WO2006003482A2 - Method for separating nanotube containing carbonaceous material using cyclones - Google Patents

Method for separating nanotube containing carbonaceous material using cyclones Download PDF

Info

Publication number
WO2006003482A2
WO2006003482A2 PCT/IB2004/004467 IB2004004467W WO2006003482A2 WO 2006003482 A2 WO2006003482 A2 WO 2006003482A2 IB 2004004467 W IB2004004467 W IB 2004004467W WO 2006003482 A2 WO2006003482 A2 WO 2006003482A2
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
gas
carbon
nanotubes
reaction
Prior art date
Application number
PCT/IB2004/004467
Other languages
French (fr)
Other versions
WO2006003482A3 (en
Inventor
Avetik Harutyunyan
Original Assignee
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co., Ltd. filed Critical Honda Motor Co., Ltd.
Publication of WO2006003482A2 publication Critical patent/WO2006003482A2/en
Publication of WO2006003482A3 publication Critical patent/WO2006003482A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/172Sorting
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes

Definitions

  • the present invention relates to methods for the large scale preparation of carbon nanotubes and carbon nanostructures.
  • Carbon nanotubes are hexagonal networks of carbon atoms forming seamless tubes with each end capped with half of a fullerene molecule. They were first reported in 1991 by Sumio Iijima who produced multi-layer concentric tubes or multi- walled carbon nanotubes having up to seven walls by evaporating carbon in an arc discharge. In 1993, Iijima's group and an IBM team headed by Donald Bethune independently discovered that a single-wall nanotube could be made by vaporizing carbon together with a transition metal such as iron or cobalt in an arc generator (see Iijima et al. Nature 363:603 (1993); Bethune et al, Nature 363: 605 (1993) and U.S. Patent No. 5,424,054). The original syntheses produced low yields of non-uniform nanotubes mixed with large amounts of soot and metal particles.
  • Multi-walled carbon nanotubes can be produced on a commercial scale by catalytic hydrocarbon cracking while single-walled carbon nanotubes are still produced on a gram scale.
  • single- walled carbon nanotubes are preferred over multi- walled carbon nanotubes because they have fewer defects and are therefore stronger and more conductive than multi- walled carbon nanotubes of similar diameter. Defects are less likely to occur in single-walled carbon nanotubes because multi-walled carbon nanotubes can survive occasional defects by forming bridges between unsaturated carbon valances, while single- walled carbon nanotubes have no neighboring walls to compensate for defects. Defect-free single- walled nanotubes are expected to have remarkable mechanical, electronic and magnetic properties that could be tunable by varying the diameter, and chirality of the tube.
  • the catalyst and the hydrocarbon precursor gas are fed into a furnace using the gas phase, followed by the catalytic reaction in a gas phase.
  • the catalyst is usually in the form of a metalorganic.
  • HiPCO high-pressure CO reaction
  • Fe(CO) 5 metalorganic iron pentacarbonyl
  • Chen et al. (1998) Appl. Phys. Lett. 72: 3282 employ benzene and the metalorganic ferrocene (Fe(C 5 Hs) 2 ) delivered using a hydrogen gas to synthesize single- walled carbon nanotubes.
  • the disadvantage of this approach is that it is difficult to control particles sizes of the metal catalyst.
  • the decomposition of the organometallic provides the metal catalyst having variable particle size that results in nanotubes having a wide distribution of diameters. Further, the decomposition of the metalorganic precursor forms carbon structures that are not desired. This is presumably because the temperature at the inlet of the reactor is very low in comparison with the decomposition temperature of the catalyst material, and the heat conductivity of the gas is very low. Therefore, the catalyst is gradually heated and slowly decomposed, with the possibility that they are completely covered with carbon layers before they form catalyst particles suitable for nanotube growth.
  • the catalyst is introduced as a liquid pulse into the reactor.
  • Ci et al. (2000) Carbon 38: 1933-1937 dissolve ferrocene in 100 mL of benzene along with a small amount of thiophene. The solution is injected into a vertical reactor in a hydrogen atmosphere. The technique requires that the temperature of bottom wall of the reactor had to be kept at between 205-230 0 C to obtain straight carbon nanotubes.
  • colloidal solution of cobaltmolybdenum (1:1) nanoparticles is prepared and injected into a vertically arranged furnace, along with 1% thiophene and toluene as the carbon source. Bundles of single- walled carbon nanotubes are synthesized.
  • the two-step method of preparing a colloidal solution and injecting it into the reactor has the disadvantages of forming non-desired carbon structures due to the decomposition of the organic surfactants and a low yield of the single- walled carbon nanotubes.
  • the presently available methods of synthesizing carbon nanotubes produce bulk amounts of carbon nanotubes that are generally tangled and kinked. Further, the nanotubes can have molecular level structural defects that can adversely impact their properties.
  • the method allows for the growth of carbon nanotubes of a desired type, such as single-wall nanotubes, and with little or no impurities.
  • the present invention provides methods, apparatuses, and processes for the large scale continuous production of carbon nanostructures, such as single- walled carbon nanotubes.
  • metal particles having controlled particle size and/or diameter are supported on non-carbon containing powdered oxide supports.
  • the resulting metal nanoparticles are used as a growth catalyst for the growth of carbon nanotubes.
  • the supported metal nanoparticles are entrained in a gas and delivered into the reaction chamber as an aerosol.
  • carbon precursor gas such as methane, is provided in the reaction chamber.
  • the flow of the reactants and products through the reaction chamber is controlled such that their contact with the reaction vessel walls is minimized.
  • the reactants are heated to a temperature below about 1000 0 C, and the product is separated.
  • the invention provides methods for separating carbon nanotubes as the nanotubes are being produced.
  • the method comprises guiding transport gas stream, having carbonaceous material comprising the carbon nanotubes and impurities are entrained in it, into a cyclone separator; collecting the impurities in the separator; and collecting the outlet gas exiting the separator wherein carbon nanotubes are entrained in the outlet gas.
  • the invention provides methods for separating carbon nanotubes on a continuous basis as the nanotubes are being produced. The method comprises guiding transport gas into a plurality of cyclone separators; and collecting the solid in each separator.
  • the plurality of cyclone separators can be attached to each other sequentially and in such a manner that the heavier particles are collected before the lighter particles.
  • the plurality of cyclone separators can be attached to the source of the transport gas, such as the reaction chamber, in parallel.
  • Figure 1 illustrates a reaction chamber for the large scale production of one- dimensional carbon nanostructures of the present invention.
  • Figure 2 depicts an apparatus for the large scale production of one-dimensional carbon nanostructures of the present invention.
  • Figure 3 depicts images of the carbon single- walled nanotubes grown by the methods of the present invention.
  • Figure 4 illustrates the cyclone separator used to separate heavy carbonaceous particles from light particles where the carbon single-walled nanotubes are predominant.
  • single-walled carbon nanotube or “one-dimensional carbon nanotube” are used interchangeable and refer to cylindrically shaped thin sheet of carbon atoms having a wall consisting essentially of a single layer of carbon atoms, and arranged in an hexagonal crystalline structure with a graphitic type of bonding.
  • multi-walled carbon nanotube refers to a nanotube composed of more than one concentric tubes.
  • metalorganic or “organometallic” are used interchangeably and refer to co-ordination compounds of organic compounds and a metal, a transition metal or metal halide.
  • passivating solvent refers to an organic solvent that will not co-ordinate with the metal ions, and that is suitable for use in thermal decomposition reactions.
  • halogen refers to fluoro, bromo, chloro and/or iodo.
  • lower alkoxy refers to the oxides of lower alkyl groups.
  • lower alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, n-hexyl, octyl, dodecyl, and the like.
  • the oxides includes methoxide, ethoxide, butoxide, and the like.
  • the present invention discloses methods, apparatus, and processes for the large-scale manufacture of carbon nanotubes and structures composed of carbon nanotubes, preferably single-wall nanotubes.
  • the methods, apparatuses, and processes of the present invention are for synthesizing carbon nanotubes, preferably single-walled carbon nanotubes on a large scale.
  • Catalyst particles of controlled particle size and surface area are isolated and injected into a reactor in the form of an aerosol.
  • a carbon precursor gas is concomitantly introduced into the reactor.
  • the flow of the gases within the reactor chamber is controlled such that minimum amount of carbon deposition occurs on the interior walls of the reaction chamber.
  • the carbon nanotubes thus produced are collected and purified.
  • the methods, apparatuses, and processes disclosed herein are advantageous in that the particle size, diameter distribution, and surface area of the catalyst particle can be controlled, thereby providing control over the size, shape, type, and properties of the carbon nanotubes formed during the chemical deposition process.
  • the metal particles that act as catalysts are supported on well characterized porous powders, such al Al 2 O 3 , instead of supports containing organic materials. Therefore, undesired carbon materials and other impurities are not produced.
  • the invention thus provides for multi-gram synthesis of carbon nanotubes that are substantially free of contaminants.
  • a system for producing carbon nanotubes comprises a reactor capable of maintaining the reaction temperature and having an air-tight chamber where a source of metal catalyst particles as an aerosol, a source of carbon precursor gas and a source of inert gases is provided.
  • the system can additionally comprise an evacuating system connected to the reactor for evacuating gases from the chamber, and/or a collection system for collecting, filtering, and enriching the nanotubes.
  • the reaction vessel can be any conventional furnace configured to allow for control over gas flows within a heated reaction chamber.
  • the reaction vessel can be the horizontal reaction vessel, such as the Carbolite model TZF 12/65/550, or it can be a vertical reaction vessel.
  • the reaction vessel is preferably a vertical reaction vessel 100 illustrated in Figure 1.
  • the reaction chamber 110 can be a quartz tube placed inside the furnace having a means of heating 120 the reaction chamber to the desired temperature required for the growth of the carbon nanotubes.
  • the reaction chamber may be maintained at the appropriate temperature by 1) preheating the carbon precursor gases, 2) preheating the inert gases, 3) preheating the metal catalyst particles on powder supports, 4) externally heating the reaction chamber, 5) applying localized heating in the reaction chamber, such as by laser, induction coil, plasma coil, or any combination of the foregoing.
  • Gas inlets 210, 220, and 230 provide flows of the inert and regent gases and the catalyst during operation of the furnace. Downstream recovery of the product produced by this process can be effected by known means such as filtration, centrifugation and the like. For example, the product is collected at the bottom of the furnace and separated using a separator 300. A plurality of separators can be attached to the apparatus if desired.
  • the angle of the gas inlet 230 will vary depending on the gas chosen, rate of flow of the gas, the geometry of the reaction chamber, the temperature of the reaction chamber, and the like.
  • the angle between the long axis of the reaction chamber and inlet 230 can be 45 ° to about 90 °, or any angle in between.
  • the angle is preferably about 70 ° to about 85 °, or more preferably about 70 ° to about 80 °.
  • the angle between the inlet 230 and the long axis is chosen such that the gas introduced through the inlet follows a helical path along the interior walls of the reaction chamber as it flows through it.
  • two or more "helical" inlets can be provided.
  • the helical path of the gas results in the reduction of deposition of carbon material on the interior walls of the reaction chamber that normally occurs under chemical vapor deposition conditions.
  • the gas inlet 230 can thus be adjusted to the angle that results in the reduction of carbon deposition.
  • gas inlet 230 is not properly aligned, the reaction chamber will quickly accumulate a black layer of sooth on the interior walls. Thus, in the reaction chamber composed of a transparent material, such as glass, proper alignment can be verified visually.
