressed, the polymer particles adhered to the piping due to agglomeration, and the reaction tube was blocked in a short time after the reaction started.
  • high-quality spherical hydrophilic polymer fine particles having extremely uniform particle diameters of polymer fine particles compared with the conventional method are obtained with extremely high dispersion stability and polymerization stability.
  • the polymer particles can be produced with high productivity without causing aggregation or agglomeration of the polymer particles or adhesion to the polymerization apparatus during or after the polymerization.
  • the production method of the present invention even when hydrophilic crosslinked polymer fine particles having a high degree of crosslinking are produced using a large amount of polyfunctional vinyl monomer, the polymer particles are aggregated, agglomerated and polymerized.
  • High-quality hydrophilic crosslinked polymer fine particles having a uniform particle size can be produced with high productivity without causing adhesion to the apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

【課題】本発明の目的は、逆相懸濁重合によって、粒径の揃った数μm~数十μmオーダーの粒子径を有する高品質の重合体微粒子を、粒子同士の凝集などを生ずることなく、良好な分散安定性を維持しながら、生産性良く製造する方法を提供することである。 【解決手段】ビニル系単量体を逆相懸濁重合させて重合体微粒子を製造する方法であって、あらかじめ分散槽において有機溶媒を連続相とし、ビニル系単量体水溶液を分散相とする油中水滴型(W/O型)エマルションを調製して、該油中水滴型(W/O型)エマルションを連続槽型反応器に連続供給して逆相懸濁重合を行なう重合体微粒子の製造方法。    

