WO2005045203A2 - Verfahren zum betreiben einer turbomaschine, und turbomaschine - Google Patents

Verfahren zum betreiben einer turbomaschine, und turbomaschine

Info

Publication number
WO2005045203A2
WO2005045203A2 PCT/EP2004/052784 EP2004052784W WO2005045203A2 WO 2005045203 A2 WO2005045203 A2 WO 2005045203A2 EP 2004052784 W EP2004052784 W EP 2004052784W WO 2005045203 A2 WO2005045203 A2 WO 2005045203A2
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
fluid
turbomachine
flow
propellant
Prior art date
Application number
PCT/EP2004/052784
Other languages
English (en)
French (fr)
Other versions
WO2005045203A3 (de
Inventor
Andrew Birrell
Armin Busekros
Olatunde Omisore
Original Assignee
Alstom Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology Ltd filed Critical Alstom Technology Ltd
Priority to DE502004008796T priority Critical patent/DE502004008796D1/de
Priority to EP04804511A priority patent/EP1700009B1/de
Publication of WO2005045203A2 publication Critical patent/WO2005045203A2/de
Publication of WO2005045203A3 publication Critical patent/WO2005045203A3/de
Priority to US11/417,186 priority patent/US7273345B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/14Casings modified therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/29Three-dimensional machined; miscellaneous
    • F05D2250/293Three-dimensional machined; miscellaneous lathed, e.g. rotation symmetrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/601Fluid transfer using an ejector or a jet pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a method for operating a turbomachine and a turbomachine which is particularly suitable for carrying it out.
  • Comparable geometries are also known from other turbomachines, such as steam turbines, where comparable phenomena tend to occur, although these generally take place at a lower temperature level.
  • the object of the invention is to remedy this situation.
  • the object of the invention is therefore, in particular, to specify a possibility for cooling the cavity and to prevent temperature stratifications which may occur during operation of the turbomachine.
  • the essence of the invention is to excite a flow oriented at least with a speed component in the circumferential direction of the turbomachine or a toroidal cavity during the operation of the turbomachine.
  • a propellant flow with a circumferential component is blown into the cavity via at least one ejector, thereby stimulating a forced tangential convection flow in the cavity, which is at least partially opposed to the free convection movement and which causes the temperatures in the cavity to be evened out.
  • Cooling air or ambient air is preferably blown in as a blowing agent.
  • air is conveyed to the ejector or ejectors by a suitable conveying means, for example a blower or a compressor.
  • a suitable conveying means for example a blower or a compressor.
  • an air flow in the compressor is taken from a gas turbine group and conducted as a propellant to the at least one ejector.
  • air is taken from a cooling air system of a gas turbine group and used as a propellant for the at least one ejector.
  • a turbomachine which is basically suitable for carrying out the method according to the invention has become known from WO 03/038243.
  • the cavity is in particular formed between an inner and an outer housing of the turbomachine, for example between a combustion chamber wall and an outer housing of a gas turbine.
  • the cavity has an essentially annular cross section (toms) or a toroidal cross section in the form of a ring segment.
  • the flow is preferably excited by one or more ejectors, which are arranged within the cavity and mixed with a propellant fluid such. B. air can be operated. Ejectors require only a small propellant fluid mass flow in order to drive a flow within the cavity which is sufficient for the intended purpose. This limitation of the mass flow of the propellant is particularly important when existing auxiliary systems are to be used to drive the flow, which cold ones Pump fluid, for example outside air, into the cavity.
  • the mass flow of the drive medium passed through the ejector is preferably between 0.2 and 1.0 kg / s.
  • the air from the gas turbine compressor or another compressor can be used as the driving fluid, or air can be branched off from a cooling air system of a gas turbine group.
  • steam turbines steam of a suitable pressure and temperature is preferably used as the driving fluid.
  • the cavity has an annular cross section and the ejectors are oriented with their blow-out direction essentially in the circumferential direction, it is preferred that a circumferential flow or helical flow with a pitch angle of less than 30 °, preferably less than 10 °, is generated, since with an axially extended cavity in this way a uniformity of the axial temperature distribution can be achieved.
  • a turbomachine for carrying out the invention comprises a propellant fluid plenum, which is supplied with propellant fluid via a common feed line, and from which at least one ejector, preferably a plurality of ejectors, and very particularly advantageously branch off all ejectors. In this way, only a central feed for the propellant fluid is required, while the propellant fluid plenum ensures the uniform distribution over the various ejectors opening into the cavity.
  • a further embodiment of the invention provides for the circulation flow to be maintained continuously during the operation of the turbomachine and to go into cyclical operation after operation, ie after the turbomachine has been taken out of operation.
  • the circulation flow is generated at intervals.
  • the flow can be maintained for a time of 1 to 20 minutes, preferably about 5 minutes, followed by a pause of about 15 to 60, preferably 30, minutes. This process is then repeated several times until sufficient cooling of the turbomachine is achieved.
  • the intervals and the intervals between the intervals can be varied according to the requirements. In particular, the intervals do not have to be the same in terms of their length and their time intervals.
  • the cooling rates (amount of cooling per time) in the individual intervals be different. For example, higher and subsequently lower cooling rates can be selected at the start of cooling.
  • Figure 1 shows a part of the thermal block of a gas turbine.
  • FIG. 2 shows a schematic view of a part of the gas turbine to explain the principle according to the invention
  • Fig. 3 is a sectional view of the gas turbine shown in Fig. 1;
  • FIG. 4 shows a further sectional view of the gas turbine shown in FIG. 1.
  • Fig. 5 shows another preferred variant of the invention.
  • FIG. 1 The thermal block of a gas turbine is shown in FIG. 1, only the part located above the machine axis 10 being shown.
  • the machine shown in FIG. 1 is a gas turbine with so-called sequential combustion, as is known for example from EP 620362. Although their mode of operation is of no primary importance for the invention, it is roughly explained for the sake of completeness.
  • a compressor 1 sucks in an air mass flow and compresses it to a working pressure.
  • the compressed air flows through a plenum 2 into a first combustion chamber 3.
  • a quantity of fuel is introduced there and burned in the air.
  • the resulting hot gas is partially expanded in a first turbine 4 and flows into a second combustion chamber 5, a so-called SEV combustion chamber.