  • the components for the delivery system of gas flow can be connected together using standard Vi inch stainless steel tubing.
  • Conventional gas sources such as pressurized canisters with pressure regulators, can be used for gas sources.
  • the amount of gas delivered to the inlets can typically be controlled using standard mass flow controllers that are commercially available.
  • Downstream recovery of the product produced by this process can be effected by known means such as filtration, centrifugation and the like.
  • the method, processes, and apparatuses of the present invention use metal nanoparticles as the metallic catalyst.
  • the metal or combination of metals selected as the catalyst can be processed to obtain the desired particle size and diameter distribution.
  • the metal nanoparticles can then be separated by being supported on a material suitable for use as a support during synthesis of carbon nanotubes using the metal growth catalysts described below.
  • Such materials include powders of crystalline silicon, polysilicon, silicon nitride, tungsten, magnesium, aluminum and their oxides, preferably aluminum oxide, silicon oxide, magnesium oxide, or titanium dioxide, or combination thereof, optionally modified by addition elements, are used as support powders.
  • the metal nanoparticles on the support powders are injected as an aerosol into the reaction vessel.
  • the function of the metallic catalyst in the carbon nanotube growth process is to decompose the carbon precursors and aid the deposition of ordered carbon as nanotubes
  • the metal catalyst can be selected from a Group V metal, such as V or Nb, and mixtures thereof, a Group VI metal including Cr, W, or Mo, and mixtures thereof, VII metal, such as, Mn, or Re, Group VIII metal including Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, and mixtures thereof, or the lanthanides, such as Ce, Eu, Er, or Yb and mixtures thereof, or transition metals such as Cu, Ag, Au, Zn, Cd, Sc, Y, or La and mixtures thereof.
  • a Group V metal such as V or Nb, and mixtures thereof
  • a Group VI metal including Cr, W, or Mo and mixtures thereof
  • VII metal such as, Mn, or Re
  • Group VIII metal including Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, and mixtures thereof
  • the lanthanides such as Ce, Eu, Er, or Yb and mixtures thereof
  • transition metals such as Cu, Ag, Au, Zn
  • mixture of catalysts such as bimetallic catalysts, which may be employed by the present invention include Co-Cr, Co-W, Co—Mo, Ni-Cr, Ni-W, Ni-Mo, Ru-Cr, Ru- -W, Ru-Mo, Rh-Cr, Rh-W, Rh-Mo, Pd-Cr, Pd-W, Pd-Mo, Ir-Cr, Pt-Cr, Pt-W, and Pt-Mo.
  • the metal catalyst is iron, cobalt, nickel, molybdeum, or a mixture thereof, such as Fe-Mo, Co— Mo and Ni-Fe-Mo.
  • the metal, bimetal, or combination of metals are used to prepare metal nanoparticles having defined particle size and diameter distribution.
  • the metal nanoparticles can be prepared by thermal decomposition of the corresponding metal salt added to a passivating salt, and the temperature of the solvent adjusted to provide the metal nanoparticles, as described in the co-pending and co-owned U.S. Patent Application Serial No. 10/304,316, or by any other method known in the art.
  • the particle size and diameter of the metal nanoparticles can be controlled by using the appropriate concentration of metal in the passivating solvent and by controlling the length of time the reaction is allowed to proceed at the thermal decomposition temperature.
  • Metal nanoparticles having particle size of about 0.01 nm to about 20 nm, more preferably about 0.1 nm to about 3 nm and most preferably about 0.3 nm to 3 nm can be prepared.
  • the metal nanoparticles can thus have a particle size of 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nm, and up to about 20 nm.
  • the metal nanoparticles can have a range of particle sizes.
  • the metal nanoparticles can have particle sizes in the range of about 3 nm and about 7 nm in size, about 5 nm and about 10 nm in size, or about 8 nm and about 16 nm in size.
  • the metal nanoparticles can optionally have a diameter distribution of about 0.5 nm to about 20 nm, preferably about 1 nm to about 15 nm, more preferably about 1 nm to about 5 nm.
  • the metal nanoparticles can have a diameter distribution of about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 nm.
  • the metal salt can be any salt of the metal, and can be selected such that the melting point of the metal salt is lower than the boiling point of the passivating solvent.
  • the metal salt contains the metal ion and a counter ion, where the counter ion can be nitrate, nitride, perchlorate, sulfate, sulfide, acetate, halide, oxide, such as methoxide or ethoxide, acetylacetonate, and the like.
  • the metal salt can be iron acetate (FeAc 2 ), nickel acetate (NiAc 2 ), palladium acetate (PdAc 2 ), molybdenum acetate (MoAc 3 ), and the like, and combinations thereof.
  • the melting point of the metal salt is preferably about 5 0 C to 50 0 C lower than the boiling point, more preferably about 5 0 C to about 20 0 C lower than the boiling point of the passivating solvent.
  • the metal salt can be dissolved in a passivating solvent to give a solution, a suspension, or a dispersion.
  • the solvent is preferably an organic solvent, and can be one in which the chosen metal salt is relatively soluble and stable, and where the solvent has a high enough vapor pressure that it can be easily evaporated under experimental conditions.
  • the solvent can be an ether, such as a glycol ether, 2-(2-butoxyethoxy)ethanol, H(OCH 2 CH 2 ) 2 O(CH 2 ) 3 CH 3 , which will be referred to below using the common name dietheylene glycol mono-n-butyl ether, and the like.
  • the relative amounts of metal salt and passivating solvent are factors in controlling the size of nanoparticles produced.
  • a wide range of molar ratios here referring to total moles of metal salt per mole of passivating solvent, can be used for forming the metal nanoparticles.
  • Typical molar ratios of metal salt to passivating solvent include ratios as low as about 0.0222 (1 :45), or as high as about 2.0 (2:1), or any ratio in between.
  • more than one metal salt can be added to the reaction vessel in order to form metal nanoparticles composed of two or more metals, where the counter ion can be the same or can be different.
  • the relative amounts of each metal salt used can be a factor in controlling the composition of the resulting metal nanoparticles.
  • the molar ratio of the first metal salt to the second metal salt can be about 1:10 to about 10:1, preferably about 2: 1 to about 1 :2, or more preferably about 1.5 : 1 to about 1 : 1.5, or any ratio in between.
  • the molar ratio of iron acetate to nickel acetate can be 1:2, 1:1.5, 1.5:1, or 1:1.
  • the passivating solvent and the metal salt reaction solution can be mixed to give a homogeneous solution, suspension, or dispersion.
  • the reaction solution can be mixed using standard laboratory stirrers, mixtures, sonicators, and the like, optionally with heating.
  • the homogenous mixture thus obtained can be subjected to thermal decomposition in order to form the metal nanoparticles.
  • the thermal decomposition reaction is started by heating the contents of the reaction vessel to a temperature above the melting point of at least one metal salt in the reaction vessel.
  • Any suitable heat source may be used including standard laboratory heaters, such as a heating mantle, a hot plate, or a Bunsen burner, and the heating can be under reflux.
  • the length of the thermal decomposition can be selected such that the desired size of the metal nanoparticles can be obtained. Typical reaction times can be from about 10 minutes to about 120 minutes, or any integer in between.
  • the thermal decomposition reaction is stopped at the desired time by reducing the temperature of the contents of the reaction vessel to a temperature below the melting point of the metal salt.
  • the size and distribution of metal nanoparticles produced can be verified by any suitable method.
  • TEM transmission electron microscopy
  • a suitable model is the Phillips CM300 FEG TEM that is commercially available from FEI Company of Hillsboro, OR.
  • 1 or more drops of the metal nanoparticle/passivating solvent solution are placed on a carbon membrane grid or other grid suitable for obtaining TEM micrographs.
  • the TEM apparatus is then used to obtain micrographs of the nanoparticles that can be used to determine the distribution of nanoparticle sizes created.
  • the metal nanoparticles such as those formed by thermal decomposition described in detail above, can then be supported on solid supports.
  • the solid support can be silica, alumina, MCM-41, MgO, ZrO 2 , aluminum-stabilized magnesium oxide, zeolites, or other oxidic supports known in the art, and combinations thereof.
  • Al 2 O 3 -SiO 2 hybrid support could be used.
  • the support is aluminum oxide (Al 2 O 3 ) or silica (SiO 2 ).
  • the oxide used as solid support can be powdered thereby providing small particle sizes and large surface areas.
  • the powdered oxide can preferably have a particle size between about 0.01 ⁇ m to about 100 ⁇ m, more preferably about 0.1 ⁇ m to about 10 ⁇ m, even more preferably about 0.5 ⁇ m to about 5 ⁇ m, and most preferably about 1 ⁇ m to about 2 ⁇ m.
  • the powdered oxide can have a surface area of about 50 to about 1000 m 2 /g, more preferably a surface area of about 200 to about 800 m 2 /g.
  • the powdered oxide can be freshly prepared or commercially available.
  • the metal nanoparticles are supported on solid supports via secondary dispersion and extraction.
  • Secondary dispersion begins by introducing particles of a powdered oxide, such as aluminum oxide (Al 2 O 3 ) or silica (SiO 2 ), into the reaction vessel after the thermal decomposition reaction.
  • a powdered oxide such as aluminum oxide (Al 2 O 3 ) or silica (SiO 2 )
  • Al 2 O 3 powder with 1 — 2 ⁇ m particle size and having a surface area of 300 — 500 m 2 /g is commercially available from Alfa Aesar of Ward Hill, MA, or Degussa, NJ.
  • Powdered oxide can be added to achieve a desired weight ratio between the powdered oxide and the initial amount of metal used to form the metal nanoparticles. Typically, the weight ratio can be between about 10:1 and about 15:1.
  • the mixture of powdered oxide and the metal nanoparticle/passivating solvent mixture can be mixed to form a homogenous solution, suspension or dispersion.
  • the homogenous solution, suspension or dispersion can be formed using sonicator, a standard laboratory stirrer, a mechanical mixer, or any other suitable method, optionally with heating.
  • the mixture of metal nanoparticles, powdered oxide, and passivating solvent can be first sonicated at roughly 80°C for 2 hours, and then sonicated and mixed with a laboratory stirrer at 8O 0 C for 30 minutes to provide a homogenous solution.
  • the dispersed metal nanoparticles and powdered oxide can be extracted from the passivating solvent.
  • the extraction can be by filtration, centrifugation, removal of the solvents under reduced pressure, removal of the solvents under atmospheric pressure, and the like.
  • extraction includes heating the homogenized mixture to a temperature where the passivating solvent has a significant vapor pressure.
  • This temperature can be maintained until the passivating solvent evaporates, leaving behind the metal nanoparticles deposited in the pores of the Al 2 O 3 .
  • the homogenous dispersion can be heated to 231 0 C, the boiling point of the passivating solvent, under an N 2 flow. The temperature and N 2 flow are maintained until the passivating solvent is completely evaporated. After evaporating the passivating solvent, the powdered oxide and metal nanoparticles are left behind on the walls of the reaction vessel as a film or residue. When the powdered oxide is Al 2 O 3 , the film will typically be black.
  • the metal nanoparticle and powdered oxide film can be removed from the reaction vessel and ground to create a fine powder, thereby increasing the available surface area of the mixture.
  • the mixture can be ground with a mortar and pestle, by a commercially available mechanical grinder, or by any other methods of increasing the surface area of the mixture will be apparent to those of skill in the art.
  • the powdered oxide serves two functions during the extraction process.
  • the powdered oxides are porous and have high surface area. Therefore, the metal nanoparticles will settle in the pores of the powdered oxide during secondary dispersion. Settling in the pores of the powdered oxide physically separates the metal nanoparticles from each other, thereby preventing agglomeration of the metal nanoparticles during extraction. This effect is complemented by the amount of powdered oxide used.
  • the weight ratio of metal nanoparticles to powdered oxide can be between about 1:10 and 1:15.
  • the relatively larger amount of powdered oxide in effect serves to further separate or 'dilute' the metal nanoparticles as the passivating solvent is removed. The process thus provides metal nanoparticles of defined particle size.
  • the catalyst thus prepared can be stored for later use.
