WO2007037228A1 - 生物発電用アノード及びこれを利用する発電方法及び装置 - Google Patents

生物発電用アノード及びこれを利用する発電方法及び装置 Download PDF

Info

Publication number
WO2007037228A1
WO2007037228A1 PCT/JP2006/319057 JP2006319057W WO2007037228A1 WO 2007037228 A1 WO2007037228 A1 WO 2007037228A1 JP 2006319057 W JP2006319057 W JP 2006319057W WO 2007037228 A1 WO2007037228 A1 WO 2007037228A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
hydrophilic polymer
power generation
conductive substrate
bioelectric
Prior art date
Application number
PCT/JP2006/319057
Other languages
English (en)
French (fr)
Inventor
Tatsuo Shimomura
Masanori Adachi
Makoto Komatsu
Akiko Miya
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to US11/992,678 priority Critical patent/US20090297890A1/en
Priority to JP2007537622A priority patent/JPWO2007037228A1/ja
Priority to EP06810582A priority patent/EP1947716A4/en
Publication of WO2007037228A1 publication Critical patent/WO2007037228A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8817Treatment of supports before application of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention uses waste water, waste liquid, human waste, food waste, other organic waste, organic substances such as sludge, or decomposition products thereof as a substrate, and oxidation-reduction of the substrate and oxygen in the air.
  • the present invention relates to a bioelectric power generation technology that generates power by separating a reaction into an oxidation reaction by an anaerobic organism and a reduction reaction of oxygen.
  • water-containing organic substance As a method of decomposing waste water, waste liquid, human waste, food waste, other organic waste or sludge (hereinafter referred to as "water-containing organic substance") and extracting available energy, methane fermentation has begun.
  • a method has been devised, such as producing methane by the anaerobic fermentation method and generating electricity using this, and a biobattery method that directly extracts the electricity from the anaerobic breathing reaction of organisms.
  • Patent Document 4 which describes that oxygen or an air electrode can be used as a force sword.
  • this document does not disclose a description of a specific device structure or the like in the case of using an air electrode and examples so that those skilled in the art can implement it as a means for solving the problem.
  • the terminal reductase (sulfur reductase) of the electron transfer system of sulfur-reducing bacteria can reduce substances with a standard electrode potential of -0.2 8V, while iron (III) oxide. It can be seen that the electron reductive terminal reductase (iron oxide ( ⁇ ) reductase) possessed by the reducing bacteria can reduce substances with a standard electrode potential of + 0.20V.
  • These terminal reductases are present in the outer membrane and periplasm of microorganisms, and their ability to reduce extracellular acid and ferric iron and zero-valent sulfur can also be effective catalysts for efficient biopower generation.
  • the ⁇ G electron mediator is lower than the standard electrode potential for sulfur reduction, so it cannot form an effective potential cascade between the sulfur reductase and the electron mediator anode. Since the electron mediators in Tables 1A and B are higher than the standard electrode potential for sulfur reduction, theoretically, the potential potential difference that can be reduced by sulfur reductase is 0.3 V or more, and biological electron transfer is difficult. Is likely. In addition, in order to increase power generation efficiency, the potential difference of force electron mediator, which is required to generate as much potential difference as possible for the oxygen reduction reaction of force sword, is high, so the potential difference of 0.3V or more is lost! /...Energy loss increases.
  • Non-patent Document 2 anthraquinone-2,6-disulfonic acid
  • AQ-2,6-DS anthraquinone-2,6-disulfonic acid
  • Non-patent Document 2 The standard electrode potential of AQ-2,6-DS is -0.185V, which is considered to be an appropriate substance to form an effective potential cascade between sulfur reductase electron mediators.
  • AQ-2,6-DS is only added in the liquid phase and is not supported on the anode (oxidation electrode). Is only 24% increase in current value.
  • the electron mediator is also discharged out of the system when the substrate solution in the anaerobic region is renewed, and it is necessary to always keep the electron mediator attached. There's a problem.
  • Non-Patent Document 3 when an amide group is formed by introducing a carboxy group with acid of a graphite electrode and reacting with -eutrared in the presence of dicyclohexylcarbodiimide, the following structural formula:
  • a carboxyl group binds to the position of the arrow
  • a bioelectric power generation technology using an electron mediator forms an effective potential cascade between the terminal reductase of the microorganism, the electron mediator, and the anode, and the conductive group having a low activated overvoltage.
  • Patent Document 1 JP 2000-133327 A
  • Patent Document 2 JP 2000-133326 A
  • Patent Document 3 Japanese Translation of Special Publication 2002-520032
  • Patent Document 4 U.S. Pat.
  • Patent Document 5 JP-A-6-56989
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2005-317520
  • Non-patent document 1 Roller et al., 1984, Journal of Chemical Technology and Biotechnolog y 34B: 3-12
  • Non-Patent Document 2 Bond et al., 2002, SCIENCE 295: 483-485
  • Non-Patent Document 3 Park et al., 2000, Biotechnology Letters 22: 1301-1304
  • An object of the present invention is to solve the above-mentioned problems of the prior art and provide an anode for bioelectric power generation that can efficiently perform biopower generation by a simple apparatus method. More specifically, the final reductase of anaerobic organisms can form an effective potential cascade between the anodes of the electron mediator, resulting in a sufficiently low anode potential, and the water-containing organic substance power efficiently. It is an object of the present invention to provide a bioelectric power generation anode capable of obtaining energy, a method for producing the same, and a power generation method and apparatus using the same.
  • the terminal reductase of microorganisms is effective between the electron mediator anode.
  • the potential of the electron mediator is desirably ⁇ 0.28 V or higher, which is higher than the standard potential of sulfur reduction.
  • the potential of the anode should be as low as possible in order to make the potential difference from the force sword as large as possible.
  • the present inventors select an electron mediator using the standard electrode potential of the final electron acceptor of anaerobic microorganisms as an index, and further fix this on the anode surface, and if necessary, further It was proposed that the standard electrode potential of the anode at pH 7 should be set as close to -0.28V as possible within the range of -0.13V to -0.28V by modifying with amino groups or sulfonic acid groups.
  • Patent Document 6 In the present invention, graphite, porous graphite, gold, platinum, or metal oxide (such as TiO) is used as the anode substrate.
  • the hydrophilic polymer layer includes a conductive substrate coated with at least a part of the surface with a hydrophilic polymer layer.
  • An electro-mediator is chemically bonded and is introduced into the anode for bioelectric power generation, characterized in that the standard electrode potential (E ′) at pH 7 is in the range of 0.13V to -0.28V.
  • microorganisms that can grow in an anaerobic atmosphere, solutions or suspensions containing organic substances, anaerobic regions including the anode for bioelectric power generation of the present invention, and molecular oxygen And an aerobic region containing a force sword and a diaphragm defining the anaerobic region and the aerobic region, and electrically connecting the anode and the cathode to a power utilization device to form a closed circuit
  • a power generation apparatus is provided that generates power using an oxidation reaction using an organic substance in the anaerobic region as an electron donor and a reduction reaction using oxygen as an electron acceptor in the aerobic region.
  • a microorganism that can grow in an anaerobic atmosphere and an organic substance are contained.
  • the anode and the cathode are electrically connected to a power utilization device to form a closed circuit, and an oxidation reaction using an organic substance in the anaerobic region as an electron donor and the aerobic region.
  • a power generation method for generating power using a reduction reaction using oxygen as an electron acceptor is provided.
  • the anode for bioelectric power generation of the present invention includes a conductive substrate having at least a part of the surface covered with a hydrophilic polymer layer, and an electron mediator is chemically bonded to the hydrophilic polymer layer.
  • the standard electrode potential (E ') at pH7 is in the range of 0.13V to -0.28V.
  • It is characterized in that it is in the range, preferably in the range of -0.15V to -0.27V.
  • the conductive base material that can be used in the present invention is preferably an electrode base material that is used in a bioelectric power generation device and that has a high hydrophilic polymer adhesion / capturing property.
  • a solidified powder material such as Aito, carbon black, fullerene, carbon nanotube (CNT), vapor grown carbon fiber (VGCF), metals such as aluminum, nickel, iron, copper, gold, platinum, Preferred examples include nickel-copper alloys such as stainless steel and Monel (registered trademark), iron-silicon alloys, calcium-silicon alloys, aluminum zinc silicon alloys, and molybdenum vanadium alloys.
  • hydrophilic polymer layer can be fixed to the conductive substrate by amide bond or hydrogen bond utilizing this.
  • Carbon black, fullerene, CNT, and VGCF are usually supplied as powders, so when used as an electrode substrate, they are pressed, molded, and fired.
  • molded articles using fibrous graphite such as carbon felt, carbon cloth, and carbon paper have high surface area and are easily impregnated with a hydrophilic polymer. So more preferred ,.
  • the shape and size of the conductive base material are not particularly limited, and the force thickness that can be determined depending on the dimensions of the bioelectric power generation apparatus is preferably 0.001 mm to 10 mm! /.
  • the hydrophilic polymer layer may be formed so as to cover at least a part of the surface of the conductive substrate.
  • the thickness of the hydrophilic polymer layer is preferably 200 nm or less, more preferably 50 nm or less. If it exceeds 200 nm, the performance may deteriorate, which is not preferable. The reason for this decline in performance is not clear, but since hydrophilic polymers, which are macromolecules, are immobilized in a fine network on the surface of the conductive substrate, the microbial terminal reductase has a network structure. However, only the electron mediator near the hydrophilic polymer layer surface can be reduced. However, the distance between the electron mediator near the hydrophilic polymer layer surface and the conductive substrate exceeds 200 nm. If it is far away, the electron media will not move efficiently toward the conductive substrate, and the electron mediator will not return to the oxidized form! It is done.
  • the hydrophilic polymer that can be used as a component of the hydrophilic polymer layer is a polymer having a hydrophilic functional group such as an amino group, an imino group, a carboxy group, or a sulfonic acid group. More preferably, a polymer containing any one functional group selected from the group consisting of an amino group, an imino group, a carboxy group and a sulfonic acid group in the structure can be mentioned. Specifically, polyethyleneimine, polybulamine, polyallylamine, polyacrylic acid, or polymethacrylic acid is preferable.
  • a derivative obtained by converting a halogen group such as polychloromethylstyrene into an amino group, a carboxy group or a sulfonic acid group can also be preferably used.
  • the hydrophilic polymer preferably has an average molecular weight of 10,000 or more, more preferably an average molecular weight of 70,000 or more.
  • the electron mediator that can be used in the present invention has a standard electrode potential within a range of -0.13V to -0.28V, or a standard as an anode after being fixed to the anode.
  • the electron mediator that can be used in the present invention includes one or more redox substances selected from the group consisting of anthraquinone derivatives, naphthoquinone derivatives, benzoquinone derivatives, and isalooxazine derivatives.
  • anthraquinone carboxylic acids AQC
  • aminoanthraquinones AAQ
  • diaminoanthraquinones DAAQ
  • anthraquinone sulfonic acids AQS
  • diaminoanthraquinone sulfonic acids DAQS
  • anthraquinone disulfonic acids AQDS
  • diaminoanthraquinone disulfonic acids DAAQ DS
  • ethylanthraquinones EAQ
  • methylnaphthoquinones MNQ
  • methylaminonaphthoquinones MANQ
  • bromomethylaminonaphthoquinones BrMANQ
  • dimethyl Naphthoquinones DNQ
  • Dimethylaminonaphthoquinones DMANQ
  • Rapacol LpQ
  • the electron mediator introduced into the hydrophilic polymer layer is preferably a substance having a hydrophilic functional group.
  • the electron mediator itself has a hydrophilic functional group, The hydrophilicity of the electron mediator-fixed anode becomes stronger, and it functions better as an anode for bioelectric generation.
  • Preferred examples of the hydrophilic functional group possessed by the electron mediator include a carboxyl group, an amino group, an imide group, and a sulfonic acid group.
  • the electron mediator is a hydrophilic monomer unit of the hydrophilic polymer constituting the hydrophilic polymer layer, that is, the hydrophilic unit among the units (polymer units) constituting the hydrophilic polymer constituting the hydrophilic polymer layer. It is preferably introduced at a rate of introduction of 30 mol% or less, more preferably 1 to 30 mol%, with respect to the structural unit (polymer unit) derived from the polymerizable monomer.
  • the polymer unit refers to a minimum unit of a repeating structure composed of one molecule of a hydrophilic monomer as a raw material among the molecular structure of the hydrophilic polymer.
  • the hydrophilic polymer is a copolymer
  • the polymer unit is defined by dividing the minimum unit of the repeating structure into each hydrophilic monomer molecule as a raw material.
  • the introduction rate of the electron mediator exceeds 30 mol%, the entire hydrophilic polymer layer becomes hydrophobic, which makes it difficult for water to enter and exit, and is essential for the acid-reduction reaction of electron mediators such as quinones. Supply and withdrawal of hydrogen ions becomes difficult, and it may not function as an anode for bioelectric power generation.
  • the introduction rate of the electron mediator is measured by measuring the increase in the weight of the substrate when the polymer layer is formed on the surface of the conductive substrate, and the increased weight force is included in the polymer layer. It can be determined by calculating the moles of hydrophilic polymer units.
  • a crosslinking agent for example, an epoxy compound such as diglycidyl ether, a polyisocyanate compound, diamines such as propane diamine, etc.
  • the hydrophilic polymers constituting the hydrophilic polymer layer may be cross-linked. In this case, it is sufficient that the crosslinking degree per hydrophilic monomer unit of the hydrophilic polymer is about 0.01 to 10 mol%. If the crosslinking degree is increased further, the hydrophilicity of the hydrophilic polymer layer may be lowered or the hydrophilic polymer layer may be reduced. Since the network structure of the layer becomes too dense and the terminal reductase of microorganisms come into contact, there is a possibility of adversely affecting the performance as an anode for bioelectric power generation.
  • the method for producing an anode for bioelectric power generation comprises a hydrophilic polymer-coated conductive material which forms a hydrophilic polymer-coated conductive substrate in which at least a part of the surface of the conductive substrate is coated with a hydrophilic polymer.
  • the hydrophilic polymer-coated conductive substrate forming step is performed by (1) dropping, applying, spraying or dipping a polymer solution having a hydrophilic polymer concentration of 50 g / L or less onto the conductive substrate. Attaching or fixing the polymer to or from the conductive substrate (fixing process) or (2) Conducting the hydrophilic polymer by bonding the functional group of the conductive substrate and the functional group of the hydrophilic polymer It is preferable that it is an immobilization process of fixing to a conductive substrate.
  • the electron mediator introduction step the electron mediator is reacted at a ratio of 30 mol% or less with respect to the hydrophilic monomer units of the hydrophilic polymer constituting the hydrophilic polymer layer of the hydrophilic polymer-coated conductive substrate. Let's introduce an electronic mediator. [0045] Hereinafter, each step will be described.
  • the adhesion / fixing process is a process in which a conductive polymer is adhered or fixed to be coated by the adhesive force or coating force of the hydrophilic polymer.
  • a hydrophilic polymer is dissolved in a relatively polar solvent such as methanol, ethanol, tetrahydrofuran, or dimethylformamide to obtain a polymer solution, which is applied, dripped, sprayed or immersed on a conductive substrate.
  • the polymer layer can be formed by drying at 100 to 200 ° C. or drying under reduced pressure.
  • a uniform layer can be obtained by rotating the conductive substrate when the polymer solution is dropped.
  • the hydrophilic polymer concentration in the polymer solution is 50 g / L or less, desirably 10 g / L or less.
  • the polymer solution is applied or impregnated on a conductive substrate and force-dried, and the thickness of the generated hydrophilic polymer layer becomes the above-described preferable layer thickness (200 or less), which is preferable.
  • An anode for bioelectric power generation with acid reduction activity can be produced.
  • the average molecular weight of the polymer used is preferably 70,000 or more, more preferably 100,000 or more in order to increase the adhesion of the polymer layer. Things are used. Further, when polymers having the same average molecular weight are compared, a polymer having a branched structure is preferably used because of its high adhesion.
  • an amide bond or a hydrogen bond is formed between a functional group such as a carboxy group present on the surface of the conductive substrate and a functional group such as an amino group, imino group or carboxy group of the hydrophilic polymer.
  • the polymer can be formed and fixed on the conductive substrate more firmly than by simple adhesion.
  • a hydrophilic polymer having an amino group or an imino group is dissolved in a solvent such as tetrahydrofuran or dimethylformamide, and the conductive base material is mixed with dicyclohexylcarbodiimide or ethyldimethylaminopropylcarbodiimide.
  • an amide bond or a sulfonamide bond can be formed with the force loxy group or sulfonic acid group of the conductive substrate.
  • a hydrophilic polymer having a carboxy group can be dissolved in a solvent such as methanol.
  • a carboxy group of the conductive substrate and a hydrogen bond may be formed.
  • the hydrophilic polymer layer preferably has a layer thickness of 200 nm or less
  • the polymer concentration in the polymer liquid is adjusted to 50 g / L or less, preferably 10 g / L or less. It is desirable.
  • the thickness of the polymer layer having an amino group or imino group exceeds 200 nm, excess polymer can be dissolved and removed using hydrochloric acid or the like.
  • the thickness of the polymer layer having a carboxy group or a sulfonic acid group exceeds 200 nm, the excess polymer can be dissolved and removed using sodium hydroxide or the like.
  • the stability of the polymer layer is higher than in the case of simple adhesion. Therefore, the average molecular weight of the polymer used may be 10,000 or more.
  • the electron mediator fixed to the polymer is stable in an aqueous environment and has a property and form that does not easily decompose and peel.
  • the chemical bonding methods shown in Table 3 below are appropriate.
  • the functional group present in the hydrophilic polymer to be used and the functional group introduced into the electron mediator or pre-existing functional group are used. Depending on the combination of You can choose a method.
  • AQC anthraquinone-2-carboxylic acid
  • AQC A bonding method using a carboxy group possessed by can be preferably selected. Specifically, after a polyethyleneimine layer is formed on the surface of a conductive substrate, AQC is dipped in a solution of tetrahydrofuran, dimethylformamide or the like in a solvent, and dicyclohexylcarbodiimide or ethyl (3-dimethyl). Aminopropyl) carbodiimide hydrochloride is allowed to react for several to several tens of hours to form an amide bond between the imino group of polyethyleneimine and the carboxy group of AQC. Can be fixed stably.
  • crosslinking can also be performed.
  • the crosslinking can be carried out according to a conventional method using a crosslinking agent (for example, epoxy compounds such as diglycidyl ether, polyisocyanate compounds, diamines such as propanediamine, etc.).
  • a crosslinking agent for example, epoxy compounds such as diglycidyl ether, polyisocyanate compounds, diamines such as propanediamine, etc.
  • polyallylamine is used as a hydrophilic polymer
  • AQS, AQ—2,6-—DS, AQ—2,7—DS, AQ—1,5-—DS, and metabiamine are used as electron mediators.
  • the sulfonic acid group of one of these electron mediators is set in advance as a sulfonyl chloride, and then tetrahydrofuran, dimethylformamide, A sulfonamide bond can be formed by reacting with polyallylamine in a solvent such as dimethyl sulfoxide.
  • the electron mediator is introduced at a high introduction rate, the hydrophilicity is maintained, and the functional group introduction step described later is unnecessary, which is useful.
  • the introduction rate of the electron mediator is preferably 30 mol% or less.
  • an electron mediator having a plurality of hydrophilic functional groups such as anthraquinone disulfonic acid
  • a sulfone is used. Even after the electron mediator and the hydrophilic polymer are bonded by an amide bond, one of the hydrophilic functional groups is used by the sulfonamide bond, but the remaining hydrophilic functional group (the cross-linking reaction must not occur). In some cases, hydrophilicity is maintained because it remains. In such a case, the introduction rate may be controlled so that the electron mediator is 30 mol% or more with respect to the hydrophilic polymer units constituting the polymer layer.
  • an electronic mediator having a plurality of sulfonic acid groups such as AQ-2,6-DS, AQ-2,7-DS, AQ-1,5-DS, etc.
  • a hydrophilic polymer is used. If it is not fixed on the conductive substrate and then brought into contact with the electron mediator, a cross-linking reaction occurs between the polymer molecules via the electron mediator, and the polymer is further polymerized and applied to the conductive substrate. Therefore, it is preferable to perform the step of introducing an electronic mediator after performing the attaching and fixing step first.
  • a coupling method using an amino group is preferably selected. can do. Specifically, after a polyacrylic acid layer or a polymethacrylic acid layer is formed on the surface of the conductive substrate, one of the electronic mediators is dissolved in a solvent such as tetrahydrofuran or dimethylformamide.
  • the introduction rate is preferably 30 mol% or less.
  • an electron mediator having a plurality of hydrophilic functional groups such as diaminoanthraquinone
  • an amide is used. Even after the electron mediator and the hydrophilic polymer are bonded by bonding, one of the plurality of hydrophilic functional groups is used by an amide bond, but the remaining hydrophilic functional groups remain (if no crosslinking reaction occurs). Therefore, hydrophilicity may be maintained.
  • the introduction rate may be controlled to be 30 mol% or more.
  • the polymer is fixed to a conductive substrate and contacted with the electron mediator. Otherwise, a cross-linking reaction will occur between the polymer molecules via the electron mediator, and the polymer will become more polymerized and difficult to apply to the conductive substrate. This is preferably done first.
  • an electron mediator having a plurality of amino groups such as 1,5-dianaminoanthraquinone
  • the production method of the present invention preferably further includes a functional group introduction step for introducing a hydrophilic functional group into the electron mediator after the electron mediator introduction step.
  • the functional group introduction step is an optional step for improving hydrophilicity when the hydrophilic polymer layer to which the produced electron mediator is fixed is not sufficiently hydrophilic.
  • This step can be performed by air oxidation, electrolytic oxidation, chemical acid or sulfone. Specifically, heating to about 500 ° C while supplying air, heating to about 140 ° C by contact with 5% hypochlorous acid, or 10% chlorosulfonic acid Z in dichloromethane solution at room temperature A hydrophilic functional group can be introduced by reacting for about 24 hours.
  • the production method of the present invention preferably includes a pretreatment step of introducing a carboxy group into the conductive substrate before the hydrophilic polymer-coated conductive substrate formation step. . ⁇ Pretreatment process>
  • the hydrophilic polymer is fixed more firmly by increasing the density of functional groups to which the hydrophilic polymer is bonded by previously oxidizing the surface of the conductive substrate with air, electrolytic oxidation, chemical oxidation or sulfone.
  • the density of the functional group introduced at this time may be lower than that in the case where the electron mediator is directly fixed to the conductive substrate. For example, 0.01 ⁇ mol or more per lcm 2 of the projected area of the substrate It is enough. Therefore, unlike the case where the electron mediator is directly fixed to a conductive substrate, it is not necessary to give strong electrolytic acid conditions or use a radical generator. Heating to a moderate degree, heating to about 140 ° C by contacting with 5% hypochlorous acid, or reacting for about 24 hours at room temperature in 10% chlorosulfonic acid Z dichloromethane solution.
  • the target functional group introduction density can be obtained by the method.
  • a bioelectric power generation apparatus using the above-described bioelectric power generation anode is also provided.
  • the bioelectric power generation device of the present invention includes an anaerobic region including a microorganism that can grow in an anaerobic atmosphere, a solution or suspension containing an organic substance, and the above-described anode for bioelectric power generation, and molecular oxygen. And an aerobic region containing a force sword and a diaphragm defining the anaerobic region and the aerobic region, and electrically connecting the anode and the cathode to a power utilization device to form a closed circuit And an organism that generates electricity using an oxidation reaction of an organism using an organic substance as an electron donor in the anaerobic region and a reduction reaction using oxygen as an electron acceptor in the aerobic region. It is a power generation device.
  • This provides a method for producing an anode having a high electron mediator immobilization density under mild conditions.
  • a large bioelectric power generation node can be produced by a simple method, which can contribute to an increase in the size of a microbial battery and a reduction in anode production costs.
  • the bioelectric power generation anode of the present invention is used in an apparatus for continuously treating a water-containing organic substance over a long period of time.
  • anaerobic microorganisms are continuously present in the water-containing organic substance and on the surface of the anode. Because it grows, using an anode with a three-dimensional network structure that is too fine, thin V, tube-like or narrow gap !, laminated plate-like structure, blockage of the flow path due to microbial cells, single flow, dead zone It is considered that the formation of water causes degradation of water-containing organic substances and power generation efficiency.