  • the housing of the turbomachine is of multi-shell construction; an annular cavity is formed between an outer housing 11 and an inner housing 13.
  • temperatures of up to 550 ° C and even higher can easily be established in the cavity.
  • the cavity is only flowed through vertically to a small extent, which is conducive to the formation of pronounced vertical temperature layers, which in the end can lead to the housing being distorted.
  • FIG. 2 now illustrates the principle of the invention.
  • a flow oriented in the circumferential direction is excited in the cavity 7 during the operation of the turbine.
  • a fluid e.g. outside air
  • the temperature of the hot gas inside the cavity 7 between the outer housing 11 and the inner housing 13 is typically around 550 ° C. or above without cooling.
  • Hot gas for example, which flows through the turbomachine at a temperature of 600 ° C. or more in the direction of arrow C, penetrates into cavity 7 via opening P, as indicated by arrow B.
  • Cooler medium for example ambient air conveyed by a blower, or bleed air from the compressor 1, see FIG.
  • cooling air from a cooling air system is introduced into the cavity by the ejector 16.
  • the mass flow of the cooling fluid is typically in the range of around 0.2 kg / s to 1 kg / s. This proves to be sufficient to lower the temperature in the cavity to, for example, 400 ° C.
  • a mass equivalent to the mass flow flowing into the cavity 7 flows out into the hot gas flow C as compensation flow A. It is also possible to carry out the method according to the invention in a system in which the coolant passes through a closed circuit via a compressor or a blower.
  • the internal pressure in the cavity should not be too high for this, since the compressor or the blower must be sealed against the pressure level created in the cavity.
  • the ejector is operated intermittently in a preferred embodiment of the invention. In this way, controlled cooling of the machine is achieved. It is avoided by the measure mentioned that the inner housing cools down too strongly or too quickly and that the play between the rotor and the housing, which is associated with strong cooling after being switched off, becomes too small.
  • the cooling air inflow is preferably applied to the cavity in several cooling phases of approximately five minutes in duration. The time between two successive cooling phases is preferably 30 minutes. This cyclical after-cooling results in a particularly gentle cooling of the turbine, so that undesirable effects which occur due to natural convection, such as the feared "buckling" of the housing, are avoided.
  • FIG. 3 shows, for further illustration of the method according to the invention, a highly schematic cross section through the gas turbine of FIG. 1 along the line INI.
  • the annular cavity 7 is formed between an outer casing 11 of the gas turbine and a combustion chamber wall 13, which can also be understood as an inner casing.
  • the ejector 16 blows ambient air brought in by a blower 14, which is significantly cooler than the fluid content of the cavity 7, into the annular cavity with a tangential component as the blowing agent flow 17.
  • the propellant flow drives a circumferential flow 18, which compensates for the vertical temperature stratification that occurs due to natural convection.
  • the ejector is arranged at a geodetically high point of the cavity, which further supports the drive effect due to the difference in density between the comparatively cooler propellant flow 17 and the fluid content of the cavity 7.
  • the fluid content of the cavity is cooled, and at the same time the formation of a potentially harmful stable temperature stratification is avoided.
  • a non-return element is preferably arranged between the blower 14 and the ejector 16 in such a way that a potential backflow of hot gas is prevented and a thermal load on the blower 14 is avoided.
  • any auxiliary systems that may be present can easily be adapted to convey the propellant in such a way that the fan 14 can be completely dispensed with under certain circumstances.
  • the propellant conveyed to the ejector can be passed over the heat exchanger surfaces, for example through or over, in advance of the feed line to the ejector 16 hot structures of the machine itself. Preheating of the propellant fluid is guaranteed in any case in the operation of the turbomachine if the propellant is taken from an intermediate compressor tap or from the cooling air system of a gas turbine group.
  • FIG. 4 shows an advantageous embodiment in which the circulation flow 18 is generated by a plurality of ejectors 16 which are fed with the propellant medium 17 via a central feed line I.
  • the propellant fluid flows via the central feed line into a propellant fluid plenum (without reference number).
  • the driving fluid plenum brings about a local uniformity and a homogeneous distribution of the driving fluid.
  • the ejectors branch off from the propellant fluid plenum and open into the cavity.
  • FIG. 5 shows a perspective illustration of an annular cavity.
  • the inner boundary 13 is only shown schematically as a solid cylinder.
  • the cavity 7 is formed between this inner boundary and an outer jacket 11.
  • Distributed in the axial direction are three ejectors 16 which are guided through the outer casing 11 and are not visible in the illustration, which are indicated schematically by dashed lines.
  • the ejectors are arranged such that the orientation of the blowing direction of the propellant is inclined in the axial direction by an angle ⁇ with respect to the circumferential direction indicated by a dash-dotted line U.
  • the circumferential direction U relates to the circumferential direction of the cavity 7.
  • this angle of attack ⁇ can be restricted to values below 30 °, in particular to values less than 10 °. As a result, a helical flow through the cavity, not shown, occurs, which further helps to avoid an axial temperature gradient that may occur.
  • pressure waves can be used in a manner known per se to drive the flow in the cavities themselves, or instead of a blower to drive the flow of propellant in an ejector.
  • the application of the invention is in no way limited to gas turbines, but that the invention can be used in a large number of other applications.
  • the application of the invention is also not to a gas turbine shown in Figure 1 with sequential Combustion limited, but it can also be used in gas turbines with only one or more than two combustion chambers.
  • the invention can also be implemented in steam turbines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Control Of Multiple Motors (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

In Kavitäten (7), welche insbesondere in mehrschaligen (11; 13) Gehäusen von Turbomaschinen ausgebildet sind, sind Mittel zum Antrieb einer Strömung (18) angeordnet. In einer Ausführungsform werden innerhalb der Kavität Ejektoren (16) angeordnet, die über geeignete Mittel (14) mit einer Treibmittelströmung (17) versorgt werden, welche wiederum die Strömung (18), bevorzugt eine Umfangsströmung, anregt. Bevorzugt wird während des Betriebes der Turbomaschine ein Treibfluid über die Ejektoren eingedüst, welches kälter ist als der Fluidinhalt der Kavität. Auf diese Weise wird gleichzeitig die Kavität gekühlt und eine Vergleichmässigung der Temperatur des Fluidinhaltes der Kavität bewirkt.