  • the metal nanoparticles can be previously prepared, isolated from the passivating solvent, and purified, and then added to a powdered oxide in a suitable volume of the same or different passivating solvent.
  • the metal nanoparticles and powdered oxide can be homogenously dispersed, extracted from the passivating solvent, and processed to increase the effective surface area as described above.
  • Other methods for preparing the metal nanoparticle and powdered oxide mixture will be apparent to those skilled in the art.
  • the metal nanoparticles thus formed can be used as a growth catalyst for synthesis of carbon nanotubes, nanofibers, and other one-dimensional carbon nanostructures by a chemical vapor deposition (CVD) process.
  • CVD chemical vapor deposition
  • the carbon nanotubes can be synthesized using carbon precursors, such as carbon containing gases.
  • carbon precursors such as carbon containing gases.
  • any carbon containing gas that does not pyrolize at temperatures up to about 1000 0 C can be used.
  • suitable carbon-containing gases include carbon monoxide, aliphatic hydrocarbons, both saturated and unsaturated, such as methane, ethane, propane, butane, pentane, hexane, ethylene, acetylene and propylene; oxygenated hydrocarbons such as acetone, and methanol; aromatic hydrocarbons such as benzene, toluene, and naphthalene; and mixtures of the above, for example carbon monoxide and methane.
  • the use of acetylene promotes formation of multi- walled carbon nanotubes, while CO and methane are preferred feed gases for formation of single-walled carbon nanotubes.
  • the carbon-containing gas may optionally be mixed with a diluent gas such as hydrogen, helium, argon, neon, krypton and xenon or a mixture thereof.
  • a diluent gas such as hydrogen, helium, argon, neon, krypton and xenon or a mixture thereof.
  • the specific reaction temperature used depends on the type of catalyst and the type of precursor. Energy balance equations for the respective chemical reactions can be used to analytically determine the optimum CVD reaction temperature to grow carbon nanotubes. This determines the required reaction temperature ranges. The optimum reaction temperature also depends on the flow rates of the selected precursor and the catalyst. In general, the method requires CVD reaction temperatures ranging from 500 0 C to 1000 0 C, more preferably reaction temperatures ranging from 700 0 C to 900 0 C.
  • the metal nanoparticles supported on the oxide powder can be aerosolized and introduced into the reactor maintained at the reaction temperature. Simultaneously, the carbon precursor gas is introduced into the reactor. The flow of reactants within the reactor can be controlled such that the deposition of the carbon products on the walls of the reactor is reduced. The carbon nanotubes thus produced can be collected and separated.
  • the metal nanoparticles supported on the oxide powder can be aerosolized by any of the art known methods. In one method, the supported metal nanoparticles are aerosolized using an inert gas, such as helium, neon, argon, krypton, xenon, or radon. Preferably argon is used.
  • argon is forced through a particle injector, and into the reactor.
  • the particle injector can be any vessel that is capable of containing the supported metal nanoparticles and that has a means of agitating the supported metal nanoparticles.
  • the catalyst deposited on a powdered porous oxide substrate can be placed in a beaker that has a mechanical stirrer attached to it.
  • the supported metal nanoparticles can be stirred or mixed in order to assist the entrainment of the catalyst in the transporter gas, such as argon.
  • the nanotube synthesis generally occurs as described below and illustrated in Figure 2.
  • An inert transporter gas 110 preferably argon gas, is passed through a particle injector 130.
  • the particle injector 130 can be a beaker or other vessel containing the growth catalyst supported on a powdered porous oxide substrate.
  • the powdered porous oxide substrate in the particle injector can be stirred or mixed in order to assist the entrainment of the powdered porous oxide substrate in the argon gas flow.
  • the inert gas can be passed through a drying system 120 to dry the gas.
  • the argon gas, with the entrained powdered porous oxide can then be passed through a pre-heater to raise the temperature of this gas flow to about 400 0 C to about 500 0 C.
  • the entrained powdered porous oxide is then delivered to the reaction chamber 200.
  • a flow of methane 140 or another carbon source gas and hydrogen 150 is also delivered to the reaction chamber.
  • the typical flow rates can be 500 seem for argon, 400 seem for methane, and 100 seem for He. Additionally, 500 seem of argon can be directed into the helical flow inlets to reduce deposition of carbon products on the wall of the reaction chamber.
  • the reaction chamber can be heated to between about 800 0 C and 900 0 C during reaction using heaters 210. The temperature is preferably kept below the decomposition temperature of the carbon precursor gas. For example, at temperatures above 1000 0 C, methane is known to break down directly into soot rather than forming carbon nanostructures with the metal growth catalyst. [0058] Carbon nanotubes and other carbon nanostructures synthesized in reaction chamber 200 then enter the filtration system 220.
  • the filtration system can be composed of a single collection vessel or a series of collection vessels that are connected to outlet of the reaction chamber.
  • the collection vessels sort the carbon nanotubes and other outputs by weight. On average, the heaviest reaction products will settle in the first collection vessel.
  • the secondary and tertiary vessels will collect on average lighter products.
  • the carbon nanotubes will be relatively light compared to many of the soot particles generated, so the carbon nanotubes will preferentially collect in the secondary and tertiary collection vessels.
  • the collection vessels permit continuous operation of the reaction chamber, as the chamber does not have to be cooled to harvest the synthesized nanotubes. Instead, the nanotubes can be harvested by changing the collection vessel.
  • the collection vessels can be connected via valves.
  • each collection vessel has outlet valves to allow for connection of two additional collection vessels.
  • one outlet valve on each collection vessel will be open.
  • the collection vessels will capture the various reaction products, with lighter reaction products tending to accumulate in the secondary or tertiary collection vessel.
  • the first outlet valve is closed and the second outlet valve is opened. This diverts the flow of reaction products into a second collection vessel. The first collection vessel can then be opened for harvesting of the reaction products while still synthesizing additional carbon nanostructures.
  • the collection vessels permit continuous operation of the reaction chamber as the chamber does not have to be cooled to harvest the synthesized nanotubes. Instead, the nanotubes can be harvested by either emptying the collection vessels or by changing the collection vessel.
  • the collection vessels can be connected via valves.
  • each collection vessel has outlet valves to allow for connection of two additional collection vessels. During typical operation, one outlet valve on each collection vessel will be open.
  • the collection vessels will capture the various reaction products, with lighter reaction products tending to accumulate in the secondary or tertiary collection vessel.
  • the first outlet valve is closed and the second outlet valve is opened. This diverts the flow of reaction products into a second collection vessel.
  • the first collection vessel can then be opened for harvesting of the reaction products while still synthesizing additional carbon nanostructures.
  • the collection vessels are generally cyclone-type separators.
  • the transport gasses having the carbon nanotubes and byproducts entrailed therein generally enters a cylindrical chamber tangentially through an upper inlet.
  • the particles in the transport gas spin in a vortex and follow a helical, downwardly inclined path.
  • the heavier particles are forced to the outside wall by centrifugal force, while the lighter particles remain entrailed in the transport gases.
  • the centrifugal forces can be described by the following equation:
  • F c_entrifugal R where F is a centrifugal force, m is the mass of the particle, V is the velocity of the particle, and R is the radius of the spiral motion of the particle as it spins down. The heavier particles forced to the wall are then pulled by gravity down the walls and eventually fall to the bottom.
  • the transport gases with the lighter particles still entrailed can exit through a discharge outlet which extends from atop the cyclone separator.
  • the cyclone separators utilize centrifugal forces and low pressure caused by spinning motion to separate solid particles of differing density, size and shape.
  • Figure 4 illustrates the operating principles in a typical cyclone separator that can be utilized to remove entrained particles from a transport gas, such as may be used in the synthesis of carbon nanotubes.
  • the cyclone separator 100 has an inlet pipe 10 and a main body comprising upper cylindrical portion 20 and lower conical portion 30.
  • the particle laden gas stream is injected through inlet pipe 10 which is positioned tangentially to upper cylindrical portion 20.
  • the shape of upper cylindrical portion 20 and the conical portion 30 induces the gas stream to spin creating a vortex.
  • the efficiency of the cyclone separator in removing particles of different diameters depends on the diameter (D 1 ) of the cyclone, the diameter (D 2 ) of the powder outlet, the diameter (D 3 ) of the inlet, and the diameter (D 4 ) of the gas outlet. These dimensions can be varied to alter the diameter of the particles that may be removed by the cyclone.
  • the first cyclonic separator in a series can separate out large particles.
  • the smaller particles remain entrained in the transport gas and are transported to the second sequential cyclone.
  • the second sequential cyclone is designed to remove the smaller particles which are entrained in the transport gas. If larger particles are carried over into the second cyclone separator, then they will typically not be removed by the cyclone separator but exit the cyclone with the transport gas stream.
  • a plurality of cyclone separators that are attached to the reaction chamber in parallel or in a series can be used to separate carbon nanotubes from the byproducts of the reaction that are entrained in a transport gas stream.
  • the carbon nanotubes and nanostructures produced by the methods and processes described above can be used in applications that include Field Emission Devices, Memory devices (high-density memory arrays, memory logic switching arrays), Nano- MEMs, AFM imaging probes, distributed diagnostics sensors, and strain sensors.
  • Other key applications include: thermal control materials, super strength and light weight reinforcement and nanocomposites, EMI shielding materials, catalytic support, gas storage materials, high surface area electrodes, and light weight conductor cable and wires, and the like.
  • Catalysts were prepared by impregnating support materials in metal salt solutions.
  • FeAc 2 in methanol was used at a molar ratio of Fe: Al 2 O 3 of 1 :15.
  • FeAc 2 was added to dietheylene glycol mono-n-butyl ether in the molar ratio of lmM:20mM.
  • the reaction mixture was mixed under the nitrogen atmosphere using a magnetic stir bar, and heated under reflux for 90 minutes.
  • the reaction mixture was then cooled to room temperature, and Al 2 O 3 (15 mM) was added at once.
  • the reaction solution was stirred at room temperature for 15 minutes, and then heated to 150 0 C for 3 hours.
  • the reaction was cooled to 90 °C while flowing a stream of N 2 over the mixture to remove the solvent.
  • a black film formed on the walls of the reaction flask. The black film was collected and ground with an agate mortar to obtain a fine black powder.
  • Figure 2 Typically, 1O g of the Al 2 O 3 -supported iron catalyst was placed in the particle injector mounted with a mechanical stirrer. The catalyst was stirred while argon is passed through the particle injector at a flow rate of 500 seem. The argon flow with the entrained particles is passed through a flexible tube that is wrapped around a central heating coil that serves as the pre-heater. The pre-heater was set for 600 0 C. The pre-heated argon flow with the entrained particles was then passed into the reaction chamber.
  • the reaction chamber was heated to 900 0 C.
  • Argon at a rate of 500 seem, was injected through the helical flow inlets into the reaction chamber.
  • Argon as a transport gas for catalysts at the rate of 1500sccm, was injected through the injector to the chamber.
  • the synthesis was begun by flowing a mixture at CH 4 at a flow rate of 150 seem and H 2 at a flow rate of 50 seem into the reaction chamber.
  • the temperature and gas flows were maintained for 120 minutes in order to form carbon nanostructures.
  • the single- walled carbon nanotubes were collected using the product separators. Carbon nanotubes were made at a yield of ⁇ 100 g/h.
  • the TEM images of the single- walled carbon nanotubes thus produced is given in Figure 3.