Description

重合体微粒子の製造方法
 本発明は、重合体微粒子の製造方法に関する。より詳細には、あらかじめ分散槽でエマルション化したビニル系単量体を、連続槽型反応器を使用して連続逆相懸濁重合させることによる、粒径の揃った、特定範囲の粒径を有する高品質の重合体微粒子を、粒子同士の凝集などを生ずることなく、スケールアップしても安定した状態で生産性良く製造する方法に関する。
 ミクロンサイズの球状重合体微粒子は、化粧品添加剤、各種化学物質の担持体、スペーサー、クロマトグラフィー用のカラム充填剤、光拡散剤、多孔質化剤、軽量化剤、ブロッキング防止剤、記録紙用表面改質剤などに利用されている。
 その中でも、親水性の架橋重合体微粒子は、含水ゲル微粒子として利用でき、化粧品添加剤、担持体、多孔質化剤、軽量化剤、記録紙用表面改質剤として有用である。
 ビニル系単量体の逆相懸濁重合によって重合体粒子を製造することは従来から行われており、逆相懸濁重合によって親水性の架橋重合体粒子を製造する従来技術としては、分散剤として特定のHLBを有する化合物を用い、重合前にモノマーの油中水型微小分散滴を形成しておき、これを滴下しつつ重合させる方法(特許文献1)、吸水性ポリマー粒子、油溶性重合開始剤及び分散剤の存在下、逆相懸濁重合させ、重合中又は重合後に、疎水性ビニルモノマー及び油溶性重合開始剤を添加し重合させる方法(特許文献2)、親水性ビニルモノマーを、1種以上の官能基を有するシリコーン化合物を反応系に存在させ、逆相懸濁重合させる方法(特許文献3)などが知られている。
 しかしながら、これらの従来技術による場合は、回分式(バッチ式)および連続操作の中間的性格をもつ半回分操作であり、重合時や重合後の重合体粒子の分散安定性が不十分であったり、得られる重合体粒子の粒径が不揃いであったり、得られる重合体粒子の親水性が低下するなどの問題があった。特に、多官能ビニル系単量体の使用割合を多くして、架橋度の高い親水性架橋重合体粒子を逆相懸濁重合で製造する場合には、重合安定性の低下が大きく、粒子の凝集、得られる重合体粒子の品質低下、生産性の低下などの問題が生じ易いものであった。
 上記いずれの製造方法も70℃以上の高温にした反応器に単量体乳化液を1時間以上かけて連続的に供給して重合体微粒子の抜き出しを行わずそのまま槽内で重合および熟成させる方法であるため、粒子間の凝集などが生じやすく、得られる重合体粒子の粒径が不揃いとなり、また、多官能ビニル系単量体などの架橋剤を多く使用した場合には、未反応の架橋剤の大部分が連続相側に溶出しやすくなり、その状態で重合を続けることにより粒子が凝集し、上記のような重合体粒子の品質低下につながると考えられる。
 さらに、特定な吸水量を有する吸水性ポリマーの製造において、逆相懸濁重合による吸水性ポリマー粒子をレドックス重合開始剤を用いて製造する例示があり、油溶性酸化剤であるt-ブチルヒドロキシパーオキシドを供給した後に水溶性還元剤である重亜硫酸ナトリウムを供給して重合体微粒子を製造することが記載されている(特許文献4)
 この製造方法によれば、前記従来技術に比べて微粒子の粒径制御は精密に行うことが出来る。しかしながら、水溶性還元剤が十分に拡散しない段階で重合反応が起こるため、粒径の揃った、特定範囲の粒径を有する高品質の重合体微粒子を、粒子同士の凝集などを生ずることなく、安定した状態で生産性良く製造する方法としては満足するものではない。
 また、上記従来方法はバッチ生産方式であるため、1回あたりの単量体の仕込み量を多くした場合には、重合熱によって反応液が沸騰し反応器内が加圧状態となり危険性がある。そのため、溶剤、水、単量体など原料の熱容量と重合熱のバランスをとりながら安全な範囲で製造するため、1回あたりの製品取得量が制限され、生産性が低いという課題もあった。
 一方、生産性を上げるために懸濁重合の連続化に関して、内部に分散媒が充填されると共に上部にモノマー導入口が設けられ下部にポリマー排出口が設けられた反応器を用いる連続重合装置(特許文献6)が知られている。
 しかしながら、上記反応器は管型反応器であり、重合中に攪拌しない構造であるため、連続式逆相懸濁重合に適応せず、したがって、粒径の揃った、特定範囲の粒径を有する高品質の重合体微粒子を生産できる装置ではない。
 ここで、反応装置の定義として、著書「反応工学」(培風館)に記載してあるように、連続操作は、反応原料を連続的に反応器入口に供給して反応器出口より製品を連続的に抜き出す操作方法であり、槽型反応器および管型反応器はともに連続的に操作できる。一方、半回分操作は、回分および連続操作の中間的性格をもつ操作方法である。例えば、反応原料の一成分Bを最初に槽型反応器に仕込んでおき、そこに別の原料成分Aを連続的あるいは間欠的に流入させながら反応を進行させる操作法は、成分Bについては回分式であるが、成分Aに関しては連続式と考えられるから、半回分操作になる。特許文献1~3は、この半回分操作にあたる。
特開平5-222107号公報 特開2003-301019号公報 特開2003-34725号公報 特開2004-262747号公報 特開平9-43898号公報
 本発明の目的は、連続槽型反応器を利用した連続式逆相懸濁重合によって、粒径の揃った数μm~数十μmオーダーの粒子径を有する高品質の重合体微粒子を、粒子同士の凝集などを生ずることなく、良好な分散安定性を維持しながら、生産性を上げて製造する方法を提供することである。
 特に、本発明は、架橋度の高い親水性架橋重合体微粒子を製造する場合であっても、高い重合安定性で、懸濁安定性を維持しながら、粒径の揃った高品質の重合体微粒子を、生産性よく、円滑に製造することのできる方法を提供することである。
 本発明者らは、前記目的を達成するために鋭意検討を重ねてきた。特に、ビニル系単量体を逆相懸濁重合させて重合体微粒子を製造するに際し、従来技術のバッチ生産式に比べて生産性に優れる連続的に逆相懸濁重合を行うための条件を鋭意検討した結果、あらかじめ分散槽でビニル系単量体などを油中水滴型(W/O型)エマルション化させながら、該エマルションを連続槽型反応器で連続的に重合させることにより、数μm~数十μmオーダーの粒径を有し、しかも粒径の揃った、高品質の球状の重合体微粒子を、重合時や重合後に重合体粒子の凝集、塊化、重合装置への付着などを生ずることなく、良好な分散安定性、重合安定性を維持しながら、極めて生産性良く製造できることを見出した。
 すなわち、上記課題を解決するための本発明は、以下に記載するものである。
 第1発明は、ビニル系単量体を逆相懸濁重合させて重合体微粒子を製造する方法であって、あらかじめ分散槽において、有機溶媒を連続相とし、ビニル系単量体水溶液を分散相とする油中水滴型(W/O型)エマルションを調製して、該油中水滴型(W/O型)エマルションを連続槽型反応器に連続供給して逆相懸濁重合を行なう重合体微粒子の製造方法である。
 第2発明は、重合開始剤としてレドックス重合触媒を使用することを特徴とする第1発明に記載の重合体微粒子の製造方法である。
 第3発明は、レドックス重合触媒の酸化剤が油溶性酸化剤である第2発明に記載の重合体微粒子の製造方法である。
 第4発明は、少なくとも2個以上の連続槽型反応器を直列に連結させた反応槽を用いることを特徴とする第1発明~第3発明のいずれかに記載の重合体微粒子の製造方法である。
 第5発明は、少なくとも第一反応槽の反応液の滞留時間が10分以下であることを特徴とする第1発明~第4発明のいずれかに記載の重合体微粒子の製造方法である。
 第6発明は、各反応槽において、反応液中の分散相の体積割合が30%以下であることを特徴とする第1発明~第5発明のいずれかに記載の重合体微粒子の製造方法である。
 第7発明は、少なくとも1つの攪拌装置を有する分散槽と少なくとも1つの膜乳化装置を有する分散槽を用いて、油中水滴型(W/O型)エマルションを調製することを特徴とする第1発明~第6発明のいずれかに記載の重合体微粒子の製造方法である。
 第8発明は、膜乳化装置以降のいずれかの段階で、油中水滴型(W/O型)エマルションの脱気を行うことを特徴とする第1発明~第7発明のいずれかに記載の重合体微粒子の製造方法である。
 第9発明は、連続槽型反応器の気相部壁面に連続相成分を連続的に供給することを特徴とする第1発明~第8発明のいずれかに記載の重合体微粒子の製造方法である。
 第10発明は、分散槽において、酸化剤または還元剤のいずれか一方を油中水滴型(W/O型)エマルションに混合させることを特徴とする第1発明~第9発明のいずれかに記載の重合体微粒子の製造方法である。
 第11発明は、分散槽において、分散相の平均粒径が100μm以下の油中水滴型(W/O型)エマルションを調製することを特徴とする第1発明~第10発明のいずれかに記載の重合体微粒子の製造方法である。
 第12発明は、ビニル系単量体由来の重合体の末端にラジカル重合性不飽和基を有するマクロモノマーを分散安定剤として用いることを特徴とする第1発明~第11発明のいずれかに記載の重合体微粒子の製造方法。
 第13発明は、ビニル系単量体の少なくとも一部が、カルボキシル基、スルホン基およびアミド基から選ばれる極性基を有する第1発明~第12発明のいずれかに記載の重合体微粒子の製造方法である。
 第14発明は、ビニル系単量体が、2個以上のラジカル重合性不飽和基を有する多官能ビニル単量体を含むことを特徴とする第1発明~第13発明のいずれかに記載の重合体微粒子の製造方法である。
 第15発明は、単官能ビニル単量体と多官能ビニル単量体のモル比が100:0.1~100:10である第14発明に記載の重合体微粒子の製造方法である。
 第16発明は、逆相懸濁重合により製造される重合体微粒子が、0.5mol%以上の架橋密度を有する重合体微粒子である第1発明~第15発明のいずれかに記載の重合体微粒子の製造方法である。
 第17発明は、逆相懸濁重合により製造される重合体微粒子が、水で飽和膨潤した状態における平均粒子径が2~100μmであり、かつ水で飽和膨潤した状態において150μm以上の粒子径を有する粒子の割合が1.0質量%以下である重合体微粒子である第1発明~第16発明のいずれかに記載の重合体微粒子の製造方法である。
 第18発明は、逆相懸濁重合により製造される重合体微粒子が、5~50倍の吸水倍率を有し、水で飽和膨潤した状態における平均粒子径が5~70μmであり、かつ水による飽和膨潤状態において150μm以上の粒径を示す粒子の割合が0.3質量%以下の重合体微粒子である第1発明~第16発明のいずれかに記載の重合体微粒子の製造方法である。
 本発明の製造方法によれば、従来の方法と比較して格段に重合体微粒子の粒径が揃った、高品質の球状の親水性の重合体微粒子を、極めて高い分散安定性、重合安定性を維持しながら、重合時や重合後に重合体粒子の凝集、塊化、重合装置への付着などを生ずることなく、バッチ生産方式に比べて、極めて生産性良く製造することができる。そして、本発明の製造方法では、多官能ビニル系単量体を多量に用いて架橋度の高い親水性架橋重合体微粒子を製造する場合であっても、重合体粒子の凝集、塊化、重合装置への付着などを生ずることなく、粒径の揃った高品質の親水性架橋重合体微粒子を生産性よく製造することができる。さらに、生産性を高めるために、製造をスケールアップした条件で実施した場合にも、本発明の製造方法は品質の高い重合体微粒子を生産性を上げて製造することができる。