Description

Verfahren zum Betreiben einer Turbomaschine, und Turbomaschine
Technisches Gebiet
Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben einer Turbomaschine, sowie eine zur Durchführung besonders geeignete Turbomaschine.
Stand der Technik
Moderne Gasturbinen werden im hochtemperaturbelasteten Teil häufig mit zweischaligen Gehäusen ausgeführt. Dabei ist zwischen einem inneren Gehäuse und einem äusseren Gehäuse ein Ringraum ausgebildet. Gas innerhalb dieses Ringraums erwärmt sich während des Betriebes sehr stark. Weiterhin bestehen Potentiale zur Ausbildung unerwünschter vertikaler Temperaturschichtungen aufgrund der freien Konvektion in dem Ringraum, was mit dem Einbringen thermischer Spannungen in thermisch wie mechanisch belastete Strukturen einhergeht.
Vergleichbare Geometrien sind auch von anderen Turbomaschinen, wie beispielsweise Dampfturbinen, bekannt, wo tendenziell vergleichbare Phänomene auftreten, wenngleich sich diese im Allgemeinen auf niedrigerem Temperaturniveau abspielen.
Darstellung der Erfindung
Aufgabe der Erfindung ist es, an dieser Stelle Abhilfe zu schaffen. Aufgabe der Erfindung ist es also insbesondere, eine Möglichkeit zur Kühlung der Kavitat angeben, und sich während des Betriebes der Turbomaschine potenziell einstellende Temperaturschichtungen zu unterbinden.
Erfindungsgemäss wird dies durch das Verfahren nach Anspruch 1 erreicht. Kern der Erfindung ist es, während des Betriebes der Turbomaschine eine wenigstens mit einer Geschwindigkeitskomponente in Umfangsrichtung der Turbomaschine oder einer torusähnlichen Kavitat orientierte Strömung anzuregen. In einer bevorzugten Ausführungsform wird über wenigstens einen Ejektor eine Treibmittelstromung mit einer Umfangskomponente in die Kavitat eingeblasen, und dadurch eine erzwungene tangentiale Konvektionsströmung in der Kavitat angeregt, welche der freien Konvektionsbewegung wenigstens teilweise entgegengerichtet ist, und welche eine Vergleichmassigung der Temperaturen in der Kavitat bewirkt. Es wird bevorzugt Kühlluft oder Umgebungsluft als Treibmittel eingeblasen. Diese Massnahmen bewirken gleichzeitig eine Vergleichmassigung der Temperaturen und eine Kühlung der Kavitat. Luft wird dabei gemäss einer Ausführungsform der Erfindung von einem geeigneten Fördermittel, beispielsweise einem Gebläse oder einem Verdichter, zu dem Ejektor oder den Ejektoren gefördert. Gemäss einer zweiten Ausführungsform wird ein Luftstrom im Verdichter einer Gasturbogruppe entnommen und als Treibmittel zu dem wenigstens einen Ejektor geführt. Gemäss einer weiteren Ausführungsform wird Luft aus einem Kühlluftsystem einer Gasturbogruppe entnommen, und als Treibmedium für den wenigstens einen Ejektor verwendet.
Eine Turbomaschine, welche zur Durchführung des erfindungsgemässen Verfahrens grundsätzlich geeignet ist, ist aus WO 03/038243 bekanntgeworden. Das Problem der Kühlung der Kavitäten während des Betriebes der Turbomaschine und die an sich überraschend einfache Abhilfe durch das Eindüsen von Kühlmittel als Treibmittel des Ejektors, welches gleichzeitig eine Vergleichmassigung der Temperaturen bewirkt, ist dort allerdings nicht erkannt worden.
Die Kavitat ist insbesondere zwischen einem inneren und einem äusseren Gehäuse der Turbomaschine gebildet, so beispielsweise zwischen einer Brennraumwand und einem Aussengehäuse einer Gasturbine. Hierbei weist die Kavitat mit einem im Wesentlichen ringförmigen Querschnitt (Toms) oder einen torusabschnittförmigen Querschnitt in Form eines Ringsegmentes auf. Die Strömung wird dabei bevorzugt durch ein oder mehrere Ejektoren angeregt, die innerhalb der Kavitat angeordnet und mit einem Treibfluid wie z. B. Luft betreibbar sind. Ejektoren benötigen nur einen geringen Treibfluid-Massenstrom, um eine für den angestrebten Zweck hinreichende Strömung innerhalb der Kavitat anzutreiben. Diese Limitierung des Massenstroms des Treibmediums ist gerade dann wichtig, wenn vorhandene Hilfssysteme zum Antrieb der Strömung benutzt werden sollen, welche kaltes Fluid, beispielsweise Aussenluft, in die Kavitat fördern. Der Massenstrom des durch den Ejektor geführten Treibmediums liegt vorzugsweise zwischen 0,2 und 1,0 kg/s. Als Treibfluid kann auch alternativ die Luft aus dem Gasturbinenverdichter oder einem anderen Verdichter verwendet werden, oder es kann Luft aus einem Kühlluftsystem einer Gasturbogruppe abgezweigt werden. Bei Dampfturbinen wird vorzugsweise Dampf eines geeigneten druckes und einer geeigneten Temperatur als Treibfluid verwendet.
Wenn die Kavitat einen ringförmigen Querschnitt aufweist und die Ejektoren mit Ihrer Ausblasrichtung im Wesentlichen in Umfangsrichtung orientiert sind, ist bevorzugt, dass eine Umfangsströmung oder schraubenförmige Strömung mit einem Steigungswinkel von unter 30°, bevorzugt unter 10° erzeugt wird, da bei einer axial ausgedehnten Kavitat auf diese Weise auch eine Vergleichmassigung der axialen Temperaturverteilung erzielt werden kann.
Es ist weiterhin von Vorteil in Bezug auf die Intensität der Strömungsanregung, wenn eine Anzahl von zwei oder mehr Ejektoren mit gleichsinniger Orientierung der Ausblasrichtung bevorzugt äquidistant am Umfang der Kavitat angeordnet sind. Eine Turbomaschine zur Ausführung der Erfindung umfasst ein Treibfluidplenum, welches über eine gemeinsame Zuführleitung mit Treibfluid versorgt wird, und von welchem wenigstens ein Ejektor, bevorzugt mehrere Ejektoren, und ganz besonders vorteilhaft alle Ejektoren abzweigen. Auf diese Weise ist nur eine zentrale Einspeisung für das Treibfluid erforderlich, während das Treibfluidplenum die gleichmässige Verteilung auf die verschiednen in die Kavitat mündenden Ejektoren bewerkstelligt.
