WO2004082666A2 - Mssn-dispersion und verfahren zu ihrer herstellung - Google Patents

Mssn-dispersion und verfahren zu ihrer herstellung Download PDF

Info

Publication number
WO2004082666A2
WO2004082666A2 PCT/EP2004/001589 EP2004001589W WO2004082666A2 WO 2004082666 A2 WO2004082666 A2 WO 2004082666A2 EP 2004001589 W EP2004001589 W EP 2004001589W WO 2004082666 A2 WO2004082666 A2 WO 2004082666A2
Authority
WO
WIPO (PCT)
Prior art keywords
phase
nanoparticles
dispersion
active substance
active ingredient
Prior art date
Application number
PCT/EP2004/001589
Other languages
English (en)
French (fr)
Other versions
WO2004082666A3 (de
Inventor
Gerd Dahms
Holger Seidel
Original Assignee
Ifac Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ifac Gmbh & Co. Kg filed Critical Ifac Gmbh & Co. Kg
Priority to CA2519697A priority Critical patent/CA2519697C/en
Priority to US10/550,193 priority patent/US20060257334A1/en
Priority to AU2004222631A priority patent/AU2004222631B2/en
Priority to JP2006500036A priority patent/JP2006520750A/ja
Priority to EP04712492A priority patent/EP1605923A2/de
Publication of WO2004082666A2 publication Critical patent/WO2004082666A2/de
Publication of WO2004082666A3 publication Critical patent/WO2004082666A3/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the invention relates to a method for producing an aqueous active substance carrier dispersion, such a dispersion and medicaments, cosmetics or food additives containing the same.
  • the active substance carrier is membrane-structured solid nanoparticles (MSSN).
  • Solid lipid nanoparticles also known as SLN (solid lipid nanoparticles), have been developed in the past. They represent an alternative carrier system to emulsions and liposomes.
  • the nanoparticles can contain hydrophilic or hydrophobic active pharmaceutical ingredients and can be administered orally or parenterally. Nanoparticles with an average particle diameter in the range from 50 nm to 1 ⁇ m are usually used. In contrast to the known emulsions, a solid lipid is used as the matrix material.
  • lipids or lipids from physiological components such as glycerides from the body's own fatty acids
  • Emulsifiers or surfactants are usually used in the manufacture.
  • the production takes place by high pressure homogenization.
  • the lipid used as the matrix is melted and a pharmaceutical active ingredient is dissolved or dispersed in the melt.
  • the active substance-containing melt is usually dispersed with an aqueous surfactant solution at the same temperature with stirring.
  • the dispersion thus obtained is then homogenized in a high-pressure homogenizer, for example a piston-gap homogenizer, at pressures in the range from 200 to 1500 bar in the hot state.
  • An emulsion is formed, the lipid phase of which recrystallizes to solid lipid nanoparticles when cooled.
  • cold homogenization can be carried out, in which the active pharmaceutical ingredient is in turn introduced into a molten lipid phase.
  • the mixed phase obtained is then cooled and the solid is ground to a grain size in the range from 50 to 100 ⁇ m.
  • the lipid particles thus obtained are then dispersed in a cold surfactant solution, and the dispersion obtained is then homogenized under high pressure.
  • a method for producing SLN dispersions is described, for example, in EP-B-0 167 825.
  • the lipid nanopellets described there are used as a carrier system for pharmaceuticals for oral use.
  • the lipid nanopellets are produced by dispersing the melted lipid with water using a high-speed stirrer.
  • the desired particle size distribution is then set by an ultrasound treatment.
  • the stirring usually takes place at speeds in the range of 20,000 min '1.
  • the obtained particles have average particle diameters in the range of 100 to 1000 nm.
  • EP-B 0 605 497 describes drug carriers made of solid lipid particles (solid lipid nanospheres (SLN)).
  • the production is carried out by high pressure homogenization or high pressure dispersion at pressures from 500 to 1550 bar.
  • a gap homogenizer or a high-speed homogenizer, for example, are used as the high-pressure linearizer.
  • Predispersion is usually carried out using a rotor-stator disperser.
  • the object of the present invention is to provide a novel system of solid nanoparticles which are more loadable than known nanoparticles, allow a larger selection of active substance carriers and surfactants and can be present in dispersions in high concentrations, and a method for producing a solid nanoparticle dispersion , which avoids the disadvantages of the known methods and is inexpensive to carry out.
  • small particle diameters are to be obtained with little mechanical mixing effort.
  • novel solid-nanoparticle dispersions are to be provided which, like the nanoparticles, are particularly highly loadable, allow a wide range of active substance carriers and emulsifiers and allow surface modifications.
  • the object is achieved according to the invention by a method for producing an aqueous substance carrier dispersion which contains in particular membrane-structured solid nanoparticles in which solid active substance carrier particles based on wax, polymer or lipid are present with an average diameter in the range from 10 to 10,000 nm , which contain at least one pharmaceutical, cosmetic and / or food technology active ingredient, perfume or flavoring, by
  • step b) Mixing the active ingredient with the active ingredient carrier based on wax, polymer or lipid and at least one emulsifier, which leads in step b) to the formation of a lyotropic liquid-crystalline mixed phase, at a temperature above the melting or softening point of the active ingredient carrier, to form a phase B
  • phase B mechanical mixing of phase B with an aqueous phase A, which may contain an emulsifier, at a temperature above the melting or expansion point. point of the active ingredient carrier, the weight ratio of phase B to phase A being 1: 5 to 5: 1, without high-pressure homogenization, to form a preferably gel-like, lyotropic liquid-crystalline mixed phase,
  • aqueous phase which may contain an emulsifier, at a temperature of the aqueous phase which is below the melting or softening point of the active ingredient carrier, for example at least 5 ° C. below, preferably at least 15 ° C. below, below Stirring and without high pressure homogenization, to a desired final concentration of the dispersion.
  • aqueous active substance carrier dispersions in which solid active substance carrier particles based on lipids with an average diameter in the range from 10 to 1000 nm are present can be advantageously prepared if a lipid melt with an aqueous phase heated to the same temperature in a certain weight ratio of 1: 5 to 5: 1, is mixed.
  • the mixing can be achieved by conventional mechanical stirrers which have the stirring power of a household mixer (mixer) (or household kitchen stirrer). In the laboratory, for example, it was possible to achieve a sufficient stirring effect with a Braun® kitchen mixer that has a mixing head in the form of a two-bladed propeller with a total diameter of 50 mm. The mixing propeller was surrounded by a protective ring with a diameter of 63 mm. The maximum power consumption of the kitchen mixer was 350 W. It was the MR 550, Type 4189.
  • the mechanical mixing in stage b) and the stirring in stage c) are preferably carried out using stirrers which have a peripheral speed in the range from 1 to 20 ms, particularly preferably 1 to 3 m / s.
  • the shear effect of the stirrer preferably corresponds to the shear effect of a household kitchen stirrer or mixer, as is customary in the trade and has been described above.
  • the lyotropic liquid-crystalline microemulsion obtained when phase B is mixed with aqueous phase A can be understood as a system of two interpenetrating networks, so that the microemulsion is shows phase behavior.
  • the microemulsion has a low shear viscosity.
  • the weight ratio of phase B to phase A in stage b) is preferably 1: 2 to 2: 1, particularly preferably 1: 1.5 to 1.5: 1.
  • membrane-structured solid nanoparticles with an average particle diameter in the range from 10 to 10,000 nm, which are solid at 25 ° C. and have a combination of active ingredient carrier particles and emulsifiers in such a way that membranes are formed which form the entire Penetrate nanoparticles so that emulsifiers are present inside and on the surface of the nanoparticles.
  • the membranes are preferably formed in a lyotropic liquid-crystalline mixed phase which is itself emulsifying in the presence of water.
  • emulsifiers are present in the interior of the particles in the nanoparticles according to the invention.
  • the entire particles are made up of a membrane or membranes, while in SLN a solid core of the active ingredient carrier is surrounded by an emulsifier layer.
  • the nanoparticles thus have a uniform structure made up of membrane structures, regardless of the observation scale.
  • the membrane-structured solid nanoparticles (MSSN) can be produced according to the invention by the method described above. Compared to the SLN, they are characterized by a membrane structure that penetrates the entire particle. This means that there is a much larger membrane area in which the active ingredient can be incorporated.
  • large amounts of pharmaceutical, cosmetic and / or food technology active ingredients can thus be introduced into the membranes or into the nanoparticles.
  • amounts of up to 70% by weight, preferably up to 60% by weight, based on the loaded nanoparticles can be introduced.
  • the active ingredients are not only stored in the surface area of the nanoparticles in the membranes, but also throughout the particles. This enables a very targeted release of active ingredients, even over a longer period of time.
  • the nanoparticles or lipid particles thus represent a membrane that penetrates the entire particle. This mutual penetration is characteristic of the MSSN according to the invention.
  • Membrane structuring can be achieved by known liquid-crystalline systems, such as lamellar, hexagonal or cubic liquid-crystalline systems.
  • the liquid-crystalline mixed phase is usually anisotropic and therefore cloudy or opaque.
  • the membrane-structured or lyotropic liquid-crystalline mixed phase has self-emulsifying properties in the presence of water, i.e. an emulsification process takes place spontaneously at the interface with water. Even with a high lipid load, the membrane-structured or lyotropic liquid-crystalline mixed phase shows electrical conductivity.
  • a liquid-crystalline gel state is run through before or during the dilution with water.
  • the dispersions obtained in the manufacturing process are free flowing in a wide weight range of the MSSN phase. For example, dispersions with up to 60% by weight MSSN phase, based on the entire dispersion, are free-flowing. Free-flowing dispersions with, for example, 40 to 60% by weight MSSN phase can thus be produced.
  • the MSSN can be loaded with a wide variety of active ingredients, as explained in more detail below.
  • the maximum achievable degree of loading depends, among other things. from the melting point of the loading substance (active substance). If the active substance has a high solubility in the active substance carrier, high degrees of loading can be achieved.
  • the MSSN according to the invention have a number of advantages. Active substances can be released in a targeted and delayed manner. Both the particle size and the release behavior can be controlled during production.
  • the penetration of the active substance into the skin can be increased by the "plaster effect".
  • the skin is swollen, the pores open and the active substance can be infiltrated. With the MSSN it is possible to prevent transepidermal water loss to diminish.
  • a large number of emulsifiers or surfactants can be used to produce the MSSN. In principle (almost) all conventional surfactants can be used in part in a suitable combination.
  • the charge ratios and surface structures of the active ingredient carrier can be changed in a targeted manner, thus optimizing its adsorption behavior.
  • the emulsifier concentration can be controlled down to the lowest concentrations.
  • the MSSN dispersions according to the invention are stable on storage and flowable very well even at high nanoparticle concentrations.
  • Hydrocoloids can also be used to stabilize or modify the interfaces.
  • the solid form of the particles and the inclusion of the active substances within the particles protect the enclosed active substances from oxidative degradation, since the entry of oxygen is greatly reduced.
  • the MSSN according to the invention can interact with membrane-active emulsion droplets under certain circumstances by mass transfer via the aqueous phase. This means a reversal of the Ostwald ripening principle. This interaction can be used to advantage for the application properties.
  • the selection of surfactants and usable wax or lipid structures is greatly expanded. Surface modifications are also possible.
  • the MSSN are easy to manufacture and highly loadable. Regardless of the active ingredient carrier, the properties can be adapted to the respective requirements. Different active substances can, for example, also be introduced into the active substance carrier phase via an alcoholic, for example ethanolic solution or phase and can be specifically stored.
  • both hydrophobic, amphiphilic and hydrophilic active substances can be incorporated at the same time, since the membrane structures have both hydrophilic and hydrophobic regions.
  • active ingredient carriers suitable emulsifiers which form lamellar fractures, suitable pharmaceutical, cosmetic and food technology active ingredients and further possible ingredients of the aqueous active ingredient dispersion are explained in more detail below.