Abstract

Method for separating nanotube containing carbonaceous material using cyclone. The obtained nanotubes, preferably single-walled carbon nanotubes, are separated from the catalyst and soot by passing a transport gas containing the carbonaceous material in one or more cyclones. The heavier are collected in the first separator and the nanotubes are entrained in the outlet gas.

Description

Systems and Methods for Production of Carbon Nanostructures
Related Application Data
[0001] This application claims the benefit of United States provisional patent application number 10/727,707 filed on December 03, 2003, which is herein incorporated by reference in its entirety.
Field of Invention
[0002] The present invention relates to methods for the large scale preparation of carbon nanotubes and carbon nanostructures.
Background
[0003] Carbon nanotubes are hexagonal networks of carbon atoms forming seamless tubes with each end capped with half of a fullerene molecule. They were first reported in 1991 by Sumio Iijima who produced multi-layer concentric tubes or multi- walled carbon nanotubes having up to seven walls by evaporating carbon in an arc discharge. In 1993, Iijima's group and an IBM team headed by Donald Bethune independently discovered that a single-wall nanotube could be made by vaporizing carbon together with a transition metal such as iron or cobalt in an arc generator (see Iijima et al. Nature 363:603 (1993); Bethune et al, Nature 363: 605 (1993) and U.S. Patent No. 5,424,054). The original syntheses produced low yields of non-uniform nanotubes mixed with large amounts of soot and metal particles.
[0004] Presently, there are three main approaches for the synthesis of single- and multi-walled carbon nanotubes. These include the electric arc discharge of graphite rod (Journet et al. Nature 388: 756 (1997)), the laser ablation of carbon (Thess et al. Science 273: 483 (1996)), and the chemical vapor deposition of hydrocarbons (Ivanov et al. Chem. Phys. Lett 223: 329 (1994); Li et al. Science 274: 1701 (1996)). Multi-walled carbon nanotubes can be produced on a commercial scale by catalytic hydrocarbon cracking while single-walled carbon nanotubes are still produced on a gram scale. [0005] Generally, single- walled carbon nanotubes are preferred over multi- walled carbon nanotubes because they have fewer defects and are therefore stronger and more conductive than multi- walled carbon nanotubes of similar diameter. Defects are less likely to occur in single-walled carbon nanotubes because multi-walled carbon nanotubes can survive occasional defects by forming bridges between unsaturated carbon valances, while single- walled carbon nanotubes have no neighboring walls to compensate for defects. Defect-free single- walled nanotubes are expected to have remarkable mechanical, electronic and magnetic properties that could be tunable by varying the diameter, and chirality of the tube.
[0006] The electric arch discharge and the laser ablation methods of producing single- walled carbon nanotubes are not practical for producing industrial scale volumes of nanotubes. Both methods involve evaporating carbon atoms from solid carbon sources at greater than 3000 0C thereby setting a limit to the quantity of nanotubes that can be synthesized. Moreover, both methods grow nanotubes in highly tangled form with carbon and metal impurities. The nanotubes produced by these methods are difficult to purify, manipulate and assemble for building nanotube devices. The chemical vapor deposition method, on the other hand, is scalable and represents possibly the best method for the large scale production of nanotubes.
[0007] Presently, there are two types of chemical vapor deposition for the large scale syntheses of single- walled carbon nanotubes that are distinguishable depending on the form of supplied catalyst. In one, the catalyst is embedded in porous material or supported on a substrate, placed at a fixed position of a furnace, and heated in a flow of hydrocarbon precursor gas. Cassell et al. (1999) J. Phys. Chem. B 103: 6484-6492 studied the effect of different catalysts and supports on the synthesis of bulk quantities of single- walled carbon nanotubes using methane as the carbon source in chemical vapor deposition. They systematically studied Fe(NO3)3 supported on Al2O3, Fe(S O4)3 supported on Al2O3, Fe/Ru supported on Al2O3, Fe/Mo supported on Al2O3, and Fe/Mo supported on Al2O3-SiO2 hybrid support. The bimetallic catalyst supported on the hybrid support material provided the highest yield of the nanotubes. Su et al. (2000) Chem. Phys. Lett. 322: 321-326 reported the use of a bimetal catalyst supported on an aluminum oxide aerogel to produce single- walled carbon nanotubes. They reported preparation of the nanotubes is greater than 200% the weight of the catalyst used. In comparison, similar catalyst supported on Al2O3 powder yields approximately 40% the weight of the starting catalyst. Thus, the use of the aerogel support improved the amount of nanotubes produced per unit weight of the catalyst by a factor of 5. [0008] In the second type of carbon vapor deposition, the catalyst and the hydrocarbon precursor gas are fed into a furnace using the gas phase, followed by the catalytic reaction in a gas phase. The catalyst is usually in the form of a metalorganic. Nikolaev et al. (1999) Chem. Phys. Lett. 313: 91 disclose a high-pressure CO reaction (HiPCO) method in which carbon monoxide (CO) gas reacts with the metalorganic iron pentacarbonyl (Fe(CO)5) to form single-walled carbon nanotubes. It is claimed that 400 g of nanotubes can be synthesized per day. Chen et al. (1998) Appl. Phys. Lett. 72: 3282 employ benzene and the metalorganic ferrocene (Fe(C5Hs)2) delivered using a hydrogen gas to synthesize single- walled carbon nanotubes. The disadvantage of this approach is that it is difficult to control particles sizes of the metal catalyst. The decomposition of the organometallic provides the metal catalyst having variable particle size that results in nanotubes having a wide distribution of diameters. Further, the decomposition of the metalorganic precursor forms carbon structures that are not desired. This is presumably because the temperature at the inlet of the reactor is very low in comparison with the decomposition temperature of the catalyst material, and the heat conductivity of the gas is very low. Therefore, the catalyst is gradually heated and slowly decomposed, with the possibility that they are completely covered with carbon layers before they form catalyst particles suitable for nanotube growth.
[0009] In another method, the catalyst is introduced as a liquid pulse into the reactor.
Ci et al. (2000) Carbon 38: 1933-1937 dissolve ferrocene in 100 mL of benzene along with a small amount of thiophene. The solution is injected into a vertical reactor in a hydrogen atmosphere. The technique requires that the temperature of bottom wall of the reactor had to be kept at between 205-230 0C to obtain straight carbon nanotubes. In the method of Ago et al. (2001) J. Phys. Chem. 105: 10453-10456, colloidal solution of cobaltmolybdenum (1:1) nanoparticles is prepared and injected into a vertically arranged furnace, along with 1% thiophene and toluene as the carbon source. Bundles of single- walled carbon nanotubes are synthesized.
[0010] The synthesis of long strands of ordered single-walled carbon nanotubes by catalytic chemical vapor deposition has been reported by Zhu et al. (2002) Science 296:884- 886. They utilize the floating ferrocene catalyst in a vertical furnace to catalytically pyrolyze n-hexane, where n-hexane is combined with thiophene and hydrogen. Typically, thiophene and ferrocene are dissolved in n-hexane and sprayed into the hydrogen stream from the top of a vertical furnace heated to the pyrolysis temperature of 1423K. The gas 67
flow carries the nanotube strands downstream, and the nanotubes can be collected at the bottom of the furnace at the reported yields of about 0.5 g/hour. [0011] The two-step method of preparing a colloidal solution and injecting it into the reactor has the disadvantages of forming non-desired carbon structures due to the decomposition of the organic surfactants and a low yield of the single- walled carbon nanotubes. Thus, the presently available methods of synthesizing carbon nanotubes produce bulk amounts of carbon nanotubes that are generally tangled and kinked. Further, the nanotubes can have molecular level structural defects that can adversely impact their properties.
[0012] Thus, there is a need for methods for bulk, industrial scale synthesis of carbon nanotubes. Preferably, the method allows for the growth of carbon nanotubes of a desired type, such as single-wall nanotubes, and with little or no impurities.
Summary
[0013] The present invention provides methods, apparatuses, and processes for the large scale continuous production of carbon nanostructures, such as single- walled carbon nanotubes. In one aspect, metal particles having controlled particle size and/or diameter are supported on non-carbon containing powdered oxide supports. The resulting metal nanoparticles are used as a growth catalyst for the growth of carbon nanotubes. The supported metal nanoparticles are entrained in a gas and delivered into the reaction chamber as an aerosol. Additionally, carbon precursor gas, such as methane, is provided in the reaction chamber. The flow of the reactants and products through the reaction chamber is controlled such that their contact with the reaction vessel walls is minimized. The reactants are heated to a temperature below about 1000 0C, and the product is separated. [0014] In one aspect, the invention provides methods for separating carbon nanotubes as the nanotubes are being produced. The method comprises guiding transport gas stream, having carbonaceous material comprising the carbon nanotubes and impurities are entrained in it, into a cyclone separator; collecting the impurities in the separator; and collecting the outlet gas exiting the separator wherein carbon nanotubes are entrained in the outlet gas. [0015] In another aspect, the invention provides methods for separating carbon nanotubes on a continuous basis as the nanotubes are being produced. The method comprises guiding transport gas into a plurality of cyclone separators; and collecting the solid in each separator. The plurality of cyclone separators can be attached to each other sequentially and in such a manner that the heavier particles are collected before the lighter particles. Alternatively, the plurality of cyclone separators can be attached to the source of the transport gas, such as the reaction chamber, in parallel.
[0016] These and other aspects of the present invention will become evident upon reference to the following detailed description, hi addition, various references are set forth herein which describe in more detail certain procedures or compositions, and are therefore incorporated by reference in their entirety.
Brief Description of Drawings
[0017] Figure 1 illustrates a reaction chamber for the large scale production of one- dimensional carbon nanostructures of the present invention.
[0018] Figure 2 depicts an apparatus for the large scale production of one-dimensional carbon nanostructures of the present invention.
[0019] Figure 3 depicts images of the carbon single- walled nanotubes grown by the methods of the present invention.
[0020] Figure 4 illustrates the cyclone separator used to separate heavy carbonaceous particles from light particles where the carbon single-walled nanotubes are predominant.
Detailed Description
I. Definitions
[0021] Unless otherwise stated, the following terms used in this application, including the specification and claims, have the definitions given below. It must be noted that, as used in the specification and the appended claims, the singular forms "a," "an" and "the" include plural referents unless the context clearly dictates otherwise. Definition of standard chemistry terms may be found in reference works, including Carey and Sundberg (1992)
"Advanced Organic Chemistry 3rd Ed." VoIs. A and B, Plenum Press, New York, and
Cotton et al. (1999) "Advanced Inorganic Chemistry 6th Ed." Wiley, New York.
[0022] The terms "single-walled carbon nanotube" or "one-dimensional carbon nanotube" are used interchangeable and refer to cylindrically shaped thin sheet of carbon atoms having a wall consisting essentially of a single layer of carbon atoms, and arranged in an hexagonal crystalline structure with a graphitic type of bonding.
[0023] The term "multi-walled carbon nanotube" as used herein refers to a nanotube composed of more than one concentric tubes. [0024] The terms "metalorganic" or "organometallic" are used interchangeably and refer to co-ordination compounds of organic compounds and a metal, a transition metal or metal halide.
[0025] The term "passivating solvent" as used herein refers to an organic solvent that will not co-ordinate with the metal ions, and that is suitable for use in thermal decomposition reactions.
[0026] The term "halogen" as used herein refers to fluoro, bromo, chloro and/or iodo.
[0027] The term "lower alkoxy" refers to the oxides of lower alkyl groups. Examples of lower alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, n-hexyl, octyl, dodecyl, and the like. The oxides includes methoxide, ethoxide, butoxide, and the like.
II. Overview
[0028] The present invention discloses methods, apparatus, and processes for the large-scale manufacture of carbon nanotubes and structures composed of carbon nanotubes, preferably single-wall nanotubes.
[0029] The methods, apparatuses, and processes of the present invention are for synthesizing carbon nanotubes, preferably single-walled carbon nanotubes on a large scale. Catalyst particles of controlled particle size and surface area are isolated and injected into a reactor in the form of an aerosol. A carbon precursor gas is concomitantly introduced into the reactor. The flow of the gases within the reactor chamber is controlled such that minimum amount of carbon deposition occurs on the interior walls of the reaction chamber. The carbon nanotubes thus produced are collected and purified.
[0030] The methods, apparatuses, and processes disclosed herein are advantageous in that the particle size, diameter distribution, and surface area of the catalyst particle can be controlled, thereby providing control over the size, shape, type, and properties of the carbon nanotubes formed during the chemical deposition process. In addition, the metal particles that act as catalysts are supported on well characterized porous powders, such al Al2O3, instead of supports containing organic materials. Therefore, undesired carbon materials and other impurities are not produced. The invention thus provides for multi-gram synthesis of carbon nanotubes that are substantially free of contaminants.
III. The Reaction Vessel IB2004/004467
[0031] In one aspect of the invention, a system for producing carbon nanotubes is provided. The system comprises a reactor capable of maintaining the reaction temperature and having an air-tight chamber where a source of metal catalyst particles as an aerosol, a source of carbon precursor gas and a source of inert gases is provided. The system can additionally comprise an evacuating system connected to the reactor for evacuating gases from the chamber, and/or a collection system for collecting, filtering, and enriching the nanotubes. The system, process and methods of the present invention are described with reference to the accompanying figures, where like reference numerals indicate identical or functionally similar elements. Also in the figures, the left most digit of each reference numeral corresponds to the figure in which the reference numeral is first used. [0032] The reaction vessel can be any conventional furnace configured to allow for control over gas flows within a heated reaction chamber. For example, the reaction vessel can be the horizontal reaction vessel, such as the Carbolite model TZF 12/65/550, or it can be a vertical reaction vessel. The reaction vessel is preferably a vertical reaction vessel 100 illustrated in Figure 1. The reaction chamber 110 can be a quartz tube placed inside the furnace having a means of heating 120 the reaction chamber to the desired temperature required for the growth of the carbon nanotubes. The reaction chamber may be maintained at the appropriate temperature by 1) preheating the carbon precursor gases, 2) preheating the inert gases, 3) preheating the metal catalyst particles on powder supports, 4) externally heating the reaction chamber, 5) applying localized heating in the reaction chamber, such as by laser, induction coil, plasma coil, or any combination of the foregoing. Gas inlets 210, 220, and 230 provide flows of the inert and regent gases and the catalyst during operation of the furnace. Downstream recovery of the product produced by this process can be effected by known means such as filtration, centrifugation and the like. For example, the product is collected at the bottom of the furnace and separated using a separator 300. A plurality of separators can be attached to the apparatus if desired.
