WO2009006693A1 - A method and system for production of liquid natural gas - Google Patents

A method and system for production of liquid natural gas Download PDF

Info

Publication number
WO2009006693A1
WO2009006693A1 PCT/AU2008/001010 AU2008001010W WO2009006693A1 WO 2009006693 A1 WO2009006693 A1 WO 2009006693A1 AU 2008001010 W AU2008001010 W AU 2008001010W WO 2009006693 A1 WO2009006693 A1 WO 2009006693A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixed refrigerant
heat exchange
refrigeration
process according
gas
Prior art date
Application number
PCT/AU2008/001010
Other languages
French (fr)
Inventor
Paul Bridgwood
Original Assignee
Lng Technology Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2007903701A external-priority patent/AU2007903701A0/en
Priority to CA2693543A priority Critical patent/CA2693543C/en
Priority to AP2010005120A priority patent/AP2825A/en
Priority to AU2008274900A priority patent/AU2008274900B2/en
Priority to UAA201001318A priority patent/UA97403C2/en
Priority to BRPI0813637-8A priority patent/BRPI0813637B1/en
Priority to AU2010201571A priority patent/AU2010201571B2/en
Priority to CN2008801021582A priority patent/CN101796359B/en
Priority to PL08772637T priority patent/PL2179234T3/en
Priority to EA201070112A priority patent/EA016746B1/en
Application filed by Lng Technology Pty Ltd filed Critical Lng Technology Pty Ltd
Priority to EP08772637.8A priority patent/EP2179234B1/en
Priority to JP2010515317A priority patent/JP5813950B2/en
Priority to NZ582507A priority patent/NZ582507A/en
Priority to US12/668,198 priority patent/US20110067439A1/en
Priority to KR1020107002935A priority patent/KR101437625B1/en
Priority to ES08772637T priority patent/ES2744821T3/en
Publication of WO2009006693A1 publication Critical patent/WO2009006693A1/en
Priority to IL203165A priority patent/IL203165A/en
Priority to ZA2010/00146A priority patent/ZA201000146B/en
Priority to US12/765,739 priority patent/US9003828B2/en
Priority to HK11101028.1A priority patent/HK1146953A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/023Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0225Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using other external refrigeration means not provided before, e.g. heat driven absorption chillers
    • F25J1/0227Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using other external refrigeration means not provided before, e.g. heat driven absorption chillers within a refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0236Heat exchange integration providing refrigeration for different processes treating not the same feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0242Waste heat recovery, e.g. from heat of compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0294Multiple compressor casings/strings in parallel, e.g. split arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/66Separating acid gases, e.g. CO2, SO2, H2S or RSH
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/70Steam turbine, e.g. used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • F25J2240/82Hot exhaust gas turbine combustion engine with waste heat recovery, e.g. in a combined cycle, i.e. for generating steam used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/30Integration in an installation using renewable energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/906External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by heat driven absorption chillers