  • Particles based on lipids are preferably used as drug carrier particles. These include lipids and lipid-like structures. Examples of suitable lipids are the di- and triglycerides of the saturated straight-chain fatty acids with 12 to 30 carbon atoms, such as lauric acid, myristic acid, palmitic acid, stearic acid, arachic acid, behenic acid, lignoceric acid, cerotic acid, melesic acid, and their esters with other saturated fatty alcohols 4 to 22, preferably 12 to 22 carbon atoms such as lauryl alcohol, myristyl alcohol, cetyl alcohol, stearyl alcohol, arachidyl alcohol, behenyl alcohol, saturated wax alcohols with 24 to 30 carbon atoms such as lignoceryl alcohol, cetyl alcohol, cetearyl alcohol, myristyl alcohol.
  • suitable lipids are the di- and triglycerides of the saturated straight-chain fatty acids with 12 to 30 carbon atoms, such as la
  • Di-, triglycerides, fatty alcohols, their esters or ethers, waxes, lipid peptides or mixtures thereof are preferred.
  • synthetic di- and triglycerides are used as individual substances or in the form of a mixture, for example in the form of a hard fat.
  • Glycerol trifatty acid esters are, for example, glycerol trilaurate, glycerol trimyristate, glycerol tripalmitate, glycerol tristearate or glycerol tribehenate.
  • Waxes which can be used according to the invention are natural waxes, such as vegetable waxes, animal waxes, mineral waxes and petrochemical waxes, chemically modified waxes, such as hard waxes, and synthetic waxes.
  • Suitable waxes can be referred to Römpp Chemielexikon, 9th edition, keyword "waxes”.
  • Suitable waxes are, for example, bees, carnauba, candelilla wax, paraffin waxes, isoparaffin waxes, rice wax.
  • Suitable waxes are, for example, cetyl palmitate and cera alba ( bleached wax, DA 9)
  • Suitable esters are also derived, for example, from branched-chain fatty acids and fatty alcohols, gly- cerin, sorbitan, propylene glycol, methylglycoside, citric acid, tartaric acid, mellic acid. Ceramides, phythosphingosides, cholesterol and phythosterols can also be used.
  • Polymers such as silicone waxes and PVP derivatives can also be used. These are, for example, alkyl-substituted PVP derivatives, for example tricontanyl-PVP, PVP-hexadecene copolymer, PVP eicose copolymer. These can be used, for example, alone or as admixtures with the lipids as carrier materials.
  • liquid, semi-solid and / or solid urethane derivatives such as those sold by ALZO International Inc.
  • fatty alcohol (branched) dimer / IPDI fatty alcohol (linear) dimer / IPDI, ethoxylated fatty alcohol (shown) dimer / IPDI, ethoxylated fatty alcohol (linear) dimer / IPDI, dimethiconol / EPDI copolymers
  • triglyceride ester (hydrogenated) / _ PDI copolymers ethoxylated triglyceride esters (hydrogenated) / IPDI copolymers, aminated ethoxylated and non-ethoxylated triglyceride esters / IPDI copolymers ,
  • the amount of the active ingredient carrier particles, based on the total aqueous active ingredient carrier dispersion, is preferably 0.1 to 70% by weight, particularly preferably 1 to 60% by weight, for example 0.1 to 30 or 1 to 10% by weight. %.
  • dispersion stabilizers can be used. For example, they can be used in amounts of 0.01 to 20% by weight, preferably 0.05 to 5% by weight.
  • suitable substances are surfactants, in particular alcyl lactylates such as stearoyl lactylate, isethinonates, alkyl sulfates such as sodium cetyl sulfate, diarnide ether sulfates, alkyl polyglycosides, phosphoric acid esters such as sodium isotridecyl phosphate, taurates, sulfosuccinate, alkyl polyglycosides, sodium lauryl acrylate, alkyl sulfate aminate such as poloxamers and poloxamines), polyglycerol ethers and esters, lecithins of various origins (for example egg or soy lecithin), chemically modified lecithins (for example hydrogenated lecithin) as well as phospholipids and sphingolipids, mixtures of lecithins with phospholipids, sterols (for example Cholesterol and cholesterol derivatives and stigmasterol), esters
  • viscosity-increasing substances such as Cellulose ethers and esters (for example methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, sodium carboxymethyl cellulose), polyvinyl derivatives such as polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl acetate, alginates, polyacrylates (for example Carbopol), xanthans and pectins.
  • Cellulose ethers and esters for example methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, sodium carboxymethyl cellulose
  • polyvinyl derivatives such as polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl acetate, alginates, polyacrylates (for example Carbopol), xanthans and pectins.
  • aqueous solutions or mixtures of water with water-miscible liquids such as glycerol or polyethylene glycol can be used as the aqueous phase A.
  • Further additional components for the aqueous phase are, for example, mannose, glucose, fructose, xylose, trehalose, mannitol, sorbitol, xylitol or other polyols such as polyethylene glycol and electrolytes such as sodium chloride. These additional components can be used in an amount of 1 to 60% by weight, for example 1 to 30% by weight, based on the aqueous phase A.
  • substances which increase the viscosity or charge carriers can also be used, as described in EP-B-0 605 497.
  • thickeners which can be used are polysaccharides, polyalkyl acrylates, polyalkylcianoacrylates, polyalkylvinylpyrrolidones, acrylic polymers, polylactic acids or polylactides.
  • Natural or synthetic products can be used as emulsifiers, which form lyotropic LC structures or lamellar structures.
  • surfactant mixtures is also possible.
  • suitable emulsifiers are the physiological bile salts such as sodium cholate, sodium dehydrocholate, sodium deoxycholate, sodium glycolate, sodium taurocholate.
  • Animal and vegetable phospholipids such as lecithins with their hydrogenated forms and polypeptides such as gelatin with their modified forms can also be used.
  • Suitable synthetic surface-active substances are the salts of sulfosuccinic acid esters, polyoxyethylene acid betan esters, acid betan esters and sorbitan ethers, polyoxyethylene fatty alcohol ethers, polyoxyethylene stearic acid esters and corresponding mixture condensates of polyoxyethylene methpolyoxypropylene ethers, ethoxylated saturated glycerides and partial fatty acid glycerides.
  • suitable surfactants are Biobase ® EP and Ceralution ® H.
  • emulsifiers are also glycerol esters, polyglycerol esters, sorbitan esters, sorbitol esters, fatty alcohols, propylene glycol esters, alkyl glucose esters, sugar esters, lecithin, silicone copolymers, wool wax and mixtures or derivatives thereof.
  • Glycerol esters, polyglycerol esters, alkoxylates and fatty alcohols and iso alcohols can be derived, for example, from castor fatty acid, 12-hydroxystearic acid, isostearic acid, oleic acid, linoleic acid, linolenic acid, stearic acid, myristic acid, lauric acid and capric acid.
  • succinates a ide or ethanolamides of the fatty acids can also be present.
  • Suitable fatty acid alkoxylates are, in particular, the ethoxylates, propoxylates or mixed ethoxylates / propoxylates.
  • Silicone surfactants such as silicone copolyols and silicone betaines can also be used.
  • emulsifier systems whose mixtures of co-emulsifiers (gel network formers such as fatty alcohols, fatty acids, sorbitan esters, etc.) and special surfactants form myellin structures at the interface with water.
  • Suitable surfactants include, for example, polyglycerol-10-tricaprylate, polyglycerol-10-trilaurate, polyglycerol-2-oleate, sodium lauroyl lactylate, sodium cocoyl lactylate and glyceryl cocoate citrate lactylate.
  • Balanced complex emulsifiers can also preferably be used.
  • the optimal ratio of hydrophilic surfactant to co-emulsifier for the production of MSSN is preferably higher than the optimal ratio for gel network formation.
  • Waxes / polymers / lipids and emulsifiers are preferably used in a weight ratio of 50: 1 to 2: 1, preferably 15: 1 to 30: 1.
  • the pharmaceutical, cosmetic and / or food technology active ingredients, based on phase B are preferably used in an amount of 0.1 to 70% by weight, particularly preferably 1 to 10% by weight.
  • active pharmaceutical ingredients that can be used, for example, in free form, as a salt, ester or ether:
  • Analgesics / anti-rheumatic drugs such as morphine, copdein, piritamide, fentanyl and fentanyl derivatives, leyomethadone, tramadol, diclofenac, ibuprofen, üidometacin, naproxen, piroxicam, penicillamine;
  • Antiallergics such as pheniramine, dimetinden, terfenadine, asternizole, Loratidine, doxylamine, meclozin, bamipin, clemastine;
  • Antibiotics / chemotherapeutics such as polypeptide antibiotics such as colistin, polymyxin B, teicplanin, vancomycin;
  • Antimalarials such as quinine, halofantrine, mefloquine, chloroquine, antivirals such as ganciclovir, foscarnet, zidovudine, aciclovir and others such as dap
  • Immune sera such as botulism antitoxin, diphtheria, gas fire, snake venom, scorpion venom, vaccines such as influenza, tuberculosis cholera, diphtheria, hepatitis types, TBE, rubella, hemophilus influenzae, measles, Neisseria, mumps, poliomyelitis, tetutus, tetanus, tetanus Sex hormones and their inhibitors, such as anabolic steroids, androgens, antiandrogens, progestogens, estrogens, antiestrogens (tamoxifen etc.); Cystostatics and metastasis inhibitors, such as alkylating agents such as nimustine, melphalan, carmustine, lomustine, cyclophosphamide, ifosfamide, trofosfamide, chlorambucil, busulfan, treosulfan, predninmustine, thi
  • Complexes of minor group elements such as carboplatin, cisplatin and metallocene compounds such as titanocene dichloride, amsacrine, dacarbazine, estramustine, etoposide, hydroxycarbamide, mitoxynthrone, procarbazine, temposide, alkylamidophosphol, alkylamidophosphol (described in JM Zeidler, F. Emling, W. Zimmermann and HJ Roth, Archiv der Pharmazie, 324 (1991), 687), ether lipids such as hexadecylphosphocholine, umofosin and analogs, described in R. Zeisig, D. Arndt and H. Brachwitz, Pharmazie 45 (1990), 809 to 818.
  • minor group elements for example Ti, Zr, V, Nb, Ta, Mo, W, Pt
  • Suitable active ingredients are, for example, dichlorophenac, ibuprofen, acetylsalicylic acid, salicylic acid, erythromycin, ketoprofen, cortisone and glucocorticoids.
  • cosmetic active ingredients that are particularly sensitive to oxidation or hydrolysis, such as polyphenols.
  • Catechins such as epicatechin, epicatechin-3-gallate, epigallocatechin, epigallocatechin-3-gallate
  • flavonoids such as luteolin, apigenin, rutin, quercitin, fisetin, kaempherol, rhametin
  • isoflavones such as genistein, glycine, daidzein
  • Prunetin coumarins (such as daphnetin, umbelliferon), Emodin, Resveratrol, Oregonin.
  • Vitamins such as retinol, tocopherol, ascorbic acid, riboflavin, pyridoxine are suitable.
  • the active ingredients are light protection filters. These can be in the form of organic light protection filters at room temperature (25 ° C) in liquid or solid form. Suitable light protection filters (UV filters) are, for example, compounds based on benzophenone, diphenyl cyanoacrylate or p-aminobenzoic acid.
  • organic light protection filters are octyl triazone, avobenzone, octyl methoxycinamate, octyl salicylate, benzotriazole and triazine.
  • anti-dandruff active ingredients are used as active ingredients, as are customary in cosmetic or pharmaceutical
  • Formulations are available.
  • An example of this is piroctone olamine (l-hydroxy-4-methyl-6- (2 5 4 3 4-dimethylpentyl) -2 (1H) -pyridone; preferably in combination with 2-
  • oxidation-sensitive active ingredients such as, for example, come as active ingredients
  • organic dyes are used as active substances or instead of active substances.
  • Suitable active ingredients are insect repellants and in the field of food technology, odorants and flavors. Suitable odorants and flavors are known to the person skilled in the art.
  • pigment-like inorganic solids such as TiO 2 and ZnO can also be incorporated into the active substance carrier.
  • a unilamellar or multilamellar system or a lyotropic liquid-crystalline mixed phase can be formed by the emulsifiers.
  • the average diameter of the active ingredient particles is preferably 50 to 1000 nm, particularly preferably 100 to 500 nm.
  • the invention also relates to an aqueous active substance carrier dispersion which can be obtained by the above process.
  • the invention also relates to a method for producing a multiple dispersion by mixing a dispersion which has been prepared as described above with a further polyol or oil phase.
  • the invention also relates to a correspondingly produced multiple dispersion. Multiple emulsions are described, for example, in DE-A-43 41 113.
  • the invention further relates to pharmaceuticals, cosmetics or food additives which contain a dispersion or multiple dispersion as described above.
  • the active substance carrier dispersions are prepared with the exclusion of the use of halogenated organic solvents.
  • the medicinal products can be administered by intravenous administration, intramuscular administration, intraartricular administration, intracavital administration, subcutaneous administration, intradermal administration, enteral administration, pulmonary administration and topical or ophthalmic application.
  • the aqueous active substance carrier dispersion was prepared by separately heating phases A and B described below to 60 ° C. Phase B was then stirred into phase A, and the mixture was homogenized using a Braun kitchen mixer (maximum power consumption 350 W) with a stirring blade diameter of 50 mm until the droplet size was below 350 nm. Then at room temperature phase C, the room temperature, added to the hot emulsion. This was again stirred with a Braun kitchen mixer.

