WO2004054026A1 - 燃料電池及びこれを搭載した電子機器 - Google Patents

燃料電池及びこれを搭載した電子機器 Download PDF

Info

Publication number
WO2004054026A1
WO2004054026A1 PCT/JP2003/014977 JP0314977W WO2004054026A1 WO 2004054026 A1 WO2004054026 A1 WO 2004054026A1 JP 0314977 W JP0314977 W JP 0314977W WO 2004054026 A1 WO2004054026 A1 WO 2004054026A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
power generation
generation unit
cell according
flow path
Prior art date
Application number
PCT/JP2003/014977
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Watanabe
Kazuhiko Otsuka
Masahiko Tahara
Kazutoshi Nomoto
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to CA2508457A priority Critical patent/CA2508457C/en
Priority to KR1020057010694A priority patent/KR101107649B1/ko
Priority to US10/536,599 priority patent/US8101311B2/en
Priority to AU2003284661A priority patent/AU2003284661A1/en
Priority to EP03774186A priority patent/EP1571722A4/en
Publication of WO2004054026A1 publication Critical patent/WO2004054026A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell and an electronic device equipped with the fuel cell. More specifically, the present invention relates to a fuel cell in which various devices for stably generating power by the fuel cell are housed in a compact, and an electronic device equipped with the same. Background art
  • a fuel cell is a power generation element that generates power by electrochemically reacting a fuel such as hydrogen gas with an oxidant such as oxygen contained in air.
  • Fuel cells have attracted attention in recent years as power generating elements that do not pollute the environment because the product generated by power generation is water.For example, attempts have been made to use them as driving power sources for driving automobiles. ing.
  • fuel cells are being actively developed as driving power sources for portable electronic devices such as laptop computers, mobile phones, and PDAs.
  • portable electronic devices such as laptop computers, mobile phones, and PDAs.
  • a fuel cell can increase the amount of output power by combining a plurality of power generation cells (unit cells). For example, a joined body in which electrodes are formed on both surfaces of a solid polymer electrolyte membrane is used as a separator. Fuel cells with a stack structure in which power generation cells are formed by sandwiching the power generation cells are also being developed.
  • the power generation reaction in the fuel cell is an exothermic reaction, and the part where the power generation reaction is actively performed tends to be high in temperature. For this reason, the amount of water contained in the solid polymer electrolyte membrane decreases with the operation of the fuel cell, which may hinder stable power generation in the fuel cell.
  • the above two problems indicate that it is difficult to achieve both suppression of the increase in the humidity of the fuel cell and control of the amount of water contained in the fuel cell during power generation by the fuel cell.
  • the fuel cell is designed to smoothly flow the fuel gas through the flow passages formed in the plurality of separators and to make the assembly constituting the fuel cell appropriately absorb moisture.
  • a technology that can take in air containing oxygen from outside and stabilize and output the required power.
  • the present invention has been made in view of the above-described problems, and it is possible to perform stable power generation and to compactly store various devices for driving the fuel cell and to mount the fuel cell.
  • Electronic equipment The purpose is to provide. Disclosure of the invention
  • a fuel cell includes a power generation unit provided with at least a flow path of an oxidizing gas containing oxygen, a heat radiation unit connected to the power generation unit and radiating heat from the power generation unit; It is characterized by having a gas flowing means for flowing, and a cooling means driven independently of the gas flowing means and cooling the heat radiating portion. According to such a fuel cell, by independently driving the gas flow means and the cooling means, it is possible to accurately suppress the temperature rise of the power generation unit and control the amount of water contained in the power generation unit. Therefore, it is possible to cause the power generation unit to perform stable power generation.
  • the power generation unit is characterized by having a joined body including a conductor having ion conductivity and electrodes facing each other with the conductor sandwiched therebetween, and a separator sandwiching the joined body. .
  • the power generation reaction at the time of power generation can be performed without any trouble, and a small-sized and high-output fuel cell can be formed.
  • such a fuel cell is characterized in that the conductor is a proton conductor.
  • the separator has a heat transfer portion extending from the inside of the separator to the heat radiation portion. According to such a heat transfer section, the heat generated by the power generation reaction can be quickly transmitted from the power generation section to the heat radiating section, and the temperature rise of the power generation section can be suppressed.
  • the separator has a water absorbing means for absorbing and removing water from the flow path. According to such a water absorbing means, water accumulated in the flow path for flowing the oxidizing gas is absorbed. As a result, the oxidizing gas can flow smoothly into such a flow path.
  • such a fuel cell is characterized in that the power generation unit has a stack structure in which a joined body and a separator are stacked. Since the stack structure is formed, the output power of the power generation unit can be increased to output the required power.
  • such a fuel cell is characterized in that the separator has an in-plane flow path for supplying fuel in a surface where the separator contacts the assembly.
  • the fuel is supplied to almost the entire surface of the joined body by the in-plane flow path, and power generation can be performed efficiently.
  • the separator has a supply hole for supplying fuel to the in-plane flow path and a discharge hole for discharging fuel from the in-plane flow path. According to such a supply hole, the fuel can be supplied to the separator and the fuel after the power generation reaction can be discharged from the in-plane flow path.
  • supply holes are connected to each other between adjacent separators to form a supply path for supplying fuel to each separator, and discharge holes are connected to each other to form a supply path.
  • a discharge path for discharging fuel gas from the separator is formed.
  • the fuel gas can be supplied to the power generator in a lump through the supply path, and the fuel gas after the power generation reaction is discharged through the discharge path. be able to.
  • such a fuel cell is characterized in that the cross-sectional area of the connecting portion where the in-plane flow path is connected to the supply path is smaller than the cross-sectional area of the in-plane flow path. According to such a connection portion, it is possible to discharge water accumulated in the in-plane flow path when discharging fuel from the in-plane flow path. Further, such a fuel cell is characterized in that the cross-sectional area of a connection portion where the in-plane flow path is connected to the discharge path is smaller than the cross-sectional area of the in-plane flow path. According to such a connection portion, it is possible to discharge water accumulated in the in-plane flow path when discharging fuel from the in-plane flow path.
  • connection part where the in-plane flow path is connected to the supply path is smaller than the cross-sectional area of the connection part where the in-plane flow path is connected to the discharge path.
  • the water is discharged from the in-plane flow path by generating a pressure difference between the supply path side and the discharge path side for water in the in-plane flow path in which water is accumulated. It is characterized by having water discharge means. According to such a water discharging means, the water accumulated in the in-plane flow path is discharged from the in-plane flow path due to the pressure difference, so that the fuel can flow smoothly into the in-plane flow path.
  • the water discharging means discharges water from the in-plane flow path by creating a pressure difference by opening a part of the discharging path to the atmosphere.
  • a pressure difference is instantaneously generated in the in-plane flow path by opening the discharge path to the atmosphere, and it is possible to discharge water from the in-plane flow path by this pressure difference.
  • the cooling means discharges the heat from the heat radiating portion by flowing at least a gas staying near the heat radiating portion.
  • the flowing gas radiates heat from the radiating section sequentially, thereby suppressing a rise in the temperature of the power generating section.
  • the fuel cell according to the present invention includes a gas flow means and a detection means for detecting an environmental condition for controlling driving of the cooling means. Characterize. When the gas flow means and the cooling means are driven in accordance with the environmental conditions, the power generation unit can be driven under conditions that allow stable power generation.
  • such a fuel cell is characterized in that the detecting means detects at least temperature and / or humidity as environmental conditions. By detecting the temperature and / or humidity, the temperature of the power generation unit and the amount of water remaining in the power generation unit can be calculated, and power can be generated under suitable conditions.
  • the detecting means detects the temperature and humidity of the oxidizing gas supplied to the power generation unit, the temperature and humidity of the oxidizing gas discharged from the power generation unit, and the temperature of the power generation unit. It is characterized in that it is arranged in a possible location. By detecting the temperature and / or humidity at each of these points of the fuel cell, it becomes possible to accurately calculate the amount of water remaining in the power generation unit. Furthermore, such a fuel cell is characterized in that it has a control board equipped with a control circuit for controlling the driving of at least the gas flow means and the cooling means based on environmental conditions. According to such a control circuit, the driving of the gas flowing means and the cooling means can be controlled, and the power generation unit can generate power under suitable conditions.
  • the driving of the gas flow means and the cooling means is controlled in accordance with the amount of water contained in the power generation unit calculated based on the environmental conditions and the amount of power generated by the power generation unit. It is characterized by the following. According to the gas flowing means and the cooling means whose driving is controlled in this manner, the amount of water remaining in the power generation unit can be set to a suitable condition, and stable power generation can be performed.
  • the fuel cell according to the present invention is characterized in that it has a fuel supply means for supplying a fuel for reacting with the oxidant gas from the fuel storage unit to the power generation unit when driving the power generation unit. With such fuel supply means Then, fuel can be supplied to the power generation unit from the fuel gas storage unit separately provided for the power generation unit.
  • the fuel cell according to the present invention is characterized by having pressure control means for controlling the pressure of the fuel gas supplied to the power generation unit.
  • pressure control means for controlling the pressure of the fuel gas supplied to the power generation unit.
  • the fuel cell according to the present invention includes: a power generation unit provided with an opening of a flow path of an oxidizing gas containing at least oxygen on a side surface; and a radiator connected to the power generator and radiating heat from the power generator.
  • Gas flow means for flowing the oxidizing gas in the flow path is provided along the side surface of the power generation unit, and cooling means for cooling the heat radiation unit is provided along the side surface and adjacent to the gas flow unit.
  • such a fuel cell is characterized by having at least a casing that covers a power generation unit, a heat radiation unit, a gas flow unit, and a cooling unit. According to such a housing, various devices provided in the fuel cell can be protected from the outside, and the flow of air in the fuel cell can be controlled.
  • the gas flowing means draws the oxidizing gas from the opening and discharges the oxidizing gas from the first exhaust port provided in the housing to oxidize the oxidizing gas in the flow path. It is characterized by flowing agent gas. According to such a gas flow means, the oxidizing gas can flow efficiently in the fuel cell, and the power generation can be performed stably. Further, in such a fuel cell, the gas flowing means draws the oxidizing gas into the fuel cell from the first intake port provided in the housing, thereby oxidizing the oxidizing gas independent of the flow of the oxidizing gas by the cooling means. It is characterized by forming a flow of agent gas. By sucking the oxidizing gas from the first intake port, the oxidizing gas can be caused to flow separately from the flow of the oxidizing gas flowing by the cooling means.