Definitions

  • the present invention relates to a method and system for production of liquid natural gas.
  • the present invention relates to a process and system for liquefying a hydrocarbon gas, such as natural gas or coal seam gas .
  • the invention provides a process and system for liquefying a hydrocarbon gas, such as natural gas or coal seam gas .
  • the present invention provides a process for liquefying a hydrocarbon gas comprising the steps of: a) pre-treating a hydrocarbon feed gas to remove sour species and water therefrom; b) providing a refrigeration zone, wherein refrigeration in the refrigeration zone is provided by circulating a mixed refrigerant from mixed refrigerant system and an auxiliary refrigerant from an auxiliary refrigeration system through the refrigeration zone; c) coupling the mixed refrigerant system and the auxiliary refrigeration system in a manner whereby the auxiliary refrigeration system is driven, at least in part, by waste heat generated by the mixed refrigerant; and d) passing the pre-treated feed gas through the refrigeration zone where the pre-treated feed gas is cooled and expanding the cooled feed gas to produce a hydrocarbon liquid.
  • the step of circulating a mixed refrigerant through the refrigeration zone comprises: a) compressing the mixed refrigerant in a compressor; b) passing the compressed mixed refrigerant through a first heat exchange pathway extending through the refrigeration zone where the compressed mixed refrigerant is cooled and expanded to produce a mixed refrigerant coolant; c) passing the mixed refrigerant coolant through a second heat exchange pathway extending through the refrigeration zone to produce a mixed refrigerant; and d) recirculating the mixed refrigerant to the compressor.
  • the step of passing the pre-treated feed gas through the refrigeration zone comprises passing the pre-treated feed gas through a third heat exchange pathway in the refrigeration zone.
  • the step of circulating the auxiliary refrigerant through the refrigeration zone comprises passing the auxiliary refrigerant through a fourth heat exchange pathway _ O _
  • the second and fourth heat exchange pathways extend in counter current heat exchange relation to the first and third heat exchange pathways .
  • the inventors have discovered that heat produced in the compressing step by a gas turbine drive of the compressor, which would otherwise be considered as waste heat, can be utilised in the process to produce steam in a steam generator.
  • the steam may be used to power a single steam turbine generator and produce electrical power which drives the auxiliary refrigeration system.
  • the process further comprises driving the auxiliary refrigeration system at least in part by waste heat produced from the compressing step of the process of the present invention.
  • the process further comprises cooling inlet air of a gas turbine directly coupled to the compressor with the auxiliary refrigerant.
  • the inlet air is cooled to about 5 0 C - 10 0 C.
  • the inventors have estimated that cooling the inlet air of the gas turbine increases the compressor output by 15% - 25%, thus improving the production capacity of the process since compressor output is proportional to LNG output.
  • the step of compressing the mixed refrigerant increases the pressure thereof from about 30 to 50 bar.
  • the process comprises cooling the compressed mixed refrigerant prior to passing the compressed mixed refrigerant to the first heat exchange pathway. In this way the cooling load on the refrigeration zone is reduced.
  • the compressed mixed refrigerant is cooled to a temperature less than 50 0 C. In the preferred embodiment, the compressed mixed refrigerant is cooled to about 10 0 C.
  • the step of cooling the compressed mixed refrigerant comprises passing the compressed mixed refrigerant from the compressor to a heat exchanger, in particular an air- or water-cooler.
  • the cooling step comprises passing the compressed mixed refrigerant from the compressor to the heat exchanger as described above, and further passing the compressed mixed refrigerant cooled in the heat exchanger to a chiller.
  • the chiller is driven at least in part by waste heat, in particular waste heat produced from the compressing step.
  • the temperature of the mixed refrigerant coolant is at or below the temperature at which the pre-treated feed gas condenses.
  • the temperature of the mixed refrigerant coolant is less than -150 0 C.
  • the mixed refrigerant contains compounds selected from a group consisting of nitrogen and hydrocarbons containing from 1 to 5 carbon atoms.
  • the mixed refrigerant comprises nitrogen, methane, ethane or ethylene, isobutane and/or n- butane.
  • the composition for the mixed refrigerant is as follows in the following mole fraction percent ranges: nitrogen: about 5 to about 15; methane: about 25 to about 35; C2 : about 33 to about 42; C3 : 0 to about 10; C4 : 0 to about 20 about; and C5 : 0 to about 20.
  • the composition of the mixed refrigerant may be selected such that composite cooling and heating curves of the mixed refrigerant are matched within about 2 0 C of one another, and that the composite cooling and heating curves are substantially continuous.
  • the hydrocarbon gas is natural gas or coal seam methane.
  • the hydrocarbon gas is recovered from the refrigeration zone at a temperature at or below the liquefaction temperature of methane .
  • the invention provides a hydrocarbon gas liquefaction system comprising: a) a mixed refrigerant; b) a compressor for compressing the mixed refrigerant; c) a refrigeration heat exchanger for cooling a pre- treated feed gas to produce a hydrocarbon liquid, the refrigeration heat exchanger having a first heat exchange pathway in fluid communication with the compressor, a second heat exchange pathway, and a third heat exchange pathway, the first, second and third heat exchange pathways extending through the refrigeration zone, and a fourth heat exchange pathway extending through a portion of the refrigeration zone, the second and fourth heat exchange pathways being positioned in counter current heat exchange in relation to the first and third heat exchange pathways ; an expander in fluid communication with an outlet from the first heat exchange pathway and an inlet to the second heat exchange pathway; d) a recirculation mixed refrigerant line in fluid communication with an outlet from the second heat exchange pathway and an inlet to the compressor; e) an auxiliary refrigeration system having an auxiliary refrigerant in fluid communication with the fourth heat exchange pathway
  • the compressor is a single stage compressor.
  • the compressor is a single stage centrifugal compressor driven directly (without gearbox) by a gas turbine.
  • the compressor is a two stage compressor with intercooler and interstage scrubber, optionally provided with gearbox.
  • the gas turbine is coupled with a steam generator in a configuration whereby, in use, waste heat from the gas turbine facilitates production of steam in the steam generator.
  • the system comprises a single steam turbine generator configured to produce electrical power. Preferably, the amount of electrical power generated by the single steam turbine generator is sufficient to drive the auxiliary refrigeration system.
  • the auxiliary refrigerant comprises low temperature ammonia and the auxiliary refrigeration system comprises one or more ammonia refrigeration packages.
  • the one or more ammonia refrigeration packages are cooled by air coolers or water coolers.
  • the auxiliary refrigeration system is in heat exchange communication with the gas turbine , the heat exchange communication being configured in a manner to effect cooling of inlet air of the gas turbine by the auxiliary refrigeration system.
  • the system comprises a cooler to cool the compressed mixed refrigerant prior to the compressed mixed refrigerant being received in the refrigeration heat exchanger.
  • the cooler is an air-cooled heat exchanger, or a water-cooled heat exchanger.
  • the cooler further comprises a chiller in sequential combination with the air- or water-cooled heat exchanger.
  • the chiller is driven at least in part by waste heat produced from the compressor, in particular by waste heat produced from the gas turbine drive .
  • the hydrocarbon liquid in the hydrocarbon liquid line is expanded through an expander to further cool the hydrocarbon liquid.
  • Figure 1 is a schematic flow chart of a process for liquefying a fluid material, such as for example natural gas or CSG, in accordance with one embodiment of the present invention.
  • Figure 2 is a composite cooling and heating curve for a single mixed refrigerant and the fluid material .
  • FIG. 1 there is shown a process for cooling a fluid material to cryogenic temperatures for the purposes of liquefaction thereof.
  • a fluid material include, but are not limited to, natural gas and coal seam gas (CSG) . While this specific embodiment of the invention is described in relation to the production of liquefied natural gas (LNG) from natural gas or CSG, it is envisaged that the process may be applied to other fluid materials which may be liquefied at cryogenic temperatures.
  • LNG liquefied natural gas
  • the production of LNG is broadly achieved by pre-treating a natural gas or CSG feed gas to remove water, carbon dioxide, and optionally other species which may solidify downstream at temperatures approaching liquefaction, and then cooling the pre-treated feed gas to cryogenic temperatures at which LNG is produced.
  • the feed gas 60 enters the process at a controlled pressure of about 900 psi .
  • Carbon dioxide is removed therefrom by passing it through a conventional packaged CO 2 stripping plant 62 where CO 2 is removed to about 50 - 150 ppm.
  • Illustrative examples of a CO 2 stripping plant 62 include an amine package having an amine contactor (eg. MDEA) and an amine re-boiler.
  • the gas exiting the amine contactor is saturated with water (eg. -70lb/MMscf) .
  • the gas is cooled to near its hydrate point (eg. ⁇ 15°C) with a chiller 66.
  • the chiller 66 utilises cooling capacity from an auxiliary refrigeration system 20. Condensed water is removed from the cooled gas stream and returns to the amine package for make-up.
  • the cooled gas stream with reduced water content (e.g. ⁇ 20lb/MMscf) is passed to a dehydration plant 64.
  • the dehydration plant 64 comprises three molecular sieve vessels. Typically, two molecular sieve vessels will operate in adsorption mode while the third vessel is regenerated or in standby mode.
  • a side stream of dry gas exiting the duty vessel is used for regeneration gas.
  • Wet regeneration gas is cooled using air and condensed water is separated. The saturated gas stream is heated and used as fuel gas.
  • Boil-off gas (BOG) is preferentially used as regeneration/fuel gas (as will be described later) and any shortfall is supplied from the dry gas stream. No recycle compressor is required for regeneration gas.
  • the feed gas 60 may optionally undergo further treatment to remove other sour species or the like, such as sulphur compounds, although it will be appreciated that many sulphur compounds may be removed concurrently with carbon dioxide in the CO 2 stripping plant 62.
  • sour species or the like such as sulphur compounds
  • the feed gas 60 becomes heated to temperatures up to 50 0 C.
  • the pre-treated feed gas may optionally be cooled with a chiller (not shown) to a temperature of about 10 0 C to -50 0 C.
  • a chiller which may be employed in the process of the present invention include, but are not limited to, an ammonia absorption chiller, a lithium bromide absorption chiller, and the like, or the auxiliary refrigeration system 20.
