WO2005015575A1 - 超電導線材およびその製造方法 - Google Patents

超電導線材およびその製造方法 Download PDF

Info

Publication number
WO2005015575A1
WO2005015575A1 PCT/JP2004/009951 JP2004009951W WO2005015575A1 WO 2005015575 A1 WO2005015575 A1 WO 2005015575A1 JP 2004009951 W JP2004009951 W JP 2004009951W WO 2005015575 A1 WO2005015575 A1 WO 2005015575A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal substrate
oriented metal
layer
superconducting
superconducting wire
Prior art date
Application number
PCT/JP2004/009951
Other languages
English (en)
French (fr)
Inventor
Koso Fujino
Kazuya Ohmatsu
Masaya Konishi
Shuji Hahakura
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34131494&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005015575(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to US10/552,728 priority Critical patent/US20060219322A1/en
Priority to EP04747417.6A priority patent/EP1653484B2/en
Priority to AU2004264090A priority patent/AU2004264090A1/en
Priority to CA002522078A priority patent/CA2522078A1/en
Publication of WO2005015575A1 publication Critical patent/WO2005015575A1/ja
Priority to HK06112483.3A priority patent/HK1091942A1/xx

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0576Processes for depositing or forming copper oxide superconductor layers characterised by the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores

Definitions

  • the present invention relates to a superconducting wire and a method for manufacturing the same, and more particularly, to a superconducting wire in which a superconducting layer or an intermediate layer and a superconducting layer are sequentially formed on a planarized oriented metal substrate, and a superconducting wire and a method for manufacturing the same. Related to a manufacturing method.
  • the same biaxial orientation as that of the oriented metal substrate is obtained by using an oriented metal substrate in which metal atoms constituting the substrate are biaxially oriented as the metal substrate, and epitaxially growing an intermediate layer on the oriented metal substrate.
  • An intermediate layer having an orientation is formed, and a superconducting layer having the same biaxial orientation as the intermediate layer is formed by epitaxially growing a superconducting layer on the intermediate layer.
  • the flatness of the substrate surface also greatly affects the orientation of the superconducting layer formed on the substrate, or the intermediate layer and the superconducting layer. (See, for example, Patent Document 1).
  • Patent Document 1 Patent No. 2803123
  • Non-patent literature l JHJe, 7 others, "Microstructure of RE203 layers oncube textured Ni substrates", Physica C, (2003), 384, p.54-60
  • Non-Patent Document 2 BWKang and 5 others, "Comparative study of thickness dependence of critical current density of YBa2Cu307- ⁇ on (100) SrTiO3andon rolling-assisted biaxially textured substrates", Mater. Res., Jul. 2002, Vol.17 , No. 7, p. 1750-1757
  • Non-Patent Document 3 D. Eyidi and 2 others, “Growth of Ce02thin film deposited on biaxially textured nickel substrates", J. Mater. Res., Jan. 2003, Vol. 18, No.
  • Non-Patent Document 4 Fujino et al., "Development of high-temperature superconducting thin-film wire by ISD method", SEI Technical Review, September 1999, No. 155, p.131 -135
  • the present invention provides a superconducting wire having high superconducting performance by flattening the substrate surface while maintaining biaxial orientation in a surface layer of an oriented metal substrate. It is an object of the present invention to provide a manufacturing method thereof.
  • a superconducting wire according to an aspect of the present invention is a superconducting wire having a superconducting layer formed on a metal substrate, wherein the metal substrate is an oriented metal substrate and has a surface layer having a depth of up to 300 nm from the surface thereof.
  • the angle of deviation of the crystal axis from the orientation axis is within 25 °, and the surface roughness R is slanted to 50 nm or less.
  • An intermediate layer can be formed on a plate, and a superconducting layer can be formed on the intermediate layer.
  • a method for manufacturing a superconducting wire according to another aspect of the present invention is characterized in that the oriented metal substrate is formed by adjusting the angle of deviation of the crystal axis from the orientation axis in the surface layer having a surface force of up to 300 nm to 25 ° or less. A step of flattening so that the surface roughness R force becomes l50 nm or less;
  • the oriented metal substrate is placed in a reducing atmosphere or a vacuum atmosphere.
  • the method may include a step of performing heat treatment one or more times below.
  • a method of flattening an oriented metal oriented substrate is performed.
  • the process can be performed using at least one of a mirror surface roll method, a mechanochemical method, an electrolytic polishing method, and a chemical polishing method.
  • the method for manufacturing a superconducting wire can include a step of forming an intermediate layer on the oriented metal substrate and a step of forming a superconducting layer on the intermediate layer.
  • the shift angle of the crystal axis in the surface layer having a depth of up to 300 nm from the surface of the oriented metal substrate is 25 ° or less, and the surface roughness R force Sl 50 nm or less
  • a superconducting wire having high superconducting performance can be obtained.
  • FIG. 1A is a view showing a step of flattening an oriented metal substrate in a method of manufacturing a superconducting wire according to the present invention.
  • FIG. 1B is an enlarged view of a portion B in FIG. 1A.
  • FIG. 1C is a view showing a step of forming an intermediate layer on an oriented metal substrate in the method for producing a superconducting wire according to the present invention.
  • FIG. 1D is a view showing a step of forming a superconducting layer on the intermediate layer in the method for producing a superconducting wire according to the present invention.
  • FIG. 1E is an enlarged view of a portion E in FIG. 1D.
  • FIG. 2 is a view for explaining one flattening method of the oriented metal substrate used in the present invention.
  • FIG. 3 is a view illustrating another method of flattening an oriented metal substrate used in the present invention.
  • one superconducting wire according to the present invention has an intermediate layer 2 formed on an oriented metal substrate 1 and a superconducting layer 3 formed on intermediate layer 2.
  • the oriented metal substrate 1 has a deviation from the orientation axis of the crystal axis in the surface layer la of a depth of up to 300 nm from the surface of the oriented metal substrate 1 of 25 ° or less, and has a surface roughness R force Sl of 50 nm or less. I'm being protestled
  • an intermediate layer and a superconducting layer having high biaxial orientation can be formed sequentially on an oriented metal substrate having a planarized surface while maintaining the biaxial orientation of the surface layer.
  • an intermediate layer and a superconducting layer having high biaxial orientation can be formed.
  • a superconducting wire having high superconducting performance can be obtained.
  • the orientation axis refers to the axis of a polycrystal when the specific crystal directions of many crystal grains are approximately parallel to the specific axis direction.
  • the oriented metal substrate 1 used in the present invention refers to a metal substrate in which metal atoms constituting the substrate are biaxially oriented. Substrates in which the misalignment angle of the crystal axis from the orientation axis is 25 ° or less are included.
  • the two orientation axes of the biaxial orientation are an axis approximately parallel to the crystal axis in a direction perpendicular to the substrate surface and an axis approximately parallel to one crystal axis in a direction parallel to the substrate surface.
  • the deviation angle of the crystal axis in the substrate from the orientation axis is the deviation angle of one crystal axis in a direction parallel to the substrate surface from the orientation axis in a plane parallel to the substrate surface. This is the average of the deviation angles in the substrate.
  • the deviation angle of the crystal axis from the orientation axis in the surface layer is a deviation from the orientation axis in a plane parallel to the surface layer surface of one crystal axis in a direction parallel to the surface layer surface of the substrate. Angle means the average value of the deviation angle in the surface layer.
  • the deviation angle of the crystal axis from the orientation axis in the surface layer is less than 25 °. If the angle of deviation of the crystal axis from the orientation axis in the surface layer exceeds 25 °, the formation of the intermediate layer and the superconducting layer having high biaxial orientation is hindered.
  • the shift angle of the crystal axis from the orientation axis in the surface layer is more preferably 12 ° or less, and further preferably 10 ° or less.
  • the superconducting layer can be directly formed on the oriented metal substrate without providing the intermediate layer. That is, as described above, the oriented metal substrate 1 used in the present invention has a surface axis la having a depth of up to 300 nm from the surface, in which the deviation angle of the crystal axis from the orientation axis is 25 ° or less. It is characterized in that it is flattened to a surface roughness R force Sl50 nm or less. Inner layer (oriented metal base
  • An intermediate layer and a superconducting layer having high axial orientation cannot be formed.
  • the orientation is preferably such that the 100> axis is oriented in a direction perpendicular to the substrate surface, and the 010> axis is oriented in the length direction of the substrate.
  • the surface roughness R corresponds to the surface from the maximum convex peak to the maximum concave peak of the surface.
  • the surface roughness R is less than 150 nm.
  • the surface roughness Ra which is the average value of the distance from the top of the surface to the top of the recess in the direction perpendicular to the surface, must be 50 nm or less.
  • the oriented metal substrate is not particularly limited as long as it has a biaxial orientation as described above.
  • the above-mentioned metal or alloy which can be formed by using only the above-mentioned metal or alloy alone, can be laminated with another metal or alloy.
  • an oriented metal substrate can be obtained by providing an oriented Ni thin film layer on stainless steel, which is a high-strength material.
  • One method of manufacturing a superconducting wire according to the present invention is as follows. First, referring to FIGS. 1A and 1B, the oriented metal substrate 1 is crystallized in a surface layer la having a depth of 300 nm from its surface. The deviation angle of the axis from the orientation axis should be 25 ° or less, and its surface roughness R force should be 50nm or less.
  • an intermediate layer 2 is formed on the oriented metal substrate 1.
  • superconducting layer 3 is formed on intermediate layer 2.
  • An intermediate layer 2 and a superconducting layer 3 are sequentially formed on an oriented metal substrate 1 having a planarized surface while the biaxial orientation of the surface layer is maintained. and The superconducting layer 3 is formed, and a superconducting wire having high superconducting performance can be obtained. Further, depending on the type of the oriented metal substrate, a superconducting layer can be directly formed on the oriented metal substrate without providing the intermediate layer.
  • the intermediate layer 2 formed on the oriented metal substrate 1 includes at least one kind of crystal structure having a pi-cloth type, a fluorite type, a rock salt type, or a vesicular bouskite type.
  • a metal oxide having a metal element is preferably used. Specifically, rare earth elements such as CeO
  • Oxide YSZ (yttria stabilized zirconia), BZ ⁇ (BaZrO), STO (SrTiO), Al
  • the superconducting layer can be formed directly on the oriented Ag substrate without providing the intermediate layer.
  • the method for forming the oxide thin film serving as the intermediate layer is not particularly limited as long as the object of the present invention is not violated.
  • PLD Physical Deposition
  • Pulse Laser Deposition Pulse Laser Deposition
  • Thermal Deposition are preferably used.
  • CeO thin film with 100> axis oriented in the direction perpendicular to the substrate surface and 011> axis oriented in the length direction of the substrate is formed, and a CeO layer with high biaxial orientation is obtained.
  • the superconducting layer 3 formed on the intermediate layer 2 is not particularly limited, but RE Ba Cu O or the like is preferably used.
  • the intermediate layer 2, for example, the superconducting layer 3 is placed on the CeO layer that is biaxially oriented with the ⁇ 100> axis in a direction perpendicular to the substrate surface and the ⁇ 011> axis in the length direction of the substrate.
  • a Ho Ba Cu O layer is formed with the 100> axis oriented in the direction perpendicular to the substrate surface and the 010> axis oriented in the length direction of the substrate. H with high biaxial orientation
  • a protective layer can be formed on the superconducting layer 3 if necessary.