 さらに、本発明の連続式逆相懸濁重合によれば、バッチ式生産方式に比べて、容量の小さな反応器で重合反応を実施できるため、粒度分布がシャープな重合体微粒子が得られる。
重合体微粒子RT-1のマイクロスコープ写真(重合後、油中分散液) 重合体微粒子RT-1のマイクロスコープ写真(重合後、水中分散液) 重合体微粒子RT-2のマイクロスコープ写真(重合後、油中分散液) 重合体微粒子RT-2のマイクロスコープ写真(重合後、水中分散液) 重合体微粒子の吸水倍率の測定に用いる装置を示す図である。 連続槽型反応器を直列連結したフロー図である。
符号の説明
1  ビュレット
2  ピンチコック
3  シリコーンチューブ
4  ポリテトラフルオロエチレンチューブ
5  ロート
6  試料(重合体微粒子)
7  試料(重合体微粒子)固定用濾紙
8  支柱円筒
9  粘着テープ
10 装置用濾紙
11 蓋
12 イオン交換水
13 第一分散槽
14 第二分散槽
15 第一反応槽
16 第二反応槽
17 第三反応槽 
18 油相供給配管
19 水相供給配管
20 酸化剤供給配管
21 還元剤供給配管
22 追加触媒供給配管
23 追加触媒供給配管
24 重合体微粒子送液配管
25 洗浄用油相成分供給配管
 以下、本発明の実施形態について詳細に説明する。
 本発明における「ビニル系単量体の逆相懸濁重合」は、油相を分散媒とし水相を分散質とする逆相懸濁重合を意味する。一般的には、親水性ビニル系単量体を用いて逆相懸濁重合する場合は、油相(疎水性有機溶媒よりなる分散媒)中に水相(親水性ビニル系単量体の水溶液)が水滴状に懸濁した油中水滴型(W/O型)の逆相懸濁重合で重合体微粒子を製造する。
 本発明のビニル系単量体の逆相懸濁重合は、あらかじめ調製した油中水滴型エマルションを連続槽型反応器に連続供給、連続抜き出しをしながら、ビニル系単量体の逆相懸濁重合を行うものである。
 本発明の製造方法として好ましい方法は、図6に示すような連続反応装置を使用して、あらかじめ分散槽(13:第一分散槽および14:第二分散槽)において、分散安定剤と有機溶媒により調整した連続相(油相)とビニル系単量体水溶液(分散相)から油中水滴型エマルションを調整し、さらに酸化剤を仕込んだ分散液(エマルション)を、連続槽型反応器(15:第一反応槽)に連続供給した後、連続槽型反応器に還元剤を供給することで重合を開始する。第一反応槽をオーバーフローした反応液が第二反応槽、さらに第三反応槽と連続的に反応液が移送され、重合反応が行われる。なお、第二反応槽、第三反応槽には必要に応じて重合率を高めるために酸化剤が追加される。
 分散槽としては、少なくとも1つの攪拌装置を有する分散槽と少なくとも1つの膜乳化機を有する分散槽を有するものが好ましく、粒径の揃った油中水滴型(W/O型)エマルションを得るためには、多段式分散槽であることが好ましい。
 攪拌装置としては、攪拌翼による撹拌、ホモジナイザー、超音波による撹拌、乳化機などがある。この中でもより好ましくは、乳化機を有する分散槽と膜乳化装置を有する分散槽を多段で用いることが好ましい。
 乳化機によってある程度の分散滴とし、さらに膜乳化装置によりビニル系単量体滴の大きさを調整する。膜乳化装置は、疎水性のミクロ多孔質膜体に油中水滴型(W/O型)エマルションを通過させ、さらに微粒化した油中水滴型(W/O型)エマルションを得るものである。乳化機の回転数と膜乳化装置のミクロ多孔質膜体の孔径を組み合わせることにより、ビニル系単量体の滴径が調整できる。そして、連続槽型反応器で重合を開始することにより重合体微粒子を得ることができる。
 本発明において、粒径の揃った数μm~数十μmオーダーの粒子径を有する高品質の重合体微粒子を製造するために、分散槽において、分散相の平均径が100μm以下の油中水滴型(W/O型)エマルションに調製しておくことが好ましい。
 本発明の逆相懸濁重合に用いるビニル系単量体としては、ラジカル重合性の親水性ビニル系単量体であればいずれでもよく、特に制限されない。例えば、カルボキシル基、アミノ基、リン酸基、スルホン酸基、アミド基、水酸基、4級アンモニウム基などの親水性基を有する親水性ビニル系単量体を使用することができる。これらの中でもカルボキシル基、スルホン酸基およびアミド基を有するビニル系単量体が、親水性が高く、吸水性能、保水性能に優れた重合体微粒子が得られるために好ましい。
 親水性ビニル系単量体の具体例としては、(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、イタコン酸モノブチル、マレイン酸モノブチル、シクロヘキサンジカルボン酸などのカルボキシル基を有するビニル系単量体またはそれらの(部分)アルカリ中和物;N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリルアミドなどのアミノ基を有するビニル系単量体またはそれらの(部分)酸中和物、もしくは(部分)4級化物;N-ビニルピロリドン、アクリロイルモルホリン;アシッドホスホオキシエチルメタクリレート、アシッドホスホオキシプロピルメタクリレート、3-クロロ-2-アシッドホスホオキシプロピルメタクリレートなどのリン酸基を有するビニル系単量体またはそれらの(部分)アルカリ中和物;2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、2-スルホエチル(メタ)アクリレート、2-(メタ)アクリロイルエタンスルホン酸、アリルスルホン酸、スチレンスルホン酸、ビニルスルホン酸、アリルホスホン酸、ビニルホスホン酸などのスルホン酸基またはホスホン酸基を有するビニル系単量体またはそれらの(部分)アルカリ中和物;(メタ)アクリルアミド、N,N-ジメチルアクリルアミド、N-イソプロピルアクリルアミド、N-メチロール(メタ)アクリルアミド、N-アルコキシメチル(メタ)アクリルアミド、(メタ)アクリロニトリル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピルなどのノニオン性親水性単量体を挙げることができ、これらの1種または2種以上を用いることができる。
 これらの中でも、(メタ)アクリル酸、(メタ)アクリルアミドおよび2-アクリルアミド-2-メチルプロパンスルホン酸の1種または2種以上を用いて逆相懸濁重合を行うことが、重合性に優れる点、および得られた重合体微粒子が吸水特性に優れる点からさらに好ましく、特に好ましくは(メタ)アクリル酸である。
 また、本発明では、逆相懸濁重合を行うにあたり、ビニル系単量体として、上記した単官能の親水性ビニル系単量体のうちの1種または2種以上と共に、ラジカル重合性の不飽和基を2個以上有する多官能ビニル系単量体を使用することができる。
 したがって、本発明でいう「ビニル系単量体」は、単官能ビニル系単量体および多官能ビニル系単量体の総称である。
 多官能ビニル系単量体としては、上記親水性ビニル系単量体とラジカル重合可能な基を2個以上有するビニル系単量体であればいずれでもよく、具体例として、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性物のトリ(メタ)アクリレートなどのポリオール類のジまたはトリ(メタ)アクリレート、メチレンビス(メタ)アクリルアミドなどのビスアミド類、ジビニルベンゼン、アリル(メタ)アクリレートなどを挙げることができ、これらの1種または2種以上を用いることができる。
 これらの中でも、多官能ビニル系単量体としてはポリエチレングリコールジアクリレート、メチレンビスアクリルアミドが、ベースをなす親水性ビニル系単量体および水の混合液に対する溶解度に優れ、高架橋密度を得るために使用量を多くする際に有利であり好ましく用いられ、特に好ましくはポリエチレングリコールジ(メタ)アクリレートである。
 上記多官能ビニル系単量体の使用割合は、使用するビニル系単量体の種類、得られる重合体微粒子の用途などに応じて異なり得るが、重合体微粒子に架橋特性が必要な場合には、使用される単官能ビニル系単量体の合計100モルに対して0.1~10モルであることが好ましく、0.2~8モルであることがより好ましく、0.5~5モルであることが更に好ましい。
 本発明の逆相懸濁重合における油相(分散媒)をなす疎水性有機溶媒として、例えば、炭素数6以上の脂肪族炭化水素溶媒、ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素溶媒、オクタメチルシクロテトラシロキサンなどのシリコーン系溶媒などを用いることができ、特に、ヘキサン、シクロヘキサンおよびn-ヘプタンが、ビニル系単量体および水の溶解度が小さく、かつ重合後に除去することが容易であることから好ましく用いられる。
 本発明の逆相懸濁重合では、親水性ビニル系単量体(およびその中和塩)は水に溶解させて水溶液にして重合系に加えるとよい。親水性ビニル系単量体を溶解した水溶液中における親水性ビニル系単量体の濃度は、5~80質量%、特に20~60質量%であることが、逆相懸濁重合が円滑に行われ、かつ生産性も良好であることから好ましい。
 逆相懸濁重合に用いる親水性ビニル系単量体が、カルボキシル基やスルホン酸基などの酸性基を有するビニル系単量体である場合は、親水性ビニル系単量体を水に加えた後、アンモニア水、水酸化ナトリウム水溶液、水酸化カリウム水溶液などのアルカリ水溶液でビニル系単量体中の酸性基を中和すると、親水性ビニル系単量体を良好に溶解した水溶液を調製することができる。
 本発明の製造方法において、分散安定剤は必須成分である。
 分散安定剤の具体例としては、マクロモノマー型分散安定剤、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステル、ソルビトール脂肪酸エステル、ポリオキシエチレンアルキルエーテル等のノニオン性界面活性剤が挙げられる。
 これらの中でも、マクロモノマー型分散安定剤を用いることが好ましい。マクロモノマー型分散安定剤は、ビニル系単量体由来の重合体の末端にラジカル重合性不飽和基を有するものである。
 また、マクロモノマー型分散安定剤とソルビタンモノオレエートおよびソルビタンモノパルミテートなどの、HLBが3~8である比較的疎水性が高いノニオン性界面活性剤を併用することが好ましく、これらは1種を併用しても、あるいは2種以上を併用しても良い。
 前記マクロモノマー型分散安定剤として好ましいマクロモノマーは、ビニル系単量体を150~350℃でラジカル重合して得られる、ビニル系単量体由来の重合体の末端に式(1);HC=C(X)-(式中、Xは1価の極性基)で表されるα置換型ビニル基を有するマクロモノマーおよび/またはビニル系単量体由来の重合体の末端に(メタ)アクリロイル基を有するマクロモノマーが、分散安定剤としての機能に優れていて好適であり、マクロモノマーの重量平均分子量は1000~30000であることが好ましく、マクロモノマーは親水性ビニル系単量体由来の構造単位と疎水性ビニル系単量体由来の構造単位の両方を有していることが好ましく、その際の疎水性ビニル系単量体由来の構造単位としては、(メタ)アクリル酸の炭素数8以上のアルキルエステルに由来する構造単位が好ましく、親水性ビニル系単量体由来の構造単位としてはカルボキシル基を有するビニル系単量体に由来する構造単位が好ましい。