  • the chiller may condense heavy hydrocarbons in the pre-treated stream.
  • These condensed components can either form an additional product stream, or may be used as a fuel gas or as a regeneration gas in various parts of the system.
  • Cooling the pre-treated gas stream has the primary advantage of significantly reducing the cooling load required for liquefaction, in some instances by as much as
  • the cooled pre-treated gas stream is supplied to a refrigeration zone 28 through line 32 where said stream is liquefied.
  • the refrigeration zone 28 comprises a refrigerated heat exchanger wherein refrigeration thereof is provided by a mixed refrigerant and an auxiliary refrigeration system 20.
  • the heat exchanger comprises brazed aluminium plate fin exchanger cores enclosed in a purged steel box.
  • the refrigerated heat exchanger has a first heat exchange pathway 40 in fluid communication with the compressor 12, a second heat exchange pathway 42, and a third heat exchange pathway 44. Each of the first, second and third heat exchange pathways 40, 42, 44 extend through the refrigerated heat exchanger as shown in Figure 1.
  • the refrigerated heat exchanger is also provided with a fourth heat exchange pathway 46 which extends through a portion of the refrigerated heat exchanger, in particular a cold portion thereof.
  • Refrigeration is provided to the refrigeration zone 28 by circulating the mixed refrigerant therethrough.
  • the mixed refrigerant from a refrigerant suction drum 10 is passed to the compressor 12.
  • the compressor 12 is preferably two parallel single stage centrifugal compressors, each directly driven by gas turbines 100, in particular an aero-derivative gas turbine.
  • the compressor 12 may be a two stage compressor with intercooler and interstage scrubber.
  • the compressor 12 is of a type which operates at an efficiency of about 75% to about 85%.
  • Waste heat from the gas turbines 100 may be used to generate steam which in turn is used to drive an electric generator (not shown) . In this way, sufficient power may be generated to supply electricity to all the electrical components in the liquefaction plant, in particular the auxiliary refrigeration system 20.
  • Steam that is generated by waste heat from the gas turbines 100 may also be used to heat the amine re-boiler of the CO 2 stripping plant 62, for regeneration of the molecular sieves of the dehydration plant 64, regeneration gas and fuel gas .
  • the mixed refrigerant is compressed to a pressure ranging from about 30 bar to 50 bar and typically to a pressure of about 35 to about 40 bar.
  • the temperature of the compressed mixed refrigerant rises as a consequence of compression in compressor 12 to a temperature ranging from about 120 0 C to about 160 0 C and typically to about 140 0 C.
  • the compressed mixed refrigerant is then passed through line 14 to a cooler 16 to reduce the temperature of the compressed mixed refrigerant to below 45 0 C.
  • the cooler 16 is an air-cooled fin tube heat exchanger, where the compressed mixed refrigerant is cooled by passing the compressed mixed refrigerant in counter current relationship with a fluid such as air, or the like.
  • the cooler 16 is a shell and tube heat exchanger where the compressed mixed refrigerant is cooled by passing the compressed mixed refrigerant in counter current relationship with a fluid, such as water, or the like.
  • the cooled compressed mixed refrigerant is passed to the first heat exchange pathway 40 of the refrigeration zone 28 where it is further cooled and expanded via expander 48, preferably using a Joule-Thomson effect, thus providing cooling for the refrigeration zone 28 as mixed refrigerant coolant.
  • the mixed refrigerant coolant is passed through the second heat exchange pathway 42 where it is heated in countercurrent heat exchange with the compressed mixed refrigerant and the pre-treated feed gas passing through the first and third heat exchange pathways 40, 44, respectively.
  • the mixed refrigerant gas is then returned to the refrigerant suction drum 10 before entering the compressor 12, thus completing a closed loop single mixed refrigerant process.
  • Fluid material or boil-off gas methane and/or C2-C5 hydrocarbons
  • nitrogen generator nitrogen
  • the mixed refrigerant contains compounds selected from a group consisting of nitrogen and hydrocarbons containing from 1 to about 5 carbon atoms.
  • a suitable composition for the mixed refrigerant is as follows in the following mole fraction percent ranges: nitrogen: about 5 to about 15; methane: about 25 to about 35; C2 : about 33 to about 42; C3 : 0 to about 10; C4 : 0 to about 20 about; and C5 : 0 to about 20.
  • the mixed refrigerant comprises nitrogen, methane, ethane or ethylene, and isobutane and/or ⁇ -butane .
  • Figure 2 shows a composite cooling and heating curve for the single mixed refrigerant and natural gas. The close proximity of the curves to within about 2° indicates the efficiencies of the process and system of the present invention.
  • the auxiliary refrigeration system 20 comprises one or more ammonia refrigeration packages cooled by air coolers.
  • An auxiliary refrigerant, such as cool ammonia passes through the fourth heat exchange pathway 44 located in a cold zone of the refrigeration zone 28.
  • up to about 70% cooling capacity available from the auxiliary refrigeration system 20 may be directed to the refrigeration zone 28.
  • the auxiliary cooling has the effect of producing an additional 20% LNG and also improves plant efficiency, for example fuel consumption in gas turbine 100 by a separate 20%
  • the auxiliary refrigeration system 20 utilises waste heat generated from hot exhaust gases from the gas turbine 100 to generate the refrigerant for the auxiliary refrigeration system 20. It will be appreciated, however, that additional waste heat generated by other components in the liquefaction plant may also be utilised to regenerate the refrigerant for the auxiliary refrigeration system 20, such as may be available as waste heat from other compressors, prime movers used in power generation, hot flare gases, waste gases or liquids, solar power and the like.
  • the auxiliary refrigeration system 20 is also used to cool the air inlet for gas turbine 100. Importantly, cooling the gas turbine inlet air adds 15-25% to the plant production capacity as compressor output is roughly- proportional to LNG output.
  • the liquefied gas is recovered from the third heat exchange pathway 44 of the refrigeration zone 28 through a line 72 at a temperature from about -150 0 C to about 170 0 C.
  • the liquefied gas is then expanded through expander 74 which consequently reduces the temperature of the liquefied gas to about -160 0 C.
  • expanders which may be used in the present invention include, but are not limited to, expansion valves, JT valves, venturi devices, and a rotating mechanical expander .
  • the liquefied gas is then directed to storage tank 76 via line 78.
  • Boil -off gases (BOG) generated in the storage tank 76 can be charged to a compressor 78, preferably a low pressure compressor, via line 80.
  • the compressed BOG is supplied to the refrigeration zone 28 through line 82 and is passed through a portion of the refrigeration zone 28 where said compressed BOG is cooled to a temperature from about 150°C to about -170 0 C.
  • the liquid phase of the cooled BOG largely comprises methane.
  • the vapour phase of cooled BOG also comprises methane, relative to the liquid phase there is an increase in the concentration of nitrogen therein, typically from about 20% to about 60%.
  • the resultant composition of said vapour phase is suitable for use as a fuel gas.
  • the resultant two-phase mixture is passed to a separator 84 via line 86, whereupon the separated liquid phase is redirected back to the storage tank 76 via line 88.
  • the cooled gas phase separated in the separator 84 is passed to a compressor, preferably a high pressure compressor, and is used in the plant as a fuel gas and/or regeneration gas via line.
  • a compressor preferably a high pressure compressor
  • the cooled gas phase separated in the separator 84 is suitable for use as a cooling medium to circulate through a cryogenic flowline system for transfer of cryogenic fluids, such as for example LNG or liquid methane from coal seam gas, from a storage tank 76 to a receiving/loading facility, in order to maintain the flowline system at or marginally above cryogenic temperatures .
  • cryogenic fluids such as for example LNG or liquid methane from coal seam gas
  • FIG. 1 there is shown a main transfer line 92 and a vapour return line 94, both fluidly connecting storage tank 76 to a loading/receiving facility (not shown) .
  • Storage tank 76 is provided with a pump 96 for pumping LNG from storage tank 76 through the main transfer line 92.
  • the cooled gas phase separated in the separator 85 is suitable for use as a cooling medium to circulate through a cryogenic flowline system for transfer of cryogenic liquids. Accordingly, the cooled gas phase separated in the separator 85 is directed via line 98 to the main transfer line 92, whereupon the cooled gas phase is circulated through the main transfer line 92 and the vapour return line 94 to maintain the cryogenic flowline system at a temperature at or marginally above cryogenic temperatures.
  • the vapour return line 94 is fluidly connected to an inlet of the compressor 78 so that boil-off gases generated during transfer operations may be conveniently treated in accordance with the process for treating boil- off gases as outlined above.
  • waste gas to provide all heating requirements and electrical power via a steam turbine generator for the LNG plant.
  • the waste heat is also used to drive standard packaged ammonia refrigeration compressors of the auxiliary refrigeration system 20 which provides additional refrigeration for: • gas turbine inlet air cooling, thereby improving plant capacity by 15- 25 % ;
  • the mixed refrigerant system is designed to provide a close match on the cooling curves thereby maximising refrigeration efficiency. Integration of the auxiliary refrigeration system 20 with the refrigeration zone 28 improves the heat transfer at the warm end of the heat exchanger by increasing the LMTD which reduces the size of the heat exchanger. This also provides a cool mixed refrigerant suction temperature to the compressor which significantly improves the compressor capacity. (3) The high efficiency, use of CHP to meet all plant heat and electrical power requirements and the use of dry low emissions combustors in the gas turbines 100 results in very low overall emissions.
  • the system is configured to recover flash gas and BOG generated from the storage tank 76 and from the receiving/loading facility (eg. ships) during loading.
  • the BOG gas is compressed in compressor 78 where it is re- liquefied in the refrigeration zone 28 to recover methane as liquid.
  • the liquid methane is returned to the storage tank 26 and the flash gas which is concentrated in nitrogen is used to auxiliary fire the exhaust of the gas turbine 100.
  • Efficient transfer flowline system The system is configured to provide a reduction in heat loss from the transfer lines and a concomitant reduction in BOG generated therein, a portion of which would be flared under prior art conditions.
  • any BOG which is generated in the transfer flowlines may be recirculated to the compressor 78 and refrigeration zone 28 for liquefaction, and use as a cooling medium. Additionally, the process and system obviates the need for an additional transfer lines and associated pumps for circulation, thus reducing the capital expenditure of said system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