  • the first intake port is provided at a position facing the first exhaust port, and gas flow means is disposed between the first intake port and the first exhaust port. It is characterized by being established. According to the first intake port, the first exhaust port, and the gas flow means disposed at such a position, the flow of the oxidant gas supplied to the power generation unit and the flow of the oxidant gas for cooling are performed. The flow and can be different flows.
  • the cooling means discharges the oxidizing gas from the second exhaust port provided in the housing to cause the oxidizing gas to flow near the heat radiating portion.
  • the flow of the oxidizing gas causes the heat radiating section to radiate heat sequentially, thereby suppressing a rise in the temperature of the power generating section.
  • the cooling means draws the oxidant gas into the fuel cell from the second intake port provided in the housing. According to such a cooling means, a flow different from the flow of the oxidizing gas flowed by the gas flow means can be formed.
  • the second intake port is provided at a position facing the second exhaust port, and cooling means is arranged between the second intake port and the second exhaust port. It is characterized by being established.
  • the opening has a tapered shape narrowing along the depth direction of the flow path of the oxidizing gas. According to such an opening, the flow resistance can be reduced when the oxidizing gas flows into the flow path of the oxidizing gas, and the oxidizing gas can flow smoothly.
  • Such a fuel cell is characterized in that the width of the opening is larger than the width of the flow path of the oxidizing gas. According to such an opening width, the flow resistance can be reduced when flowing the oxidizing gas into the flow path.
  • such a fuel cell is characterized in that the opening width is wider in the horizontal direction and / or the vertical direction than the flow path width. According to the opening having such an opening width, the flow path resistance can be further reduced.
  • the fuel cell according to the present invention is characterized in that it has a gas flow means and a detection means for detecting an environmental condition for controlling the driving of the cooling means. Driving the gas flow means and the cooling means according to the environmental conditions enables stable power generation.
  • such a fuel cell is characterized in that the detecting means detects at least temperature and temperature or humidity as environmental conditions. By detecting the temperature and / or humidity, the temperature of the power generation unit and the amount of water contained in the power generation unit can be calculated, and power generation can be performed under suitable conditions.
  • the detecting means detects the temperature and humidity of the oxidizing gas supplied to the power generating unit, the temperature and humidity of the oxidizing gas discharged from the power generating unit, and the temperature of the power generating unit. It is characterized by being arranged at each possible position. By detecting the temperature and / or humidity at each of these locations, it is possible to accurately calculate the amount of water remaining in the power generation unit. It becomes possible.
  • such a fuel cell is characterized in that a control board having at least a control circuit for controlling the driving of the gas flowing means and the cooling means based on environmental conditions is provided. According to such a control board, the gas flowing means and the cooling means can be controlled.
  • water discharging means for discharging water from a flow path of the fuel gas supplied to the power generation unit to react with the oxidizing gas is provided along an end face of the power generation unit.
  • fuel gas supply means for supplying fuel gas from the fuel gas storage unit to the power generation unit when driving the power generation unit is disposed along an end face of the power generation unit.
  • the fuel gas can be supplied to the power generation unit from the fuel gas storage unit separately provided for the power generation unit, and the space in the fuel cell can be used efficiently. Becomes possible.
  • the electronic device includes a power generation unit provided with a flow path of at least an oxidizing gas containing oxygen; a heat radiation unit connected to the power generation unit and radiating heat from the power generation unit; A fuel cell having a gas flow means for flowing, and a cooling means driven independently of the gas flow means and cooling a radiator is provided, and is driven by being supplied with electric power from the fuel cell. And According to such an electronic device, the electronic device can be driven stably.
  • an electronic device includes a power generation unit provided with an opening portion of a flow path of at least an oxygen-containing oxidant gas on a side surface, and a power generation unit connected to the power generation unit.
  • a gas radiating section for radiating oxidant gas in the flow path is provided along a side surface of the power generation section, and a cooling section for cooling the radiating section is provided along the side surface.
  • a fuel cell disposed adjacent to the fuel cell, and driven by being supplied with power from the fuel cell. According to such an electronic device, it is possible to stably drive the electronic device and provide a portable electronic device.
  • FIG. 1 is an exploded perspective view showing the structure of a fuel cell according to the present invention.
  • FIG. 2A is a side view showing the structure of a housing constituting the fuel cell according to the present invention.
  • FIG. 2B is a side view showing another side surface showing the structure of the casing constituting the fuel cell according to the present invention.
  • FIG. 2C is an end view showing the structure of the housing constituting the fuel cell according to the present invention.
  • FIG. 2D is an end view showing another end surface showing the structure of the housing constituting the fuel cell according to the present invention.
  • FIG. 3 is a perspective view showing an overview of a power generation unit constituting the fuel cell according to the present invention.
  • FIG. 4 is an exploded perspective view showing a part of a power generation unit constituting the fuel cell according to the present invention.
  • FIG. 5A is a plan view showing the structure on the front side of the separator showing the structure of the separator forming the fuel cell according to the present invention.
  • FIG. 5B is a plan view showing the structure of the back surface of the separator showing the structure of the separator constituting the fuel cell according to the present invention.
  • FIG. 6A is a cross-sectional view of a separator showing the structure of another example of a separator suitable for the fuel cell according to the present invention.
  • FIG. 6B is an essential part cross-sectional view showing the cross-sectional structure of the end of the separator showing another example of the structure of the separator suitable for the fuel cell according to the present invention.
  • FIG. 7A is a plan view of an upper plate-like portion showing the structure of another example of a separator suitable for a fuel cell according to the present invention.
  • FIG. 7B is a plan view showing a structure of another example of a separator suitable for a fuel cell according to the present invention, showing a state where a heat transfer section is fitted in a lower plate-like section.
  • FIG. 7C is a plan view showing the structure of another example of the separator suitable for the fuel cell according to the present invention, as viewed from the back side of the lower plate-like portion.
  • FIG. 8 is a plan view showing the structure of the fuel cell according to the present invention.
  • FIG. 9 is a diagram for explaining a control method for controlling the temperature of the power generation unit and the amount of moisture remaining in the power generation unit in the fuel cell according to the present invention.
  • FIG. 10 is a diagram showing a specific structure of the separator according to the present embodiment, and is a plan view showing the structure of the separator viewed from the front side.
  • FIG. 11 is a diagram illustrating a specific structure of the separator according to the present embodiment, and is a side view illustrating the structure as viewed from a side surface of the separator.
  • FIG. 12 is a diagram showing a specific structure of the separator according to the present embodiment, and is a plan view showing a structure of the separator viewed from the back side.
  • FIG. 13 is a plan view showing a specific structure of the fuel cell device according to the present embodiment.
  • FIG. 14 is a side view showing a specific structure of the fuel cell device according to the present embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
  • the fuel cell 1 is composed of a housing 10, a control board 20, a power generation unit 30, a cooling fan 51, an air supply fan 52, 53, a hydrogen purge valve 54, a regulator 55, and the like. ⁇ Equipped with manual pulp 56. Further, the fuel cell 1 receives the hydrogen gas supplied from the hydrogen storage cartridge 60 storing the hydrogen gas, and generates power.
  • the housing 10 has a substantially rectangular parallelepiped outer shape, and has a hollow inside so as to cover various devices mounted on the fuel cell 1 and a bottom surface. Is open.
  • the housing 10 is provided with exhaust ports 11, 12, and 13, and intake ports 14, 15; the upper end of the housing 10 is formed with exhaust ports 11, 12, 13,. It is an inclined surface facing the side surface.
  • the exhaust port 11 and the exhaust ports 12 and 13 are formed so as to be adjacent to one side surface of the housing 10, and the inside of the fuel cell 1 is used to cool the power generation unit 30.
  • the air that has flowed in and the air that has undergone the power generation reaction by the power generation unit 30 are discharged from the exhaust port 11 and the exhaust ports 12 and 13, respectively.
  • the exhaust port 11 is an air outlet through which air for radiating heat from the radiating fins 33 described later is discharged from the fuel cell 1. Further, the exhaust port 11 is opened in a substantially rectangular shape on the side surface of the housing 10, and a plurality of the exhaust ports 11 are formed in a vertical direction.
  • the exhaust ports 12 and 13 serve as outlets for discharging the air supplied to the power generation unit 30 when the power generation unit 30 performs power generation, and have a rectangular shape on the side surface of the housing 10. And a plurality of openings are formed in the vertical direction along the exhaust port 11. Further, the exhaust ports 11, 12, 13 are formed so that the dimension in the longitudinal direction is gradually reduced along the vertical direction of the side surface of the housing 10.
  • the intake ports 14 and 15 are provided on the side of the housing 10 facing the side of the housing 10 where the exhaust port 11 and the exhaust ports 12 and 13 of the housing 10 are formed. It is formed with air for cooling the power generation section 30 from the intake ports 14 and 15. 4977
  • the air containing oxygen used for the power generation reaction by the electric power unit 30 is taken into the fuel cell 1.
  • the air intake port 14 is an air intake port through which air for radiating heat from the radiating fins 33 described later is taken into the fuel cell 1, and has a substantially rectangular opening on the side surface of the housing 10. , Are formed in plural in the vertical direction.
  • the intake port 15 serves as an intake port for taking in the air supplied to the power generation unit 30 when the power generation unit 30 performs power generation. It is formed in a shape, and a plurality of openings are formed upward and downward along the intake port 14.
  • one end face of the casing 10 has a connection hole through which wiring for transmitting and receiving various signals between the fuel cell 1 and the outside is passed. 16 can be formed. Further, a required connection hole 18 can be formed on another end face.
  • a control circuit for controlling various devices constituting the fuel cell 1 is formed on the control board 20, and the control board 20 is arranged above the power generation unit 30. Is established. Although the details of the control circuit are not shown in detail in the figure, for example, control of the drive of the cooling fan 51, the air supply fans 52, 53, or the control circuit of the opening / closing operation of the hydrogen purge valve 54, the power generation unit 3
  • a voltage conversion circuit such as a DCZDC converter that boosts the voltage output by 0, and various environmental conditions such as temperature and humidity detected by a sensor described later are acquired to control instructions on driving various devices. Can be performed by a circuit mounted on the device.