Abstract

Membran-strukturierte Solid-Nanoparticles mit einem mittleren Teilchendurchmesser im Bereich von 10 bis 10.000 nm, die bei 25 °C fest sind und eine Kombination aus Wirk­stoffträgerteilchen und Emulgatoren derart aufweisen, dass Membranen gebildet werden, die die gesamten Nanoparticles durchdringen, so dass im Inneren und an der Oberfläche der Nanoparticles Emulgatoren vorliegen, werden beschrieben. Die Herstellung einer wässrigen Stoffträger-Dispersion, in der feste Wirkstoffträgerteil­chen auf Wachs-, Polymer- oder Lipidbasis mit einem mittleren Durchmesser im Bereich von 10 bis 10000 nm vorliegen, die mindestens einen pharmazeutischen, kosmetischen und/oder lebensmitteltechnologischen Wirkstoff enthalten, erfolgt durch a)Vermischen des Wirkstoffs mit dem Wirkstoffträger auf Wachs-, Polymer­- oder Lipidbasis und mindestens einem Emulgator, der in Stufe b) zur Aus­bildung einer lyotropen flüssigkristallinen Mischphase führt, bei einer Tem­peratur oberhalb des Schmelz- oder Erweichungspunktes des Wirkstoffträ­gers, zur Ausbildung einer Phase B; b) mechanisches Vermischen der Phase B mit einer wässrigen Phase A, die ei­nen Emulgator enthalten kann, bei einer Temperatur oberhalb des Schmelz- ­oder Erweichungspunktes des Wirkstoffträgers, wobei das Gewichtsverhält­nis von Phase B zu Phase A 1 : 5 bis 5 : 1 beträgt, ohne Hochdruckhomoge­nisierung, zur Ausbildung einer lyotropen flüssigkristallinen Mischphase; c) Verdünnen der Mischphase mit einer wässrigen Phase, die einen Emulgator enthalten kann, bei einer Temperatur der wässrigen Phase, die unter dem Schmelz- oder Erweichungspunkt des Wirkstoffträgers liegt, unter Rühren und ohne Hochdruckhomogenisierung, auf eine gewünschte Endkonzentra­tion der Dispersion.