A process and system for liquefying a hydrocarbon gas is provided. The hydrocarbon feed gas is pre-treated to remove sour species and water therefrom. The pre-treated feed gas is then passed to a refrigeration zone where it is cooled and expanded to produce a hydrocarbon liquid. A closed loop single mixed refrigerant provides most of the refrigeration to the refrigeration zone together with an auxiliary refrigeration system. The auxiliary refrigeration system and closed loop single mixed refrigerant are coupled in such a manner that waste heat generated by a gas turbine drive of the compressor in the closed loop single mixed refrigerant drives the auxiliary refrigeration system and the auxiliary refrigeration system cools the inlet air of the gas turbine. In this way, substantial improvements are made in the production capacity of the system.

Description

A METHOD AND SYSTEM FOR PRODUCTION OF LIQUID NATURAL GAS
Field
The present invention relates to a method and system for production of liquid natural gas. In particular, the present invention relates to a process and system for liquefying a hydrocarbon gas, such as natural gas or coal seam gas .
Background
The construction and operation of a plant for treating and liquefying a hydrocarbon gas, such as natural gas or coal seam gas, and produce liquefied methane or LNG involves vast capital and operational expenditure. In particular, with increased sensitivity to environmental issues and regulations pertaining to green house gas emissions, the design of such a plant must seek to incorporate features which increase fuel efficiency and reduce emissions where possible .
Summary
In its broadest aspect, the invention provides a process and system for liquefying a hydrocarbon gas, such as natural gas or coal seam gas .
Accordingly, in a first aspect, the present invention provides a process for liquefying a hydrocarbon gas comprising the steps of: a) pre-treating a hydrocarbon feed gas to remove sour species and water therefrom; b) providing a refrigeration zone, wherein refrigeration in the refrigeration zone is provided by circulating a mixed refrigerant from mixed refrigerant system and an auxiliary refrigerant from an auxiliary refrigeration system through the refrigeration zone; c) coupling the mixed refrigerant system and the auxiliary refrigeration system in a manner whereby the auxiliary refrigeration system is driven, at least in part, by waste heat generated by the mixed refrigerant; and d) passing the pre-treated feed gas through the refrigeration zone where the pre-treated feed gas is cooled and expanding the cooled feed gas to produce a hydrocarbon liquid.
In one embodiment of the invention, the step of circulating a mixed refrigerant through the refrigeration zone comprises: a) compressing the mixed refrigerant in a compressor; b) passing the compressed mixed refrigerant through a first heat exchange pathway extending through the refrigeration zone where the compressed mixed refrigerant is cooled and expanded to produce a mixed refrigerant coolant; c) passing the mixed refrigerant coolant through a second heat exchange pathway extending through the refrigeration zone to produce a mixed refrigerant; and d) recirculating the mixed refrigerant to the compressor.
In another embodiment of the invention, the step of passing the pre-treated feed gas through the refrigeration zone comprises passing the pre-treated feed gas through a third heat exchange pathway in the refrigeration zone.
In still another embodiment of the invention, the step of circulating the auxiliary refrigerant through the refrigeration zone comprises passing the auxiliary refrigerant through a fourth heat exchange pathway _ O _
extending through a portion of the refrigeration zone. The second and fourth heat exchange pathways extend in counter current heat exchange relation to the first and third heat exchange pathways .
Advantageously, the inventors have discovered that heat produced in the compressing step by a gas turbine drive of the compressor, which would otherwise be considered as waste heat, can be utilised in the process to produce steam in a steam generator. The steam may be used to power a single steam turbine generator and produce electrical power which drives the auxiliary refrigeration system.
Accordingly, in a preferred embodiment of the invention, the process further comprises driving the auxiliary refrigeration system at least in part by waste heat produced from the compressing step of the process of the present invention.
In another preferred embodiment of the invention, the process further comprises cooling inlet air of a gas turbine directly coupled to the compressor with the auxiliary refrigerant. Preferably, the inlet air is cooled to about 50C - 100C. The inventors have estimated that cooling the inlet air of the gas turbine increases the compressor output by 15% - 25%, thus improving the production capacity of the process since compressor output is proportional to LNG output.
In one embodiment of the invention, the step of compressing the mixed refrigerant increases the pressure thereof from about 30 to 50 bar.
When the mixed refrigerant is compressed its temperature rises. In a further embodiment, the process comprises cooling the compressed mixed refrigerant prior to passing the compressed mixed refrigerant to the first heat exchange pathway. In this way the cooling load on the refrigeration zone is reduced. In one embodiment, the compressed mixed refrigerant is cooled to a temperature less than 500C. In the preferred embodiment, the compressed mixed refrigerant is cooled to about 100C.
In another embodiment, the step of cooling the compressed mixed refrigerant comprises passing the compressed mixed refrigerant from the compressor to a heat exchanger, in particular an air- or water-cooler. In an alternative embodiment of the invention the cooling step comprises passing the compressed mixed refrigerant from the compressor to the heat exchanger as described above, and further passing the compressed mixed refrigerant cooled in the heat exchanger to a chiller. Preferably, the chiller is driven at least in part by waste heat, in particular waste heat produced from the compressing step.
In one embodiment of the invention, the temperature of the mixed refrigerant coolant is at or below the temperature at which the pre-treated feed gas condenses. Preferably the temperature of the mixed refrigerant coolant is less than -1500C.
In one embodiment of the invention, the mixed refrigerant contains compounds selected from a group consisting of nitrogen and hydrocarbons containing from 1 to 5 carbon atoms. Preferably, the mixed refrigerant comprises nitrogen, methane, ethane or ethylene, isobutane and/or n- butane. In one preferred embodiment the composition for the mixed refrigerant is as follows in the following mole fraction percent ranges: nitrogen: about 5 to about 15; methane: about 25 to about 35; C2 : about 33 to about 42; C3 : 0 to about 10; C4 : 0 to about 20 about; and C5 : 0 to about 20. The composition of the mixed refrigerant may be selected such that composite cooling and heating curves of the mixed refrigerant are matched within about 20C of one another, and that the composite cooling and heating curves are substantially continuous.
In one embodiment of the invention, the hydrocarbon gas is natural gas or coal seam methane. Preferably, the hydrocarbon gas is recovered from the refrigeration zone at a temperature at or below the liquefaction temperature of methane .
In a second aspect the invention provides a hydrocarbon gas liquefaction system comprising: a) a mixed refrigerant; b) a compressor for compressing the mixed refrigerant; c) a refrigeration heat exchanger for cooling a pre- treated feed gas to produce a hydrocarbon liquid, the refrigeration heat exchanger having a first heat exchange pathway in fluid communication with the compressor, a second heat exchange pathway, and a third heat exchange pathway, the first, second and third heat exchange pathways extending through the refrigeration zone, and a fourth heat exchange pathway extending through a portion of the refrigeration zone, the second and fourth heat exchange pathways being positioned in counter current heat exchange in relation to the first and third heat exchange pathways ; an expander in fluid communication with an outlet from the first heat exchange pathway and an inlet to the second heat exchange pathway; d) a recirculation mixed refrigerant line in fluid communication with an outlet from the second heat exchange pathway and an inlet to the compressor; e) an auxiliary refrigeration system having an auxiliary refrigerant in fluid communication with the fourth heat exchange pathway; f) a source of pre-treated feed gas in fluid Communications with an inlet of the third heat exchange pathway; and g) a hydrocarbon liquid line in fluid communication with an outlet of the third heat exchange pathway.
In one embodiment of the invention, the compressor is a single stage compressor. Preferably, the compressor is a single stage centrifugal compressor driven directly (without gearbox) by a gas turbine. In an alternative embodiment, the compressor is a two stage compressor with intercooler and interstage scrubber, optionally provided with gearbox.
In another embodiment, the gas turbine is coupled with a steam generator in a configuration whereby, in use, waste heat from the gas turbine facilitates production of steam in the steam generator. In a further embodiment, the system comprises a single steam turbine generator configured to produce electrical power. Preferably, the amount of electrical power generated by the single steam turbine generator is sufficient to drive the auxiliary refrigeration system.
In another embodiment of the invention, the auxiliary refrigerant comprises low temperature ammonia and the auxiliary refrigeration system comprises one or more ammonia refrigeration packages. Preferably the one or more ammonia refrigeration packages are cooled by air coolers or water coolers.
In a preferred embodiment, the auxiliary refrigeration system is in heat exchange communication with the gas turbine , the heat exchange communication being configured in a manner to effect cooling of inlet air of the gas turbine by the auxiliary refrigeration system. In a further embodiment of the invention, the system comprises a cooler to cool the compressed mixed refrigerant prior to the compressed mixed refrigerant being received in the refrigeration heat exchanger. Preferably the cooler is an air-cooled heat exchanger, or a water-cooled heat exchanger. In an alternative embodiment of the invention, the cooler further comprises a chiller in sequential combination with the air- or water-cooled heat exchanger. Preferably, the chiller is driven at least in part by waste heat produced from the compressor, in particular by waste heat produced from the gas turbine drive .
In a still further embodiment of the invention, the hydrocarbon liquid in the hydrocarbon liquid line is expanded through an expander to further cool the hydrocarbon liquid.
Description of the Drawings
Preferred embodiments, incorporating all aspects of the invention, will now be described by way of example only with reference to the accompanying drawings, in which:
Figure 1 is a schematic flow chart of a process for liquefying a fluid material, such as for example natural gas or CSG, in accordance with one embodiment of the present invention; and
Figure 2 is a composite cooling and heating curve for a single mixed refrigerant and the fluid material .
Detailed Description of Preferred Embodiment
Referring to Figure 1, there is shown a process for cooling a fluid material to cryogenic temperatures for the purposes of liquefaction thereof. Illustrative examples of a fluid material include, but are not limited to, natural gas and coal seam gas (CSG) . While this specific embodiment of the invention is described in relation to the production of liquefied natural gas (LNG) from natural gas or CSG, it is envisaged that the process may be applied to other fluid materials which may be liquefied at cryogenic temperatures.
The production of LNG is broadly achieved by pre-treating a natural gas or CSG feed gas to remove water, carbon dioxide, and optionally other species which may solidify downstream at temperatures approaching liquefaction, and then cooling the pre-treated feed gas to cryogenic temperatures at which LNG is produced.
Referring to Figure 1, the feed gas 60 enters the process at a controlled pressure of about 900 psi . Carbon dioxide is removed therefrom by passing it through a conventional packaged CO2 stripping plant 62 where CO2 is removed to about 50 - 150 ppm. Illustrative examples of a CO2 stripping plant 62 include an amine package having an amine contactor (eg. MDEA) and an amine re-boiler. Typically, the gas exiting the amine contactor is saturated with water (eg. -70lb/MMscf) . In order to remove the bulk of the water, the gas is cooled to near its hydrate point (eg. ~15°C) with a chiller 66. Preferably, the chiller 66 utilises cooling capacity from an auxiliary refrigeration system 20. Condensed water is removed from the cooled gas stream and returns to the amine package for make-up.
Water must be removed from the cooled gas stream to ≤l ppm prior to liquefaction to avoid freezing when the temperature of the gas stream is reduced to below hydrate freezing point. Accordingly, the cooled gas stream with reduced water content (e.g. ~20lb/MMscf) is passed to a dehydration plant 64. The dehydration plant 64 comprises three molecular sieve vessels. Typically, two molecular sieve vessels will operate in adsorption mode while the third vessel is regenerated or in standby mode. A side stream of dry gas exiting the duty vessel is used for regeneration gas. Wet regeneration gas is cooled using air and condensed water is separated. The saturated gas stream is heated and used as fuel gas. Boil-off gas (BOG) is preferentially used as regeneration/fuel gas (as will be described later) and any shortfall is supplied from the dry gas stream. No recycle compressor is required for regeneration gas.
The feed gas 60 may optionally undergo further treatment to remove other sour species or the like, such as sulphur compounds, although it will be appreciated that many sulphur compounds may be removed concurrently with carbon dioxide in the CO2 stripping plant 62.
As a result of pre-treatment , the feed gas 60 becomes heated to temperatures up to 500C. In one embodiment of the present invention, the pre-treated feed gas may optionally be cooled with a chiller (not shown) to a temperature of about 100C to -500C. Suitable examples of the chiller which may be employed in the process of the present invention include, but are not limited to, an ammonia absorption chiller, a lithium bromide absorption chiller, and the like, or the auxiliary refrigeration system 20.