  • the control board 20 is provided inside the fuel cell 1, but it may be provided outside the fuel cell 1, for example, the drive board from the fuel cell 1 Various electronic devices to which electric power is provided may include the control board 20.
  • the power generation unit 30 will be described in detail with reference to FIGS. 1, 3, 4, 5A, and 5B. As shown in FIGS. 1 and 3, the power generation unit 30 It has a substantially rectangular parallelepiped shape, and a part of the side surface facing the side surface 39 facing the cooling fan 51 and the air supply fans 52, 53 is cut out in a rectangular shape along the vertical direction of the power generation unit 30. It is arranged on the base 57.
  • a cooling fan 51 and air supply fans 52, 53 are arranged adjacent to each other along a side surface 39 of the power generation unit 30.
  • the cooling fan 51 arranged in this way radiates heat from the heat radiation fin 33.
  • the air supply fans 52 and 53 are arranged so as to face the opening 34, and allow the air to flow in the power generation unit 30 through the opening 34.
  • the power generation unit 30 of the present example has a structure in which a joined body 32 is sandwiched between nine separators 31 and eight power generation cells for generating power are connected in series. Since such a power generation cell can output a voltage of about 0.6 V with one element, the entire power generation unit 30 can output a voltage of 4.8 V.
  • the power generation unit 30 can pass a current of about 2 A, and the output power is ideally 9.6 W, but the actual output power is ideal due to heat generation in the power generation reaction. It is about 6.7 W, which is about 70% of the output power. However, as will be described later, the output power can be further increased by adjusting the amount of water contained in the joined body 32 and smoothly supplying hydrogen gas to the power generation unit 30.
  • the number of power generation cells forming the power generation unit 30 is not limited to eight as in the present embodiment, and a required number of power generation cells are required according to the output power required to drive various electronic devices.
  • the power generation unit 30 can also be formed.
  • An opening 34 formed in each separator 31 faces the side surface 39 of the power generation unit 30.
  • each opening 3 is also formed on a side surface opposite to the side surface 39 of the power generation unit 30.
  • An opening 40 is formed to correspond to 4.
  • the opening 34 and the opening 40 facing the side opposite to the side 39 facing the opening 34 supply and exhaust air containing oxygen to the power generating unit 30. Subsequently, the power generation unit 30 will be described in more detail with reference to FIGS. 4, 5A, and 5B. As shown in FIG.
  • the joined body 32 sandwiched between the separators 31 has a solid polymer electrolyte membrane 36 having ion conductivity when moisture is absorbed, and an electrode sandwiching the solid polymer electrolyte membrane 36 from both sides. Formed from poles 37. Further, a sealing member 35 that seals between the separator 31 and the joined body 32 when the stack structure is formed is arranged near the periphery of the joined body 32.
  • the sealing member 35 may be made of a material that can sufficiently insulate the peripheral edge of the separator 31 from the peripheral edge of the joint 32.
  • the solid polymer electrolyte membrane 36 for example, a sulfonic acid-based solid polymer electrolyte membrane can be used.
  • the electrode 37 an electrode carrying a catalyst such as platinum for promoting a power generation reaction can be used.
  • the power generation cell constituting the power generation unit 30 is formed by two separators 31 and a joined body 32 sandwiched between the separators 31.
  • FIG. 4 shows two power generation cells 5 connected in series. 0 is shown.
  • the separator 31 constituting the power generation unit 30 has a flow path 43, a back surface of the surface on which the flow path 43 of the separator 31 is formed.
  • a connection part 46 connecting the discharge hole 41 and a heat radiation fin 33 are provided.
  • the flow path 43 is an in-plane flow path for flowing hydrogen gas, which is a fuel gas, into the plane of the separator 31.
  • the flow path 43 is formed so as to meander inside the surface of the separator 31 in order to increase the efficiency of the power generation reaction, and has a shape such that hydrogen gas is supplied to the entire electrode 37.
  • the supply hole 42 is used for supplying hydrogen gas to the flow path 43 from a hydrogen gas storage unit such as a hydrogen storage cartridge 60 provided outside the power generation unit 30. Channel.
  • the connection part 45 connects the flow path 43 with the supply hole 42 and supplies hydrogen gas to the flow path 43.
  • the connection part 46 connects the flow path 43 and the discharge hole 41, and discharges the hydrogen gas after the power generation reaction from the flow path 43.
  • the cross-sectional area of the connecting portions 45 and 46 is set to be smaller than the cross-sectional area of the flow path 43 when the stack structure is formed by the separator 31 and the joined body 32. It is formed so that, for example, the width of the connection portions 45 and 46 is smaller than the width of the flow path 43. Further, the width of the connection portion 45 is formed so as to be smaller than the width of the connection portion 46, and the width of the inlet side of the hydrogen gas into the flow path 43 is made smaller than the width of the outlet side.
  • the supply hole 42 and the discharge hole 41 are connected between the separators 31 stacked when the stack structure is formed, and are connected to a supply path for supplying hydrogen gas to the separators 31.
  • water accumulates in the flow path 43, such a discharge path is opened to the atmosphere by a hydrogen purge valve 54 described later, so that a pressure difference between the supply path side and the discharge path side of the water stored in the flow path 43 is established. Water can be discharged by such a pressure difference. Further, even when water is accumulated in the flow path 43 of any separator 31 when the stack structure is formed, a pressure difference can be instantaneously generated only in the flow path 43 in which the water is stored. It is possible to discharge water and supply hydrogen gas to the power generation unit 30 stably.
  • the flow path 38 is formed on the back side of the surface of the separator 31 on which the flow path 43 is formed, and the flow path for flowing air containing oxygen through the flow path 38 is provided. Road.
  • the flow path 38 is formed so as to extend in the width direction of the separator 31, opens at a side edge of the separator 31, and is formed in a plurality along the longitudinal direction of the separator 31.
  • air containing oxygen is supplied to and exhausted from the flow path 38 through openings 34 and 40 in which the flow path 38 opens at the ends of the separator 31.
  • the width of the openings 34, 40 is The width of the flow path 38 is made larger than the width of the flow path 38, and the width of the flow path 38 is made narrower in the depth direction of the flow path 38 from the openings 34, 40.
  • the flow path resistance of the air can be reduced so that the air flows smoothly.
  • the opening widths of the openings 34, 40 in the height direction are set to be larger than those of the flow passages 38, and the opening widths are determined in the vertical and horizontal directions of the openings 34, 4Q.
  • the flow path resistance can be further reduced by forming a tapered shape that is narrowed along the depth direction.
  • a water-absorbing member having water absorption is arranged in the flow path 38, and the water-absorbing member is drawn out of the separator 31 so that the water accumulated in the flow path 38 can be sucked out of the separator 31. it can.
  • FIG. 6A is a cross-sectional view showing the structure of the separator 70.
  • the separator 70 includes an upper plate-like portion 71, a heat transfer portion 72, and a lower plate-like portion 73, and fuel gas leaks from the flow path.
  • the sealing member 74 is sandwiched between the upper plate-shaped portion 71 and the lower plate-shaped portion 3 so as not to be formed.
  • the sealing member 74 from a material having higher thermal conductivity than the material forming the upper plate-shaped portion 71 and the lower plate-shaped portion 73, the heat radiation effect from the separator 70 is enhanced. You can also.
  • a sealing member 74 a sealing member in which a member having a high thermal conductivity is embedded in a resin is preferable.
  • a sealing member such as Co-therm (trade name of Taiyo Wire Mesh Co., Ltd.) is preferable. Can be used.
  • the heat transfer section 72 is formed so as to extend to the radiation fins 75, and radiates heat generated during power generation from the separator 70. Further, the heat transfer section 72 is formed of a material having a higher thermal conductivity than that of the material forming the upper plate-shaped section 71 and the lower plate-shaped section 73, and improves the heat radiation characteristics of the separator 70. Can enhance it can.
  • a material for forming the heat transfer section 72 for example, copper, which is a metal having relatively high thermal conductivity, can be used. It is also possible to use oxygen-free copper with enhanced corrosion resistance or a copper plate that has been subjected to surface treatment to increase corrosion resistance.
  • a flow path 79 extending in the vertical direction in the figure is formed in the lower plate-like portion 73, and serves as a flow path when air containing oxygen flows. Further, as shown in FIG. 6B, at the end of the separator 70, a sealing member 74 is sandwiched between the upper plate-shaped portion 71 and the lower plate-shaped portion 73, and the heat transfer portion 72 is externally connected. And the deterioration of the heat transfer section 72 due to the power generation reaction is suppressed.
  • FIG. 7A to 7C are plan views of the upper plate-shaped portion 71, the heat transfer portion 72, and the lower plate-shaped portion 73 that constitute the separator 70.
  • a flow path 78 for flowing hydrogen gas is formed in the upper plate-shaped portion 71.
  • the flow path 78 is formed in a shape meandering in the plane so that hydrogen gas flows in the entire plane.
  • the upper plate-shaped portion 71 has a supply hole 77a for supplying hydrogen gas to the flow path 78 and a discharge hole 76a for discharging hydrogen gas after the power generation reaction.
  • the heat transfer section 72 has a substantially plate shape, and is fitted into the lower plate section 73.
  • the heat transfer section 72 extends to the heat radiation fins 75 and radiates heat from the separator 70. Further, a sealing member 74 is arranged at an end of the lower plate-shaped portion 73 so as to isolate the heat transfer portion 72 from the outside, and the lower plate-shaped portion 73 and the upper plate-shaped portion 71 are disposed. Further, the heat transfer section 72 is sandwiched therebetween to form an integral separator 70.
  • the lower plate-shaped portion 73 has a supply hole 77 b and a discharge hole 76 b aligned with the supply hole 77 a and the discharge hole 76 a in the sealing member 74. You.
  • the separator 70 can be assembled.
  • An integrated supply hole and discharge hole can be formed.
  • oxygen is applied to the back side of the lower plate-shaped portion 73.