Description

MSSN-Dispersion und Verfahren zu ihrer Herstellung
Die Erfindung betrifft ein Verfahren zur Herstellung einer wässrigen Wirkstoffträger- Dispersion, eine derartige Dispersion und diese enthaltende Arzneimittel, Kosmetika oder Lebensmitteladditive. Beim Wirkstoffträger handelt es sich um Membran-Strukturierte- Solid-Nanoparticles (MSSN).
Pharmazeutische, kosmetische und/oder lebensmitteltechnologische Wirkstoffe werden häufig in Wirkstoffträgern verkapsuliert, um eine gezielte Freisetzung des Wirkstoffes oder dessen Schutz vor chemischer Zersetzung zu erzielen. Der Wirkstoffträger kann dabei an die jeweilige Anwendung angepasst werden und erlaubt eine geeignete Dosierung und Freisetzung des Wirkstoffs. In der Vergangenheit wurden feste Lipidnanopartikel, die auch als SLN (Solid-Lipid-Nanoparticles) bezeichnet werden, entwickelt. Sie stellen ein alternatives Carriersystem zu Emulsionen und Liposomen dar. Die Nanopartikel können hydrophile oder hydrophobe pharmazeutische Wirkstoffe enthalten und können oral oder parenteral verabreicht werden. Üblicherweise werden dabei Nanopartikel mit einem mittleren Teilchendurchmesser im Bereich von 50 nm bis 1 μm eingesetzt. Als Matrixmaterial wird im Gegensatz zu den bekannten Emulsionen ein festes Lipid eingesetzt. Zur Gewährleistung einer hohen Bioakzeptanz und guter in-vivo-Abbaubarkeit werden überwiegen physiologisch verträgliche Lipide oder Lipide aus physiologischen Komponenten wie Gly- ceride aus körpereigenen Fettsäuren verwendet. Bei der Herstellung werden üblicherweise Emulgatoren oder Tenside mitverwendet. Die Herstellung erfolgt durch Hochdruckhomogenisierung. Dabei wird das als Matrix verwendete Lipid aufgeschmolzen, und ein pharmazeutischer Wirkstoff wird in der Schmelze gelöst oder dispergiert. Üblicherweise wird die wirkstoffhaltige Schmelze mit einer wässrigen Tensidlösung bei gleicher Temperatur unter Rühren dispergiert. Die so erhaltene Dispersion wird anschließend in einem Hochdruckhomogenisator, beispielsweise einem Kolben-Spalt-Homogenisator bei Drücken im Bereich von 200 bis 1500 bar im heißen Zustand homogenisiert. Es entsteht eine Emulsion, deren Lipidphase beim Erkalten zu festen Lipidnanopartikeln rekristallisiert. Alternativ kann eine Kalthomogenisierung durchgeführt werden, bei der der pharmazeutische Wirkstoff wiederum in eine geschmolzene Lipidphase eingebracht wird. Die erhaltene Mischphase wird danach abgekühlt, und der Feststoff wird auf eine Korngröße im Bereich von 50 bis 100 μm vermählen. Die so erhaltenen Lipidteilchen werden anschließend in einer kalten Tensidlösung dispergiert, und die erhaltene Dispersion wird anschließend hochdruckhomogenisiert.
Ein Verfahren zur Herstellung von SLN-Dispersionen ist beispielsweise in der EP-B-0 167 825 beschrieben. Die dort beschriebenen Lipidnanopellets werden als Trägersystem für Arzneimittel zur peroralen Anwendung eingesetzt. Die Herstellung der Lipidnanopellets erfolgt durch Dispergieren des geschmolzenen Lipids mit Wasser mit einem hochtourigen Rührer. Anschließend wird durch eine Ultraschallbehandlung die gewünschte Teilchengrößenverteilung eingestellt. Das Rühren erfolgt in der Regel mit Drehzahlen im Bereich von 20000 min"1. Die erhaltenen Teilchen weisen mittlere Teilchendurchmesser im Bereich von 100 bis 1000 nm auf.
In der EP-B 0 605 497 sind Arzneistoffträger aus festen Lipidteilchen (feste Lipidna- nosphären (SLN)) beschrieben. Die Herstellung erfolgt durch Hochdruckhomogenisierang oder Hochdruckdispergierung bei Drücken von 500 bis 1550 bar. Als Hochdruckliomoge- nisator werden beispielsweise ein Spalthomogenisator oder ein Hochgeschwindigkeitsho- mogenisator eingesetzt. Eine Vordispergierung wird in der Regel mit einem Rotor-Stator- Dispergierer durchgeführt.
Ein ähnliches Verfahren ist in der US 5,885,486 beschrieben. Kolloidal verteilte feste Li- pidteilchen werden durch Hochdruckhomogenisierang einer Lipidschmelze mit einer wässrigen Phase hergestellt. Es wird wiederum mit Drücken von 500 bar oder mehr gearbeitet.
Einen Überblick über die Verwendung von festen Lipidnanoteilchen als Carrier für pharmazeutische und kosmetische Wirkstoffe findet sich in J. Microencapsulation, 1999, Vol. 16, No. 6, Seiten 751 bis 767. Es wird insbesondere beschrieben, wie Vitamin E in SLN- Systeme eingebracht wird. Es wird beschrieben, dass durch die Einbringung in feste Lipidnanoteilchen eine verbesserte Penetration und Wirkung des Vitamin E auf der Haut erreicht wird.
In J. Cosmet. Sei., 52, Seiten 313 bis 324 werden die Occlusionswirkungen von festen Lipidnanoteilchen beschrieben. Es wird insbesondere die Wirkung der Hautbefeuchtung untersucht. Eine SLN-Formulierung, die 40 % Cetylpalmitat und 5 % Tensid in Wasser ent- hält, wurde durch Hochgeschwindigkeitsrühren durchgeführt, siehe Formulierung CPe in Tabelle I. Es wurde ein mittlerer Teilchendurchmesser von 3 μm gefunden, siehe Tabelle π.
Die Herstellung von festen Lipid-Nanoteilchen mit geringem mittlerem Teilchendurchmesser gemäß dem Stand der Technik ist aufwendig, da in der Regel Hochdruckhomogenisatoren eingesetzt werden müssen. Durch bloßes Rühren bei hoher Umdrehungszahl werden nur relativ große mittlere Teilchendurchmesser von 3 μm erreicht. Die Beladbarkeit der Lipidteilchen ist eingeschränkt, und die Morphologie der Teilchen ist nicht immer gut zu kontrollieren. Gezielte Oberflächenmodifikationen sind nur schwer herbeizuführen.
Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines neuartigen Systems von Solid Nanoparticles, die gegenüber bekannten Nanoparticles höher beladbar sind, eine größere Auswahl an Wirkstoffträgern und Tensiden erlauben und in hohen Konzentrationen in Dispersionen vorliegen können, sowie eines Verfahrens zur Herstellung einer Solid- Nanoparticle-Dispersion, das die Nachteile der bekannten Verfahren vermeidet und unaufwendig durchführbar ist. Es sollen insbesondere kleine Teilchendurchmesser bei geringem mechanischem Vermischungsaufwand erhalten werden. Zudem sollen neuartige So- lid-Nanoparticle-Dispersionen bereitgestellt werden, die - wie die Nanoparticles - insbe- sondere hoch beladbar sind, eine große Bandbreite an Wirkstoffträgern und Emulgatoren zulassen und Oberflächenmodifikationen erlauben.
Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Herstellung einer wässrigen Stoffträger-Dispersion, die insbesondere membran-strakturierte Solid-Nanoparticles enthält, in der feste Wirkstofftragerteilchen auf Wachs-, Polymer- oder Lipidbasis mit einem mittleren Durchmesser im Bereich von 10 bis 10000 nm vorliegen, die mindestens einen pharmazeutischen, kosmetischen und/oder lebensmitteltechnologischen Wirkstoff, Parfüm oder Aromenstoff enthalten, durch
a) Vermischen des Wirkstoffs mit dem Wirkstoffträger auf Wachs-, Polymer- oder Lipidbasis und mindestens einem Emulgator, der in Stufe b) zur Ausbildung einer lyotropen flüssigkristallinen Mischphase führt, bei einer Temperatur oberhalb des Schmelz- oder Erweichungspunktes des Wirkstofftragers, zur Ausbildung einer Phase B,
b) mechanisches Vermischen der Phase B mit einer wässrigen Phase A, die einen E- mulgator enthalten kann, bei einer Temperatur oberhalb des Schmelz- oder Erwei- chungspunktes des Wirkstofftragers, wobei das Gewichtsverhältnis von Phase B zu Phase A 1 : 5 bis 5 : 1 beträgt, ohne Hochdruckhomogenisierang, zur Ausbildung einer, vorzugsweise gelartigen, lyotropen flüssigkristallinen Mischphase,
c) Verdünnen der Mischphase mit einer wässrigen Phase, die einen Emulgator enthalten kann, bei einer Temperatur der wässrigen Phase, die unter dem Schmelz- oder Erweichungspunkt des Wirkstofftragers liegt, zum Beispiel mindestens 5 °C darunter, vorzugsweise mindestens 15 °C darunter, unter Rühren und ohne Hochdruckhomogenisierang, auf eine gewünschte Endkonzentration der Dispersion.
Es wurde erfϊndungsgemäß gefunden, dass wässrige Wirkstoffträger-Dispersionen, in der feste Wirkstofftragerteilchen auf Lipidbasis mit einem mittleren Durchmesser im Bereich von 10 bis 1000 nm vorliegen, vorteilhaft hergestellt werden können, wenn eine Li- pidschmelze mit einer auf die gleiche Temperatur aufgeheizten wässrigen Phase in einem bestimmten Gewichtsverhältnis von 1 : 5 bis 5 : 1, vermischt wird. Die Mischung kann dabei durch übliche mechanische Rührer erreicht werden, die die Rührleistung eines Haushaltsmischers (Mixers) (oder Haushaltsküchenrührers) aufweisen. Im Laborbetrieb war es beispielsweise möglich, mit einem Braun®-Küchenmixer, der einen Mischkopf in Form eines zweiflügligen Propellers mit einem Gesamtdurchmesser von 50 mm aufweist, eine ausreichende Rührwirkung zu erreichen. Der Mischpropeller war von einem Schutzring mit einem Durchmesser von 63 mm umgeben. Die maximale Leistungsaufnahme des Küchenmixers betrug 350 W. Es handelte sich um das Modell MR 550, Type 4189.
Das mechanische Vermischen in Stufe b) und das Rühren in Stufe c) erfolgt vorzugsweise mit Rührern die eine Umfangsgeschwindigkeit im Bereich von 1 bis 20 m s, besonders bevorzugt 1 bis 3 m/s aufweisen.
Vorzugsweise entspricht die Scherwirkung des Rührers dabei der Scherwirkung eines Haushaltsküchenrührers oder Mixers, wie er handelsüblich ist und vorstehend beschrieben wurde.
Durch Einhalten des Mengenverhältnisses der Phasen A und B kann selbst mit dem Eintrag geringer Scherenergien eine sehr starke Mischwirkung erreicht werden.
Ohne an eine Theorie gebunden zu sein, kann die beim Vermischen der Phase B mit der wässrigen Phase A erhaltene lyotrope flüssigkristalline Microemulsion als ein System zweier interpenetrierender Netzwerke verstanden werden, so dass die Microemulsion ein- phasiges Verhalten zeigt. Die Microemulsion weist eine niedrige Viskosität beim Scheren auf.
Das Gewichtsverhältnis von Phase B zu Phase A in Stufe b) beträgt vorzugsweise 1 : 2 bis 2 : 1, besonders bevorzugt 1 : 1,5 bis 1,5 : 1.
Die Aufgabe wird ferner erfindungsgemäß gelöst durch Membran-strukturierte Solid- Nanoparticles mit einem mittleren Teilchendurchmesser im Bereich von 10 bis 10.000 nm, die bei 25 °C fest sind und eine Kombination aus Wirkstofftragerteilchen und Emulgatoren derart aufweisen, dass Membranen gebildet werden, die die gesamten Nanoparticles durchdringen, so dass im Inneren und an der Oberfläche der Nanoparticles Emulgatoren vorliegen.
Vorzugsweise liegen über den Querschnitt der Nanoparticles im Wesentlichen keine Berei- ehe ohne Membranstruktur vor. Die Membranen werden vorzugsweise in einer lyotropen flüssigkristallinen Mischphase ausgebildet, die in Gegenwart von Wasser selbst emulgie- rend ist.
Im Unterschied zu den bekannten SLN liegen in den erfindungsgemäßen Nanoparticles im Inneren der Teilchen Emulgatoren vor. Die gesamten Teilchen sind aus einer Membran bzw. Membranen aufgebaut, während in SLN ein fester Kern des Wirkstofftragers mit einer Emulgatorschicht umgeben ist. Damit weisen die Nanoparticles im Wesentlichen unabhängig vom Betrachtungsmaßstab einen gleichförmigen Aufbau aus Membranstrukturen auf. Die Membran-strukturierten Solid-Nanoparticles (MSSN) können erfindungsgemäß nach dem vorstehend beschriebenen Verfahren hergestellt werden. Gegenüber den SLN zeichnen sie sich durch eine Membranstrakturierang aus, die die gesamten Teilchen durchsetzt. Damit liegt eine wesentlich größere Membranfläche vor, in die Wirkstoff eingelagert werden können. Damit können erfindungsgemäß große Mengen an pharmazeutischen, kosmetischen und/oder lebensmitteltechnologischen Wirkstoffen in die Membranen bzw. in die Nanoparticles eingebracht werden. Es können beispielsweise Mengen von bis zu 70 Gew.-%, vorzugsweise bis zu 60 Gew.-%, bezogen auf die beladenen Nanoparticles, eingebracht werden. Dabei werden die Wirkstoffe nicht nur im oberflächlichen Bereich der Nanoparticles in den Membranen gespeichert, sondern durch die ganzen Teilchen hindurch. Hierdurch ist eine ganz gezielte Freisetzung von Wirkstoffen, auch über einen län- geren Zeitraum hin, möglich. Die Nanoparticles oder Lipidteilchen stellen somit insgesamt eine Membran dar, die die gesamten Teilchen durchdringt. Diese gegenseitige Durchdringung ist charakteristisch für die erfindungsgemäßen MSSN. Die Membranstrakturierung kann durch bekannte liquid-kristalline Systeme, wie lamellare, hexagonale oder kubische liquid-kristalline Systeme erreicht werden.
Die liquid-kristalline Mischphase ist zumeist anisotrop und damit trüb oder opak.