  • the protective layer is not particularly limited as long as it has high conductivity, but Ag, Au, Pt, A, or an alloy thereof is preferably used.
  • the method for forming the protective layer is not particularly limited, but methods such as sputtering, EBD, PLD, thermal evaporation, MOD, MOCVD, and plating are preferably used.
  • a mirror surface rolling method at least one of a mirror surface rolling method, a mechanochemical method, an electrolytic polishing method, and a chemical polishing method, before forming the superconducting layer or the intermediate layer on the substrate.
  • a planarization treatment 11 can be used.
  • the mirror-finished roll method refers to a method of rolling an oriented metal substrate using a roll having a mirror-finished roll surface, thereby transferring the mirror surface of the roll surface to the surface of the oriented metal substrate. It refers to a method of flattening the substrate surface.
  • the mechano-chemical polishing method refers to, for example, referring to FIG. 2, a polishing slurry 29 obtained by dispersing polishing particles such as Si ⁇ and Al 2 O in a corrosive acidic or basic liquid.
  • the polishing sheet 27 on which the polishing sheet 27 is disposed is rotated by the rotation shaft 23, so that the polishing sheet 27 is rotated.
  • a new polishing sheet surface is supplied by rotating the polishing sheet supply roll 25 and the polishing sheet winding roll 26.
  • the electrolytic polishing method is, for example, referring to FIG. 3, immersing an oriented metal substrate 1 in an electrolytic solution 36 such as concentrated phosphoric acid or Between cathode 35 A method of electrochemically polishing the surface of the oriented metal substrate 1 by passing a direct current through the substrate.
  • the oriented metal substrate 1 is continuously electrolytically polished and wound up by the substrate supply roll 31, the substrate immersion roll 32 and the substrate winding roll 33.
  • the chemical polishing method includes, for example, a mixed solution of phosphoric acid, nitric acid, hydrofluoric acid and nitric acid (HF-HNO), a mixed solution of hydrofluoric acid and hydrogen peroxide (HF-HO), and a hydrogen oxalic acid hydrogen peroxide.
  • HF-HNO a mixed solution of phosphoric acid, nitric acid, hydrofluoric acid and nitric acid
  • HF-HO hydrofluoric acid and hydrogen peroxide
  • hydrogen oxalic acid hydrogen peroxide Water ((C ⁇ H) -H
  • a heat treatment in a reducing atmosphere at least once.
  • One of the objects of the heat treatment in the reducing atmosphere is to remove an oxide layer formed on the surface layer of the oriented metal substrate to expose a surface layer having biaxial orientation. Further, even if the biaxial orientation of the surface layer of the oriented metal substrate is reduced by the flattening treatment, the biaxial orientation of the surface layer can be recovered by the heat treatment in the reducing atmosphere.
  • the heat treatment of the flattened oriented metal substrate in a reducing atmosphere means that the heat treatment is performed in a reducing atmosphere sufficient to recover the decrease in the biaxial orientation of the surface layer caused by the flattening process.
  • a reducing gas such as H gas.
  • H 2 gas of the heat treatment atmosphere gas is preferably so as reducing increases larger device, when used in combination with H 2 gas and Ar gas as a reducing gas, H 2 gas is 1 mole 0 / It is preferably 0 or more, more preferably 3 mol% or more.
  • a step of performing heat treatment at least once in a vacuum atmosphere can be included.
  • One purpose of the heat treatment in the vacuum atmosphere is to remove an oxide layer formed on the surface layer of the oriented metal substrate to expose a surface layer having biaxial orientation. Further, even if the biaxial orientation of the surface layer of the oriented metal substrate is reduced by the flattening treatment, the biaxial orientation of the surface layer can be recovered by the heat treatment in the vacuum atmosphere.
  • the heat treatment of the flattened oriented metal substrate in a vacuum atmosphere means that the heat treatment is performed in a vacuum atmosphere sufficient to recover the decrease in the biaxial orientation of the surface layer caused by the flattening process. it refers to, for example, means that the degree of vacuum is thermally treated in the following vacuum 1. 33 X 10- 2 Pa.
  • the temperature of the heat treatment of the oriented metal substrate in a reducing atmosphere or a vacuum atmosphere is not particularly limited as long as it is lower than the melting point of the oriented metal substrate, but is 500 ° C to 800 ° C. Is preferred. If the heat treatment temperature is lower than 500 ° C, the recovery of the biaxial orientation of the surface layer on the oriented metal substrate becomes insufficient, and if it exceeds 800 ° C, the biaxial orientation of the entire oriented metal substrate may be reduced. From the above viewpoint, the heat treatment temperature is more preferably from 600 ° C to 700 ° C.
  • the heat treatment time of the oriented metal substrate in a reducing atmosphere or a vacuum atmosphere is not particularly limited, but is preferably 2 minutes or more. If the heat treatment time is less than 2 minutes, the recovery of the biaxial orientation of the surface layer on the oriented metal substrate becomes insufficient.
  • the heat treatment of the oriented metal substrate in a reducing atmosphere or a vacuum atmosphere is not particularly limited, but is preferably performed immediately before forming a superconducting layer or an intermediate layer on the metal distribution substrate. This is preferable from the viewpoint of preventing the biaxial orientation of the surface layer of the oriented metal substrate after the heat treatment from re-decreasing.
  • the heat treatment is not limited to one time, but may be performed two or more times. By performing the heat treatment twice or more, the recovery of the biaxial orientation of the surface layer in the oriented metal substrate can be enhanced. When the heat treatment is performed twice or more, the heat treatment in a reducing atmosphere and the heat treatment in a vacuum atmosphere can be used together.
  • the pre-heat treatment is preferably performed at 500 ° C. or 800 ° C. for 2 minutes or more. It is more preferably at least 5 minutes, most preferably at least 10 minutes.
  • the immediately preceding heat treatment is preferably performed at an ambient temperature of 500 ° C. to 800 ° C. for 2 minutes or more. It is more preferably at least 3 minutes, most preferably at least 7 minutes.
  • polishing slurry 29 (pH 8.8) in which polishing particles having a particle size of 72 nm are dispersed by 36% by volume in an aqueous solution having the same
  • a load of 15 N / cm 2 is applied to the oriented metal substrate 1 using the holding tool 21.
  • Polishing is performed for 3 minutes by rotating the polishing sheet 27 at 180 ⁇ ⁇ ⁇ , and as a third planarization step, abrasive particles having a particle size of 12 nm are added to an aqueous solution containing 1.4% by mass of HO.
  • polishing slurry 29 (pH 10.1) in which 30% by volume is dispersed
  • a 15 NZcm 2 load is applied to the oriented metal substrate 1 using the holding tool 21 to rotate the polishing sheet 27 at 180 rpm for 3 minutes. Polishing was performed.
  • the surface roughness R of the oriented metal substrate after the above-mentioned planarization treatment is 143 nm, and the surface roughness R is 16 ⁇ .
  • the deviation of the crystal axis from the orientation axis in the surface layer was 9 °.
  • the surface roughness R and the surface roughness R are measured with an atomic force microscope, and the deviation angle of the crystal axis is determined.
  • the (200) plane orientation of the surface layer of the oriented metal substrate before and after the above-mentioned flattening treatment was evaluated using the low-angle incidence X-ray method.
  • the evaluation criterion is that the relative intensity of the diffraction peak from the (200) plane is lower than that of the low-angle incident X-ray diffraction diagram after the flattening process is compared with the low-angle incident X-ray diffraction diagram before the flattening process.
  • indicates that the diffraction peak from (200) plane decreased, and ⁇ indicates that the diffraction peak from (111) plane clearly appears, and the diffraction peak from (200) plane disappeared.
  • the one where the relative intensity of the diffraction peak from the (111) plane was large was designated as X.
  • the larger the relative intensity of the diffraction peak from the (200) plane the higher the biaxial orientation.
  • the (200) plane orientation of the surface layer of the oriented metal substrate after flattening was ⁇ .
  • H gas was used as a reducing gas by sputtering.
  • the evaluation criteria are as follows: In the low angle incidence X-ray diffraction diagram of the intermediate layer, those having no diffraction peak from the (1 1 1) plane where the relative intensity of the diffraction peak from the (200) plane is large are ⁇ and (200 0). The diffraction peaks from the (1 1 1) plane where the diffraction peak from the (1 1 1) plane and the diffraction peak from the (1 1 1) plane are clearly expressed The one with the highest strength was designated as X. In this example, the (200) plane orientation of the intermediate layer was ⁇ .
  • the laser frequency was 150 Hz
  • the laser energy was 0.65 J
  • a 7N / cm 2 load is applied to the oriented metal substrate 1 to # 2000 Pano (for example, a Pano having abrasive grains having a particle size of 1 ⁇ m-10 ⁇ m).
  • the second and third planarization treatments, two heat treatments in a reducing atmosphere, and the intermediate layer and the superconducting layer were performed in the same manner as in Example 1. The formation was performed.
  • Table 1 Note that the misalignment angle of the crystal axis of the surface layer on the oriented metal substrate after the planarization exceeds the measurement limit of 25 °, making it impossible to measure the misalignment angle. won.
  • Example 5 After similarly performed as in Example 5 the flat I untreated from the primary substrate up to the third order, the degree of vacuum is 1 - 33 in the X 10- 2 Pa under the following vacuum atmosphere twice under the conditions shown in Table 3 The heat treatment was performed, and the formation of the intermediate layer and the superconducting layer was performed in the same manner as in Example 1. Table 3 summarizes the results.
  • the (200) plane orientation of the intermediate layer was reduced, and the critical current density was also OMA / cm 2 .
  • the surface roughness R of the oriented metal substrate was smaller than 150 nm
  • the critical current density at which the (200) plane orientation of the intermediate layer was not sufficient was also OMAZ cm 2 . Also, if the (200) plane orientation of the surface layer of the surface layer is completely lost during the planarization treatment, it is difficult to recover the orientation of the surface layer even if heat treatment is performed in a reducing atmosphere. The power that I could't do.
  • Example 1 and Example 2 the angle of deviation of the crystal axis from the orientation axis in the surface layer of the oriented metal substrate was 25 ° or less, and the (200) Since the plane orientation is high and the surface roughness R force Sl is 50 nm or less, the (200) plane orientation is high.
  • Example 3 to Example 6 due to the flattening treatment of the oriented metal substrate, the angle of deviation of the crystal axis from the orientation axis in the surface layer became 10.5 ° -11 °, Even if the (200) plane orientation of the surface layer is reduced, as long as the (200) plane orientation is not completely lost, the (200) plane of the surface layer is heat-treated under a reducing atmosphere. Since the orientation is improved, an intermediate layer with high (200) plane orientation and high biaxial orientation is formed, and a superconducting layer with high biaxial orientation is formed, the critical current density is 0.5 MA / cm 2 — 2. A superconducting wire of OMA / cm 2 was obtained.
  • Example 7 and Example 8 even if the misalignment angle of the crystal axis becomes 11 ° due to the planarization treatment of the oriented metal substrate, the (200) plane orientation of the surface layer is reduced. As long as the (200) plane orientation is not completely lost, the heat treatment of the oriented metal substrate in a vacuum atmosphere can improve the (200) plane orientation of the surface layer and increase the (200) plane orientation.
  • biaxially oriented highly intermediate layer is formed, 2 for biaxially oriented highly superconducting layer is formed, the critical current density is 0. 7MA / cm 2 1. 5MA / cm 2 of the superconducting wire is obtained.
  • the present invention can be widely used for a superconducting wire having a superconducting layer or an intermediate layer and a superconducting layer formed sequentially on an oriented metal substrate and a method for producing the same, and a superconducting layer having high biaxial orientation can be formed.
  • a superconducting wire having a high critical current density and a high superconducting performance can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 金属基板上に超電導層(3)が形成されている超電導線材(10)であって、金属基板は配向金属基板(1)であり、その表面から300nmまでの深さの表面層内における配向軸からの結晶軸のずれ角が25°以下で、その表面粗さRP-Vが150nm以下に平坦化されている超電導線材およびその製造方法。これにより、配向金属基板の表面層内における2軸配向性を保持しつつ、基板表面を平坦化することにより、超電導性能の高い超電導線材およびその製造方法を提供することができる。

Description

明 細 書
超電導線材およびその製造方法
技術分野
[0001] 本発明は、超電導線材およびその製造方法に関し、より詳しくは、平坦化された配 向金属基板上に、超電導層、または中間層および超電導層が順次形成された超電 導線材およびその製造方法に関する。
背景技術
[0002] 高温超電導体の発見以来、ケーブル、限流器、マグネットなどの電力機器への応 用を目指した高温超電導線材の開発が活発に行なわれている。ここで、優れた高温 超電導線材を得るためには、配向性の高い超電導層を形成する必要がある。
[0003] 超電導層の配向性を向上させるためには、 2軸配向性を有する配向金属基板上に 、超電導層、または中間層および超電導層を順次形成する方法が提案されている( たとえば、非特許文献 1一 4参照。)。
[0004] ここでは、金属基板として基板を構成する金属原子が 2軸配向した配向金属基板を 用いて、前記配向金属基板の上に中間層をェピタキシャル成長させることにより配向 金属基板と同じ 2軸配向性を有する中間層を形成し、前記中間層の上にさらに超電 導層をェピタキシャル成長させることにより中間層と同じ 2軸配向性を有する超電導 層を形成する。かかる製造方法により、超電導に適した 2軸配向性を有する超電導層 を有する高温超電導線材の製造が容易になる。
[0005] 一方、基板表面の平坦さも、基板上に形成される超電導層、または中間層および 超電導層の配向性に大きな影響を及ぼすため、超電導線材の製造には表面粗さの 小さい平坦化された基板が用レ、られている(たとえば、特許文献 1参照。)。
[0006] しかし、基板として 2軸配向性を有する配向金属基板上を用いても、平坦化処理の 方法によっては、平坦化処理によって表面から 300nmまでの表面層における 2軸配 向性が失われ、超電導に適した 2軸配向性を有する超電導層、または 2軸配向性を 有する中間層および超電導層を形成することができなレ、とレ、う問題があった。
特許文献 1 :特許第 2803123号公報 非特許文献 l : J.H.Je、他 7名, "Microstructure of RE203 layers oncube textured Ni substrates", Physica C, (2003), 384, p.54-60
非特許文献 2 : B.W.Kang、他 5名、 "Comparative study of thickness dependence of criticalcurrent density of YBa2Cu307- δ on (100)SrTiO3andon rolling-assisted biaxially textured substrates" , Mater. Res., Jul. 2002, Vol.17, No.7, p.1750-1757 非特許文献 3 : D.Eyidi、他 2名, "Growth of Ce02thin film deposited onbiaxially textured nickel substrates", J.Mater.Res. , Jan. 2003, Vol.18, No. l , p.14-26 非特許文献 4 :藤野、他 6名, 「ISD法による高温超電導薄膜線材の開発」, SEIテク 二カルレビュー, 1999年 9月、第 155号、 p.131-135
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、上記問題点を解決するため、配向金属基板の表面層内における 2軸配 向性を保持しつつ、基板表面を平坦化することにより、超電導性能の高い超電導線 材およびその製造方法を提供することを目的とする。
課題を解決するための手段
[0008] 本発明のある局面に従う超電導線材は、金属基板上に超電導層が形成されている 超電導線材であって、金属基板は配向金属基板であり、その表面から 300nmまで の深さの表面層内における結晶軸の配向軸からのずれ角が 25° 以下で、その表面 粗さ R 力 Sl50nm以下に平坦ィ匕されている。本超電導線材において、配向金属基
P-V
板上に中間層を形成し、中間層上に超電導層を形成することができる。
[0009] 本発明の別の局面に従う超電導線材の製造方法は、配向金属基板を、その表面 力 300nmまでの深さの表面層内における結晶軸の配向軸からのずれ角が 25° 以 下で、その表面粗さ R 力 l50nm以下となるように平坦ィ匕する工程と、平坦化された
P-V
配向金属基板上に超電導層を形成する工程とを含む。
[0010] 上記超電導線材の製造方法において、配向金属基板を平坦化する工程後、平坦 化された配向金属基板上に超電導層を形成する工程前に、配向金属基板を還元雰 囲気下または真空雰囲気下で 1回以上熱処理する工程を含むことができる。
[0011] また、上記超電導線材の製造方法において、配向金属配向基板を平坦化するェ 程を、鏡面ロール法、メカノケミカル法、電解研磨法および化学研磨の中から少なくと も 1つの方法を用いて行なうことができる。
[0012] また、上記超電導線材の製造法において、配向金属基板上に中間層を形成する 工程と、中間層上に超電導層を形成する工程を含むことができる。
発明の効果
[0013] 上記のように、本発明によれば、配向金属基板の表面から 300nmまでの深さの表 面層内における結晶軸のずれ角が 25° 以下で、その表面粗さ R 力 Sl50nm以下
P-V
に平坦化された配向金属基板上に、超電導層、または中間層および超電導層を順 次形成することにより、超電導性能の高い超電導線材が得られる。
図面の簡単な説明
[0014] [図 1A]本発明にかかる超電導線材の製造方法において、配向金属基板を平坦化す る工程を示す図である。
[図 1B]図 1Aにおける B部の拡大図である。
[図 1C]本発明にかかる超電導線材の製造方法において、配向金属基板上に中間層 を形成する工程を示す図である。
[図 1D]本発明にかかる超電導線材の製造方法において、中間層上に超電導層を形 成する工程を示す図である。
[図 1E]図 1Dにおける E部の拡大図である。
[図 2]本発明において用いられる配向金属基板の一の平坦ィ匕方法を説明する図であ る。
[図 3]本発明において用いられる配向金属基板の別の平坦ィ匕方法を説明する図であ る。
符号の説明
[0015] 1 配向金属基板、 la 表面層、 lb 内部層、 2 中間層、 3 超電導層、 10 超電 導線材、 11 平坦化処理、 20 メカノケミカル研磨装置、 21 押さえ具、 23 回転軸 、 24 研磨シート台、 25 研磨シート供給ロール、 26 研磨シート卷取りロール、 27 研磨シート、 28 研磨スラリー供給装置、 29 研磨スラリー、 30 電解研磨装置、 31 基板供給ロール、 32 基板浸漬ロール、 33 基板卷取りロール、 34 電解槽、 35 陰極、 36 電解液。
発明を実施するための最良の形態
[0016] 本発明にかかる一の超電導線材は、図 1Dおよび図 1Eを参照して、配向金属基板 1上に中間層 2が形成され、中間層 2上に超電導層 3形成されている。ここで、配向金 属基板 1は、その表面から 300nmまでの深さの表面層 la内における結晶軸の配向 軸からのずれ角が 25° 以下で、その表面粗さ R 力 Sl 50nm以下に平坦ィ匕されてい
P-V
る。表面層の 2軸配向性が維持されたまま、表面が平坦化されている配向金属基板 上に、中間層および超電導層を順次形成することにより、 2軸配向性の高い中間層 および超電導層が形成され、超電導性能の高い超電導線材が得られる。なお、配向 軸とは、多結晶体において、多くの結晶粒の特定の結晶方向が、特定の軸方向に近 似的に平行になっている場合に、その軸をいう。
[0017] ここで、本発明に用いられる配向金属基板 1とは、基板を構成する金属原子が 2軸 配向している金属基板をいい、完全な 2軸配向基板のみならず、基板内における結 晶軸の配向軸からのずれ角が 25° 以下の基板が含まれる。ここで、 2軸配向の 2つ の配向軸とは、基板面に垂直な方向の結晶軸に近似的に平行な軸と基板面に平行 な方向の一の結晶軸に近似的に平行な軸とをいい、基板内における結晶軸の配向 軸からのずれ角とは、基板面に平行な方向にある一の結晶軸の基板面に平行な面 内における配向軸からのずれ角であって、基板内におけるずれ角の平均値で示した ものをいう。
[0018] また、表面層内における結晶軸の配向軸からのずれ角とは、基板の表面層面に平 行な方向にある一の結晶軸の表面層面に平行な面内における配向軸からのずれ角 であって、表面層内におけるずれ角の平均値で示したものをいう。表面層内における 結晶軸の配向軸からのずれ角は 25° 以下である。表面層内における結晶軸の配向 軸からのずれ角が 25° を超えると、 2軸配向性の高い中間層および超電導層の形 成が阻害される。上記観点から、表面層内における結晶軸の配向軸からのずれ角は 、 12° 以下がより好ましぐ 10° 以下がさらに好ましい。また、配向金属基板の種類 によっては、上記配向金属基板の上に、上記中間層を設けずに、直接超電導層を形 成することちできる。 [0019] すなわち、本発明に用いられる配向金属基板 1は、上記のように、表面から 300nm までの深さの表面層 la内における結晶軸の配向軸からのずれ角が 25° 以下で、表 面粗さ R 力 Sl50nm以下に平坦ィ匕されている点に特徴がある。内部層(配向金属基
P-V
板における表面層以外の層) lb内における結晶軸の配向軸からのずれ角が 25° 以 下であっても、表面層 la内における結晶軸の配向軸からのずれ角が 25° を超える 配向金属基板、または表面粗さ R 力 Sl50nmを超える配向金属基板を用いると、 2
P-V
軸配向性の高い中間層および超電導層を形成することができなレ、。また、配向の方 向は、く 100 >軸が基板面に垂直な方向に、く 010 >軸が基板の長さ方向に配向 していることが好ましい。
[0020] ここで、表面粗さ R は、表面の最大凸部頂点から最大凹部頂点までの表面に対
P-V
して垂直方向の距離をいう。表面粗さ R は、 150nm以下である。表面粗さ R 力 Si
P-V P-V
50nmを超えると、 2軸配向性の高い中間層および超電導層の形成が阻害される。ま た、表面の凸部頂点から凹部頂点までの表面に対して垂直方向の距離の平均値で ある表面粗さ Raは 50nm以下であること力 表面粗さ R を 150nm以下にする観点
P-V
力ら好ましい。
[0021] 配向金属基板としては、上記のような 2軸配向を有する基板であれば特に制限はな レ、が、 Ni、 Cr、 Mn、 Co、 Fe、 Pd、 Cu、 Ag、 Auまたはこれらのうち 2以上の金属から なる合金が好ましく用いられる。また、上記の金属または合金の単体だけでなぐ上 記の金属または合金を他の金属または合金と積層することもできる。たとえば、高強 度材料であるステンレス鋼に配向 Ni薄膜層を設けて配向金属基板とすることもできる
[0022] 本発明にかかる超電導線材の一の製造方法は、まず、図 1 Aおよび図 1Bを参照し て、配向金属基板 1を、その表面から 300nmまでの深さの表面層 la内における結晶 軸の配向軸からのずれ角が 25° 以下で、その表面粗さ R 力 l50nm以下となるよう
P-V
に平坦化する。次に、図 1Cを参照して、配向金属基板 1上に中間層 2を形成する。さ らに、図 1Dおよび図 1Eを参照して、中間層 2上に超電導層 3を形成する。表面層の 2軸配向性が維持されたまま、表面が平坦化されている配向金属基板 1上に、中間 層 2および超電導層 3を順次形成することにより、 2軸配向性の高い中間層 2および 超電導層 3が形成され、超電導性能の高い超電導線材が得られる。また、配向金属 基板の種類によっては、上記配向金属基板の上に、上記中間層を設けずに、直接 超電導層を形成することもできる。
[0023] 図 1Cにおいて、上記配向金属基板 1上に形成される中間層 2としては、パイ口クロ ァ型、螢石型、岩塩型またはべ口ブスカイト型の結晶構造をもつ、 1種以上の金属元 素を有する金属酸化物が好ましく用いられる。具体的には、 CeOなどの希土類元素
2
酸化物、 YSZ (イットリア安定化ジルコユア)、 BZ〇 (BaZrO )、 STO (SrTiO )、 Al
3 3 2
〇、 YAIO、 Mg〇、 Ln— M—〇系化合物(Lnは 1種以上のランタノイド元素、 Mは Sr
3 3
、 Zrおよび Gaの中から選ばれる 1種以上の元素、 Oは酸素)などが挙げられる。かか る酸化物は、結晶定数、結晶配向の観点から配向金属基板および超電導層の差を 緩和するとともに配向金属基板から超電導層への金属原子の流出を防止する役割 を果たす。また、中間層として 2層以上の中間層を形成することもできる。なお、金属 原子の流出が少ない配向金属基板、たとえば配向 Ag基板などにおいては、上記中 間層を設けずに、配向 Ag基板の上に直接超電導層を形成させることもできる。
[0024] 中間層となる酸化物薄膜の形成方法としては、本発明の目的に反さない限り特に 制限はなぐスパッタ法、 EBD (電子線ビーム蒸着; Electron Beam
Deposition)法、 PLD (パノレスレーザー蒸着; Pulse Laser Deposition)法、熱蒸着法な どの方法が好ましく用いられる。
[0025] 上記配向金属基板 1、たとえば、く 100 >軸が基板面に垂直な方向に、く 010 > 軸が基板の長さ方向に、 2軸配向している配向 Ni基板上に、中間層 2として Ce〇層
2 をェピタキシャル成長させると、く 100 >軸が基板面に垂直な方向に、く 011 >軸 が基板の長さ方向に配向した CeO薄膜が形成され、 2軸配向性の高い CeO層が得
2 2 られる。
[0026] 図 1Dにおいて、上記中間層 2の上に形成される超電導層 3としては、特に制限は ないが、 RE Ba Cu O などが好ましく用いられる。超電導層の形成方法として
1 2 3 7- δ
は、本発明の目的に反さない限り特に制限はなぐ PLD法、 MOD (有機金属成膜; Metal Organic Deposition) MOCVD (有機金属気相成長; Metal
Organic ChemicalVapor D印 osition)法などの方法が好ましく用いられる。 [0027] 上記中間層 2、たとえば、く 100 >軸が基板面に垂直な方向に、 < 011 >軸が基 板の長さ方向に、 2軸配向している CeO層上に、超電導層 3として Ho Ba Cu〇
2 1 2 3 7- δ 層をェピタキシャル成長させると、く 100 >軸が基板面に垂直な方向に、く 010 > 軸が基板の長さ方向に配向した Ho Ba Cu O 層が形成され、 2軸配向性の高い H
1 2 3 7- δ
o Ba Cu Ο 層が得られる。
1 2 3 7- δ
[0028] さらに、超電導層 3を保護するため、必要に応じて、超電導層 3の上に保護層を形 成することもできる。保護層としては、電導性の高いものであれば特に制限はないが 、 Ag、 Au、 Pt、 Aほたはこれらの合金などが好ましく用いられる。保護層の形成方法 としては、特に制限はないが、スパッタ法、 EBD法、 PLD法、熱蒸着法、 MOD法、 MOCVD法、めっき法などの方法が好ましく用いられる。
[0029] 本発明にかかる超電導線材の製造方法において、基板上への超電導層または中 間層の形成前に、鏡面ロール法、メカノケミカル法、電解研磨法および化学研磨の 中から少なくとも 1つの方法を用いて、図 1Aおよび図 1Bに示すような平坦化処理 11 力 Sされた配向金属基板 1を用いることができる。上記の方法により、表面層 laの 2軸 配向性を維持したまま平坦ィヒ処理 11された配向金属基板 1が得られる。
[0030] ここで、鏡面ロール法とは、ロール表面が鏡面加工された圧延ロールを用いて配向 金属基板を圧延加工することにより、ロール表面の鏡面を配向金属基板の表面に転 写して配向金属基板表面を平坦化する方法をいう。
[0031] メカノケミカノレ法とは、たとえば、図 2を参照して、侵食性のある酸性または塩基性の 液体中に Si〇、 Al Oなどの研磨粒子を分散させた研磨スラリー 29を研磨スラリー供
2 2 3
給装置 28から供給しながら、押さえ具 21を用いて研磨シート 27に配向金属基板 1を 押さえつけることによって、機械的かつ化学的な研磨により配向金属基板の表面を 平坦化する方法をいう。ここで、研磨シート 27が配置されている研磨シート台 24を回 転軸 23により回転させることにより、研磨シート 27が回転する。また、研磨シート供給 ロール 25および研磨シート卷取りロール 26が回転することにより、新しい研磨シート 面が供給される。
[0032] 電解研磨法とは、たとえば、図 3を参照して、濃リン酸または濃硫酸などの電解液 3 6中に、配向金属基板 1を陽極として浸漬し、電解液 36に配置された陰極 35との間 に直流電流を流して、電気化学的に配向金属基板 1の表面を研磨する方法をいう。 ここで、配向金属基板 1は、基板供給ロール 31、基板浸漬ロール 32および基板卷取 りローノレ 33によって、連続的に電解研磨され卷き取られる。
[0033] 化学研磨法とは、たとえば、リン酸、硝酸、フッ酸一硝酸 (HF— HNO )混合溶液、フ ッ酸ー過酸化水素水(HF - H O )混合溶液、シユウ酸一過酸化水素水((C〇〇H) -H
O )混合溶液などの化学研磨液に、配向金属基板を浸漬することにより、化学反応 により配向金属基板の表面を研磨する方法をいう。
[0034] 本発明にかかる超電導線材の製造方法において、配向金属基板を平坦化するェ 程後、平坦化された配向金属基板上に超電導層または中間層を形成する工程前に 、上記配向金属基板を還元雰囲気下で 1回以上熱処理する工程を含めることができ る。上記還元雰囲気下における熱処理は、配向金属基板の表面層の上に形成され る酸化層を除去して 2軸配向性を有する表面層を露出させることを目的の 1つとする 。また、平坦ィ匕処理によって配向金属基板の表面層の 2軸配向性が低下しても、上 記還元雰囲気下における熱処理により、表面層の 2軸配向性を回復することが可能 である。
[0035] ここで、平坦化された配向金属基板を還元雰囲気下で熱処理するとは、平坦化処 理によって生じた表面層の 2軸配向性の低下を回復するのに十分な還元雰囲気で 熱処理することをいい、たとえば、 Hガスなどの還元性ガスの存在下を意味する。熱 処理雰囲気ガス中の Hガスのモル%は大きいほど還元性が高くなるので好ましぐた とえば、還元性ガスとして Hガスと Arガスとを併用する場合は、 Hガスは 1モル0 /0以 上が好ましぐより好ましくは 3モル%以上である。
[0036] 本発明にかかる超電導線材の製造方法において、配向金属基板を平坦化するェ 程後、平坦化された配向金属基板上に超電導層または中間層を形成する工程前に 、配向金属基板を真空雰囲気下で 1回以上熱処理する工程を含めることができる。 上記真空雰囲気下における熱処理は、配向金属基板の表面層の上に形成される酸 化層を除去して 2軸配向性を有する表面層を露出させることを目的の 1つとする。ま た、平坦ィ匕処理によって配向金属基板の表面層の 2軸配向性が低下しても、上記真 空雰囲気下における熱処理により、表面層の 2軸配向性を回復することが可能である [0037] ここで、平坦化された配向金属基板を真空雰囲気下で熱処理するとは、平坦化処 理によって生じた表面層の 2軸配向性の低下を回復するのに十分な真空雰囲気で 熱処理することをいい、たとえば、真空度が 1. 33 X 10— 2Pa以下の真空雰囲気で熱 処理することをいう。
[0038] 上記配向金属基板の還元雰囲気下または真空雰囲気下での熱処理の温度は、配 向金属基板の融点未満であれば特に制限はなレ、が、 500°C— 800°Cであることが好 ましい。熱処理温度が 500°C未満であると配向金属基板における表面層の 2軸配向 性の回復が不十分となり、 800°Cを超えると配向金属基板全体の 2軸配向性を低下 させる場合がある。上記観点から、熱処理温度は、 600°C— 700°Cがより好ましい。
[0039] 上記配向金属基板の還元雰囲気下または真空雰囲気下での熱処理の時間は、特 に制限はないが、 2分間以上であることが好ましい。熱処理時間が 2分間未満である と配向金属基板における表面層の 2軸配向性の回復が不十分となる。
[0040] また、上記配向金属基板の還元雰囲気下または真空雰囲気下での熱処理は、特 に制限はないが、配金属基板基板上に超電導層または中間層を形成する直前に行 なうのが、熱処理後の配向金属基板における表面層の 2軸配向性の再低下を防止 する観点から好ましい。また、熱処理は、 1回に限られず、 2回以上行なうこともできる 。熱処理を 2回以上行なうことにより、配向金属基板における表面層の 2軸配向性の 回復を高めることができる。また、熱処理を 2回以上行なう場合は、還元雰囲気下で の熱処理および真空雰囲気下での熱処理を併用することもできる。
[0041] たとえば、配向金属基板を平坦化する工程後、平坦化された配向金属基板上に超 電導層または中間層を形成する工程前の、事前および直前に 2回の配向金属基板 の還元雰囲気下または真空雰囲気下における熱処理を行なう場合は、事前熱処理 は、 500°C 800°Cの雰囲気温度で 2分間以上行なうのが好ましい。さらに好ましく は 5分間以上、最も好ましくは 10分間以上である。また、直前熱処理は、 500°C 80 0°Cの雰囲気温度で 2分間以上行なうのが好ましい。さらに好ましくは 3分間以上、最 も好ましくは 7分間以上である。
[0042] 以下、本発明を具体的な実施例に基づいて説明する。 [0043] (実施例 1)
長さ 40cm X幅 10mm X厚さ 100 μ mの Ni_Fe合金(組成: N 0モル0 /0、 Fe50モ ル%)の 2軸配向金属基板(く 100〉軸が基板面に垂直な方向に、く 010 >軸が基 板の長さ方向に 2軸配向したもの。表面層内における結晶軸の配向軸からのずれ角 は 9° 、表面粗さ R は 513nm、表面粗さ Rは 62nm)について、 1次の平坦化工程
P-V a
を省略し、図 2を参照して、 2次の平坦化工程として過酸化水素(H〇)を 3質量%含
2 2
有する水溶液に粒径 72nmの研磨粒子を 36体積%分散させた研磨スラリー 29 (pH 8. 8)を供給しながら、押さえ具 21を用いて配向金属基板 1に 15N/cm2の荷重を かけて研磨シート 27を 180ι·ρπιで回転させることにより 3分間研磨を行レ、、さらに 3次 の平坦化工程として H Oを 1. 4質量%含有する水溶液に粒径 12nmの研磨粒子を
2 2
30体積%分散させた研磨スラリー 29 (pH10. 1)を供給しながら、押さえ具 21を用い て配向金属基板 1に 15NZcm2の荷重をかけて研磨シート 27を 180rpmで回転させ ることにより 3分間研磨を行なった。
[0044] 上記平坦化処理後の配向金属基板の表面粗さ R は 143nm、表面粗さ Rは 16η
P-V a mであり、表面層内における結晶軸の配向軸からのずれ角は 9° であった。ここで、 表面粗さ R および表面粗さ Rは、原子間力顕微鏡により測定し、結晶軸のずれ角
P-V a
は、 X線極点図測定法により測定した。
[0045] また、上記平坦化処理前後における配向金属基板の表面層の(200)面配向性を 、低角入射 X線法を用いて評価した。評価基準は、平坦化処理後の低角入射 X線回 折測定図を平坦ィ匕処理前の低角入射 X線回折測定図に対比して、 (200)面からの 回折ピークの相対強度がほぼ維持されているものを〇、 (200)面からの回折ピーク が低下し、(111)面からの回折ピークが明確に発現しているものを△、(200)面から の回折ピークが消失し、(111)面からの回折ピークの相対強度が大きくなつているも のを Xとした。ここで、(200)面からの回折ピークの相対強度の大きいものほど 2軸配 向性が高いことを示す。本実施例においては、平坦ィヒ処理後における配向金属基 板の表面層の(200)面配向性は〇であった。
[0046] 次に、上記配向金属基板を、還元性ガスとして Hガスと Arガスとの混合ガス(組成:
2
Hガス 3モル%、 Arガス 97モル%)を用いて、圧力 1. 33Paの還元雰囲気下で、表 1に示す処理温度、処理時間で事前と直前の 2回の熱処理を行なった。本実施例に おいては、上記熱処理後における配向金属基板の表面層の(200)面配向性は〇で あった。
[0047] 次に、上記 2回目の熱処理の直後に、スパッタ法により、還元性ガスとして Hガスと
2
Arガスとの混合ガス(組成: Hガス 3モル%、 Arガス 97モル%)を用いて、圧力 1. 3
2
3Paの還元雰囲気下、基板温度 650°Cで、上記配向金属基板上に中間層として Ce O層を、 0. l x m形成した。この中間層の(200)面配向性を低角入射 X線法により
2
評価した。評価基準は、中間層の低角入射 X線回折測定図において、(200)面から の回折ピークの相対強度が大きぐ(1 1 1 )面からの回折ピークがないものを〇、(20 0)面からの回折ピークおよび(1 1 1 )面からの回折ピークが明確に発現しているもの を△、 (200)面からの回折ピークがなぐ(1 1 1)面からの回折ピークの相対強度が大 きいものを Xとした。本実施例においては、中間層の(200)面配向性は〇であった。
[0048] さらに、 PLD法により、レーザ周波数が 150Hz、レーザエネルギーが 0· 65J、 Oガ
2 ス圧が 13. 3Pa、基板および中間層の温度が 750°Cの条件下で、上記中間層上に 超電導層として Ho Ba Cu O 層を、 0. 5 μ m形成して、超電導線材を得た。得ら
1 2 3 7- δ
れた超電導線材について、雰囲気温度 77Κ、外部磁束密度 0Τ下における臨界電 流密度は、 0. IMA/cm2であった。結果を表 1にまとめる。
[0049] (比較例 1 )
配向金属基板の平坦化処理を行なわなかった他は、実施例 1と同様に、還元雰囲 気下における 2回の熱処理、中間層および超電導層の形成を行なった。結果を表 1 にまとめる。
[0050] (比較例 2)
配向金属基板の 1次の平坦ィ匕工程として、配向金属基板 1に 7N/cm2の荷重をか けて # 2000のぺーノ (たとえば粒径 1 μ m— 10 μ mの砥粒を有するぺーパ)を 180 rpmで回転させることにより 3分間研磨を行った後、実施例 1と同様に、 2次および 3 次の平坦化処理、還元雰囲気下における 2回の熱処理、中間層および超電導層の 形成を行なった。結果を表 1にまとめる。なお、平坦化処理後の配向金属基板におけ る表面層の結晶軸のずれ角は測定限界である 25° を超え、ずれ角の測定ができな かった。
[0051] (実施例 2)
配向金属基板の 2次の平坦化工程において、処理時間を 3分間から 9分間とした他 は、実施例 1と同様に、 2次および 3次の平坦化処理、還元雰囲気下における 2回の 熱処理、中間層および超電導層の形成を行なった。結果を表 1にまとめる。
[0052] [表 1]
Figure imgf000014_0001
(実施例 3—実施例 6)
図 2を参照して、 1次の平坦ィ匕工程として硝酸アルミニウム (Α1(Ν〇)—)を 4質量%含 有する水溶液に粒径 850nmの研磨粒子を 18体積%分散させた研磨スラリー 29 (p Η3· 4)を供給しながら、押さえ具 21を用いて配向金属基板 1に 15NZcm2の荷重を 力けて研磨シート 27を 180i"pmで回転させることにより、表 2に示すように 3分間また は 6分間研磨した。次に、 2次および 3次の平坦化工程を、実施例 2と同様に行なつ た。さらに、表 2に示す条件で還元雰囲気下における 2回の熱処理を行なレ、、中間層 および超電導層の形成を実施例 1と同様に行なった。結果を表 2にまとめる。
[表 2] 実施例 3 実施例 4 実施例 5 実施例 6 基板平坦化方法 メカノケミ メ カノ ケミ メ カノケミ メカノケミ カル カル カル カル
1次 pH3.4、 850nm pH3.4、 850nm pH3.4、 850nm pH3.4、 850nm 坦 分 分 分 x6分
化 2次 pH8.8、 72nm pH8.8, 72nm pH8.8、 72ntn pH8.8、 12m 処 x9分 x9分 分 xS分 理 3次 ΗΙΟ.1J2nm ρΗΙΟ.1、12nm ΗΙΟ. lJ2nm pH10.1J2nm 分 分 分 x3分
RP -、, (nm) 57 57 34 34
Ra (nm) 4.5 4.5 3.9 3.9 表面層内における
結晶軸の配向軸か 10.5 10.5 11 11 らのずれ角(β )
表面層の 厶 Δ 厶 厶
(200)面配向性
条 事前 500。cx5分 500。CX5分 500°C x 5分 500 °C 10 元 件 分
熱 直前 650°C x 3分 650°C x 7分 650°C x 7分 650°cx7分 処 表面層の
理 (200)面 厶 0 厶 O
配向性
中間層(Ce02) 厶 0 厶 〇
(200)面配向性 (200) + (111) (200) + (111)
臨界電流密度
[77K.0T] (MA/cm2) 0.5 1.0 0.8 2.0 [0055] (実施例 7,実施例 8)
基板の 1次から 3次までの平坦ィヒ処理を実施例 5と同様に行なった後、真空度が 1 - 33 X 10— 2Pa以下の真空雰囲気下において表 3に示す条件で 2回の熱処理を行な レ、、中間層および超電導層の形成を実施例 1と同様に行なった。結果を表 3にまとめ る。
[0056] [表 3] 実施例 7 実施例 8
基板平坦化方法 メカノケミ メカノケミ
カル カル
平 1次 pH3.4 850nm pH3.4,850nm
坦 分 分
化 2次 pH8.8 72nm pH8.8 72ntn
処 x9分 分
理 3次 pH10. U2nm ΗΙΟ.1J2nm
x3分 x3分
p.u (nm) 34 34
Ra (nm) 3.9 3.9
表面層内における
結晶軸の配向軸か 11 11
らのずれ角(° )
表面層の Δ 厶
(200)面配向性
真 条 事前 500。C x 10 500。C x 10
件 分 分
熱 直前 650。cx7分 650 °C x 10
処 分
理 表面層の
(200)面 厶 〇
配向性
中間層 (Ge02) 厶 〇
(200)面配向性 (200) + (111)
臨界電流密度
[77K 0T] (MA/cm2) 0.7 1.5 [0057] 比較例 1においては、配向金属基板の表面層内における結晶軸の配向軸からのず れ角は 9° であり(200)面配向性も高いが、表面粗さ R 力 Sl50nmより大きいため、
P-V
中間層の(200)面配向性が低下し、臨界電流密度も OMA/cm2となった。また、比 較例 2においては、配向金属基板の表面粗さ R は 150nmよりも小さいが、表面層
P-V
内における結晶軸の配向軸からのずれ角が 25° を超え、(200)面配向性がないた め、中間層の(200)面配向性がなぐ臨界電流密度も OMAZ cm2となった。また、平 坦化処理の際に、表面層の表面層の(200)面配向性が全く失われてしまうと、還元 雰囲気下で熱処理を行なっても、表面層の配向性を回復させることはできな力、つた。
[0058] これに対して、実施例 1および実施例 2においては、いずれも配向金属基板の表面 層内における結晶軸の配向軸からのずれ角が 25° 以下であり、表面層の(200)面 配向性が高ぐかつ、表面粗さ R 力 Sl 50nm以下であるため、(200)面配向性の高
P-V
く 2軸配向性の高い中間層が形成され、 2軸配向性の高い超電導層が形成されるた め、それぞれの臨界電流密度が 0. lMA/cm2、 0. 5MA/cm2の超電導線材が得 られた。
[0059] また、実施例 3—実施例 6に示すように、配向金属基板の平坦化処理によって、表 面層内における結晶軸の配向軸からのずれ角が 10· 5° — 11° となり、表面層の(2 00)面配向性が低下しても、(200)面配向性が完全に失われない限り、還元雰囲気 下で配向金属基板を熱処理することによって、表面層の(200)面配向性が向上し、 ( 200)面配向性が高く 2軸配向性の高い中間層が形成され、 2軸配向性の高い超電 導層が形成されるため、臨界電流密度が 0. 5MA/cm2— 2. OMA/cm2の超電導 線材が得られた。
[0060] また、実施例 7および実施例 8に示すように、配向金属基板の平坦化処理によって 、結晶軸のずれ角が 11° となり、表面層の(200)面配向性が低下しても、(200)面 配向性が完全に失われない限り、真空雰囲気下で配向金属基板を熱処理すること によっても、表面層の(200)面配向性が向上し、(200)面配向性が高く 2軸配向性 の高い中間層が形成され、 2軸配向性の高い超電導層が形成されるため、臨界電流 密度が 0. 7MA/cm2 1. 5MA/cm2の超電導線材が得られた。
[0061] 今回開示された実施の形態および実施例はすべての点で例示であって制限的な ものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許 請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべて の変更が含まれることが意図される。
産業上の利用可能性
上記のように、本発明は、配向金属基板上に、超電導層、または中間層および超 電導層を順次形成する超電導線材およびその製造方法に広く利用でき、 2軸配向性 の高い超電導層が形成されることにより、臨界電流密度が高く超電導性能の高い超 電導線材を得ることができる。

Claims

請求の範囲
[1] 金属基板上に超電導層(3)が形成されている超電導線材であって、
前記金属基板は、配向金属基板(1)であり、その表面から 300nmまでの深さの表 面層内における結晶軸の配向軸からのずれ角が 25° 以下で、その表面粗さ R が
P-V
150nm以下に平坦ィ匕されてレヽる超電導線材。
[2] 前記配向金属基板(1)上に中間層(2)が形成され、前記中間層(2)上に超電導層
(3)が形成されてレ、る請求項 1に記載の超電導線材。
[3] 配向金属基板(1)を、その表面から 300nmまでの深さの表面層内における結晶軸 の配向軸からのずれ角が 25° 以下で、その表面粗さ R 力 Sl50nm以下となるように
P-V
平坦化する工程と、平坦化された前記配向金属基板上に超電導層(3)を形成する 工程とを含む超電導線材の製造方法。
[4] 前記配向金属基板(1)を平坦化する工程後、平坦化された前記配向金属基板(1) 上に前記超電導層(3)を形成する工程前に、前記配向金属基板(1)を還元雰囲気 下で 1回以上熱処理する工程を含む請求項 3に記載の超電導線材の製造方法。
[5] 前記配向金属基板(1)を平坦化する工程後、平坦化された前記配向金属基板(1) 上に前記超電導層(3)を形成する工程前に、前記配向金属基板(1)を真空雰囲気 下で 1回以上熱処理する工程を含む請求項 3に記載の超電導線材の製造方法。
[6] 前記配向金属基板(1)を平坦ィ匕する工程を、鏡面ロール法、メカノケミカル法、電 解研磨法および化学研磨の中から少なくとも 1つの方法を用いて行なう請求項 3に記 載の超電導線材の製造方法。
[7] 前記配向金属基板(1)を平坦化する工程後、平坦化された前記配向金属基板(1) 上に前記超電導層(3)を形成する工程前に、前記配向金属基板(1)を還元雰囲気 下で 1回以上熱処理する工程を含む請求項 6に記載の超電導線材の製造方法。
[8] 前記配向金属基板(1)を平坦化する工程後、平坦化された前記配向金属基板(1) 上に前記超電導層(3)を形成する工程前に、前記配向金属基板(1)を真空雰囲気 下で 1回以上熱処理する工程を含む請求項 6に記載の超電導線材の製造方法。
[9] 前記配向金属基板(1)上に中間層(2)を形成する工程と、前記中間層(2)上に前 記超電導層(3)を形成する工程を含む請求項 3に記載の超電導線材の製造方法。
[10] 前記配向金属基板(1)を平坦化する工程後、平坦化された配向金属基板(1)上に 中間層(2)を形成する工程前に、配向金属基板(1)を還元雰囲気下で 1回以上熱処 理する工程を含む請求項 9に記載の超電導線材の製造方法。
[11] 前記配向金属基板(1)を平坦化する工程後、平坦化された配向金属基板(1)上に 中間層(2)を形成する工程前に、配向金属基板(1)を真空雰囲気下で 1回以上熱処 理する工程を含む請求項 9に記載の超電導線材の製造方法。
[12] 前記配向金属基板(1)を平坦ィ匕する工程を、鏡面ロール法、メカノケミカル法、電 解研磨法および化学研磨の中から少なくとも 1つの方法を用いて行なう請求項 9に記 載の超電導線材の製造方法。
[13] 前記配向金属基板(1)を平坦化する工程後、平坦化された配向金属基板(1)上に 中間層(2)を形成する工程前に、配向金属基板(1)を還元雰囲気下で 1回以上熱処 理する工程を含む請求項 12に記載の超電導線材の製造方法。
[14] 前記配向金属基板(1)を平坦化する工程後、平坦化された配向金属基板(1)上に 中間層(2)を形成する工程前に、配向金属基板(1)を真空雰囲気下で 1回以上熱処 理する工程を含む請求項 12に記載の超電導線材の製造方法。
PCT/JP2004/009951 2003-08-06 2004-07-13 超電導線材およびその製造方法 WO2005015575A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/552,728 US20060219322A1 (en) 2003-08-06 2004-07-13 Superconducting wire and its production method
EP04747417.6A EP1653484B2 (en) 2003-08-06 2004-07-13 Method of producing a superconducting wire
AU2004264090A AU2004264090A1 (en) 2003-08-06 2004-07-13 Superconducting wire and its production method
CA002522078A CA2522078A1 (en) 2003-08-06 2004-07-13 Superconducting wire and its production method
HK06112483.3A HK1091942A1 (en) 2003-08-06 2006-11-13 Superconducting wire and method of production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003287971A JP2005056754A (ja) 2003-08-06 2003-08-06 超電導線材およびその製造方法
JP2003-287971 2003-08-06

Publications (1)

Publication Number Publication Date
WO2005015575A1 true WO2005015575A1 (ja) 2005-02-17

Family

ID=34131494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009951 WO2005015575A1 (ja) 2003-08-06 2004-07-13 超電導線材およびその製造方法

Country Status (11)

Country Link
US (1) US20060219322A1 (ja)
EP (1) EP1653484B2 (ja)
JP (1) JP2005056754A (ja)
KR (1) KR101016868B1 (ja)
CN (1) CN100477020C (ja)
AU (1) AU2004264090A1 (ja)
CA (1) CA2522078A1 (ja)
HK (1) HK1091942A1 (ja)
RU (1) RU2332737C2 (ja)
TW (1) TW200518115A (ja)
WO (1) WO2005015575A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8927461B2 (en) 2008-11-21 2015-01-06 International Superconductivity Technology Center Substrate for fabricating superconductive film, superconductive wires and manufacturing method thereof

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4411265B2 (ja) * 2005-10-21 2010-02-10 財団法人国際超電導産業技術研究センター 希土類系テープ状酸化物超電導体及びその製造方法
JP2007200870A (ja) * 2006-01-26 2007-08-09 Ls Cable Ltd 超伝導ケーブル用基板の製造方法
JP5049530B2 (ja) * 2006-08-01 2012-10-17 日本ミクロコーティング株式会社 酸化物超伝導体用テープ基材の研磨方法並びに酸化物超伝導体及び酸化物超伝導体用基材
JP5252792B2 (ja) * 2006-08-25 2013-07-31 日本ミクロコーティング株式会社 酸化物超伝導体用テープ基材の研磨方法並びに酸化物超伝導体及び酸化物超伝導体用基材
CN101221898B (zh) * 2007-01-08 2011-05-11 晶能光电(江西)有限公司 用于制造具有高质量表面的金属衬底的方法
JP5049611B2 (ja) * 2007-02-16 2012-10-17 日本ミクロコーティング株式会社 超電導体用テープ基材の製造方法及びテープ基材
US8125243B1 (en) 2007-03-12 2012-02-28 Cypress Semiconductor Corporation Integrity checking of configurable data of programmable device
JP2008311222A (ja) * 2007-05-11 2008-12-25 Furukawa Electric Co Ltd:The 超電導線およびその製造方法
DE102007024166B4 (de) * 2007-05-24 2011-01-05 Zenergy Power Gmbh Verfahren zum Bearbeiten eines Metallsubstrats und Verwendung dessen für einen Hochtemperatur-Supraleiter
JP5113430B2 (ja) * 2007-06-05 2013-01-09 九州電力株式会社 金属めっき複合基材
JP5173318B2 (ja) * 2007-08-24 2013-04-03 日本ミクロコーティング株式会社 テープ状基材の研磨方法及び酸化物超伝導体用ベース基材
DE102008058768B4 (de) 2008-11-24 2011-12-15 Zenergy Power Gmbh Verfahren zur Herstellung von Metallsubstraten für HTS-Schichtanordnungen
JP2010163679A (ja) * 2008-12-18 2010-07-29 Sumitomo Electric Ind Ltd 酸化物薄膜の成膜装置および成膜方法
JP5435448B2 (ja) * 2008-12-24 2014-03-05 古河電気工業株式会社 超電導線材用テープ状基材、その製造方法、及び超電導線材
AT12768U1 (de) * 2010-03-29 2012-11-15 Ctr Carinthian Tech Res Ag Hochtemperaturbeständige, elektrisch leitfähige dünnschichten
EP2381499B1 (en) * 2010-04-26 2014-12-17 Bruker HTS GmbH Method for designing AC losses in a tape-type superconductor with anisotropy of critical currents
JP2012049086A (ja) * 2010-08-30 2012-03-08 Sumitomo Electric Ind Ltd 酸化物超電導薄膜線材、酸化物超電導薄膜線材用金属基板およびその製造方法
JP5767896B2 (ja) * 2011-08-09 2015-08-26 株式会社フジクラ 基材接続部を有する酸化物超電導導体とその製造方法
CN103282975B (zh) * 2011-11-15 2016-03-23 古河电气工业株式会社 超导线材用基板、超导线材用基板的制造方法以及超导线材
EP2725586B9 (en) * 2012-06-27 2018-09-19 Furukawa Electric Co., Ltd. Superconducting wire
JP6056877B2 (ja) 2015-01-07 2017-01-11 三菱マテリアル株式会社 超伝導線、及び、超伝導コイル
WO2017105029A1 (ko) * 2015-12-14 2017-06-22 한국전기연구원 금속기판 결함에 의해 자기 정렬된 초전도 스트립을 구비하는 초전도 선재의 제조 방법
JP6299802B2 (ja) 2016-04-06 2018-03-28 三菱マテリアル株式会社 超伝導安定化材、超伝導線及び超伝導コイル
US11267722B2 (en) * 2018-12-28 2022-03-08 Fujikura Ltd. Oxide superconducting wire and method of manufacturing the same
KR20210138858A (ko) 2020-05-13 2021-11-22 한국전기연구원 유리기판을 이용한 고온초전도선재 및 이의 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02207415A (ja) * 1989-02-04 1990-08-17 Sumitomo Electric Ind Ltd 超電導線
JPH02248304A (ja) * 1989-03-20 1990-10-04 Mitsubishi Metal Corp 超伝導体薄膜の製造方法
JPH0393110A (ja) * 1989-09-05 1991-04-18 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai 超電導線材
JPH0668726A (ja) * 1992-08-19 1994-03-11 Sumitomo Electric Ind Ltd 超電導線の製造方法
JPH07105750A (ja) * 1993-10-08 1995-04-21 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai 超電導線材
US6458223B1 (en) 1997-10-01 2002-10-01 American Superconductor Corporation Alloy materials
US20020198112A1 (en) 2001-06-22 2002-12-26 Paranthaman M. Parans Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2008310C (en) * 1989-02-04 1997-03-04 Satoshi Takano Superconducting wire
DE4006094A1 (de) * 1990-02-27 1991-08-29 Kabelmetal Electro Gmbh Hochtemperatursupraleiter aus einem gewellten metallrohr
US5236896A (en) * 1990-10-08 1993-08-17 Sumitomo Electric Industries, Ltd. Superconducting device having an extremely thin superconducting channel formed of oxide superconductor material
US5389194A (en) * 1993-02-05 1995-02-14 Lsi Logic Corporation Methods of cleaning semiconductor substrates after polishing
JP2994183B2 (ja) * 1993-09-21 1999-12-27 財団法人国際超電導産業技術研究センター 超電導素子およびその作製方法
US6451450B1 (en) * 1995-04-10 2002-09-17 Ut-Battelle, Llc Method of depositing a protective layer over a biaxially textured alloy substrate and composition therefrom
JP4033945B2 (ja) * 1997-08-01 2008-01-16 株式会社フジクラ 酸化物超電導導体およびその製造方法
GB2336849B (en) 1998-04-27 2003-02-26 Telcon Ltd Substrate materials
US6296701B1 (en) * 1998-09-30 2001-10-02 Ut-Battelle, Llc Method of depositing an electrically conductive oxide film on a textured metallic substrate and articles formed therefrom
US6827634B2 (en) 2000-05-22 2004-12-07 Agency Of Industrial Science And Technology Ultra fine particle film forming method and apparatus
JP4316070B2 (ja) * 1999-10-07 2009-08-19 古河電気工業株式会社 高強度配向多結晶金属基板および酸化物超電導線材
US6455166B1 (en) * 2000-05-11 2002-09-24 The University Of Chicago Metallic substrates for high temperature superconductors
US6569745B2 (en) * 2001-06-28 2003-05-27 Sharp Laboratories Of America, Inc. Shared bit line cross point memory array
JP2003055095A (ja) * 2001-08-07 2003-02-26 Sumitomo Electric Ind Ltd 薄膜形成方法
US7129196B2 (en) * 2003-07-21 2006-10-31 Los Alamos National Security, Llc Buffer layer for thin film structures

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02207415A (ja) * 1989-02-04 1990-08-17 Sumitomo Electric Ind Ltd 超電導線
JPH02248304A (ja) * 1989-03-20 1990-10-04 Mitsubishi Metal Corp 超伝導体薄膜の製造方法
JPH0393110A (ja) * 1989-09-05 1991-04-18 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai 超電導線材
JPH0668726A (ja) * 1992-08-19 1994-03-11 Sumitomo Electric Ind Ltd 超電導線の製造方法
JPH07105750A (ja) * 1993-10-08 1995-04-21 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai 超電導線材
US6458223B1 (en) 1997-10-01 2002-10-01 American Superconductor Corporation Alloy materials
US20020198112A1 (en) 2001-06-22 2002-12-26 Paranthaman M. Parans Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1653484A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8927461B2 (en) 2008-11-21 2015-01-06 International Superconductivity Technology Center Substrate for fabricating superconductive film, superconductive wires and manufacturing method thereof

Also Published As

Publication number Publication date
RU2332737C2 (ru) 2008-08-27
HK1091942A1 (en) 2007-01-26
CA2522078A1 (en) 2005-02-17
RU2006106705A (ru) 2006-07-27
EP1653484B1 (en) 2012-08-08
EP1653484B2 (en) 2015-12-02
AU2004264090A1 (en) 2005-02-17
CN1833295A (zh) 2006-09-13
KR101016868B1 (ko) 2011-02-22
JP2005056754A (ja) 2005-03-03
KR20060055535A (ko) 2006-05-23
CN100477020C (zh) 2009-04-08
EP1653484A4 (en) 2009-12-02
US20060219322A1 (en) 2006-10-05
TW200518115A (en) 2005-06-01
EP1653484A1 (en) 2006-05-03

Similar Documents

Publication Publication Date Title
WO2005015575A1 (ja) 超電導線材およびその製造方法
US6921741B2 (en) Substrate structure for growth of highly oriented and/or epitaxial layers thereon
US6800591B2 (en) Buffer layers on metal alloy substrates for superconducting tapes
US7902120B2 (en) High temperature superconductors having planar magnetic flux pinning centers and methods for making the same
WO2001015245A1 (en) Surface control alloy substrates and methods of manufacture therefor
CA2425757A1 (en) Epitaxial oxide films via nitride conversion
JP2009503269A (ja) 基材上への双軸組織層の電着
Paranthaman et al. Chemical solution derived planarization layers for highly aligned IBAD-MgO templates
US6884527B2 (en) Biaxially textured composite substrates
WO2013002410A1 (ja) 超電導薄膜用基材及び超電導薄膜、並びに超電導薄膜用基材の製造方法
US20110105336A1 (en) Rare earth element oxide superconductive wire material and method of producing the same
US6573209B1 (en) Zirconium nitride and yttrium nitride solid solution composition
JP2013524434A (ja) 単層コーティングによる酸化物厚膜
Xiong et al. A novel process for CeO2 single buffer layer on biaxially textured metal substrates in YBCO coated conductors
US8426344B2 (en) Method for producing metal substrates for HTS coating arrangements
JP2003505888A (ja) 多層体を作製するための方法及び組成物
JP5535453B2 (ja) 単純化された層構造を有する被覆導体
KR20050118294A (ko) 산화물 초전도 선재용 금속 기판, 산화물 초전도 선재 및그 제조방법
JP5503252B2 (ja) 希土類系酸化物超電導線材
Selbmann et al. Structural properties of epitaxial YSZ and doped CeO2 films on different substrates prepared by liquid sources MOCVD (LSMOCVD)
Yoo et al. Formation of strongly biaxial-textured Ni Layer for YBCO coated conductor by electrodeposition process

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480022579.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006219322

Country of ref document: US

Ref document number: 2522078

Country of ref document: CA

Ref document number: 10552728

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004747417

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004264090

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020067002410

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006106705

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2004747417

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067002410

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10552728

Country of ref document: US