[0033] In one aspect, the metal nanoparticles, in the form of an aerosol, are introduced into the reaction chamber 110 via inlet 210. The methods and apparatuses for forming the aerosol are described in detail in the commonly owned and co-pending application entitled "Dry Powder Injector." The carbon precursor gas, optionally as a mixture with one or more other gases, is introduced into the reaction chamber via inlet 220. Inlets 210 and 220 are positioned such that the flow of the catalyst and the carbon precursor gas is substantially aligned with the long axis of the reaction chamber. In contrast, the inlet 230, which 67
provides the means for the introduction of another gas, such as argon, into the reaction chamber, and the inlet is positioned at an angle relative to the long axis of the reaction chamber. The angle of the gas inlet 230 will vary depending on the gas chosen, rate of flow of the gas, the geometry of the reaction chamber, the temperature of the reaction chamber, and the like. The angle between the long axis of the reaction chamber and inlet 230 can be 45 ° to about 90 °, or any angle in between. The angle is preferably about 70 ° to about 85 °, or more preferably about 70 ° to about 80 °. The angle between the inlet 230 and the long axis is chosen such that the gas introduced through the inlet follows a helical path along the interior walls of the reaction chamber as it flows through it. Further, two or more "helical" inlets can be provided. The helical path of the gas results in the reduction of deposition of carbon material on the interior walls of the reaction chamber that normally occurs under chemical vapor deposition conditions. The gas inlet 230 can thus be adjusted to the angle that results in the reduction of carbon deposition. When gas inlet 230 is not properly aligned, the reaction chamber will quickly accumulate a black layer of sooth on the interior walls. Thus, in the reaction chamber composed of a transparent material, such as glass, proper alignment can be verified visually.
[0034] The components for the delivery system of gas flow can be connected together using standard Vi inch stainless steel tubing. Conventional gas sources, such as pressurized canisters with pressure regulators, can be used for gas sources. The amount of gas delivered to the inlets can typically be controlled using standard mass flow controllers that are commercially available.
[0035] Downstream recovery of the product produced by this process can be effected by known means such as filtration, centrifugation and the like.
V. The Catalyst
[0036] The method, processes, and apparatuses of the present invention use metal nanoparticles as the metallic catalyst. The metal or combination of metals selected as the catalyst can be processed to obtain the desired particle size and diameter distribution. The metal nanoparticles can then be separated by being supported on a material suitable for use as a support during synthesis of carbon nanotubes using the metal growth catalysts described below. Such materials include powders of crystalline silicon, polysilicon, silicon nitride, tungsten, magnesium, aluminum and their oxides, preferably aluminum oxide, silicon oxide, magnesium oxide, or titanium dioxide, or combination thereof, optionally modified by addition elements, are used as support powders. The metal nanoparticles on the support powders are injected as an aerosol into the reaction vessel. The function of the metallic catalyst in the carbon nanotube growth process is to decompose the carbon precursors and aid the deposition of ordered carbon as nanotubes
[0037] The metal catalyst can be selected from a Group V metal, such as V or Nb, and mixtures thereof, a Group VI metal including Cr, W, or Mo, and mixtures thereof, VII metal, such as, Mn, or Re, Group VIII metal including Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, and mixtures thereof, or the lanthanides, such as Ce, Eu, Er, or Yb and mixtures thereof, or transition metals such as Cu, Ag, Au, Zn, Cd, Sc, Y, or La and mixtures thereof. Specific examples of mixture of catalysts, such as bimetallic catalysts, which may be employed by the present invention include Co-Cr, Co-W, Co—Mo, Ni-Cr, Ni-W, Ni-Mo, Ru-Cr, Ru- -W, Ru-Mo, Rh-Cr, Rh-W, Rh-Mo, Pd-Cr, Pd-W, Pd-Mo, Ir-Cr, Pt-Cr, Pt-W, and Pt-Mo. Preferably, the metal catalyst is iron, cobalt, nickel, molybdeum, or a mixture thereof, such as Fe-Mo, Co— Mo and Ni-Fe-Mo.
[0038] The metal, bimetal, or combination of metals are used to prepare metal nanoparticles having defined particle size and diameter distribution. The metal nanoparticles can be prepared by thermal decomposition of the corresponding metal salt added to a passivating salt, and the temperature of the solvent adjusted to provide the metal nanoparticles, as described in the co-pending and co-owned U.S. Patent Application Serial No. 10/304,316, or by any other method known in the art. The particle size and diameter of the metal nanoparticles can be controlled by using the appropriate concentration of metal in the passivating solvent and by controlling the length of time the reaction is allowed to proceed at the thermal decomposition temperature. Metal nanoparticles having particle size of about 0.01 nm to about 20 nm, more preferably about 0.1 nm to about 3 nm and most preferably about 0.3 nm to 3 nm can be prepared. The metal nanoparticles can thus have a particle size of 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 nm, and up to about 20 nm. In another aspect, the metal nanoparticles can have a range of particle sizes. For example, the metal nanoparticles can have particle sizes in the range of about 3 nm and about 7 nm in size, about 5 nm and about 10 nm in size, or about 8 nm and about 16 nm in size. The metal nanoparticles can optionally have a diameter distribution of about 0.5 nm to about 20 nm, preferably about 1 nm to about 15 nm, more preferably about 1 nm to about 5 nm. Thus, the metal nanoparticles can have a diameter distribution of about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 nm. [0039] The metal salt can be any salt of the metal, and can be selected such that the melting point of the metal salt is lower than the boiling point of the passivating solvent. Thus, the metal salt contains the metal ion and a counter ion, where the counter ion can be nitrate, nitride, perchlorate, sulfate, sulfide, acetate, halide, oxide, such as methoxide or ethoxide, acetylacetonate, and the like. For example, the metal salt can be iron acetate (FeAc2), nickel acetate (NiAc2), palladium acetate (PdAc2), molybdenum acetate (MoAc3), and the like, and combinations thereof. The melting point of the metal salt is preferably about 5 0C to 50 0C lower than the boiling point, more preferably about 5 0C to about 20 0C lower than the boiling point of the passivating solvent.
[0040] The metal salt can be dissolved in a passivating solvent to give a solution, a suspension, or a dispersion. The solvent is preferably an organic solvent, and can be one in which the chosen metal salt is relatively soluble and stable, and where the solvent has a high enough vapor pressure that it can be easily evaporated under experimental conditions. The solvent can be an ether, such as a glycol ether, 2-(2-butoxyethoxy)ethanol, H(OCH2CH2)2O(CH2)3CH3, which will be referred to below using the common name dietheylene glycol mono-n-butyl ether, and the like.
[0041] The relative amounts of metal salt and passivating solvent are factors in controlling the size of nanoparticles produced. A wide range of molar ratios, here referring to total moles of metal salt per mole of passivating solvent, can be used for forming the metal nanoparticles. Typical molar ratios of metal salt to passivating solvent include ratios as low as about 0.0222 (1 :45), or as high as about 2.0 (2:1), or any ratio in between. Thus, for example, about 5.75xlO"5 to about 1.73xlO"3 moles (10 - 300 mg) OfFeAc2 can be dissolved in about 3x10^ to about 3x10"3 moles (50 - 500 ml) of diethylene glycol mono-n- butyl ether.
[0042] In another aspect, more than one metal salt can be added to the reaction vessel in order to form metal nanoparticles composed of two or more metals, where the counter ion can be the same or can be different. The relative amounts of each metal salt used can be a factor in controlling the composition of the resulting metal nanoparticles. For the bimetals, the molar ratio of the first metal salt to the second metal salt can be about 1:10 to about 10:1, preferably about 2: 1 to about 1 :2, or more preferably about 1.5 : 1 to about 1 : 1.5, or any ratio in between. Thus, for example, the molar ratio of iron acetate to nickel acetate can be 1:2, 1:1.5, 1.5:1, or 1:1. Those skilled in the art will recognize that other combinations of metal salts and other molar ratios of a first metal salt relative to a second metal salt may be used in order to synthesize metal nanoparticles with various compositions. [0043] The passivating solvent and the metal salt reaction solution can be mixed to give a homogeneous solution, suspension, or dispersion. The reaction solution can be mixed using standard laboratory stirrers, mixtures, sonicators, and the like, optionally with heating. The homogenous mixture thus obtained can be subjected to thermal decomposition in order to form the metal nanoparticles.
[0044] The thermal decomposition reaction is started by heating the contents of the reaction vessel to a temperature above the melting point of at least one metal salt in the reaction vessel. Any suitable heat source may be used including standard laboratory heaters, such as a heating mantle, a hot plate, or a Bunsen burner, and the heating can be under reflux. The length of the thermal decomposition can be selected such that the desired size of the metal nanoparticles can be obtained. Typical reaction times can be from about 10 minutes to about 120 minutes, or any integer in between. The thermal decomposition reaction is stopped at the desired time by reducing the temperature of the contents of the reaction vessel to a temperature below the melting point of the metal salt. [0045] The size and distribution of metal nanoparticles produced can be verified by any suitable method. One method of verification is transmission electron microscopy (TEM). A suitable model is the Phillips CM300 FEG TEM that is commercially available from FEI Company of Hillsboro, OR. In order to take TEM micrographs of the metal nanoparticles, 1 or more drops of the metal nanoparticle/passivating solvent solution are placed on a carbon membrane grid or other grid suitable for obtaining TEM micrographs. The TEM apparatus is then used to obtain micrographs of the nanoparticles that can be used to determine the distribution of nanoparticle sizes created.
[0046] The metal nanoparticles, such as those formed by thermal decomposition described in detail above, can then be supported on solid supports. The solid support can be silica, alumina, MCM-41, MgO, ZrO2, aluminum-stabilized magnesium oxide, zeolites, or other oxidic supports known in the art, and combinations thereof. For example, Al2O3-SiO2 hybrid support could be used. Preferably, the support is aluminum oxide (Al2O3) or silica (SiO2). The oxide used as solid support can be powdered thereby providing small particle sizes and large surface areas. The powdered oxide can preferably have a particle size between about 0.01 μm to about 100 μm, more preferably about 0.1 μm to about 10 μm, even more preferably about 0.5 μm to about 5 μm, and most preferably about 1 μm to about 2 μm. The powdered oxide can have a surface area of about 50 to about 1000 m2/g, more preferably a surface area of about 200 to about 800 m2/g. The powdered oxide can be freshly prepared or commercially available.
[0047] In one aspect, the metal nanoparticles are supported on solid supports via secondary dispersion and extraction. Secondary dispersion begins by introducing particles of a powdered oxide, such as aluminum oxide (Al2O3) or silica (SiO2), into the reaction vessel after the thermal decomposition reaction. A suitable Al2O3 powder with 1 — 2 μm particle size and having a surface area of 300 — 500 m2/g is commercially available from Alfa Aesar of Ward Hill, MA, or Degussa, NJ. Powdered oxide can be added to achieve a desired weight ratio between the powdered oxide and the initial amount of metal used to form the metal nanoparticles. Typically, the weight ratio can be between about 10:1 and about 15:1. For example, if 100 mg of iron acetate is used as the starting material, then about 320 to 480 mg of powdered oxide can be introduced into the solution. [0048] The mixture of powdered oxide and the metal nanoparticle/passivating solvent mixture can be mixed to form a homogenous solution, suspension or dispersion. The homogenous solution, suspension or dispersion can be formed using sonicator, a standard laboratory stirrer, a mechanical mixer, or any other suitable method, optionally with heating. For example, the mixture of metal nanoparticles, powdered oxide, and passivating solvent can be first sonicated at roughly 80°C for 2 hours, and then sonicated and mixed with a laboratory stirrer at 8O0C for 30 minutes to provide a homogenous solution. [0049] After secondary dispersion, the dispersed metal nanoparticles and powdered oxide can be extracted from the passivating solvent. The extraction can be by filtration, centrifugation, removal of the solvents under reduced pressure, removal of the solvents under atmospheric pressure, and the like. For example, extraction includes heating the homogenized mixture to a temperature where the passivating solvent has a significant vapor pressure. This temperature can be maintained until the passivating solvent evaporates, leaving behind the metal nanoparticles deposited in the pores of the Al2O3. For example, if diethylene glycol mono-n-butyl ether as the passivating solvent, the homogenous dispersion can be heated to 2310C, the boiling point of the passivating solvent, under an N2 flow. The temperature and N2 flow are maintained until the passivating solvent is completely evaporated. After evaporating the passivating solvent, the powdered oxide and metal nanoparticles are left behind on the walls of the reaction vessel as a film or residue. When the powdered oxide is Al2O3, the film will typically be black. The metal nanoparticle and powdered oxide film can be removed from the reaction vessel and ground to create a fine powder, thereby increasing the available surface area of the mixture. The mixture can be ground with a mortar and pestle, by a commercially available mechanical grinder, or by any other methods of increasing the surface area of the mixture will be apparent to those of skill in the art.
[0050] Without being bound by any particular theory, it is believed that the powdered oxide serves two functions during the extraction process. The powdered oxides are porous and have high surface area. Therefore, the metal nanoparticles will settle in the pores of the powdered oxide during secondary dispersion. Settling in the pores of the powdered oxide physically separates the metal nanoparticles from each other, thereby preventing agglomeration of the metal nanoparticles during extraction. This effect is complemented by the amount of powdered oxide used. As noted above, the weight ratio of metal nanoparticles to powdered oxide can be between about 1:10 and 1:15. The relatively larger amount of powdered oxide in effect serves to further separate or 'dilute' the metal nanoparticles as the passivating solvent is removed. The process thus provides metal nanoparticles of defined particle size.