Die membranstrakturierte bzw. lyotrope liquid-kristalline Mischphase besitzt in Gegenwart von Wasser selbstemulgierende Eigenschaften, d.h. an der Grenzfläche zu Wasser findet spontan ein Emulgierprozess statt. Auch bei hoher Lipidbeladung zeigt die membranstrak- turierte bzw. lyotrope liquid-kristalline Mischphase eine elektrische Leitfähigkeit. Bei der Herstellung nach dem vorstehend beschriebenen Verfahren wird vor oder während des Verdünnens mit Wasser ein liquid-kristalliner Gelzustand durchlaufen. Die im Herstellungsverfahren erhaltenen Dispersionen sind in einem weiten Gewichtsbereich der MSSN- Phase frei fließend. Beispielsweise sind Dispersionen mit bis zu 60 Gew.-% MSSN-Phase, bezogen auf die gesamte Dispersion, frei fließend. Somit können frei fließende Dispersionen mit beispielsweise 40 bis 60 Gew.-% MSSN-Phase hergestellt werden.
Die MSSN können mit unterschiedlichsten Wirkstoffen beladen werden, wie sie nachstehend näher erläutert sind. Der maximal erreichbare Beladungsgrad hängt u.a. vom Schmelzpunkt des Beladungsstoffs (Wirkstoffs) ab. Sofern der Wirkstoff eine hohe Löslichkeit in dem Wirkstoffträger hat, können hohe Beladungsgrade erreicht werden.
Die erfindungsgemäßen MSSN weisen eine Vielzahl von Vorzügen auf. Wirkstoffe können gezielt und retardiert freigesetzt werden. Bei der Herstellung können sowohl die Teil- chengröße wie auch das Freisetzungsverhalten gesteuert werden.
Beim Aufbringen auf die Haut kann die Penetration des Aktivstoffes in die Haut durch den „Pflastereffekt" erhöht werden. Dabei wird die Haut aufgequollen, wobei sich die Poren öffnen und die Einschleusung des Wirkstoffs möglich ist. Mit den MSSN ist es möglich, den transepidermalen Wasserverlust zu vermindern.
Zur Herstellung der MSSN kann eine Vielzahl von Emulgatoren bzw. Tensiden eingesetzt werden. Im Prinzip können (fast) alle herkömmlichen Tenside zum Teil in geeigneter Kombination eingesetzt werden.
Ferner ist es erfindungsgemäß möglich, in den MSSN auch eine Oberflächenmodifikation mit Hilfe von Tensiden zu erreichen. Durch Mitverwendung oder nachträgliches Aufbrin- gen von anionischen, kationischen, amphoteren Tensiden oder weiteren Tensiden können die Ladungsverhältnisse und Oberflächenstrukturen des Wirkstofftragers gezielt verändert und somit dessen Adsorptionsverhalten optimiert werden.
Insbesondere ist es erfindungsgemäß möglich, pharmazeutisch verträgliche bzw. lebensmittelrechtlich zugelassene Emulgatoren einzusetzen.
Die Emulgatorkonzentration ist bis hin zu niedrigsten Konzentrationen steuerbar. Beispielsweise ist es möglich, bezogen auf den Wirkstoffträger, maximal 5 Gew.-%, beson- ders bevorzugt maximal 3 Gew.-% Tensid einzusetzen, die Untergrenze der Menge an Tensid beträgt dabei je nach Anwendungsgebiet etwa 0,05 Gew.-%.
Die erfindungsgemäßen MSSN-Dispersionen sind lagerstabil und auch bei hoher Nanopar- tikelkonzentration sehr gut fließfähig.
Zur Stabilisierung oder Modifizierung der Grenzflächen können auch zusätzlich Hydrocol- loide mitverwendet werden.
Die feste Form der Teilchen und der Einschluss der Wirkstoffe innerhalb der Teilchen schützen die eingeschlossenen Wirkstoffe vor einem oxidativen Abbau, da der Sauer stoffzutritt stark vermindert wird.
Die erfindungsgemäßen MSSN können mit membranaktiven Emulsionströpfchen unter bestimmten Umständen durch Massentransfer über die wässrige Phase in Wechselwirkung treten. Dies bedeutet eine Umkehrang des Ostwald-Reifungsprinzips. Diese Wechselwirkung kann für die anwendungstechnischen Eigenschaften vorteilhaft ausgenutzt werden.
Gegenüber der SLN-Technologie wird die Auswahl an Tensiden und einsetzbaren Strukturen der Wachse oder Lipide stark erweitert. Zudem sind Oberflächenmodifikationen mög- lieh. Wie bereits erwähnt, sind die MSSN unaufwendig herstellbar und hoch beladbar. Unabhängig vom Wirkstoffträger können die Eigenschaften den jeweiligen Anforderungen angepasst werden. Unterschiedliche Wirkstoffe können beispielsweise auch über eine alkoholische, beispielsweise ethanolische Lösung oder Phase in die Wirkstoffträgerphase eingebracht und gezielt eingelagert werden. In den erfindungsgemäßen MSSN können sowohl hydrophobe, amphiphile sowie hydrophile Wirkstoffe gleichzeitig eingelagert werden, da die Membranstrukturen sowohl hydrophile wie auch hydrophobe Bereiche aufweist.
In der beigefügten Zeichnung zeigt Figur 1 die Abhängigkeit der Viskosität n vom Phasenvolumen f der internen Phase. Während bei der herkömmlichen Herstellung von Emulsionen weit unterhalb des maximalen internen Phasenvolumens f max in einer Emulsion, d.h. einem 2- oder 3-Phasen-System gearbeitet wird, wird erfindungsgemäß leicht oberhalb dieses Bereichs gearbeitet, so dass eine gemischte lyotrope liquid-kristalline Phase erreicht wird.
Im Folgenden werden die Wirkstoffträger, geeignete Emulgatoren, die Lamellarstrakturen ausbilden, geeignete pharmazeutische, kosmetische und lebensmitteltechnologische Wirkstoffe und weitere mögliche Inhaltsstoffe der wässrigen Wirkstoffträger-Dispersion näher erläutert.
Als Wirkstofftragerteilchen werden vorzugsweise Teilchen auf Lipidbasis eingesetzt. Hierzu gehören Lipide und lipidähnliche Strukturen. Beispiele geeigneter Lipide sind die Di- und Triglyceride der gesättigten geradkettigen Fettsäuren mit 12 bis 30 Kohlenstoffato- men, wie Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Arachinsäure, Behen- säure, Lignocerinsäure, Cerotinsäure, Melesinsäure, sowie deren Ester mit anderen gesättigten Fettalkoholen mit 4 bis 22, vorzugsweise 12 bis 22 Kohlenstoff atomen wie Laury- lalkohol, Myristylalkohol, Cetylalkohol, Stearylalkohol, Arachidylalkohol, Behenylalko- hol, gesättigten Wachsalkoholen mit 24 bis 30 Kohlenstoffatomen wie Lignocerylalkohol, Cetylalkohol, Cetearylalkohol, Myristylalkohol. Bevorzugt sind Di-, Triglyceride, Fettalkohole, deren Ester oder Ether, Wachse, Lipidpeptide oder Mischungen davon. Insbesondere werden synthetische Di- und Triglyceride als Einzelsubstanzen oder in Form einer Mischung, zum Beispiel in Form eines Hartfettes, eingesetzt. Glycerintrifettsäureester sind beispielsweise Glycerintrilaurat, Glycerintrimyristat, Glycerintripalmitat, Glycerintristearat oder Glycerintribehenat. Erfindungsgemäß einsetzbare Wachse sind natürliche Wachse, wie pflanzliche Wachse, tierische Wachse, Mineralwachse und petrochemische Wachse, chemische modifizierte Wachse, wie Hartwachse, und synthetische Wachse. Für Aufzählung geeignete Wachse kann auf Römpp Chemielexikon, 9. Auflage, Stichwort „Wachse" verwiesen werden. Geeignete Wachse sind beispielsweise Bienen-, Carnauba-, Candelilla- wachs, Paraffinwachse, Isoparaffinwachse, Reiswachs. Geeignete Wachse sind weiterhin beispielsweise Cetylpalmitat und Cera alba (gebleichtes Wachs, DAß 9). Geeignete Ester leiten sich ferner beispielsweise von verzweigtkettigten Fettsäuren und Fettalkoholen, Gly- cerin, Sorbitan, Propylenglykol, Methylglycosid, Zitronensäure, Weinsäure, Mellinsäure ab. Ferner sind Ceramide, Phythosphingoside, Cholesterol und Phythosterine einsetzbar.
Ferner können Polymere wie Silikonwachse und PVP-Derivate eingesetzt werden. Hierbei handelt es sich beispielsweise um alkylsubstituierte PVP-Derivate, beispielsweise Tricon- tanyl-PVP, PVP-Hexadecen-Copolymer, PVP Eicosen-Copolymer. Diese können beispielsweise alleine oder als Beimischungen zu den Lipiden als Trägermaterialien eingesetzt werden.
Es können auch flüssige, halbfeste und/oder feste Urethanderivate eingesetzt werden, wie sie beispielsweise von ALZO International Inc. vertrieben werden Dazu zählen beispielsweise Fettalkohol (verzweigt) Dimer/IPDI, Fettalkohol (linear) Dimer/IPDI, ethoxylierter Fettalkohol (verzeigt) Dimer/IPDI, ethoxylierter Fettalkohol (linear) Dimer/IPDI, Dimethi- conol/EPDI-Copolymere, Triglyeridester (hydriert)/_PDI-Copolymere, ethoxylierte Trigly- ceridester (hydriert)/IPDI Copolymere, aminierte ethoxylierte und nicht-ethoxylierte Triglyceridester/IPDI-Copolymere.
Die Menge der Wirkstofftragerteilchen, bezogen auf die gesamte wässrige Wirkstoffträger- Dispersion, beträgt vorzugsweise 0,1 bis 70 Gew.-%, besonders bevorzugt 1 bis 60 Gew.- %, zum Beispiel 0,1 bis 30 oder 1 bis 10 Gew.-%. Zusätzlich zu den Lipiden können Dispersionsstabilisatoren eingesetzt werden. Sie können beispielsweise in Mengen von 0,01 bis 20 Gew.-%, vorzugsweise 0,05 bis 5 Gew.-% eingesetzt werden. Beispiele geeigneter Substanzen sind Tenside, insbesondere Alcyllactylate wie Stearoyllactylat, Isethinonate, Alkylsulfate wie Natriumcetylsulfat, Diarnideethersulfate, Alkylpolyglycoside, Phosphor- säureester wie Natriumisotridecylphosphat, Taurate, Sulfosuccinate, Alkylpolyglycoside, Alkylsarcosinate wie Natriumlaurylsarcosinat und Alkylglutamate wie Natriumlaurylglu- tamat, ethoxylierte Sorbitanfettsäureester, Blockpolymere und Blockcopolymere (wie zum Beispiel Poloxamere und Poloxamine), Polyglycerinether und -ester, Lecithine verschiedenen Ursprungs (zum Beispiel Ei- oder Sojalecithin), chemisch modifizierte Lecithine (zum Beispiel hydriertes Lecithin) als auch Phospholipide und Sphingolipide, Mischungen von Lecithinen mit Phospholipiden, Sterine (zum Beispiel Cholesterin und Cholesterinderivate sowie Stigmasterin), Ester und Ether von Zuckern oder Zuckeralkoholen mit Fettsäuren oder Fettalkoholen (zum Beispiel Saccharosemonostearat), sterisch stabilsierende Substanzen wie Poloxamere und Poloxamine (Polyoxyethylen-Polyoxypropylen-Blockpolymere), ethoxylierte Sorbitanfettsäureester, ethoxylierte Mono- und Diglyceride, ethoxylierte Lipide und Lipoide, ethoxylierte Fettalkohole oder Fettsäuren und Ladungsstabilisatoren bzw. Ladungsträger wie zum Beispiel Dicetylphosphat, Phosphatidylglycerin sowie gesättigte und ungesättigte Fettsäuren, Natriumcholat, Natriumglykolcholat, Natriumtaurocholat oder deren Mischungen, Aminosäuren oder Peptisatoren wie Natriumeitrat (siehe J. S. Lucks, B. W. Müller, R. H. Müller, Int. J. Pharmaceutics 63, Seiten 183 bis 18 (1990)), viskositätser- höhende Stoffe wie Cellüloseether und -ester (zum Beispiel Methylcellulose, Hydroxye- thylcellulose, Hydroxypropylcellulose, Natriumcarboxymethylcellulose), Polyvinylderiva- te wie Polyvinylalkohol, Polyvinylpyrrolidon, Polyvinylacetat, Alginate, Polyacrylate (zum Beispiel Carbopol), Xanthane und Pektine.
Als wässrige Phase A können Wasser, wässrige Lösungen oder Mischungen von Wasser mit wassermischbaren Flüssigkeiten wie Glycerin oder Polyethylenglycol eingesetzt werden. Weitere zusätzliche Komponenten für die wässrige Phase sind beispielsweise Manno- se, Glucose, Fructose, Xylose, Trehalose, Mannit, Sorbit, Xylit oder andere Polyole wie Polyethylenglykol sowie Elektrolyte wie Natriumchlorid. Diese zusätzlichen Komponenten können in einer Menge von 1 bis 60 Gew.-%, zum Beispiel 1 bis 30 Gew.-%, bezogen auf die wässrige Phase A, eingesetzt werden.
Falls gewünscht, können ferner iskositätserhöhende Stoffe oder Ladungsträger eingesetzt werden, wie Sie in EP-B-0 605 497 beschrieben sind. Als Verdicker können zum Beispiel Polysaccharide, Polyalkylacrylate, Polyalkylcianoacrylate, Polyalkylvinylpyrrolidone, Ac- rylpolymere, Polymilchsäuren oder Polylactide eingesetzt werden.
Als Emulgatoren, die lyotrope LC-Strukturen bzw. Lamellarstrukturen ausbilden, können natürliche oder synthetische Produkte eingesetzt werden. Auch der Einsatz von Tensidge- mischen ist möglich. Beispiele geeigneter Emulgatoren sind die physiologischen Gallen- salze wie Natriumcholat, Natriumdehydrocholat, Natriumdeoxycholat, Natriumglykocho- lat, Natriumtaurocholat. Tierische und pflanzliche Phospholipide wie Lecithine mit ihren hydrierten Formen sowie Polypeptide wie Gelatine mit ihrem modifizierten Formen können ebenso verwendet werden.
Als synthetische grenzflächenaktive Substanzen eignen sich die Salze der Sulfobernstein- säureester, Polyoxyethylensäurebetanester, Säurebetanester und Sorbitanether, Polyoxy- ethylenfettalkoholether, Polyoxyethylenstearinsäureester sowie entsprechende Mischungkondensate von Polyoxyethylen-Methpolyoxypropylenethern, ethoxylierte gesättigte Gly- ceride, partielle Fettsäure-Glyceride und Polyglycide. Beispiele geeigneter Tenside sind Biobase® EP und Ceralution® H. Beispiele geeigneter Emulgatoren sind ferner Glycerinester, Polyglycerinester, Sorbitanester, Sorbitolester, Fettalkohole, Propylenglykolester, Alkylglucositester, Zuckerester, Lecithin, Silikoncopolymere, Wollwachs und deren Mischungen oder Derivate. Glycerinester, Polyglycerinester, Alkoxylate und Fettalkohole sowie Isoalkohole können sich bei- spielsweise ableiten von Rizinusfettsäure, 12-Hydroxystearinsäure, Isostearinsäure, Ölsäu- re, Linolsäure, Linolensäure, Stearinsäure, Myristinsäure, Laurinsäure und Caprinsäure. Neben den genannten Estern können auch Succinate, A ide oder Ethanolamide der Fettsäuren vorliegen. Als Fettsäurealkoxylate kommen insbesondere die Ethoxylate, Propoxy- late oder gemischten Ethoxylate/Propoxylate in Betracht. Ferner können Silikontenside wie Silikoncopolyole und Silikonbetaine eingesetzt werden.