Advantageously, depending on the composition of the feed gas, the chiller may condense heavy hydrocarbons in the pre-treated stream. These condensed components can either form an additional product stream, or may be used as a fuel gas or as a regeneration gas in various parts of the system.
Cooling the pre-treated gas stream has the primary advantage of significantly reducing the cooling load required for liquefaction, in some instances by as much as
30% when compared with the prior art.
The cooled pre-treated gas stream is supplied to a refrigeration zone 28 through line 32 where said stream is liquefied.
The refrigeration zone 28 comprises a refrigerated heat exchanger wherein refrigeration thereof is provided by a mixed refrigerant and an auxiliary refrigeration system 20. Preferably, the heat exchanger comprises brazed aluminium plate fin exchanger cores enclosed in a purged steel box.
The refrigerated heat exchanger has a first heat exchange pathway 40 in fluid communication with the compressor 12, a second heat exchange pathway 42, and a third heat exchange pathway 44. Each of the first, second and third heat exchange pathways 40, 42, 44 extend through the refrigerated heat exchanger as shown in Figure 1. The refrigerated heat exchanger is also provided with a fourth heat exchange pathway 46 which extends through a portion of the refrigerated heat exchanger, in particular a cold portion thereof. The second and fourth heat exchange 42,
46 pathways are positioned in counter current heat exchange in relation to the first and third heat exchange pathways 40, 44.
Refrigeration is provided to the refrigeration zone 28 by circulating the mixed refrigerant therethrough. The mixed refrigerant from a refrigerant suction drum 10 is passed to the compressor 12. The compressor 12 is preferably two parallel single stage centrifugal compressors, each directly driven by gas turbines 100, in particular an aero-derivative gas turbine. Alternatively, the compressor 12 may be a two stage compressor with intercooler and interstage scrubber. Typically the compressor 12 is of a type which operates at an efficiency of about 75% to about 85%.
Waste heat from the gas turbines 100 may be used to generate steam which in turn is used to drive an electric generator (not shown) . In this way, sufficient power may be generated to supply electricity to all the electrical components in the liquefaction plant, in particular the auxiliary refrigeration system 20.
Steam that is generated by waste heat from the gas turbines 100 may also be used to heat the amine re-boiler of the CO2 stripping plant 62, for regeneration of the molecular sieves of the dehydration plant 64, regeneration gas and fuel gas .
The mixed refrigerant is compressed to a pressure ranging from about 30 bar to 50 bar and typically to a pressure of about 35 to about 40 bar. The temperature of the compressed mixed refrigerant rises as a consequence of compression in compressor 12 to a temperature ranging from about 1200C to about 1600C and typically to about 1400C.
The compressed mixed refrigerant is then passed through line 14 to a cooler 16 to reduce the temperature of the compressed mixed refrigerant to below 450C. In one embodiment, the cooler 16 is an air-cooled fin tube heat exchanger, where the compressed mixed refrigerant is cooled by passing the compressed mixed refrigerant in counter current relationship with a fluid such as air, or the like. In an alternative embodiment, the cooler 16 is a shell and tube heat exchanger where the compressed mixed refrigerant is cooled by passing the compressed mixed refrigerant in counter current relationship with a fluid, such as water, or the like.
The cooled compressed mixed refrigerant is passed to the first heat exchange pathway 40 of the refrigeration zone 28 where it is further cooled and expanded via expander 48, preferably using a Joule-Thomson effect, thus providing cooling for the refrigeration zone 28 as mixed refrigerant coolant. The mixed refrigerant coolant is passed through the second heat exchange pathway 42 where it is heated in countercurrent heat exchange with the compressed mixed refrigerant and the pre-treated feed gas passing through the first and third heat exchange pathways 40, 44, respectively. The mixed refrigerant gas is then returned to the refrigerant suction drum 10 before entering the compressor 12, thus completing a closed loop single mixed refrigerant process.
Mixed refrigerant make-up is provided from the fluid material or boil-off gas (methane and/or C2-C5 hydrocarbons) , nitrogen generator (nitrogen) with any one or more of the refrigerant components being sourced externally.
The mixed refrigerant contains compounds selected from a group consisting of nitrogen and hydrocarbons containing from 1 to about 5 carbon atoms. When the fluid material to be cooled is natural gas or coal seam gas, a suitable composition for the mixed refrigerant is as follows in the following mole fraction percent ranges: nitrogen: about 5 to about 15; methane: about 25 to about 35; C2 : about 33 to about 42; C3 : 0 to about 10; C4 : 0 to about 20 about; and C5 : 0 to about 20. In a preferred embodiment, the mixed refrigerant comprises nitrogen, methane, ethane or ethylene, and isobutane and/or π-butane .
Figure 2 shows a composite cooling and heating curve for the single mixed refrigerant and natural gas. The close proximity of the curves to within about 2° indicates the efficiencies of the process and system of the present invention.
Additional refrigeration may be provided to the refrigeration zone 28 by the auxiliary refrigeration system 20. The auxiliary refrigeration system 20 comprises one or more ammonia refrigeration packages cooled by air coolers. An auxiliary refrigerant, such as cool ammonia, passes through the fourth heat exchange pathway 44 located in a cold zone of the refrigeration zone 28. By this means, up to about 70% cooling capacity available from the auxiliary refrigeration system 20 may be directed to the refrigeration zone 28. The auxiliary cooling has the effect of producing an additional 20% LNG and also improves plant efficiency, for example fuel consumption in gas turbine 100 by a separate 20%
The auxiliary refrigeration system 20 utilises waste heat generated from hot exhaust gases from the gas turbine 100 to generate the refrigerant for the auxiliary refrigeration system 20. It will be appreciated, however, that additional waste heat generated by other components in the liquefaction plant may also be utilised to regenerate the refrigerant for the auxiliary refrigeration system 20, such as may be available as waste heat from other compressors, prime movers used in power generation, hot flare gases, waste gases or liquids, solar power and the like.
The auxiliary refrigeration system 20 is also used to cool the air inlet for gas turbine 100. Importantly, cooling the gas turbine inlet air adds 15-25% to the plant production capacity as compressor output is roughly- proportional to LNG output.
The liquefied gas is recovered from the third heat exchange pathway 44 of the refrigeration zone 28 through a line 72 at a temperature from about -1500C to about 1700C. The liquefied gas is then expanded through expander 74 which consequently reduces the temperature of the liquefied gas to about -1600C. Suitable examples of expanders which may be used in the present invention include, but are not limited to, expansion valves, JT valves, venturi devices, and a rotating mechanical expander .
The liquefied gas is then directed to storage tank 76 via line 78.
Boil -off gases (BOG) generated in the storage tank 76 can be charged to a compressor 78, preferably a low pressure compressor, via line 80. The compressed BOG is supplied to the refrigeration zone 28 through line 82 and is passed through a portion of the refrigeration zone 28 where said compressed BOG is cooled to a temperature from about 150°C to about -1700C.
At these temperatures, a portion of the BOG is condensed to a liquid phase. In particular, the liquid phase of the cooled BOG largely comprises methane. Although the vapour phase of cooled BOG also comprises methane, relative to the liquid phase there is an increase in the concentration of nitrogen therein, typically from about 20% to about 60%. The resultant composition of said vapour phase is suitable for use as a fuel gas. The resultant two-phase mixture is passed to a separator 84 via line 86, whereupon the separated liquid phase is redirected back to the storage tank 76 via line 88.
The cooled gas phase separated in the separator 84 is passed to a compressor, preferably a high pressure compressor, and is used in the plant as a fuel gas and/or regeneration gas via line.
Alternatively, the cooled gas phase separated in the separator 84 is suitable for use as a cooling medium to circulate through a cryogenic flowline system for transfer of cryogenic fluids, such as for example LNG or liquid methane from coal seam gas, from a storage tank 76 to a receiving/loading facility, in order to maintain the flowline system at or marginally above cryogenic temperatures .
Referring to Figure 1, there is shown a main transfer line 92 and a vapour return line 94, both fluidly connecting storage tank 76 to a loading/receiving facility (not shown) . Storage tank 76 is provided with a pump 96 for pumping LNG from storage tank 76 through the main transfer line 92.
As described previously, the cooled gas phase separated in the separator 85 is suitable for use as a cooling medium to circulate through a cryogenic flowline system for transfer of cryogenic liquids. Accordingly, the cooled gas phase separated in the separator 85 is directed via line 98 to the main transfer line 92, whereupon the cooled gas phase is circulated through the main transfer line 92 and the vapour return line 94 to maintain the cryogenic flowline system at a temperature at or marginally above cryogenic temperatures. Preferably, the vapour return line 94 is fluidly connected to an inlet of the compressor 78 so that boil-off gases generated during transfer operations may be conveniently treated in accordance with the process for treating boil- off gases as outlined above.
Before transfer operations commence, it is envisaged that additional cooling and filling of the main transfer line 92 could be achieved by priming said line 92 by passing the liquid phase separated in separator 84 or liquid fluid material discharged from heat exchanger 28 through said line 92 via line 99. It is anticipated that any liquid phase remaining in the line 99 after completion of transfer operations could self-drain back into the storage tank 76 under inherent pressure self-generated in the line 99 from ambient heating.
The process and system described above has the following advantages over traditional LNG plants:
(1) Integrated combined heat and power technology systems
(CHP) use waste heat from the gas turbines 100 plus some auxiliary firing with recovered boil-off gas (which is low
Btu waste gas) to provide all heating requirements and electrical power via a steam turbine generator for the LNG plant. The waste heat is also used to drive standard packaged ammonia refrigeration compressors of the auxiliary refrigeration system 20 which provides additional refrigeration for: • gas turbine inlet air cooling, thereby improving plant capacity by 15- 25 % ;
• general process cooling, thereby reducing the size of the dehydration plant and balancing regeneration gas with the fuel gas required to power the gas turbines 100; • additional cooling for the refrigeration zone, thereby improving plant production capacity by up to 20% and energy efficiency by up to another 20%;
(2) The mixed refrigerant system is designed to provide a close match on the cooling curves thereby maximising refrigeration efficiency. Integration of the auxiliary refrigeration system 20 with the refrigeration zone 28 improves the heat transfer at the warm end of the heat exchanger by increasing the LMTD which reduces the size of the heat exchanger. This also provides a cool mixed refrigerant suction temperature to the compressor which significantly improves the compressor capacity. (3) The high efficiency, use of CHP to meet all plant heat and electrical power requirements and the use of dry low emissions combustors in the gas turbines 100 results in very low overall emissions.
(4) Efficient BOG recovery. The system is configured to recover flash gas and BOG generated from the storage tank 76 and from the receiving/loading facility (eg. ships) during loading. The BOG gas is compressed in compressor 78 where it is re- liquefied in the refrigeration zone 28 to recover methane as liquid. The liquid methane is returned to the storage tank 26 and the flash gas which is concentrated in nitrogen is used to auxiliary fire the exhaust of the gas turbine 100. This is a cost effective and energy efficient way of dealing with BOG and rejecting nitrogen from the system, and at the same time minimise or eliminate flaring during loading.
(5) Efficient transfer flowline system. The system is configured to provide a reduction in heat loss from the transfer lines and a concomitant reduction in BOG generated therein, a portion of which would be flared under prior art conditions. In the present invention, any BOG which is generated in the transfer flowlines may be recirculated to the compressor 78 and refrigeration zone 28 for liquefaction, and use as a cooling medium. Additionally, the process and system obviates the need for an additional transfer lines and associated pumps for circulation, thus reducing the capital expenditure of said system.
(6) Lower plant capital and operating/maintenance costs. Fewer equipment items and modular packages results in reduced civil, mechanical, piping, electrical and instrumentation works and a fast construction schedule; all of which contribute to reduced costs. This results in simple operations requiring less operating and maintenance staff.
It is to be understood that, although prior art use and publications may be referred to herein, such reference does not constitute an admission that any of these form a part of the common general knowledge in the art, in Australia or any other country.
For the purposes of this specification it will be clearly understood that the word "comprising" means "including but not limited to", and that the word "comprises" has a corresponding meaning.
Numerous variations and modifications will suggest themselves to persons skilled in the relevant art, in addition to those already described, without departing from the basic inventive concepts. All such variations and modifications are to be considered within the scope of the present invention, the nature of which is to be determined from the foregoing description.