 特に、マクロモノマー型分散安定剤を使用して、親水性ビニル系単量体を逆相懸濁重合させて親水性の重合体微粒子を製造する際には、単官能化合物と共に多官能ビニル系単量体を用いることが好ましく、それによって強度や形状保持性の向上した親水性の架橋した重合体微粒子が得られる。
 分散安定剤は分散媒(油相)をなす疎水性有機溶媒中に溶解、もしくは均一分散させて重合系に加えることが好ましい。
 分散安定剤の使用量は、良好な分散安定性を維持しながら、粒径の揃った親水性重合体微粒子を得るために、ビニル系単量体の合計100質量部に対して、0.1~50質量部であることが好ましく、0.2~20質量部であることがより好ましく、0.5~10質量部であることが更に好ましい。分散安定剤の使用量が少なすぎると、重合系でのビニル系単量体および生成した重合体微粒子の分散安定性が不良になり、生成した重合体微粒子同士の凝集、沈降、粒径のばらつきが生じ易くなる。一方、分散安定剤の使用量が多すぎると、副生微粒子(1μm以下)の生成量が多くなる場合がある。
 さらに、本発明の逆相懸濁重合では、重合系における油相(分散媒):水相(分散質)の質量比が99:1~20:80、特に95:5~30:70になるようにして重合を行うことが、生産性と重合時の分散安定性、および重合体微粒子の粒子径制御が両立できる点から好ましい。ここで、水相(分散質)は、重合前のビニル系単量体と水および生成した重合体微粒子と水の合計を示す。
 本発明の逆相懸濁重合では、連続相(油相)をなす疎水性有機溶媒中に分散安定剤を加え、一方、ビニル系単量体の水溶液を調製(分散相)し、あらかじめ分散槽において油中水滴型(W/O型)エマルションを調製する必要がある。該油中水滴型(W/O型)エマルションを連続槽型反応器に連続供給して重合反応を開始する。
 本発明の逆相懸濁重合は撹拌下に行うことが好ましく、攪拌翼としては、アンカー翼およびパドル翼が好ましく、特にパドル翼が好ましい。一般的に懸濁重合は攪拌動力に左右され、攪拌動力が低いと目標とする粒子径の重合体微粒子が得られないか、あるいはモノマー水溶液滴同士の合一を抑えることができず、きれいな球状微粒子が得られない、あるいは凝集粒子が多数発生するなどの問題が起こることがある。
 本発明の連続槽型反応器における単位体積当たりの攪拌動力は0.5kw/m以上であることが好ましく、特に好ましくは、1.0kw/m以上である。
 本発明の逆相懸濁重合では、重合開始剤として酸化剤と還元剤を使用するレドックス重合開始剤を使用することが好ましい。レドックス反応は低温での重合開始が可能であり、重合反応液中のビニル系単量体濃度を高くすること、また重合速度を大きくすることが可能となるため、生産性、および生成する重合体の分子量を高くすることが可能となる。
 酸化剤としては、油溶性酸化剤が好適に用いられる。先に記載したように、逆相懸濁重合では分散安定剤を溶解または分散させた疎水性有機溶媒が連続相(油相)として用いられるので、油溶性酸化剤とは、これらの連続相に溶解する酸化剤を意味する。
 特に油溶性酸化剤としては、日本工業規格Z7260-107やOECD TEST Guideline107に定められるオクタノール/水分配係数(logPow)が-1.4以上のものが好ましく、0.0以上のものがさらに好ましく、1.0以上のものが特に好ましい。
 具体例としてt-ブチルヒドロパーオキサイド(logPow=1.3)、ジ-t-ブチルヒドロパーオキサイド、t-ヘキシルヒドロパーオキサイド、ジ-t-アミルパーオキサイド、クメンヒドロパーオキサイド(logPow=2.2)、ジクミルパーオキサイド(logPow=5.5)、t-ブチルクミルパーオキサイド、t-ブチルパーオキシピバレート、過酸化ベンゾイル(logPow=3.5)、過酸化ラウロイルなどの有機過酸化物が挙げられる。これらの中でもt-ブチルヒドロパーオキサイドおよびクメンヒドロパーオキサイドが好ましく、特に好ましくはクメンヒドロパーオキサイドである。
 還元剤としては既知の還元剤が使用できるが、これらの中でも、亜硫酸ナトリウム、亜硫酸水素ナトリウム、ハイドロサルファイトナトリウムが好ましく、特に好ましくはハイドロサルファイトナトリウムである。
 酸化剤および還元剤の供給の方法は、分散槽で調製した油中水滴型(W/O型)エマルションに酸化剤または還元剤のいずれか一方を分散槽内で混合させ、一方、連続槽型反応器で他方の開始剤を供給して、重合を開始することが好ましい。特に好ましくは、あらかじめ油中水滴型(W/O型)エマルションに酸化剤を混合して、連続槽型反応器で還元剤を供給することである。
 重合開始剤の使用量は、使用するビニル系単量体の種類、得られる重合体微粒子の粒径や分子量などに応じて調整することができるが、ビニル系単量体の合計量100モルに対して、酸化剤の使用量は0.001~0.15モルであることが好ましく、特に好ましくは0.003~0.07モルである。
 また、酸化剤と還元剤の比率は特に限定されないが、モル比率で酸化剤:還元剤が1.0:0.25~15.0であることが好ましく、特に好ましくは1.0:1.0~10.0である。
 上記範囲を外れると、単量体の反応率が低下したり、粒子を構成する重合体の鎖長が短くなったり、重量終了後も触媒が残存するなどによって、凝集物が発生するなどの不具合が生じる恐れがある。
 本発明の逆相懸濁重合は、重合を開始する際の反応液の温度は0~40℃とするのが好ましく、5~30℃とするのがより好ましく、10~25℃とするのが特に好ましい。反応開始温度が0℃より低い場合は重合設備や反応溶液の凍結が問題となり、また冷却に必要なコストが多大なものとなる。一方、反応開始温度が40℃を超える場合は、安全面から、供給する単量体の量を減少させる必要があり、生産コストが多大なものとなる。
 連続槽型反応器については、直列的に多段に配置することにより、滞留時間が極力短くなり、反応器内の重合体微粒子とビニル系単量体との合一頻度が少なくなるため、重合時の凝集物生成を防ぐことができる。2個以上の槽型反応器を直列に連結させたものを用いることが好ましく、より好ましくは、2個以上の槽型反応器を直列に連結させたものを用いることである。
 本発明の逆相懸濁重合では、各反応器の滞留時間を極力短くすることで、反応器内の重合体微粒子とビニル系単量体との合一頻度を少なくして、重合時の凝集物の生成を防ぐことが望ましい。また、滞留時間を短くすることで、反応器容量を小さくすることが可能となり、スケールアップにより粒度分布が広がることを防ぐこともできる。
 各反応器において少なくとも第一反応槽の滞留時間は10分以下が好ましく、より好ましくは5分以下であり、特に好ましくは30秒以下である。滞留時間が10分を超えると、重合時の凝集物の生成が増加する恐れがあり、滞留時間を極端に短くすると、重合率が悪くなり、反応器の段数が多く必要となるため、15秒以上とするのが好ましい。
 さらに、反応器内での単量体同士の合一および重合体微粒子と単量体の合一による重合時の凝集物生成、巨大単一粒子生成を防ぐため、反応器における分散相の体積割合は5~30%とするのが好ましく、より好ましくは20~25%である。反応器における分散相の体積割合が30%を超えると重合時の凝集物の生成が増加する恐れがあり、分散相の体積割合が5%よりも少ない場合は、生産性が低下するため好ましくない。
 レドックス逆相懸濁重合においては、重合時の酸素の存在により、重合が阻害される恐れが
あるため、酸素を除去することが望ましい。
 酸素を除去する方法としては、窒素バブリングにより、系内の酸素と窒素を置き換えること
が考えられる。ビニル系単量体原料を調整するビニル系単量体調整槽あるいはビニル系単量体供給槽にて予め脱気しておくことも考えられるが、この場合、異常重合する危険性がある。ビニル系単量体を分散槽へ供給するライン中で窒素を合流させ脱気することも可能であるが、膜乳化装置へ窒素を供給すると窒素との混合によりモノマー滴が微粒化し、ミクロ多孔質膜体の孔径変更によるモノマー滴調整が効果を発現しない恐れがある。したがって、ミクロ多孔質膜体を通過した後で、窒素バブリングにより脱気することが好ましい。
 重合体微粒子の製造においては、反応器壁面への重合体付着が問題となる場合が多い。重合体微粒子は分散媒(連続相)により除去できるので、反応器の気相部壁面に分散媒を連続的に供給して洗浄するのが好ましい。洗浄液である分散媒(連続相)の供給方法は、スプレー、リングなどが好ましいが、より好ましくは、撹拌軸に取り付けた分散板に、洗浄液を供給することにより、壁面に吹きつけることである。
 本発明の製造方法において、得られる重合体微粒子の平均粒子径は2~150μmであることが好ましく、2~100μmであることがさらに好ましく、5~70μmであることがより好ましい。平均粒子径が2μm未満であると滑り性やブロッキング防止機能が不十分な粒子になる恐れがあり、150μmを超える場合は、大粒子により外観不良や手触り感の悪化、配合した材料の強度低下などの問題が発生する恐れがある。なお、重合体微粒子の大きさが小さくなるほど、連続相と分散相の界面面積が大きくなるため、分散安定剤の安定化効果がより必要となる。
 また、重合体微粒子の大きさとしては、使用される条件下での大きさが重要となる。重合体微粒子が水膨潤粒子として応用される場合、水膨潤時の大きさが上記範囲にあることが好ましい。
 重合体微粒子は架橋されていることが好ましく、前述したように多官能ビニル単量体を共重合することにより微粒子を構成する重合体を架橋構造とすることができる。
 なお、官能基を有するビニル単量体を逆相懸濁重合した後、架橋剤を反応させて架橋度を調整することも可能である。例として、カルボキシル基を有する単量体の重合体微粒子をエチレングリコールジグリシジルエーテルにより架橋する方法が挙げられる。
 その他、多価金属イオンを介したイオン結合性架橋、放射線の照射等の方法により架橋した共有結合性架橋など公知の方法で重合体を架橋することができる。
 上記の架橋方法で得られる重合体微粒子が、0.5mol%以上の架橋密度を有する重合体微粒子である場合、先に記載したような各種用途においてその特性を発揮することが出来るため、0.5mol%以上の架橋密度を有する重合体微粒子であることが好ましい。
 本発明の逆相懸濁重合により重合体微粒子の分散液を得た後、公知の方法により重合体微粒子の乾燥粉末を得ることができる。分散液をそのまま加熱、および減圧処理し揮発分を除去し乾燥粉末を得る方法、また、ろ過や遠心分離により固液分離、洗浄を行い、分散安定剤や未反応モノマー等を除去した後、乾燥を行う方法も選択できる。洗浄工程を行うことは、乾燥後の微粒子の一次分散性が向上するため好ましい。
 また、逆相懸濁重合の場合、分散相に水を含むため乾燥前にあらかじめ共沸等により水を除去することが好ましい。水をあらかじめ除去することにより乾燥時の粒子間融着を防止でき、乾燥後粒子の一次分散性が向上する。
 本発明の製造方法において、水で飽和膨潤した状態における平均粒子径が2~100μmであり、かつ水で飽和膨潤した状態において150μm以上の粒径を示す粒子の割合が1.0質量%以下である重合体微粒子が円滑に製造できる。このような重合体微粒子は各種用途においてその特性を著しく発揮することができる。