Erfindungsgemäß bevorzugt werden Emulgatorsysteme eingesetzt, deren Mischungen aus Co-Emulgatoren (Gelnetzwerkbildnern wie Fettalkoholen, Fettsäuren, Sorbitanestern usw.) und speziellen Tensiden an der Grenzfläche zu Wasser Myellinstrakturen auszubilden. Zu geeigneten Tensiden zählen beispielsweise Polyglyerin-10-tricaprylat, Polyglyerin-10- trilaurat, Polyglycerin-2-oleat, Natriumlauroyllactylat, Natriumcocoyllactyllat und Glyce- rylcocoatcitratlactyllat.
Es können auch vorzugsweise ausgewogene Komplex-Emulgatoren eingesetzt werden.
Das für die Herstellung von MSSN optimale Verhältnis von hydrophilem Tensid zu Co- emulgator liegt vorzugsweise höher als das optimale Verhältnis für die Gelnetzwerkbildung.
Wachse/Polymere/Lipide und Emulgatoren werden vorzugsweise in einem Gewichtsverhältnis von 50 : 1 bis 2 : 1 vorzugsweise 15 : 1 bis 30 : 1 eingesetzt.
Die pharmazeutischen, kosmetischen und/oder lebensmitteltechnologischen Wirkstoffe werden, bezogen auf die Phase B, vorzugsweise in einer Menge von 0,1 bis 70 Gew.-%, besonders bevorzugt 1 bis 10 Gew.-% eingesetzt.
Nachfolgend werden beispielhaft pharmazeutische Wirkstoffe aufgeführt, die beispielsweise in freier Form, als Salz, Ester oder Ether eingesetzt werden können:
Analgetika/Antirheumatika, wie Morphin, Copdein, Piritamid, Fentanyl und Fentanylderi- vate, Leyomethadon, Tramadol, Diclofenac, Ibuprofen, üidometacin, Naproxen, Piroxi- cam, Penicillamin; Antiallergika, wie Pheniramin, Dimetinden, Terfenadin, Asternizol, Loratidin, Doxylamin, Meclozin, Bamipin, Clemastin; Antibiotika / Chemotherapeutika, wie Polypetidantibiotika wie Colistin, Polymyxin B, Teicplanin, Vancomycin; Malariamittel wie Chinin, Halofantrin, Mefloquin, Chloroquin, Virustatika wie Ganciclovir, Foscar- net, Zidovudin, Aciclovir und andere wie Dapson, Fosfomycin, Fusafungin, Trimetoprim; Antiepileptika, wie Phenytoin, Mesuximid, Ethosuximid, Primidon, Phenobarbital, Valproinsäure, Carbamazepin, Clonazepam; Antimykotika, wie intern: Nystatin, Natarry- cin, Amphotericin B, Flucytoan, Miconazol, Fluconazol, Itraconazol; extern außerdem: Clotrimazol, Econazol, Tioconazol, Fenticonazol, Bifonazol, Oxiconazol, Ketoconazol, isoconazol, Tlnattat; Corticoide (Interna), wie Aldosteron Fludrocortison, Betametason, Dexametason, Triamcinolon, Fluocortolon, Hydroxycortison, Prednisolon, Prednyliden, Cloprednol, Methylprednisolon; Dermatika, wie Antibiotika: Tetracyclin, Erythromycin, Neomycin, Gentamycin, Clindamiycin, Framycetin, Tyrothricin, Chlortetracyclin Mipiro- cin, Fusidnsäure; Virustatika wie oben, außerdem: Podohyllotoxin, Vidarabin, Tromanta- din; Corticoide wie oben, außerdem: Amcinonid, Flupredniden, Alclometason, Clobetasol, Diflorason, Halcinonid, Fluocinolon, Clocortolon, Flumetason, Difluocortolon, Fludroxy- cortid, Halometason, Desoximtason, Fluocinolid, Fluocortinbutyl, Flupredniden, Predni- carbat, Desonid; Diagnostika, wie radioaktive Isotope wie Te99m, Inlll oder 1131, kova- lent gebunden an Lipide oder Lipoide oder andere Moleküle oder in Komplexen, hochsubstituierte iodhaltige Verbindungen wie zum Beispiel Lipide; Hämostyptika, wie Blutungs- gerinnungsfaktoren VDI, IX; Hypnotika, Sedativa, wie Cyclobarbital, Pentobarbital, Phenobarbital, Methaqualon, Benzodiazepine (Flurazepam, Midazolam, Netrazepam, Lorme- tazepam, Flunitrazepam, Trazolam, Brotizolam, Temazepam, Loprazolam); Hypophysen-, Hypothalamushormone, regulatorische Peptide und ihre Hemmstoffe, wie Corticotrophin, Tetracosactid, Choriongonadotropin, Urofollitropin, Urogonadotropin, Somatropin, Meter- golin, Bromocriptin, Terlipressin, Desmopressin, Oxrtocin, Argipressin, Ornipressin, Leuprorelin, Triptorelin, Gonadorelin, Buserelin, Nafarelin, Goselerin, Somatostatin; Im- muntherapeutika und Zytokine, wie Dimepranol-4-acetatamidobenzoat, Thymopentin, α- Interferon, ß-Interferon, Filgrastim, Interleukine, Azathioprin, Ciclosporin; Lokala aesthe- tika, wie intern: Butanilicain, Mepivacain, Bupivacain, Etidocain, Lidocain, Articain, Pri- locain; extern außerdem: Propipocain, Oxybuprocain, Etracain, Benzocain; Migränemittel, wie Proxibarbal, Lisurid, Methysergid, Dihydroergotamin, Clonidin, Ergotamin, Pizotifen; Narkosemittel, wie Methohexital, Propofol, Etomidat, Ketamin, Alfentanil, Thiopental, Droperidol, Fentanyl; Nebenschilddrüsenhormone, Calciumstoffwechselregulatoren, wie Dihydrotachysterol, Calcitonin, Clodronsäure, Etidronsäure; Opthalmika, wie Atropin, Cyclodrin, Cyclopentolat, Homatropin, Tronicamid, Scopolamin, Pholedrin, Edoxudin, Idouridin, Tromantadin, Aciclovir, Acetazolamid, Diclofenamid, Carteolol, Timolol, Me- tipranolol, Betaxolol, Pindolol, Befunolol, Bupranolol, Levobununol, Carbachol, Pilocar- pin, Clonidin, Neostigmin; Psychopharmaka, wie Benzodiazepne (Lorazepam, Diazepam), Clomethiazol; Schilddrüsentherapeutika, wie 1-Thyroxin, Carbirnazol, Thiamazol, Pro- pylthiouracil; Sera, Immunglobuline, Impfstoffe, wie Immunglobuline allgemein und spezifisch wie Hepatitis-Typen, Röteln, Cytomegalie, Tollwut; FSME, VaricellaZoster, Teta- nus, Rhesusfaktoren,
Immunsera wie Botulismus-Antitoxin, Diphterie, Gasbrand, Schlangengift, Skorpiongift, Impfstoffe wie Influenza, Tuberkulose Cholera, Diphterie, Hepatitis-Typen, FSME, Röteln, Hämophilus influenzae, Masern, Neisseria, Mumps, Poliomyelitis, Tetanus, Tollwut, Typhus; Sexualhormone und ihre Hemmstoffe, wie Anabolika, Androgene, Antiandrogene, Gestagene, Estrogene, Antiestrogene (Tamoxifen etc.); Zystostatika und Metastasenhemmer, wie Alkylantien wie Nimustin, Melphalan, Carmustin, Lomustin, Cyclophosphamid, Ifosfamid, Trofosfamid, Chlorambucil, Busulfan, Treosulfan, Predninmustin, Thiotepa, Antimetabolite wie Cytarabin, Huorouracil, Methotrexat, Mercaptopurin, Tioguanin, Alka- loide wie Vinblastin, Vincristin, Vindesin; Antibiotika wie Aclarubicin, Bleomycin, Dacti- nomycin, Daunorubicin, Epirabicin, Idarabicin, Mitomycin, Plicamycin,
Komplexe von Nebengrappenelementen (zum Beispiel Ti, Zr, V, Nb, Ta, Mo, W, Pt) wie Carboplatin, Cisplatin und Metallocenverbindungen wie Titanocendichlorid, Amsacrin, Dacarbazin, Estramustin, Etoposid, Hydroxycarbamid, Mitoxynthron, Procarbazin, Temi- posid, Alkylamidophospholipide (beschrieben in J. M. Zeidler, F. Emling, W. Zimmer- mann und H. J. Roth, Archiv der Pharmazie, 324 (1991), 687), Etherlipide wie Hexade- cylphosphocholin, Umofosin und Analoga, beschrieben in R. Zeisig, D. Arndt und H. Brachwitz, Pharmazie 45 (1990), 809 bis 818.
Geeignete Wirkstoffe sind beispielsweise auch Dichlorphenac, Ibuprofen, Acetylsalicyl- säure, Salicylsäure, Erythromycin, Ketoprofen, Cortison, Glucocorticoide.
Weiterhin geeignet sind kosmetische Wirkstoffe, die insbesondere oxidations- oder hydrolyseempfindlich sind wie beispielsweise Polyphenole. Hier seien genannt Catechine (wie Epicatechin, Epicatechin-3-gallat, Epigallocatechin, Epigallocatechin-3-gallat), Flavonoide (wie Luteolin, Apigenin, Rutin, Quercitin, Fisetin, Kaempherol, Rhametin), Isoflavone (wie Genistein, Daidzein, Glycitein, Prunetin), Cumarine (wie Daphnetin, Umbelliferon), Emodin, Resveratrol, Oregonin.
Geeignet sind Vitamine wie Retinol, Tocopherol, Ascorbinsäure, Riboflavin, Pyridoxin.
Geeignet sind ferner Gesamtextrakte aus Pflanzen, die u.a. obige Moleküle oder Molekülklassen enthalten. Bei den Wirkstoffen handelt es sich gemäß einer Ausführangsform der Erfindung um Lichtschutzfilter. Diese können als organische Lichtschutzfilter bei Raumtemperatur (25°C) in flüssiger oder fester Form vorliegen. Geeignete Lichtschutzfilter (UV-Filter) sind beispielsweise Verbindungen auf Basis von Benzophenon, Diphenylcyanacrylat oder p- Aminobenzoesäure. Konkrete Beispiele sind (INCI- oder CTFA-Bezeichnungen) Ben- zophenone-3, Benzophenone-4, Benzophenone-2, Benzophenone-6, Benzophenone-9, Benzophenone-1, Benzophenone-11, Etocrylene, Octocrylene, PEG-25 PABA, Phenylben- zimidazole Sulfonic Acid, Ethylhexyl Methoxycinnamate, Ethylhexyl Dimethyl PABA, 4- Methylbenzylidene Camphor, Butyl Methoxydibenzoylmethane, Ethylhexyl Salicylate, Homosalate sowie Methylene-Bis-Benzotriazolyl Tetramethylbutylphenol (2,2'-Methylen- bis-{ 6-(2H-benzoetriazol-2-yl)-4-( 1 , 1 ,3,3-tetramethylbutyl)-phenol } , 2-Hydroxy-4- methoxybenzophenon-5-sulfonsäure und 2,4,6-Trianilino-p-(carbo-2'-ethylhexyl- 1 '-oxi)- 1,3,5-triazin.
Weitere organische Lichtschutzfilter sind Octyltriazone, Avobenzone, Octylmethoxycin- namate, Octylsalicylate, Benzotriazole und Triazine.
Gemäß einer weiteren Ausführungsform der Erfindung werden als Wirkstoffe Antischup- pen- Wirkstoffe eingesetzt, wie sie üblicherweise in kosmetischen oder pharmazeutischen
Formulierungen vorliegen. Ein Beispiel hierfür ist Piroctone Olamine (l-Hydroxy-4- methyl-6-(25434-dimethylpentyl)-2(lH)-pyridone; vorzugsweise in Kombination mit 2-
Aminoethanol (1:1)). Weitere geeignete Mittel zur Behandlung von Hautschuppen sind dem Fachmann bekannt.
Als Wirkstoffe kommen zudem beispielsweise alle oxidationssensiblen Wirkstoffe wie
Tocopherol in Betracht.
Gemäß einer weiteren Ausführangsform der Erfindung werden organische Farbstoffe als Wirkstoffe bzw. an Stelle von Wirkstoffen eingesetzt.
Weitere geeignete Wirkstoffe sind insektenvertreibende Mittel (Insect repellent) und im Bereich der Lebensmitteltechnologie Geruchs- und Geschmacksstoffe. Geeignete Gerachsund Geschmacksstoffe sind dem Fachmann bekannt.
Des Weitern lassen sich auch pigmentartige anorganische Feststoffe wie z.B. TiO2 und ZnO in die Wirkstoffträger einarbeiten. Durch die Emulgatoren kann ein unilamellares oder multilamellares System bzw. eine lyotrope flüssigkristalline Mischphase gebildet werden.
Der mittlere Durchmesser der Wirkstoffteilchen beträgt vorzugsweise 50 bis 1000 nm, besonders bevorzugt 100 bis 500 nm.
Die Erfindung betrifft auch eine wässrige Wirkstoffträger-Dispersion, die nach dem vorstehenden Verfahren erhältlich ist.
Zudem betrifft die Erfindung ein Verfahren zur Herstellung einer multiplen Dispersion durch Vermischen einer Dispersion, die wie vorstehend beschrieben hergestellt wurde, mit einer weiteren Polyol- oder Ölphase. Die Erfindung betrifft auch eine entsprechend hergestellte multiple Dispersion. Multiple Emulsionen sind beispielsweise in DE-A-43 41 113 beschrieben.
Ferner betrifft die Erfindung Arzneimittel, Kosmetika oder Lebensmitteladditive, die eine wie vorstehende beschriebene Dispersion oder multiple Dispersion enthalten.
Weitere Inhaltsstoffe der erfindungsgemäß hergestellten wässrigen Wirkstoffträger- Dispersionen sind in EP-B-0 605 497, EP-B-0 167 825 und US 5,885,486 beschrieben. Insbesondere für geeignete stabilisierende Substanzen und Ladungsstabilisatoren wird auf EP-B-0 605 497 verwiesen.
Gemäß einer Ausführungsform der Erfindung werden die Wirkstoffträger-Dispersionen unter Ausschluss der Verwendung von halogenierten organischen Lösungsmitteln hergestellt.
Die Applikation der Arzneimittel kann durch intravenöse Gabe, intramuskuläre Gabe, intraartrikuläre Gabe, intracavitale Gabe, subkutane Gabe, intradermale Gabe, enterale Gabe, pulmonale Applikation sowie topische oder ophtalmologische Anwendung erfolgen.
Die Erfindung wird durch die nachstehenden Beispiele näher erläutert.
Beispiele
In den nachfolgenden Beispielen wurden die folgenden Verbindungen eingesetzt:
Figure imgf000018_0001
Die Herstellung der wässrigen Wirkstoffträger-Dispersion erfolgte durch getrenntes Erwärmen der nachstehend beschriebenen Phasen A und B auf 60°C. Sodann wurde Phase B in Phase A eingerührt, und es wurde mit einem Braun-Küchenmixer (maximale Leistungsaufnahme 350 W)mit einem Rührblattdurchmesser von 50 mm homogenisiert, bis die Tröpfchengröße unter 350 nm lag. Sodann wurde bei Raumtemperatur Phase C, die Raum- temperatur aufwies, zur heißen Emulsion gegeben. Hierbei wurde wiederum mit einem Braun-Küchenmixer gerührt.
In den letzten drei Zeilen der folgenden Tabellen sind der mittlere Teilchendurchmesser, der Gewichtsanteil an Teilchen mit einem Durchmesser von weniger als 1 μm und die spe- zifische Oberfläche (cm /cm ) angegeben. Die Zusammensetzungen der einzelnen Phasen und die genannten Parameter sind den nachfolgenden Tabellen zu entnehmen.
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000022_0001