  • the form of the anode for bioelectric power generation according to the present invention is a wire mesh, porous, or a primary structure having irregularities or wrinkles on the surface, and is a three-dimensional mesh, tube or laminated plate-like space (hydrous organic
  • the flow path has a secondary structure with a flow path of inactive substances), and the flow path has an opening of several millimeters or several centimeters depending on the fluidity of the water-containing organic substance to be treated. It is desirable.
  • a reduction reaction using oxygen as an electron acceptor proceeds.
  • At least a part of the force sword is composed of a conductive porous material having a void in the structure, a net-like or fiber material, and a water Z-air contact interface, that is, air (oxygen) in the void. It is preferable to construct a field that adjoins water, and it is possible to increase the efficiency of contact with oxygen in the air and water on the water surface, and promote the reduction reaction (electrode reaction) of oxygen in the air.
  • Platinum group elements are platinum (Pt), ruteni It refers to rum (Ru), rhodium (Rh), palladium (Pd), osmium (Os), or iridium (Ir), all of which are effective as electrode catalysts.
  • V and the like can also be preferably used as the electrode catalyst.
  • the anode and the force sword are electrically connected to a power utilization device or the like, and perform electronic exchange between them to form a closed circuit.
  • the organic substances do not consume the reducing ability by contacting with oxidizing agents (substances to be reduced), that is, oxygen in the air. It is preferable to isolate both the organic substance and the oxygen in the air so that they do not come into contact with each other.
  • the force sword can easily come into contact with oxygen in the air, and can receive hydrogen ions or discharge hydroxide ions via the water present in the diaphragm. It can be performed. Further, it is desirable to prevent the diaphragm from penetrating oxygen in the air as much as possible, that is, to prevent the oxygen from penetrating into the organic substance and reducing the reducing ability of the organic substance.
  • Examples of such a membrane include a fluorinated resin-based ion exchange membrane (cation exchange membrane) having a sulfonic acid group having hydrophilicity and high cation exchange ability, and a quaternary ammonium salt. Hydroxide salt ions (anion exchange membranes) and the like are preferably used.
  • a fluorinated resin-based ion exchange membrane in which only the main chain portion is fluorinated, or an aromatic hydrocarbon-based membrane can be used as a cheaper diaphragm.
  • ion exchange membranes examples include NEPTON CR61A ZL-389 manufactured by IONICS, NEOSEPTA CM-1 or CMB manufactured by Tokuyama, Selemion CSV manufactured by Asahi Glass, NEPTON AR103PZL manufactured by IONI CS, NEOSEPTA AHA manufactured by Tokuyama, Selemion ASV manufactured by Asahi Glass, etc.
  • Commercial products can be preferably used.
  • the cation exchange membrane can be used to supply hydrogen ions and water necessary for the reduction of oxygen with a power sword to the anode power sword, and the anion exchange membrane also generates a reaction force between water and oxygen.
  • Cathode hydroxide ion Doka can also be used to feed the anode.
  • an anion exchange membrane can also be used as the diaphragm used to separate the anaerobic region and the aerobic region.
  • a hydroxide ion exchange membrane having an ammonium hydroxide group can be preferably mentioned.
  • an anion exchange membrane for example, commercially available products such as NEPTON AR103PZL-389 manufactured by IONICS, NEOSEPTA ALE manufactured by Tokuyama, and Sele mion ASV manufactured by Asahi Glass can be preferably used.
  • an anionic organic substance such as an organic acid present in the anaerobic region permeates the diaphragm and reaches the aerobic region (so-called crossflow phenomenon)
  • oxygen is consumed there.
  • the anion exchange membrane used Since organic matter is wasted in a wasteful manner and aerobic organisms grow and contaminate force swords in the aerobic region, the anion exchange membrane used has a molecular sieving effect and has a molecular weight of 60 or more such as acetic acid. It is desirable to have a property that is difficult to permeate the negative ions.
  • An anion exchange membrane having such properties is, for example, Astom Neoceptor ALE04-4 A-0006 membrane.
  • MF micro mouth filter
  • UF ultra filter
  • porous filter medium such as ceramic and sintered glass
  • nylon polyethylene Polypropylene woven fabric and the like
  • porous filter medium such as ceramic and sintered glass
  • nylon polyethylene Polypropylene woven fabric
  • PE-10 membrane manufactured by Schwarz Seidengazefabrik, NY1-HD manufactured by Flon Industry Commercial products such as membranes can be preferably used.
  • the anaerobic region is finally caused by the respiratory reaction of the organism that can grow in an anaerobic atmosphere, so that the electrons derived from the organic substance finally pass through the electron transfer system in the microorganism. It is also a biological reaction chamber that advances the oxidation reaction of microorganisms delivered to the anode, and the aerobic region is also an air reaction chamber that advances a reduction reaction using oxygen as an electron acceptor.
  • the anaerobic region of the bioelectric power generation device is equipped with an anode to which an electron mediator having an appropriate potential for transferring electrons between the anaerobic microorganism and the anode is fixed.
  • the advantage of this reaction system is that the anode side force always supplies water and hydrogen ions to the power sword side, so that water is sufficiently supplied to the power sword side, and oxygen on the power sword side is increased. It is difficult to cause a so-called cross flow problem that permeates to the anode side through the membrane and consumes the reducing ability on the anode side.
  • a cation exchange membrane When a cation exchange membrane is used as a diaphragm between an anaerobic region and an aerobic region, water is generated by consuming oxygen in the air in the reaction on the force sword side. For this reason, it is necessary to constantly ventilate and replenish oxygen and to prevent excessive sword wetting by removing moisture. However, since the water retention amount on the force sword side changes depending on the humidity and flow rate of the air supplied at this time, it is desirable to appropriately control the drying and humidification.
  • a method of ventilation by supplying and discharging air there is a method of natural convection replacement in an open system, an air chamber is provided by surrounding the power sword with an outer shell, and forced ventilation is performed by a ventilator. Another possible method is to provide an air chamber, warm the air chamber with heat generated by the acid-oxidation reduction reaction, generate convection, and raise air and water vapor to ventilate. It is preferable to adopt a ventilation method according to the conditions such as place and scale.
  • an anion exchange membrane is used as a diaphragm between an anaerobic region and an aerobic region, that is, a reaction system in which water and oxygen force also generate hydroxide ions in the aerobic region.
  • Adopt since the aerobic region has a much smaller amount of water retention than the anaerobic region, the amount of hydrogen ions generated in the anode and equimolar amount of hydroxide ion in the force sword If generated, the pH on the force sword side, that is, the concentration of hydroxide ions can be made very high. Since the high concentration of hydroxide ions efficiently permeates the anion exchange membrane, the electrical resistance (internal resistance) of the supporting electrolyte can be reduced.
  • the cation exchange membrane and the anion exchange membrane used as a diaphragm between the anaerobic region and the aerobic region have an effect of greatly changing the reaction system involved in the biopower generation reaction.
  • Each has its advantages and issues to be improved, so it should be decided according to the structure and use of the equipment and the nature of the water-containing organic substance.
  • the distance between the force sword and the diaphragm should be as short as possible. It is desirable to match.
  • a part of the diaphragm penetrates and binds into the voids inside the porous structure of the force sword electrode, it is formed by the air contained in the porous structure and the water contained in the diaphragm. Since the area of the water Z air contact interface is dramatically increased, the reaction efficiency of reducing oxygen in the air can be increased and the biopower generation performance can be improved.
  • the anode in order to facilitate the movement of hydrogen ions or hydroxide ions and to reduce the electric resistance of the electrolyte system, it is desirable to shorten the distance between the anode and the diaphragm as much as possible. It is preferable that the node and the diaphragm are in contact or bonded. However, in this case, electronic In order to allow the diaphragm to absorb the hydrogen ions generated when the deater is acidified on the anode, the anode is made of a water-permeable form, for example, a porous material or a net-like material, or passes through. It is necessary to have a form having water holes, for example, a lattice form or a comb form.
  • stirring or circulating water flow is generated to create a water flow that circulates between the anode and the diaphragm. It is desirable to facilitate the movement of ions or hydroxide ions.
  • the ability to impregnate the anode with an ion exchange polymer or the ability to weave the anode base material or conductive fiber and cation exchange fiber (such as sulfonic acid graft fiber) or by mixing as a non-woven fabric
  • the hydrogen ions generated on the anode side are recovered, and this ion-exchangeable polymer or fiber is extended by some method (for example, through an ion-exchange fiber or a resin pipe like a salt bridge) and combined with a force sword.
  • the bioelectric power generation device of the present invention it is preferable to increase the surface area of the anode so that electrons of the organic substance can be efficiently transferred to the anode.
  • the anode is in efficient contact with the organic substance, and ion exchange is efficiently performed between the anode and the force sword.
  • the anode and the force sword are electrically insulated.
  • the form of the reaction vessel in which the biological reaction chamber and the oxygen reaction chamber are defined is, for example, an anode having a cylindrical shape, for example, a cylindrical shape, and a structure in which an organic substance flows therein. Is preferably a three-layer structure sandwiching the diaphragm.
  • a supply mechanism and a discharge mechanism for a solution or suspension containing microorganisms and organic substances that can grow in an anaerobic atmosphere are provided in the anaerobic area, and an oxygen or air supply mechanism and a discharge mechanism are provided in the aerobic area. I also like that.
  • the bioelectric power generation method of the present invention includes a microorganism that can grow in an anaerobic atmosphere, a solution or suspension containing an organic substance, the anaerobic region including the bioelectric power generation anode, molecular oxygen, and An aerobic region containing a force sword, and a diaphragm defining the anaerobic region and the aerobic region, and electrically connecting the anode and the cathode to a power utilization device to form a closed circuit
  • a bioelectric power generation method that generates electricity using an oxidation reaction of a microorganism using an organic substance as an electron donor in the anaerobic region and a reduction reaction using oxygen as an electron acceptor in the aerobic region .
  • an organic substance is converted into an electron donor by contacting an anode on which an electron mediator is immobilized with a solution or suspension containing a microorganism and an organic substance that can grow in an anaerobic atmosphere. It promotes the oxidation reaction by the microorganism.
  • This reaction on the anode side which is an oxidation reaction by a microorganism using an organic substance as an electron donor, is biochemically catalyzed by an anaerobic microorganism (a facultative or absolute anaerobic microorganism) in a water-containing organic substance.
  • microorganisms Due to anaerobic respiration of microorganisms, electrons derived from organic substances are finally delivered to the anode via the electron transport system in the microorganism. Therefore, in order to advance the power generation reaction according to the present invention efficiently, it is easy to capture electrons at the anode in the outer cell membrane (outside the cell membrane) that does not terminate the electron transfer system in the cell membrane of the microorganism! It is desirable to utilize microorganisms (“electrode active microorganisms”) that catalyze electron transfer to the anode.
  • sulfur s (o) reducing bacteria As the microorganism that catalyzes the electron transfer to such an anode, sulfur s (o) reducing bacteria, iron (III) reducing bacteria, manganese dioxide MnO reducing bacteria, dechlorinating bacteria, and the like are preferably used. Such creatures and
  • sulfur-reducing bacteria have a very low standard electrode potential of -0.28V for sulfur, which is the final electron acceptor! /, Which is lower than that of iron (III) -reducing bacteria! /, An electron mediator having a potential.
  • microorganisms having such sulfur reduction activity include Desuliuromonas sp. Desulfi tobacterium sp. Geooivrio thiophilus sp. Clostridium thiosulfatireducens sp. Aciai Preferred is thiobacillus sp.
  • these microorganisms are often the main microorganisms in the water-containing organic substance, when carrying out the method of the present invention, first, these microorganisms are placed on the anode side. It is preferable to inoculate and form a state in which these microorganisms are mainly attached to the anode surface. In order for these microorganisms to preferentially grow in the biological reaction chamber, the area of the field where the respiration reaction (electrode respiration) by passing electrons to the anode is more advantageous than acid fermentation or methane fermentation is increased. Specifically, it is preferable to increase the surface area of the anode in the anaerobic region (microbe reaction chamber).
  • slurry sulfur, iron oxide (111), manganese dioxide reported as a medium for these microorganisms (groups)
  • Ancylobacter / Spirosoma medium Desulforomonas medium
  • the property of the organic substance used in the present invention is a liquid or suspension so that molecular oxygen is not supplied around the anode where microorganisms that can grow in an anaerobic atmosphere are propagated, or It is desirable that the solid content gap is saturated with water. Since the oxidation reaction of organic substances around the anode is mainly catalyzed by a respiratory reaction by microorganisms, the organic substances introduced into the anode periphery are well dissolved or dissolved in water with a small solid particle size. It is desirable that it is dispersed and has a low molecular weight, and it is desirable that the substance be easily degradable for microorganisms.
  • the bioelectric power generation anode of the present invention can be efficiently biogenerated by a simple apparatus method. More specifically, it is possible to form an effective potential cascade between the final reductase, the electron mediator and the anode of an anaerobic organism, resulting in a sufficiently low anode potential, and a water-containing organic substance carrier. Thus, electric energy can be obtained efficiently.
  • FIG. 1 is a conceptual diagram showing a configuration of a power generator according to the present invention.
  • FIG. 2 is a conceptual diagram showing a configuration example of a power generator of the present invention.
  • FIG. 3 is a conceptual diagram showing an example of a structure of a force sword electrode that can be used in the power generator of the present invention
  • FIG. 3A is a sectional view
  • FIG. 3B is a view from the air chamber side of FIG. 3A
  • FIG. 3C is a cross-sectional view showing another example of the force sword electrode structure.
  • FIG. 4 is a conceptual diagram showing a configuration of a power generator of the present invention used in Examples. Explanation of symbols
  • FIG. 1 is a specific example of a bioelectric power generation unit according to one embodiment of the present invention.
  • One specific example of the bioelectric power generation device according to the present invention includes an anaerobic region 4 including an anode 1 in which an electron mediator is fixed to a conductive fiber, a diaphragm (electrolyte membrane) 2, and a porous cathode 3.
  • Containing aerobic region 5 is formed by forming a triple cylindrical body.
  • An anaerobic zone 4 which is the innermost space form of a cylindrical body is poured with a solution or suspension containing microorganisms and organic substances (also called “substrate”! Or U) that can grow under anaerobic conditions.
  • Air containing molecular oxygen is present in the aerobic zone 5 which is the outermost space form of the body.
  • the aerobic region 5 is provided with means for supplying molecular oxygen (not shown).
  • the porous cathode disposed in the aerobic region 5 at least a part of the force sword is formed of a conductive porous material having a void in the structure, a net-like or fibrous material.
  • the membrane 2 that separates the anaerobic region 4 and the aerobic region 5 is a membrane with a large mass exchange coefficient, such as a solid polymer electrolyte such as Nafion (registered trademark) manufactured by DuPont and Neocepta (registered trademark) manufactured by Astom. It consists of a membrane.
  • the oxidation reaction of a microorganism using an organic substance as an electron donor proceeds, and in the aerobic region 5, a reduction reaction using oxygen as an electron acceptor proceeds.
  • a potential difference is created between the anode 1 and the force sword 3.
  • the potential difference current flows by electrically connecting the anode 1 and the force sword 3 to the power utilization device via the conductor 6, while the anaerobic region 4 and the aerobic region 5 pass through the electrolyte membrane 2.
  • a closed circuit is formed by ions moving between them.
  • hydrogen ions are generated in the anaerobic zone 4 and the aqueous solution in the anaerobic zone becomes acidic.
  • hydroxide ions are generated in the aerobic region 5 and the water generated in the aerobic region 5 becomes an alkaline solution.
  • a flow path (not shown) for appropriately recovering the alkaline aqueous solution generated in the aerobic region 5 and injecting it into the anaerobic region 4 may be provided.
  • the hydrogen ion concentration in the anaerobic region 4 is extremely increased, thereby inhibiting the respiratory activity of the organism or introducing the introduced base. It is possible to prevent stumbling beyond the neutralizing ability of the functional group.
  • the inner diameter of the cylindrical body constituting the power generation unit can be set to several mm to several cm, and in some cases, several tens of cm depending on the fluidity of the substrate.
  • a power generation unit such as that shown in Figure 1 increases its physical strength by being held in a support layer or casing of a suitable material. Can do.
  • the cylindrical body may be further encapsulated with an outer shell, and the space between the outer shell and the cylindrical body may be an air chamber, and a means for supplying and discharging air to the air chamber may be formed. ⁇ .
  • a three-layer structure in which the anode 1, the diaphragm 2 and the force sword 3 are formed in a cylindrical shape is adopted, and the anode 1 and the force sword 3 are arranged via the diaphragm 2.
  • the surface area of the anode 1 and the force sword 3 can be increased, and the anode 1 can efficiently contact the substrate and the dead zone where the substrate does not move can be made as small as possible.
  • the anode 1 and the force sword 3 are electrically insulated, and the electrons of the organic substance (substrate) are efficiently transferred to the anode 1. .
  • the efficiency of contacting the oxygen in the air and the water on the water surface can be improved.
  • the reduction reaction of oxygen on the electrode can proceed efficiently.
  • the bioelectric power generation device having a three-layered cylindrical body as shown in Fig. 1, depending on the application, the anaerobic region including the anode is disposed outside, and the aerobic region including the force sword is included. It is also possible to perform power generation operation by arranging the area inside and arranging the device in the aerobic area to distribute the air in the substrate solution.
  • the cylindrical body may be formed in, for example, a U-shape, and both ends may be protruded from the surface of the substrate solution so that air can flow through the space inside the cylinder.
  • the aerobic region When the aerobic region is used as the inner cylinder in this way, it is advantageous that there is no risk of blockage even if the inner diameter of the inner tube in the aerobic region is reduced to several millimeters or less.
  • the outer anode is compared with the force sword. This is advantageous because the surface area can be increased. Furthermore, in order to increase the surface area of the anode, it is possible to have irregularities and wrinkles on the surface of the anode.
  • the inner diameter on the force sword side is related to the reaction efficiency, but if there is a diameter that allows air to flow easily, there is almost no risk of blockage, so the inner diameter is reduced to a few millimeters or less.
  • the cylindrical body is further encapsulated with an outer shell, the outer space of the cylindrical body is used as a microbial reaction chamber through which the substrate flows, and the apparatus is configured by arranging means for supplying and discharging the substrate to the biological reaction chamber. Can be made.
  • a bioelectric power generation apparatus can be configured by arranging a plurality of bioelectric power generation units in a tubular form as shown in Fig. 1 or other forms.
  • FIG. 2 shows a configuration in which a plurality of bioelectric power generation units in FIG. 1 are arranged
  • FIG. 4 shows a configuration in which three flat bioelectric power generation units are arranged.
  • the substrate is distributed and injected into the interior 4 of the power generation units 50 arranged in plural by the inflow pump 8 through the inflow portion 9.
  • the substrate that has undergone oxidative decomposition exits from the reaction vessel through the outflow part 10 and is then discharged out of the system as the treated substrate 11.
  • a part of the substrate is returned to the inflow section 9 by the circulation pump 12 again. This circulating flow promotes contact between the anode 1 and the substrate.
  • Biological cells and sludge accumulated in the reaction vessel are discharged by opening the excess sludge discharge port 13 over time.
  • the inside of the reaction vessel can be back-washed or air-washed. If anaerobic gas is generated in the reaction vessel, it can be exhausted from the exhaust port. As described above, this anaerobic gas may be stored and used for air washing.
  • the air chamber 7 can be ventilated using the blower 14.
  • the device may be configured such that the air chamber 7 is removed and the force sword 3 that is the outer cylinder of each power generation unit 50 is exposed to the outside air.
  • the aerated air flows through the space 5 between the power generation units in the air chamber 7, contacts the force sword 3, and then is discharged from the exhaust port 15.
  • the water produced by the reduction reaction with the power sword is discharged from the exhaust port 15 as water vapor, or is discharged as 16 condensed water drain as condensed water.
  • the conductor 6 is electrically connected to the inner cylinder 1 of the plurality of power generation units 50 through the connection part 17 with the anode, and to the outer cylinder 3 of the plurality of power generation units 50 through the connection part 18 with the cathode. The At this time, it is necessary to electrically insulate the conductor 6 from the surrounding environment so that an electrical short circuit and an oxidation reduction reaction on the conductor surface do not occur.
  • each power generation unit is configured with the inner cylinder as the cylinder and the anode as the outer cylinder, air is supplied to the internal space of each cylindrical body 50, and the substrate is placed on the anode outside the cylindrical body of the power generation unit 50. Use contact to make contact.
  • the issue is how to efficiently proceed the oxygen reduction reaction on the electrode.
  • at least a part of the force sword is formed of a conductive porous material having a void in the structure, a net-like or fibrous material, and a contact interface between air and water in the void of the force sword. It is preferable to increase the efficiency of contacting oxygen in the air and water on the water surface by contacting with air in the presence of water.
  • FIG. 3 is a cross-sectional view showing an example of the structure of a force sword that can be employed in the bioelectric power generation device of the present invention.
  • 3A shows a cross section of the structure of the diaphragm 2 and the force sword 3
  • FIG. 3B is a view of FIG. 3A viewed from the air chamber side 5.
  • FIG. FIG. 3 shows a reaction system when the diaphragm 2 is a cation exchange membrane.
  • the force sword shown in FIG. 3 has a structure in which a porous matrix 20 supports a catalyst 21 made of an alloy or compound containing at least one kind preferably selected from a platinum group element, silver, and a transition metal element.
  • FIG. 3 (A)) shows a net-like structure when viewed from the air chamber side 5 (Fig. 3 (B)).
  • the force sword can make contact with oxygen in the air while sucking up the water passing through the water surface or the diaphragm by the hydrophilicity of the base material, and the air network 2 in the micro structure of the electrode.
  • the area of the air Z water contact interface can be increased, and the efficiency of contact with oxygen in the air and water on the water surface can be increased.
  • the reaction of oxygen and hydrogen ions on the catalyst 21 can promote the reduction reaction of oxygen in the air.
  • FIG. 3C shows another example of a force sword structure that can be employed in the bioelectric power generation device of the present invention.
  • Figure 3 (C) also shows the reaction system when the diaphragm 2 is a cation exchange membrane.
  • the force sword shown in FIG. 3 (C) is obtained by applying a solution made of the same material as that of the diaphragm 2 to the joint surface side of the porous matrix 20 with the diaphragm 2 and drying it. A part of the porous matrix 20 is infiltrated into the micropores.
  • the bioelectric power generation device shown in Fig. 4 has two cell frames (25, 26) with a side length of 100mm and a thickness of 10mm, and two separators 24 of the same size on both sides of the cell frame.
  • a laminated structure having separators 24 on both sides was laminated.
  • a cation exchange membrane DuPont Nafion
  • anode 1 a diaphragm 2
  • a carbon paper carrying platinum as a force sword 3 are arranged in contact in this order, and a naphthion solution is used.
  • Anode 1, diaphragm 2, and force sword 3 are bonded in this order to form an anaerobic region 31 between one frame 24 and anode 1, and an aerobic region 32 between the other frame 24 and force sword 3. did.
  • Three stacked units of this stacked structure were stacked alternately, and the frame 24 between adjacent units was shared to configure an experimental power generator.