[0051] As will be apparent to those of skill in the art, the catalyst thus prepared can be stored for later use. hi another aspect, the metal nanoparticles can be previously prepared, isolated from the passivating solvent, and purified, and then added to a powdered oxide in a suitable volume of the same or different passivating solvent. The metal nanoparticles and powdered oxide can be homogenously dispersed, extracted from the passivating solvent, and processed to increase the effective surface area as described above. Other methods for preparing the metal nanoparticle and powdered oxide mixture will be apparent to those skilled in the art.
[0052] The metal nanoparticles thus formed can be used as a growth catalyst for synthesis of carbon nanotubes, nanofibers, and other one-dimensional carbon nanostructures by a chemical vapor deposition (CVD) process.
VI. Carbon Precursors
[0053] The carbon nanotubes can be synthesized using carbon precursors, such as carbon containing gases. In general, any carbon containing gas that does not pyrolize at temperatures up to about 10000C can be used. Examples of suitable carbon-containing gases include carbon monoxide, aliphatic hydrocarbons, both saturated and unsaturated, such as methane, ethane, propane, butane, pentane, hexane, ethylene, acetylene and propylene; oxygenated hydrocarbons such as acetone, and methanol; aromatic hydrocarbons such as benzene, toluene, and naphthalene; and mixtures of the above, for example carbon monoxide and methane. In general, the use of acetylene promotes formation of multi- walled carbon nanotubes, while CO and methane are preferred feed gases for formation of single-walled carbon nanotubes. The carbon-containing gas may optionally be mixed with a diluent gas such as hydrogen, helium, argon, neon, krypton and xenon or a mixture thereof. [0054] The specific reaction temperature used depends on the type of catalyst and the type of precursor. Energy balance equations for the respective chemical reactions can be used to analytically determine the optimum CVD reaction temperature to grow carbon nanotubes. This determines the required reaction temperature ranges. The optimum reaction temperature also depends on the flow rates of the selected precursor and the catalyst. In general, the method requires CVD reaction temperatures ranging from 500 0C to 1000 0C, more preferably reaction temperatures ranging from 700 0C to 900 0C.
Synthesis of Carbon Nanotubes
[0055] The metal nanoparticles supported on the oxide powder can be aerosolized and introduced into the reactor maintained at the reaction temperature. Simultaneously, the carbon precursor gas is introduced into the reactor. The flow of reactants within the reactor can be controlled such that the deposition of the carbon products on the walls of the reactor is reduced. The carbon nanotubes thus produced can be collected and separated. [0056] The metal nanoparticles supported on the oxide powder can be aerosolized by any of the art known methods. In one method, the supported metal nanoparticles are aerosolized using an inert gas, such as helium, neon, argon, krypton, xenon, or radon. Preferably argon is used. Typically, argon, or any other gas, is forced through a particle injector, and into the reactor. The particle injector can be any vessel that is capable of containing the supported metal nanoparticles and that has a means of agitating the supported metal nanoparticles. Thus, the catalyst deposited on a powdered porous oxide substrate can be placed in a beaker that has a mechanical stirrer attached to it. The supported metal nanoparticles can be stirred or mixed in order to assist the entrainment of the catalyst in the transporter gas, such as argon. [0057] Thus, the nanotube synthesis generally occurs as described below and illustrated in Figure 2. An inert transporter gas 110, preferably argon gas, is passed through a particle injector 130. The particle injector 130 can be a beaker or other vessel containing the growth catalyst supported on a powdered porous oxide substrate. The powdered porous oxide substrate in the particle injector can be stirred or mixed in order to assist the entrainment of the powdered porous oxide substrate in the argon gas flow. Optionally, the inert gas can be passed through a drying system 120 to dry the gas. The argon gas, with the entrained powdered porous oxide, can then be passed through a pre-heater to raise the temperature of this gas flow to about 4000C to about 500 0C. The entrained powdered porous oxide is then delivered to the reaction chamber 200. A flow of methane 140 or another carbon source gas and hydrogen 150 is also delivered to the reaction chamber. The typical flow rates can be 500 seem for argon, 400 seem for methane, and 100 seem for He. Additionally, 500 seem of argon can be directed into the helical flow inlets to reduce deposition of carbon products on the wall of the reaction chamber. The reaction chamber can be heated to between about 800 0C and 900 0C during reaction using heaters 210. The temperature is preferably kept below the decomposition temperature of the carbon precursor gas. For example, at temperatures above 1000 0C, methane is known to break down directly into soot rather than forming carbon nanostructures with the metal growth catalyst. [0058] Carbon nanotubes and other carbon nanostructures synthesized in reaction chamber 200 then enter the filtration system 220. The filtration system can be composed of a single collection vessel or a series of collection vessels that are connected to outlet of the reaction chamber. The collection vessels sort the carbon nanotubes and other outputs by weight. On average, the heaviest reaction products will settle in the first collection vessel. The secondary and tertiary vessels will collect on average lighter products. The carbon nanotubes will be relatively light compared to many of the soot particles generated, so the carbon nanotubes will preferentially collect in the secondary and tertiary collection vessels. [0059] The collection vessels permit continuous operation of the reaction chamber, as the chamber does not have to be cooled to harvest the synthesized nanotubes. Instead, the nanotubes can be harvested by changing the collection vessel. The collection vessels can be connected via valves. In order to permit continuous operation, each collection vessel has outlet valves to allow for connection of two additional collection vessels. During typical operation, one outlet valve on each collection vessel will be open. As the reaction products flow down from the reaction chamber, the collection vessels will capture the various reaction products, with lighter reaction products tending to accumulate in the secondary or tertiary collection vessel. To harvest reaction products from a given collection vessel, the first outlet valve is closed and the second outlet valve is opened. This diverts the flow of reaction products into a second collection vessel. The first collection vessel can then be opened for harvesting of the reaction products while still synthesizing additional carbon nanostructures.
Separation of Reaction Products
[0060] The collection vessels permit continuous operation of the reaction chamber as the chamber does not have to be cooled to harvest the synthesized nanotubes. Instead, the nanotubes can be harvested by either emptying the collection vessels or by changing the collection vessel. The collection vessels can be connected via valves. In order to permit continuous operation, each collection vessel has outlet valves to allow for connection of two additional collection vessels. During typical operation, one outlet valve on each collection vessel will be open. As the reaction products flow down from the reaction chamber, the collection vessels will capture the various reaction products, with lighter reaction products tending to accumulate in the secondary or tertiary collection vessel. To harvest reaction products from a given collection vessel, the first outlet valve is closed and the second outlet valve is opened. This diverts the flow of reaction products into a second collection vessel. The first collection vessel can then be opened for harvesting of the reaction products while still synthesizing additional carbon nanostructures.
[0061] The collection vessels are generally cyclone-type separators. Typically, in the cyclone separators, the transport gasses having the carbon nanotubes and byproducts entrailed therein generally enters a cylindrical chamber tangentially through an upper inlet. The particles in the transport gas spin in a vortex and follow a helical, downwardly inclined path. The heavier particles are forced to the outside wall by centrifugal force, while the lighter particles remain entrailed in the transport gases. The centrifugal forces can be described by the following equation:
mpartV2
F c_entrifugal R where F is a centrifugal force, m is the mass of the particle, V is the velocity of the particle, and R is the radius of the spiral motion of the particle as it spins down. The heavier particles forced to the wall are then pulled by gravity down the walls and eventually fall to the bottom.
The transport gases with the lighter particles still entrailed can exit through a discharge outlet which extends from atop the cyclone separator.
[0062] Thus, the cyclone separators utilize centrifugal forces and low pressure caused by spinning motion to separate solid particles of differing density, size and shape. Figure 4 illustrates the operating principles in a typical cyclone separator that can be utilized to remove entrained particles from a transport gas, such as may be used in the synthesis of carbon nanotubes. The cyclone separator 100 has an inlet pipe 10 and a main body comprising upper cylindrical portion 20 and lower conical portion 30. The particle laden gas stream is injected through inlet pipe 10 which is positioned tangentially to upper cylindrical portion 20. The shape of upper cylindrical portion 20 and the conical portion 30 induces the gas stream to spin creating a vortex. Larger or more dense particles are forced outwards to the walls of cyclone separator 100 where the drag of the spinning air as well as the force of gravity causes them to fall down the walls into an outlet or collector 40. The lighter or less dense particles, as well as the gas medium itself, reverses course at approximately collector 40 and pass outwardly through the low pressure center of separator 100 and exit separator 100 via gas outlet 50 which is positioned in the upper portion of upper cylindrical portion 10.
[0063] The efficiency of the cyclone separator in removing particles of different diameters depends on the diameter (D1) of the cyclone, the diameter (D2) of the powder outlet, the diameter (D3) of the inlet, and the diameter (D4) of the gas outlet. These dimensions can be varied to alter the diameter of the particles that may be removed by the cyclone.
[0064] Typically, there are four ways to increase the small particle removal efficiency of a cyclone. These are (1) reducing the cyclone diameter; (2) reducing the outlet diameter; (3) reducing the cone angle; and (4) increasing the body length. Further, an increase in the pressure drop can increase the particle capture efficiency as well as increase the capacity of the cyclone separator. Generally, a smaller cyclone diameter creates higher cyclone speeds and higher centrifugal forces can be achieved thereby permitting the separation of smaller particles. [0065] As will be evident to one of skill in the art, the particles which are suspended or entrained in a transport gas are not homogeneous in their particle size distribution. The fact that particle sizes take on a spectrum of values can necessitate that a plurality of cyclonic separators be used in a series. For example, the first cyclonic separator in a series can separate out large particles. The smaller particles remain entrained in the transport gas and are transported to the second sequential cyclone. The second sequential cyclone is designed to remove the smaller particles which are entrained in the transport gas. If larger particles are carried over into the second cyclone separator, then they will typically not be removed by the cyclone separator but exit the cyclone with the transport gas stream. Accordingly, a plurality of cyclone separators that are attached to the reaction chamber in parallel or in a series can be used to separate carbon nanotubes from the byproducts of the reaction that are entrained in a transport gas stream.
[0066] The carbon nanotubes and nanostructures produced by the methods and processes described above can be used in applications that include Field Emission Devices, Memory devices (high-density memory arrays, memory logic switching arrays), Nano- MEMs, AFM imaging probes, distributed diagnostics sensors, and strain sensors. Other key applications include: thermal control materials, super strength and light weight reinforcement and nanocomposites, EMI shielding materials, catalytic support, gas storage materials, high surface area electrodes, and light weight conductor cable and wires, and the like.
EXAMPLES
[0067] Below are examples of specific embodiments for carrying out the present invention. The examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperatures, etc.), but some experimental error and deviation should, of course, be allowed for.
Example 1
Preparation of the Supported Catalyst
[0068] Catalysts were prepared by impregnating support materials in metal salt solutions. For the single metallic iron based catalyst, FeAc2 in methanol was used at a molar ratio of Fe: Al2O3 of 1 :15. Under a nitrogen atmosphere, FeAc2 was added to dietheylene glycol mono-n-butyl ether in the molar ratio of lmM:20mM. The reaction mixture was mixed under the nitrogen atmosphere using a magnetic stir bar, and heated under reflux for 90 minutes. The reaction mixture was then cooled to room temperature, and Al2O3 (15 mM) was added at once. The reaction solution was stirred at room temperature for 15 minutes, and then heated to 150 0C for 3 hours. The reaction was cooled to 90 °C while flowing a stream of N2 over the mixture to remove the solvent. A black film formed on the walls of the reaction flask. The black film was collected and ground with an agate mortar to obtain a fine black powder.
Example 2
Synthesis of Carbon Nanotubes
[0069] Carbon nanotubes were synthesized by using the experimental setup shown in
Figure 2. Typically, 1O g of the Al2O3-supported iron catalyst was placed in the particle injector mounted with a mechanical stirrer. The catalyst was stirred while argon is passed through the particle injector at a flow rate of 500 seem. The argon flow with the entrained particles is passed through a flexible tube that is wrapped around a central heating coil that serves as the pre-heater. The pre-heater was set for 600 0C. The pre-heated argon flow with the entrained particles was then passed into the reaction chamber.
[0070] The reaction chamber was heated to 900 0C. Argon, at a rate of 500 seem, was injected through the helical flow inlets into the reaction chamber. Argon as a transport gas for catalysts, at the rate of 1500sccm, was injected through the injector to the chamber. The synthesis was begun by flowing a mixture at CH4 at a flow rate of 150 seem and H2 at a flow rate of 50 seem into the reaction chamber. The temperature and gas flows were maintained for 120 minutes in order to form carbon nanostructures. The single- walled carbon nanotubes were collected using the product separators. Carbon nanotubes were made at a yield of ~100 g/h. The TEM images of the single- walled carbon nanotubes thus produced is given in Figure 3.
[0071] While the invention has been particularly shown and described with reference to a preferred embodiment and various alternate embodiments, it will be understood by persons skilled in the relevant art that various changes in form and details can be made therein without departing from the spirit and scope of the invention. AU printed patents and publications referred to in this application are hereby incorporated herein in their entirety by this reference.