Claims

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:
1. A process for liquefying a hydrocarbon gas comprising the steps of : a) pre-treating a hydrocarbon feed gas to remove sour species and water therefrom; b) providing a refrigeration zone, wherein refrigeration in the refrigeration zone is provided by circulating a mixed refrigerant from a mixed refrigerant system and an auxiliary refrigerant from an auxiliary refrigeration system through the refrigeration zone; c) coupling the mixed refrigerant system and the auxiliary refrigeration system in a manner whereby the auxiliary refrigeration system is driven, at least in part, by waste heat generated by the mixed refrigerant; and d) passing the pre-treated feed gas through the refrigeration zone where the pre-treated feed gas is cooled and expanding the cooled feed gas to produce a hydrocarbon liquid.
2. The process according to claim 1, wherein the step of circulating a mixed refrigerant through the refrigeration zone comprises: a) compressing the mixed refrigerant in a compressor; b) passing the compressed mixed refrigerant through a first heat exchange pathway extending through the refrigeration zone where the compressed mixed refrigerant is cooled and expanded to produce a mixed refrigerant coolant; c) passing the mixed refrigerant coolant through a second heat exchange pathway extending through the refrigeration zone to produce a mixed refrigerant; and d) recirculating the mixed refrigerant to the compressor .
3. The process according to claim 2, wherein the step of passing the pre-treated feed gas through the refrigeration zone comprises passing the pre-treated feed gas through a third heat exchange pathway in the refrigeration zone.
4. The process according to claim 2 or claim 3, wherein the step of circulating the auxiliary refrigerant through the refrigeration zone comprises passing the auxiliary refrigerant through a fourth heat exchange pathway extending through a portion of the refrigeration zone.
5. The process according to claim 4, wherein the second and fourth heat exchange pathways extend in countercurrent heat exchange relation to the first and third heat exchange pathways.
6. The process according to any one of claims 2 to 5, wherein the waste heat is produced from the compressing step .
7. The process according to any one of claims 2 to 6, wherein the process further comprises cooling inlet air of a gas turbine directly coupled to the compressor with the auxiliary refrigerant.
8. The process according to claim 7, wherein the inlet air is cooled to a temperature in a range of about 5 0C - 10 0C.
9. The process according to any one of claims 2 to 8 , wherein the step of compressing the mixed refrigerant increases the pressure thereof from about 30 to 50 bar.
10. The process according to any one of claims 2 to 9, wherein the process comprises cooling the compressed mixed refrigerant prior to passing the compressed mixed refrigerant to the first heat exchange pathway.
11. The process according to claim 10, wherein the compressed mixed refrigerant is cooled to a temperature less than 500C.
12. The process according to claim 10 or claim 11, wherein the compressed mixed refrigerant is cooled to about 100C.
13. The process according to any one of claims 10 to 12, wherein the step of cooling the compressed mixed refrigerant comprises passing the compressed mixed refrigerant from the compressor to a heat exchanger.
14. The process according to claim 13, wherein the heat exchanger is an air- or water-cooler.
15. The process according to claim 13 or claim 14, wherein the cooling step comprises passing the compressed mixed refrigerant from the compressor to the heat exchanger and further passing the compressed mixed refrigerant cooled in the heat exchanger to a chiller.
16. The process according to claim 15, wherein the chiller is driven at least in part by waste heat.
17. The process according to claim 16, wherein the waste heat is produced from the compressing step.
18. The process according to any one of claims 2 to 17, wherein the temperature of the mixed refrigerant coolant is at or below the temperature at which the pre-treated feed gas condenses .
19. The process according to claim 18, wherein the temperature of the mixed refrigerant coolant is less than
-1500C.
20. The process according to any one of claims 1 to 19, wherein the mixed refrigerant contains compounds selected from a group consisting of nitrogen and hydrocarbons containing from 1 to 5 carbon atoms .
21. The process according to claim 20, wherein the mixed refrigerant comprises nitrogen, methane, ethane or ethylene, isobutane and/or n-butane.
22. The process according to claim 20 or claim 21, wherein the composition of the mixed refrigerant is in the following mole fraction percent ranges: nitrogen: about 5 to about 15; methane: about 25 to about 35; C2 : about 33 to about 42; C3 : 0 to about 10; C4 : 0 to about 20 about; and C5 : 0 to about 20.
23. The process according to any one of claims 1 to 22, wherein the hydrocarbon gas is natural gas or coal seam methane .
24. The process according to claim 23, wherein the hydrocarbon gas is recovered from the refrigeration zone at a temperature at or below the liquefaction temperature of methane .
25. A hydrocarbon gas liquefaction system comprising: a) a mixed refrigerant; b) a compressor for compressing the mixed refrigerant ; c) a refrigeration heat exchanger for cooling a pre-treated feed gas to produce a hydrocarbon liquid, the refrigeration heat exchanger having a first heat exchange pathway in fluid communication with the compressor, a second heat exchange pathway, and a third heat exchange pathway, the first, second and third heat exchange pathways extending through the refrigeration zone, and a fourth heat exchange pathway extending through a portion of the refrigeration zone, the second and fourth heat exchange pathways being positioned in counter current heat exchange in relation to the first and third heat exchange pathways ; an expander in fluid communication with an outlet from the first heat exchange pathway and an inlet to the second heat exchange pathway; d) a recirculation mixed refrigerant line in fluid communication with an outlet from the second heat exchange pathway and an inlet to the compressor; e) an auxiliary refrigeration system having an auxiliary refrigerant in fluid communication with the fourth heat exchange pathway; f) a source of pre-treated feed gas in fluid communications with an inlet of the third heat exchange pathway; and g) a hydrocarbon liquid line in fluid communication with an outlet of the third heat exchange pathway.
26. The system according to claim 25, wherein the compressor is a single stage compressor driven by a gas turbine .
27. The system according to claim 26, wherein the compressor is a single stage centrifugal.
28. The system according to claim 26, the compressor is a two stage compressor driven by respective gas turbines with intercooler and interstage scrubber.
29. The system according to any one of claims 26 to 28, wherein the gas turbine is coupled with a steam generator in a configuration whereby, in use, waste heat from the gas turbine facilitates production of steam in the steam generator.
30. The system according to claim 29, wherein the steam generator is coupled to a single steam turbine generator configured to produce electrical power.
31. The system according to claim 30, wherein the amount of electrical power generated by the single steam turbine generator is sufficient to drive the auxiliary refrigeration system.
32. The system according to any one of claims 225 to 31, wherein the auxiliary refrigerant comprises low temperature ammonia and the auxiliary refrigeration system comprises one or more ammonia refrigeration packages.
33. The system according to claim 32, wherein the one or more ammonia refrigeration packages are cooled by air coolers .
34. The system according to any one of claims 26 to 33, wherein the auxiliary refrigeration system is in heat exchange communication with the gas turbine, the heat exchange communication being configured in a manner to effect cooling of inlet air of the gas turbine by the auxiliary refrigeration system.
35. The system according to any one of claims 25 to 34, wherein the system comprises a cooler to cool the compressed mixed refrigerant prior to the compressed mixed refrigerant being received in the refrigeration heat exchanger.
36. The system according to claim 35, wherein the cooler is an air-cooled heat exchanger, or a water-cooled heat exchanger .
37. The system according to any one of claims 25 to 36, wherein the hydrocarbon liquid in the hydrocarbon liquid line is expanded through an expander to further cool the hydrocarbon liquid.
PCT/AU2008/001010 2007-07-09 2008-07-07 A method and system for production of liquid natural gas WO2009006693A1 (en)

Priority Applications (19)

Application Number Priority Date Filing Date Title
ES08772637T ES2744821T3 (en) 2007-07-09 2008-07-07 Liquid natural gas production system and procedure
JP2010515317A JP5813950B2 (en) 2007-07-09 2008-07-07 Method and system for producing liquefied natural gas
EP08772637.8A EP2179234B1 (en) 2007-07-09 2008-07-07 A method and system for production of liquid natural gas
NZ582507A NZ582507A (en) 2007-07-09 2008-07-07 A method and system for production of liquid natural gas
AP2010005120A AP2825A (en) 2007-07-09 2008-07-07 A method and system for production of liquid natu ral gas
AU2010201571A AU2010201571B2 (en) 2007-07-09 2008-07-07 A method and system for production of liquid natural gas
CN2008801021582A CN101796359B (en) 2007-07-09 2008-07-07 A method and system for production of liquid natural gas
PL08772637T PL2179234T3 (en) 2007-07-09 2008-07-07 A method and system for production of liquid natural gas
EA201070112A EA016746B1 (en) 2007-07-09 2008-07-07 Method and system for production of liquid natural gas
CA2693543A CA2693543C (en) 2007-07-09 2008-07-07 A method and system for production of liquid natural gas
AU2008274900A AU2008274900B2 (en) 2007-07-09 2008-07-07 A method and system for production of liquid natural gas
BRPI0813637-8A BRPI0813637B1 (en) 2007-07-09 2008-07-07 PROCESS AND SYSTEM FOR PRODUCTION OF LIQUID NATURAL GAS
UAA201001318A UA97403C2 (en) 2007-07-09 2008-07-07 Process and system for liquefying a hydrocarbon gas
US12/668,198 US20110067439A1 (en) 2007-07-09 2008-07-07 Method and system for production of liquid natural gas
KR1020107002935A KR101437625B1 (en) 2007-07-09 2008-07-07 A method and system for production of liquid natural gas
IL203165A IL203165A (en) 2007-07-09 2010-01-06 Process for liquefying a gas and a gas liquefaction system
ZA2010/00146A ZA201000146B (en) 2007-07-09 2010-01-08 A method and system for production of liquid natural gas
US12/765,739 US9003828B2 (en) 2007-07-09 2010-04-22 Method and system for production of liquid natural gas
HK11101028.1A HK1146953A1 (en) 2007-07-09 2011-01-31 A method and system for production of liquid natural gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2007903701 2007-07-09
AU2007903701A AU2007903701A0 (en) 2007-07-09 Methods and systems for production and treatment of cryogenic fluids

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/668,198 A-371-Of-International US20110067439A1 (en) 2007-07-09 2008-07-07 Method and system for production of liquid natural gas
US12/765,739 Continuation-In-Part US9003828B2 (en) 2007-07-09 2010-04-22 Method and system for production of liquid natural gas

Publications (1)

Publication Number Publication Date
WO2009006693A1 true WO2009006693A1 (en) 2009-01-15

Family

ID=40228116

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/AU2008/001010 WO2009006693A1 (en) 2007-07-09 2008-07-07 A method and system for production of liquid natural gas
PCT/AU2008/001011 WO2009006694A1 (en) 2007-07-09 2008-07-09 Boil-off gas treatment process and system
PCT/AU2008/001012 WO2009006695A1 (en) 2007-07-09 2008-07-09 Flowline system and method for transferring cryogenic fluids

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/AU2008/001011 WO2009006694A1 (en) 2007-07-09 2008-07-09 Boil-off gas treatment process and system
PCT/AU2008/001012 WO2009006695A1 (en) 2007-07-09 2008-07-09 Flowline system and method for transferring cryogenic fluids

Country Status (19)