 さらに、5~50倍の吸水倍率を有し、水で飽和膨潤した状態での平均粒子径が5~70μmであり、かつ水で飽和膨潤した状態において150μm以上の粒径を示す粒子の割合が0.3質量%以下である重合体微粒子も製造することが可能であり、この重合体は各種用途においてその極めて優れた特性を発現する重合体微粒子となる。
 なお、本明細書における重合体微粒子の吸水倍率、水による飽和膨潤状態での平均粒径、および水による飽和膨潤状態における150μm以上の粒径を有する粒子の割合は、以下の実施例の項に記載する方法で測定または求めた値をいう。
 以下、実施例に基づいて本発明を具体的に説明する。以下の記載において「部」は質量部を意味し、「%」は質量%を意味する。
製造例1:マクロモノマー組成物UM-1、およびUM-1HPの製造
 オイルジャケットを備えた容量1000mlの加圧式攪拌槽型反応器のオイルジャケットの温度を240℃に保った。
 単量体としてラウリルメタクリレート(以下、LMA)75.0部、アクリル酸(以下、AA)25.0部、重合溶媒としてメチルエチルケトン(以下、MEK)10.0部、重合開始剤としてジターシャリーブチルパーオキサイド(以下、DTBP)0.45部の比率で調整された単量体混合液を原料タンクに仕込んだ。
 原料タンクの単量体混合液を反応器に供給を開始し、反応器内の重量が580g、平均滞留時間が12分となるように、単量体混合液の供給と反応混合液の抜き出しを行った。反応器内温度は235℃、反応器内圧は1.1MPaとなるように調整を行った。反応器より抜き出した反応混合液は、20kPaに減圧され、250℃に保たれた薄膜蒸発機に連続的に供給し、モノマーや溶剤等が留去されたマクロモノマー組成物として排出される。留去したモノマーや溶剤等はコンデンサーで冷却し、留出液として回収した。単量体混合液の供給開始後、反応器内温が235℃に安定してから60分後を回収開始点とし、これから48分間反応を継続してマクロモノマー組成物UM-1を回収した。この間、単量体混合液は反応器に2.34kg供給され、薄膜蒸発機より1.92kgのマクロモノマー組成物が回収された。また留出タンクには0.39kgの留出液が回収された。
 留出液をガスクロマトグラフにて分析したところ、留出液100部に対して、LMA31.1部、AA16.4部、その他溶剤等が52.5部であった。
 単量体混合液の供給量および組成、マクロモノマー組成物の回収量、留出液の回収量および組成より、単量体の反応率は90.2%、マクロモノマー組成物UM-1の構成単量体組成比は、LMA:AA=76.0/24.0(質量比)と計算された。
 また、溶離液にテトラヒドロフランを用いたゲルパーミションクロマトグラフ(以下、GPC)により、マクロモノマー組成物UM-1の分子量を測定したところ、ポリスチレン換算での重量平均分子量(以下、Mw)および数平均分子量(以下、Mn)は、それぞれ、3800、および1800であった。またマクロモノマー組成物のH-NMR測定より、マクロモノマー組成物中の末端エチレン性不飽和結合の濃度を測定した。H-NMR測定による末端エチレン性不飽和結合の濃度、GPCによるMn、および構成単量体組成比より、マクロモノマー組成物UM-1の末端エチレン性不飽和結合導入率(以下、F値)を計算した結果、97%であった。
 製造したマクロモノマー組成物UM-1を適当量のn-ヘプタンに加温溶解した後、固形分30.0±0.5%となるようにn-ヘプタン加え、マクロモノマー組成物UM-1のn-ヘプタン溶液UM-1HPを製造した。なお、固形分は150℃、1時間加熱後の加熱算分率により測定した。
 なお、単量体、重合溶剤、および重合開始剤等の各原料については、市販の工業用製品を精製等の処理を行うことなく、そのまま使用した。
実施例1:重合体微粒子RT-1の製造
 油相の調整は、分散安定剤として製造例1で製造したUM-1HP 6.3部(UM-1の純分として1.9部)、及びソルビタンモノオレエート(花王(株)製レオドールAO-10)2.8部、更に重合溶媒としてn-ヘプタン554.5部を仕込み、溶液の温度を40℃に維持しながら30分間攪拌混合した後、20℃まで冷却した。
 一方、水相の調整は、別の容器にてAA100.0部、アロニックスM-243(東亞合成(株)製、ポリエチレングリコールジアクリレート、平均分子量425)15.9部(単官能単量体に対して2.0mol%に相当)、およびイオン交換水95.0部を仕込み、攪拌、均一溶解させた。さらに混合液の温度を40℃以下に保つように冷却しながら、25%アンモニア水70.8部をゆっくり加えて中和し単量体混合液を得た。
 調整した水相および調整した油相を第一分散槽手前で合流させ多段分散槽に供給した。第一分散槽には、乳化機(エムテクニック(株)製クレアミックスCLM-0.8S)、第二分散槽には、膜乳化装置(SPGテクノ(株)製)を配置した。膜乳化装置のミクロ多孔質膜体にはシラスポーラスグラス(SPG)膜(φ10×20mm)を使用した。
  反応器は、ピッチドパドル型攪拌翼1段からなる撹拌機構を備え、さらに温度計、窒素導入管、触媒供給管を備えた。この反応器を3個(いずれも容量は200ml)直列に並べた。なお重合開始剤は、反応器側面の供給管から供給した。
 乳化機の回転速度を2400rpmに、SPG膜孔径を30μmとし、さらに各槽型反応器の攪拌翼を510rpmに設定した後、調製した油相を1分間あたり300グラムで供給し、調製した水相は1分間あたり150gで供給し、油溶性酸化剤であるパークミルH80(日本油脂(株)製、クメンハイドロパーオキサイド0.027部、n-ヘプタン1.3部のパークミルH80のヘプタン溶液)を第一分散槽である乳化機へ連続的に1分間あたり1.3グラムで供給した。乳化機内温は20℃に保持した。このとき、反応槽における分散相の体積分率は25%となる。その後、膜乳化装置に通し、分散滴径を調整した油中水滴型(W/O型)エマルションに窒素を吹き込むことで分散液内の酸素を除去し、オーバーフローで反応器へ供給した。
 第一反応槽へはハイドロサルファイトナトリウム(Na)0.18部とイオン交換水1.3部の水溶液を反応器側面に設けられた投入口から1分間あたり1.4グラムで添加した。各反応器の壁面には、撹拌軸に取り付けた分散板へn-ヘプタンを1分間あたり14グラムで供給した。ハイドロサルファイトナトリウム水溶液を供給して3分後に第一反応槽内温は35℃に到達した。第二反応槽では、前記パークミルH80のヘプタン溶液を1分間あたり1.3gで添加した。同様に、第三反応槽にも、前記パークミルH80を1分間あたり1.3gで添加した。各反応器の滞留時間は20秒であった。
 RT-1の重合体微粒子と油相の混合液である油中分散液を反応器から抜き出す際、分散液は目開き75μmのフィルターを用いて濾過を行った。濾過性は非常に良好で、閉塞することなく最後まで濾過することができた。また、抜き出し終了後に反応器内壁面への樹脂付着程度を確認したが、付着は分散液の液面と接する箇所に若干見られる程度であり、重合体微粒子RT-1が安定に製造できることが確認された。
 RT-1の油中分散液を一部サンプリングし、デジタルマイクロスコープ(ハイロックス製、KH-3000)にて倍率420倍で観察したところ、10~20μm付近を中心とした分布を有する球状微粒子群が確認された。写真を図1に示す。複数の粒子が合一した凝集粒子群は観察されなかった。また油中分散液を110℃、1時間で乾燥したサンプルについて吸水倍率(重合体微粒子の分析条件(2)、参照)を測定した結果、20.2倍であった。乾燥サンプルを大過剰のイオン交換水に分散し飽和膨潤させた後、倍率420倍で観察したところ、30~40μm付近を中心とした分布を有する球状微粒子群が確認された。写真を図2に示す。また水飽和膨潤させた重合体微粒子RT-1について、レーザー回折/散乱式粒度分布計を用いて粒度分布測定(重合体微粒子の分析条件(3)、参照)を行った。得られた粒度分布は単一ピークであり、水飽和膨潤粒子径は体積基準で35.2μm、個数基準で19.3μmであった。重合体微粒子RT-1は吸水性能を有し、かつ吸水膨潤時にも球状を保ち、水中で一次分散することが確認された。
 更にRT-1分散液を加熱し、粒子内に含まれる水とヘプタンとを共沸させることによって脱水率95%まで脱水した後に脱溶剤し、粉末化させたサンプルについて湿式篩残渣量(重合体微粒子の分析条件(4)、参照)を測定した結果、0.02質量%であった。重合体微粒子RT-1は、共沸脱水後に水飽和膨潤させた状態においても150μmを超えるような粗大粒子がほぼ含まれていないことが確認された。
実施例2:重合体微粒子RT-2の製造
 乳化機の回転速度を4500rpm、およびSPG膜孔径20μmとした以外は、実施例1と同じ条件とした。
 RT-2の油中分散液を一部サンプリングし、デジタルマイクロスコープ(ハイロックス製、KH-3000)にて倍率420倍で観察したところ、5~10μm付近を中心とした分布を有する球状微粒子群が確認された。写真を図3に示す。複数の粒子が合一した凝集粒子群は観察されなかった。また油中分散液を110℃、1時間で乾燥したサンプルについて吸水倍率(重合体微粒子の分析条件(2)、参照)を測定した結果、18.1倍であった。乾燥サンプルを大過剰のイオン交換水に分散し飽和膨潤させた後、倍率420倍で観察したところ、15~25μm付近を中心とした分布を有する球状微粒子群が確認された。写真を図4に示す。
 また、水飽和膨潤させた重合体微粒子RT-2について、レーザー回折/散乱式粒度分布計を用いて粒度分布測定(重合体微粒子の分析条件(3)、参照)を行った。得られた粒度分布は単一ピークであり、水飽和膨潤粒子径は体積基準で19.1μm、個数基準で15.5μmであった。したがって、分布のシャープさを表す体積基準平均粒径と個数基準平均粒径の比は、1.23と小さい。粒径範囲は、9~51μm。重合体微粒子RT-2は吸水性能を有し、かつ吸水膨潤時にも球状を保ち、水中で一次分散することが確認された。
 更に、RT-2分散液を加熱し、粒子内に含まれる水とヘプタンとを共沸させることによって脱水率95%まで脱水した後に脱溶剤し、粉末化させたサンプルについて湿式篩残渣量(重合体微粒子の分析条件(4)、参照)を測定した結果、0.01質量%であった。重合体微粒子RT-2は、共沸脱水後に水飽和膨潤させた状態においても150μmを超えるような粗大粒子がほぼ含まれていないことが確認された。
 RT-2の重合体微粒子と油相の混合液である油中分散液を反応器から抜き出す際、分散液は目開き75μmのフィルターを用いて濾過を行った。濾過性は非常に良好で、閉塞することなく最後まで濾過することができた。また、抜き出し終了後に反応器内壁面への樹脂付着程度を確認したが、付着は分散液の液面と接する箇所に若干見られる程度であり、重合体微粒子RT-2が安定に製造できることが確認された。
実施例3:重合体微粒子RT-3の製造
 第一反応槽滞留時間を1分、油中水滴型(W/O型)エマルション供給量および重合開始剤の供給量はRT-2製造の1/3とした以外は、実施例2と同じ条件とした結果、体積基準の平均粒径である膨潤粒径が、14.1μm、体積基準膨潤粒径と個数基準膨潤粒径の比は、1.23となる重合体微粒子ができた。
 RT-3の重合体微粒子と油相の混合液である油中分散液を反応器から抜き出す際、分散液は目開き75μmのフィルターを用いて濾過を行った。濾過性は非常に良好で、閉塞することなく最後まで濾過することができた。また、抜き出し終了後に反応器内壁面への樹脂付着程度を確認したが、付着は分散液の液面と接する箇所に若干見られる程度であり、重合体微粒子RT-3が安定に製造できることが確認された。