Claims

We Claim:
1. A method for separating carbonaceous material, the method comprising: guiding transport gas stream into a cyclone separator, wherein the carbonaceous material comprising carbon nanotubes and impurities are entrained in the transport gas; collecting the heavy impurities in the separator; and collecting outlet gas exiting the separator wherein carbon nanotubes are entrained in the outlet gas.
2. The method of claim 1, wherein the transport gas stream comprises helium, hydrogen, and the carbon precursor gas.
3. The method of claim 1, wherein the impurities comprise the catalyst and carbon soot.
4. The method of claim 1, wherein the carbon nanotubes are single walled carbon nanotubes.
5. The method of claim 1, wherein the outlet gas is guided into a second cyclone separator.
6. The method of claim 5, wherein the carbon nanotubes are collected in the second separator.
7. A method for separating carbonaceous materials, the method comprising: guiding transport gas into a plurality of cyclone separators; and collecting the solid in each separator.
8. The method of claim 7, wherein the plurality of cyclone separators are attached to each other sequentially.
9. The method of claim 8, wherein the separators are sequentially attached such that heavier particles are collected before lighter particles.
10. The method of claim 7, wherein the plurality of cyclone separators are attached to a transport gas source in parallel.
PCT/IB2004/004467 2003-12-03 2004-12-02 Method for separating nanotube containing carbonaceous material using cyclones WO2006003482A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US72770703A 2003-12-03 2003-12-03
US10/727,707 2003-12-03