Claims

Patentansprüche
1. Verfahren zur Herstellung einer wässrigen Stoffträger-Dispersion, in der feste Wirk- Stoffträgerteilchen auf Wachs-, Polymer- oder Lipidbasis mit einem mittleren Durchmesser im Bereich von 10 bis 10000 nm vorliegen, die mindestens einen pharmazeutischen, kosmetischen und/oder lebensmitteltechnologischen Wirkstoff, Parfüm oder Aromenstoff enthalten, durch
a) Vermischen des Wirkstoffs mit dem Wirkstoffträger auf Wachs-, Polymeroder Lipidbasis und mindestens einem Emulgator, der in Stufe b) zur Ausbildung einer lyotropen flüssigkristallinen Mischphase führt, bei einer Temperatur oberhalb des Schmelz- oder Erweichungspunktes des Wirkstofftragers, zur Ausbildung einer Phase B,
b) mechanisches Vermischen der Phase B mit einer wässrigen Phase A, die einen Emulgator enthalten kann, bei einer Temperatur oberhalb des Schmelzoder Erweichungspunktes des Wirkstofftragers, wobei das Gewichtsverhältnis von Phase B zu Phase A 1 : 5 bis 5 : 1 beträgt, ohne Hochdruckhomoge- nisierang, zur Ausbildung einer, vorzugsweise gelartigen, lyotropen flüssigkristallinen Mischphase,
c) Verdünnen der Mischphase mit einer wässrigen Phase, die einen Emulgator enthalten kann, bei einer Temperatur der wässrigen Phase, die unter dem Schmelz- oder Erweichungspunkt des Wirkstofftragers liegt, unter Rühren und ohne Hochdruckhomogenisierang, auf eine gewünschte Endkonzentration der Dispersion.
2. Verfahren nach Ansprach 1, dadurch gekennzeichnet, dass das mechanische Verrni- sehen in Stufe b) und das Rühren in Stufe c) mit Rührern erfolgt, die eine Umfangsgeschwindigkeit im Bereich von 1 bis 20 m/s aufweisen.
3. Verfahren nach Ansprach 2, dadurch gekennzeichnet, dass die Scherwirkung des Rührers der Scherwirkung eines Haushaltsküchenrührers entspricht.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in Stufe b) das Gewichtsverhältnis von Phase B zu Phase A 1 : 2 bis 2 : 1 beträgt.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Wirkstofftragerteilchen auf Di-, Triglyceriden, Fettalkoholen, deren Estern oder
Ethern, Wachsen, Lipidpeptiden oder Mischungen davon basieren.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der mittlere Durchmesser der Wirkstofftragerteilchen 50 bis 1000 nm beträgt.
7. Wässrige Wirkstoffträger-Dispersion, erhältlich nach einem Verfahren gemäß einem der Ansprüche 1 bis 6.
8. Verfahren zur Herstellung einer multiplen Dispersion durch Vermischen einer Dis- persion, die nach einem Verfahren gemäß einem der Ansprüche 1 bis 6 hergestellt wurde, mit einer weiteren Polyol- oder Ölphase.
9. Multiple Dispersion, erhältlich nach einem Verfahren gemäß Ansprach 8.
10. Arzneimittel, Kosmetika oder Lebensmitteladditive, enthaltend eine Dispersion gemäß Ansprach 7 oder eine multiple Dispersion gemäß Anspruch 9.
11. Membran-strukturierte Solid-Nanoparticles mit einem mittleren Teilchendurchmesser im Bereich von 10 bis 10.000 nm, die bei 25 °C fest sind und eine Kombination aus Wirkstofftragerteilchen und Emulgatoren derart aufweisen, dass Membranen gebildet werden, die die gesamten Nanoparticles durchdringen, so dass im Inneren und an der Oberfläche der Nanoparticles Emulgatoren vorliegen.
12. Nanoparticles nach Ansprach 11, dadurch gekennzeichnet, dass über den Querschnitt der Nanoparticles im Wesentlichen keine Bereiche ohne Membranstraktur vorliegen.
13. Nanoparticles nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass die Membrane in einer lyotropen flüssigkristallinen Mischphase ausgebildet wird, die in Gegenwart von Wasser selbstemulgierend ist.
14. Nanoparticles nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass sie mit mindestens einem pharmazeutischen, kosmetischen und/oder lebensmitteltechnologischem Wirkstoff in einer Menge von bis zu 60 Gew.-%, bezogen auf die belade- nen Nanoparticle, beladen sind.
15. Nanoparticles nach Ansprach 14, dadurch gekennzeichnet, dass sie mit Sonnenschutzmitteln beladen sind.
16. Nanoparticles nach einem der Ansprüche 1 bis 15, herstellbar nach einem der Ver- fahren gemäß einem der Ansprüche 1 bis 6.
PCT/EP2004/001589 2003-03-21 2004-02-19 Mssn-dispersion und verfahren zu ihrer herstellung WO2004082666A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2519697A CA2519697C (en) 2003-03-21 2004-02-19 Mssn dispersion and method for producing the same
US10/550,193 US20060257334A1 (en) 2003-03-21 2004-02-19 Mssn dispersion and method for producing the same
AU2004222631A AU2004222631B2 (en) 2003-03-21 2004-02-19 MSSN dispersion and method for producing the same
JP2006500036A JP2006520750A (ja) 2003-03-21 2004-02-19 Mssn分散およびその作製方法
EP04712492A EP1605923A2 (de) 2003-03-21 2004-02-19 Mssn-dispersion und verfahren zu ihrer herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10312763A DE10312763A1 (de) 2003-03-21 2003-03-21 Verfahren zur Herstellung einer SLN-Dispersion
DE10312763.1 2003-03-21

Publications (2)

Publication Number Publication Date
WO2004082666A2 true WO2004082666A2 (de) 2004-09-30
WO2004082666A3 WO2004082666A3 (de) 2005-05-12

Family

ID=32921086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/001589 WO2004082666A2 (de) 2003-03-21 2004-02-19 Mssn-dispersion und verfahren zu ihrer herstellung

Country Status (8)

Country Link
US (1) US20060257334A1 (de)
EP (1) EP1605923A2 (de)
JP (1) JP2006520750A (de)
KR (1) KR20050114255A (de)
AU (1) AU2004222631B2 (de)
CA (1) CA2519697C (de)
DE (1) DE10312763A1 (de)
WO (1) WO2004082666A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005055983A2 (en) * 2003-12-09 2005-06-23 Medcrystalforms, Llc Method of preparation of mixed phase co-crystals with active agents
EP2123606A1 (de) 2008-05-19 2009-11-25 Kemira Pigments Oy Ultrafeine Titaniumdioxid-Nanopartikel und Dispersionen davon
WO2011133996A2 (en) 2010-04-30 2011-11-03 Kemira Oyj Aqueous dispersions for sizing paper

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1668105T3 (pl) 2003-09-29 2019-03-29 Deb Ip Limited Kompozycje żelopodobne i pieniące o dużej zawartości alkoholu
DE102004062775A1 (de) 2004-12-21 2006-06-29 Stockhausen Gmbh Alkoholischer Pumpschaum
JP2008531740A (ja) 2005-03-07 2008-08-14 デブ ワールドワイド ヘルスケア インコーポレーテッド シリコーン・ベースの界面活性剤を含むアルコール含有量の高い発泡性組成物
US8580860B2 (en) * 2007-02-23 2013-11-12 Gojo Industries, Inc. Foamable alcoholic composition
DE102007063133A1 (de) * 2007-12-24 2009-06-25 Sasol Germany Gmbh Verfahren zur Herstellung von Wachs in Wasser Dispersionen aus selbstemulgierenden Gelkonzentraten
DE102007063134A1 (de) * 2007-12-24 2009-06-25 Sasol Germany Gmbh Verfahren zur Herstellung von Öl in Wasser Emulsionen aus selbstemulgierenden Gelkonzentraten
AR080551A1 (es) * 2009-10-05 2012-04-18 Marrone Bio Innovations Derivados que contienen antraquinona como productos agricolas bioquimicos
US9889098B2 (en) * 2009-10-22 2018-02-13 Vizuri Health Sciences Llc Methods of making and using compositions comprising flavonoids
US8637569B2 (en) 2009-10-22 2014-01-28 Api Genesis, Llc Methods of increasing solubility of poorly soluble compounds and methods of making and using formulations of such compounds
US20110275738A1 (en) * 2010-05-05 2011-11-10 Basf Se Process for producing finely divided suspensions by melt emulsification
EP2823811A1 (de) * 2013-07-09 2015-01-14 OTC GmbH Gerichtetes aktives Freisetzungssystem mit festen Lipidnanopartikeln
WO2021033482A1 (ja) * 2019-08-19 2021-02-25 Jsr株式会社 分散組成物、分散剤、異方性膜及びその製造方法、並びに異方性膜形成装置
US20230094753A1 (en) * 2020-02-26 2023-03-30 Capcium Inc. Nanostructure lipid carrier delivery system, composition, and methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0605497B1 (de) 1991-09-18 1996-03-20 MEDAC GESELLSCHAFT FÜR KLINISCHE SPEZIALPRÄPARATE GmbH Arzneistoffträger aus festen lipidteilchen (feste lipidnanosphären (sln))

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3421468A1 (de) * 1984-06-08 1985-12-19 Dr. Rentschler Arzneimittel Gmbh & Co, 7958 Laupheim Lipidnanopellets als traegersystem fuer arzneimittel zur peroralen anwendung
US5188837A (en) * 1989-11-13 1993-02-23 Nova Pharmaceutical Corporation Lipsopheres for controlled delivery of substances
AU658608B2 (en) * 1991-03-25 1995-04-27 Astellas Pharma Europe B.V. Topical preparation containing a suspension of solid lipid particles
FR2681248B1 (fr) * 1991-09-13 1995-04-28 Oreal Composition pour un traitement cosmetique et/ou pharmaceutique de longue duree des couches superieures de l'epiderme par une application topique sur la peau.
CA2091152C (en) * 1993-03-05 2005-05-03 Kirsten Westesen Solid lipid particles, particles of bioactive agents and methods for the manfuacture and use thereof
US5885486A (en) * 1993-03-05 1999-03-23 Pharmaciaand Upjohn Ab Solid lipid particles, particles of bioactive agents and methods for the manufacture and use thereof
US5747012A (en) * 1993-06-11 1998-05-05 Tioxide Specialties Limited Compositions containing sunscreens
DE4327063A1 (de) * 1993-08-12 1995-02-16 Kirsten Dr Westesen Ubidecarenon-Partikel mit modifizierten physikochemischen Eigenschaften
DE4341113B4 (de) * 1993-12-02 2006-04-13 IFAC Institut für angewandte Colloidtechnologie GmbH & Co. KG Stabile multiple X/O/Y-Emulsion
ATE246032T1 (de) * 1995-10-06 2003-08-15 Enitecnologie Spa Katalysator und verfahren zur entfernung von stickstoffoxiden in abgas
JP2001019609A (ja) * 1999-07-08 2001-01-23 Pola Chem Ind Inc 多相乳化剤形の皮膚外用剤
JP2002292270A (ja) * 2001-03-30 2002-10-08 Sunstar Inc 多相エマルジョン
JP4182195B2 (ja) * 2001-09-03 2008-11-19 独立行政法人農業・食品産業技術総合研究機構 単分散複合型エマルションの製造装置
CA2524589A1 (en) * 2003-05-07 2004-11-18 Ifac Gmbh & Co. Kg Compositions for the targetted release of fragrances and aromas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0605497B1 (de) 1991-09-18 1996-03-20 MEDAC GESELLSCHAFT FÜR KLINISCHE SPEZIALPRÄPARATE GmbH Arzneistoffträger aus festen lipidteilchen (feste lipidnanosphären (sln))

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. M. ZEIDLER; F. EMLING; W. ZIMMERMANN; H. J. ROTH, ARCHIV DER PHARMAZIE, vol. 324, 1991, pages 687
J. S. LUCKS; B. W. MÜLLER; R. H. MÜLLER, INT. J. PHARMACEUTICS, vol. 63, 1990, pages 183 - 18
R. ZEISIG; D. ARNDT; H. BRACHWITZ, PHARMAZIE, vol. 45, 1990, pages 809 - 819

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005055983A2 (en) * 2003-12-09 2005-06-23 Medcrystalforms, Llc Method of preparation of mixed phase co-crystals with active agents
WO2005055983A3 (en) * 2003-12-09 2007-03-01 Medcrystalforms Llc Method of preparation of mixed phase co-crystals with active agents
US9682043B2 (en) 2003-12-09 2017-06-20 Medcrystalforms, Llc Method of preparation of mixed phase co-crystals with active agents
EP2123606A1 (de) 2008-05-19 2009-11-25 Kemira Pigments Oy Ultrafeine Titaniumdioxid-Nanopartikel und Dispersionen davon
WO2011133996A2 (en) 2010-04-30 2011-11-03 Kemira Oyj Aqueous dispersions for sizing paper

Also Published As

Publication number Publication date
US20060257334A1 (en) 2006-11-16
DE10312763A1 (de) 2004-09-30
CA2519697C (en) 2011-01-18
AU2004222631B2 (en) 2009-02-26
KR20050114255A (ko) 2005-12-05
EP1605923A2 (de) 2005-12-21
CA2519697A1 (en) 2004-09-30
JP2006520750A (ja) 2006-09-14
AU2004222631A1 (en) 2004-09-30
WO2004082666A3 (de) 2005-05-12

Similar Documents

Publication Publication Date Title
EP1628626B2 (de) Zusammensetzungen zur gezielten freisetzung von duftstoffen und aromen
EP0605497B1 (de) Arzneistoffträger aus festen lipidteilchen (feste lipidnanosphären (sln))
KR100654841B1 (ko) 피부유사구조 및 조성을 갖고 생리활성물질의 경피흡수를촉진하는 지질 용해부 조성물 및 이를 이용한 나노입자화장료의 제조방법
WO2004082666A2 (de) Mssn-dispersion und verfahren zu ihrer herstellung
KR101123137B1 (ko) 2층상 화장수 제조 방법
KR20140109804A (ko) 액정 유화 오르가노겔 조성물 및 마스크 팩
WO2000067728A2 (de) Lipidpartikel auf der basis von mischungen von flüssigen und festen lipiden und verfahren zu ihrer herstellung
US20120015011A1 (en) Cosmetic composition comprising double-shell nano-structure
EP1606044B2 (de) Vorrichtung und verfahren zur kontinuierlichen herstellung von emulsionen oder dispersionen
DE102008045280A1 (de) Liposomale Strukturen ausbildende isometrische Agglomerate, vor allem Badeperlen, deren Herstellung und deren Verwendung
WO2004105716A1 (de) Lipid-transferprotein - systeme und deren kosmetische dermatologische anwendung
EP1631246B1 (de) Mischung aus titandioxid und methylen-bis-benzotriazolylphenol
KR20210059277A (ko) 자가조합형 지질 베시클 및 이를 포함하는 화장료 조성물
EP1707256B1 (de) Vorrichtung und Verfahren zur kontinuierlichen Herstellung von Emulsionen oder Dispersionen
WO2007036240A1 (de) Vorrichtung zur in-line-prozesskontrolle bei der herstellung von emulsionen oder dispersionen
KR100778903B1 (ko) 과량의 친수성 생리활성물질을 함유한 나노 농축 캡슐조성물, 이의 제조방법 및 이를 함유한 화장료 조성물
EP4302781A1 (de) Topische mikropartikelkapselzubereitung und dermatologisches topisches mittel
KR100501309B1 (ko) 알부틴 함유 나노유화 화장료 조성물의 제조방법
DE202005015341U1 (de) Vorrichtung zur In-Line-Prozesskontrolle bei der Herstellung von Emulsionen oder Dispersionen
CN117679526A (zh) 一种用于制备难溶性原辅料的透明水剂的组合物及其制备方法
BABU et al. Formulation And Invitro Evaluation Of Nlc Loaded (Transferosomal) Gel Drug Nabumetone
EP2768471A2 (de) Wässrige dispersion mit einem gehalt an lipidnanopartikeln, verfahren zu deren herstellung sowie deren verwendung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2519697

Country of ref document: CA

Ref document number: 2006500036

Country of ref document: JP

Ref document number: 2004222631

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020057017689

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2004222631

Country of ref document: AU

Date of ref document: 20040219

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004222631

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004712492

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057017689

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004712492

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006257334

Country of ref document: US

Ref document number: 10550193

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10550193

Country of ref document: US