Zur weiteren Verbesserung der Abkühlung der Turbomaschine ist nach einer weiteren Ausführungsform der Erfindung vorgesehen, die Zirkulationsströmung während des Betriebs der Turbomaschine durchgängig aufrecht zu erhalten und nach dem Betrieb, d. h. nach Ausserbetriebnahme der Turbomaschine, in einen zyklischen Betrieb überzugehen. Hierbei wird die Zirkulationsströmung intervallartig erzeugt. Beispielsweise kann im Intervall betrieb die Strömung für eine Zeit von 1 bis 20 Minuten, vorzugsweise etwa 5 Minuten, aufrechterhalten werden, worauf eine Pause von etwa 15 bis 60, vorzugsweise 30, Minuten folgt. Dieser Vorgang wird dann mehrmals wiederholt, bis eine hinreichende Abkühlung der Turbomaschine erzielt ist. Natürlich können die Intervalle und die Abstände zwischen den Intervallen den Anforderungen entsprechend variiert werden. Insbesondere müssen die Intervalle in ihrer Länge und ihren zeitlichen Abständen nicht gleich sein. Des Weiteren können auch die Abkühlraten (Stärke der Abkühlung pro Zeit) in den einzelnen Intervallen unterschiedlich sein. Zum Beispiel können zu Beginn des Abkühlens höhere und im Folgenden geringere Abkühlraten gewählt werden.
Kurze Beschreibung der Zeichnungen
Die Erfindung soll nachfolgend anhand der Zeichnung näher erläutert werden. Im Einzelnen zeigen
Fig. 1 einen Teil des thermischen Blockes einer Gasturbine;
Fig. 2 eine schematische Ansicht eines Teils der Gasturbine zur Erläuterung des erfindungsgemäßen Prinzips;
Fig. 3 eine Schnittansicht der in Fig. 1 gezeigten Gasturbine;
Fig. 4 eine weitere Schnittansicht der in Fig. 1 gezeigten Gasturbine.
Fig. 5 eine weitere Vorzugsvariante der Erfindung.
Selbstverständlich stellen die folgenden Figuren nur illustrative Beispiele dar, und sind bei Weitem nicht in der Lage, alle sich dem Fachmann ergebenden Ausführungsformen der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, darzustellen.
Weg zur Ausführung der Erfindung
Die Erfindung soll am Beispiel einer Gasturbine erläutert werden. In Figur 1 ist der thermische Block einer Gasturbine dargestellt, wobei nur der oberhalb der Maschinenachse 10 befindliche Teil gezeigt ist. Bei der in Figur 1 dargestellten Maschine handelt es sich um eine Gasturbine mit sogenannter sequentieller Verbrennung, wie sie beispielsweise aus der EP 620362 bekannt ist. Obschon deren Funktionsweise für die Erfindung ohne primäre Bedeutung ist, sei diese der Vollständigkeit halber in groben Zügen eriäutert. Ein Verdichter 1 saugt einen Luftmassenstrom an und verdichtet diesen auf einen Arbeitsdruck. Die verdichtete Luft strömt durch ein Plenum 2 in eine erste Brennkammer 3 ein. Dort wird eine Brennstoffmenge eingebracht und in der Luft verbrannt. Das entstehende Heissgas wird in einer ersten Turbine 4 teilentspannt, und strömt in eine zweite Brennkammer 5, eine sogenannte SEV-Brennkammer, ein. Dort zugeführter Brennstoff entzündet sich aufgrund der noch hohen Temperatur des teilentspannten Heissgases. Das nacherhitzte Heissgas wird in einer zweiten Turbine 6 weiter entspannt, wobei eine mechanische Leistung auf die Welle 9 übertragen wird. Im Betrieb herrschen bereits in den letzten Verdichterstufen, erst recht aber im Bereich der Brennkammern 3, 5 und in den Turbinen 4, 6 Temperaturen von mehreren 100 °C. Im Bereich der zweiten Brennkammer 5 ist das Gehäuse der Turbomaschine mehrschalig ausgeführt, zwischen einem Aussengehäusse 11 und einem Innengehäusse 13 ist eine ringförmige Kavitat ausgebildet. Durch Wärmeeintrag über die Innengehäusewand und das Eindringen verbrauchter Kühlluft oder Heissgas können sich ohne in der Kavitat ohne weiteres Temperaturen von bis zu 550°C und sogar noch darüber einstellen. Andererseits ist die Kavitat, wenn überhaupt, nur gering vertikal zwangsdurchströmt, was der Ausbildung ausgeprägter vertikaler Temperaturschichtungen förderlich ist, die letzten Endes bis hin zu einem Verzug des Gehäuses führen können.
Figur 2 verdeutlicht nun das erfindungsgemäße Prinzip. In der Kavitat 7 wird während des Betriebs der Turbine eine in Umfangsrichtung orientierte Strömungangeregt. Hierzu wird ein Fluid (z. B. Aussenluft) über einen oder mehrere Ejektoren 16 in die Kavitat eingeleitet. Die Temperatur des Heissgases im Innern der Kavitat 7 zwischen dem Aussengehäuse 11 und dem Innengehäuse 13 liegt ohne Kühlung lypischerweise bei ca. 550 °C oder darüber. Dabei dringt beispielsweise Heissgas, welches die Turbomaschine mit einer Temperatur von 600 °C oder mehr in Richtung des Pfeils C durchströmt, über die Öffnung P in die Kavitat 7 ein, wie dies durch den Pfeil B angedeutet ist. Durch den Ejektor 16 wird kühleres Medium, beispielsweise über ein Gebläse geförderte Umgebungsluft, oder auch Anzapfluft aus dem Verdichter 1, siehe hierzu Figur 1, oder Kühlluft aus einem Kühlluftsystem, in die Kavitat eingebracht. Der Massenstrom des Kühlfluides liegt dabei typischerweise im Bereich von rund 0,2 kg/s bis 1 kg/s. Dies erweist sich als ausreichend, um die Temperatur in der Kavitat auf zum Beispiel 400°C abzusenken. Ein Massenäquivalent zum in die Kavitat 7 einströmenden Massenstrom strömt als Ausgleichströmung A in die Heissgasströmung C ab. Es ist auch möglich, das erfϊndungsgemäße Verfahren in einem System durchzuführen, bei dem das Kühlmittel einen geschlossenen Kreislauf über einen Kompressor oder ein Gebläse durchläuft. Hierzu sollte der Innendruck in der Kavitat nicht zu hoch sein, da der Kompressor oder das Gebläse gegen das in der Kavitat entstehende Druckniveau abgedichtet sein müssen. Nach dem Abstellen der Turbine wird in einer bevorzugten Ausführungsform der Erfindung der Ejektor intermitterend betrieben. Hierdurch wird eine kontrollierte Abkühlung der Maschine erreicht. Es wird durch die genannte Massnahme vermieden, dass das Innengehäuse zu stark bzw. zu schnell abkühlt und das mit einer starken Abkühlung nach dem Abschalten verbundene Spiel zwischen Rotor und Gehäuse zu gering wird. Bevorzugt wird die Kavitat in mehreren Kühlungsphasen von etwa fünf Minuten Dauer mit der Kühlluftzuströmung beaufschlagt. Die Zeit zwischen zwei aufeinander folgenden Kühlungsphasen beträgt bevorzugt 30 Minuten. Durch diese zyklische Nachkühlung erfolgt eine besonders schonende Abkühlung der Turbine, so dass unerwünschte, aufgrund natüriicher Konvektion auftretende Effekte wie das gefürchtete "Buckeln" des Gehäuses vermieden werden.