Publications (2)

Publication Number Publication Date
WO2006003482A2 true WO2006003482A2 (en) 2006-01-12
WO2006003482A3 WO2006003482A3 (en) 2006-08-10

Family

ID=35432805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2004/004467 WO2006003482A2 (en) 2003-12-03 2004-12-02 Method for separating nanotube containing carbonaceous material using cyclones

Country Status (1)

Country Link
WO (1) WO2006003482A2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7853651B2 (en) 2004-10-27 2010-12-14 Sap Ag Method for tracking transport requests and computer system with trackable transport requests
EP2269950A1 (en) * 2008-03-07 2011-01-05 Hitachi Chemical Company, Ltd. Carbon nano-tube manufacturing method and carbon nano-tube manufacturing apparatus
US8591858B2 (en) 2008-05-01 2013-11-26 Honda Motor Co., Ltd. Effect of hydrocarbon and transport gas feedstock on efficiency and quality of grown single-walled nanotubes
US20150064097A1 (en) * 2012-04-23 2015-03-05 Seerstone Llc Carbon nanotubes having a bimodal size distribution
US9174847B2 (en) * 2008-05-01 2015-11-03 Honda Motor Co., Ltd. Synthesis of high quality carbon single-walled nanotubes
CN105057122A (en) * 2015-07-19 2015-11-18 青岛科技大学 Carbon nanotube dispersing equipment with cyclone separator
CN106241787A (en) * 2016-08-10 2016-12-21 玉灵华科技有限公司 A kind of device preparing quantum carbon element
US9586823B2 (en) 2013-03-15 2017-03-07 Seerstone Llc Systems for producing solid carbon by reducing carbon oxides
US9604848B2 (en) 2012-07-12 2017-03-28 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
US9637382B2 (en) 2012-04-16 2017-05-02 Seerstone Llc Methods for producing solid carbon by reducing carbon dioxide
US9650251B2 (en) 2012-11-29 2017-05-16 Seerstone Llc Reactors and methods for producing solid carbon materials
US9731970B2 (en) 2012-04-16 2017-08-15 Seerstone Llc Methods and systems for thermal energy recovery from production of solid carbon materials by reducing carbon oxides
US9779845B2 (en) 2012-07-18 2017-10-03 Seerstone Llc Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same
US9783416B2 (en) 2013-03-15 2017-10-10 Seerstone Llc Methods of producing hydrogen and solid carbon
US9783421B2 (en) 2013-03-15 2017-10-10 Seerstone Llc Carbon oxide reduction with intermetallic and carbide catalysts
US9796591B2 (en) 2012-04-16 2017-10-24 Seerstone Llc Methods for reducing carbon oxides with non ferrous catalysts and forming solid carbon products
US10086349B2 (en) 2013-03-15 2018-10-02 Seerstone Llc Reactors, systems, and methods for forming solid products
US10106416B2 (en) 2012-04-16 2018-10-23 Seerstone Llc Methods for treating an offgas containing carbon oxides
US10115844B2 (en) 2013-03-15 2018-10-30 Seerstone Llc Electrodes comprising nanostructured carbon
US10358346B2 (en) 2012-07-13 2019-07-23 Seerstone Llc Methods and systems for forming ammonia and solid carbon products
US10500582B2 (en) 2009-04-17 2019-12-10 Seerstone Llc Compositions of matter including solid carbon formed by reducing carbon oxides
US10815124B2 (en) 2012-07-12 2020-10-27 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
US11752459B2 (en) 2016-07-28 2023-09-12 Seerstone Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6242858B2 (en) 2012-04-16 2017-12-06 シーアストーン リミテッド ライアビリティ カンパニー Method and system for capturing and sequestering carbon and reducing the mass of carbon oxide in a waste gas stream

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020148777A1 (en) * 2000-11-24 2002-10-17 Tuszko Wlodzimierz Jon Long free vortex cylindrical telescopic separation chamber cyclone apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444105B1 (en) * 2002-01-22 2004-08-11 주식회사 기노리텍 Apparatus for manufacturing nano-particle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020148777A1 (en) * 2000-11-24 2002-10-17 Tuszko Wlodzimierz Jon Long free vortex cylindrical telescopic separation chamber cyclone apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section PQ, Week 200404 Derwent Publications Ltd., London, GB; Class Q68, AN 2004-040023 XP002365001 & KR 2003 063 513 A (KINORI TECHNOLOGY CO LTD) 31 July 2003 (2003-07-31) *
M.SU, B.ZHENG, J.LIU: CHEMICAL PHYSICS LETTERS, vol. 322, no. 5, 2000, XP002364230 cited in the application *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7853651B2 (en) 2004-10-27 2010-12-14 Sap Ag Method for tracking transport requests and computer system with trackable transport requests
EP2269950A1 (en) * 2008-03-07 2011-01-05 Hitachi Chemical Company, Ltd. Carbon nano-tube manufacturing method and carbon nano-tube manufacturing apparatus
EP2269950A4 (en) * 2008-03-07 2015-04-22 Hitachi Chemical Co Ltd Carbon nano-tube manufacturing method and carbon nano-tube manufacturing apparatus
US9073045B2 (en) 2008-03-07 2015-07-07 Hitachi Chemical Company, Ltd. Carbon nano-tube manfuacturing method and carbon nano-tube manufacturing apparatus
US10850984B2 (en) 2008-05-01 2020-12-01 Honda Motor Co., Ltd. Synthesis of high quality carbon single-walled nanotubes
US8591858B2 (en) 2008-05-01 2013-11-26 Honda Motor Co., Ltd. Effect of hydrocarbon and transport gas feedstock on efficiency and quality of grown single-walled nanotubes
US9174847B2 (en) * 2008-05-01 2015-11-03 Honda Motor Co., Ltd. Synthesis of high quality carbon single-walled nanotubes
US10500582B2 (en) 2009-04-17 2019-12-10 Seerstone Llc Compositions of matter including solid carbon formed by reducing carbon oxides
US9796591B2 (en) 2012-04-16 2017-10-24 Seerstone Llc Methods for reducing carbon oxides with non ferrous catalysts and forming solid carbon products
US9637382B2 (en) 2012-04-16 2017-05-02 Seerstone Llc Methods for producing solid carbon by reducing carbon dioxide
US10106416B2 (en) 2012-04-16 2018-10-23 Seerstone Llc Methods for treating an offgas containing carbon oxides
US9731970B2 (en) 2012-04-16 2017-08-15 Seerstone Llc Methods and systems for thermal energy recovery from production of solid carbon materials by reducing carbon oxides
US20150064097A1 (en) * 2012-04-23 2015-03-05 Seerstone Llc Carbon nanotubes having a bimodal size distribution
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
US10815124B2 (en) 2012-07-12 2020-10-27 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
US9604848B2 (en) 2012-07-12 2017-03-28 Seerstone Llc Solid carbon products comprising carbon nanotubes and methods of forming same
US10358346B2 (en) 2012-07-13 2019-07-23 Seerstone Llc Methods and systems for forming ammonia and solid carbon products
US9779845B2 (en) 2012-07-18 2017-10-03 Seerstone Llc Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same
US9993791B2 (en) 2012-11-29 2018-06-12 Seerstone Llc Reactors and methods for producing solid carbon materials
US9650251B2 (en) 2012-11-29 2017-05-16 Seerstone Llc Reactors and methods for producing solid carbon materials
US9783421B2 (en) 2013-03-15 2017-10-10 Seerstone Llc Carbon oxide reduction with intermetallic and carbide catalysts
US10086349B2 (en) 2013-03-15 2018-10-02 Seerstone Llc Reactors, systems, and methods for forming solid products
US9783416B2 (en) 2013-03-15 2017-10-10 Seerstone Llc Methods of producing hydrogen and solid carbon
US10115844B2 (en) 2013-03-15 2018-10-30 Seerstone Llc Electrodes comprising nanostructured carbon
US10322832B2 (en) 2013-03-15 2019-06-18 Seerstone, Llc Systems for producing solid carbon by reducing carbon oxides
US9586823B2 (en) 2013-03-15 2017-03-07 Seerstone Llc Systems for producing solid carbon by reducing carbon oxides
CN105057122A (en) * 2015-07-19 2015-11-18 青岛科技大学 Carbon nanotube dispersing equipment with cyclone separator
US11752459B2 (en) 2016-07-28 2023-09-12 Seerstone Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
CN106241787A (en) * 2016-08-10 2016-12-21 玉灵华科技有限公司 A kind of device preparing quantum carbon element

Also Published As

Publication number Publication date
WO2006003482A3 (en) 2006-08-10

Similar Documents

Publication Publication Date Title
US7981396B2 (en) Methods for production of carbon nanostructures
US7901654B2 (en) Synthesis of small diameter single-walled carbon nanotubes
WO2006003482A2 (en) Method for separating nanotube containing carbonaceous material using cyclones
US10384943B2 (en) Synthesis of small and narrow diameter distributed carbon single walled nanotubes
US7871591B2 (en) Methods for growing long carbon single-walled nanotubes
US8268281B2 (en) Dry powder injector for industrial production of carbon single walled nanotubes (SWNTs)
JP5475457B2 (en) Mass aerosol powder injection device for carbon nanotube synthesis
US7485600B2 (en) Catalyst for synthesis of carbon single-walled nanotubes
WO2005007565A2 (en) Continuous production of carbon nanomaterials using a high temperature inductively coupled plasma
US20190359488A1 (en) Apparatus and methods of forming solid carbon
JP2003286016A (en) Method for manufacturing purified carbon tube encapsulating metal
Khairurrijal et al. Structural characteristics of carbon nanotubes fabricated using simple spray pyrolysis method
CN117816058A (en) Single-double-wall carbon nano tube rapid discharging device and preparation method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase