WO2004097749A1 - Sendevorrichtung eines zugangssystems mit einer anzahl von langwellenantennen - Google Patents

Sendevorrichtung eines zugangssystems mit einer anzahl von langwellenantennen Download PDF

Info

Publication number
WO2004097749A1
WO2004097749A1 PCT/DE2004/000774 DE2004000774W WO2004097749A1 WO 2004097749 A1 WO2004097749 A1 WO 2004097749A1 DE 2004000774 W DE2004000774 W DE 2004000774W WO 2004097749 A1 WO2004097749 A1 WO 2004097749A1
Authority
WO
WIPO (PCT)
Prior art keywords
antennas
amplifier
current
control
transmitting device
Prior art date
Application number
PCT/DE2004/000774
Other languages
English (en)
French (fr)
Inventor
Uli Joos
Heinrich Haas
Original Assignee
Conti Temic Microelectronic Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004011927A external-priority patent/DE102004011927A1/de
Application filed by Conti Temic Microelectronic Gmbh filed Critical Conti Temic Microelectronic Gmbh
Priority to DE112004001224T priority Critical patent/DE112004001224D2/de
Publication of WO2004097749A1 publication Critical patent/WO2004097749A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R25/00Fittings or systems for preventing or indicating unauthorised use or theft of vehicles
    • B60R25/20Means to switch the anti-theft system on or off
    • B60R25/24Means to switch the anti-theft system on or off using electronic identifiers containing a code not memorised by the user
    • B60R25/245Means to switch the anti-theft system on or off using electronic identifiers containing a code not memorised by the user where the antenna reception area plays a role
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C9/00309Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated with bidirectional data transmission between data carrier and locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • H01Q1/3241Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems particular used in keyless entry systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/12Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit
    • G07C9/00174Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys
    • G07C2009/00753Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys
    • G07C2009/00769Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys with data transmission performed by wireless means
    • G07C2009/00793Electronically operated locks; Circuits therefor; Nonmechanical keys therefor, e.g. passive or active electrical keys or other data carriers without mechanical keys operated by active electrical keys with data transmission performed by wireless means by Hertzian waves

Definitions

  • the invention relates to a transmission device with a number of long-wave antennas of an access system of a vehicle, in particular a motor vehicle.
  • Such an access system which is often also referred to as a passive entry system, is usually part of a superordinate keyless remote control system which, in addition to automatically unlocking the door of a vehicle, also controls its engine starting system and / or an immobilizer.
  • a system comprises, for example, a transmitting or transmitting and receiving device (transponder) integrated in the vehicle key and carried by a person authorized for the vehicle, and a vehicle-based transmitting and receiving device (transceiver).
  • an exchange of security codes or access data based on high-frequency (HF) and / or low-frequency (LF) - and thus short-wave or long-wave - carrier signals takes place between the portable transponder and the vehicle-based transceiver.
  • the location of the transponder is detected using several long-wave antennas arranged in or on the vehicle.
  • the long-wave antennas can be activated sequentially by a vehicle-based control system.
  • the transponder responds to such a long-wave-based interrogation signal with a security-coded HF signal to identify the access authorization. If necessary, a vehicle-based control system unlocks the vehicle door so that it can be opened by manually operating the door handle.
  • the transmit antennas are usually individually controlled by means of separate drivers, which leads to a considerable amount of circuitry, particularly when high demands are placed on a driver output stage.
  • EP 0741 221 B1 shows a receiving device with a multiplexer for selective reception via several antennas.
  • DE 19752149 AI transmitting and receiving device transmitter
  • an amplifier device at the output of which several long-wave antennas can optionally be connected via a multiplexer.
  • the multiplexer is formed by switching means which sequentially connect the amplifier device to one of the long-wave antennas.
  • DE 19752149 AI relays are provided as switching means, which, at least for some applications, have an excessive delay time and the costs and the required installation space are disadvantageous.
  • the invention is therefore based on the object of specifying a particularly suitable transmission device, in particular for the door control of a motor vehicle.
  • the advantages achieved with the invention consist in particular in that a direct transmission of all long-wave transmission antennas together and their individual activation by means of a multiplexer device result in a reliable transmission drive is achieved with a particularly space-saving or space-saving and thus effective circuit or component arrangement.
  • the direct control of the long-wave transmit antennas achieves on the one hand particularly reliable location detection and on the other hand particularly reliable energy transmission into a transponder, in particular into an intelligent vehicle key.
  • MOSFET switching transistors are preferably used, since they have an extremely low power loss and enable particularly fast control, in particular also phase modulation.
  • the execution of the multiplexer in SMART-MOSFET technology also leads to a resistance of the arrangement against short circuits of the antenna line.
  • the direct control of the long-wave transmission antennas formed from transmission coils in series resonance by means of a trapezoidal or rectangular voltage means that the circuitry and thus the cost are particularly low, especially since several transmitters can be controlled from a central control device and the transmission antennas can be connected directly to the amplifier output.
  • the sinusoidal transmission current with a limitation of its peak value by means of a rapid current cut-off and synchronization by pulse width modulation at the control input of the amplifier, its output power is stably adjusted to a particularly high power value.
  • the output stage of the amplifier can be operated in a saturated manner, so that only a low power loss occurs in its driver or driver stage.
  • FIG. 1 shows schematically in a block diagram the circuit of a transmission device with a single amplifier and a number of transmission antennas
  • FIG. 2 shows a comparatively detailed circuit of the block diagram according to FIG. 1,
  • FIG. 3 shows a signal diagram to illustrate the functioning of a current control of the transmitting device
  • the transmitting device 1 comprises an amplifier device in the form of a central amplifier 2, the operating voltage U B of which is supplied by the vehicle battery (not shown).
  • a number of long-wave transmit antennas LF ⁇ ... n are connected directly and jointly to the output LF ou t of the amplifier 2.
  • the antennas LF ⁇ ... n are individually activated by a multiplexer device or a multiplexer 4 and thereby in a specific order and time sequence activated and thus activated one after the other.
  • the multiplexer device 4 connected downstream of the antennas LF ⁇ ... n is connected to ground GND.
  • a shunt 8 for current measurement which is part of a current control 10, is connected in the ground branch 6 of the multiplexer 4.
  • the current control 10 comprises a current detector 12 in the form of an overcurrent comparator, one input - here the (+) input - a reference signal I Ref and the other input - here the (-) input - one via the antennas LF ⁇ ... n and the multiplexer 4 guided transmission current I LF is supplied.
  • the current detector 12 is connected to an input Ei of a control logic 14, at the second input E of which a low-frequency clock signal LF c i k is carried at a frequency of expediently 125 kHz.
  • the control logic 14 is connected to a control input P n of the amplifier 2.
  • the amplifier 2 When the transmitting device 1 is in operation, the amplifier 2, which is driven on the input side with the low-frequency trigger signal LF CLK, generates a trapezoidal or rectangular voltage on the output side, which voltage is used directly via the amplifier output LF out to jointly control the antennas LF ⁇ ... n .
  • the antennas LF ⁇ ... n are connected to the amplifier 2 in succession in a predefinable time sequence by means of the multiplexer 4. This results in a particularly low-loss control.
  • the transmission current I L F conducted via the respectively activated antenna LF n is detected on the base side of the multiplexer 4 by means of the shunt 8 and is fed to the (-) input of the current detector 12 referred to below as an overcurrent comparator.
  • the overcurrent comparator 12 compares the transmission current I LF with the reference value I Ref . If the reference value I R ⁇ f is exceeded , the current control 10 is used to limit the current of the transmission current I LF to the predefinable reference value I Ref , which represents the setpoint of the current control 10.
  • the overcurrent comparator 12 generates a control or trigger signal S ⁇ on the output side, which is fed via the control logic 14 to the input P n of the amplifier 2 for controlling the output power of its output stage.
  • the actual value of the transmission current I LF is adapted to the target value I Ref with a good approximation, with good quality of the transmission device 1 acting as the transmission circuit.
  • each long-wave transmission antenna LF n is designed as a transmission coil L n , which is tuned for series resonance by means of a capacitor C n connected in series therewith.
  • the multiplexer 4 which is directly connected to the antennas LF n directly driven by the amplifier 2 by means of a trapezoidal or rectangular voltage, is expediently designed in MOSFET technology.
  • the multiplexer 4 in each antenna branch AZi to AZ n comprises a power transistor (MOSFET) which is controlled on the gate side by means of a corresponding control signal M c for activating the respective antenna LF n . Accordingly, only each controlled power transistor performs the multiplexer 4 to the (entire) transmitting current I LF as a result of actuation of the in the corresponding antenna branch AZ n arranged LF antenna n by means of the trapezoidal generated by the amplifier 2 or the rectangular voltage.
  • the implementation of the multiplexer 4 in SMART-MOSFET technology advantageously leads to a resistance of the arrangement against short-circuits of the antenna line thanks to integrated current and voltage monitoring.
  • the control logic 14 is constructed according to FIG. 2 from a logic AND gate or gate 16 and a switching mechanism 18, hereinafter referred to as a PWM latch.
  • This is expediently designed as an edge-controlled D flip-flop (latch flip-flop) which, according to the signal diagram in FIG. 3, triggers on the positive edge of the clock signal LF clk .
  • This PWM latch thus serves for the synchronization of the control or regulating signal S ⁇ with the clock LF c ⁇ k and for pulse width modulation (PWM) of the input signal P ⁇ n of the amplifier 2.
  • PWM pulse width modulation
  • control signal S ⁇ supplied by the overcurrent comparator 12 which is formed by comparing the transmission current I LF measured in the ground or ground branch 6 of the multiplexer 4 with the setpoint or reference value I R8f , used to control the PWM latch 18.
  • the input clock LF c i k (50% duty cycle) is thus present at the input P ⁇ n of the amplifier 2 and its output stage controls the full output power.
  • the amplifier 2 can be deactivated via an ENABLE input E ⁇ b ⁇ , so that the power consumption in the idle state of the transmitting device 1 is negligible.
  • the amplifier 2 is designed as a source follower and thus as a power amplifier with MOS field-effect transistors (MOSFETs) in a drain circuit.
  • MOSFETs MOS field-effect transistors
  • This design of the amplifier 2 and thus the common driver output stage for all transmission antennas LF ⁇ ... n limits the rise time of the rectangular or trapezoidal output voltage at the output LF out of the amplifier 2 or its output stage. This keeps the electromagnetic radiation and thus the electromagnetic compatibility (EMC) particularly low.
  • EMC electromagnetic compatibility
  • a further limitation of the electromagnetic radiation or EMC is expediently achieved by a suitable edge shaping of the preferably rectangular output voltage (LF out ).
  • the current mirrors connected to the respective voltage supplies + VH and -VH of the amplifier 2 SSI and SS2 are current-controlled current sources which transfer the current impressed on the input side into the capacitor C1.
  • the (mirrored) reference currents charge the capacitor Cl via the cascode stages formed by the diode Dl and the transistor T3 or the diode D2 and the transistor T4, the potential at the capacitor Cl alternating between approximately the potentials + VH and -VH.
  • the rate of rise of the charging voltage across the capacitor C1 is set with the resistors R2, R3 and with the capacity of the capacitor C1.
  • R5, R6 the voltage ramp at the capacitor C1 can additionally be slowed down in the range of the supply voltages + VH and -VH (edge shaping).
  • transistors T7 to T10 with resistors R7 to RIO forms a current amplifier which decouples the voltage across capacitor C1 and drives an output stage driver T15, T16.
  • the transistors TU and T12 and the resistor R11 form a switchable current source, the output current of which is mirrored at the highest or lowest potential + VH or -VH with the two current mirrors SS3 and SS4 and via which through the diode D5 and the transistor T13 or the diode D6 and the transistor T14 formed cascode stage is coupled out.
  • the current mirrors with cascode offer the advantage of high output resistances and large amplifications in the respective driver stages T7 to T10 and T15, T16 of the amplifier device second
  • the decoupled symmetrical current flows through a network formed by the diodes D7, D8 and the resistors R12, R13 and thus generates an offset voltage for driving the control inputs of the output stage of the amplifier 2.
  • the output stage is in through MOS field-effect transistors T17 and T18 Source follower configuration formed so that the offset voltage drives their gates. Due to the constant current supply to this network D7, R12; D8, R13, the gate voltage offset remains constant over the entire range of control, only the center voltage at the resistors R12 and R13 having to be controlled by the current amplifier T7 to T10, R7 to RIO.
  • the offset can be influenced in such a way that the cross current in the output or output stage formed by the MOSFETs T17 and T18 over a wide temperature range remains almost constant.
  • this property can also be achieved by controlling the respective reference current as a function of the temperature.
  • either the resistor R11 can be replaced by a temperature-dependent resistor or the base voltage at the transistor TU can be modulated by an external control device.
  • the offset voltage directly controls the respective gate of the output stage transistors T17 and T18 via the emitter follower formed by the transistors T15 and T16.
  • a network formed by the resistor R14 and the capacitor C2 ensures that the gates of the output transistors T17 and T18 can be moved dynamically in both directions. Instead of this network R14, C2, alternatively, complementary followers can also be used to control the final stage transistors T17, T18.
  • a clamping network formed by the diodes D9 to D12 ensures that, in the event of a short circuit at the amplifier output LFout, the maximum permissible gate-source voltage of the output transistors T17, T18 is not exceeded and is therefore not destroyed.
  • the currents in the output paths of the output stage transistors T17 and T18 are measured via operational amplifiers OPV1 and OPV2 connected to resistors R15 and R16 and monitored for diagnostic purposes.
  • the output stage formed by the two output transistors T17 and T18 can be thermally destroyed in the event of a short circuit or an overload at the output LF out and before an excessive cross-current in the output stage T17, by a suitable combination of the current values detected in this case with the transmission current I LF , T18 are protected.
  • the electromagnetic radiation is limited to reliable values without additional filter measures at the output LF out .
  • the slew rate of the rectangular or trapezoidal output voltage of the power amplifier 2 can be largely reduced by avoiding an impairment of the properties of the transmission current control 10 by symmetrical design of the switching edges. With this active influence on the switching edges, the e- minimized electromagnetic radiation of the transmission amplifier 1 and thus the transmission device 1.
  • the amplifier properties are particularly favorable, while avoiding an ineffective increase in the total expenditure, by using only a single power amplifier 2 for jointly controlling the multiple long-wave transmit antennas LF ⁇ ... n .
  • the transmitter device 1 can be operated in a motor vehicle without additional filter expenditure.
  • the electromagnetic radiation is kept particularly low.
  • the control method described is by means of rectangular or trapezoidal output voltage with regard to the resulting low circuit complexity and the low power loss in the power output stage T17, T18 of the power amplifier 2 particularly advantageous.
  • I LF transmit current / actual value

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmitters (AREA)

Abstract

Zum Betreiben einer Sendevorrichtung (1) eines Zugangssystems, insbesondere eines Kraftfahrzeugs, mit einer Anzahl von Langwellenantennen (LF1….n) werden diese gemeinsam mittels eines zentralen Leistungsverstärkers (2) angesteuert und über eine Multiplexereinrichtung (4) einzeln aktiviert. Die Sendevorrichtung (1) umfasst hierzu eine Multiplexereinrichtung (4) zur Aktivierung jeweils einer einzelnen Langwellenantenne (LFn) und eine Verstärkereinrichtung (2), an dessen Ausgang (LFout) die Langwellenantennen (LF1...n) gemeinsam angeschlossen sind. Die Multiplexereinrichtung (4) ist auf der der Verstärkereinrichtung (2) abgewandten Masseseite der Langwellenantennen (LF1…n) angeordnet, wodurch eine einfache Ansteuerung mikro elektronischer Schaltmittel mit massebezogenen Ansteuersignalen möglich wird und die Schaltgeschwindigkeit deutlich erhöht werden kann.

Description

Sendevorrichtung eines ZugangsSystems mit einer Anzahl von
Langwe11enantennen
Die Erfindung bezieht sich auf eine Sendevorrichtung mit ei- ner Anzahl von Langwellenantennen eines Zugangssystems eines Fahrzeugs, insbesondere eines Kraftfahrzeugs.
Ein derartiges ZugangsSystem, das häufig auch als passives Zugangssystem (passiv entry System) bezeichnet wird, ist üb- licherweise Teil eines übergeordneten schlüssellosen Fernsteuerungssystems, das zusätzlich zu einer automatischen Entriegelung der Tür eines Fahrzeugs auch dessen Motoranlasssystem und/oder eine Wegfahrsperre steuert. Ein solches System umfasst eine beispielsweise in den Fahrzeugschlüssel integ- rierte, von einer für das Fahrzeug autorisierten Person mitgeführte Sende- oder Sende- und Empfangseinrichtung (Transponder) und eine fahrzeugbasierte Sende- und Empfangseinrichtung (Tranceiver) .
Zur Feststellung einer Zugangsberechtigung zu dem Fahrzeug findet zwischen dem tragbaren Transponder und dem fahrzeugbasierten Tranceiver ein Austausch von Sicherheitscodes oder Zugangsdaten auf der Basis hochfrequenter (HF) und/oder niederfrequenter (LF) - und damit kurzwelliger bzw. langwelliger - Trägersignale statt. Die Ortsdetektion des Transponders erfolgt dabei über mehrere im oder am Fahrzeug verteilt angeordnete Langwellenantennen.
Entsprechend einem aus der DE 101 08 578 AI bekannten passi- ven FernsteuerungsSystem können die Langwellenantennen von einem fahrzeugbasierten Steuersystem seguenziell aktiviert werden. Auf ein derartiges langwellenbasiertes Abfragesignal antwortet der Transponder bei dem bekannten System mit einem sicherheitscodierten HF-Signal zur Identifikation der Zu- gangsberechtigung. Gegebenenfalls entriegelt ein fahrzeugbasiertes Steuersystem die Fahrzeugtür, so dass diese durch manuelles Betätigen des Türgriffs geöffnet werden kann. Durch die sequenzielle Aktivierung der Langwellenantennen kann zwar die von der Fahrzeugbatterie zu liefernde Energie zur Ansteuerung der Langwellenantennen gering gehalten werden. Allerdings werden gemäß einem aus der DE 198 35 155 AI bekannten schlüssellosen Zugangssystem die Sendeantennen üblicherweise mittels separater Treiber einzeln angesteuert, was insbesondere bei hohen Anforderungen an eine Treiberendstufe zu einem erheblichen Schaltungsaufwand führt.
Aus der EP 0741 221 Bl ist eine Empfangseinrichtung mit einem Multiplexer zum wahlweisen Empfang über mehrere Antennen zu entnehmen. Darüber hinaus sind beispielsweise aus der DE 19752149 AI Sende- und Empfangseinrichtung (Transceiver) bekannt mit einer Verstärkereinrichtung, an dessen Ausgang mehrere Langwellenantennen wahlweise über einen Multiplexer anschliessbar sind. Der Multiplexer wird durch Schaltmittel gebildet, welche sequentiell den die Verstärkereinrichtung mit einer der Langwellenantennen verbinden. Als Schaltmittel sind in der DE 19752149 AI Relais vorgesehen, welche zumindest für einige Anwendungen eine zu große Verzögerungszeit aufweisen und die Kosten und der erforderliche Bauraum nachteilig sind.
Der Erfindung liegt daher die Aufgabe zugrunde, eine besonders geeignete Sendevorrichtung, insbesondere für die Türsteuerung eines Kraftfahrzeugs, anzugeben.
Die genannte Aufgabe wird erfindungsgemäß gelöst durch die Merkmale des Anspruchs 1. Vorteilhafte Weiterbildungen des
Verfahrens sind Gegenstand der hierauf zurückbezogenen Unteransprüche .
Die mit der Erfindung erzielten Vorteile bestehen insbesonde- re darin, dass durch eine direkte Ansteuerung aller Langwellen-Sendeantennen gemeinsam und deren Einzelaktivierung mittels einer Multiplexereinrichtung ein zuverlässiger Sendebe- trieb bei gleichzeitig besonders platz- oder raumsparender und damit effektiver Schaltungs- oder Bauteileanordnung erreicht wird. Durch die direkte Ansteuerung der Langwellen- Sendeantennen wird dabei einerseits eine besonders zuverläs- sige Ortsdetektion und andererseits eine besonders zuverlässige Energieübertragung in einen Transponder, insbesondere in einen intelligenten Fahrzeugschlüssel, erreicht.
Durch die Anordnung der Multiplexereinrichtung auf der der Verstärkereinrichtung abgewandten Masseseite der Langwellenantennen kann durch einfach zu erzeugende Ansteuersignale mit Massebezug und elektronische Schaltmittel eine deutlich schnellere und zugleich dennoch einfache Sendeeinrichtung geschaffen werden. Vorzugsweise werden MOSFET-Schalttransistoren eingesetzt, da diese eine äußerst geringe Verlustleisung aufweisen und eine besonders schnelle Ansteuerung, insbesondere auch eine Pha- senmodualtion ermöglichen.
Die Ausführung des Multiplexers in SMART-MOSFET-Technologie führt zudem zu einer Resistenz der Anordnung gegen Kurzschlüsse der Antennenleitung.
Durch die Verwendung eines Leistungsverstärkers mit begrenzter Anstiegszeit und optimiertem Sättigungsverhalten wird des Weiteren eine besonders verlustarme Ansteuerung bei gleichzeitiger Beschränkung der elektromagnetischen Abstrahlung auf einen zulässigen Wert ohne zusätzliche Filtermaßnahmen am Verstärkerausgang erreicht .
Ferner ist durch die direkte Ansteuerung der aus Sendespulen in Serienresonanz gebildeten Langwellen-Sendeantennen mittels einer trapez- oder rechteckförmigen Spannung der Schaltungsaufwand und damit der Kostenaufwand besonders gering, zumal mehrere Sender aus einem zentralen Steuergerät angesteuert und die Sendeantennen direkt an den Verstärkerausgang angeschlossen werden können. Zudem wird durch eine Regelung des sinusförmigen Sendestroms mit einer Begrenzung dessen Spitzenwertes mittels einer schnellen Stromabschaltung sowie einer Synchronisation durch Pulsweitenmodulation am Steuereingang des Verstärkers dessen Ausgangsleistung auf einen besonders hohen Leistungswert stabil eingestellt. Hierdurch kann die Endstufe des Verstärkers gesättigt betrieben werden, so dass in dessen Treiber oder Treiberstuf eine nur geringe Verlustleistung anfällt.
Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher erläutert. Darin zeigen:
FIG 1 schematisch in einem Blockschaltbild die Schaltung einer Sendevorrichtung mit einem einzelnen Verstär- ker und einer Anzahl von Sendeantennen,
FIG 2 eine vergleichsweise detaillierte Schaltung des Blockschaltbilds gemäß FIG 1,
FIG 3 ein Signaldiagramm zur Veranschaulichung der Funktionsweise einer Stromregelung der Sendevor- richtung, sowie
FIG 4 ein Schaltungsprinzip des Verstärkers der Sendevorrichtung .
Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.
FIG 1 zeigt schematisch in einem Blockschaltbild eine Sendevorrichtung 1, die beispielsweise Teil einer Türsteuerung eines Zugangssystems eines Kraftfahrzeugs ist. Die Sendevor- richtung 1 umfasst eine Verstärkereinrichtung in Form eines zentralen Verstärkers 2, dessen Betriebsspannung UB von der (nicht dargestellten) Fahrzeugbatterie geliefert wird. An den Ausgang LFout des Verstärkers 2 sind eine Anzahl von nachfolgend als Antennen bezeichnete Langwellen-Sendeantennen LFι...n direkt und gemeinsam angeschlossen. Die Antennen LFι...n werden von einer Multiplexereinrichtung oder einem Multiplexer 4 einzeln aktiviert und dabei in einer bestimmten Reihenfolge und Zeitabfolge zugeschaltet und damit nacheinander aktiviert. Dazu ist die den Antennen LFι...n nachgeschaltete Multiplexereinrichtung 4 gegen Ground GND geschaltet.
In den Groundzweig 6 des Multiplexers 4 ist ein Shunt 8 zur Strommessung geschaltet, der Teil einer Stromregelung 10 ist. Die Stromregelung 10 umfasst einen Stromdetektor 12 in Form eines Überstrom-Komparators, dessen einem Eingang - hier dem (+) -Eingang - ein Referenzsignal IRef und dessen anderem Ein- gang - hier dem (-) -Eingang - ein über die Antennen LFι...n und des Multiplexers 4 geführter Sendestr'om ILF zugeführt wird.
Ausgangsseitig ist der Stromdetektor 12 mit einem Eingang Ei einer Steuerlogik 14 verbunden, an dessen zweiten Eingang E ein niederfrequentes Taktsignal LFcik mit einer Frequenz von zweckmäßigerweise 125 kHz geführt ist. Ausgangsseitig ist die Steuerlogik 14 mit einem Steuereingang Pin des Verstärkers 2 verbunden .
Beim Betrieb der Sendevorrichtung 1 erzeugt der eingangs- seitig mit dem niederfrequenten Triggersignal LFCLK angesteuerte Verstärker 2 ausgangsseitig eine trapez- oder rechteck- förmige Spannung, die über den Verstärkerausgang LFout direkt zur gemeinsamen Ansteuerung der Antennen LFι...n herangezogen wird. Dabei werden die Antennen LFι...n mittels des Multiplexers 4 in einer vorgebbaren Zeitabfolge nacheinander dem Verstärker 2 zugeschaltet. Dadurch wird eine besonders verlustarme Ansteuerung erzielt.
Der über die jeweils aktivierte Antenne LFn geführte Sendestrom ILF wird an des Multiplexers 4 groundseitig mittels des Shunts 8 erfasst und dem (-) -Eingang des nachfolgend als Ü- berstrom-Komparator bezeichneten Stromdetektors 12 zugeführt. Der Uberstrom-Komparator 12 vergleicht den Sendestrom ILF mit dem Referenzwert IRef . Bei Überschreiten des Referenzwertes IRβf erfolgt mittels der Stromregelung 10 eine Strombegrenzung des Sendestroms ILF auf den vorgebbaren Referenzwert IRef, der den Sollwert der Stromregelung 10 darstellt. Hierzu erzeugt der Uberstrom-Komparator 12 ausgangsseitig ein Steuer- oder Triggersignal Sτ, das über die Steuerlogik 14 dem Eingang Pιn des Verstärkers 2 zur Steuerung der Ausgangsleistung dessen Endstufe zugeführt wird. Dadurch wird der Istwert des Sendestroms ILF bei entsprechender Güte der als Sendekreis wirksamen Sendevorrichtung 1 mit guter Näherung dem Sollwert IRef angepasst .
Wie aus der vergleichsweise detaillierten Schaltung nach FIG 2 ersichtlich ist, ist jede Langwellen-Sendeantenne LFn als Sendespule Ln ausgeführt, die mittels eines mit dieser in Reihe geschalteten Kondensators Cn auf Serienresonanz abge- stimmt ist. Der den vom Verstärker 2 mittels einer trapez- oder rechteckför igen Spannung direkt angesteuerten Antennen LFn nachgeschaltete Multiplexer 4 ist zweckmäßigerweise in MOSFET-Technologie ausgeführt.
Dazu umfasst der Multiplexer 4 in jedem Antennenzweig AZi bis AZn einen Leistungstransistor (MOSFET) , der gateseitig mittels eines entsprechenden Steuersignals Mc zur Aktivierung der jeweiligen Antenne LFn angesteuert wird. Demzufolge führt lediglich der jeweils angesteuerte Leistungstransistor des Multiplexers 4 den (gesamten) Sendestrom ILF infolge der Ansteuerung der in dem entsprechenden Antennenzweig AZn angeordneten Antenne LFn mittels der vom Verstärker 2 erzeugten trapez- oder rechteckförmigen Spannung. Die Ausführung des Multiplexers 4 in SMART-MOSFET-Technologie führt dank integ- rierter Strom- bzw. Spannungsüberwachung vorteilhaf erweise zu einer Resistenz der Anordnung gegen Kurzschlüsse der Antennenleitung, bei konventionellen MOSFETs können besonder schnelle Ansteuerungen, bspw. für eine schnelle Phasenmodulation erreicht werden. Grundsätzlich können auch mehrere An- tennen gleichzeitig betrieben werden, wobei dann nur der Summenstrom geregelt würde. Die Steuerlogik 14 ist gemäß FIG 2 aus einem logischen UND- Glied oder -Gatter 16 und einem nachfolgend als PWM-latch bezeichneten Schaltwerk 18 aufgebaut. Dieses ist zweckmäßigerweise als flankengesteuertes D-Flippflopp (latch-Flipflop) ausgeführt, dass gemäß dem Signaldiagramm in FIG 3 auf die positive Flanke des Taktsignals LFclk triggert. Dieses PWM- latch dient somit zur Synchronisation des Steuer- oder Regelsignals Sτ mit dem Takt LFcιk und zur Pulsweitenmodulation (PWM) des Eingangssignals Pιn des Verstärkers 2. Dadurch er- folgt die Regelung des sinusförmigen Sendestroms ILF - und damit die Regelung der Sendeleistung - durch eine Spitzen- wertbegrenzung des Sendestroms I F mittels einer schnellen Stromabschaltung und einer Pulsweitenmodulations-Synchroni- sation.
Dazu wird das von dem Uberstrom-Komparator 12 ausgangsseitig gelieferte Steuer- bzw. Regelsignal Sτ, das durch einen Vergleich des im Masse- oder Ground-Zweig 6 des Multiplexers 4 gemessenen Sendestroms ILF mit dem Soll- oder Referenzwert IR8f gebildet wird, zur Ansteuerung des PWM-latches 18 herangezogen.
Wie in FIG 3 veranschaulicht, triggert dabei der Uberstrom- Komparator 12 nicht und das PWM-latch 18 bleibt über den mit ti bezeichneten Zeitraum gesetzt (Qatc = high) , solange der den Maximalwert des Sendestroms ILF vorgebende Referenzwert RRef nicht überschritten wird. Damit liegt der Eingangstakt LFcik (50% duty cycle) am Eingang Pιn des Verstärkers 2 an und dessen Endstufe steuert die volle Ausgangsleistung.
Überschritten dagegen der Sendestroms ILF den durch den Referenzwert IRef vorgegebenen Maximal- oder Spitzenwert, so schaltet der Überstrom-Kompensator 12 und das dadurch erzeugte Regelsignal Sτ setzt - im veranschaulichten Zeitraum t2 - das PWM-latch 18 zurück (Qatc = low) . Infolge der Verknüpfung mit dem als Eingangstakt dienenden Taktsignal LFcιk mittels des UND-Gatters 16 wird die Pulsweite am Eingang Pιn des Verstärkers 2 derart moduliert, dass der Maximal- bzw. Spitzenwert des Sendestroms ILF zumindest annähernd dem Referenzoder Sollwert IRef entspricht. Durch diesen Kurzschlussschutz kann die Sendevorrichtung 1 nicht nur in einem Türsteuersys- tem, sondern vielmehr auch in einem Zentralsteuerungssystem eingesetzt werden, das zusätzlich zu dem Zugangssystem auch eine Motoranlasssteuerung und/oder eine Wegfahrsperre des Fahrzeugs umfasst.
Der Verstärker 2 ist über einen ENABLE-Eingang Eβbι deaktivierbar, so dass der Stromverbrauch im Ruhezustand der Sendevorrichtung 1 vernachlässigbar gering ist.
Gemäß der Darstellung in FIG 4 ist der Verstärker 2 als Sour- cefolger (source follower) und damit als Leistungsverstärker mit MOS-Feldeffekttransistoren (MOSFET's) in Drainschaltung ausgeführt. Durch diese Ausführung des Verstärkers 2 und damit der gemeinsamen Treiberendstufe für alle Sendeantennen LFι...n wird die Anstiegszeit der rechteck- oder trapezförmi- gen AusgangsSpannung am Ausgang LFout des Verstärkers 2 bzw. dessen Endstufe begrenzt. Dadurch wird die elektromagnetische Abstrahlung und damit die elektromagnetische Verträglichkeit (EMV) besonders niedrig gehalten. Eine weitere Begrenzung der elektromagnetischen Abstrahlung oder EMV wird zweckmäßiger- weise durch eine geeignete Kantenformung (edge shaping) der vorzugsweise rechteckförmigen AusgangsSpannung (LFout) erreicht.
Dazu wird das von der Steuerlogik 14 der Regeleinrichtung 10 an den Eingang Pin des Leistungsverstärkers 2 gelieferte Eingangssignal PWMin über einen Buffar Bl und zwei durch den Widerstand R2 und den Transistor Tl sowie den Widerstand R3 und den Transistor T2 gebildeten Basisschaltungen in Referenzströme umgesetzt. Diese werden mit Stromspiegeln SS1,SS2 je- weils am höchsten bzw. tiefsten Potential (+VH = UB + 5V) , (- VH = -5V) gespiegelt. Die mit den jeweiligen Spannungsversorgungen +VH und -VH des Verstärkers 2 verbundenen Stromspiegel SSI und SS2 sind stromgesteuerte Stromquellen, die den ein- gangsseitig eingeprägten Strom in den Kondensator Cl transferieren.
Die (gespiegelten) Referenzströme laden über die durch die Diode Dl und den Transistor T3 bzw. die Diode D2 und den Transistor T4 gebildeten Kaskodenstufen den Kondensator Cl auf, wobei das Potential am Kondensator Cl zwischen annähernd den Potentialen +VH und -VH wechselt . Dabei wird die An- Stiegsgeschwindigkeit der Ladespannung am Kondensator Cl mit den Widerständen R2,R3 und mit dem Fassungsvermögen des Kondensators Cl eingestellt. Mit einem aus den Transistoren T5 , T6 sowie den Dioden D3 , D4 und den Widerständen R4,R5,R6 gebildeten Netzwerk kann die Spannungsrampe am Kondensator Cl zusätzlich im Bereich der VersorgungsSpannungen +VH und -VH verlangsamt werden (edge shaping) .
Durch die dargestellte Zusammenschaltung der Transistoren T7 bis T10 mit den Widerständen R7 bis RIO ist ein Stromver- stärker gebildet, der die Spannung am Kondensator Cl auskoppelt und einen Endstufentreiber T15,T16 ansteuert. Hierzu bilden die Transistoren TU und T12 sowie der Widerstand Rll eine schaltbare Stromquelle, deren Ausgangsstrom mit den beiden Stromspiegeln SS3und SS4 am höchsten bzw. tiefsten Poten- tial +VH bzw. -VH gespiegelt und über die durch die Diode D5 und den Transistor T13 bzw. die Diode D6 und den Transistor T14 gebildete- Kaskodenstufe ausgekoppelt wird. Die Stromspiegel mit Kaskode (SS1,D2,T4; SS2,D1,T3; SS3,D6,T14; SS4,D5,T13) bieten den Vorteil hoher Ausgangswiderstände und großer Verstärkungen in den jeweiligen Treiberstufen T7 bis T10 und T15,T16 der Verstärkereinrichtung 2.
Der ausgekoppelte symmetrische Strom fließt durch ein durch die Dioden D7 , D8 sowie die Widerstände R12,R13 gebildetes Netzwerk und erzeugt damit eine Offset-Spannung zur Ansteuerung der Steuereingänge der Endstufe des Verstärkers 2. Die Endstufe ist durch MOS-Feldeffekttransistoren T17 und T18 in Source-Folgerkonfiguration gebildet, so dass die Offset-Spannung deren Gates ansteuert. Durch die konstante Bestromung dieses Netzwerkes D7 ,R12 ;D8, R13 bleibt der Gatespannungs- Offset über den gesamten Bereich der Ansteuerung konstant, wobei lediglich die Mittenspannung an den Widerständen R12 und R13 vom Stromverstärker T7 bis T10, R7 bis RIO gesteuert werden muss .
Werden die Widerstände R12 und R13 durch ein Netzwerk mit temperaturabhängigen Widerständen ersetzt, insbesondere durch NTC-Widerstände mit negativem Temperaturkoeffizient, kann der Offset derart beeinflusst werden, dass der Querstrom in der durch die MOSFET's T17 und T18 gebildeten Ausgangs- oder Endstufe über einen großen Temperaturbereich nahezu konstant bleibt. Alternativ kann diese Eigenschaft auch dadurch erreicht werden, dass der jeweilige Referenzstrom temperaturabhängig gesteuert wird. Hierzu kann entweder der Widerstand Rll durch einen temperaturabhängigen Widerstand ersetzt oder die Basisspannung am Transistor TU von einer externen Kon- trolleinrichtung moduliert werden.
Die Offset-Spannung steuert über den durch die Transistoren T15 und T16 gebildeten Emitterfolger direkt das jeweilige Gate der Endstufentransistoren T17 und T18. Über ein durch den Widerstand R14 und den Kondensator C2 gebildetes Netzwerk wird dabei sichergestellt, dass die Gates der Ausgangstransistoren T17 und T18 in beiden Richtungen dynamisch bewegt werden können. Anstelle dieses Netzwerkes R14,C2 können alternativ auch komplementäre Folger zur Ansteuerung der End- Stufentransistoren T17,T18 eingesetzt werden. Mit einem durch die Dioden D9 bis D12 gebildeten Clamping-Netzwerk wird sichergestellt, dass im Falle eines Kurzschlusses am Verstärkerausgang LFout die maximal zulässige Gate-Source-Spannung der Ausgangstransistoren T17,T18 nicht überschritten wird und diese damit nicht zerstört werden. Über mit den Widerständen R15 und R16 beschaltete Operationsverstärker OPV1 bzw. OPV2 werden die Ströme in den Ausgangspfaden der Endstufentransistoren T17 bzw. T18 gemessen und zu Diagnosezwecken überwacht . Dabei kann durch eine geeignete Verknüpfung der dabei erfassten Stromwerte mit dem Sendestrom ILF die durch die beiden Ausgangstransistoren T17 und T18 gebildete Endstufe vor einer thermischen Zerstörung im Falle eines Kurzschlusses oder einer Überlast am Ausgang LFout und vor einem übermäßigen Querstrom in der Endstufe T17,T18 ge- schützt werden.
Der zur Deaktivierung des Leistungsverstärkers 2 dienende 5V- ENABLE-Eingang schaltet die Stromquellen der den Transistor Tl umfassenden Basisschaltung und des den Transistor T5 auf- weisenden Netzwerkes sowie der den Transistor Tl aufweisenden schaltbaren Stromquelle ab. Im deaktivierten Zustand des Leistungsverstärkers 2 (ENABLE = low) werden diese Stromquellen deaktiviert und damit die Endstufentransistoren T17,T18 hochohmig geschaltet .
Durch die Strommessung in den Ausgangs- oder Endstufentransistoren T17 und T18 generierte Diagnosesignale HSaiag bzw. LSdiag werden einer (nicht dargestellten) Kontrolleinrichtung zugeführt, die den Leistungsverstärker 2 bei Kurzschluss oder Überlast am Ausgang LFout und/oder gegen erhöhten Querström schützt .
Durch die Verwendung eines derartigen Leistungsverstärkers 2 mit begrenzter Anstiegszeit und besonders günstigem Sätti- gungsverhalten wird die elektromagnetische Abstrahlung ohne zusätzliche Filtermaßnahmen am Ausgang LFout auf zuverlässige Werte beschränkt. Dabei kann durch symmetrische Ausführung der Schaltflanken die Anstiegsgeschwindigkeit der rechteck- oder trapezförmigen Ausgangsspannung des Leistungsverstärkers 2 unter Vermeidung einer Beeinträchtigung der Eigenschaften der Sendestromregelung 10 weitgehend reduziert werden. Mit dieser aktiven Beeinflussung der Schaltflanken wird die e- lektromagnetische Abstrahlung des Sendeverstärkers 1 und damit der Sendevorrichtung 1 minimiert.
Insgesamt sind durch die Verwendung lediglich eines einzelnen Leistungsverstärkers 2 zur gemeinsamen Ansteuerung der mehreren Langwellen-Sendeantennen LFι...n die Verstärkereigenschaften unter Vermeidung einer ineffektiven Erhöhung des Gesamtaufwandes besonders günstig. Insbesondere kann durch die aktive Beeinflussung der Schaltflanken, d.h. der Anstiegszeit- begrenzung und des edge-shaping der rechteck- bzw. trapezförmigen Ausgangsspannung des Leistungsverstärkers 2 die Sendevorrichtung 1 ohne zusätzlichen Filteraufwand in einem Kraftfahrzeug betrieben werden. Dabei wird die elektromagnetische Abstrahlung besonders gering gehalten.
Gegenüber einer sinusförmigen Ansteuerung einer Sendeeinrichtung im Langwellenbereich, deren Sendespule in Parallel- oder Serienresonanz betrieben wird, ist das beschriebene Ansteuerverfahren mittels recheck- oder trapezförmiger Ausgangsspan- nung hinsichtlich des dadurch erzielten geringen Schaltungsaufwandes und der geringen Verlustleistung in der Leistungsendstufe T17,T18 des Leistungsverstärkers 2 besonders vorteilhaft.
Auch sind eine aufwändige Regelung der Sendeleistung und der Einsatz jeweils einer Leistungsendstufe für jede Sendestufe oder jeden Sendezweig nicht erforderlich. Grund hierfür ist, dass die Endstufe T17,T18 des Leistungsverstärkers 2 gesättigt betrieben wird und deshalb im Endstufentreiber T15,T16 nur wenig Verlustleistung anfällt. Zudem kann der Sendestrom ILF mittels Pulsweitenmodulation geregelt werden, was den Schaltungsaufwand weiter reduziert. Dadurch, dass die Antennen LFι...n direkt an den Ausgang LF0TJ des Leistungsverstärkers 2 angeschlossen werden, können mehrere Sender aus einem zentralen Steuergerät angesteuert werden. Hierbei wird der
Ansteueraufwand insbesondere auch durch die Verwendung eines Leistungsmultiplexers 4 reduziert. Bezugszeichenliste
1 Sendevorrichtung
2 Verstärker
4 Multiplexer
6 Groundzweig
8 Shunt
10 Stromregelung
12 Stromdetektor/Komparator
14 Steuerlogik
16 UND-Gatter
18 Schaltwerk/PWM-latch
AZn Antennenzweig
B Buffer
C Kondensator
D Diode
En Eingang
EΘbl ENABLE-Eingang HSdiag Diagnosesignal
LFn Sendeantenne
LSdiag Diagnosesignal
ILF Sendestrom/Istwert
IRe£ Referenzstrom/Sollwert Ln Sendespule
LFn Sendeantenne
LFout Ausgang
LFci Taktsignal
Mc Steuersignal Pin Steuereingang
R Widerstand
Sτ Triggersignal
SS Stromspiegel
T Transistor/MOSFET UB Betriebsspannung
VH Versorgungsspannung/Potential

Claims

Patentansprüche
1. Sendevorrichtung (1) für ein Zugangssystem, insbesondere eines Fahrzeugs, - mit einer Anzahl von Langwellenantennen (LFι...n) und mit einer Verstärkereinrichtung (2), an dessen Ausgang (LFout) die Langwellenantennen (LFι...n) gemeinsam angeschlossen sind, mit einer Multiplexereinrichtung (4) zur Aktivierung je- weils einer einzelnen Langwellenantenne (LFn) , dadurch gekennzeichnet, daß die Multiplexereinrichtung (4) auf der der Verstärkereinrichtung (2) abgewandten Masseseite der Langwellenantennen (LFι...n) angeordnet ist.
2. Sendevorrichtung nach Anspruch 1, bei der jede Langwellenantenne (LFι...n) einen MOSFET-Schalttransistor für das wahlweise Zuschalten im Multiplex aufweist.
3. Sendevorrichtung nach Anspruch 2, wobei die MOSFET- Schalttransistoren durch ein massebezogenes Spannungssignal am Gate angesteuert werden.
4. Sendevorrichtung nach Anspruch 2 oder 3, wobei die MOSFET- Schalttransistoren Smart-MOSFETs sind.
7. Sendevorrichtung nach Anspruch 6, bei der jede Langwellenantenne (LFι...n) eine mit einem Kondensator (Cι...n) auf Serienresonanz abgestimmte Sendespule (Lι...n) umfasst.
8. Sendevorrichtung nach Anspruch 6 oder 7, mit einer der Verstärkereinrichtung (2) eingangsseitig vorgeschalteten und der Multiplexereinrichtung (4) nachgeschalteten Regeleinrichtung (10) zur Begrenzung des Sendestroms (I F) •
9. Sendevorrichtung nach einem der Ansprüche 6 bis 7, mit einer ausgangsseitig mit einem Steuereingang (Pιn) der Verstärkereinrichtung (2) verbundenen Steuereinrichtung (14), die einen ersten Eingang (Ei) für ein Taktsignal (LFcιk) und einen zweiten Eingang (E2) für ein Steuersignal (Sτ) aufweist.
PCT/DE2004/000774 2003-04-25 2004-04-14 Sendevorrichtung eines zugangssystems mit einer anzahl von langwellenantennen WO2004097749A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112004001224T DE112004001224D2 (de) 2003-04-25 2004-04-14 Sendevorrichtung eines Zugangssystems mit einer Anzahl von Langwellenantennen

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10318727.8 2003-04-25
DE10318727 2003-04-25
DE102004011927A DE102004011927A1 (de) 2003-04-25 2004-03-11 Sendevorrichtung eines Zugangssystems mit einer Anzahl von Langwellenantennen
DE102004011927.9 2004-03-11

Publications (1)

Publication Number Publication Date
WO2004097749A1 true WO2004097749A1 (de) 2004-11-11

Family

ID=33419997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/000774 WO2004097749A1 (de) 2003-04-25 2004-04-14 Sendevorrichtung eines zugangssystems mit einer anzahl von langwellenantennen

Country Status (1)

Country Link
WO (1) WO2004097749A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006060974A1 (de) * 2004-12-04 2006-06-15 Conti Temic Microelectronic Gmbh Sendevorrichtung für mehrere zueinander parallele, unabhängig voneinander über je eine Zuleitung versorgbare Antennen
WO2007006245A1 (de) * 2005-07-08 2007-01-18 Conti Temic Microelectronic Gmbh Zugangskontrollsystem für ein kraftfahrzeug
WO2007079711A1 (de) * 2006-01-09 2007-07-19 Conti Temic Microelectronic Gmbh Antennensystem, zugangskontrollsystem für ein kraftfahrzeug und diagnoseverfahren
WO2007112717A1 (de) * 2006-04-06 2007-10-11 Conti Temic Microelectronic Gmbh Verfahren sowie schaltungsanordnung zum ansteuern einer sendeantenne
EP2020697A1 (de) * 2007-07-12 2009-02-04 Omron Corporation Sendevorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10004616A1 (de) * 2000-02-03 2001-08-30 Siemens Ag Schaltungsanordnung für eine Sende- und/oder Empfangseinrichtung
US20010028296A1 (en) * 2000-03-01 2001-10-11 Hideki Masudaya Keyless entry apparatus capable of selectively controlling only member to be controlled closest to user
US6388631B1 (en) * 2001-03-19 2002-05-14 Hrl Laboratories Llc Reconfigurable interleaved phased array antenna
WO2004001681A1 (fr) * 2002-06-24 2003-12-31 Johnson Controls Technology Company Dispositif d'emission radioelectrique ayant une unite de gestion centralisee et une pluralite d'antennes d'emission distantes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10004616A1 (de) * 2000-02-03 2001-08-30 Siemens Ag Schaltungsanordnung für eine Sende- und/oder Empfangseinrichtung
US20010028296A1 (en) * 2000-03-01 2001-10-11 Hideki Masudaya Keyless entry apparatus capable of selectively controlling only member to be controlled closest to user
US6388631B1 (en) * 2001-03-19 2002-05-14 Hrl Laboratories Llc Reconfigurable interleaved phased array antenna
WO2004001681A1 (fr) * 2002-06-24 2003-12-31 Johnson Controls Technology Company Dispositif d'emission radioelectrique ayant une unite de gestion centralisee et une pluralite d'antennes d'emission distantes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006060974A1 (de) * 2004-12-04 2006-06-15 Conti Temic Microelectronic Gmbh Sendevorrichtung für mehrere zueinander parallele, unabhängig voneinander über je eine Zuleitung versorgbare Antennen
WO2007006245A1 (de) * 2005-07-08 2007-01-18 Conti Temic Microelectronic Gmbh Zugangskontrollsystem für ein kraftfahrzeug
WO2007079711A1 (de) * 2006-01-09 2007-07-19 Conti Temic Microelectronic Gmbh Antennensystem, zugangskontrollsystem für ein kraftfahrzeug und diagnoseverfahren
US8140032B2 (en) 2006-01-09 2012-03-20 Conti Temic Microelectronics Gmbh Antenna system and diagnosis method for a vehicle access control system
WO2007112717A1 (de) * 2006-04-06 2007-10-11 Conti Temic Microelectronic Gmbh Verfahren sowie schaltungsanordnung zum ansteuern einer sendeantenne
EP2020697A1 (de) * 2007-07-12 2009-02-04 Omron Corporation Sendevorrichtung

Similar Documents

Publication Publication Date Title
EP1902426B1 (de) Zugangskontrollsystem für ein kraftfahrzeug
EP1986322A1 (de) Halbleiterschalter mit integrierter Verzögerungsschaltung
DE102009021329B4 (de) Halbduplex-RFID-Transponder und Verfahren zum Betreiben eines Halbduplex-RFID-Transponders
EP1890387A1 (de) Schaltregler, Transceiverschaltung und schlüsselloses Zugangskontrollsystem
WO2003069538A1 (de) Mit einem transponder betätigbare schaltvorrichtung
DE102006035582A1 (de) Schwingungserhaltungskreis für Halbduplextransponder
DE10335905B4 (de) Verfahren und Vorrichtung zur bidirektionalen Eindraht-Datenübertragung
EP1618534B1 (de) Verfahren zum betreiben einer sendevorrichtung sowie danach arbeitende sendevorrichtung
DE102007041867B4 (de) Drahtloser Fahrzeugsender und drahtloses Fahrzeugsendersystem
WO2004097749A1 (de) Sendevorrichtung eines zugangssystems mit einer anzahl von langwellenantennen
DE102006046288B3 (de) Verstärkereinrichtung mit einstellbarer Versorgungsspannung
DE102014201469A1 (de) Integrierte Schaltung für ein schlüsselloses Fernentriegelungssystem
EP1388204A1 (de) Antriebsaggregat
DE102004011927A1 (de) Sendevorrichtung eines Zugangssystems mit einer Anzahl von Langwellenantennen
EP1821405A1 (de) Verfahren zur Spannungsbegrenzung bei einem Transponder
DE10245242A1 (de) Verfahren zur Überstromerkennung eines elektrischen Antriebes
DE102016103141A1 (de) Neupartitionierung eines Chips, der eine SW-Steuerungsarchitektur trägt, für induktive Lasten
DE102019210566A1 (de) Vorrichtung und Verfahren zum Messen eines durch eine PWM-angesteuerte induktive Last fließenden Stromes
DE112018001945T5 (de) Gate-treiberschaltung für high-side-schalter
DE102017208187A1 (de) Elektronisches Modul sowie Kraftfahrzeug und Verfahren zum Begrenzen eines Eingangsstroms während eines Einschaltvorgangs des Moduls
DE112021004093T5 (de) Strombegrenzungstechnik für tiefsetzsteller
DE102017209473A1 (de) Verfahren zum Betreiben eines Elektro-Fahrzeugs
DE10251695A1 (de) Stromquellenschaltung zur Erzeugung eines rauscharmen Stroms
DE112018001948T5 (de) Steuerung der flankensteilheit für einen high-side-schalter
DE102007042370A1 (de) Schließsystem, insbesondere für ein Kraftfahrzeug

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REF Corresponds to

Ref document number: 112004001224

Country of ref document: DE

Date of ref document: 20060330

Kind code of ref document: P

REG Reference to national code

Ref country code: DE

Ref legal event code: 8629

122 Ep: pct application non-entry in european phase