実施例4:重合体微粒子RT-4の製造
 第一反応槽の滞留時間を5分、第一反応槽の容量を1000mlとした以外は実施例3と同じ条件とした結果、体積基準の平均粒径である膨潤粒径が、15.0μm、体積基準膨潤粒径と個数基準膨潤粒径の比は、1.25となる重合体微粒子ができた。
 RT-4の重合体微粒子と油相の混合液である油中分散液を反応器から抜き出す際、分散液は目開き75μmのフィルターを用いて濾過を行った。濾過性は非常に良好で、閉塞することなく最後まで濾過することができた。また、抜き出し終了後に反応器内壁面への樹脂付着程度を確認したが、付着は分散液の液面と接する箇所に若干見られる程度であり、重合体微粒子RT-4が安定に製造できることが確認された。
実施例5:重合体微粒子RT-5の製造
 第一反応槽滞留時間を10分、第一反応槽の容量を2000mlとした以外は実施例3と同じ条件とした結果、体積基準の平均粒径である膨潤粒径が、14.2μm、体積基準膨潤粒径と個数基準膨潤粒径の比は、1.32となる重合体微粒子ができた。
 RT-5の重合体微粒子と油相の混合液である油中分散液を反応器から抜き出す際、分散液は目開き75μmのフィルターを用いて濾過を行った。濾過性は非常に良好で、閉塞することなく最後まで濾過することができた。また、抜き出し終了後に反応器内壁面への樹脂付着程度を確認したが、付着は分散液の液面と接する箇所に若干見られる程度であり、重合体微粒子RT-5が安定に製造できることが確認された。
実施例6:重合体微粒子RT-6の製造
 第一反応槽滞留時間を30分、第一反応槽の容量を3000ml、油中水滴型(W/O型)エマルション供給量および重合開始剤の供給量はRT-3製造の1/2とした以外は実施例3と同じ条件とした結果、体積基準の平均粒径である膨潤粒径が、14.2μm、体積基準膨潤粒径と個数基準膨潤粒径の比は、1.24となる重合体微粒子ができた。
 RT-6の重合体微粒子と油相の混合液である油中分散液を反応器から抜き出す際、分散液は目開き75μmのフィルターを用いて濾過を行った。濾過性は非常に良好で、閉塞することなく最後まで濾過することができた。ただし、抜き出し終了後に反応器内壁面への樹脂付着程度を確認したところ、分散液の液面と接する箇所に多くの付着が確認され、槽出口配管にも多くの付着が確認された。
実施例7:重合体微粒子RT-7の製造
 第一反応槽滞留時間を60分、第一反応槽の容量を3000ml、油中水滴型(W/O型)エマルション供給量および重合開始剤の供給量はRT-3製造の1/4とした以外は実施例3と同じ条件とした結果、体積基準の平均粒径である膨潤粒径が、13.4μm、体積基準膨潤粒径と個数基準膨潤粒径の比は、1.31となる重合体微粒子ができた。
 RT-7の重合体微粒子と油相の混合液である油中分散液を反応器から抜き出す際、分散液は目開き75μmのフィルターを用いて濾過を行った。濾過性は非常に良好で、閉塞することなく最後まで濾過することができた。ただし、抜き出し終了後に反応器内壁面への樹脂付着程度を確認したところ、分散液の液面と接する箇所に多くの付着が確認され、槽出口配管にも多くの付着が確認された。
実施例8:重合体微粒子RT-8の製造
 反応槽における分散相の体積分率を30%とした以外は実施例2と同じ条件とした結果、体積基準の平均粒径である膨潤粒径が18.5μm、個数基準では、11.8μmである。したがって、体積基準平均粒径と個数基準平均粒径の比は、1.57と大きい。粒径範囲8~262μmの粒度分布の広い重合体微粒子となった。
実施例9:重合体微粒子RT-9の製造
 酸化剤をパーブチルH69(日本油脂製、t-ブチルヒドロパーオキサイドの69%溶液)とした以外は実施例2と同じ条件とした結果、体積基準の平均粒径である膨潤粒径が19.2μm、個数基準では、14.7μmである。したがって、体積基準平均粒径と個数基準平均粒径の比は、1.31となる。粒径範囲9~133μmの粒度分布の広い重合体微粒子ができた。
実施例10:重合体微粒子RT-10の製造
 酸化剤を過硫酸アンモニウムとした。第一反応槽での平均滞留時間を30分、第一反応槽の容量を3000ml、油中水滴型(W/O型)エマルション供給量および重合開始剤の供給量はRT-3製造の1/2とした以外は実施例3と同じ条件とした結果、体積基準の平均粒径である膨潤粒径が11.5μm、個数基準では、8.60μmである。体積基準平均粒径と個数基準平均粒径の比は、1.34となる。粒径範囲5~34μmの重合体微粒子ができた。
 RT-10の重合体微粒子と油相の混合液である油中分散液を反応器から抜き出す際、分散液は目開き75μmのフィルターを用いて濾過を行った。濾過性は非常に良好で、閉塞することなく最後まで濾過することができた。ただし、抜き出し終了後に反応器内壁面への樹脂付着程度を確認したところ、分散液の液面と接する箇所に多くの付着が確認され、槽出口配管にも多くの付着が確認された。
比較例1:重合体微粒子RT-11の製造
 槽型反応器の代わりに、管型反応器を使用した以外は実施例3と同じ条件とした。滞留時間も実施例3と同じ1分とした。
 結果、体積基準の平均粒径である膨潤粒径が14.7μmとなる。体積基準膨潤粒径と個数基準膨潤粒径の比では、それぞれ、1.31となるも、重合開始60分後に第一反応管および反応管出口配管内が閉塞した。
比較例2:重合体微粒子RT-12の製造
 水相をプレ乳化せずに反応槽に供給した以外は実施例2と同じ条件とした結果、重合開始直後から反応槽内にゲルが発生したため重合停止とした。
Figure JPOXMLDOC01-appb-T000001
 上記実施例における、重合体微粒子の分析条件(1)~(4)は以下に記載のとおりである。
(1)固形分
測定サンプル約1gを秤量(a)し、次いで、無風乾燥機150℃、60分間乾燥後の残分を測定(b)し、以下の式より算出した。測定には秤量ビンを使用した。その他の操作については、JIS K 0067-1992(化学製品の減量及び残分試験方法)に準拠した。
  固形分(%)=(b/a)×100
(2)吸水倍率
吸水倍率は以下の方法によって測定した。測定装置を図5に示す。
測定装置は図3における<1>~<3>から構成される。
<1>空気抜きするための枝管が付いたビュレット1、ピンチコック2、シリコンチューブ3およびポリテトラフルオロエチレンチューブ4から成る。
<2>ロート5の上に底面に多数の穴が空いた支柱円筒8、さらにその上に装置用濾紙10が設置されている。
<3>重合体微粒子の試料6は2枚の試料固定用濾紙7に挟まれ、試料固定用濾紙は粘着テープ9によって固定される。なお、使用する濾紙は全てADVANTEC No.2 内径55mmである。
<1>と<2>とはシリコンチューブ3によって繋がれる。
 また、ロート5および支柱円筒8は、ビュレット1に対する高さが固定されており、ビュレット枝管の内部に設置されたポリテトラフルオロエチレンチューブ4の下端と支柱円筒8の底面とが同じ高さになる様に設定されている(図3中の点線)。
 測定方法について以下に説明する。
<1>にあるピンチコック2を外し、ビュレット1の上部からシリコンチューブ3を通してイオン交換水を入れ、ビュレット1から装置用濾紙10までイオン交換水12で満たされた状態とする。次いで、ピンチコック2を閉じ、ビュレット枝管にゴム栓で接続されたポリテトラフルオロエチレンチューブ4から空気を除去する。こうして、ビュレット1から装置用濾紙10までイオン交換水12が連続的に供給される状態とする。
 次に、装置用濾紙10からにじみ出た余分なイオン交換水12を除去した後、ビュレット1の目盛りの読み(a)を記録する。
測定試料の乾燥粉末0.1~0.2gを秤量し、<3>にある様に、試料固定用濾紙7の中央部に均一に置く。もう1枚の濾紙でサンプルを挟み、粘着テープ9で2枚の濾紙を留め、サンプルを固定する。サンプルが固定された濾紙を<2>に示される装置用濾紙10上に載置する。
 次に、装置用濾紙10上に蓋11を載置した時点から、30分間経過した後のビュレット1の目盛りの読み(b)を記録する。
 測定試料の吸水量と2枚の試料固定用濾紙7の吸水量の合計(c)は(a-b)で求められる。同様の操作により、吸水性ポリマー試料を含まない、2枚の濾紙7のみの吸水量を測定する(d)。  
 上記操作を行い、吸水倍率を以下の式より計算した。なお、計算に使用する固形分は、(1)の方法により測定した値を使用した。
Figure JPOXMLDOC01-appb-M000002
(3)水膨潤粒子径
 測定サンプル0.02gにイオン交換水20mlを加え、十分に振り混ぜて、サンプルを均一分散させた。また粒子を水飽和膨潤状態とするために、30分以上分散させた分散液について、レーザー回折散乱式粒度分布計(日機装製、MT-3000)を用いて、超音波1分照射後に粒度分布測定を行った。測定時の循環分散媒にはイオン交換水を使用し、分散体の屈折率は1.53とした。測定により得られた体積基準での粒度分布よりメジアン径(μm)を計算し、水膨潤粒子径とした。
(4)水膨潤粒子径が150μm以上の粒子量の測定(湿式ふるい残渣法)
JIS K 0069-1992(化学製品のふるい分け試験方法)に準拠して測定した。
 固形分として50gに相当するサンプルを計り取り、同量のエタノールを加えて良くほぐした後、3.0lのイオン交換水に、攪拌下ゆっくり注ぎ、30分間攪拌してサンプルの水膨潤分散液を調整する。次いで、均一分散していることを確認した後、分散液を径70mm、目開き150μmの篩に注いで通過させ、ふるい上の残渣を篩からこぼれないように注意して十分な量の水で洗う。次いで、測定後の篩を、通風乾燥機150℃、30分で乾燥した後、デシケータ内で放冷し、乾燥後のふるい重量(ふるい+残渣重量)を測定する。
 下記式により計算される、湿式ふるい残渣(%)を水膨潤粒子径が150μm以上の粒子量とした。上記以外の操作はJIS K 0069-1992(化学製品のふるい分け試験方法)に準拠した。
Figure JPOXMLDOC01-appb-M000003
 以上の結果より、本発明の製造方法は、重合反応に伴う反応器内壁への樹脂付着もなく、また、重合スラリーの濾過性も良好であるので、粒子径の揃った重合体微粒子を生産性よく、粒子同士の凝集もなく製造できることがわかった。
 一方、管型反応器を使用した比較例1では、重合反応が経過するにつれて、重合体粒子の凝集による配管への付着が起こり、反応開始後わずかな時間で反応管内が閉塞した。
 本発明の製造方法によれば、従来の方法と比較して格段に重合体微粒子の粒径が揃った、高品質の球状の親水性の重合体微粒子を、極めて高い分散安定性、重合安定性を維持しながら、重合時や重合後に重合体粒子の凝集、塊化、重合装置への付着などを生ずることなく生産性良く製造することができる。そして、本発明の製造方法では、多官能ビニル系単量体を多量に用いて架橋度の高い親水性架橋重合体微粒子を製造する場合であっても、重合体粒子の凝集、塊化、重合装置への付着などを生ずることなく、粒径の揃った高品質の親水性架橋重合体微粒子を生産性よく製造することができる。
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Claims (18)