Figur 3 zeigt zur weiteren Veranschaulichung des erfindungsgemäßen Verfahrens einen stark schematisierten Querschnitt durch die Gasturbine von Figur 1 entlang der Linie INI. Zwischen einem Aussengehäuse 11 der Gasturbine und einer Brennraumwand 13, welche auch als inneres Gehäuse verstanden werden kann, ist die ringförmige Kavitat 7 ausgebildet. Der Ejektor 16 bläst von einem Gebläse 14 herangeführte Umgebungsluft, welche deutlich kühler ist als der Fluidinhalt der Kavitat 7, mit einer Tangentialkomponente als Treibmittelstromung 17 in die ringförmige Kavitat ein. Dort treibt die Treibmittelstromung eine Umfangsströmung 18 an, welche einen Ausgleich der sich aufgrund natürlicher Konvektion einstellenden vertikalen Temperaturschichtung schafft. In der dargestellten Ausführungsform ist der Ejektor an einer geodätisch hochgelegenen Stelle der Kavitat angeordnet, woraus eine weitere Unterstützung der Antriebswirkung aufgrund des Dichteunterschiedes zwischen der vergleichsweise kühleren Treibmittelstromung 17 und dem Fluidinhalt der Kavitat 7 resultiert. Auf die dargestellte Weise wird der Fluidinhalt der Kavitat gekühlt, und gleichzeitig wird die Ausbildung einer potenziell schädlichen stabilen Temperaturschichtung vermieden. Bevorzugt ist zwischen Gebläse 14 und Ejektor 16 ein Rückschlagelement angeordnet, dergestalt, dass ein potenzielles Rückströmen von Heissgas verhindert und eine thermische Belastung des Gebläses 14 vermieden wird. Ein weiterer Vorteil ist, dass leicht gegebenenfalls vorhandene Hilfssysteme, etwa ein ohnehin vorhandenes Druckluftsystem, zur Förderung des Treibmediums angepasst werden können, dergestalt, dass unter Umständen vollständig auf das Gebläse 14 verzichtet werden kann. Zur Vermeidung von Thermoschocks kann das zum Ejektor geförderte Treibmittel vorgängig der Zuleitung zum Ejektor 16 über Wärmetauscherflächen geleitet werden, beispielsweise durch oder über heisse Strukturen der Maschine selbst. Eine Vorwärmung des Treibfluides ist im Betrieb der Turbomaschine ohnehin gewährleistet, wenn das Treibmittel von einer Kompressor- Zwischenanzapfung oder aus dem Kühlluftsystem einer Gasturbogruppe entnommen wird.
Figur. 4 zeigt eine vorteilhafte Ausführungsform, bei der die Zirkulationsströmung 18 durch mehrere Ejektoren 16 erzeugt wird, die über eine zentrale Zuführleitung I mit dem Treibmedium 17 gespeist werden. Hierzu strömt das Treibfluid über die zentrale Zuführleitung in ein Treibfluidplenum (ohne Bezugszeichen). Das Treibfluidplenum bewerkstelligt eine örtliche Vergleichmassigung und eine homogene Verteilung des Treibfluids. Die Ejektoren zweigen aus dem Treibfluidplenum ab und münden in der Kavitat.
In Figur 5 ist eine perspektivische Darstellung einer ringförmigen Kavitat dargestellt. Die innere Begrenzung 13 ist nur schematisch als Vollzylinder dargestellt. Zwischen dieser inneren Begrenzung und einem Aussenmantel 11 ist die Kavitat 7 ausgebildet. In axialer Richtung verteilt sind drei durch den Aussenmantel 11 hindurchgeführte, in der Darstellung an sich nicht sichtbare Ejektoren 16 hindurchgeführt, welche schematisch durch gestrichelte Linien angedeutet sind. Die Ejektoren sind so angeordnet, dass die Orientierung der Ausblasrichtung des Treibmediums in axialer Richtung um einen Winkel α gegen die durch eine strichpunktierte Linie U angedeutete Umfangsrichtung geneigt ist. Die Umfangsrichtung U bezieht sich im gezeigten Beispiel auf die Umfangsrichtung der Kavitat 7. Um insbesondere die primär angestrebte Umfangsströmung anzuregen, kann dieser Anstellwinkel α auf werte unter 30°, insbesondere auf werte kleiner als 10°, eingeschränkt werden. Es stellt sich in Folge eine nicht dargestellte schraubenförmige Durchströmung der Kavitat ein, welche weiterhin ein sich gegebenenfalls einstellendes axiales Temperaturgefälle zu vermeiden hilft.
Es ist im Rahmen der Erfindung selbstverständlich auch möglich, andere geeignete Mittel zum Antrieb der Strömung zu verwenden; beispielsweise können Druckwellen auf an sich bekannte Weise zum Antrieb der Strömung in den Kavitäten selbst verwendet werden, oder auch anstelle eines Gebläses zum Antrieb der Treibmittelstromung eines Ejektors.
Der Fachmann erkennt ohne Weiteres, dass die Anwendung der Erfindung keineswegs auf Gasturbinen beschränkt ist, sondern dass die Erfindung in einer Vielzahl weiterer Anwendungsfälle eingesetzt werden kann. Selbstverständlich ist die Anwendung der Erfindung auch nicht auf eine in Figur 1 dargestellte Gasturbine mit sequentieller Verbrennung beschränkt, sondern sie kann auch bei Gasturbinen mit nur einer oder mehr als zwei Brennkammern Anwendung finden. Insbesondere kann die Erfindung auch in Dampfturbinen realisiert werden.
Bezugszeichenliste
1 Verdichter
2 Plenum
3 Brennkammer
4 erste Turbine
5 Brennkammer
6 zweite Turbine
7 Kavitat
9 Welle
10 Maschinenachse
11 Aussengehäuse, Aussenmantel, äussere Wand
12 inneres Gehäuse, innere Wand, Brennraumwand
13 inneres Gehäuse, innere Wand, Brennraumwand
14 Gebläse
16 Ejektor
17 Treibfluidströmung
18 angeregte Strömung U Umfangsrichtung
I Zuführieitung α Anstellwinkel der Treibmediumsstromung gegen die Umfangsrichtung