  • a flow path 79 for flowing the containing air is formed, and a supply hole 77c for supplying hydrogen gas to the flow path 78 and a discharge hole 76c for discharging hydrogen gas are formed.
  • the fuel cell 1 has a cooling fan 51, which is disposed adjacently along the side surface 39 facing the opening 34 of the power generation unit 30, as described above. It has supply fans 52 and 53. Further, a temperature sensor 64 for detecting the temperature of air taken in from the outside of the fuel cell 1 by the cooling fan 51, a humidity sensor 65 for detecting humidity, and a power generation unit 30 by the air supply fans 52, 53. It has a temperature sensor 61 for detecting the temperature of the air discharged from the air and a humidity sensor 62 for detecting the humidity.
  • the power generation unit 30 has a temperature sensor 63 for detecting the temperature of the power generation unit 30.
  • the cooling fan 51 causes the air taken in from the intake port 14 to flow from the intake port 14 to the exhaust port 11 as shown by the arrow in the figure, and discharges the fuel cell 1 to the outside.
  • a cooling fan 51 is disposed between the intake port 14 and the exhaust port 11, and a radiation fin 33 disposed between the cooling fan 51 and the intake port 14 is a cooling fan 51.
  • the heat is dissipated by the air flowing through the air.
  • the power generation unit 30 is not limited to the vicinity of the heat radiating fins 33, but can be cooled by flowing air in the entire fuel cell 1.
  • the air supply fans 52 and 53 allow air to flow through the inlet 15, the power generator 30 and the outlets 12 and 13.
  • the air supply fans 52, 53 flow air containing oxygen taken in from the air inlets 15 into the power generator 30 and air discharged after the power generation reaction in the power generator 30 through the air outlets 12, 13. Discharge to outside of fuel cell 1.
  • the power generation unit 30 includes the flow path 38 and the openings 34 and 40, and
  • the supply fans 52, 53 form a flow of air from the intake port 15 to the flow path 38, and the exhaust ports 12, 13, as indicated by the arrows in the figure.
  • the air flow formed by the cooling fan 51 and the air flow formed by the air supply fans 52 and 53 can be mutually independent air flows.
  • the cooling fan 51 and the air supply fans 52, 53 can be independently driving the cooling fan 51 and the air supply fans 52, 53, the cooling of the power generation unit 30 and the supply and discharge of air to and from the power generation unit 30 can be performed independently.
  • the arrangement of the cooling fan 51 and the air supply fans 52, 53 in the fuel cell 1 of the present embodiment is not limited to the arrangement formed in the opening formed on the side surface of the plurality of power generation units for supplying and exhausting air. It is also possible to arrange these cooling fans 51 and air supply fans 52, 53 so that they can supply and exhaust air to and from multiple power generation units at once. Further, the cooling fan 51 and the air supply fans 52, 53 can be rotated in the reverse direction to cause the air to flow in the opposite direction.
  • the temperature sensors 61, 64, the humidity sensors 62, 65, and the temperature sensor 63 are used to detect the temperature and humidity of the air taken in from the intake port 14, and the air exhausted from the exhaust ports 12, 13, respectively. The temperature and humidity, and the temperature of the power generation unit 30 are detected.
  • the temperature sensor 63 is disposed near the center of the power generation unit 30 and detects the temperature of the power generation unit 30 when the power generation unit 30 performs power generation.
  • the temperature sensor 64 and the humidity sensor 65 are disposed near the intake port 14 so as not to obstruct the flow path of the air taken in from the intake port 14.
  • the temperature sensor 61 and the humidity sensor 62 are arranged so as not to obstruct the flow of air at the air outlet side of the power generation unit 30 facing the air supply fans 52 and 53.
  • the drive of the cooling fan 51 is controlled based on the data on the temperature of the power generation unit 30 detected by the temperature sensor 63, and the power generation unit 30 is driven under suitable temperature conditions.
  • the fuel cell 1 may be provided with a pressure sensor that detects the pressure of the supplied / exhausted air without being limited to the temperature and the humidity. Further, based on the temperature and humidity detected by the temperature sensor 64 and the humidity sensor 65, the relative humidity of the air taken in from the intake port 14 is calculated, and the temperature sensor 61 and the humidity sensor 62 determine the relative humidity.
  • the relative humidity of the air exhausted from the exhaust ports 12 and 13 is calculated.
  • the amount of water discharged from the fuel cell 1 can be obtained. Can be calculated.
  • the temperature sensors 61 and 64 and the humidity sensors 62 and 65 are arranged so as not to obstruct the flow of air, the power generation by the power generation unit 30 can be performed without any trouble.
  • the amount of water generated by the power generation reaction can be calculated based on the output power generated by the power generation unit 30. Therefore, the amount of water remaining in the power generation unit 30 can be calculated by taking the difference between the amount of water discharged from the fuel cell 1 and the amount of water generated by the power generation reaction.
  • the power generation reaction can be performed stably by setting the joined body 32 constituting the power generation unit 30 to an appropriately moistened state, the moisture remaining in the power generation unit 30
  • the air supply fans 52, 53 are driven based on the data on the amount, and stable power generation can be performed. For example, if the amount of water remaining in the power generation unit 30 is excessive, increasing the rotation speed of the air supply fans 52 and 53 can discharge excess water together with air from the power generation unit 30. it can.
  • the cooling fan 51 for controlling the temperature of the power generation unit 30 and the air supply fans 52 and 53 for controlling the amount of moisture remaining in the power generation unit 30 can be independently driven. Therefore, the flow of air from the cooling fan 51 and the flow of air from the air supply fans 52, 53 can be made independent, so that the amount of water remaining in the power generation section 30 can be controlled and the temperature of the power generation section 30 can be controlled. It is possible to accurately suppress the rise. Further, control of the temperature of the power generation unit 30 and the amount of moisture remaining in the power generation unit 30 will be specifically described with reference to FIG. In the figure, the horizontal axis represents the temperature of the power generation unit 30, and the vertical axis represents the amount of water remaining in the power generation unit 30. By controlling the driving of the cooling fan 51 and the air supply fans 52, 53, the temperature and residual moisture of the power generation unit 30 that changes every moment during power generation become a stable area near the center in the figure. Is adjusted as follows.
  • the environmental condition indicated by A in the figure is an environmental condition in which the temperature of the power generation unit 30 is higher and the amount of residual moisture in the power generation unit 30 is larger than the environmental condition in the stable region. It is necessary to reduce the amount of residual water. In such a case, increasing the rotation speed of the air supply fans 52 and 53 reduces the amount of water remaining in the power generation unit 30 and increasing the rotation speed of the cooling fan 51 to reduce the power generation unit 30. The temperature and the water content are further cooled and adjusted to a stable region where stable power generation can be performed under the environmental conditions indicated by A. .
  • the environmental condition indicated by B in the figure is an environmental condition in which the temperature of the power generation unit 30 is lower and the amount of moisture remaining in the power generation unit 30 is larger than the stable condition.
  • increasing the number of rotations of the air supply fans 52, 53 reduces the amount of water remaining in the power generation unit 30 and reduces the number of rotations of the cooling fan 51, thereby reducing the number of rotations of the power generation unit.
  • the temperature and moisture content of the power generation unit 30 are adjusted to a stable area where stable power generation can be performed under the environmental conditions indicated by B, with cooling to 30 being suppressed.
  • the environmental condition indicated by C in the figure is an environmental condition in which the temperature of the power generation unit 30 is lower and the amount of moisture remaining in the power generation unit 30 is smaller than the stable condition.
  • reducing the number of rotations of the air supply fans 52 and 53 to reduce the discharge of water generated by the power generation unit 30 and lowering the number of rotations of the co-cooling fan 51 to generate the power generation unit 3 Cooling to 0 is suppressed.
  • the temperature and the water content of the power generation unit 30 are adjusted to a stable region where stable power generation can be performed from the environmental conditions indicated by C. .
  • the environmental condition indicated by D in the figure is an environmental condition in which the temperature of the power generation unit 30 is higher and the amount of moisture remaining in the power generation unit 30 is smaller than the stable condition.
  • the number of rotations of the air supply fans 52 and 53 is reduced to reduce the discharge of water generated in the power generation unit 30 and the number of rotations of the cooling fan 51 is increased and the power generation unit 30 is reduced. Is further cooled.
  • the temperature and the water content of the power generation unit 30 fall within a stable region where stable power generation can be performed under the environmental conditions indicated by D. Adjusted.
  • the hydrogen purge valve 54, the regulator 55, and the manual valve 56 will be described with reference to FIGS. 1, 4, 5A, and 5B.
  • the hydrogen purge valve 54, the regulator 55, and the manual valve 56 are disposed adjacent to each other along the end face of the power generation unit 30.
  • the fuel cell 1 of this example it is possible to secure an area for arranging various devices on the end face side of the power generation unit 30, and various devices for driving the fuel cell 1 stably are provided. It can be stored in a compact.
  • the hydrogen purge valve 54 serving as a water discharging means for discharging the water accumulated in the flow path 43 is provided with a discharge path that is in contact with the flow path 43 and is opened to the atmosphere to form a flow path 4 in which water is stored. 3 can drain the water.
  • the hydrogen gas on the supply path side for the water accumulated in the flow path 43 PT / JP2003 / 014977
  • a pressure difference is generated between the pressure at the outlet and the pressure on the discharge path side that is open to the atmosphere, and the water accumulated in the flow path 43 is discharged from the flow path 43 due to the pressure difference.
  • the hydrogen purge valve 54 By generating a pressure difference between the supply path for supplying hydrogen gas and the discharge path of water that is opened to the atmosphere by the hydrogen purge valve 54, water accumulates even when the power generation unit 30 has a stack structure. Thus, water can be discharged from any of the flow paths 43 where the hydrogen gas is difficult to flow, and the hydrogen gas can flow smoothly through the flow paths 43 of all the separators 31.
  • the present invention is not limited to the power generation unit 30 having a plurality of separators 31, and water can be similarly discharged from a power generation unit having a single separator.
  • the hydrogen purge valve 54 can be driven by, for example, a driving method using an electromagnetic force, and power for driving the hydrogen purge valve 54 may be supplied from the power generation unit 30.