  1. ビニル系単量体を逆相懸濁重合させて重合体微粒子を製造する方法であって、あらかじめ分散槽において、有機溶媒を連続相とし、ビニル系単量体水溶液を分散相とする油中水滴型(W/O型)エマルションを調製して、該油中水滴型(W/O型)エマルションを連続槽型反応器に連続供給して逆相懸濁重合を行なう重合体微粒子の製造方法。
  2. 重合開始剤としてレドックス重合触媒を使用することを特徴とする請求項1記載の重合体微粒子の製造方法。
  3. レドックス重合触媒の酸化剤が油溶性酸化剤である請求項2記載の重合体微粒子の製造方法。
  4. 少なくとも2個以上の連続槽型反応器を直列に連結させた反応槽を用いることを特徴とする請求項1~請求項3のいずれかに記載の重合体微粒子の製造方法。
  5. 少なくとも第一反応槽の反応液の滞留時間が10分以下であることを特徴とする請求項1~請求項4のいずれかに記載の重合体微粒子の製造方法。
  6. 各反応槽において、反応液中の分散相の体積割合が30%以下であることを特徴とする請求項1~請求項5のいずれかに記載の重合体微粒子の製造方法。
  7. 少なくとも1つの攪拌装置を有する分散槽と少なくとも1つの膜乳化装置を有する分散槽を用いて、油中水滴型(W/O型)エマルションを調製することを特徴とする請求項1~請求項6のいずれかに記載の重合体微粒子の製造方法。
  8. 膜乳化装置以降のいずれかの段階で、油中水滴型(W/O型)エマルションの脱気を行うことを特徴とする請求項1~請求項7のいずれかに記載の重合体微粒子の製造方法。
  9. 連続槽型反応器の気相部壁面に連続相成分を連続的に供給することを特徴とする請求項1~請求項8のいずれかに記載の重合体微粒子の製造方法。
  10. 分散槽において、酸化剤または還元剤のいずれか一方を油中水滴型(W/O型)エマルションに混合させることを特徴とする請求項1~請求項9のいずれかに記載の重合体微粒子の製造方法。
  11. 分散槽において、分散相の平均粒径が100μm以下の油中水滴型(W/O型)エマルションを調製することを特徴とする請求項1~請求項10のいずれかに記載の重合体微粒子の製造方法。
  12. ビニル系単量体由来の重合体の末端にラジカル重合性不飽和基を有するマクロモノマーを分散安定剤として用いることを特徴とする請求項1~請求項11のいずれかに記載の重合体微粒子の製造方法。
  13. ビニル系単量体の少なくとも一部が、カルボキシル基、スルホン基およびアミド基から選ばれる極性基を有する請求項1~請求項12のいずれかに記載の重合体微粒子の製造方法。
  14. ビニル系単量体が、2個以上のラジカル重合性不飽和基を有する多官能ビニル単量体を含むことを特徴とする請求項1~請求項13のいずれかに記載の重合体微粒子の製造方法。
  15. 単官能ビニル単量体と多官能ビニル単量体のモル比が100:0.1~100:10である請求項14に記載の重合体微粒子の製造方法。
  16. 逆相懸濁重合により製造される重合体微粒子が、0.5mol%以上の架橋密度を有する重合体微粒子である請求項1~請求項15のいずれかに記載の重合体微粒子の製造方法。
  17. 逆相懸濁重合により製造される重合体微粒子が、水で飽和膨潤した状態における平均粒子径が2~100μmであり、かつ水で飽和膨潤した状態において150μm以上の粒子径を有する粒子の割合が1.0質量%以下である重合体微粒子である請求項1~請求項16のいずれかに記載の重合体微粒子の製造方法。
  18. 逆相懸濁重合により製造される重合体微粒子が、5~50倍の吸水倍率を有し、水で飽和膨潤した状態における平均粒子径が5~70μmであり、かつ水による飽和膨潤状態において150μm以上の粒径を示す粒子の割合が0.3質量%以下の重合体微粒子である請求項1~請求項16のいずれかに記載の重合体微粒子の製造方法。
     