  • Substrate liquid flow path 27-28 was formed in anaerobic areas 31, 31 ', 31 "between three units, and air flow paths 29-30 were formed in aerobic areas 32, 32', 32, and.
  • each anode 1 and each force sword 3 are electrically connected in series by a conductive wire to form a closed circuit via a flow meter and a variable resistor (power utilization device).
  • the external resistance of the circuit including the voltage was 10 ⁇ or less when the variable resistor was set to 0 ⁇ .
  • the effective volume of the three power generation units combined with this device V was the anaerobic region (biological reaction chamber).
  • aerobic region air reaction chamber
  • the total surface area of the electrodes was 10 8 cm for both the anode and force sword.
  • Example 1 Carbon Carbon (registered trademark) GF-20 manufactured by Nippon Carbon Co., Ltd. was used as the carbon felt as the conductive base material of the anode 1.
  • As the hydrophilic polymer polyacrylic acid (molecular weight of about 1 million) manufactured by Wako Pure Chemical Industries was used.
  • the electron mediator used was 1 aminoanthraquinone (AAQ) manufactured by Wako Pure Chemical Industries.
  • the anode (1) equipped in the bioelectric power generation apparatus in Example 1 was produced by the method described below.
  • a polymer in which polyacrylic acid is dissolved in methanol to a concentration of 5 g / L A liquid was prepared, and Graphite felt was immersed in the liquid, shaken for 30 seconds, taken out, and the excess polymer liquid was dropped, followed by drying at 100 ° C. for 24 hours to form a hydrophilic polymer layer.
  • the weight increase of the graphite felt by this work was measured, and the thickness of the hydrophilic polymer layer was calculated from the felt surface area measured by the specific surface area meter and the specific gravity of the solidified hydrophilic polymer 0.8. Estimated.
  • the polymer-coated felt thus obtained was immersed in dimethylformamide, and AAQ was added so as to be 30 mol% with respect to the constituent hydrophilic monomer units of the hydrophilic polymer while gently stirring.
  • AAQ was added so as to be 30 mol% with respect to the constituent hydrophilic monomer units of the hydrophilic polymer while gently stirring.
  • dicyclohexylcarbodiimide the reaction is allowed to proceed at room temperature for 72 hours to form an amide bond between the AAQ amino group and the polymer carboxy group, and an electron mediator is introduced into the hydrophilic polymer layer. did.
  • the anode for bioelectric power generation (1) obtained by washing this with dimethylformamide and then methanol and drying the power was used as the anode 1 of the bioelectric power generation apparatus.
  • the average introduction ratio of AAQ units relative to the polymer units of polyacrylic acid in the anode (1) was 10 ⁇ mol per lcm 2 projected area of 25 mol 0 electrode. This value was measured before and after the introduction of AAQ, and compared with the alkali neutralization ability of the polymer layer.
  • the discharge was performed by using the anode (1) and shifting the applied potential to -0.28V-0.18V (hydrogen standard electrode potential) in an aqueous solution of pH 7, the anode (1) It can be said that the standard electrode potential E is between -0.28V-0.18V.
  • Comparative Example 1 carbon felt (registered trademark) GF-20 manufactured by Nippon Carbon Co., Ltd. was used as the carbon felt as the conductive substrate of the anode.
  • hydrophilic polymer polyacrylic acid (molecular weight of about 1 million) manufactured by Wako Pure Chemical Industries was used.
  • the electron mediator used was 1 aminoanthraquinone (AAQ) manufactured by Wako Pure Chemical Industries.
  • Comparative Example 1 the control anode (1) equipped in the bioelectric power generation device was produced by the method described below. Polyacrylic acid is dissolved in methanol at a concentration of 300 g / L to prepare a polymer solution. Graffite felt is immersed in this solution and shaken for 30 seconds, then removed to remove excess polymer solution. To 100 ° C for 24 hours to form a hydrophilic polymer layer. It was. When the thickness of the hydrophilic polymer layer was calculated in the same manner as in Example 1, it was estimated that the average was 3500 nm.
  • the average introduction rate of the AAQ units to configure hydrophilic monomer units of the hydrophilic polymer in the control anode (1) is 5 mole 0/0, were projected area lcm 2 per 350 mol of the electrode.
  • the discharge was performed by shifting the applied potential to -0.28V force to -0.13V (hydrogen standard electrode potential) in a pH7 aqueous solution.
  • the standard electrode potential E in (1) is considered to be between -0.28V and -0.13V.
  • Carbon Carbon (registered trademark) GF-20 manufactured by Nippon Carbon Co., Ltd. was used as the carbon felt that is the conductive base material of the anode 1.
  • hydrophilic polymer polyacrylic acid (molecular weight of about 1 million) manufactured by Wako Pure Chemical Industries was used.
  • the electron mediator used was 1 aminoanthraquinone (AAQ) manufactured by Wako Pure Chemical Industries.
  • Comparative Example 2 the control anode equipped in the bioelectric power generation apparatus was produced by the method described below.
  • Polyacrylic acid was dissolved to a concentration of 5 g / L in methanol in the same manner as in Example 1 to prepare a polymer solution, which was immersed in graphite felt and shaken for 30 seconds.
  • the liquid was dropped and dried at 100 ° C. for 24 hours to form a hydrophilic polymer layer.
  • the thickness of the hydrophilic polymer layer was calculated in the same manner as in Example 1, it was estimated that the average was 18 nm.
  • AAQ was introduced into the hydrophilic polymer-coated felt thus obtained (conductive base material) at an equimolar ratio with respect to the hydrophilic monomer units of the hydrophilic polymer, immobilized, and compared. Used as control anode (2) in Example 2.
  • the average introduction ratio of AAQ units relative to the polymer units of polyacrylic acid in the control anode (2) was 86 mol%, and 34 mol per lcm 2 of the projected area of the electrode. Since the discharge was performed using the control anode (2) by shifting the applied potential from -0.28V to -0.13V (hydrogen standard electrode potential) in an aqueous solution of pH 7, the control anode ( 2) Standard electrode potential E ' Is considered to be between -0.28V and -0.13V.
  • the fungus solution obtained after 10 weeks was used, and the soil from which the seeds were planted may be loam soil or silt, not limited to kurobota soil.
  • a substrate solution prepared by mixing 0.0 lg / L yeast extract in a 0.1 mol / L glucose aqueous solution as a model of a water-containing organic substance was used.
  • the acclimatization operation is performed with the residence time of the substrate solution being set to 2 days, and from the 20th day after the operation is started, the residence time in the anaerobic region is set to a normal operation of 500 minutes, The amount of current and the voltage between the force swords were measured.
  • the air supply to the aerobic zone was set at a residence time of 0.5 minutes.
  • Example 1 In Comparative Examples 1 and 2, the power sword and anode were always electrically connected, including during the acclimatization period, and the variable resistance was adjusted to obtain the maximum amount of power. .
  • the test results are shown in Table-5.
  • the average generated power during the measurement period is less when the polymer layer is thin and the AAQ introduction rate is 30 mol% or less (Example 1) than when the polymer layer is thick (Comparative Example 1). It can be seen that 53 times higher power was generated. In addition, the AAQ introduction rate reached 86 mol%, and 14 times higher power was generated than when the hydrophilicity of the polymer layer was low (Comparative Example 2). From these results, it was confirmed that the hydrophilic polymer-coated electrode having a thin polymer layer thickness and the introduction rate of the electron mediator suppressed to 30 mol% or less is excellent as an anode for bioelectric power generation.
  • a hydrophilic polymer is obtained by impregnating a conductive substrate (carbon felt) with an aqueous solution of polyethyleneimine (Epomin (registered trademark) P-1 000) manufactured by Nippon Shokubai Co., Ltd. A layer was formed on which anthraquinone-2-sulfonic acid (AQS) was fixed and used as an anode. AQS was previously sulfonated by the following method.
  • a skin tone powder of AQS chloride was obtained.
  • the anode (2) provided in the bioelectric power generation apparatus in Example 2 was produced by the method described below. Polyethyleneimine is dissolved in water to a concentration of 10 g / L to prepare a hydrophilic polymer solution. Graffite felt as a conductive substrate is immersed in this solution, shaken for 30 seconds, and taken out. The excess hydrophilic polymer liquid was dropped and dried at 100 ° C. for 24 hours to form a hydrophilic polymer layer. The weight increase of the graphite felt by this work was measured, and the thickness of the hydrophilic polymer layer was calculated from the felt surface area measured by the specific surface area meter and the specific gravity of the solidified polymer 1.2.
  • the hydrophilic polymer-coated felt (conductive substrate) obtained in this way is immersed in tetrahydrofuran and stirred gently, with 30 mol% of the hydrophilic monomer units constituting the hydrophilic polymer.
  • the above-mentioned AQS chloride was added.
  • An electron mediator is formed by forming a sulfonamide bond between the hydrophilic polymer and AQS chloride by reacting for about 12 hours at room temperature while coexisting with 5 times mole of triethylamine to the calcined AQS chloride.
  • the anode for bioelectric power generation (2) obtained by washing with methanol and drying was used as anode 1 of the bioelectric power generation apparatus.
  • the discharge was performed by using the anode (2) and shifting the applied potential from -0.28V to -0.18V (hydrogen standard electrode potential) in an aqueous solution of pH 7, the anode (2) It can be said that the standard electrode potential E is between -0.28V and -0.18V.
  • the anode (3) provided in the bioelectric power generation apparatus in Example 3 was produced by the method described below. Polyethyleneimine is dissolved in water at a concentration of 10 g / L to prepare a hydrophilic polymer solution, and the above graphite felt as a conductive base material is immersed in the solution to gently dissolve it. While stirring, ethyl (3-dimethylaminopropyl) carbodiimide hydrochloride was added and reacted for 72 hours to form an amide bond between graphite and polyethyleneimine. The graphite was taken out, the excess hydrophilic polymer solution was dropped, and then dried at 100 ° C. for 24 hours to form a hydrophilic polymer layer. This was washed with O.lmol / L sodium hydroxide solution and then the following operation was performed. The thickness of the hydrophilic polymer layer was estimated to average 21 °.
  • the hydrophilic polymer-coated felt (conductive substrate) thus obtained was immersed in tetrahydrofuran, and 30 mol% with respect to the hydrophilic monomer units constituting the hydrophilic polymer in the same manner as in Example 2.
  • AQS chloride was added so that a sulfonamide bond was formed and an electronic mediator was introduced.
  • the anode for bioelectric power generation (3) obtained by washing this with methanol and drying was used as anode 1 of the bioelectric power generation apparatus.
  • Average rate of introduction of AQS units to configure hydrophilic monomer units of the hydrophilic polymer of the anode (3) is 27 mol 0/0, were projected area lcm 2 per 12 mu mol of the electrode.
  • the anode (3) since the discharge was performed using the anode (3) by shifting the applied potential from -0.28V to -0.18V (hydrogen standard electrode potential) in an aqueous solution of pH 7, the anode (3) It can be said that the standard electrode potential E is between -0.28V and -0.18V.
  • the anode (4) provided in the bioelectric power generation apparatus in Example 4 was produced by the method described below. Polyethyleneimine is dissolved in water to a concentration of 10 g / L to prepare a hydrophilic polymer solution, and a graphite felt as a conductive substrate is immersed in the solution under the same conditions as in Example 2. It was. The graphite was taken out, the excess hydrophilic polymer solution was dropped, and then dried at 100 ° C. for 24 hours to form a hydrophilic polymer layer. The thickness of the hydrophilic polymer layer was estimated to be 23 nm on average.
  • the hydrophilic polymer-coated felt (conductive substrate) thus obtained is immersed in tetrahydrofuran, and the above AQS chloride is equimolar with respect to the hydrophilic monomer units constituting the hydrophilic polymer. Then, a sulfonamide bond was formed under the same conditions as in Example 3, and an electron mediator was introduced. This was immersed in a dichloromethane solvent, and chlorosulfonic acid was added to a concentration of 10% (v / v) and reacted for 24 hours to carry out sulfonation. This is washed with isopropanol for 24 hours, then with ethanol and then with water.
  • Anode for biopower generation obtained by force-drying sulfonyl chloride as sulfonic acid with
  • Average rate of introduction of AQS units to configure hydrophilic monomer units of the hydrophilic polymer of the anode (4) is 83 mol 0/0, were projected area lcm 2 per 39 mu mol of the electrode.
  • the anode (4) since the discharge was performed by using the anode (4) and shifting the applied potential from -0.28 V to -0.13 V (hydrogen standard electrode potential) in an aqueous solution of pH 7, the anode (4) It can be said that the standard electrode potential E is between -0.28V and -0.13V.
  • Comparative Example 3 the control anode (3) equipped in the bioelectric power generation device was produced by the method described below.
  • a hydrophilic polymer layer is formed in the same manner as in Example 4, and AQS chloride is added so as to be equimolar with respect to the hydrophilic monomer units constituting the hydrophilic polymer, and sulfonamide bonds are formed under the same conditions as in Example 4. Formed. This was used as the control anode (3) of the bioelectric power generation apparatus in Comparative Example 3 as it was.
  • Table 6 shows the results of the power generation test conducted with the biopower generation device shown in FIG. 4 using the anodes obtained in Examples 2 to 4 and Comparative Example 3.
  • the average generated power during the measurement period is the same regardless of whether or not the dehydration condensation treatment is performed in advance in Examples 2 and 3 where the hydrophilic polymer layer thickness is thin and the AQS introduction rate is 30 mol% or less. It showed almost the same value. Even when the AQS introduction rate was as high as 83 mol% (Example 4), a slightly inferior power generation amount could be obtained by carrying out the sulfonating treatment after AQS introduction. On the other hand, when used as an anode as it is with a high AQS introduction amount (Comparative Example 3), the amount of electric power is up to about 1/9 compared to the case where the sulfone treatment is performed (Example 4). Declined.
  • the hydrophilic polymer layer-coated electrode in which the introduction rate of the electron mediator with a thin hydrophilic polymer layer thickness is suppressed to 30 mol% or less is excellent as an anode for bioelectric power generation, and Even when the introduction rate of the electron mediator was high, it was found that the performance as an anode for biopower generation was restored by introducing a hydrophilic group.
  • Example 3 When anodes prepared by the methods of Example 2 and Example 3 were each immersed in lmol / L hydrochloric acid water and allowed to react for 30 minutes with gentle stirring, 90% or more of the polymer of Example 2 was dissolved. I have detached from the Graphite. On the other hand, about 10% of the anode force produced in Example 3 was detached. Since the anode polymer layer prepared in Example 3 was chemically bonded to the graphite by an amide bond, it was considered that the elution due to acid hardly occurred. Therefore, it can be said that the anode produced by the method of Example 3 has higher durability than the anode produced by the method of Example 2.
  • Example 5 The anode (5) equipped in the bioelectric power generation apparatus was produced by the method described below. Polyethyleneimine was dissolved in water to a concentration of 30 g / L to prepare a hydrophilic polymer liquid, and graphite felt as a conductive base material was immersed in the same under the same conditions as in Example 2. Thereafter, the graphite felt was taken out and the excess hydrophilic polymer solution was dropped, followed by drying at 100 ° C. for 24 hours to form a hydrophilic polymer layer. The thickness of the hydrophilic polymer layer was estimated to be an average lOOnm.
  • the hydrophilic polymer-coated felt (conductive substrate) obtained in this way is immersed in tetrahydrofuran to obtain an excess amount (100 mol% or more) relative to the hydrophilic monomer units constituting the hydrophilic polymer.
  • the anode (5) obtained by adding AQS chloride and forming a sulfonamide bond under the same conditions as in Example 3 and introducing an electron mediator was used as the anode 1 of the bioelectric power generation device. .
  • Comparative Example 4 the control anode (4) equipped in the bioelectric power generation device was produced by the method described below. Polyethyleneimine was dissolved in water to a concentration of 80 g / L to prepare a hydrophilic polymer solution, and graphite felt as a conductive substrate was immersed in the same conditions as in Example 2. Thereafter, the graphite felt was taken out and the excess hydrophilic polymer solution was dropped, followed by drying at 100 ° C. for 24 hours to form a hydrophilic polymer layer. The average thickness of the hydrophilic polymer layer was estimated at 250 °.
  • the hydrophilic polymer-coated felt (conductive substrate) obtained in this manner is immersed in tetrahydrofuran to obtain an excess amount (100 mol% or more) with respect to the hydrophilic monomer units constituting the hydrophilic polymer.
  • AQS chloride was added so that a sulfonamide bond was formed under the same conditions as in Example 3, and an electron mediator was introduced. This was used as anode 1 of the bioelectric power generation apparatus in Comparative Example 4.
  • the average introduction rate of the AQS units to the configuration hydrophilic monomer a unit of the hydrophilic polymer in polyethylene I Min control anode (4) is 23 mol% and a projected area lcm 2 per 11 7 / z mol of the electrodes .
  • the control anode (4) was used and the applied potential was shifted from -0.28V to -0.13V (hydrogen standard electrode potential) in an aqueous solution of pH 7, the force generated by the control anode (4) Standard electrode potential E, -0.28V
  • Table 7 shows the results of the power generation test conducted with the biopower generation device shown in FIG. 4 using the anodes obtained in Example 5 and Comparative Example 4.
  • the generated potential difference (voltage) and generated current are both 10 times higher when compared to the case where the polymer layer thickness is lOOnm (Example 5) and the polymer layer thickness is 250 nm (Comparative Example 4). It can be seen that power is generated.
  • a hydrophilic polymer layer was formed by impregnating a conductive substrate (graphite felt) with an aqueous solution of polyethyleneimine (Epomin (registered trademark) P-1000 manufactured by Nippon Shokubai Co., Ltd.) having a molecular weight of 70,000.
  • Polyethyleneimine was dissolved in water to a concentration of 10 g / L to prepare a hydrophilic polymer liquid, and then Graitite felt as a conductive base material was immersed in this and shaken for 30 seconds.
  • the excess hydrophilic polymer liquid was taken out and dried at 100 ° C. for 24 hours to form a hydrophilic polymer layer.
  • the weight increase of the graphite felt due to this work was measured, and the thickness of one hydrophilic polymer was calculated from the surface area of the felt measured with a specific surface area meter and the specific gravity of the solidified polymer of 1.2.
  • AQDS anthraquinone-2,6-disulfonic acid
  • the polyethyleneimine-coated felt (conductive substrate) obtained by the above-mentioned method is immersed in tetrahydrofuran and mixed gently with stirring, and an excess amount (100 mol%) with respect to the hydrophilic monomer unit constituting the hydrophilic polymer.
  • AQ DS chloride was added so that By reacting for about 12 hours at room temperature while coexisting with 5 times the amount of trilamine corresponding to the caloric AQDS chloride, a sulfonamide bond is formed between the hydrophilic polymer and the AQDS chloride to form an electron.
  • Mediator was introduced.
  • the anode for bioelectric power generation (6) obtained by washing with methanol and force-drying was used as the anode 1 of the bioelectric power generation apparatus.
  • the average introduction rate of AQDS units with respect to the hydrophilic monomer units constituting the hydrophilic polymer of the anode (6) was 25 mol%, and 13 ⁇ mol per 1 cm 2 projected area of the electrode. This value was obtained by measuring and comparing the acid neutralizing power of the polymer layer before and after the introduction of AQ DS, and calculating the decreasing power of the acid neutralizing power.
  • the anode (6) since the current was generated by using the anode (6) and shifting the applied potential from -0.25 V to -0.15 V (hydrogen standard electrode potential) in an aqueous solution of pH 7, the anode (6) It can be said that the standard electrode potential E is between -0.25V and -0.15V.
  • Indigo carmine used was sulfonyl chlorided in advance by the following method.
  • Indigo carmine is reacted for 1 hour at 70 ° C in a acetonitrile solvent containing an amount of sulfolane equivalent to 1/2 mol and an amount of phosphorus oxychloride equivalent to 4 times mol of indigo carmine.
  • the acid group was sulfonyl chlorided. This was cooled, filtered, washed with ice water, and dried to obtain a blue powder of indigo carmink lid.
  • the polyethyleneimine-coated felt (conductive base material) obtained by the above method is immersed in tetrahydrofuran and stirred gently. Excess amount (100 mol% or more) relative to the hydrophilic monomer unit of the hydrophilic polymer.
  • control anode (5) was used to shift the applied potential from -0.13 V to -0.10 V (hydrogen standard electrode potential) in an aqueous solution of pH 7, a control anode was used. It can be said that the standard electrode potential E of (5) is between -0.13V and -0.10V.
  • the power generation performance was examined in the same manner as in Example 6 except that the control anode (6) was used.
  • the polyethyleneimine-coated felt (conductive substrate) obtained by the above-mentioned method is immersed in tetrahydrofuran and mixed in excess with respect to the hydrophilic monomer units of the hydrophilic polymer while gently stirring.
  • the above 5-H-1,4-NQ sulfonic acid chloride was added so as to be 100 mol% or more.
  • To the equivalent of 5-fold mol of 5-H-1,4-NQ sulfonic acid chloride added.
  • control anode (6) is the average introduction rate of 5-H- 1,4-NQ units to the configuration hydrophilic monomer units of the hydrophilic polymer of 23 mole 0/0, the projected area lcm 2 per 12 mu mol of electrodes Met. This value was calculated from the decrease in acid neutralizing power by measuring and comparing the acid neutralizing power of the polymer layer before and after introducing 5-Hl, 4-NQ.
  • control anode (6) was used to generate an electric current by shifting the applied potential from -0.10 V to +0.05 V (hydrogen standard electrode potential) in an aqueous solution of pH 7, the control anode It can be said that the standard electrode potential E of (6) is between -0.10V and + 0.05V.
  • Carbon (registered trademark) felt GF-20 made by Nippon Carbon Co., Ltd. was used as a carbon felt that is a conductive substrate.
  • Carbon (registered trademark) felt GF-20 made by Nippon Carbon Co., Ltd. was used.
  • hydrophilic polymer polyacrylic acid (molecular weight of about 1 million) manufactured by Wako Pure Chemicals was used. Polyacrylic acid is dissolved in methanol to a concentration of 5 g / L to prepare a hydrophilic polymer solution. Graffite felt is immersed in this solution and shaken for 30 seconds. After dropping the liquid, it was dried at 100 ° C for 24 hours to form a hydrophilic polymer layer.
  • the weight increase of the graphite felt due to this work was measured, and the thickness of the hydrophilic polymer layer was calculated from the surface area of the felt measured with a specific area meter and the specific gravity of the solidified hydrophilic polymer of 0.8, and the average was estimated to be 28 nm. .
  • Example 7 as an anode, an anode (7) on which 2-methyl-5-amino-1,4-naphthoquinone (2-M-5-A-1.4-NQ) was immobilized by the following method was used. Using.
  • the polyacrylic acid-coated felt obtained by the above method is immersed in dimethylformamide, and the amount becomes excessive (100 mol% or more) with respect to the hydrophilic monomer units of the hydrophilic polymer while gently stirring.
  • 2-M-5-Al, 4-NQ By adding 2-M-5-Al, 4-NQ and reacting at room temperature for 72 hours in the presence of dicyclohexylcarbodiimide, 2-M-5-A-1,4-NQ
  • An amide bond is formed between the amino group of the polymer and the carboxy group of the polymer to form a hydrophilic polymer layer.
  • An electronic mediator was introduced.
  • the anode for bioelectric power generation (7) obtained by washing this with dimethylformamide and then methanol and drying the power was used as the anode 1 of the bioelectric power generation apparatus.
  • the anode (7) since the current was generated by using the anode (7) and shifting the applied potential from -0.15V to -0.13V (hydrogen standard electrode potential) in an aqueous solution of pH 7, the anode (7) It can be said that the standard electrode potential E is between -0.15V and -0.13V.
  • the power generation performance was examined in the same manner as in Example 7 except that the node (7) was used.
  • the average introduction rate of -eutrale red units relative to the polymer units of polyacrylic acid in the control anode (7) was 28 mol%, and 16 mol per lcm 2 of the projected area of the electrode. This value was calculated by measuring and comparing the alkali neutralization power of the polymer layer before and after the introduction of the neutral red, and calculating the reduction power of the alkali neutralization power.
  • control anode (7) was used to generate a current by shifting the applied potential from -0.45V to -0.28V (hydrogen standard electrode potential) in an aqueous solution of pH7. It can be said that the standard electrode potential E of (7) is between -0.45V and -0.28V. ⁇ Power generation performance>
  • Table 8 shows the results of the power generation test performed on the biopower generation device shown in FIG. 4 using the anodes obtained in Examples 6 and 7 and Comparative Examples 5 to 7.
  • the standard electrode potential (E ') of the anode is within the scope of the present invention.
  • Example 6 shows an output 2.5 times higher than Example 7. This is because the anode (6) of Example 6 has a standard electrode potential in the range of -0.25 to -0.15V, whereas the anode (7) of Example 7 has a high value of -0.15 to -0.13V. Conceivable. This shows that it is advantageous in terms of power generation performance to set the standard electrode potential of the anode at pH 7 within the range of -0.13V to -0.28V, preferably within the range of -0.15V to -0.27V. It was.
  • an anode for bioelectric power generation is efficiently produced by a simple apparatus and method, and wastewater, waste liquid, human waste, food waste, etc. are produced by bioelectric power generation using this anode.
  • Organic waste materials such as sludge, water-containing organic substances such as sludge, or their decomposition products It is possible to efficiently oxidatively decompose and obtain electric energy.
  • the present invention is expected to be widely used as a power generation method using oxidative decomposition of a hydrous organic substance and a reduction potential.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)