Claims

Patentansprüche
1. Verfahren zum Betreiben einer Turbomaschine mit mindestens einer zwischen einem Innengehäuse und einem Aussengehäuse gebildeten torusabschnitt- oder torusförmigen Kavitat (7), dadurch gekennzeichnet, dass während des Betriebs der Turbomaschine eine mit wenigstens einer Geschwindigkeitskomponente in Umfangsrichtung der Turbomaschine oder des Torus orientierte Strömung (18) in der Kavitat (7) angeregt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Strömung durch ein aus wenigstens einem Ejektor (16) mit einer Umfangs-Geschwindigkeitskomponente austretendes Fluid (17), angeregt wird.
3. Verfahren nach einem der vorstehenden Ansprüche, gekennzeichnet durch den weiteren Schritt, ein Kühlfluid von aussen zuzuführen.
4. Verfahren nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass als Fluid von einem Fördermittel, insbesondere einem Gebläse oder einem Verdichter, Umgebungsluft herangeführt wird.
5. Verfahren nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass das Fluid aus einem Verdichter einer Gasturbogruppe entnommen wird.
6. Verfahren nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass das Fluid aus einem Kühlluftsystem einer Gasturbogruppe entnommen wird.
7. Verfahren nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass innerhalb einer Kavitat (7) mit im Wesentlichen ringförmigem Querschnitt eine Umfangsströmung oder eine schraubenförmige Strömung angeregt wird, bei der das verwendete Fluid (17) in axialer Richtung in einem Winkel (α) von weniger als 30°, vorzugsweise weniger als 10°, gegen die Umfangsrichtung (U) der Kavitat (7) aus dem Ejektor ausgeblasen wird.
8. Verfahren nach einem der vorstehenden Ansprüche, gekennzeichnet durch die weiteren Schritte: die Turbomaschine im Leistungsbetrieb zu betreiben; die die umfangsorientierte Strömung während des Betriebs der Turbomaschine kontinuierlich anzuregen; die Turbomaschine abzustellen; und die umfangsorientierte Strömung während einer Abkühlphase intermittierend anzuregen.
9. Turbomaschine, umfassend ein Innengehäuse (13), ein Aussengehäusse (11), eine zwischen dem Innengehäuse und dem Aussengehäuse angeordnete Kavitat (7), sowie wenigstens einen in der Kavitat angeordneten mit einem Treibfluid betreibbaren Ejektor (16), gekennzeichnet durch ein Treibfluidplenum und eine Zuführleitung (I) für das Treibfluid, welche in das Treibfluidplenum mündet, wobei der Ejektor mit dem Treibfluidplenum in Fluidverbinduneg steht.
10. Turbomaschine gemäss Anspruch 9, dadurch gekennzeichnet, dass innerhalb der Kavitat eine Mehrzahl von Ejektoren angeordnet sind, die alle mit der Treibfluidplenum in Fluidverbindung stehen.
11. Turbomaschine gemäss Anspruch 10, dadurch gekennzeichnet, dass in Umfangsrichtung mehrere Ejektoren äquidistant angeordnet sind.
PCT/EP2004/052784 2003-11-07 2004-11-03 Verfahren zum betreiben einer turbomaschine, und turbomaschine WO2005045203A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE502004008796T DE502004008796D1 (de) 2003-11-07 2004-11-03 Verfahren zum betreiben einer turbomaschine, und turbomaschine
EP04804511A EP1700009B1 (de) 2003-11-07 2004-11-03 Verfahren zum betreiben einer turbomaschine, und turbomaschine
US11/417,186 US7273345B2 (en) 2003-11-07 2006-05-04 Method for operating a turbo engine and turbo engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10352089A DE10352089A1 (de) 2003-11-07 2003-11-07 Verfahren zum Betreiben einer Turbomaschine, und Turbomaschine
DE10352089.9 2003-11-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/417,186 Continuation US7273345B2 (en) 2003-11-07 2006-05-04 Method for operating a turbo engine and turbo engine