     
PCT/JP2009/050927 2008-02-01 2009-01-22 重合体微粒子の製造方法 WO2009096301A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/811,948 US8058370B2 (en) 2008-02-01 2009-01-22 Process for the production of polymer microparticles
EP09705228.6A EP2239278B2 (en) 2008-02-01 2009-01-22 Process for the production of polymer microparticles
PL09705228T PL2239278T5 (pl) 2008-02-01 2009-01-22 Sposób wytwarzania mikrocząstek polimerowych
JP2009551482A JP5499712B2 (ja) 2008-02-01 2009-01-22 重合体微粒子の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008022295 2008-02-01
JP2008-022295 2008-02-01

Publications (1)

Publication Number Publication Date
WO2009096301A1 true WO2009096301A1 (ja) 2009-08-06

Family

ID=40912654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050927 WO2009096301A1 (ja) 2008-02-01 2009-01-22 重合体微粒子の製造方法

Country Status (5)

Country Link
US (1) US8058370B2 (ja)
EP (1) EP2239278B2 (ja)
JP (1) JP5499712B2 (ja)
PL (1) PL2239278T5 (ja)
WO (1) WO2009096301A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106519136A (zh) * 2015-09-10 2017-03-22 中石化石油工程技术服务有限公司 一种反相乳液聚合物、其制备方法及其在制备水基钻井液中的应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5256590B2 (ja) * 2006-08-04 2013-08-07 東亞合成株式会社 重合体微粒子の製造方法
EP2831583B1 (en) * 2012-03-28 2019-12-18 Becton, Dickinson and Company Hydrogel adhesion to molded polymers
US9375507B2 (en) 2013-04-10 2016-06-28 Evonik Corporation Particulate superabsorbent polymer composition having improved stability
US9302248B2 (en) 2013-04-10 2016-04-05 Evonik Corporation Particulate superabsorbent polymer composition having improved stability
CN106471653B (zh) * 2014-06-10 2020-10-09 东亚合成株式会社 非水电解质二次电池用电极、其制造方法以及非水电解质二次电池
US10579645B2 (en) * 2015-03-20 2020-03-03 International Business Machines Corporation Arranging and displaying content from a social media feed based on relational metadata
US10223426B2 (en) * 2016-05-25 2019-03-05 Bank Of America Corporation System for providing contextualized search results of help topics

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222107A (ja) 1992-02-12 1993-08-31 Kao Corp 吸水性ポリマー微粒子の製造法
JPH0943898A (ja) 1995-07-26 1997-02-14 Mita Ind Co Ltd トナーの製造方法及び製造装置
JPH10512187A (ja) * 1995-01-10 1998-11-24 ザ、プロクター、エンド、ギャンブル、カンパニー 連続プロセスで製造された高分散相エマルジョンの部分の循環
JP2001011106A (ja) * 1999-06-30 2001-01-16 Mitsubishi Chemicals Corp 高吸水性樹脂の製造方法
JP2003026706A (ja) * 2001-07-13 2003-01-29 Sumitomo Seika Chem Co Ltd 連続凝集装置およびこれを備えた多段重合装置
JP2003034725A (ja) 2001-05-16 2003-02-07 Kao Corp シリコーン変性吸水性ポリマー粒子及びその製造法
JP2003516429A (ja) * 1999-11-18 2003-05-13 株式会社日本触媒 多孔質材料の製造方法
JP2003301019A (ja) 2002-04-11 2003-10-21 Kao Corp 表面疎水化吸水性ポリマー粒子
JP2004262747A (ja) 2003-02-12 2004-09-24 Toagosei Co Ltd 多孔質セラミックの製造方法
JP2008063409A (ja) * 2006-09-06 2008-03-21 Kao Corp 親水性ポリマー粒子の製造法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149720A (en) * 1991-08-12 1992-09-22 The Procter & Gamble Company Process for preparing emulsions that are polymerizable to absorbent foam materials
JP4749531B2 (ja) * 2000-07-05 2011-08-17 株式会社日本触媒 多孔質重合体の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222107A (ja) 1992-02-12 1993-08-31 Kao Corp 吸水性ポリマー微粒子の製造法
JPH10512187A (ja) * 1995-01-10 1998-11-24 ザ、プロクター、エンド、ギャンブル、カンパニー 連続プロセスで製造された高分散相エマルジョンの部分の循環
JPH0943898A (ja) 1995-07-26 1997-02-14 Mita Ind Co Ltd トナーの製造方法及び製造装置
JP2001011106A (ja) * 1999-06-30 2001-01-16 Mitsubishi Chemicals Corp 高吸水性樹脂の製造方法
JP2003516429A (ja) * 1999-11-18 2003-05-13 株式会社日本触媒 多孔質材料の製造方法
JP2003034725A (ja) 2001-05-16 2003-02-07 Kao Corp シリコーン変性吸水性ポリマー粒子及びその製造法
JP2003026706A (ja) * 2001-07-13 2003-01-29 Sumitomo Seika Chem Co Ltd 連続凝集装置およびこれを備えた多段重合装置
JP2003301019A (ja) 2002-04-11 2003-10-21 Kao Corp 表面疎水化吸水性ポリマー粒子
JP2004262747A (ja) 2003-02-12 2004-09-24 Toagosei Co Ltd 多孔質セラミックの製造方法
JP2008063409A (ja) * 2006-09-06 2008-03-21 Kao Corp 親水性ポリマー粒子の製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2239278A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106519136A (zh) * 2015-09-10 2017-03-22 中石化石油工程技术服务有限公司 一种反相乳液聚合物、其制备方法及其在制备水基钻井液中的应用

Also Published As

Publication number Publication date
US8058370B2 (en) 2011-11-15
JPWO2009096301A1 (ja) 2011-05-26
US20110015364A1 (en) 2011-01-20
JP5499712B2 (ja) 2014-05-21
EP2239278B1 (en) 2013-09-11
EP2239278A1 (en) 2010-10-13
PL2239278T3 (pl) 2014-02-28
EP2239278A4 (en) 2011-09-21
EP2239278B2 (en) 2017-11-08
PL2239278T5 (pl) 2018-04-30

Similar Documents

Publication Publication Date Title
JP5499712B2 (ja) 重合体微粒子の製造方法
JP5499711B2 (ja) 重合体微粒子の製造方法
JP5256590B2 (ja) 重合体微粒子の製造方法
JP5251886B2 (ja) 重合体微粒子の製造方法
JP5509525B2 (ja) 重合体微粒子の製造方法
JP2009041038A (ja) ナノスケール重合炭化水素粒子並びにその粒子の製造及び使用方法
CN106916332B (zh) 多孔性树脂粒子及其制造方法以及结构体
Azhar et al. A cationic fluorosurfactant for fabrication of high-performance fluoropolymer foams with controllable morphology
JP5273311B2 (ja) セラミック成形用添加剤
JP2015096560A (ja) 高強度ゲル
JP5298547B2 (ja) 重合体微粒子粉末の製造方法
JP5660136B2 (ja) セラミック成形用乾燥収縮低減剤及びセラミック成形体の乾燥収縮低減方法
JP5660135B2 (ja) セラミック成形用乾燥収縮低減剤及びセラミック成形体の乾燥収縮低減方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705228

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009705228

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009551482

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12811948

Country of ref document: US