Abstract

 アノードの活性化過電圧を低く抑えることによって、結果的に十分低いアノード電位を得て、含水有機性物質から効率的に電気エネルギーを得る方法及び装置を提供する。  嫌気性条件下で生育可能な微生物、有機性物質を含有する溶液もしくは懸濁液、電子メディエータ及びアノード1を含む嫌気性域4と、分子状酸素及びカソード3を含む好気性域5と、嫌気性域4及び好気性域5とを画定する隔膜2と、を具備し、アノード1及びカソード3を電力利用機器に電気的に接続して閉回路6を形成し、嫌気性域4内での有機性物質を電子供与体とする微生物の酸化反応と好気性域5内での酸素を電子受容体とする還元反応とを利用する発電装置。アノード1は、表面の少なくとも一部が親水性ポリマー層で被覆された導電性基材を含み、該親水性ポリマー層には電子メディエータが化学的に結合されて導入されており、pH7における標準電極電位(E0')が-0.13V~-0.28Vの範囲内にある。

Description

明 細 書
生物発電用アノード及びこれを利用する発電方法及び装置
技術分野
[0001] 本発明は、廃水、廃液、し尿、食品廃棄物、その他の有機性廃棄物、汚泥などの有 機性物質またはその分解物を基質とし、その基質と空気中の酸素との酸化還元反応 を、嫌気性生物による酸化反応と、酸素の還元反応に分離することによって発電を行 う生物発電技術に関する。
背景技術
[0002] 廃水、廃液、し尿、食品廃棄物、その他の有機性廃棄物または汚泥 (以下、「含水 有機性物質」とする)を分解して利用可能なエネルギーを取り出す方法として、メタン 発酵を始めとする嫌気発酵法によってメタン等を生産して、これを用いて発電を行う 方法や、生物の嫌気呼吸反応力 直接電気を取り出す生物電池法などが考案され ている。
[0003] し力しながら、メタン発酵を始めとする嫌気発酵法によりメタン、エタノール、水素な どを生産し、これらを用いて発電を行う方法は、生物による物質生産過程と生産物を 燃料とした発電過程の 2段階のステップを必要とするため、エネルギー効率が悪ぐ 装置も複雑になる問題がある。
[0004] 一方、微生物を利用して、アノード周辺の電子供与体からの電子を、アノードとカソ ードを回路として導通することで力ソード周辺の電子受容体 (主に溶存酸素)に供与 して電流を得る方法が報告されている(下記特許文献 1、 2、及び 3)。これらの方法で は力ソードを水中に設置するため、水中での溶存酸素の拡散速度が全体の反応の 律速となる可能性が高い。すなわち、水中での溶存酸素の還元反応は水中での酸 素の拡散速度に依存するため、無撹拌時の電極単位表面積当たりの電流量は過電 圧に関わりなく 20 A/cm2が最大値となる。これは空気中の酸素を用いた場合の値( 過電圧 200mVで約 300mA/cm2)と比較して著しく小さ 、ため、含水有機性物質の酸化 及び発電の制限因子となることがわかる。
[0005] また、別の例では微生物に常に不十分な量の有機物を与えて、微生物を飢餓状態 に維持することによって効率良く電子を取り出す方法が提案されており(特許文献 4) 、この文献中には、力ソードとして酸素または空気極が使用できると記載されている。 しかしながら当該文献中には、空気極を用いる場合の具体的な装置の構造などの記 載および実施例はなぐ問題を解決するための手段として当業者が実施できるように は開示されていない。
[0006] 電子メディエータを利用する生物電池技術として、含水有機性物質又はその分解 物を基質として、基質と酸素との酸化還元反応を、嫌気性微生物による酸化反応と、 酸素の還元反応に分離することによって発電を行う方法が提案されている(特許文献 3及び非特許文献 1〜3)。しかし、これらの方法において用いられている電子メディ エータの標準電極電位は、一般に生物電池反応に用いられる嫌気性微生物の最終 電子受容物質の標準電極電位と重ならず、有効な電位のカスケードを形成できな ヽ という問題がある。例えば、これまでに提案されている電子メディエータとその標準電 極電位は、下記表 1のとおりである。
[0007] [表 1] 表 1 各種電子メデイエ一夕の標準電極電位
Figure imgf000004_0001
[0008] 一方、一般的な生物電池反応に用いられる嫌気性微生物である硫黄還元菌、酸化 鉄 (III)還元菌の最終電子受容物質である硫黄及び鉄の標準電極電位は、下記表 2 のとおりである。
[0009] [表 2] 嫌気性微生物の最終電子受容物質の標準電極電位
最終電子受容反応 標準電極電位 Eo' (V)
02/H20 +0.82
Fe(lII) 1 Fe(II) +0.20
S(0) 1 H2S -0.28 [0010] 表 2より、硫黄還元菌の持つ電子伝達系の末端還元酵素 (硫黄還元酵素)は、 -0.2 8Vの標準電極電位を持つ物質を還元することができ、一方、酸化鉄 (III)還元菌の持 つ電子伝達系の末端還元酵素 (酸化鉄 (ΠΙ)還元酵素)は、 +0.20Vの標準電極電位 を持つ物質を還元することができることがわかる。これらの末端還元酵素は微生物の 外膜やペリブラズムに存在しており、菌体外の酸ィ匕鉄や 0価の硫黄を還元できること 力も効率的な生物発電のために有効な触媒となり得る。ところが、これまで提案され ている電子メディエータの標準電極電位は、表 1に示すように、 A〜Gの電子メデイエ 一タの 、ずれも鉄還元の標準電極電位よりも低!、ので、酸ィ匕鉄 (III)還元酵素 電子 メディエータ—アノード間で有効な電位のカスケードを形成できない。同様に、表 1C
〜Gの電子メディエータは硫黄還元の標準電極電位よりも低 、ので、硫黄還元酵素 電子メディエーターアノード間で有効な電位のカスケードを形成できな 、。表 1A 及び Bの電子メディエータは硫黄還元の標準電極電位よりも高 、ので、理論上は硫 黄還元酵素による還元が可能である力 電位差が 0.3V以上もあり、生物学的な電子 伝達が困難である可能性が高い。その上、発電効率を高めるためには力ソードの酸 素還元反応に対してできるだけ大きな電位差を生じさせることが求められる力 電子 メディエータの電位が高 、ので 0.3V以上の電位差を損失してしま!/、、エネルギー損 失が大きくなる。
[0011] そこで、硫黄還元菌を用いた生物電池系において、アントラキノンー 2, 6 ジスル ホン酸 (AQ-2,6-DS)を嫌気性域に添加することにより電子伝達効率の向上を試みる 提案がなされた (非特許文献 2)。 AQ-2,6-DSの標準電極電位は- 0.185Vであり、硫 黄還元酵素 電子メディエータ間で有効な電位のカスケードを形成するのに適当な 物質であると考えられる。しかし、提案されている系においては、 AQ-2,6- DSは液相 中に添加されただけで、アノード (酸化電極)に担持されていないため、電極との反応 性が低ぐ添加効果は 24%の電流値増加に留まっている。また、連続的に発電する場 合には、嫌気性域内の基質液を更新する際に電子メディエータも一緒に系外に排出 されてしまい、常に電子メディエータを添カ卩し続けなければならない、という問題があ る。
[0012] また、ニュートラルレッドをアノードにアミド結合を用いて担持する試みが提案されて いる(非特許文献 3)。この提案によれば、グラフアイト電極の酸ィ匕によりカルボキシ基 を導入し、ジシクロへキシルカルボジイミドの共存下で-ユートラルレッドと反応させて アミド結合を形成する際、下記構造式:
[0013] [化 1]
Figure imgf000006_0001
矢印の位置にカルボキシル基が結合する
[0014] において、矢印で示す 9位の第二級ァミンにカルボキシ基が結合すると考えられる。
ところ力 グラフアイトに結合した-ユートラルレッドのサイクリックボルタンメトリにおけ る電流値ピークは、 -0.42V付近に認められ、遊離の状態での標準電極電位- 0.325V よりも 0.1V程度低下している。この変動により、生物による電子メディエータの利用が さらに困難になる。これは、 9位の第二級ァミンに化学修飾を施すことにより、ニュート ラルレッドの標準電極電位が大幅に変動したためと考えられる。
[0015] 一方、二次電池の負極材料として、ポリエチレンィミンなどの親水性ポリマーとハロ キノンとを反応させ、ポリマーの構成単位にキノン単位を導入する方法が提案されて いる(特許文献 5)。この方法では上記のキノン固定ィ匕ポリマーを白金板などの集電体 上に滴下し、加熱乾燥することによって充放電可能な負極材を作製している。しかし ながら、この特許に開示される方法で作製した電極を微生物電池のアノードに応用し た場合、微生物の末端還元酵素は上記ポリマー層の表面近傍のキノンしか還元する ことができず、またポリマー層が疎水性を示す場合には還元反応そのものが困難で あった。さらに、ポリマー層表面のキノンが還元されても、集電体である白金板との間 には非導電性の物質であるポリマー層が存在しているため、電子を集電体まで移動 させる必要があり、還元型キノンの酸化効率が悪ぐ活性化過電圧も大きくなる問題 があった。さらに、上述したように微生物電池のアノードとして用いるためにはキノンを 固定ィ匕後もポリマー層の親水性を維持する必要があるが、そのための方法 ·条件は なんら開示されて ヽなかった。
[0016] このように、電子メディエータを用いた生物発電技術にぉ 、て、微生物の末端還元 酵素―電子メディエータ―アノード間で有効な電位カスケードを形成し、活性化過電 圧の低い導電性基材を利用し、かつ電子メディエータ固定ィ匕後も該固定ィ匕層の親水 性を維持できるような技術が求められている。
特許文献 1 :特開 2000— 133327号公報
特許文献 2 :特開 2000— 133326号公報
特許文献 3:特表 2002— 520032号公報
特許文献 4 :米国特許 4652501号明細書
特許文献 5:特開平 6 - 56989号公報
特許文献 6:特開 2005— 317520号公報
非特干文献 1: Roller et al., 1984, Journal of Chemical Technology and Biotechnolog y 34B: 3-12
非特許文献 2 : Bond et al., 2002, SCIENCE 295: 483-485
非特許文献 3 : Park et al., 2000, Biotechnology Letters 22: 1301-1304
発明の開示
発明が解決しょうとする課題
[0017] 本発明の課題は、上記のような従来技術の問題点を解決し、簡易な装置'方法によ り、効率的に生物発電ができる生物発電用のアノードを提供することにある。より具体 的には、嫌気性生物の最終還元酵素 電子メディエーターアノード間で有効な電位 カスケードを形成することを可能として、結果的に十分低いアノード電位を得て、含水 有機性物質力 効率的に電気エネルギーを得ることができる生物発電用アノード、そ の製造方法、並びにこれを利用する発電方法及び装置を提供することにある。
課題を解決するための手段
[0018] 上述したように、微生物の末端還元酵素 電子メディエーターアノード間で有効な 電位カスケードを形成するためには、電子メディエータの電位は硫黄還元の標準電 極電位よりも高い- 0.28V以上であることが望ましい。その一方、実用的な発電を行う ことを目的とした場合には、力ソードとの電位差をなるベく大きく取るために、アノード の電位はできるだけ低い値であることが必要であると考えられる。
[0019] これらの知見から、本発明者らは嫌気性微生物の最終電子受容物質の標準電極 電位を指標として電子メディエータを選択し、さらにこれをアノード表面に固定ィ匕し、 必要に応じてさらにァミノ基ゃスルホン酸基などで修飾を行うことにより、 pH7における アノードの標準電極電位を- 0.13V〜- 0.28Vの範囲内で、なるべく- 0.28Vに近い電位 になるよう設定することを提案した (特許文献 6)。この発明においては、アノード基材 としてグラフアイト、多孔質グラフアイト、金、白金、または金属酸化物 (TiOなど)を用
2 い、これらにアミド結合、金または白金-ィォゥ結合またはシランカップリングによって 電子メディエータを固定ィ匕する方法を提案して ヽる。
[0020] そして、この従来得ている知見に基づいてさらに研究を重ねたところ、電子メデイエ ータと導電性基材との間に親水性ポリマー層を介在させることにより、上記目的を従 来の発明よりもさらに効果的に達成しうることを知見した。
[0021] 本発明は上記知見に基づいてなされたものであり、本発明によれば、表面の少なく とも一部が親水性ポリマー層で被覆された導電性基材を含み、該親水性ポリマー層 には電子メディエータが化学的に結合されて導入されており、 pH7における標準電極 電位(E ')カ 0.13V〜- 0.28Vの範囲内にあることを特徴とする生物発電用アノードが
0
提供される。
[0022] また、本発明によれば、嫌気性雰囲気下で生育可能な微生物、有機性物質を含有 する溶液もしくは懸濁液、本発明の生物発電用アノードを含む嫌気性域と、分子状 酸素及び力ソードを含む好気性域と、該嫌気性域及び該好気性域とを画定する隔膜 と、を具備し、該アノード及び該カソードを電力利用機器に電気的に接続して閉回路 を形成し、該嫌気性域内での有機性物質を電子供与体とする酸化反応と該好気性 域内での酸素を電子受容体とする還元反応とを利用して発電する発電装置が提供 される。
[0023] また、本発明によれば、嫌気性雰囲気下で生育可能な微生物、有機性物質を含有 する溶液もしくは懸濁液、本発明の生物発電用アノードを含む嫌気性域と、分子状 酸素及び力ソードを含む好気性域と、該嫌気性域及び該好気性域とを画定する隔膜 と、を具備し、該アノード及び該カソードを電力利用機器に電気的に接続して閉回路 を形成し、該嫌気性域内での有機性物質を電子供与体とする酸化反応と該好気性 域内での酸素を電子受容体とする還元反応とを利用して発電する発電方法が提供 される。
[0024] 以下、本発明について更に詳細に説明する。
[0025] 本発明の生物発電用アノードは、表面の少なくとも一部が親水性ポリマー層で被覆 された導電性基材を含み、該親水性ポリマー層には電子メディエータが化学的に結 合されて導入されており、 pH7における標準電極電位(E ')カ 0.13V〜- 0.28Vの範
0
囲内であり、好ましくは- 0.15V〜- 0.27Vの範囲内であることを特徴とする。
[0026] 本発明において用いることができる導電性基材としては、生物発電装置において 用いられる電極基材であって親水性ポリマーの付着'捕捉性が高い電極基材である ことが好ましぐグラフアイト、カーボンブラック、フラーレン、カーボンナノチューブ (C NT)、気相成長炭素繊維 (VGCF)などの粉体素材を固結させたものや、アルミニウム 、ニッケル、鉄、銅、金、白金などの金属、ステンレス鋼、モネル (スペシャルメタル社 、登録商標)などのニッケル—銅合金、鉄—シリコン合金、カルシウム—シリコン合金 、アルミニウム 亜鉛 シリコン合金、モリブデン バナジウム合金などの合金を好ま しく挙げることができる。特にグラフアイト、カーボンブラック、フラーレン、 CNT、 VGCF などの炭素六員環を含む導電性基材を用いた場合、その表面に低密度ではあるが カルボキシ基などの親水性の官能基が存在して 、るため、これを利用してアミド結合 もしくは水素結合により親水性ポリマー層を導電性基材に対して固定ィ匕することがで きるので好ましい。また、カーボンブラック、フラーレン、 CNT、 VGCFは通常、粉体と して供給されるため、電極基材として使用する場合は、押し固めて成形して焼成する 力 石油または石炭ピッチを含浸させて焼成する力 ポリアミン(日本触媒製ェポミン (登録商標)等のポリエチレンィミン、ポリアリルァミン)、ポリアミド (ポリアクリル酸)など の接着力のある榭脂をメタノールなどの溶媒で希釈したものと混合して接着成形する 力 ある 、はナフイオン (デュポン登録商標)溶液 (デュポン社製 5%ナフイオン 117溶 液)を含浸させて 50kgf/cm2程度の圧力をかけながら 170°Cで固結させるなどの方法 で成形することができる。
[0027] また、カーボンフェルト、カーボンクロス、カーボンペーパーなどの繊維状グラフアイ トを用いた成形品は、表面積が大きぐ親水性ポリマーを含浸しやすいためにポリマ 一層の付着 ·捕捉性が高 、のでより好ま 、。
[0028] 導電性基材の形状、大きさなどは特に制限されず、生物発電装置の寸法に依存し て決定することができる力 厚みは 0.001mm〜10mmとするのが好まし!/、。
[0029] 親水性ポリマー層は、導電性基材表面の少なくとも一部を被覆する状態で形成さ れていればよい。親水性ポリマー層の厚みは 200nm以下とするのが好ましぐ 50nm以 下とするのが更に好ましい。 200nmを超えると、性能が低下する場合があり、好ましく ない。この性能が低下する原因は定かではないが、高分子である親水性ポリマーは 導電性基材の表面で細密な網目状に重なり合って固定化されるため、微生物の末 端還元酵素は網目状構造の内部には入ることができず、親水性ポリマー層表面近傍 の電子メディエータしか還元することができな 、ところ、親水性ポリマー層表面近傍の 電子メディエータと導電性基材との間が 200nmを超えて離れて 、ると、電子メデイエ 一タカ 導電性基材へ向かって電子が効率的に移動することができず、電子メディ エータが酸化型に戻りにく!、ために発電効率が低下すると考えられる。
[0030] 本発明にお ヽて親水性ポリマー層の構成成分として用いることができる親水性ポリ マーは、アミノ基、イミノ基、カルボキシ基、スルホン酸基などの親水性の官能基を有 するポリマーを好ましく挙げることができ、より好ましくはァミノ基、イミノ基、カルボキシ 基及びスルホン酸基からなる群より選択されるいずれか 1種類の官能基を構造中に 含むポリマーを挙げることができる。具体的には、ポリエチレンィミン、ポリビュルァミン 、ポリアリルァミン、ポリアクリル酸、又はポリメタクリル酸などが好ましい。また、ポリクロ ロメチルスチレンなどのハロゲン基をァミノ基、カルボキシ基もしくはスルホン酸基に 変換した誘導体も好ましく用いることができる。また、親水性ポリマーは、平均分子量 が 1万以上であることが好ましく、より好ましくは平均分子量 7万以上である。
[0031] 本発明において用いることができる電子メディエータは、標準電極電位が- 0.13V〜 -0.28Vの範囲内にある力、もしくはアノードに固定ィ匕された後にアノードとしての標準 電極電位が上記範囲内にあり、酸化型、還元型何れの状態においても環境中で安 定である物質 (酸化還元物質)で、生物の呼吸を阻害せず、生物によって容易に還 元され得るものを用いることができる。好ましくは、本発明において用いることができる 電子メディエータとしては、アントラキノン誘導体、ナフトキノン誘導体、ベンゾキノン 誘導体、イソァロキサジン誘導体からなる群より選択される 1種以上の酸化還元物質 を挙げることができる。具体的には、アントラキノンカルボン酸類 (AQC)、アミノアントラ キノン類 (AAQ)、ジァミノアントラキノン類 (DAAQ)、アントラキノンスルホン酸類 (AQS)、 ジァミノアントラキノンスルホン酸類 (DAAQS)、アントラキノンジスルホン酸類 (AQDS)、 ジァミノアントラキノンジスルホン酸類 (DAAQ DS)、ェチルアントラキノン類(EAQ)、メ チルナフトキノン類(MNQ)、メチルァミノナフトキノン類(MANQ)、ブロモメチルァミノ ナフトキノン類(BrMANQ)、ジメチルナフトキノン類(DMNQ)、ジメチルァミノナフトキ ノン類(DMANQ)、ラパコール(LpQ)、ヒドロキシ(メチルブテュル)ァミノナフトキノン 類 (ALpQ)、ナフトキノンスルホン酸類(NQS)、トリメチルベンゾキノン類(TMABQ)、 フラビンモノヌクレオチドおよびこれらの誘導体力 なる群より選ばれる 1つ以上の酸 化還元物質を挙げることができ、より具体的には、アントラキノン- 2-カルボン酸 (AQC) 、 1-アミノアントラキノン (AAQ)、 1,5-ジァミノアントラキノン (DAAQ)、アントラキノン- 2- スルホン酸 (AQS)、 1,5-ジァミノアントラキノン- 2-スルホン酸 (DAAQS)、アントラキノン ジスルホン酸 (AQDS)、 1,5-ジァミノアントラキノンジスルホン酸 (DAAQ DS)、 2-ェチル アントラキノン(EAQ)、 2-メチル -1,4-ナフトキノン(MNQ)、 2-メチル -5-ァミノ- 1,4-ナ フトキノン(MANQ)、 2-ブロモ -3-メチル -5-ァミノ- 1,4-ナフトキノン(BrMANQ)、 2,3- ジメチル- 1,4-ナフトキノン(DMNQ)、 2,3-ジメチル- 5-ァミノ- 1,4-ナフトキノン(DMAN Q)、ラパコール(LpQ)、 2-ヒドロキシ -3- (3-メチル -2-ブテュル) -5-ァミノ- 1,4-ナフト キノン (ALpQ)、 1,2-ナフトキノン- 4-スルホン酸(NQS)、 2,3, 5-トリメチルベンゾキノン (TMABQ)、フラビンモノヌクレオチド(FMN)およびこれらの誘導体からなる群より選 ばれる物質を好ましく用いることができる。本発明にお 、て電子メディエータとして好 ましく用いることができる物質の構造式を下記に示す。
[化 2] 各種電子メディエータの構造式
Figure imgf000012_0001
また、親水性ポリマー層に導入された電子メディエータは、親水性官能基を有する 物質であることが好まし 、。電子メディエータ自身が親水性官能基を有することで、 電子メディエータ固定ィ匕アノードとしての親水性が強くなり、生物発電用のアノードと してより良好に機能する。電子メディエータが有する親水性官能基としては、カルボ キシ基、アミノ基、イミド基、スルホン酸基などを好ましく挙げることができる。
[0034] 電子メディエータは、親水性ポリマー層を構成する親水性ポリマーの構成親水性モ ノマー単位、すなわち、親水性ポリマー層を構成する親水性ポリマーを構成する各単 位 (ポリマーユニット)のうち親水性モノマーに起因する構成単位 (ポリマーユニット) に対して、好ましくは 30モル%以下、更に好ましくは 1〜30モル%の導入率で導入さ れていることが好ましい。
[0035] ここでポリマーユニットとは、親水性ポリマーの分子構造のうち、原料である親水性 モノマー 1分子により構成される繰返し構造の最小単位を指す。ただし親水性ポリマ 一がコポリマーである場合は、繰返し構造の最小単位を更に原料である親水性モノ マー分子 1分子ごとに分割したものをポリマーユニットとして定義する。
[0036] 電子メディエータの導入率が 30モル%を超えると、親水性ポリマー層全体が疎水性 になる結果、水の出入りが困難になり、キノン類などの電子メディエータの酸ィ匕還元 反応に不可欠な水素イオンの供給および離脱も困難となり、生物発電用のアノードと して機能しなくなる場合がある。
[0037] ここで、電子メディエータの導入率は、導電性基材表面にポリマー層を形成させた 時点で基材の重量増加を測定し、増加した重量力 担持されて 、るポリマー層に含 まれる親水性ポリマー単位のモルを計算することにより求めることができる。
[0038] さらに、電子メディエータを導入した親水性ポリマー層の強度を向上させたい場合 は、架橋剤(例えば、ジグリシジルエーテルなどのエポキシ化合物、ポリイソシァネー ト化合物、プロパンジァミンなどのジァミン類など)を用いて親水性ポリマー層を構成 する親水性ポリマー間を架橋させても良い。この場合、親水性ポリマーの構成親水性 モノマー単位あたりの架橋度は 0.01〜10モル%程度で充分であり、これ以上架橋度 を上げると親水性ポリマー層の親水性が低下したり、親水性ポリマー層の網目構造 が過度に緻密となり微生物の末端還元酵素などが接触しに《なるため、生物発電 用アノードとしての性能に悪影響を与える恐れがある。
[0039] 本発明の生物発電用アノードにおける親水性ポリマーに対する電子メディエータの 導入例を下記に示す。
[0040] [化 3] 式中、 Mは電子メデイエ一タ
-(- CHJCHJN ) + CH2CH2NH ) - CH,CH2N ) 4 CH2CH,N )
m P
( CH2CH2N ) -CHJCHJNH—— M ( CH2CH,N ) -CH,CH,NH,
q
(1 ) ポリエチレンィミン
( CH2 ) -NH,
■i- CH,CH )■ -< CH,CH )
s ポリビニルァミン(u=0) ポリアリルアミン(u=1 )
( CH2 ) . -NH 一 M
u CH2CR ) + CH2CR )
(3) R=H w ポリアクリル酸( ) ポリメタクリル酸 (R=CHJ
CO- M COOH
[0041] 次に、本発明の生物発電用アノードの製造方法について説明する。
[0042] 本発明の生物発電用アノードの製造方法は、導電性基材の表面の少なくとも一部 が親水性ポリマーで被覆された親水性ポリマー被覆導電性基材を形成する親水性 ポリマー被覆導電性基材形成工程と、該親水性ポリマー被覆導電性基材に電子メデ イエータを導入する電子メディエータ導入工程と、を含む。
[0043] 親水性ポリマー被覆導電性基材形成工程は、(1)親水性ポリマーの濃度が 50g/L 以下であるポリマー溶液を導電性基材に滴下、塗布、吹き付けまたは浸漬させること により親水性ポリマーを導電性基材に付着若しくは固定ィヒする付着'固定ィ匕工程又 は (2)導電性基材の官能基と親水性ポリマーの官能基とを結合させて、親水性ポリ マーを導電性基材に固定ィ匕する固定化工程であることが好ましい。
[0044] 電子メディエータ導入工程は、親水性ポリマー被覆導電性基材の親水性ポリマー 層を構成する親水性ポリマーの構成親水性モノマー単位に対して、電子メディエー タを 30モル%以下の比率で反応させて、電子メディエータを導入することが好ましレヽ [0045] 以下、各工程を説明する。
[0046] く付着 ·固定化工程〉
付着'固定ィ匕工程は、親水性ポリマーの接着力、コーティング力によって導電性基 材に付着もしくは固定させて被覆させる工程である。具体的には、親水性ポリマーを メタノール、エタノール、テトラヒドロフラン、ジメチルホルムアミドなどの比較的極性の 高い溶媒に溶解してポリマー溶液を得、これを導電性基材に塗布、滴下、吹き付けま たは浸漬させることによって付着させ、次 、でこれを 100 200°Cで乾燥または減圧乾 燥させることによってポリマー層を形成することができる。また、上記ポリマー溶液を滴 下する際に導電性基材を回転させることによって均一な層を得ることができる。
[0047] ポリマー溶液中の親水性ポリマー濃度は 50g/L以下、望ましくは 10g/L以下である。
この範囲とすることにより、ポリマー溶液を導電性基材に塗布又は含浸させて力 乾 燥させて、生成した親水性ポリマー層の厚さが上述の好ましい層厚 (200 以下)とな り、好ましい酸ィ匕還元活性を持つ生物発電用アノードが作製できる。