Publications (2)

Publication Number Publication Date
WO2005045203A2 true WO2005045203A2 (de) 2005-05-19
WO2005045203A3 WO2005045203A3 (de) 2005-07-07

Family

ID=34559465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/052784 WO2005045203A2 (de) 2003-11-07 2004-11-03 Verfahren zum betreiben einer turbomaschine, und turbomaschine

Country Status (5)

Country Link
US (1) US7273345B2 (de)
EP (1) EP1700009B1 (de)
AT (1) ATE419453T1 (de)
DE (2) DE10352089A1 (de)
WO (1) WO2005045203A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2065568A1 (de) * 2007-11-28 2009-06-03 Siemens Aktiengesellschaft Kühlung einer Dampturbine
WO2014164724A1 (en) * 2013-04-03 2014-10-09 Siemens Aktiengesellschaft Turbine engine shutdown temperature control system with nozzle injection for a gas turbine engine
EP2971612A4 (de) * 2013-03-13 2017-01-04 United Technologies Corporation Motormittelturbinenrahmen-transferröhre zur kühlung eines niederdruckturbinengehäuses

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1611315B1 (de) * 2003-04-07 2015-07-29 Alstom Technology Ltd Turbomaschine
US7533651B2 (en) * 2006-03-17 2009-05-19 Ford Global Technologies, Llc System and method for reducing knock and preignition in an internal combustion engine
GB0906059D0 (en) * 2009-04-08 2009-05-20 Rolls Royce Plc Thermal control system for turbines
US20100303610A1 (en) * 2009-05-29 2010-12-02 United Technologies Corporation Cooled gas turbine stator assembly
US8894359B2 (en) * 2011-12-08 2014-11-25 Siemens Aktiengesellschaft Gas turbine engine with outer case ambient external cooling system
US8820090B2 (en) * 2012-09-05 2014-09-02 Siemens Aktiengesellschaft Method for operating a gas turbine engine including a combustor shell air recirculation system
US8973372B2 (en) * 2012-09-05 2015-03-10 Siemens Aktiengesellschaft Combustor shell air recirculation system in a gas turbine engine
US9091171B2 (en) 2012-10-30 2015-07-28 Siemens Aktiengesellschaft Temperature control within a cavity of a turbine engine
US20140119886A1 (en) * 2012-10-31 2014-05-01 General Electric Company Turbine cowling system
EP3587771A1 (de) * 2013-01-21 2020-01-01 United Technologies Corporation Luft-/ölkühler-luftstromverstärkungssystem
US9279339B2 (en) * 2013-03-13 2016-03-08 Siemens Aktiengesellschaft Turbine engine temperature control system with heating element for a gas turbine engine
US20140321981A1 (en) * 2013-04-26 2014-10-30 Jose L. Rodriguez Turbine engine shutdown temperature control system
US9494081B2 (en) * 2013-05-09 2016-11-15 Siemens Aktiengesellschaft Turbine engine shutdown temperature control system with an elongated ejector
US10443449B2 (en) 2015-07-24 2019-10-15 Pratt & Whitney Canada Corp. Spoke mounting arrangement
CA2936180A1 (en) * 2015-07-24 2017-01-24 Pratt & Whitney Canada Corp. Multiple spoke cooling system and method
DE102015215144B4 (de) * 2015-08-07 2017-11-09 MTU Aero Engines AG Vorrichtung und Verfahren zum Beeinflussen der Temperaturen in Innenringsegmenten einer Gasturbine
US10975721B2 (en) 2016-01-12 2021-04-13 Pratt & Whitney Canada Corp. Cooled containment case using internal plenum
US20170306845A1 (en) * 2016-04-22 2017-10-26 General Electric Company Ventilation system for turbomachine using bladeless airflow amplifier
US20170306846A1 (en) * 2016-04-22 2017-10-26 General Electric Company Ventilation system for turbomachine using bladeless airflow amplifier
EP3342991B1 (de) * 2016-12-30 2020-10-14 Ansaldo Energia IP UK Limited Prallplatten für kühlung in einer gasturbine
US10450957B2 (en) * 2017-01-23 2019-10-22 United Technologies Corporation Gas turbine engine with heat pipe system
US10539073B2 (en) 2017-03-20 2020-01-21 Chester L Richards, Jr. Centrifugal gas compressor
US10907501B2 (en) * 2018-08-21 2021-02-02 General Electric Company Shroud hanger assembly cooling

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2402841A (en) * 1944-06-26 1946-06-25 Allis Chalmers Mfg Co Elastic fluid turbine apparatus
EP0503752A1 (de) * 1991-03-11 1992-09-16 General Electric Company Gekühlter Deckbandträger für eine Turbine
US20010022933A1 (en) * 1998-08-18 2001-09-20 Boris Bangert Turbine casing
WO2003038242A1 (de) * 2001-10-30 2003-05-08 Alstom Technology Ltd Turbomaschine
DE10233113A1 (de) * 2001-10-30 2003-05-15 Alstom Switzerland Ltd Turbomaschine
WO2004090291A1 (de) * 2003-04-07 2004-10-21 Alstom Technology Ltd Turbomaschine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1734216A (en) * 1927-04-19 1929-11-05 Westinghouse Electric & Mfg Co Elastic-fluid turbine
DE971622C (de) * 1951-09-27 1959-02-26 Snecma Vorrichtung zum Erzeugen einer kreisenden Stroemung in einem runden Raum
US3029064A (en) * 1958-07-11 1962-04-10 Napier & Son Ltd Temperature control apparatus for turbine cases
US4351150A (en) * 1980-02-25 1982-09-28 General Electric Company Auxiliary air system for gas turbine engine
FR2750451B1 (fr) * 1996-06-27 1998-08-07 Snecma Dispositif de soufflage de gaz de reglage de jeux dans une turbomachine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2402841A (en) * 1944-06-26 1946-06-25 Allis Chalmers Mfg Co Elastic fluid turbine apparatus
EP0503752A1 (de) * 1991-03-11 1992-09-16 General Electric Company Gekühlter Deckbandträger für eine Turbine
US20010022933A1 (en) * 1998-08-18 2001-09-20 Boris Bangert Turbine casing
WO2003038242A1 (de) * 2001-10-30 2003-05-08 Alstom Technology Ltd Turbomaschine
DE10233113A1 (de) * 2001-10-30 2003-05-15 Alstom Switzerland Ltd Turbomaschine
WO2004090291A1 (de) * 2003-04-07 2004-10-21 Alstom Technology Ltd Turbomaschine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2065568A1 (de) * 2007-11-28 2009-06-03 Siemens Aktiengesellschaft Kühlung einer Dampturbine
EP2971612A4 (de) * 2013-03-13 2017-01-04 United Technologies Corporation Motormittelturbinenrahmen-transferröhre zur kühlung eines niederdruckturbinengehäuses
EP3348803A1 (de) 2013-03-13 2018-07-18 United Technologies Corporation Motormittelturbinenrahmen-transferröhre zur kühlung eines niederdruckturbinengehäuses
WO2014164724A1 (en) * 2013-04-03 2014-10-09 Siemens Aktiengesellschaft Turbine engine shutdown temperature control system with nozzle injection for a gas turbine engine

Also Published As

Publication number Publication date
DE502004008796D1 (de) 2009-02-12
ATE419453T1 (de) 2009-01-15
WO2005045203A3 (de) 2005-07-07
US7273345B2 (en) 2007-09-25
EP1700009A2 (de) 2006-09-13
US20070065274A1 (en) 2007-03-22
DE10352089A1 (de) 2005-06-09
EP1700009B1 (de) 2008-12-31

Similar Documents

Publication Publication Date Title
WO2005045203A2 (de) Verfahren zum betreiben einer turbomaschine, und turbomaschine
EP1446557B1 (de) Turbomaschine
EP1611315B1 (de) Turbomaschine
DE602004000527T2 (de) Verfahren zur Kühlung von heissen Turbinenbauteilen mittels eines teilweise in einem externen Wärmetauscher gekühlten Luftstromes und so gekühltes Turbinentriebwerk
DE3878174T2 (de) Erwaermungseinrichtung fuer einen gasturbinenrotor.
EP1162355B1 (de) Verfahren zum Kühlen einer Gasturbinenanlage und entsprechende Gasturbinenanlage
EP2430315B1 (de) Strömungsvorrichtung mit kavitätenkühlung
EP1105623B1 (de) Turbinengehäuse
EP2136052A1 (de) Turboproptriebwerk mit einer Vorrichtung zum Erzeugen eines Kühlluftstroms
WO2001065095A1 (de) Kühlluftsystem
DE19501471A1 (de) Turbine, insbesondere Gasturbine
DE1601564A1 (de) Mantelring fuer Gasturbinenanlagen
DE102012011294A1 (de) Verfahren zum Kühlen einer Gasturbinenanlage sowie Gasturbinenanlage zur Durchführung des Verfahrens
DE1919568A1 (de) Kuehlung fuer die auskleidung eines schubverstaerkers von blaeser- oder zweikreistriebwerken
EP1446556B1 (de) Turbomaschine
EP0879347B1 (de) Verfahren zur entspannung eines rauchgasstroms in einer turbine sowie entsprechende turbine
DE60224344T2 (de) Gasturbine, Brennkammer dafür und Verfahren zum Kühlen der Brennkammer
DE4113680A1 (de) Gasturbogruppe
EP1716316A1 (de) Gasturbine mit einem gegen auskühlen geschützten verdichtergehäuse und verfahren zum betrieb einer gasturbine
EP1167721B1 (de) Verfahren zum Kühlen einer Gasturbinenanlage sowie Gasturbinenanlage zur Durchführung des Verfahrens
EP2236932A1 (de) Verfahren zum Betrieb eines Brenners und Brenner, insbesondere für eine Gasturbine
DE4336143C2 (de) Kühlverfahren für Turbomaschinen
DE60104722T2 (de) System, um dem rotor einer gasturbine kühlluft zuzuführen
DE4442936A1 (de) Gasturbine
DE112014006619T5 (de) Gasturbinenbrennkammer und mit selbiger versehene Gasturbine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004804511

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11417186

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004804511

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11417186

Country of ref document: US