Country Link
US (2) US20110067439A1 (en)
EP (2) EP2179234B1 (en)
JP (3) JP5813950B2 (en)
KR (2) KR101437625B1 (en)
CN (2) CN101796359B (en)
AP (2) AP2825A (en)
AU (3) AU2010201571B2 (en)
BR (2) BRPI0813637B1 (en)
CA (2) CA2693543C (en)
EA (2) EA016746B1 (en)
ES (1) ES2744821T3 (en)
HK (2) HK1143197A1 (en)
IL (2) IL203165A (en)
NZ (2) NZ582507A (en)
PL (1) PL2179234T3 (en)
PT (1) PT2179234T (en)
UA (2) UA97403C2 (en)
WO (3) WO2009006693A1 (en)
ZA (2) ZA201000147B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2943125A1 (en) * 2009-03-13 2010-09-17 Total Sa Liquefied natural gas producing method, involves providing natural gas, recovering part of heat from fumes produced by gas turbine, and producing vapor for vapor turbine by using recovered part of heat
FR2944095A1 (en) * 2009-04-03 2010-10-08 Total Sa Liquefied natural gas producing method for engine of jet aircraft, involves driving compressor by driving units, and transferring part of heat of fumes from gas turbine towards refrigerating machine
US20130192297A1 (en) * 2010-07-29 2013-08-01 John Mak Configurations and methods for small scale lng production
WO2015107190A1 (en) * 2014-01-20 2015-07-23 Mag Soar Sl Method and apparatus for cooling without freezing
CN105486027A (en) * 2015-11-17 2016-04-13 宁波鲍斯能源装备股份有限公司 Recovery and utilization system for vent gas in low-concentration coal-bed gas liquidation process
US9739420B2 (en) 2012-10-24 2017-08-22 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Liquefied gas treatment system for vessel
WO2018165712A1 (en) * 2017-03-14 2018-09-20 Woodside Energy Technologies Pty Ltd A containerised lng liquefaction unit and associated method of producing lng
US10518859B2 (en) 2013-06-26 2019-12-31 Daewoo Shipbuilding & Marine Engineering Co., Ltd. System and method for treating boil-off gas in ship
US11112173B2 (en) 2016-07-01 2021-09-07 Fluor Technologies Corporation Configurations and methods for small scale LNG production

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101187532B1 (en) * 2009-03-03 2012-10-02 에스티엑스조선해양 주식회사 boil-off gas management apparatus of electric propulsion LNG carrier having reliquefaction function
DE102009015766A1 (en) * 2009-03-31 2010-10-07 Linde Aktiengesellschaft Liquefying hydrocarbon-rich nitrogen-containing fraction, comprises carrying out the cooling and liquefaction of the hydrocarbon-rich fraction in indirect heat exchange against refrigerant or refrigerant mixture of refrigeration circuit
DE102009020913A1 (en) * 2009-05-12 2010-11-18 Linde Ag Method for liquefying hydrocarbon-rich nitrogen-containing fraction in natural gas, involves temporarily supplying partial flow of boil-off gas fraction of hydrocarbon-rich nitrogen-containing fraction to be liquefied
KR20120081602A (en) * 2009-09-30 2012-07-19 쉘 인터내셔날 리써취 마트샤피지 비.브이. Method of fractionating a hydrocarbon stream and an apparatus therefor
KR100967818B1 (en) * 2009-10-16 2010-07-05 대우조선해양 주식회사 Ship for supplying liquefied fuel gas
KR101106088B1 (en) * 2011-03-22 2012-01-18 대우조선해양 주식회사 Non-flammable mixed refrigerant using for reliquifaction apparatus in system for supplying fuel for high pressure natural gas injection engine
CN102226627B (en) * 2011-05-24 2013-03-20 北京惟泰安全设备有限公司 Equipment and process for liquefying and separating coal bed methane
CN103688045A (en) * 2011-07-19 2014-03-26 雪佛龙美国公司 Method and system for combusting boil-off gas and generating electricity at an offshore lng marine terminal
CN103060036A (en) * 2011-10-19 2013-04-24 中国科学院理化技术研究所 Method and system for coalbed methane liquefaction
US20130298572A1 (en) * 2012-05-09 2013-11-14 Fluor Technologies Corporation Configurations and methods of vapor recovery and lng sendout systems for lng import terminals
BR112015015569A2 (en) 2012-12-28 2017-07-11 Gen Electric method for managing evaporation of a tank and gas evaporation management equipment set
WO2014205216A2 (en) * 2013-06-19 2014-12-24 Bechtel Hydrocarbon Technology Solutions, Inc. Systems and methods for natural gas liquefaction capacity augmentation
US9810478B2 (en) * 2014-03-05 2017-11-07 Excelerate Energy Limited Partnership Floating liquefied natural gas commissioning system and method
CN104293404B (en) * 2014-09-12 2016-08-24 成都深冷液化设备股份有限公司 Device and method for efficiently denitrifying natural gas
US9939194B2 (en) * 2014-10-21 2018-04-10 Kellogg Brown & Root Llc Isolated power networks within an all-electric LNG plant and methods for operating same
RU2676509C1 (en) * 2015-01-30 2018-12-29 Дэу Шипбилдинг Энд Марин Инджиниринг Ко., Лтд. System and method for supplying fuel to ship engine
MX2017008683A (en) * 2015-02-27 2017-10-11 Exxonmobil Upstream Res Co Reducing refrigeration and dehydration load for a feed stream entering a cryogenic distillation process.
WO2016139702A1 (en) * 2015-03-04 2016-09-09 千代田化工建設株式会社 System and method for liquefying natural gas
CA2980398C (en) * 2015-03-23 2022-08-30 Colin F. NIKIFORUK Industrial and hydrocarbon gas liquefaction
KR102403512B1 (en) 2015-04-30 2022-05-31 삼성전자주식회사 Outdoor unit of air conditioner, control device applying the same
EP3162870A1 (en) * 2015-10-27 2017-05-03 Linde Aktiengesellschaft Low-temperature mixed-refrigerant for hydrogen precooling in large scale
JP6703837B2 (en) * 2016-01-07 2020-06-03 株式会社神戸製鋼所 Boil-off gas supply device
BR112018014192A2 (en) * 2016-01-12 2018-12-11 Excelerate Liquefaction Solutions Llc natural gas liquefaction vessel
US10989469B2 (en) * 2016-07-13 2021-04-27 Fluor Technologies Corporation Heavy hydrocarbon removal from lean gas to LNG liquefaction
WO2018083747A1 (en) * 2016-11-02 2018-05-11 日揮株式会社 Natural gas liquefaction facility
JP6812272B2 (en) * 2017-02-14 2021-01-13 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード LNG manufacturing system with recondenser
CN107421187A (en) * 2017-08-22 2017-12-01 河南大学 A kind of deep-sea fishing liquid air instant-frozen system
TWM572423U (en) * 2017-11-21 2019-01-01 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 Evaporative gas recondensing device and liquefied natural gas supply system therewith
CN108168642A (en) * 2018-01-31 2018-06-15 锦州中科制管有限公司 A kind of aperture measurement of gas flow device and its measuring method
CN111447986A (en) 2018-05-23 2020-07-24 日挥环球株式会社 Pretreatment equipment for natural gas
KR102642311B1 (en) 2018-07-24 2024-03-05 닛키 글로벌 가부시키가이샤 Natural gas processing device and natural gas processing method
FR3087525B1 (en) * 2018-10-22 2020-12-11 Air Liquide LIQUEFACTION PROCESS OF AN EVAPORATION GAS CURRENT FROM THE STORAGE OF A LIQUEFIED NATURAL GAS CURRENT
US20230258400A1 (en) * 2020-07-23 2023-08-17 Bechtel Energy Technologies & Solutions, Inc. Systems and Methods for Utilizing Boil-Off Gas for Supplemental Cooling in Natural Gas Liquefaction Plants
US11717784B1 (en) 2020-11-10 2023-08-08 Solid State Separation Holdings, LLC Natural gas adsorptive separation system and method
WO2023039082A1 (en) 2021-09-09 2023-03-16 ColdStream Energy IP, LLC Portable pressure swing adsorption method and system for fuel gas conditioning
NO20211391A1 (en) * 2021-11-19 2023-05-22 Econnect Energy As System and method for cooling of a liquefied gas product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6631626B1 (en) * 2002-08-12 2003-10-14 Conocophillips Company Natural gas liquefaction with improved nitrogen removal
WO2004006586A1 (en) 2002-07-02 2004-01-15 Matsushita Electric Industrial Co., Ltd. Image encoding method and image decoding method
WO2004065869A1 (en) * 2003-01-22 2004-08-05 Lng International Pty Ltd A refrigeration process and the production of liquefied natural gas
CA2586775A1 (en) * 2004-11-15 2006-05-18 Mayekawa Mfg. Co., Ltd. Cryogenic liquefying refrigerating method and device
US7165422B2 (en) * 2004-11-08 2007-01-23 Mmr Technologies, Inc. Small-scale gas liquefier
US7237407B2 (en) * 2003-06-02 2007-07-03 Technip France Process and plant for the simultaneous production of an liquefiable natural gas and a cut of natural gas liquids

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA286775A (en) * 1929-01-29 Norman Hicks Thomas Timing device
NL133167C (en) * 1963-01-08
FR1559047A (en) * 1968-01-10 1969-03-07
GB1471404A (en) * 1973-04-17 1977-04-27 Petrocarbon Dev Ltd Reliquefaction of boil-off gas
US3962882A (en) * 1974-09-11 1976-06-15 Shell Oil Company Method and apparatus for transfer of liquefied gas
DE2820212A1 (en) * 1978-05-09 1979-11-22 Linde Ag METHOD FOR LIQUIDATING NATURAL GAS
JPH0351599Y2 (en) * 1985-10-08 1991-11-06
US4901533A (en) * 1986-03-21 1990-02-20 Linde Aktiengesellschaft Process and apparatus for the liquefaction of a natural gas stream utilizing a single mixed refrigerant
JPH01167989U (en) * 1988-05-09 1989-11-27
US4911741A (en) * 1988-09-23 1990-03-27 Davis Robert N Natural gas liquefaction process using low level high level and absorption refrigeration cycles
JPH0694199A (en) * 1992-09-09 1994-04-05 Osaka Gas Co Ltd Transport method, liquefying terminal, and receiving terminal for liquefied natural gas
AUPM485694A0 (en) * 1994-04-05 1994-04-28 Bhp Petroleum Pty. Ltd. Liquefaction process
US5555738A (en) * 1994-09-27 1996-09-17 The Babcock & Wilcox Company Ammonia absorption refrigeration cycle for combined cycle power plant
US5790972A (en) * 1995-08-24 1998-08-04 Kohlenberger; Charles R. Method and apparatus for cooling the inlet air of gas turbine and internal combustion engine prime movers
JP3664818B2 (en) * 1996-08-02 2005-06-29 三菱重工業株式会社 Dry ice, liquefied nitrogen production method and apparatus, and boil-off gas reliquefaction method and apparatus
TW368596B (en) * 1997-06-20 1999-09-01 Exxon Production Research Co Improved multi-component refrigeration process for liquefaction of natural gas
US6659730B2 (en) * 1997-11-07 2003-12-09 Westport Research Inc. High pressure pump system for supplying a cryogenic fluid from a storage tank
FR2778232B1 (en) * 1998-04-29 2000-06-02 Inst Francais Du Petrole METHOD AND DEVICE FOR LIQUEFACTION OF A NATURAL GAS WITHOUT SEPARATION OF PHASES ON THE REFRIGERANT MIXTURES
MY117068A (en) * 1998-10-23 2004-04-30 Exxon Production Research Co Reliquefaction of pressurized boil-off from pressurized liquid natural gas
US6119479A (en) * 1998-12-09 2000-09-19 Air Products And Chemicals, Inc. Dual mixed refrigerant cycle for gas liquefaction
US6244053B1 (en) * 1999-03-08 2001-06-12 Mobil Oil Corporation System and method for transferring cryogenic fluids
US6634182B2 (en) * 1999-09-17 2003-10-21 Hitachi, Ltd. Ammonia refrigerator
JP3673127B2 (en) * 1999-11-08 2005-07-20 大阪瓦斯株式会社 Boil-off gas reliquefaction method
JP3908881B2 (en) * 1999-11-08 2007-04-25 大阪瓦斯株式会社 Boil-off gas reliquefaction method
JP2001201041A (en) * 2000-01-21 2001-07-27 Osaka Gas Co Ltd City gas supply system
GB0001801D0 (en) * 2000-01-26 2000-03-22 Cryostar France Sa Apparatus for reliquiefying compressed vapour
JP4225679B2 (en) * 2000-11-17 2009-02-18 株式会社東芝 Combined cycle power plant
US6457315B1 (en) * 2000-12-07 2002-10-01 Ipsi, Llc Hybrid refrigeration cycle for combustion turbine inlet air cooling
JP2003014197A (en) * 2001-07-02 2003-01-15 Chubu Gas Kk Receiving piping cooling down method for lng satellite equipment
US6739119B2 (en) * 2001-12-31 2004-05-25 Donald C. Erickson Combustion engine improvement
US6743829B2 (en) * 2002-01-18 2004-06-01 Bp Corporation North America Inc. Integrated processing of natural gas into liquid products
DE10209799A1 (en) 2002-03-06 2003-09-25 Linde Ag Process for liquefying a hydrocarbon-rich stream
US20070062216A1 (en) * 2003-08-13 2007-03-22 John Mak Liquefied natural gas regasification configuration and method
JP4588990B2 (en) * 2003-10-20 2010-12-01 川崎重工業株式会社 Apparatus and method for boil-off gas reliquefaction of liquefied natural gas
NO20035047D0 (en) * 2003-11-13 2003-11-13 Hamworthy Kse Gas Systems As Apparatus and method for temperature control of gas condensation
JP2005273681A (en) * 2004-03-22 2005-10-06 Ebara Corp Low temperature liquefied gas reservoir system
JP4544885B2 (en) * 2004-03-22 2010-09-15 三菱重工業株式会社 Gas reliquefaction apparatus and gas reliquefaction method
US7152428B2 (en) * 2004-07-30 2006-12-26 Bp Corporation North America Inc. Refrigeration system
WO2007011155A1 (en) * 2005-07-19 2007-01-25 Shinyoung Heavy Industries Co., Ltd. Lng bog reliquefaction apparatus
JP2007024198A (en) * 2005-07-19 2007-02-01 Chubu Electric Power Co Inc Method and device for treating boil-off gas
EP1929227B1 (en) * 2005-08-09 2019-07-03 Exxonmobil Upstream Research Company Natural gas liquefaction process for lng
ATE423298T1 (en) * 2006-05-23 2009-03-15 Cryostar Sas METHOD AND DEVICE FOR RELIQUIZING A GAS STREAM
KR100761975B1 (en) * 2006-10-04 2007-10-04 신영중공업주식회사 Lng bog reliquefaction apparatus and lng bog reliquefaction method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004006586A1 (en) 2002-07-02 2004-01-15 Matsushita Electric Industrial Co., Ltd. Image encoding method and image decoding method
US6631626B1 (en) * 2002-08-12 2003-10-14 Conocophillips Company Natural gas liquefaction with improved nitrogen removal
WO2004065869A1 (en) * 2003-01-22 2004-08-05 Lng International Pty Ltd A refrigeration process and the production of liquefied natural gas
US7237407B2 (en) * 2003-06-02 2007-07-03 Technip France Process and plant for the simultaneous production of an liquefiable natural gas and a cut of natural gas liquids
US7165422B2 (en) * 2004-11-08 2007-01-23 Mmr Technologies, Inc. Small-scale gas liquefier
CA2586775A1 (en) * 2004-11-15 2006-05-18 Mayekawa Mfg. Co., Ltd. Cryogenic liquefying refrigerating method and device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2179234A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2943125A1 (en) * 2009-03-13 2010-09-17 Total Sa Liquefied natural gas producing method, involves providing natural gas, recovering part of heat from fumes produced by gas turbine, and producing vapor for vapor turbine by using recovered part of heat
FR2944095A1 (en) * 2009-04-03 2010-10-08 Total Sa Liquefied natural gas producing method for engine of jet aircraft, involves driving compressor by driving units, and transferring part of heat of fumes from gas turbine towards refrigerating machine
US20130192297A1 (en) * 2010-07-29 2013-08-01 John Mak Configurations and methods for small scale lng production
US9829244B2 (en) * 2010-07-29 2017-11-28 Fluor Technologies Corporation Configurations and methods for small scale LNG production
US9739420B2 (en) 2012-10-24 2017-08-22 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Liquefied gas treatment system for vessel
US10518859B2 (en) 2013-06-26 2019-12-31 Daewoo Shipbuilding & Marine Engineering Co., Ltd. System and method for treating boil-off gas in ship
WO2015107190A1 (en) * 2014-01-20 2015-07-23 Mag Soar Sl Method and apparatus for cooling without freezing
CN105486027A (en) * 2015-11-17 2016-04-13 宁波鲍斯能源装备股份有限公司 Recovery and utilization system for vent gas in low-concentration coal-bed gas liquidation process
US11112173B2 (en) 2016-07-01 2021-09-07 Fluor Technologies Corporation Configurations and methods for small scale LNG production
WO2018165712A1 (en) * 2017-03-14 2018-09-20 Woodside Energy Technologies Pty Ltd A containerised lng liquefaction unit and associated method of producing lng

Also Published As

Publication number Publication date
BRPI0813638A2 (en) 2014-12-23
WO2009006695A1 (en) 2009-01-15
JP5763339B2 (en) 2015-08-12
UA96052C2 (en) 2011-09-26
HK1146953A1 (en) 2011-07-22
EA201070113A1 (en) 2010-08-30
EP2171341A4 (en) 2017-12-13
KR101437625B1 (en) 2014-11-03
ES2744821T3 (en) 2020-02-26
EA201070112A1 (en) 2010-10-29
HK1143197A1 (en) 2010-12-24
AU2008274901B2 (en) 2013-06-13
EP2171341B1 (en) 2020-03-11
AU2010201571B2 (en) 2012-04-19
EP2179234B1 (en) 2019-06-26
KR20100058470A (en) 2010-06-03
CA2693543C (en) 2014-05-20
CN101743430A (en) 2010-06-16
PT2179234T (en) 2019-09-12
UA97403C2 (en) 2012-02-10
ZA201000146B (en) 2011-04-28
CN101743430B (en) 2011-07-27
KR101426934B1 (en) 2014-08-07
CN101796359B (en) 2012-05-23
EP2179234A4 (en) 2015-10-14
AP2796A (en) 2013-11-30
NZ582507A (en) 2012-08-31
BRPI0813637A2 (en) 2014-12-23
IL203164A (en) 2013-02-28
AP2010005120A0 (en) 2010-02-28
EA015984B1 (en) 2012-01-30
EP2171341A1 (en) 2010-04-07
JP2014114961A (en) 2014-06-26
US20110067439A1 (en) 2011-03-24
AU2010201571A1 (en) 2010-05-13
AU2008274901A1 (en) 2009-01-15
EP2179234A1 (en) 2010-04-28
CN101796359A (en) 2010-08-04
CA2705193A1 (en) 2009-01-15
US20100212329A1 (en) 2010-08-26
ZA201000147B (en) 2010-10-27
CA2705193C (en) 2014-04-22
PL2179234T3 (en) 2019-12-31
EA016746B1 (en) 2012-07-30
JP5813950B2 (en) 2015-11-17
BRPI0813637B1 (en) 2019-07-09
AU2008274900A1 (en) 2009-01-15
JP2010532856A (en) 2010-10-14
BRPI0813638B1 (en) 2020-01-28
AU2008274900B2 (en) 2011-06-16
NZ582506A (en) 2011-08-26
WO2009006694A1 (en) 2009-01-15
AP2825A (en) 2014-01-31
AP2010005121A0 (en) 2010-02-28
IL203165A (en) 2013-02-28
JP2010532796A (en) 2010-10-14
KR20100047256A (en) 2010-05-07
CA2693543A1 (en) 2009-01-15

Similar Documents

Publication Publication Date Title
CA2693543C (en) A method and system for production of liquid natural gas
US9003828B2 (en) Method and system for production of liquid natural gas
US10378817B2 (en) Flexible liquefied natural gas plant
AU2008203713B2 (en) Method and apparatus for liquefying a hydrocarbon stream

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880102158.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08772637

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 203165

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2010515317

Country of ref document: JP

Ref document number: 582507

Country of ref document: NZ

Ref document number: 12010500045

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2693543

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 288/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008274900

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2008772637

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201070112

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 20107002935

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2008274900

Country of ref document: AU

Date of ref document: 20080707

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12668198

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0813637

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100108