[0048] また、親水性ポリマーを導電性基材に付着させる場合は、ポリマー層の付着性を高 めるために、用いるポリマーの平均分子量は好ましくは 7万以上、より好ましくは 10万 以上のものが用いられる。また、同程度の平均分子量を持つポリマーを比較した場合 、枝分かれ構造を持つポリマーは付着性が高ぐより好ましく用いられる。
[0049] く固定化工程 >
固定ィ匕工程は、導電性基材の表面に存在するカルボキシ基などの官能基と、親水 性ポリマーの持つアミノ基、イミノ基またはカルボキシ基などの官能基との間でアミド 結合または水素結合を形成させ、ポリマーを導電性基材上に単なる付着よりも強固 に固定ィ匕することにより行うことができる。具体的には、アミノ基またはイミノ基を持つ 親水性ポリマーをテトラヒドロフラン、ジメチルホルムアミドなどの溶媒に溶解させ、ジ シクロへキシルカルボジイミド又はェチルジメチルァミノプロピルカルボジイミドの共存 下で、導電性基材と数時間から数十時間反応させることにより、導電性基材の持つ力 ルポキシ基またはスルホン酸基とアミド結合又はスルホンアミド結合を形成させること ができる。また、カルボキシ基を持つ親水性ポリマーをメタノールなどの溶媒に溶解さ せ、導電性基材と数時間反応させることにより、導電性基材の持つカルボキシ基と水 素結合を形成させてもよい。
[0050] この場合にも、親水性ポリマー層の層厚は 200nm以下であることが好ましいため、ポ リマー液中のポリマー濃度は 50g/L以下、望ましくは 10g/L以下になるように調製する ことが望ましい。また、アミノ基またはイミノ基を持つポリマー層の厚みが 200nmを超え てしまう場合には、塩酸などを用いて余剰のポリマーを溶解、除去することができる。 同様に、カルボキシ基またはスルホン酸基を持つポリマー層の厚みが 200nmを超え てしまう場合には、水酸ィ匕ナトリウムなどを用いて余剰のポリマーを溶解、除去するこ とがでさる。
[0051] このようなポリマー固定ィ匕法を用いる場合には、ポリマー層の安定性が単なる付着 の場合よりも高 、ために、用いるポリマーの平均分子量は 1万以上であれば良!、。
[0052] <電子メディエータ導入工程 >
本発明において、電子メディエータである酸ィ匕還元物質をポリマーに固定ィ匕させる 方法としては、電子メディエータの酸ィ匕還元活性を阻害しないような方法を用いること が好ましい。また、ポリマーに固定ィ匕された電子メディエータは水環境中で安定であ つて、容易に分解、剥離しない性質及び形態であることが望ましい。具体的には、下 記表- 3に示す化学結合方法が適切である。
[0053] [表 3] 表- 3 各種親水性ポリマーと電子メディエー夕の結合方法
Figure imgf000016_0001
したがって本発明にお 、て、電子メディエータを親水性ポリマー層に固定ィ匕するに は、使用する親水性ポリマーに存在する官能基と電子メディエータに導入するか又 は予め存在している官能基との組み合わせに応じて、表- 3に示す方法力 適切な結 合方法を選択することができる。
[0055] 例えば、親水性ポリマーとしてポリエチレンィミン(日本触媒製ェポミン (登録商標) P -1000)を使用し、電子メディエータとして AQC (アントラキノン一 2—カルボン酸)を使 用する場合には、 AQCが有するカルボキシ基を利用した結合方法を好ましく選択す ることができる。具体的には、ポリエチレンイミン層を導電性基材表面に形成させた後 、 AQCをテトラヒドロフラン、ジメチルホルムアミドなどの溶媒に溶解させた溶液中に浸 漬し、ジシクロへキシルカルボジイミド又はェチル(3-ジメチルァミノプロピル)カルボ ジイミド塩酸塩の共存下で、数時間から数十時間反応させることにより、ポリエチレン ィミンのィミノ基と AQCのカルボキシ基との間でアミド結合が形成され、 AQCを親水性 ポリマー層に安定に固定ィ匕することができる。
[0056] また、上述の電子メディエータの好ましい範囲の導入率を達成するには、親水性ポ リマーの構成親水性モノマー単位に対して 0.01〜0.3倍モルの電子メディエータ(この 場合 AQC)を添加して上記の脱水縮合反応を行わせることにより、親水性ポリマーの 構成親水性モノマー単位に対して電子メディエータカ^〜 30モル%導入されている 生物発電用のアノードを作製することができる。
[0057] さらに、架橋を行うこともできる。架橋に際しては、架橋剤(例えば、ジグリシジルェ 一テルなどのエポキシ化合物、ポリイソシァネートイ匕合物、プロパンジァミンなどのジ アミン類など)を用いて常法に従って行うことができる。
[0058] また、同様に、親水性ポリマーとしてポリアリルアミンを使用し、電子メディエータとし て AQS、 AQ— 2,6— DS、 AQ— 2,7— DS、 AQ— 1,5— DS、メタ二ルイエロー、メチルオレンジの ようなスルホン酸基を有する物質を固定化する場合には、これらの 、ずれかの電子メ ディエータのスルホン酸基を予めスルホニルクロリドとしておき、しかる後にテトラヒドロ フラン、ジメチルホルムアミド、ジメチルスルホキシドなどの溶媒中でポリアリルァミンと 反応させることによりスルホンアミド結合を形成させることができる。この場合には、電 子メディエータを高導入率で導入しても親水性が保持され、後述する官能基導入ェ 程が不要となるので、有用である。
[0059] [化 4] スルホンアミド結合の形成
Figure imgf000018_0001
Figure imgf000018_0002
[0060] 具体的には、電子メディエータに対し 1/2モルに相当する量のスルホランと 4倍モル に相当する量のォキシ塩化リンとを含むァセトニトリル溶媒中で、 70°C条件下で 1時 間反応させ、スルホン酸基をスルホニルクロリドに変換する。これを濾過して氷水で洗 浄後、乾燥させること〖こより、電子メディエータのスルホン酸基をスルホユルク口リド基 に変換することができる。これを例えばテトラヒドロフラン溶媒中で上記アミノ基を持つ ポリマー単位に対し 1〜30モル%となるような添加条件で接触させ、添加したスルホ- ルクロリドに対し 5倍モルに相当する量のトリェチルァミンを共存させつつ室温で 12時 間程度反応させることにより、親水性ポリマーと電子メディエータとの間にスルホンアミ ド結合を形成させることができる。
[0061] この場合でも電子メディエータの導入率は 30モル%以下とするのが好ましいが、電 子メディエータとしてアントラキノンジスルホン酸のような複数の親水性官能基を持つ 電子メディエータを導入する場合は、スルホンアミド結合により電子メディエータと親 水性ポリマーとが結合した後も、上記複数の親水性官能基のうち 1個はスルホンアミド 結合によって使用されるものの、残りの親水性官能基は (架橋反応が起こらなければ )残存するため、親水性が維持される場合がある。このような場合は、ポリマー層を構 成する親水性ポリマーの単位に対して、電子メディエータが 30モル%以上となるよう に導入率を制御しても良い。 [0062] また、 AQ- 2,6- DS、 AQ- 2,7- DS、 AQ- 1,5- DSなどの複数のスルホン酸基を持つ電 子メディエータを使用する場合は、親水性ポリマーを導電性基材に固定ィ匕してから 電子メディエータと接触させな 、と、ポリマー分子間で電子メディエータを介した架橋 反応が生じてしまい、ポリマーがさらに高分子化して導電性基材へ塗布することが困 難になってしまうため、先に付着'固定ィ匕工程を行った後、電子メディエータ導入ェ 程を行うのが好ましい。
[0063] また、親水性ポリマーとしてポリアクリル酸を使用し、電子メディエータとしてアミノア ントラキノンゃジァミノアントラキノンなどのアミノ基を有する物質を使用する場合には 、アミノ基を利用した結合方法を好ましく選択することができる。具体的には、ポリアク リル酸層またはポリメタクリル酸層を導電性基材表面に形成させた後、電子メデイエ 一タの 、ずれかをテトラヒドロフラン、ジメチルホルムアミドなどの溶媒に溶解させた溶 液中に浸漬し、ジシクロへキシルカルボジイミド又はェチルジメチルァミノプロピル力 ルボジイミド塩酸の共存下で、数時間から数十時間反応させることにより、ポリアクリル 酸のカルボキシ基と電子メディエータのァミノ基との間でアミド結合が形成され、電子 メディエータをポリマー層に安定に固定ィ匕することができる。
[0064] この場合にも導入率は、 30モル%以下とするのが好ましいが、電子メディエータとし てジァミノアントラキノンのような複数の親水性官能基を持つ電子メディエータを導入 する場合は、アミド結合により電子メディエータと親水性ポリマーとが結合した後も、 複数の親水性官能基のうち 1個はアミド結合によって使用されるものの、残りの親水 性官能基は (架橋反応が起こらなければ)残存するため、親水性が維持される場合 がある。このような場合は、 30モル%以上となるように導入率を制御しても良い。
[0065] また、 1,5-ジァミノアントラキノンなどの複数のアミノ基を持つ電子メディエータを使 用する場合は、ポリマーを導電性基材に固定ィ匕してカゝら電子メディエータと接触させ ないと、ポリマー分子間で電子メディエータを介した架橋反応が生じてしまい、ポリマ 一がさらに高分子化して導電性基材へ塗布することが困難になってしまうため、付着 •固定ィ匕工程を先に行うのが好ましい。
[0066] 本発明の製造方法においては、電子メディエータ導入工程の後、さらに親水性の 官能基を電子メディエータに導入する官能基導入工程を含むことが好ましい。 <官能基導入工程 >
官能基導入工程は、作製した電子メディエータを固定ィ匕した親水性ポリマー層の 親水性が充分でない場合に親水性を向上させるために行う任意の工程である。
[0067] この工程は、空気酸化、電解酸化、化学酸ィ匕またはスルホンィ匕により行うことができ る。具体的には、空気を供給しながら 500°C程度に加熱したり、 5%次亜塩素酸に接 触させ 140°C程度に加熱したり、 10%クロロスルホン酸 Zジクロロメタン液中で常温で 24時間程度反応させたりすることにより親水性の官能基を導入することができる。
[0068] また、本発明の製造方法にお!ヽては、親水性ポリマー被覆導電性基材形成工程の 前に、導電性基材にカルボキシ基を導入する前処理工程を含むことも好ま ヽ。 <前処理工程 >
前処理工程は、導電性基材表面を予め空気酸化、電解酸化、化学酸化またはスル ホンィ匕して、親水性ポリマーが結合する官能基の密度を増加させることにより親水性 ポリマーをより強固に固定ィ匕する工程である。
[0069] この時導入する官能基の密度は、導電性基材に直接電子メディエータを固定ィ匕す る場合と比較して低くても良ぐ例えば基材の投影面積 lcm2あたり 0.01 μ mol以上あ れば充分である。従って従来の導電性基材に直接電子メディエータを固定ィ匕する場 合のように、強い電解酸ィ匕条件を与えたりラジカル発生剤を用いたりする必要は無く 、空気を供給しながら 500°C程度に加熱したり、 5%次亜塩素酸に接触させ 140°C程 度に加熱したり、 10%クロロスルホン酸 Zジクロロメタン液中、常温で 24時間程度反応 させたりするなどの比較的温和な方法で目的の官能基導入密度を得ることができる。
[0070] さらに、本発明によれば、上述の生物発電用アノードを利用する生物発電装置も提 供される。
[0071] 本発明の生物発電装置は、嫌気性雰囲気下で生育可能な微生物、有機性物質を 含有する溶液もしくは懸濁液及び上述の生物発電用アノードを含む嫌気性域と、分 子状酸素及び力ソードを含む好気性域と、該嫌気性域及び該好気性域とを画定する 隔膜と、を具備し、該アノード及び該カソードを電力利用機器に電気的に接続して閉 回路を形成し、該嫌気性域内での有機性物質を電子供与体とする生物の酸化反応 と該好気性域内での酸素を電子受容体とする還元反応とを利用して発電する生物 発電装置である。
[0072] これにより、温和な条件下で、高い電子メディエータ固定化密度を持ったアノードを 作製するための方法を提供する。本方法により、簡易な方法で大型の生物発電用ァ ノードを作製することができ、微生物電池の大型化や、アノード製作費のコストダウン に資することができる。
[0073] 含水有機性物質を長期間にわたって連続的に処理する装置に本発明の生物発電 用アノードを用いるが、この場合には、含水有機性物質中及びアノード表面において 嫌気性微生物が連続的に増殖することから、あまりにも細密な 3次元網目構造状、細 V、チューブ状または隙間の狭!、積層板状の構造のアノードを用いると、微生物菌体 による流路の閉塞、片流れ、デッドゾーンの形成等により含水有機性物質の分解及 び発電効率が低下することが考えられる。このため、本発明の生物発電用アノードの 形態は、金網状、多孔質または表面に凹凸または襞がある一次構造であって、 3次 元網目状、チューブ状または積層板状の空間 (含水有機性物質が流入してくる流路 )を持つ 2次構造を形成しており、かつ上記流路は処理対象となる含水有機性物質 の流動性に応じて数 mm力も数 cmの開度を持つことが望ましい。
[0074] 本発明にお ヽて、好気性域である力ソード側では、酸素を電子受容体とする還元 反応が進行する。力ソードの少なくとも一部を、構造体内に空隙を有する導電性の多 孔質材料、網状又は繊維材料で構成し、その空隙中に水 Z空気の接触界面、すな わち空気 (酸素)と水とを隣接させる場を構築することが好ましぐ空気中の酸素およ び水面の水に接触する効率を高めて、空気中の酸素の還元反応 (電極反応)を促進 できる。例えば、微細孔を有する導電性の多孔質材料に榭脂バインダで導電性粒子 (カーボン、不活性金属、金属酸ィ匕物など)を結着したものを力ソードとして用いること で、毛細管現象及び表面の親水化等により水を効果的に吸い上げて、微細孔内部 に水 Z空気の接触界面を形成させて、空気中の酸素と水とを効率良く接触させて酸 素の還元反応を促進することができる。
[0075] さらに、力ソードに白金族元素、銀、遷移金属元素力 選ばれる少なくとも一種類を 含有する合金あるいは化合物からなる触媒を担持することが好ましぐ空気中の酸素 の還元反応 (電極反応)を促進することができる。白金族元素とは白金 (Pt)、ルテニ ゥム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)またはイリジウム(Ir)を指し 、いずれも電極触媒として有効である。また、ニッケル (Ni)、ビスマス(Bi)、チタン酸 化物をドープした銀粉末を担持したもの、ファーネスブラック又はコロイド状グラフアイ トに銀を担持したもの、鉄(Fe)、コバルト(Co)、フタロシアニン、へミン、ぺロブスカイト 、 Mn N、金属ポルフィリン、 MnO、バナジン酸塩、または Y 0 - ZrO複合酸化物を用
4 2 2 3 2
V、たものも電極触媒として好ましく用いることができる。
[0076] 本発明において、アノードと力ソードとは電力利用機器等に電気的に接続されて、 両者間で電子交換を行って閉回路を形成する。その一方で、有機性物質の還元能 を無駄なく電気エネルギーとして取り出すためには、有機性物質が酸化剤 (被還元 物質)、即ち空気中の酸素と接触して還元能を消費させないように、上記有機性物質 と空気中の酸素が接触しないように両者を隔離することが好ましい。これらの条件を 同時に満たすためには、力ソードと嫌気性雰囲気下で生育可能な微生物及び有機 性物質を含む溶液又は懸濁液とを隔膜、例えば固体高分子隔膜で隔てることが望ま しい。このような構造をとることにより、力ソードは空気中の酸素と容易に接触すること ができ、また上記隔膜中に存在する水を介して水素イオンの受給または水酸ィ匕物ィ オンの排出を行うことができる。また、隔膜はできるだけ空気中の酸素を透過しないも のがよぐアノード側、即ち有機性物質に酸素が浸透して有機性物質の還元能を低 下させることを防ぐことが望まし 、。
[0077] このような隔膜としては、親水性があり高い陽イオン交換能を有するスルホン酸基を 有するフッ素榭脂系イオン交換膜 (陽イオン交換膜)や、第 4級アンモ-ゥム塩を有す る水酸ィ匕物イオン (陰イオン交換膜)などが好ましく用いられる。また、より安価な隔膜 として主鎖部のみをフッ素化したフッ素榭脂系イオン交換膜や、芳香族炭化水素系 膜も利用できる。このようなイオン交換膜としては、例えば IONICS製 NEPTON CR61A ZL- 389、トクャマ製 NEOSEPTA CM- 1または同 CMB、旭硝子製 Selemion CSV, IONI CS製 NEPTON AR103PZL、トクャマ製 NEOSEPTA AHA、旭硝子製 Selemion ASVな どの市販製品を好ましく用いることができる。陽イオン交換膜は、力ソードでの酸素の 還元に必要な水素イオン及び水をアノード力 力ソードへ供給するために用いること ができ、陰イオン交換膜は、水と酸素との反応力も発生した水酸ィ匕物イオンをカソー ドカもアノードへと供給するために用いることができる。
[0078] また、嫌気性域と好気性域とを隔離するために用いる隔膜としては、陰イオン交換 膜を用いることもできる。具体的には、アンモ-ゥムヒドロキシド基を有するヒドロキシド イオン交換膜を好ましく挙げることができる。このような陰イオン交換膜としては、例え ば、 IONICS製 NEPTON AR103PZL- 389、トクャマ製 NEOSEPTA ALE、旭硝子製 Sele mion ASVなどの巿販製品を好ましく用いることができる。この場合、嫌気性域に存在 する有機酸などの陰イオン性の有機性物質が隔膜を透過して好気性域に至る ( ヽゎ ゆるクロスフローの現象)と、そこで酸素の消費が行われて有機物が無駄に酸ィ匕され るとともに好気性域において好気性の生物が増殖して力ソードを汚染することになる ので、用いる陰イオン交換膜は分子篩い効果を持ち、酢酸などの分子量 60以上の陰 イオンを透過しにく 、性質を持って ヽることが望ま ヽ。このような性質を持つ陰ィォ ン交換膜としては例えばァストム製ネオセプタ ALE04-4 A-0006膜がある。
[0079] さらに、本発明において用いることができる隔膜としては、官能基を有しない MF (マ イク口フィルタ)、 UF (ウルトラフィルタ)膜やセラミック、焼結ガラスなどの多孔質濾材 、ナイロン、ポリエチレン、ポリプロピレン製の織布等を用いることができる。これらの官 能基を有しない隔膜は、孔径が 5 m以下で、非加圧条件でガスを透過しないもの が好ましぐ例えば、 Schweiz Seidengazefabrik製の PE- 10膜、 Flon Industry製の NY1- HD膜などの市販品を好ましく用いることができる。
[0080] 本発明の生物発電装置において、嫌気性域は、嫌気性雰囲気下で生育可能な生 物の呼吸反応により、有機性物質由来の電子が微生物体内の電子伝達系を介して 最終的にアノードに受け渡される微生物の酸化反応を進行させる生物反応室でもあ り、好気性域は、酸素を電子受容体とする還元反応を進行させる空気反応室でもあ る。本生物発電装置の嫌気性域には、嫌気性微生物とアノードの間で電子を伝達す るために適切な電位を有する電子メディエータが固定ィ匕されているアノードを設けて いるので、生物の最終還元酵素 電子メディエーターアノード間で有効な電位カス ケードが形成される。また、該電子メディエータはアノード上の親水性ポリマーに固定 ィ匕されているため、グラフアイトなどに直接電子メディエータが固定化されている場合 に比べアノードの作製が容易であり、大型の装置にも対応することができる。 [0081] 本生物発電装置にお!、て、嫌気性域 (生物反応室)と好気性域 (空気反応室)を画 定するための隔膜が陽イオン交換膜である場合、力ソードにおいて水素イオンを利 用する還元反応は、水素イオン濃度条件によっては本発明の発電に関与する全体 の反応速度を制限する場合がある。すなわちアノードでの酸ィ匕反応が生物によるも のであるため、極端な酸性条件は生物の活性を阻害するという理由で好ましくない可 能性もある。また、水素イオン濃度が低濃度である場合、例えば、 pH5以上の条件で アノード側において水素イオンが発生し、該水素イオンが拡散により陽イオン交換膜 を透過して力ソード側に供給されることとなる。このとき、力ソード側における水素ィォ ン濃度は 10— 5mol/L程度またはそれ以下と見積もられる。このように水素イオン濃度が 低濃度条件になると力ソード側における酸素還元反応の速度が低下することとなり、 また、アノード側の水素イオンが効率的に力ソード側へと移動しな 、ことも予想される 。すなわち、このような場合には電池を形成する支持電解質としての電気抵抗(内部 抵抗)が大きくなる可能性がある。一方、この反応系の利点は、常にアノード側力も力 ソード側へと水および水素イオンの供給が行われるために力ソード側への水分の供 給が充分に行われ、力ソード側の酸素が膜を介してアノード側へ透過してアノード側 の還元能を消費してしまう、いわゆるクロスフローの問題が生じにくいことである。
[0082] 陽イオン交換膜を嫌気性域と好気性域の間の隔膜として用いた場合、力ソード側の 反応においては、空気中の酸素を消費して水が発生する。このため常に換気を行つ て酸素を補給するとともに、水分を除いて力ソードが過度に濡れるのを防ぐ必要があ る。ただし、このとき供給する空気の湿度及び流量によって力ソード側の保水量が変 化するため、乾燥—加湿の制御は適宜行うことが望ましい。空気の供給及び排出に よる換気の方法としては、開放系で自然に対流置換させる方法、力ソードの周囲を外 殻で被包して空気室を設けて、空気室内を通風機により強制換気する方法、同じく 空気室を設けて、酸ィ匕還元反応により生じる熱で空気室内を暖め、対流を生じさせ て空気と水蒸気を上昇させて換気する方法が考えられ、本発明の装置を設置する場 所、規模等の条件に合わせて換気方法を採用することが好まし 、。
[0083] 一方、陰イオン交換膜を嫌気性域と好気性域の間の隔膜として用いた場合、すな わち、好気性域において水と酸素力も水酸ィ匕物イオンを発生させる反応系を採用し た場合には、好気性域は嫌気性域と比較して水の保持量が非常に小さいため、ァノ ードでの水素イオン発生量と等モルの水酸ィヒ物イオンを力ソードにおいて発生させ れば、力ソード側の pH、すなわち水酸ィ匕物イオン濃度を非常に高くすることができる 。高濃度の水酸ィ匕物イオンは効率良く陰イオン交換膜を透過するので、支持電解質 の電気抵抗(内部抵抗)を小さくすることができる。一方、この反応系は、常に力ソード 側からアノード側へのイオン移動が行われるために力ソード側への水供給が難しくな ること、およびイオン移動に伴って力ソード側の酸素が膜を介してアノード側へ透過し てアノード側の還元能を消費してしまう、上述したクロスフローの問題が生じる可能性 が有るという課題がある。
[0084] さらに、力ソード側の反応においては、酸素と力ソード表面の水が消費され、水酸ィ匕 物イオンが発生する。このため、常に換気を行って酸素を補給するとともに、水分を 補給して力ソードが乾燥するのを防ぐ必要がある場合がある。特に、換気空気が乾燥 して 、る場合、アノード側力 の浸透による水供給速度が力ソードでの蒸発および還 元反応による水消費速度を下回る場合には、換気空気を加湿するか、水蒸気を添加 することにより力ソードへ水分を供給することが望ましい。
[0085] 以上のように、嫌気性域と好気性域の間の隔膜として利用される陽イオン交換膜お よび陰イオン交換膜は、生物発電反応に関与する反応系を大きく変える効果を持ち 、それぞれ長所と改善すべき課題を持つので、どちらを採用するかは装置の構造や 用途、含水有機性物質の性質に応じて判断すべきである。
[0086] また、水素イオンまたは水酸ィ匕物イオンの移動効率を高めるためには、力ソードと上 記隔膜との間の距離はなるべく短いほうが良ぐ装置構造上可能であれば両者は接 合していることが望ましい。特に、隔膜の一部が力ソード電極の多孔質構造内部の空 隙内に網目状に侵入して結合していると、多孔質構造中に含まれる空気と隔膜に含 まれる水とで形成される水 Z空気接触界面の面積が飛躍的に増大するので、空気 中の酸素を還元する反応効率が増大して生物発電性能を高めることができる。
[0087] 同様に、水素イオンまたは水酸化物イオンの移動を容易にし、電解液系の電気抵 抗を小さくするために、アノードと隔膜との距離もなるベく短くすることが望ましぐァノ ードと隔膜とが接触もしくは接合していることが好ましい。但し、この場合には、電子メ ディエータがアノード上で酸ィ匕型になる時に発生する水素イオンが隔膜に吸収され るようにするために、アノードは透水性を有する形態、例えば多孔質材料や網状材料 で構成したり、或いは通水孔を有する形態、例えば格子状若しくは櫛状の形態とする ことが必要である。また、アノードと隔膜とを接触させて配置することが装置の構造上 困難な場合は、例えば、撹拌または循環水流を生じさせてアノードと隔膜との間を循 環する水流を作るようにし、水素イオンまたは水酸化物イオンの移動を容易にするこ とが望ましい。
[0088] また、アノード内にイオン交換性の高分子を含浸させる力 またはアノード基材又は 導電性ファイバーと陽イオン交換性繊維 (スルホン酸グラフト繊維など)とを織り込む 力または不織布として混合することにより、アノード側で発生する水素イオンを回収し 、このイオン交換性高分子または繊維を何らかの方法で (例えば塩橋のようにイオン 交換繊維または榭脂のパイプを介して)延長して力ソードと結合することにより、ァノ 一ドー力ソード間で水素イオンの回路を形成することも好ましい。
[0089] また、本発明の生物発電装置においては、有機性物質の電子を効率よくアノードに 受け渡すことができるように、アノードの表面積を大きくすることが好ましい。また、ァノ ードが有機性物質と効率よく接触し、アノードと力ソードとの間でイオン交換が効率よ く行われると同時にアノードと力ソードとが電気的には絶縁していることが好ましい。そ こで生物反応室及び酸素反応室を内部に画定する反応容器の形態は、例えばァノ 一ドを筒型、例えば円筒形としてその中を有機性物質が流れる構造として、アノード と力ソードとを隔膜を挟む 3層状構造とすることが好ましい。また、含水有機性物質や 増殖した生物が滞留するようなデッドゾーンを形成しな 、ように考慮すべきである。こ のための一つの手法として、有機性物質とアノード電極との接触効率を上げるために 、撹拌装置もしくは循環水流発生装置を反応容器内部に設けることが好ましい。また 、反応容器を気密な構造とする場合は、嫌気性ガスが容器内に蓄積して有効容積が 低下することを防止するため、なんらかのガス抜きの機構を備えることが望ましい。こ の嫌気性ガスは流路を空洗する方法に利用することもできる。また、嫌気性域に嫌気 性雰囲気下で生育可能な微生物及び有機物質を含む溶液又は懸濁液の供給機構 及び排出機構を設け、好気性域に酸素又は空気の供給機構及び排出機構を設ける ことも好まし 、。
[0090] 本発明の生物発電方法は、嫌気性雰囲気下で生育可能な微生物、有機性物質を 含有する溶液もしくは懸濁液、上述の生物発電用アノードを含む嫌気性域と、分子 状酸素及び力ソードを含む好気性域と、該嫌気性域及び該好気性域とを画定する隔 膜と、を具備し、該アノード及び該カソードを電力利用機器に電気的に接続して閉回 路を形成し、該嫌気性域内での有機性物質を電子供与体とする微生物の酸化反応 と該好気性域内での酸素を電子受容体とする還元反応とを利用して発電する生物 発電方法である。
[0091] 本発明においては、電子メディエータが固定化されたアノードを嫌気性雰囲気下で 生育可能な微生物及び有機性物質を含む溶液又は懸濁液と接触させて、有機性物 質を電子供与体とする微生物による酸化反応を進行させる。このアノード側での反応 、有機性物質を電子供与体とする微生物による酸化反応は、含水有機性物質中で 嫌気性微生物 (通性又は絶対嫌気性微生物)によって生化学的に触媒され、主に微 生物の嫌気呼吸により、有機性物質由来の電子が微生物体内の電子伝達系を介し て最終的にアノードに受け渡される。したがって、本発明に係る発電反応を効率よく 進行させるためには、微生物の細胞膜内で電子伝達系を終結するものではなぐ細 胞外膜 (細胞膜外)で電子をアノードで捕捉しやす!ヽ、アノードへの電子伝達を触媒 するような微生物(「電極活性な微生物」 )を利用することが望まし 、。このようなァノー ドへの電子伝達を触媒する微生物としては、硫黄 s (o)還元菌、酸化鉄 (III)還元菌、 二酸化マンガン MnO還元菌、脱塩素菌などが好ましく用いられる。このような生物と
2
し飞、 f列 ば、 DesuliUromonas sp. Desuliitobacterium sp. Geobivno thiophilus sp. Clostridium tniosulfatireducens sp. Acidithiobacillus sp. Thermoterrabacterium ferr ireducens sp. Geothrix sp. Geobacter sp. ueoglobus sp. Shewanella putrefaciens sp.などが特に好ましく用いられる。特に、硫黄還元菌は、最終電子受容体である硫 黄の標準電極電位が- 0.28Vと非常に低!/、ので、酸化鉄 (III)還元菌よりも低!/、電位を 有する電子メディエータに電子を伝達することができ、エネルギー的に有利である。 このような硫黄還元活性を有する微生物として、例えば、 Desuliuromonas sp. Desulfi tobacterium sp. Geooivrio thiophilus sp. Clostridium thiosulfatireducens sp. Aciai thiobacillus sp.などが好ましく用いられる。
[0092] これらの微生物は、含水有機性物質中にぉ 、て主要な微生物ではな 、ことが多!ヽ ため、本発明の方法を実施するにあたっては、最初に、アノード側にこれらの微生物 を植菌し、アノード表面にこれらの微生物が主に付着している状態を形成しておくこと が好ましい。これらの微生物が優先的に生物反応室内で増殖するために、アノード に電子を渡すことによる呼吸反応 (電極呼吸)が酸発酵やメタン発酵よりもエネルギ 一的に有利である場の面積を大きくすべきであり、具体的には嫌気性域 (微生物反 応室)内のアノード表面積をなるベく大きくすることが好ましい。また、アノード表面に 生物を付着させた後、嫌気性域 (微生物反応室)内にこれらの微生物の増殖に適当 な培地を供給することが望ましぐさらにアノードの電位をある程度高く維持することに より、アノード表面でのこれらの微生物の増殖を促すことがより望ましい。これらの微 生物 (群)を前培養もしくは生物反応室内で培養するための方法として、これらの微 生物 (群)の培地として報告されているスラリー状の硫黄、酸化鉄 (111)、二酸化マンガ ンなどを電子受容体とする培地を好ましく用いることができ、例えば Handbook of Micr obial Media (Atlasら 1997, CRC Press)に記載されている Ancylobacter/Spirosoma培 地、 Desulforomonas培地、 Fe(III) Lactate Nutrient培地などが好ましく用いられる。
[0093] 本発明にお 、て用いる有機性物質の性状は、嫌気性雰囲気下で生育可能な微生 物が増殖するアノード周辺に分子状酸素を供給しないように液体状または懸濁液、 あるいは固形分の間隙が水で飽和している状態であることが望ましい。アノード周辺 での有機性物質の酸化反応は主に微生物による呼吸反応によって触媒されることか ら、アノード周辺内に投入される有機性物質は固形分の粒径が小さぐ水中によく溶 解または分散し、低分子であることが望ましぐまた、微生物にとって易分解性の物質 であることが望ましい。使用する有機性物質の種類によりこれらの条件が満たされな い場合には、物理的、化学的または生物学的な前処理を行って有機性物質の生物 分解性を高めることができる。そのような方法としては、例えば、粉砕機による破砕、 熱分解、超音波処理、オゾン処理、次亜塩素酸塩処理、過酸化水素処理、硫酸処 理、生物による加水分解、酸生成、低分子化処理が考えられる。これらの前処理に 要するエネルギーは、前処理による主反応容器での発電エネルギーの向上とのバラ ンスを考え、最適な前処理条件を選ぶことができる。
[0094] また、使用用途に応じて、経時的に上記流路を水洗または空洗して余剰の微生物 菌体及び菌体外分泌物を除去することが望ましい。この際、空洗に使用する気体に 酸素が含まれると、嫌気性域 (微生物反応室)である反応容器中の嫌気性微生物に 悪影響を及ぼす可能性があるため、不活性ガスまたは反応容器中で発生した嫌気 性のガスを利用することが望まし 、。
発明の効果
[0095] 本発明の生物発電用アノードは、簡易な装置 '方法により、効率的に生物発電がで きる。より具体的には、嫌気性生物の最終還元酵素—電子メディエータ—アノード間 で有効な電位カスケードを形成することを可能として、結果的に十分低いアノード電 位を得て、含水有機性物質カゝら効率的に電気エネルギーを得ることができる。
図面の簡単な説明
[0096] [図 1]図 1は、本発明の発電装置の構成を示す概念図である。
[図 2]図 2は、本発明の発電装置の構成例を示す概念図である。
[図 3]図 3は、本発明の発電装置に用いることができる力ソード電極の構造の一例を 示す概念図であり、図 3Aは断面図、図 3Bは図 3Aの空気室側から見た平面図であ る。図 3Cは力ソード電極構造の別の一例を示す断面図である。
[図 4]図 4は、実施例で用いた本発明の発電装置の構成を示す概念図である。 符号の説明
1 : :生物発電用アノード
2 : :隔膜
3 : :カソード
4 : :内筒体内部
5 : :筒状体周囲の空間
6 : :導線
7 : :空気室
8 : :流入ポンプ
9 : :流入部 10:流出部
11 :処理済み有機性物質排出部
12 :循環ポンプ
13 :余剰汚泥排出口
14 :空気ブロワ
15 :排気口
16 :凝縮水ドレイン
17: :アノードとの接続部
18: :カソードとの接続部
19: :排気口
20: :多孔質マトリックス
21: :触媒
22: :空気ネットワーク
23: :水溶液ネットワーク
24: :セパレータ
25: :セルフレーム (嫌気性域: :ァノ
26: :セルフレーム (好気性域: :カソ
27: :含水有機性物質注入口
28: :分解廃液排出口
29: :空気注入口
30: :空気排出口
31: :嫌気性域 (生物反応室)
32: :好気性域 (空気反応室)
好ましい実施の形態
[0098] 以下、添付図面を参照しながら、本発明による発電装置をより具体的に説明する。
以下の記載は、本発明の技術思想を具現化する幾つかの具体的形態を説明するも ので、本発明はこの記載に限定されるものではない。
[0099] 図 1は本発明の一態様に係る生物発電ユニットの具体例である。例えば、図 1に示 す本発明の生物発電装置の一具体例は、電子メディエータが導電性ファイバーに固 定化されているアノード 1を含む嫌気性域 4、隔膜 (電解質膜) 2、および多孔質カソ ード 3を含む好気性域 5が三重の筒状体をなすことによって構成される。筒状体の最 内隔空間形態である嫌気性域 4に嫌気性条件下で生育可能な微生物及び有機性 物質(「基質」とも!、う)を含む溶液又は懸濁液を流し、筒状体の最外隔空間形態であ る好気性域 5には分子状酸素を含む空気を存在させる。好気性域 5には、分子状酸 素を供給する手段(図示せず)が設けられている。好気性域 5内に配置されている多 孔質カソードは、力ソードの少なくとも一部が、構造体内に空隙を有する導電性の多 孔質材料、網状又は繊維状材料によって形成されている。嫌気性域 4と好気性域 5と を隔離する隔膜 2は、物質交換係数が大きな隔膜、たとえば DuPont社製の Nafion (登 録商標)、ァストム社製ネオセプタ (登録商標)などの固体高分子電解質膜で構成さ れている。
[0100] 嫌気性域 4内では、有機性物質を電子供与体とする微生物の酸化反応が進行し、 好気性域 5内では、酸素を電子受容体とする還元反応が進行する。こうして、アノード 1と力ソード 3の間に電位差が生じる。この状態でアノード 1と力ソード 3とを導線 6によ つて電力利用機器に電気的に接続することにより電位差電流が流れ、一方、電解質 膜 2を介して嫌気性域 4と好気性域 5の間でイオンが移動することにより、閉回路が形 成される。反応が進行するにつれて、嫌気性域 4には水素イオンが発生し、嫌気性域 の水溶液は酸性を呈する。一方、好気性域 5には水酸ィ匕物イオンが発生して好気性 域 5内に発生する水はアルカリ性溶液となる。
[0101] 好気性域5内に発生するアルカリ性水溶液を適宜回収して嫌気性域 4内へ注入す る流路(図示せず)を設けてもょ ヽ。この流路を通してアルカリ性水溶液を好気性域 5 カゝら嫌気性域 4に循環させることにより、嫌気性域 4の水素イオン濃度が極端に上昇 して生物の呼吸活性を阻害したり、導入した塩基性官能基の中和能力を越えてしま つたりするのを防ぐことができる。
[0102] 発電ユニットを構成する筒状体の内径は、基質の流動性に応じ、数 mmから数 cm、 場合によっては数十 cmに設定することができる。図 1に示すような発電ユニットは、適 当な材料の支持層またはケーシングで保持することによりその物理的強度を増すこと ができる。この場合、筒状体を更に外殻で被包して外殻と筒状体との間の空間を空 気室とし、空気室に空気を供給及び排出する手段を形成するようにしてもょ ヽ。
[0103] 図示した実施形態においては、アノード 1、隔膜 2及び力ソード 3を円筒形とする 3層 構造を採用し、隔膜 2を介してアノード 1と力ソード 3とを配置している。このような構成 とすることによって、アノード 1及び力ソード 3の表面積を大きくし、アノード 1が基質と 効率良く接触して基質の動かないデッドゾーンをできるだけ小さくすることができるの で、アノード 1と力ソード 3との間でイオン交換が効率良く行われると同時に、アノード 1 と力ソード 3は電気的に絶縁され、有機性物質 (基質)の電子が効率良くアノード 1に 受け渡されることになる。また、多孔質力ソード 3の空隙中に空気と水との接触界面を 存在させた状態で空気と接触させることにより、空気中の酸素および水面の水に接 触する効率を高めることができ、電極上での酸素の還元反応を効率良く進行させるこ とがでさる。
[0104] 図 1に示すような三層筒状体の本発明に係る生物発電装置にお!、ては、用途に応 じてアノードを含む嫌気性域を外側に、力ソードを含む好気性域を内側に配置し、好 気性域に空気を流通させる手段を配して装置を基質液中に設置することで、発電運 転を行うこともできる。また、この場合、筒状体を例えば U字型に形成し、両端を基質 液の液面から出して、筒内部の空間に空気が流通できるようにしてもよい。このように 好気性域を内筒とする構成の場合には、好気性域の内筒の内径を数 mm程度または それ以下に小さくしても閉塞の生じる心配がない点が有利である。更に、三層筒状体 において、内側の筒状体を多孔質力ソードを含む好気性域、外側の筒状体をァノー ドを含む嫌気性域とすると、力ソードに比較して外側のアノードの表面積を大きくする ことができるので有利である。さらにアノードの表面積を広くするため、アノードの表面 に凹凸や襞をもたせることも可能である。一方、力ソード側の内径は、反応効率も関 係するが、空気が容易に流通するだけの径があれば良ぐ閉塞の危険性がほとんど ないため、内径を数 mm程度またはそれ以下まで小さくすることが可能である。この場 合、筒状体を更に外殻で被包して筒状体の外側空間を基質の流れる微生物反応室 とし、生物反応室に基質を供給及び排出する手段を配置することによって装置を構 成することができる。 [0105] また、図 1に示すような筒状形態又は他の形態の生物発電ユニットを複数個並べて 生物発電装置を構成することもできる。例えば、図 2には、図 1の生物発電ユニットを 複数個並べた形態を示し、図 4には平板状の生物発電ユニットを 3個並べた形態を 示す。
[0106] 図 2に示す生物発電装置においては、図 1に示すようなアノードの内筒 1、隔膜 2及 び力ソードの外筒 3から構成される三層筒状体 (発電ユニット) 50が複数本、外殻によ つて形成される空気室 7の中に配置されている。基質は、流入ポンプ 8により流入部 9 を介して複数配置された発電ユニット 50の内部 4へ分配注入される。ここで酸化分解 を受けた基質は、流出部 10を介して反応容器の外へ出た後、処理済み基質 11とし て系外へ排出される。また、基質の一部は循環ポンプ 12により再び流入部 9へ戻さ れる。この循環流によってアノード 1と基質の接触が促進される。反応容器内に蓄積 した生物菌体及び汚泥は、経時的に余剰汚泥排出口 13を開くことにより排出される 。また、同じく 13より、水、不活性ガス、嫌気ガスを注入することにより反応容器内を逆 洗、空洗することができる。反応容器内で嫌気性ガスが発生した場合は、排気口 19 力 排出することができる。この嫌気性ガスを貯留して空洗に使用してもよいことは上 述したとおりである。
[0107] 一方、多孔質力ソード 3に酸素を供給するため、ブロワ 14を用いて空気室 7へ通気 を行うことができる。ただし用途に応じて強制換気が必要でない場合には、空気室 7 を取り外して、各発電ユニット 50の外筒である力ソード 3が外気に触れるように装置を 構成してもよい。通気された空気は、空気室 7内の発電ユニットの間の空間 5を流れ、 力ソード 3と接触した後に、排気口 15から排出される。また、力ソードでの還元反応に より生成した水は、水蒸気として排気口 15から排出されるか、凝縮水として凝縮水ド レイン 16力 排出される。
[0108] 導線 6は、アノードとの接続部 17により複数の発電ユニット 50の内筒 1に、またカソ ードとの接続部 18により複数の発電ユニット 50の外筒 3に電気的に接続される。この 際、導線 6は、周囲の環境と電気的に絶縁し、電気的短絡及び導線表面での酸化還 元反応が起こらな 、ようにすることが必要である。
[0109] なお、図 2に示す装置についても、図 1に関して上記に説明したのと同様に、カソー ドを内筒、アノードを外筒として各発電ユニットの筒状体 50を構成し、各筒状体 50内 部空間へ空気を供給し、発電ユニット 50の筒状体の外側のアノードに基質を接触さ せるようにすることちでさる。
[0110] 力ソードについては、いかに効率良く電極上での酸素の還元反応を進行させるか が課題となる。このためには、力ソードの少なくとも一部を、構造体内に空隙を有する 導電性の多孔質材料、網状又は繊維状材料によって形成して、この力ソードの空隙 中に空気と水との接触界面を存在させた状態で空気と接触させることにより、空気中 の酸素および水面の水に接触する効率を高めることが好ましい。
[0111] 図 3に本発明の生物発電装置において採用することのできる力ソードの構造の一例 を断面図で示す。図 3 (A)は、隔膜 2及び力ソード 3の構造の断面を示したものであり 、図 3 (B)は、図 3 (A)を空気室側 5から見た図である。また、図 3では、隔膜 2が陽ィ オン交換膜である場合の反応系を示す。図 3に示す力ソードは、多孔質のマトリックス 20に、好ましくは白金族元素、銀、遷移金属元素から選ばれる少なくとも一種類を含 有する合金あるいは化合物からなる触媒 21を担持する構造を有し (図 3 (A) )、空気 室側 5から見た場合網目状の構造を呈して ヽる(図 3 (B) )。このような構成を取ること により、力ソードが、水面または隔膜を経由する水を基材の親水性によって吸い上げ つつ空気中の酸素と接触することができ、電極のミクロな構造中に空気ネットワーク 2 2と水溶液ネットワーク 23を持つことによって空気 Z水接触界面の面積を増大させ、 空気中の酸素および水面の水に接触する効率を高めることができる。酸素と水素ィ オンが触媒 21上で反応することにより、空気中の酸素の還元反応を促進することが できる。
[0112] 図 3 (C)に、本発明の生物発電装置において採用することのできる力ソード構造の 別の一例を示す。図 3 (C)においても、隔膜 2が陽イオン交換膜である場合の反応系 を示す。図 3 (C)に示す力ソードは、隔膜 2と同じ材料カゝらなる溶液を、多孔質のマトリ ックス 20の隔膜 2との接合面側に塗布して乾燥させることによって、隔膜構造体の一 部を多孔質マトリックス 20の微細孔内部に浸入させたものである。このような構成を取 ることにより、イオン交換および触媒の利用率を向上させ、空気中の酸素の還元反応 を促進することができる。 [0113] 以下、実施例により本発明を詳述するが、これらは本発明を何ら限定するものでは ない。
[0114] 以下の実施例及び比較例においては、生物発電用アノードを変えた以外は、図 4 に示す実験室用の生物発電装置を用 、た。
[0115] 図 4に示す生物発電装置は、 1辺の長さ 100mm、厚さ 10mmのセルフレーム 2枚(25 、 26)を隣接配置し、セルフレームの両側に同寸のセパレーター 24を 2枚積層させて セパレーター 24を両側面とする積層構造体とした。この積層構造体の内部に、ァノ ード 1、隔膜 2として陽イオン交換膜 (DuPont製 Nafion)及び力ソード 3として白金を担 持したカーボンペーパーをこの順番に接触配置し、ナフイオン溶液を用いてアノード 1、隔膜 2、力ソード 3の順に接着させ、一方のフレーム 24とアノード 1との間に嫌性域 31を、他方のフレーム 24と力ソード 3との間に好気性域 32を形成した。この積層構造 体を互い違いに 3ユニット積層し、隣接するユニット間のフレーム 24は共用させて、実 験用の発電装置を構成した。 3ユニット間の嫌気性域 31、 31 '、 31"には基質液流路 27— 28を、好気性域 32、 32'、 32,,には空気流路 29— 30を形成した。また、図示し ていないが、各アノード 1及び各力ソード 3を導線により電気的に直列に接続して、電 流量計及び可変抵抗器 (電力利用機器)を介して閉回路を形成した。電流量計を含 む回路の外部抵抗は、可変抵抗器を 0 Ωとした場合 10 Ω以下であった。本装置にお Vヽて 3つの発電ユニットを合わせた有効容積は、嫌気性域 (生物反応室)及び好気性 域 (空気反応室)ともに 108mLであり、電極の総表面積は、アノード、力ソードともに 10 8cmとした。
[0116] [実施例 1、比較例 1〜2]
実施例 1
[0117] 実施例 1において、アノード 1の導電性基材であるカーボンフェルトには日本カーボ ン製カーボロン (登録商標)フェルト GF-20を用いた。親水性ポリマーには、和光純薬 製ポリアクリル酸 (分子量約 100万)を用いた。電子メディエータは和光純薬製 1 アミ ノアントラキノン (AAQ)を用いた。
[0118] 実施例 1において生物発電装置に装備したアノード(1)は、以下に述べる方法で作 製した。ポリアクリル酸をメタノールに対し 5g/Lの濃度になるように溶解させポリマー 液を調製し、これにグラフアイトフェルトを浸漬して 30秒間振とうし、取り出して余分な ポリマー液を落としてから 100°Cで 24時間乾燥させ、親水性ポリマー層を形成した。こ の作業によるグラフアイトフェルトの重量増加を測定し、比表面積計で測定したフェル トの表面積と固化した親水性ポリマーの比重 0.8より上記親水性ポリマー層の厚みを 計算したところ、平均 20應と推定された。
[0119] このようにして得られたポリマー被覆フェルトをジメチルホルムアミド中に浸漬し、緩 やかに撹拌しながら親水性ポリマーの構成親水性モノマー単位に対して 30モル%と なるように AAQを添カ卩し、ジシクロへキシルカルボジイミドの共存下で、室温で 72時間 反応させることにより、 AAQのァミノ基とポリマーのカルボキシ基との間でアミド結合を 形成させて親水性ポリマー層に電子メディエータを導入した。これをジメチルホルム アミド、次 、でメタノールで洗浄して力も乾燥させて得た生物発電用アノード(1)を生 物発電装置のアノード 1として用いた。
[0120] アノード(1)のポリアクリル酸のポリマー単位に対する AAQ単位の平均導入率は 25 モル0 電極の投影面積 lcm2あたり 10 μ molであった。この値は、 AAQを導入する前 後で上記ポリマー層のアルカリ中和力を測定、比較し、アルカリ中和力の減少量から 十异しプ
[0121] また、アノード(1)を用い、 pH7の水溶液中において印加電位を- 0.28V - 0.18V( 水素標準電極電位)までシフトすることによって放電が行われたことから、アノード(1) の標準電極電位 E,は- 0.28V - 0.18Vの間にあるといえる。
0
比較例 1
[0122] 比較例 1において、アノードの導電性基材であるカーボンフェルトには日本カーボ ン製カーボロン (登録商標)フェルト GF-20を用いた。親水性ポリマーには、和光純薬 製ポリアクリル酸 (分子量約 100万)を用いた。電子メディエータは和光純薬製 1 アミ ノアントラキノン (AAQ)を用いた。
[0123] 比較例 1において生物発電装置に装備した対照アノード(1)は以下に述べる方法 で作製した。ポリアクリル酸をメタノールに対し 300g/Lの濃度になるように溶解させポ リマー液を調製し、これにグラフアイトフェルトを浸漬して 30秒間振とうし、取り出して余 分なポリマー液を落としてから 100°Cで 24時間乾燥させ、親水性ポリマー層を形成し た。実施例 1と同様の方法で親水性ポリマー層の厚みを計算したところ、平均 3500nm と推定された。
[0124] このようにして得られた親水性ポリマー被覆フェルト (導電性基材)に実施例 1と同 様に親水性ポリマーの構成親水性モノマー単位に対して 30モル%となる添加比率で AAQを導入、固定化し、比較例 1における対照アノード(1)として用いた。
[0125] 対照アノード(1)の親水性ポリマーの構成親水性モノマー単位に対する AAQ単位 の平均導入率は 5モル0 /0、電極の投影面積 lcm2あたり 350 molであった。この対照 アノード(1)を用い、 pH7の水溶液中にお!ヽて印加電位を- 0.28V力も- 0.13V (水素標 準電極電位)までシフトすることによって放電が行われたことから、対照アノード(1)の 標準電極電位 E,は- 0.28V〜- 0.13Vの間にあると考えられる。
0
比較例 2
[0126] 比較例 2において、アノード 1の導電性基材であるカーボンフェルトには日本カーボ ン製カーボロン (登録商標)フェルト GF-20を用いた。親水性ポリマーには、和光純薬 製ポリアクリル酸 (分子量約 100万)を用いた。電子メディエータは和光純薬製 1 アミ ノアントラキノン (AAQ)を用いた。
[0127] 比較例 2において生物発電装置に装備した対照アノードは以下に述べる方法で作 製した。ポリアクリル酸を実施例 1と同様にメタノールに対し 5g/Lの濃度になるように 溶解させポリマー液を調製し、これにグラフアイトフェルトを浸漬して 30秒間振とうし、 取り出して余分なポリマー液を落としてから 100°Cで 24時間乾燥させ、親水性ポリマー 層を形成した。実施例 1と同様の方法で親水性ポリマー層の厚みを計算したところ、 平均 18nmと推定された。
[0128] このようにして得られた親水性ポリマー被覆フェルト (導電性基材)に親水性ポリマ 一の構成親水性モノマー単位に対して等モルとなる添加比率で AAQを導入、固定 化し、比較例 2における対照アノード (2)として用いた。
[0129] 対照アノード(2)のポリアクリル酸のポリマー単位に対する AAQ単位の平均導入率 は 86モル%、電極の投影面積 lcm2あたり 34 molであった。対照アノード(2)を用い 、 pH7の水溶液中にお!ヽて印加電位を- 0.28Vから- 0.13V (水素標準電極電位)までシ フトすることによって放電が行われたことから、対照アノード(2)の標準電極電位 E ' は- 0.28V〜- 0.13Vの間にあると考えられる。
[0130] <発電性能 >
図 4に示す実験室用の生物発電装置を用い、実施例 1及び比較例 1〜2で製作し た生物発電用アノードの発電性能を比較した。
[0131] 生物発電装置の嫌気性域 31、 31 '、 31"には、運転開始前に硫黄還元菌集積培 養体を各 lmL添加した。ここで用いた硫黄還元菌集積培養体は、クロボタ土 O.lgを植 種源とし、 130mL容のバイアル瓶に Handbook of Microbial Media (Atlasら 1997, CRC Press)に記載されて!、る DesullUromonas培地(表- 4)を lOOmL注入して、気相を窒素 ガス置換したものに添加し、密閉して、 28°Cの温度条件下で振とう培養し、 2週間後 に菌液 5mLを新しく調製したバイアル瓶に植え継ぐと ヽぅ操作を 5回繰り返し、 10週間 後に得られた菌液を用いた。なお、植種元である土壌は特にクロボタ土に限定するも のではなぐローム土やシルトであってもよい。
[0132] 基質液として、含水有機性物質のモデルとして 0.1mol/Lのグルコース水溶液に 0.0 lg/Lのイーストエキストラタトを混合して調製した基質液を用いた。
[0133] 運転開始から 10日間は、生物が嫌気性域 (生物反応室)内に付着するのを待った め通液を行わず、上記 DesullUromonas培地(表- 4)を嫌気性域(生物反応室)側に充 填して硫黄還元菌の優占化を促した。
[0134] [表 4] 表- 4 Desulfuromonas培地の組成 (p H7.2 ±0.2)
Figure imgf000038_0001
運転開始後 10日目より、基質液の滞留時間を 2日間として馴養運転を行い、運転開 始後 20日目より嫌気性域内での滞留時間を 500分間とする通常運転にして、アノード 、力ソード間の電流量及び電圧を測定した。なお、好気性域への空気の供給は滞留 時間 0.5分間とした。
[0136] 実施例 比較例 1および 2においては、馴養運転期間中を含めて、常に力ソード' アノード間は電気的に接続した状態とし、最大の電力量が得られるよう可変抵抗を調 整した。試験結果を表- 5に示す。
[0137] [表 5] 表- 5 発電試験結果
Figure imgf000039_0001
[0138] 測定期間中の平均発生電力は、ポリマー層厚が薄ぐ AAQ導入率が 30モル%以下 である場合 (実施例 1)の方が、ポリマー層が厚い場合 (比較例 1)に比べて、 53倍の 高い電力を発生したことがわかる。また、 AAQ導入率が 86モル%に達し、ポリマー層 の親水性が低くなつている場合 (比較例 2)に比べると、 14倍の高い電力を発生した。 これらの結果より、ポリマー層厚が薄ぐ電子メディエータの導入率が 30モル%以下 に抑えられている親水性ポリマー被覆電極が生物発電用のアノードとして優れている ことが認められた。
[0139] [実施例 2〜3、比較例 3]
図 4に示す実験室用の生物発電装置を用い、発電性能及び親水性ポリマー層被 覆アノードの安定性を比較した。実施例 2〜4及び比較例 3では、導電性基材 (カー ボンフェルト)に分子量 7万のポリエチレンィミン(日本触媒製ェポミン (登録商標) P-1 000)水溶液を含浸させて親水性ポリマー層を形成させ、そこにアントラキノン- 2-スル ホン酸 (AQS)を固定ィ匕してアノードとして用いた。 AQSは以下の方法で予めスルホ二 ルクロリド化したものを使用した。
[0140] AQS1モルに対し 1/2モルに相当する量のスルホランと 4倍モルに相当する量のォキ シ塩化リンとを含むァセトニトリル溶媒中 70°Cで 1時間反応させ、スルホン酸基をスル ホニルクロリドィ匕した。これを冷却後、濾過して氷水で洗浄後、乾燥させることにより、
AQSクロリドの肌色粉末を得た。
実施例 2
[0141] 実施例 2において生物発電装置に装備したアノード (2)は、以下に述べる方法で作 製した。ポリエチレンイミンを水に対し 10g/Lの濃度になるように溶解して親水性ポリマ 一液を調製し、これに導電性基材としてのグラフアイトフェルトを浸漬して 30秒間振と うし、取り出して余分な親水性ポリマー液を落としてから 100°Cで 24時間乾燥させ、親 水性ポリマー層を形成した。この作業によるグラフアイトフェルトの重量増加を測定し、 比表面積計で測定したフェルトの表面積と固化したポリマーの比重 1.2より親水性ポリ マー層の厚みを計算したところ、平均 23nmと推定された。
[0142] このようにして得られた親水性ポリマー被覆フェルト (導電性基材)をテトラヒドロフラ ン中に浸漬し、緩やかに撹拌しながら親水性ポリマーの構成親水性モノマー単位に 対して 30モル%となるように上記 AQSクロリドを添カロした。添カロした AQSクロリドに対し 5倍モルに相当する量のトリェチルァミンを共存させつつ室温で 12時間程度反応さ せることにより、親水性ポリマーと AQSクロリドとの間にスルホンアミド結合を形成させ て電子メディエータを導入した。これをメタノールで洗浄してから乾燥させて得た生物 発電用アノード(2)を生物発電装置のアノード 1として用いた。
[0143] アノード(2)の親水性ポリマーの構成親水性モノマー単位に対する AQS単位の平 均導入率は 28モル%、電極の投影面積 lcm2あたり 13 μ molであった。この値は、 AQS を導入する前後で上記ポリマー層の酸中和力を測定、比較し、酸中和力の減少量か ら計算した。
[0144] また、アノード(2)を用い、 pH7の水溶液中において印加電位を- 0.28V〜- 0.18V( 水素標準電極電位)までシフトすることによって放電が行われたことから、アノード(2) の標準電極電位 E,は- 0.28V〜- 0.18Vの間にあるといえる。
0
実施例 3
[0145] 実施例 3において生物発電装置に装備したアノード (3)は、以下に述べる方法で作 製した。ポリエチレンイミンを水に対し 10g/Lの濃度になるように溶解して親水性ポリマ 一液を調製し、これに導電性基材としての上記グラフアイトフェルトを浸漬して緩やか に撹拌しつつ、ェチル(3-ジメチルァミノプロピル)カルボジイミド塩酸塩を添カ卩して 7 2時間反応させ、グラフアイトとポリエチレンィミンとの間にアミド結合を生成させた。グ ラフアイトを取り出して余分な親水性ポリマー液を落としてから 100°Cで 24時間乾燥さ せ、親水性ポリマー層を形成した。これを O.lmol/L水酸ィ匕ナトリウム液で洗浄してから 以下の操作を行った。上記親水性ポリマー層の厚みは平均 21應と推定された。
[0146] このようにして得られた親水性ポリマー被覆フェルト (導電性基材)をテトラヒドロフラ ン中に浸漬し、実施例 2と同様に親水性ポリマーの構成親水性モノマー単位に対し て 30モル%となるように AQSクロリドを添カ卩し、スルホンアミド結合を形成させて電子メ ディエータを導入した。これをメタノールで洗浄してから乾燥させて得た生物発電用 アノード(3)を生物発電装置のアノード 1として用いた。
[0147] アノード(3)の親水性ポリマーの構成親水性モノマー単位に対する AQS単位の平 均導入率は 27モル0 /0、電極の投影面積 lcm2あたり 12 μ molであった。
[0148] また、アノード(3)を用い、 pH7の水溶液中において印加電位を- 0.28V〜- 0.18V( 水素標準電極電位)までシフトすることによって放電が行われたことから、アノード(3) の標準電極電位 E,は- 0.28V〜- 0.18Vの間にあるといえる。
0
実施例 4
[0149] 実施例 4において生物発電装置に装備したアノード (4)は、以下に述べる方法で作 製した。ポリエチレンイミンを水に対し 10g/Lの濃度になるように溶解して親水性ポリマ 一液を調製し、これに実施例 2と同様の条件で導電性基材としてのグラフアイトフェル トを浸漬させた。グラフアイトを取り出して余分な親水性ポリマー液を落としてから 100 °Cで 24時間乾燥させ、親水性ポリマー層を形成した。親水性ポリマー層の厚みは平 均 23nmと推定された。
[0150] このようにして得られた親水性ポリマー被覆フェルト (導電性基材)をテトラヒドロフラ ン中に浸漬し、親水性ポリマーの構成親水性モノマー単位に対して等モルとなるよう に上記 AQSクロリドを添加し、実施例 3と同様の条件でスルホンアミド結合を形成させ て電子メディエータを導入した。これをジクロロメタン溶媒中に浸漬し、クロロスルホン 酸を 10%(v/v)濃度になるよう添加して 24時間反応させ、スルホンィ匕を行った。これを イソプロパノールで 24時間洗浄し、ついでエタノールで洗浄し、さらに水で洗浄するこ とによりスルホニルクロリドをスルホン酸として力 乾燥させて得た生物発電用アノード
(4)を生物発電装置のアノード 1として用いた。
[0151] アノード (4)の親水性ポリマーの構成親水性モノマー単位に対する AQS単位の平 均導入率は 83モル0 /0、電極の投影面積 lcm2あたり 39 μ molであった。
[0152] また、アノード(4)を用い、 pH7の水溶液中において印加電位を- 0.28V〜- 0.13V( 水素標準電極電位)までシフトすることによって放電が行われたことから、アノード (4) の標準電極電位 E,は- 0.28V〜- 0.13Vの間にあるといえる。
0
比較例 3
[0153] 比較例 3において生物発電装置に装備した対照アノード(3)は、以下に述べる方 法で作製した。実施例 4と同じ方法で親水性ポリマー層を形成し、親水性ポリマーの 構成親水性モノマー単位に対して等モルとなるように AQSクロリドを添加し、実施例 4 と同様の条件でスルホンアミド結合を形成させた。これをそのまま比較例 3における生 物発電装置の対照アノード (3)として用いた。
[0154] 対照アノード(3)のポリエチレンィミンにおける親水性ポリマーの構成親水性モノマ 一単位に対する AQS単位の平均導入率は 84モル%、電極の投影面積 lcm2あたり 39 molであった。また、対照アノード(3)を用い、 pH7の水溶液中において印加電位を -0.28V〜- 0.13V (水素標準電極電位)までシフトすることによって放電が行われたこと から、対照アノード(3)の標準電極電位 E,は- 0.28V
0 〜- 0.13Vの間にあるといえる。
[0155] <発電性能 >
実施例 2〜4及び比較例 3で得たアノードを用いて図 4に示す生物発電装置で行つ た発電試験結果を表- 6に示す。
[0156] [表 6] ¾-6 発電試験結果
Figure imgf000043_0001
[0157] 測定期間中の平均発生電力は、親水性ポリマー層厚が薄ぐ AQS導入率が 30モル %以下である実施例 2および 3において、予め脱水縮合処理を行った力どうかに関わ り無くほぼ同じ値を示した。また、 AQS導入率が 83モル%と高い場合 (実施例 4)でも 、 AQS導入後にスルホンィ匕処理を行ったことによってやや劣る程度の電力発生量を 得ることができた。これに対して、 AQS導入量が高い状態でそのままアノードとして使 用した場合 (比較例 3)は、スルホンィ匕処理を行った場合 (実施例 4)に比べて、電力量 は 1/9程度まで低下した。
[0158] これらの結果より、親水性ポリマー層厚が薄ぐ電子メディエータの導入率が 30モル %以下に抑えられている親水性ポリマー層被覆電極が生物発電用のアノードとして 優れていること、及び電子メディエータの導入率が高い場合でも、親水性基を導入す ることにより生物発電用のアノードとしての性能が回復することが認められた。
[0159] <アノードの安定性 >
実施例 2および実施例 3の方法で作製したアノードをそれぞれ lmol/Lの塩酸水に 浸漬して緩やかに撹拌しつつ 30分間反応させたところ、実施例 2のポリマーは 90% 以上が溶解してグラフアイトから脱離してしまった。一方、実施例 3で作製したアノード 力もは 10%程度が脱離するに留まった。実施例 3で作製したアノードのポリマー層は アミド結合によってグラフアイトと化学的に結合しているため、酸による溶出が起こりに く力つたと考えられる。したがって、実施例 3の方法で作製したアノードは、実施例 2の 方法で作製したアノードよりも高 、耐久性を有すると 、える。
実施例 5 [0160] 生物発電装置に装備したアノード(5)は、以下に述べる方法で作製した。ポリェチ レンイミンを水に対し 30g/Lの濃度になるように溶解して親水性ポリマー液を調製し、 これに実施例 2と同様の条件で導電性基材としてのグラフアイトフェルトを浸漬させた 。その後、グラフアイトフェルトを取り出して余分な親水性ポリマー液を落としてから 10 0°Cで 24時間乾燥させ、親水性ポリマー層を形成した。親水性ポリマー層の厚みは平 均 lOOnmと推定された。
[0161] このようにして得られた親水性ポリマー被覆フェルト (導電性基材)をテトラヒドロフラ ン中に浸漬し、親水性ポリマーの構成親水性モノマー単位に対して過剰量(100モル %以上)となるように AQSクロリドを添加し、実施例 3と同様の条件でスルホンアミド結 合を形成させて電子メディエータを導入して得たアノード (5)を生物発電装置のァノ ード 1として用いた。
[0162] アノード(5)の親水性ポリマーの構成親水性モノマー単位に対する AQS単位の平 均導入率は 28モル%、電極の投影面積 lcm2あたり 57 molであった。また、アノード( 5)を用い、 pH7の水溶液中にお!ヽて印加電位を- 0.28V〜- 0.13V (水素標準電極電 位)までシフトすることによって電流が発生したことから、アノード(5)の標準電極電位 E,は— 0.28V〜― 0.13Vの間にあるといえる。
0
比較例 4
[0163] 比較例 4において生物発電装置に装備した対照アノード (4)は、以下に述べる方 法で作製した。ポリエチレンイミンを水に対し 80g/Lの濃度になるように溶解して親水 性ポリマー液を調整し、これに実施例 2と同様の条件で導電性基材としてのグラファ イトフェルトを浸漬させた。その後、グラフアイトフェルトを取り出して余分な親水性ポリ マー液を落としてから 100°Cで 24時間乾燥させ、親水性ポリマー層を形成した。親水 性ポリマー層の厚みは平均 250應と推定された。
[0164] このようにして得られた親水性ポリマー被覆フェルト (導電性基材)をテトラヒドロフラ ン中に浸漬し、親水性ポリマーの構成親水性モノマー単位に対して過剰量(100モル %以上)となるように AQSクロリドを添加し、実施例 3と同様の条件でスルホンアミド結 合を形成させて電子メディエータを導入した。これを比較例 4における生物発電装置 のアノード 1として用いた。 [0165] 対照アノード (4)のポリエチレンィミンにおける親水性ポリマーの構成親水性モノマ 一単位に対する AQS単位の平均導入率は 23モル%、電極の投影面積 lcm2あたり 11 7 /z molであった。また、対照アノード (4)を用い、 pH7の水溶液中において印加電位 を- 0.28V〜- 0.13V (水素標準電極電位)までシフトすることによって電流が発生したこ と力 、対照アノード (4)の標準電極電位 E,は- 0.28V
0 〜- 0.13Vの間にあるといえる。
[0166] <発電性能 >
実施例 5及び比較例 4で得たアノードを用いて図 4に示す生物発電装置で行った 発電試験結果を表 7に示す。
[0167] [表 7]
Figure imgf000045_0001
[0168] 発生した電位差 (電圧)、発生電流ともに、ポリマー層厚 lOOnmの場合 (実施例 5)の 方力 ポリマー層厚 250nmの場合 (比較例 4)に比べて高ぐ出力にして 10倍あまりの 高 、電力を発生したことがわかる。
[0169] [実施例 6、比較例 5〜6]
図 4に示す実験室用の生物発電装置を用い、電位の違うアノードによる発電性能を 比較した。
[0170] 導電性基材 (グラフアイトフェルト)に分子量 7万のポリエチレンィミン(日本触媒製ェ ポミン (登録商標) P-1000)水溶液を含浸させて親水性ポリマー層を形成させた。ポリ エチレンイミンを水に対し 10g/Lの濃度になるように溶解して親水性ポリマー液を調製 し、これに導電性基材としてのグラフアイトフェルトを浸漬して 30秒間振とうし、その後 、取り出して余分な親水性ポリマー液を落としてから 100°Cで 24時間乾燥させ、親水 性ポリマー層を形成した。この作業によるグラフアイトフェルトの重量増加を測定し、比 表面積計で測定したフェルトの表面積と固化したポリマーの比重 1.2より親水性ポリマ 一層の厚みを計算したところ、平均 25nmと推定された。 実施例 6
[0171] 実施例 6では、アノードとして、以下の方法で予めスルホニルクロリドィ匕したアントラ キノン- 2、 6-ジスルホン酸 (AQDS、 E '=-185mV)を固定化させたアノード(6)を用い
0
た。
[0172] AQDS1モルに対し 1/2モルに相当する量のスルホランと 4倍モルに相当する量のォ キシ塩化リンとを含むァセトニトリル溶媒中 70°Cで 1時間反応させ、スルホン酸基をス ルホニルクロリド化した。これを冷却後、濾過して氷水で洗浄後、乾燥させること〖こより 、 AQDSクロリドの黄色粉末を得た。上述の方法で得られたポリエチレンィミン被覆フ エルト (導電性基材)をテトラヒドロフラン中に浸漬し、緩やかに撹拌しながら親水性ポ リマーの構成親水性モノマー単位に対して過剰量(100モル%以上)となるように AQ DSクロリドを添カロした。添カロした AQDSクロリドに対し 5倍モルに相当する量のトリェチ ルァミンを共存させつつ室温で 12時間程度反応させることにより、親水性ポリマーと A QDSクロリドとの間にスルホンアミド結合を形成させて電子メディエータを導入した。こ れをメタノールで洗浄して力 乾燥させて得た生物発電用アノード (6)を生物発電装 置のアノード 1として用いた。
[0173] アノード(6)の親水性ポリマーの構成親水性モノマー単位に対する AQDS単位の平 均導入率は 25モル%、電極の投影面積 lcm2あたり 13 μ molであった。この値は、 AQ DSを導入する前後で上記ポリマー層の酸中和力を測定、比較し、酸中和力の減少 量力も計算した。
[0174] また、アノード(6)を用い、 pH7の水溶液中において印加電位を- 0.25V〜- 0.15V( 水素標準電極電位)までシフトすることによって電流が発生したことから、アノード (6) の標準電極電位 E,は- 0.25V〜- 0.15Vの間にあるといえる。
0
比較例 5
[0175] 比較例 5では、インディゴカーミン(E '=-125mV)を固定ィ匕した対照アノード(5)を用
0
V、た以外は、実施例 6と同様にして発電性能を調べた。
[0176] インディゴカーミンは以下の方法で予めスルホニルクロリド化したものを使用した。
[0177] インディゴカーミン 1モルに対し 1/2モルに相当する量のスルホランと 4倍モルに相当 する量のォキシ塩化リンとを含むァセトニトリル溶媒中 70°Cで 1時間反応させ、スルホ ン酸基をスルホニルクロリドィ匕した。これを冷却後、濾過して氷水で洗浄後、乾燥させ ることにより、インディゴカーミンク口リドの青色粉末を得た。上述の方法で得られたポ リエチレンィミン被覆フェルト (導電性基材)をテトラヒドロフラン中に浸漬し、緩やかに 撹拌しながら親水性ポリマーの構成親水性モノマー単位に対して過剰量(100モル% 以上)となるように上記インディゴカーミンク口リドを添加した。添加したインディゴカー ミンク口リドに対し 5倍モルに相当する量のトリェチルァミンを共存させつつ室温で 12 時間程度反応させることにより、親水性ポリマーとインディゴカーミンクロリドとの間に スルホンアミド結合を形成させて電子メディエータを導入した。これをメタノールで洗 浄してから乾燥させて得た対照アノード (5)を生物発電装置のアノード 1として用いた
[0178] 対照アノード(5)の親水性ポリマーの構成親水性モノマー単位に対するインディゴ カーミン単位の平均導入率は 18モル%、電極の投影面積 lcm2あたり 9 μ molであった 。この値は、インディゴカーミンを導入する前後で上記ポリマー層の酸中和力を測定 、比較し、酸中和力の減少量から計算した。
[0179] また、対照アノード(5)を用い、 pH7の水溶液中において印加電位を- 0.13V〜- 0.1 0V (水素標準電極電位)までシフトすることによって電流が発生したことから、対照ァノ ード(5)の標準電極電位 E,は- 0.13V〜- 0.10Vの間にあるといえる。
0
比較例 6
[0180] 比較例 6では、 5-ヒドロキシ- 1,4-ナフトキノン(5- H- 1,4-NQ、 E =-3mV)を固定化し
0
た対照アノード (6)を用いた以外は、実施例 6と同様にして発電性能を調べた。
[0181] 5-H- 1,4-NQは以下の方法で予めスルホニルクロリド化したものを使用した。
[0182] アルドリッチ社製の 5- H- 1,4- NQ 5gを 20% (v/v)クロロスルホン酸 Zジクロロメタン 溶液 lOOmLに溶解させ、濃硫酸 2mLの共存下で室温で 20時間反応させてスルホン 酸クロリド基を導入した。
[0183] 上述の方法で得られたポリエチレンィミン被覆フェルト (導電性基材)をテトラヒドロフ ラン中に浸漬し、緩やかに撹拌しながら親水性ポリマーの構成親水性モノマー単位 に対して過剰量(100モル%以上)となるように上記 5-H- 1,4-NQスルホン酸クロリドを 添加した。添カ卩した 5-H- 1,4-NQスルホン酸クロリドに対し 5倍モルに相当する量のト リエチルァミンを共存させつつ室温で 12時間程度反応させることにより、親水性ポリマ 一と 5-H-l,4-NQとの間にスルホンアミド結合を形成させて電子メディエータを導入し た。これをメタノールで洗浄して力も乾燥させて得た対照アノード (6)を生物発電装 置のアノード 1として用いた。
[0184] 対照アノード(6)の親水性ポリマーの構成親水性モノマー単位に対する 5-H- 1,4-N Q単位の平均導入率は 23モル0 /0、電極の投影面積 lcm2あたり 12 μ molであった。こ の値は、 5-H-l,4-NQを導入する前後で上記ポリマー層の酸中和力を測定、比較し 、酸中和力の減少量から計算した。
[0185] また、対照アノード(6)を用い、 pH7の水溶液中において印加電位を- 0.10V〜+0.0 5V (水素標準電極電位)までシフトすることによって電流が発生したことから、対照ァノ ード(6)の標準電極電位 E,は- 0.10V〜+0.05Vの間にあるといえる。
0
[0186] [実施例 7、比較例 7]
導電性基材であるカーボンフェルトとして、 日本カーボン製カーボロン (登録商標) フェルト GF-20を用いた。親水性ポリマーには、和光純薬製ポリアクリル酸 (分子量約 100万)を用いた。ポリアクリル酸をメタノールに対し 5g/Lの濃度になるように溶解させ 親水性ポリマー液を調製し、これにグラフアイトフェルトを浸漬して 30秒間振とうし、そ の後、取り出して余分なポリマー液を落としてから 100°Cで 24時間乾燥させ、親水性 ポリマー層を形成した。この作業によるグラフアイトフェルトの重量増加を測定し、比表 面積計で測定したフェルトの表面積と固化した親水性ポリマーの比重 0.8より親水性 ポリマー層の厚みを計算したところ、平均 28nmと推定された。
実施例 7
[0187] 実施例 7では、アノードとして、以下の方法で 2-メチル -5-ァミノ- 1,4-ナフトキノン (2- M-5-A-1.4-NQ)を固定化したアノード(7)を用いた。
[0188] 上記の方法で得られたポリアクリル酸被覆フェルトをジメチルホルムアミド中に浸漬 し、緩やかに撹拌しながら親水性ポリマーの構成親水性モノマー単位に対して過剰 量(100モル%以上)となるように 2-M-5-A-l,4-NQを添カ卩し、ジシクロへキシルカル ボジイミドの共存下で、室温で 72時間反応させることにより、 2-M-5-A- 1,4-NQのアミ ノ基とポリマーのカルボキシ基との間でアミド結合を形成させて親水性ポリマー層に 電子メディエータを導入した。これをジメチルホルムアミド、次いでメタノールで洗浄し て力も乾燥させて得た生物発電用アノード(7)を生物発電装置のアノード 1として用 いた。
[0189] アノード(7)のポリアクリル酸のポリマー単位に対する 2-M-5-A-l,4-NQ単位の平 均導入率は 25モル0 /0、電極の投影面積 lcm2あたり 14 molであった。この値は、 2-M -5-A-l,4-NQを導入する前後でポリマー層のアルカリ中和力を測定、比較し、アル力 リ中和力の減少量力も計算した。
[0190] また、アノード(7)を用い、 pH7の水溶液中において印加電位を- 0.15V〜- 0.13V( 水素標準電極電位)までシフトすることによって電流が発生したことから、アノード(7) の標準電極電位 E,は- 0.15V〜- 0.13Vの間にあるといえる。
0
比較例 7
[0191] 比較例 7では、アノードとして-ユートラルレッド (E =-325mV)を固定ィ匕した対照ァ
0
ノード (7)を用いた以外は実施例 7と同様にして発電性能を調べた。
[0192] 実施例 7に記載の方法で得られたポリアクリル酸被覆フェルトをジメチルホルムアミ ド中に浸漬し、緩やかに撹拌しながらポリアクリル酸の構成親水性モノマー単位に対 して過剰量(100モル%以上)となるように-ユートラルレッドを添カ卩し、ジシクロへキシ ルカルポジイミドの共存下で、室温で 72時間反応させることにより、ニュートラルレッド のァミノ基とポリマーのカルボキシ基との間でアミド結合を形成させて親水性ポリマー 層に電子メディエータを導入した。これをジメチルホルムアミド、次いでメタノールで洗 浄してから乾燥させて得た対照アノード (7)を生物発電装置のアノード 1として用いた
[0193] 対照アノード(7)のポリアクリル酸のポリマー単位に対する-ユートラルレッド単位の 平均導入率は 28モル%、電極の投影面積 lcm2あたり 16 molであった。この値は、二 ユートラルレッドを導入する前後で上記ポリマー層のアルカリ中和力を測定、比較し、 アルカリ中和力の減少量力 計算した。
[0194] また、対照アノード(7)を用い、 pH7の水溶液中において印加電位を- 0.45V〜- 0.2 8V (水素標準電極電位)までシフトすることによって電流が発生したことから、対照ァノ ード(7)の標準電極電位 E,は- 0.45V〜- 0.28Vの間にあるといえる。 <発電性能 >
実施例 6及び 7、比較例 5〜7で得た各アノードを用いて図 4に示す生物発電装置 で行った発電試験結果を表 8に示す。
[表 8]
Figure imgf000050_0001
[0196] 発生した電気出力より、アノードの標準電極電位 (E ')が本発明の請求範囲である-
0
0.13〜- 0.28Vの範囲内にある場合 (実施例 6及び 7)の方が、範囲外にある場合 (比 較例 5〜7)に比べて高ぐ 5〜120倍あまりの高い電力を発生したことがわかる。
[0197] また、実施例 6と 7とを比較すると実施例 6のほうが実施例 7に対して 2.5倍あまり高い 出力を示している。これは実施例 6のアノード(6)が標準電極電位- 0.25〜- 0.15Vの 範囲であるのに対して、実施例 7のアノード(7)は- 0.15〜- 0.13Vと高めであるためと 考えられる。このことから、 pH7におけるアノードの標準電極電位を- 0.13V〜- 0.28V の範囲内、好ましくは- 0.15V〜- 0.27Vの範囲内に設定することが発電性能上有利で あることが示された。
産業上の利用可能性
[0198] 以上説明したように、本発明により、簡易な装置、方法によって効率的に生物発電 用のアノードを作製し、このアノードを用いる生物発電により、廃水、廃液、し尿、食品 廃棄物、その他の有機性廃棄物、汚泥などの含水有機性物質またはその分解物を 効率的に酸化分解し、電気エネルギーを得ることが可能である。本発明は、含水有 機性物質の酸化分解、および還元電位を利用した発電方法として広く利用されること が期待される。

Claims

請求の範囲
[1] 表面の少なくとも一部が親水性ポリマー層で被覆された導電性基材を含み、該親 水性ポリマー層には電子メディエータが化学的に結合されて導入されており、 pH7における標準電極電位(E ')カ 0.13V〜- 0.28Vの範囲内にある生物発電用ァノ
0
ード。
[2] 前記親水性ポリマー層は、平均層厚が 200ナノメートル以下である請求項 1に記載 の生物発電用アノード。
[3] 前記親水性ポリマー層を構成する親水性ポリマーの構成親水性モノマー単位に対 して、電子メディエータカ^〜 30モル%導入されている請求項 1または 2に記載の生 物発電用アノード。
[4] 前記親水性ポリマー層に導入された前記電子メディエータは、親水性の官能基を 有する請求項 1〜3のいずれ力 1項に記載の生物発電用アノード。
[5] 前記親水性ポリマー層を構成する親水性ポリマー力 アミノ基、イミノ基、カルボキ シ基及びスルホン酸基からなる群から選択されるいずれか 1種類の官能基を構造中 に含むポリマーである請求項 1〜4の何れ力 1項に記載の生物発電用アノード。
[6] 前記親水性ポリマーが、ポリエチレンィミン、ポリビニルァミン、ポリアリルァミン、ポリ アクリル酸またはポリメタクリル酸である請求項 1〜5のいずれか 1項に記載の生物発 電用アノード。
[7] 前記電子メディエータが、アントラキノン誘導体、ナフトキノン誘導体、ベンゾキノン 誘導体、イソァロキサンジン誘導体からなる群より選択される 1種以上の酸化還元物 質である請求項 1〜6のいずれか 1項に記載の生物発電用アノード。
[8] 前記電子メディエータは、アントラキノンカルボン酸類 (AQC)、アミノアントラキノン類 (AAQ)、ジァミノアントラキノン類 (DAAQ)、アントラキノンスルホン酸類 (AQS)、ジァミノ アントラキノンスルホン酸類 (DAAQS)、アントラキノンジスルホン酸類 (AQDS)、ジァミノ アントラキノンジスルホン酸類 (DAAQ DS)、ェチルアントラキノン類(EAQ)、メチルナ フトキノン類 (MNQ)、メチルァミノナフトキノン類 (MANQ)、ブロモメチルァミノナフトキ ノン類(BrMANQ)、ジメチルナフトキノン類(DMNQ)、ジメチルァミノナフトキノン類(D MANQ)、ラパコール(LpQ)、ヒドロキシ (メチルブテュル)ァミノナフトキノン類 (ALpQ) 、ナフトキノンスルホン酸類(NQS)、トリメチルァミノべンゾキノン類(TMABQ)、フラビ ンモノヌクレオチド (FMN)およびこれらの誘導体力もなる群より選ばれる 1つ以上の 酸ィ匕還元物質である請求項 7に記載の生物発電用アノード。
[9] 前記導電性基材は、導電性を持つ炭素素材を少なくとも含む請求項 1〜8のいず れか 1項に記載の生物発電用アノード。
[10] 前記導電性基材は、グラフアイト、カーボンブラック、フラーレン、カーボンナノチュ ーブ(CNT)、気相成長炭素繊維(VGCF)、カーボンフェルト、カーボンクロス、カーボ ンペーパーよりなる群のうち少なくとも一つを含む請求項 9に記載の生物発電用ァノ ード。
[11] 前記導電性基材と親水性ポリマー層とが共有結合または水素結合によって結合し ている請求項 9または 10に記載の生物発電用アノード。
[12] 前記導電性基材は、アルミニウム、ニッケル、鉄、銅、金、白金、ステンレス鋼、鉄— シリコン合金、カルシウム シリコン合金、アルミニウム 亜鉛 シリコン合金、モリブ デン—バナジウム合金、ニッケル—銅合金力 選択される請求項 1〜8のいずれか 1 項に記載の生物発電用アノード。
[13] 前記親水性ポリマー層を構成する親水性ポリマーは、該親水性ポリマーの構成親 水性モノマー単位に対して 0.01〜10モル%の比率で相互に架橋している請求項 1〜
12のいずれか 1項に記載の生物発電用アノード。
[14] 請求項 1〜13の何れか 1項に記載の生物発電用アノードの製造方法であって、 導電性基材の表面の少なくとも一部が親水性ポリマーで被覆された親水性ポリマー 被覆導電性基材を形成する親水性ポリマー被覆導電性基材形成工程と、 該親水性ポリマー被覆導電性基材に電子メディエータを導入する電子メディエータ 導入工程と、
を含む生物発電用アノードの製造方法。
[15] 前記親水性ポリマー被覆導電性基材形成工程は、親水性ポリマーの濃度が 50g/L 以下であるポリマー溶液を導電性基材に滴下、塗布、吹き付けまたは浸漬させること により親水性ポリマーを導電性基材に付着若しくは固定ィ匕する付着 ·固定ィ匕工程で ある請求項 14に記載の生物発電用アノードの製造方法。
[16] 前記親水性ポリマー被覆導電性基材形成工程は、導電性基材の官能基と親水性 ポリマーの官能基とをィ匕学的に結合させて、親水性ポリマーを導電性基材に固定ィ匕 する固定ィ匕工程である請求項 14に記載の生物発電用アノードの製造方法。
[17] 前記電子メディエータ導入工程は、前記親水性ポリマー被覆導電性基材の親水性 ポリマー層を構成する親水性ポリマーの構成親水性モノマー単位に対して、電子メ ディエータを 30モル%以下の比率で反応させて電子メディエータを導入する請求項 14〜16の何れか 1項に記載の生物発電用アノードの製造方法。
[18] 前記電子メディエータ導入工程の後、前記電子メディエータに親水性官能基を導 入する親水性官能基導入工程をさらに含む請求項 14〜17の何れか 1項に記載の 生物発電用アノードの製造方法。
[19] 前記親水性ポリマー被覆導電性基材形成工程の前に、導電性基材にカルボキシ 基を導入する前処理工程をさらに含む請求項 14〜18の何れか 1項に記載の生物発 電用アノードの製造方法。
[20] 嫌気性雰囲気下で生育可能な微生物、有機性物質を含有する溶液もしくは懸濁 液、請求項 1〜13のいずれか 1項に記載の生物発電用アノードを含む嫌気性域と、 分子状酸素及び力ソードを含む好気性域と、該嫌気性域及び該好気性域とを画定 する隔膜と、を具備し、該アノード及び該カソードを電力利用機器に電気的に接続し て閉回路を形成し、該嫌気性域内での有機性物質を電子供与体とする酸化反応と 該好気性域内での酸素を電子受容体とする還元反応とを利用して発電する発電装 置。
[21] 嫌気性雰囲気下で生育可能な微生物、有機性物質を含有する溶液もしくは懸濁 液、請求項 1〜13のいずれか 1項に記載の生物発電用アノードを含む嫌気性域と、 分子状酸素及び力ソードを含む好気性域と、該嫌気性域及び該好気性域とを画定 する隔膜と、を具備し、該アノード及び該カソードを電力利用機器に電気的に接続し て閉回路を形成し、該嫌気性域内での有機性物質を電子供与体とする酸化反応と 該好気性域内での酸素を電子受容体とする還元反応とを利用して発電する発電方 法。
PCT/JP2006/319057 2005-09-28 2006-09-26 生物発電用アノード及びこれを利用する発電方法及び装置 WO2007037228A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/992,678 US20090297890A1 (en) 2005-09-28 2006-09-26 Anode for Bioelectric Power Generation And Power Generation Method And Apparatus Utilizing Same
JP2007537622A JPWO2007037228A1 (ja) 2005-09-28 2006-09-26 生物発電用アノード及びこれを利用する発電方法及び装置
EP06810582A EP1947716A4 (en) 2005-09-28 2006-09-26 BIOLOGICAL ENERGY PRODUCTION ANODE AND METHOD FOR PRODUCING BIOLOGICAL ENERGY USING THE ANODE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005282777 2005-09-28
JP2005-282777 2005-09-28

Publications (1)

Publication Number Publication Date
WO2007037228A1 true WO2007037228A1 (ja) 2007-04-05

Family

ID=37899654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319057 WO2007037228A1 (ja) 2005-09-28 2006-09-26 生物発電用アノード及びこれを利用する発電方法及び装置

Country Status (5)

Country Link
US (1) US20090297890A1 (ja)
EP (1) EP1947716A4 (ja)
JP (1) JPWO2007037228A1 (ja)
CN (1) CN101322267A (ja)
WO (1) WO2007037228A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009761A (ja) * 2008-06-24 2010-01-14 Yokogawa Electric Corp 固体高分子型燃料電池
EP2174377A1 (en) * 2007-07-03 2010-04-14 Ugcs(University Of Glamorgan Commercial Services Limited) A biological fuel cell
EP2270915A1 (en) * 2008-03-28 2011-01-05 Japan Science and Technology Agency Microbial fuel cell
JP2011508938A (ja) * 2007-10-16 2011-03-17 パワー・ノレッジ・リミテッド 微生物燃料電池カソード組立体
US20110229742A1 (en) * 2008-10-30 2011-09-22 Emefcy Limited Electrodes for use in bacterial fuel cells and bacterial electrolysis cells and bacterial fuel cells and bacterial electrolysis cells employing such electrodes
US20130059169A1 (en) * 2010-03-19 2013-03-07 Dow Global Technologies Llc High efficiency microbial fuel cell
CN112803117A (zh) * 2021-01-05 2021-05-14 北京金羽新能科技有限公司 一种亲水性隔膜及含有该亲水性隔膜的电池
CN115651140A (zh) * 2022-12-29 2023-01-31 中国农业科学院农业环境与可持续发展研究所 一种三维炭基共聚复合材料及其制备方法和应用

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087664A1 (ja) 2004-03-16 2005-09-22 Waseda University ハイドロタルサイト様物質およびその製造方法、ならびに有害物質の固定化方法
US8192854B2 (en) * 2009-02-06 2012-06-05 Ut-Battelle, Llc Microbial fuel cell treatment of ethanol fermentation process water
JP2013517129A (ja) * 2010-01-14 2013-05-16 ジエイ・クレイグ・ベンター・インステイテユート モジュール式エネルギー回収水処理装置
US9045354B2 (en) * 2010-09-21 2015-06-02 Advanced Environmental Technologies, Llc Methods for enhanced oxidative and reductive remediation
US8663852B2 (en) * 2010-12-22 2014-03-04 University Of Massachusetts Aerobic microbial fuel cell
CN102411022A (zh) * 2011-08-03 2012-04-11 中国科学院化学研究所 一种基于原电池的电化学传感器及其制备方法
JP2015507822A (ja) * 2011-12-22 2015-03-12 ザイレコ,インコーポレイテッド 燃料電池に用いるためのバイオマスの加工
US9160024B1 (en) * 2012-06-22 2015-10-13 The United States Of America, As Represented By The Secretary Of The Navy Grafting of biomolecules onto microbial fuel cells
CN102838746A (zh) * 2012-08-29 2012-12-26 南京理工大学 磺化聚芳醚砜聚合物及磺化聚芳醚砜类阳离子交换膜的制备方法及其应用
US10059609B2 (en) * 2014-01-06 2018-08-28 King Abdullah University Of Science And Technology Anaerobic electrochemical membrane bioreactor and process for wastewater treatment
CN105140534B (zh) * 2015-08-04 2017-09-12 中山大学 一种微生物燃料电池阳极用石墨烯水凝胶复合物及其制备方法和应用
CN108132285B (zh) * 2017-11-27 2020-11-06 西北工业大学 一种负载生物酶的温度刺激响应酶阳极的制备方法
CN110615533B (zh) * 2019-09-18 2022-03-29 上海泽耀环保科技有限公司 基于生物电强化的水体修复装置及其应用
KR102194179B1 (ko) * 2020-03-26 2020-12-22 서울과학기술대학교 산학협력단 활물질 및 이의 전구체의 혼합물을 포함하는 전해액
CN113970677B (zh) * 2021-10-09 2023-10-27 上海林海生态技术股份有限公司 生物电化学***用电极板可靠性的检测方法
CN114181375B (zh) * 2021-11-25 2023-10-13 五邑大学 一种交联型醌类聚合物及其制备方法与应用
CN115430470A (zh) * 2022-09-13 2022-12-06 广东电网有限责任公司 一种电力电容器漏油监测及催化降解装置***

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450396A (en) * 1977-09-28 1979-04-20 Matsushita Electric Ind Co Ltd Enzyme electrode
JPS5451595A (en) * 1977-09-29 1979-04-23 Matsushita Electric Ind Co Ltd Enzyme electrode
JPS6475956A (en) * 1987-09-18 1989-03-22 Bridgestone Corp Enzyme electrode
JP2000133297A (ja) * 1998-10-30 2000-05-12 Canon Inc 生体代謝利用発電方法及び電池、並びにこれらに用いる電子メディエーター固定化電極
JP2003282124A (ja) * 2002-03-22 2003-10-03 Hitachi Ltd 燃料電池
JP2004071559A (ja) * 2002-07-26 2004-03-04 Sony Corp 燃料電池
JP2004296099A (ja) * 2003-03-25 2004-10-21 Fuji Photo Film Co Ltd 酵素反応を利用した電気エネルギー発生・貯蔵方法および装置
JP2004342412A (ja) * 2003-05-14 2004-12-02 Ebara Corp 有機性物質を利用する発電方法及び装置
JP2005079001A (ja) * 2003-09-02 2005-03-24 Dai Ichi Pure Chem Co Ltd 電子メディエーター、電子メディエーター固定化電極およびこれを用いた生物燃料電池
JP2005317520A (ja) * 2004-03-29 2005-11-10 Ebara Corp 有機性物質を利用する発電方法及び装置
JP2006017923A (ja) * 2004-06-30 2006-01-19 Mitsumi Electric Co Ltd 小型カメラ
JP2006331706A (ja) * 2005-05-24 2006-12-07 Ebara Corp 生物発電用電子メディエーター、生物発電用アノード及びこれらを利用する発電方法及び発電装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03147269A (ja) * 1989-11-02 1991-06-24 Honda Motor Co Ltd 注水式微生物電池
US8076035B2 (en) * 2002-07-26 2011-12-13 Sony Corporation Fuel cell with sequential enzymatic reactions
US20060269826A1 (en) * 2003-03-03 2006-11-30 Eugenii Katz Novel electrode with switchable and tunable power output and fuel cell using such electrode
US7238440B2 (en) * 2003-10-03 2007-07-03 E. I. Du Pont De Nemours And Company Membrane free fuel cell
US7374129B2 (en) * 2004-09-07 2008-05-20 Liquid Sky Kiteboarding, Inc. Device for launching a power kite

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450396A (en) * 1977-09-28 1979-04-20 Matsushita Electric Ind Co Ltd Enzyme electrode
JPS5451595A (en) * 1977-09-29 1979-04-23 Matsushita Electric Ind Co Ltd Enzyme electrode
JPS6475956A (en) * 1987-09-18 1989-03-22 Bridgestone Corp Enzyme electrode
JP2000133297A (ja) * 1998-10-30 2000-05-12 Canon Inc 生体代謝利用発電方法及び電池、並びにこれらに用いる電子メディエーター固定化電極
JP2003282124A (ja) * 2002-03-22 2003-10-03 Hitachi Ltd 燃料電池
JP2004071559A (ja) * 2002-07-26 2004-03-04 Sony Corp 燃料電池
JP2004296099A (ja) * 2003-03-25 2004-10-21 Fuji Photo Film Co Ltd 酵素反応を利用した電気エネルギー発生・貯蔵方法および装置
JP2004342412A (ja) * 2003-05-14 2004-12-02 Ebara Corp 有機性物質を利用する発電方法及び装置
JP2005079001A (ja) * 2003-09-02 2005-03-24 Dai Ichi Pure Chem Co Ltd 電子メディエーター、電子メディエーター固定化電極およびこれを用いた生物燃料電池
JP2005317520A (ja) * 2004-03-29 2005-11-10 Ebara Corp 有機性物質を利用する発電方法及び装置
JP2006017923A (ja) * 2004-06-30 2006-01-19 Mitsumi Electric Co Ltd 小型カメラ
JP2006331706A (ja) * 2005-05-24 2006-12-07 Ebara Corp 生物発電用電子メディエーター、生物発電用アノード及びこれらを利用する発電方法及び発電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1947716A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2174377A1 (en) * 2007-07-03 2010-04-14 Ugcs(University Of Glamorgan Commercial Services Limited) A biological fuel cell
JP2011508938A (ja) * 2007-10-16 2011-03-17 パワー・ノレッジ・リミテッド 微生物燃料電池カソード組立体
EP2270915A4 (en) * 2008-03-28 2013-01-16 Japan Science & Tech Agency MICROBIAL FUEL CELL
EP2270915A1 (en) * 2008-03-28 2011-01-05 Japan Science and Technology Agency Microbial fuel cell
CN102204002A (zh) * 2008-03-28 2011-09-28 独立行政法人科学技术振兴机构 微生物燃料电池
KR101426985B1 (ko) * 2008-03-28 2014-08-06 도쿠리쓰교세이호징 가가쿠 기주쓰 신코 기코 미생물 연료 전지
US8852765B2 (en) 2008-03-28 2014-10-07 Japan Science And Technology Agency Microbial fuel cell
JP5622237B2 (ja) * 2008-03-28 2014-11-12 独立行政法人科学技術振興機構 微生物燃料電池
JP2010009761A (ja) * 2008-06-24 2010-01-14 Yokogawa Electric Corp 固体高分子型燃料電池
US20110229742A1 (en) * 2008-10-30 2011-09-22 Emefcy Limited Electrodes for use in bacterial fuel cells and bacterial electrolysis cells and bacterial fuel cells and bacterial electrolysis cells employing such electrodes
US8932770B2 (en) * 2008-10-30 2015-01-13 Emefcy Limited Electrodes for use in bacterial fuel cells and bacterial electrolysis cells and bacterial fuel cells and bacterial electrolysis cells employing such electrodes
US10458029B2 (en) 2008-10-30 2019-10-29 Emefcy Limited Electrodes for use in bacterial fuel cells and bacterial electrolysis cells and bacterial fuel cells and bacterial electrolysis cells employing such electrodes
US20130059169A1 (en) * 2010-03-19 2013-03-07 Dow Global Technologies Llc High efficiency microbial fuel cell
CN112803117A (zh) * 2021-01-05 2021-05-14 北京金羽新能科技有限公司 一种亲水性隔膜及含有该亲水性隔膜的电池
CN115651140A (zh) * 2022-12-29 2023-01-31 中国农业科学院农业环境与可持续发展研究所 一种三维炭基共聚复合材料及其制备方法和应用

Also Published As

Publication number Publication date
US20090297890A1 (en) 2009-12-03
EP1947716A1 (en) 2008-07-23
JPWO2007037228A1 (ja) 2009-04-09
EP1947716A4 (en) 2009-09-23
CN101322267A (zh) 2008-12-10

Similar Documents

Publication Publication Date Title
WO2007037228A1 (ja) 生物発電用アノード及びこれを利用する発電方法及び装置
JP4773736B2 (ja) 有機性物質を利用する発電方法及び装置
JP2007095471A (ja) 生物発電用アノード及びこれを利用する発電方法及び装置
US20090142627A1 (en) Biological Power Generator, and Method of Treating Organic Solid Pollutant-Containing Waste, a Method of Treating Organic Polymeric Substance-Containing Wastewater, a Method of Treating Organic Substance-Containing Wastewater, as Well as Apparatuses for Implementing These Treatment Methods
Xie et al. Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes
JP6368036B2 (ja) 電極構造体及び微生物燃料電池
Yang et al. Miniaturized biological and electrochemical fuel cells: challenges and applications
JP2007117995A (ja) 有機性高分子物質含有廃液の処理方法及び処理装置
US20110236769A1 (en) Three dimensional electrodes useful for microbial fuel cells
JP2004342412A (ja) 有機性物質を利用する発電方法及び装置
JP2007090232A (ja) 有機性物質含有廃液の処理方法及び装置
JP5751032B2 (ja) 酵素燃料電池
CN106104884B (zh) 用于燃料电池的催化剂层及其制备方法
JP2002512429A (ja) 硫化水素の電気化学的気相酸化法
JP2007117996A (ja) 有機性固形汚濁物質含有廃棄物の処理方法及び装置
Escalona-Villalpando et al. Glucose microfluidic fuel cell using air as oxidant
Mehdinia et al. Nanostructured polyaniline-coated anode for improving microbial fuel cell power output
Xu et al. Anode modification with peptide nanotubes encapsulating riboflavin enhanced power generation in microbial fuel cells
JP2006331706A (ja) 生物発電用電子メディエーター、生物発電用アノード及びこれらを利用する発電方法及び発電装置
Kim et al. Polydopamine/polypyrrole-modified graphite felt enhances biocompatibility for electroactive bacteria and power density of microbial fuel cell
Zhao et al. Promoting electricity generation of shewanella putrefaciens in a microbial fuel cell by modification of porous poly (3-aminophenylboronic acid) film on carbon anode
Kashyap et al. Fabrication of vertically aligned copper nanotubes as a novel electrode for enzymatic biofuel cells
JP2007095470A (ja) 生物発電用アノード及びその製造方法、並びに発電装置
JP2007027019A (ja) 生物発電用アノード及びこれを利用する生物発電方法及び装置
JP2006179223A (ja) 有機性物質を利用する発電方法及び装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680044538.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007537622

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006810582

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11992678

Country of ref document: US