  • the regulator 55 which is a pressure control means for controlling the pressure of the hydrogen gas, adjusts the pressure of the hydrogen gas supplied from the hydrogen storage cartridge 60 to the required pressure, and Send to 0. For example, when the pressure of the hydrogen gas supplied from the hydrogen storage cartridge 60 is about 0.8 to 1.0 MPa, the regulator 55 raises the pressure of the hydrogen gas to 0.05 to 0.5 MPa. l The pressure can be reduced to about OMPa and supplied to the power generation unit 30.
  • FIG. 10 to FIG. 12 are a rear view, a side view, and a front view of the separator portion of this example.
  • the separator 81 has a groove 83 formed on the back surface thereof as a flow path for oxygen, and a groove 86 formed on the front surface thereof as a flow path for hydrogen. Is formed.
  • the back side may be arranged on the front side in some cases.
  • a plurality of grooves 83 extending linearly in the width direction of the separator 81 are formed on the oxygen supply side surface of the separator 81. Are extended in parallel with each other, so that in the longitudinal direction of the separator 81, the grooves 83 and the ridges 82 are alternately located.
  • the length L6 in the longitudinal direction of the substantially plate-shaped separator 81 is 79.5 mm, and the width L8 in the direction orthogonal thereto is 4 lmm.
  • the grooves 83 are open at both ends of the separator 81 so as to be wide.
  • the specific dimensions, in FIG. 1 0, groove 8 3 width L1 of the central portion which is parallel to the extension is a 2 mm, the width L 2 of the adjacent ridges 82 is also at 2 mm .
  • the groove 83 is tapered at both ends where the width is wide, and the starting position L0 of the tapered portion also formed in the thickness direction of the separator 81 is 8 mm from the end, and the starting position It is tapered at an angle of 2.15 ° from L0.
  • the opening width is increased by about 1 mm in the in-plane direction, and the width L3 at the end of the groove 83 is 3 mm, and the width is 3 mm.
  • the width L4 of the ridge portion 82 is tapered to 1 mm.
  • the tapered start position L9 of the ridge portion 82 is 5.5 mm from the end.
  • the opening width L5 near the center is 2.5 mm due to the effect of the screw holes, and the width 10 is 56.5 mm in the longitudinal direction of the power generator holding area connected to the heat radiating section 84 (Fig. 11). See), and the distance between screw holes L7 is 54.5 mm.
  • the thickness T1 of the heat radiating portion 84 is 1.3 mm, and the power generating body in which the grooves 83, 86 are formed.
  • the thickness T2 is 2.3 mm.
  • the hydrogen supply side surface 87 of the separator 81 has a groove 86 extending in a meandering pattern that reciprocates five times between the hydrogen supply hole 89 and the hydrogen discharge hole 88.
  • the meandering groove 86 has a depth of 0.6 mm and a width L 12 of 1. O mm, and the radius of curvature of the folded portion is 0.9 mm (inner diameter), 1. 9 mm (outer diameter).
  • the connecting portion 90 between the hydrogen supply hole 89 and the hydrogen discharge hole 88 has a smaller size than the groove 86, and the hydrogen supply hole 89 and the hydrogen discharge hole 88 are located in the longitudinal direction of the separator 81.
  • the width L 11 of the groove at this connection portion 90 is 0.5 mm, and the position L 15 of the connection portion 90 on the hydrogen discharge hole 88 side from the end in the width direction of the separator 81 is The center position is 7.9 mm, and the position L 16 of the connecting portion 90 on the hydrogen supply hole 89 side is 33.1 mm at the center position.
  • the turn-back position L 13 of the groove 86 extended in a meandering pattern of five reciprocations from the end near the hydrogen supply hole 89 and the hydrogen discharge hole 88 in the longitudinal direction of the separator 81 is 7 mm. It is.
  • the length L 14 between the folded portions of the groove 86 is 42 mm.
  • FIG. 13 is a plan view of the fuel cell device 100 of the present example.
  • the fuel cell device 100 has a stack structure in which a separator 81 and a power generator are stacked.
  • Fig. 13 shows a transparent view of the uppermost plate-shaped part that forms the stack structure, and separates the area where the power generation part 99 is located.
  • the grooves 86 formed on the surface of the data are indicated by broken lines in the figure.
  • the total length L 18 of the longitudinal dimension of the separator forming the power generation section 9 9 and the longitudinal dimension of the heat dissipating section 84 extending from the separator in the longitudinal direction is 78 mm, and the width of the separator is 78 mm.
  • L 8 is 4 l mm.
  • the ends of the heat radiating portions 84 are straight in the figure, but may have cutouts for passing various wirings.
  • the longitudinal length L 21 of the housing 91 that constitutes the fuel cell device 100 and houses each part including the power generation unit 99 is 95.5 mm, and the width L 20 is 5 7 mm.
  • the size of the fuel cell device 100 of this example is Has a longitudinal length of 95.5 mm on a plane and a width of S57 mm.
  • FIG. 14 is a side view of the fuel cell device 100 with the housing 91 removed from the side.
  • the power generation unit 99 has a stack structure formed by stacking nine separators 81 and sandwiching a power generator 96 between the separators 81, and has a structure in which eight power generation cells are connected in series. .
  • the power generation unit 99 is disposed on a base 98 serving as the bottom of the fuel cell device 100.
  • the height T4 from the bottom surface of the base 98 to the surface of the plate-shaped portion disposed at the top of the power generation unit 99 is 34.62 mm.
  • the height T5 from the bottom surface of the base 98 to the center in the thickness direction of the separator 81 stacked on the center of the power generation unit 99 is set to 17.78 mm.
  • the height is approximately the same as the height from the bottom to the center of the cooling fans 92 and air supply fans 93 and 94 arranged on the side of the power generation unit 99.
  • the height T6 of the power generation part 99 including the thickness of the base 95, the plate-shaped part 97, the stacked separator 81 and the power generation body 96 is 29.62 mm.
  • the height of the cooling fan 92 is determined by the height between the heat dissipating portion 84 disposed at the top of the power generating portion 99 and the heat dissipating portion 84 disposed at the bottom.
  • the cooling air can be supplied to the entire radiator 84.
  • the height of the air supply fans 93, 94 is approximately equal to the height between the uppermost groove 82 and the lowermost groove 82 of the power generation part 99, and the groove 82 contains oxygen as a whole. Air can be supplied sufficiently.
  • the fuel cell according to the present invention can accommodate various devices for driving such a fuel cell in a compact manner, and can be used in portable electronic devices such as notebook computers, mobile phones, and PDAs. It is suitable as a power supply for supplying power for driving.
  • the fuel cell 1 of the present invention is not limited to these portable electronic devices, and can be used as a power source for driving various electronic devices. Industrial applicability
  • the fuel cell of the present invention by suppressing the temperature rise of the power generation unit and controlling the amount of moisture remaining in the power generation unit, stable power generation can be achieved without causing a problem during power generation such as dry-up. It can be performed. Further, the temperature control of the power generation unit and the control of the amount of water remaining in the power generation unit can be independently and accurately performed, and a highly reliable fuel cell can be provided. Further, according to such a fuel cell, various devices for generating power can be housed in the fuel cell in a compact manner, and such a fuel cell can be downsized.
  • the portable electronic device by mounting a fuel cell having a portable size, the portable electronic device can be driven by the fuel cell. Can be installed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

 本発明の燃料電池は、少なくとも酸素を含む酸化剤ガスの流路が設けられた発電部と、発電部に接続され発電部から熱を放熱する放熱部と、流路において酸化剤ガスを流動させるガス流動手段と、ガス流動手段と互いに独立して駆動され放熱部を冷却する冷却手段とを有することを特徴とする。ガス流動手段と冷却手段との駆動とを独立して制御することにより、発電部の温度及びかかる発電部に残留する水分量が好適な条件となるように燃料電池を駆動させることができる。更に、発電を安定して行うことができると共に各種機器をコンパクトに収納した燃料電池及びこれを搭載した電子機器を提供することができる。

Description

明 細 書 燃料電池及びこれを搭載した電子機器 技術分野
本発明は、 燃料電池及びこれを搭載した電子機器に関する。 さらに詳 しくは、 燃料電池による発電を安定して行うための各種機器をコンパク トに収納した燃料電池及びこれを搭載した電子機器に関する。 背景技術
燃料電池は、 例えば水素ガスの如き燃料と空気に含まれる酸素の如き 酸化剤を電気化学的に反応させることにより発電を行う発電素子である。 燃料電池は、 発電により生成される生成物が水であることから環境を汚 染することがない発電素子として近年注目されており、 例えば自動車を 駆動するための駆動電源として使用する試みも行われている。
さらに、 上述の自動車駆動用の駆動電源に止まらず、 例えばノート型 パソコン、 携帯電話及び P D Aなどの携帯型電子機器の駆動電源として の燃料電池の開発も活発に行われている。 このような燃料電池において は、 所要の電力を安定して出力できると共に携帯可能なサイズ及び重量 とされることが重要となり、 各種技術開発が盛んに行われている。
また、燃料電池は発電セル(単位セル)を複数結合させることにより、 出力される電力量を高めることが可能であり、 例えば固体高分子電解質 膜の両面に電極を形成してなる接合体をセパレータで挟みこんで発電セ ルを形成し、 これら発電セルが積層されたスタック構造を有する燃料電 池も開発されている。
ところで、 上述の如き燃料電池によって発電を行う際には、 固体高分 子電解質膜にプロ トンを伝導させることが必要となり、 固体高分子電解 質膜が適度に吸湿していることが重要となる。
しかしながら、 燃料電池における発電反応は発熱反応であり、 発電反 応が活発に行われる部分は高温となり易い。 このため、 固体高分子電解 質膜に含まれる水分量が燃料電池の駆動と共に減少し、 燃料電池におけ る安定した発電に支障をきたす場合がある。
一方、 発電を行う際には電気化学的な反応によって水が生成されるこ とになるが、 セパレータに形成された燃料ガスの流路に水が蓄積された 場合、 水によって流路が閉塞され燃料ガスが円滑に流路内を流動しない 不具合が生じる。 流路内で燃料ガスが円滑に流動しない場合には、 燃料 ガスを接合体の面内に十分に供給することが困難となり、 燃料電池によ る発電を十分に行うことができない問題点が生じることになる。
上述した 2つの問題点は、 燃料電池による発電の際にかかる燃料電池 の湿度上昇の抑制と燃料電池に含まれる水分量の制御を両立させること が困難であることを示しており、 これら問題点を同時に解決することが できる技術が求められている。 特に、 スタック構造を有する燃料電池で は、 複数のセパレータに形成された流路に円滑に燃料ガスを流動させる と共に燃料電池を構成する接合体を適度に吸湿させた状態とするように かかる燃料電池の外部から酸素を含む空気を取り込み、 所要の電力を安 定して出力することができる技術が求められている。
また、 携帯可能な電子機器を駆動させるために燃料電池を用いる場合 には、 かかる燃料電池も携帯可能であることが望ましく、 安定して発電 を行うことができると共に小型化された燃料電池も求められている。 よって、本発明は上述したこれら問題点に鑑みてなされたものであり、 安定した発電を行うことができると共に燃料電池を駆動するための各種 機器をコンパク トに収納した燃料電池及びこれを搭載した電子機器を提 供することを目的とする。 発明の開示
本発明にかかる燃料電池は、 少なく とも酸素を含む酸化剤ガスの流路 が設けられた発電部と、 発電部に接続され発電部から熱を放熱する放熱 部と、 流路において酸化剤ガスを流動させるガス流動手段と、 ガス流動 手段と互いに独立して駆動され放熱部を冷却する冷却手段とを有するこ とを特徴とする。 このような燃料電池によれば、 ガス流動手段と冷却手 段とを独立して駆動させることにより発電部の温度上昇の抑制と発電部 に含まれる水分量の制御とを精度良く行うことができ、 発電部に安定し た発電を行わせることが可能となる。
このような燃料電池において、 発電部は、 イオン伝導性を有する伝導 体と伝導体を挟んで対峙する電極とを備える接合体と、 接合体を挟装す るセパレータとを有することを特徴とする。 伝導体に水分を十分吸湿さ せることにより発電の際の発電反応を支障なく行うことができると共に 小型且つ高出力を有する燃料電池を形成することが可能となる。
さらに、 このような燃料電池においては、 伝導体はプロ トン伝導体で あることを特徴とする。
さらに、 このような燃料電池においては、 セパレータは、 セパレータ の内部から放熱部に延在する伝熱部を有することを特徴とする。 このよ うな伝熱部によれば発電反応により発生した熱を発電部から放熱部に速 やかに伝播させることができ、 発電部の温度上昇を抑制することが可能 となる。
また、 このような燃料電池においては、 セパレータは、 流路から水を 吸水して除去するための吸水手段を有することを特徴とする。 このよう な吸水手段によれば、 酸化剤ガスを流動させる流路に蓄積された水を吸 い出すことができ、 かかる流路に円滑に酸化剤ガスを流すことが可能と なる。
さらにまた、 このような燃料電池においては、 発電部は、 接合体とセ パレータとが積層されてなるスタック構造を有することを特徴とする。 スタック構造が形成されていることにより発電部の出力電力を高め所要 の電力を出力することができる。
さらに、 このような燃料電池においては、 セパレータは、 セパレータ が接合体と接する面内に燃料を供給するための面内流路を有することを 特徴とする。 面内流路により燃料が接合体の略全面に供給され、 発電を 効率良く行うことが可能となる。
さらにまた、 このような燃料電池においては、 セパレータは、 面内流 路に燃料を供給するための供給孔及ぴ面內流路から燃料を排出する排出 孔を有することを特徴とする。 このような供給孔によれば燃料をセパレ ータに供給すると共に発電反応後の燃料をかかる面内流路から排出する ことができる。
さらに、 このような燃料電池においては、 隣接する各セパレータ間に おいて供給孔が互いに接続されて各セパレータに燃料を供給するための 供給路が形成されると共に、 排出孔が互いに接続されて各セパレータか ら燃料ガスを排出する排出路が形成されることを特徴とする。 接合体と セパレータとを積層されたスタック構造においては、 供給路を介して発 電体に一括して燃料ガスを供給することができると共に、 排出路を介し て発電反応後の燃料ガスを排出することができる。
さらにまた、 このような燃料電池においては、 面内流路が供給路に接 続される接続部の断面積は、 面内流路の断面積に比べて小さいことを特 徴とする。 このような接続部によれば、 面内流路から燃料を排出する際 に面內流路に蓄積された水を排出することが可能となる。 また、 このような燃料電池においては、 面内流路が排出路に接続され る接続部の断面積は、 面内流路の断面積に比べて小さいことを特徴とす る。 このような接続部によれば、 面内流路から燃料を排出する際に面内 流路に蓄積された水を排出することが可能となる。
また、 このような燃料電池においては、 面内流路が供給路に接続され る接続部の断面積は、 面内流路が排出路に接続される接続部の断面積に 比べて小さいことを特徴とする。 このような接続部によれば、 面内流路 から燃料を排出する際に面内流路に蓄積された水を排出することが可能 となる。
さらに、 このような燃料電池においては、 水が蓄積された面内流路に おいて水に対する供給路側と排出路側との間に圧力差を生じさせること によりかかる水を面内流路から排出する水排出手段を有することを特徴 とする。 このような水排出手段によれば、 面内流路に蓄積された水が圧 力差によって面内流路から排出されて面内流路に円滑に燃料を流動させ ることができる。
このような燃料電池において、 水排出手段は排出路の一部を大気開放 することにより圧力差を生じさせて水を面内流路から排出することを特 徴とする。 このような水排出手段によれば、 排出路を大気開放すること により瞬間的に面内流路内に圧力差が生じ、 この圧力差によって面内流 路から水を排出することが可能となる。
また、 本発明にかかる燃料電池においては、 冷却手段は、 少なく とも 放熱部の近傍に滞留するガスを流動させることにより放熱部から熱を放 熱させることを特徴とする。 流動されたガスが順次放熱部から熱を放熱 させることにより、 発電部の温度上昇を抑制することが可能となる。 また、 本発明にかかる燃料電池においては、 ガス流動手段及び冷却手 段の駆動を制御するための環境条件を検知する検知手段を有することを 特徴する。 環境条件に応じてガス流動手段及び冷却手段が駆動されるこ とにより安定して発電が行われるような条件で発電部を駆動することが 可能となる。
さらに、 このような燃料電池においては、 検知手段は、 環境条件とし て少なく とも温度及び/又は湿度を検知することを特徴とする。 温度及 び/又は湿度を検知することにより、 発電部の温度及び発電部に残留す る水分量を算出し、 好適な条件下で発電を行うことができる。
また、 このような燃料電池においては、 検知手段は、 発電部に供給さ れる酸化剤ガスの温度及び湿度、 発電部から排出される酸化剤ガスの温 度及び湿度、 及び発電部の温度を検知可能な位置に配設されることを特 徴とする。 燃料電池のこれら各箇所で温度及び/又は湿度を検知するこ とにより発電部に残留する水分量を精度良く算出することが可能となる。 さらにまた、 このような燃料電池においては、 環境条件に基づいて少 なく ともガス流動手段及び冷却手段の駆動を制御する制御回路を搭載し た制御基板を有することを特徴とする。 このような制御回路によれば、 ガス流動手段及び冷却手段の駆動を制御し好適な条件下で発電部に発電 を行わせることができる。
また、 このような燃料電池においては、 環境条件と発電部により発電 された電力量とに基づいて算出された発電部に含まれる水分量に応じて ガス流動手段及び冷却手段の駆動が制御されることを特徴とする。 この ようにして駆動が制御されるガス流動手段及ぴ冷却手段によれば、 発電 部に残留する水分量を好適な条件とすることができ、 安定した発電を行 うことが可能となる。
また、 本発明にかかる燃料電池においては、 発電部を駆動する際に、 酸化剤ガスと反応させるための燃料を燃料貯蔵部から発電部に供給する 燃料供給手段を有することを特徴とする。 このような燃料供給手段によ れば、 発電部に対して別途設けられた燃料ガス貯蔵部から燃料を発電部 に供給することができる。
また、 本発明にかかる燃料電池においては、 発電部に供給される燃料 ガスの圧力を制御する圧力制御手段を有することを特徴とする。 燃料の 圧力を制御しながら供給することにより発電部は安定した発電を行うこ とが可能となる。
本発明にかかる燃料電池は、 側面に少なく とも酸素を含む酸化剤ガス の流路の開口部が設けられた発電部と、 発電部に接続され発電部から熱 を放熱する放熱部とを備え、 流路において酸化剤ガスを流動させるガス 流動手段が発電部の側面に沿って配設され、 放熱部を冷却する冷却手段 が側面に沿ってガス流動手段と隣接するように配設されていることを特 徴とする。 このような燃料電池によれば、 かかる燃料電池に収納される 各機器をコンパク トに配置することができると共に酸化剤ガスを効率良 く流動させることができ、 小型で且つ所要の発電を安定して行うことが できる。
このような燃料電池において、 かかる燃料電池は少なく とも発電部、 放熱部、 ガス流動手段、 及び冷却手段を覆う筐体を有することを特徴と する。 このような筐体によれば、 燃料電池に配設される各種機器を外部 から保護することができると共にかかる燃料電池内で空気の流動を制御 することが可能となる。
また、 このような燃料電池において、 ガス流動手段は、 開口部から酸 化剤ガスを吸気すると共に筐体に設けられた第 1の排気口から酸化剤ガ スを排出することにより流路において酸化剤ガスを流動させることを特 徴とする。 このよ うなガス流動手段によれば、 燃料電池内で酸化剤ガス を効率良く流動させることができ、 発電を安定して行うことが可能とな る。 さらに、 このような燃料電池において、 ガス流動手段は、 筐体に設け られた第 1の吸気口から酸化剤ガスを燃料電池内に吸気することにより 冷却手段による酸化剤ガスの流動と独立した酸化剤ガスの流れを形成す ることを特徴とする。 このような第 1の吸気口から酸化剤ガスを吸気す ることにより、 冷却手段により流動される酸化剤ガスの流れと別に酸化 剤ガスを流動させることができる。
さらにまた、 このような燃料電池において、 第 1の吸気口は第 1の排 気口と対面する位置に設けられると共にガス流動手段が第 1の吸気口と 第 1の排気口との間に配設されることを特徴とする。 このような位置に 配設される第 1の吸気口、 第 1の排気口及ぴガス流動手段によれば、 発 電部に供給される酸化剤ガスの流れと冷却のための酸化剤ガスの流れと を別の流れとすることができる。
また、 本発明にかかる燃料電池において、 冷却手段は、 筐体に設けら れた第 2の排気口から酸化剤ガスを排気することにより放熱部の近傍に おいて酸化剤ガスを流動させることを特徴とする。 このような冷却手段 によれば、 流動された酸化剤ガスが順次放熱部から熱を放熱させること により、 発電部の温度上昇を抑制することが可能となる。
このような燃料電池においては、 冷却手段は、 筐体に設けられた第 2 の吸気口から酸化剤ガスを燃料電池内に吸気することを特徴とする。 こ のような冷却手段によれば、 ガス流動手段によって流動される酸化剤ガ スの流れとは別の流れを形成することができる。
さらに、 このような燃料電池においては、 第 2の吸気口は、 第 2の排 気口と対面する位置に設けられると共に冷却手段が第 2の吸気口と第 2 の排気口との間に配設されることを特徴とする。 このように第 2の吸気 口、 第 2の排気口及び冷却手段が配置されることにより放熱部から熱を 放熱させるために酸化剤ガスを円滑に流動させることが可能となる。 本発明にかかる燃料電池においては、 開口部は、 酸化剤ガスの流路の 奥行き方向に沿って狭くなるテーパ形状とされることを特徴とする。 こ のような開口部によれば、 酸化剤ガスをかかる酸化剤ガスの流路に流動 させる際に流路抵抗を低減することができ、 円滑に酸化剤ガスを流動さ せることが可能となる。
このような燃料電池においては、 開口部の開口幅は、 酸化剤ガスの流 路の流路幅に比べて大きいことを特徴とする。 このような開口幅によれ ば、 酸化剤ガスの流路に流動させる際に流路抵抗を低減することができ る。
さらに、 このような燃料電池においては、 開口幅は、 流路幅と比べて 横方向及び/又は縦方向について幅広とされることを特徴とする。このよ うな開口幅を有する開口部によれば、 さらに流路抵抗を低減することが 可能となる。
また、 本発明にかかる燃料電池においては、 ガス流動手段及び冷却手 段の駆動を制御するための環境条件を検知する検知手段を有することを 特徴とする。 環境条件に応じてガス流動手段及び冷却手段が駆動される ことにより安定して発電を行うことができる。
さらに、 このような燃料電池において、 検知手段は、 環境条件として 少なく とも温度及びノ又は湿度を検知することを特徴とする。 温度及び 又は湿度を検知することにより、 発電部の温度及び発電部に含まれる 水分量を算出し、 好適な条件下で発電を行うことができる。
さらにまた、 このような燃料電池において、 検知手段は、 発電部に供 給される酸化剤ガスの温度及び湿度、 発電部から排出される酸化剤ガス の温度及び湿度、 並びに発電部の温度を検知可能な位置にそれぞれ配設 されることを特徴とする。 このような各位置にて温度及び/又は湿度を 検知することにより発電部に残留する水分量を精度良く算出することが 可能となる。
また、 このような燃料電池においては、 環境条件に基づいて少なく と もガス流動手段及び冷却手段の駆動を制御する制御回路を搭載した制御 基板が配設されていることを特徴とする。このような制御基板によれば、 ガス流動手段及ぴ冷却手段を制御する とができる。
本発明にかかる燃料電池においては、 酸化剤ガスと反応させるために 発電部に供給される燃料ガスの流路から水を排出する水排出手段が発電 部の端面に沿って配設されることを特徴とする。 このように配置される 水排出手段によれば、 燃料電池内に蓄積された過剰な水を排出すること ができると共にかかる燃料電池内の空間を効率良く用いることが可能と なる。
また、 本発明にかかる燃料電池においては、 発電部を駆動する際に燃 料ガスを燃料ガス貯蔵部から発電部に供給する燃料ガス供給手段が発電 部の端面に沿って配設されることを特徴とする。 このような燃料ガス供 給手段によれば、 発電部に対して別途設けられた燃料ガス貯蔵部から燃 料ガスを発電部に供給することができると共にかかる燃料電池内の空間 を効率良く用いることが可能となる。
本発明にかかる電子機器は、 少なく とも酸素を含む酸化剤ガスの流路 が設けられた発電部と、 発電部に接続され発電部から熱を放熱する放熱 部と、 流路において酸化剤ガスを流動させるガス流動手段と、 ガス流動 手段と互いに独立して駆動され放熱部を冷却する冷却手段とを有する燃 料電池を備え、 燃料電池から電力を供給されることにより駆動されるこ とを特徴とする。 このような電子機器によれば、 かかる電子機器を安定 して駆動させることが可能となる。
また、 本発明にかかる電子機器は、 側面に少なく とも酸素を含む酸化 剤ガスの流路の開口部が設けられた発電部と、 発電部に接続され発電部 から熱を放熱する放熱部と有し、 流路において酸化剤ガスを流動させる ガス流動手段が発電部の側面に沿って配設され、 放熱部を冷却する冷却 手段が側面に沿ってガス流動手段と隣接するように配設されている燃料 電池を備え、 燃料電池から電力を供給されることにより駆動されること を特徴とする。 このような電子機器によれば、 かかる電子機器を安定し て駆動させることができると共に携帯可能な電子機器を提供することが 可能となる。 図面の簡単な説明
図 1は、 本発明にかかる燃料電池の構造を'示す分解斜視図である。 図 2 Aは、 本発明にかかる燃料電池を構成する筐体の構造を示す側面 図である。
図 2 Bは、 本発明にかかる燃料電池を構成する筐体の構造を示す他の 側面を示す側面図である。
図 2 Cは、 本発明にかかる燃料電池を構成する筐体の構造を示す端面 図である。
図 2 Dは、 本発明にかかる燃料電池を構成する筐体の構造を示す他の 端面を示す端面図である。
図 3は、 本発明にかかる燃料電池を構成する発電部の概観を示す斜視 図である。
図 4は、 本発明にかかる燃料電池を構成する発電部の一部を示す分解 斜視図である。
図 5 Aは、 本発明にかかる燃料電池を構成するセパレークの構造を示 すセパレータの表面側の構造を示す平面図である。
図 5 Bは、 本発明にかかる燃料電池を構成するセパレータの構造を示 すセパレータの裏面側の構造を示す平面図である。 図 6 Aは、 本発明にかかる燃料電池に好適なセパレータの別の例の構 造を示すセパレークの断面図である。
図 6 Bは、 本発明にかかる燃料電池に好適なセパレータの別の例の構 造を示すセパレークの端部の断面構造を示す要部断面図である。
図 7 Aは、 本発明にかかる燃料電池に好適なセパレータの別の例の構 造を示す上側板状部の平面図である。
図 7 Bは、 本発明にかかる燃料電池に好適なセパレータの別の例の構 造を示す下側板状部に伝熱部がはめ込まれた状態を示す平面図である。 図 7 Cは、 本発明にかかる燃料電池に好適なセパレータの別の例の構 造を示す下側板状部を裏面側からみた平面図である。
図 8は、 本発明にかかる燃料電池の構造を示す平面図である。
図 9は、 本発明にかかる燃料電池における発電部の温度及び発電部に 残留する水分量を制御する制御方法を説明するための図である。
図 1 0は、 本実施形態にかかるセパレータの具体的な構造を示す図で あり、 セパレータを表面側からみた構造を示す平面図である。
図 1 1は、 本実施形態にかかるセパレータの具体的な構造を示す図で あり、 セパレータの側面側からみた構造を示す側面図である。
図 1 2は、 本実施形態にかかるセパレータの具体的な構造を示す図で あり、 セパレータを裏面側からみた構造を示す平面図である。
図 1 3は、 本実施形態にかかる燃料電池装置の具体的な構造を示す平 面図である。
図 1 4は、 本実施形態にかかる燃料電池装置の具体的な構造を示す側 面図である。 発明を実施するための最良の形態
以下本実施形態の燃料電池及び電子機器について図面を参照しながら 詳細に説明する。
図 1に示すように、 燃料電池 1は、 筐体 1 0、 制御基板 2 0、 発電部 3 0、 冷却ファン 5 1、 空気供給フアン 5 2, 5 3、 水素パージバルブ 5 4、 レギユレータ 5 5及ぴ手動パルプ 5 6を備える。 また、 燃料電池 1は、 水素ガスを吸蔵させた水素吸蔵カートリ ッジ 6 0から供給される 水素ガスを受け取り、 発電を行う。
図 1及び図 2 A乃至図 2 Dに示すように、 筐体 1 0は略直方体形状の 外形を有し、 燃料電池 1に搭載される各種機器を覆うように内部が空洞 とされると共に底面が開放されている。 筐体 1 0は排気口 1 1, 1 2及 び 1 3、吸気口 1 4, 1 5を備え、筐体 1 0の上面の端部は排気口 1 1, 1 2 , 1 3が形成された側面に向かう傾斜面とされる。図 2 Aによれば、 排気口 1 1 と排気口 1 2 , 1 3とは筐体 1 0の一の側面に隣接するよう に形成され、 発電部 3 0を冷却するために燃料電池 1内で流動された空 気と発電部 3 0による発電反応後の空気とが排気口 1 1 と排気口 1 2, 1 3 とからそれぞれ排出される。 排気口 1 1は、 後述する放熱フィ ン 3 3から熱を放熱させるための空気が燃料電池 1から排出されるための空 気の出口である。 さらに、 排気口 1 1は、 筐体 1 0の側面に略矩形状に 開口し、 上下方向に複数形成されている。 また、 排気口 1 2、 1 3は発 電部 3 0が発電を行う際にかかる発電部 3 0に供給された空気が排出さ れるための出口とされ、 筐体 1 0の側面に矩形状に開口し、 排気口 1 1 に沿って上下方向に複数形成されている。 また、 排気口 1 1 , 1 2, 1 3は筐体 1 0の側面の上下方向に沿って順次長手方向の寸法が短くなる ように形成されている。
さらに、 図 2 Bによれば、 吸気口 1 4 , 1 5は、 筐体 1 0の排気口 1 1及び排気口 1 2, 1 3が形成された筐体 1 0の側面と対面する側面に 形成され、 吸気口 1 4, 1 5から発電部 3 0を冷却するための空気と発 4977
14 電部 3 0による発電反応に供される酸素を含む空気とがそれぞれ燃料電 池 1内に取り込まれる。 吸気口 1 4は、 後述する放熱フィン 3 3から熱 を放熱させるための空気が燃料電池 1に取り込まれるための空気の取り 込み口であり、 筐体 1 0の側面に略矩形状に開口し、 上下方向に複数形 成されている。 また、 吸気口 1 5は、 発電部 3 0が発電を行う際にかか る発電部 3 0に供給される空気が取り込まれるための取り込み口とされ、 同じく筐体 1 0の側面に略矩形状に開口し、 吸気口 1 4に沿って上下方 向に複数形成されている。
さらに、 図 1、 図 2 C及ぴ図 2 Dに示すように、 筐体 1 0の一の端面 には燃料電池 1 と外部との間で各種信号を送受信するための配線が通さ れる接続孔 1 6を形成することができる。 さらに、 他の端面にも所要の 接続孔 1 8を形成することもできる。
また、 図 1に示すように、 制御基板 2 0には燃料電池 1を構成する各 種機器を制御するための制御回路が形成され、 かかる制御基板 2 0は発 電部 3 0の上側に配設される。 制御回路の詳細については図中において 詳細に示さないが、 例えば冷却ファン 5 1、 空気供給ファン 5 2, 5 3 の駆動の制御、 或いは水素パージバルブ 5 4の開閉動作の制御回路、 発 電部 3 0により出力される電圧を昇圧する D C Z D Cコンバータの如き 電圧変換回路、 さらに後述するセンサにて検知された温度や湿度などの 各種環境条件を取得することにより各種機器の駆動に関する指示を制御 基板 2 0に実装された回路に行わせることもできる。 また、 本例の燃料 電池 1においては燃料電池 1内に制御基板 2 0が配設されるが、 燃料電 池 1の外部に配設されていても良く、 例えば、 燃料電池 1から駆動用の 電力が提供される各種電子機器が制御基板 2 0を備えることもできる。 次に、 図 1、 図 3、 図 4、 図 5 A及び図 5 Bを参照しながら発電部 3 0について詳細に説明する。 図 1及び図 3に示すように、 発電部 3 0は 略直方体形状を有し、 冷却ファン 5 1、 空気供給ファン 5 2, 5 3に臨 む側面 3 9に対向する側面の一部が発電部 3 0の上下方向に沿って矩形 状に切り欠かれた形状とされ、 基台 5 7に配設される。 また、 発電部 3 0の側面 3 9に沿つて、 冷却ファン 5 1、 空気供給ファン 5 2, 5 3が 隣接するように配設されている。 このよ う に配設された冷却ファン 5 1 は放熱フィ ン 3 3から熱を放熱させる。 また、 空気供給ファン 5 2, 5 3は開口部 3 4に臨むように配設されており、 かかる開口部 3 4を介し て発電部 3 0内で空気を流動させる。
また、 本例の発電部 3 0は 9枚のセパレータ 3 1 の間にそれぞれ接合 体 3 2が挟みこまれ、 発電を行う発電セルが 8個直列に接続された構造 を有している。 かかる発電セルは 1素子で約 0 . 6 Vの電圧を出力する ことができるため、 発電部 3 0の全体では 4 . 8 Vの電圧を出力するこ とが可能である。 また、 発電部 3 0は約 2 Aの電流を流すことが可能で あり出力される電力は理想的には 9 . 6 Wとなるが、 発電反応における 発熱などによって実際の出力電力は理想的な出力電力の約 7割である約 6 . 7 Wとされる。 しかしながら、 後述するように接合体 3 2に含まれ る水分量の調整や発電部 3 0への水素ガスの円滑な供給により さらに出 力電力を高めることができる。 また、 発電部 3 0を形成する発電セルは 本例のように 8素子に限定するものではなく、 各種電子機器を駆動する ために必要とされる出力電力に合わせて所要の数の発電セルにより発電 部 3 0を形成することもできる。 発電部 3 0の側面 3 9には各セパレー タ 3 1に形成された開口部 3 4が臨み、 後述するように発電部 3 0の側 面 3 9の反対側の側面にも各開口部 3 4に対応するように開口部 4 0が 形成されている。 開口部 3 4と、 開口部 3 4が臨む側面 3 9と反対側の 側面に臨む開口部 4 0により、 発電部 3 0に対する酸素を含む空気の給 排気が行われる。 続いて、 図 4、 図 5 A及び図 5 Bを参照しながら発電部 3 0について さらに詳細に説明する。 図 4に示すように、 セパレータ 3 1により挟み 込まれる接合体 3 2は、 吸湿した際にイオン伝導性を有する固体高分子 電解質膜 3 6及びかかる固体高分子電解質膜 3 6を両面から挟み込む電 極 3 7から形成される。 さらに、 スタック構造を形成した際にセパレー タ 3 1 と接合体 3 2 との間を封止する封止部材 3 5が接合体 3 2の周縁 付近に配置されている。 封止部材 3 5は、 セパレータ 3 1 の周縁部と接 合体 3 2の周縁部とを十分に絶縁することができる材質を用いれば良い。 固体高分子電解質膜 3 6 としては、 例えばスルホン酸系の固体高分子電 解質膜を用いることができる。 電極 3 7は、 発電反応を促進するための 白金の如き触媒が担持された電極を用いることもできる。 発電部 3 0を 構成する発電セルは 2枚のセパレータ 3 1 とかかるセパレータ 3 1に挟 み込まれる接合体 3 2によって形成され、 例えば、 図 4には直列に接続 される 2つの発電セル 5 0が示されている。
さらに、 図 4、 図 5 A及び図 5 Bに示すように、 発電部 3 0を構成す るセパレータ 3 1は、 流路 4 3、 セパレータ 3 1の流路 4 3が形成され た面の裏面側に形成された流路 3 8、 流路 4 3に接続された供給孔 4 2 及び排出孔 4 1、 流路 4 3 と供給孔 4 2を接続する接続部 4 5、 流路 4 3 と排出孔 4 1 とを接続する接続部 4 6、 さらに放熱フィ ン 3 3を備え る。
図 5 Aに示すように、 流路 4 3は、 燃料ガスとされる水素ガスをセパ レータ 3 1の面内に流すための面内流路とされる。 流路 4 3は発電反応 の効率を高めるためにセパレータ 3 1 の表面内を蛇行するように形成さ れており、 水素ガスが電極 3 7全体に供給されるような形状とされる。 供給孔 4 2は、 発電部 3 0の外部に設けられた水素吸蔵カートリ ッジ 6 0の如き水素ガス貯蔵部から流路 4 3に水素ガスを供給する際の水素ガ スの流路とされる。 接続部 4 5は流路 4 3 と供給孔 4 2とを接続し、 流 路 4 3に水素ガスを供給する。 また、 接続部 4 6は流路 4 3 と排出孔 4 1 とを接続し、 流路 4 3から発電反応後の水素ガスを排出する。 本例の セパレータ 3 1においては、 接続部 4 5, 4 6の断面積は各セパレータ 3 1 と接合体 3 2 とによりスタック構造を形成した際の流路 4 3の断面 積より小さくなるように形成され、 例えば接続部 4 5, 4 6 の幅が流路 4 3の幅より狭くなるように形成される。 さらに、 接続部 4 5の幅を接 続部 4 6の幅より狭くなるよ う に形成し、 流路 4 3への水素ガスの入口 側の幅を出口側の幅より狭く しておく。
また、 供給孔 4 2及ぴ排出孔 4 1は、 スタ ック構造を形成した際に積 層される各セパレータ 3 1 の間で接続され、 水素ガスを各セパレータ 3 1に供給する供給路と発電後の水素ガスを排出するための排出路を形成 する。 流路 4 3に水が蓄積された際には、 かかる排出路を後述する水素 パージバルブ 5 4により大気開放することにより流路 4 3に蓄積された 水の供給路側と排出路側とに圧力差を生じさせ、 かかる圧力差によって 水を排出することができる。 さらに、 スタック構造を形成した際の任意 のセパレータ 3 1の流路 4 3に水が蓄積された場合でも、 水が蓄積され た流路 4 3内にのみ瞬間的に圧力差を生じさせることが可能であり、 水 を排出し発電部 3 0に安定して水素ガスを供給することができる。
さらに、 図 5 Bに示すように、 流路 3 8はセパレータ 3 1の流路 4 3 が形成された面の裏面側に形成され、 かかる流路 3 8に酸素を含む空気 を流すための流路とされる。 流路 3 8は、 セパレータ 3 1の幅方向に延 在するように形成されてセパレータ 3 1 の側縁部に開口し、 セパレータ の長手方向に沿って複数形成されている。 また、 流路 3 8がセパレータ 3 1 の端部にそれぞれ開口する開口部 3 4, 4 0を介して酸素を含む空 気が流路 3 8に給排気される。 本例のように開口部 3 4, 4 0の幅は流 路 3 8の幅より大きめとされ、 さらに、 流路 3 8の幅を開口部 3 4, 4 0から流路 3 8の奥行き方向に沿って狭めたテーパー形状とすることに より流路 3 8への空気の取りこみ又は流路 3 8から空気を排出する際に これら空気が円滑に流れるように空気の流路抵抗を低減することができ る。 また、 開口部 3 4, 4 0の高さ方向に関する開口幅も流路 3 8より 大きめとし、 かかる開口幅を開口部 3 4, 4 Qの縦方向及ぴ横方向につ いて流路 3 8の奥行き方向に沿って狭められたテーパー形状としておく ことにより、 さらに流路抵抗を低減することが可能となる。 また、 流路 3 8に吸水性を有する吸水部材を配置し、 吸水部材をセパレータ 3 1の 外部に引き出しておく ことにより流路 3 8に蓄積される水をセパレータ 3 1の外部に吸い出すこともできる。
また、 燃料電池 1においては、 図 6 A及び図 6 Bに示すような構造を 有するセパレータ 7 0を用いることもできる。 図 6 Aはセパレータ 7 0 の構造を示す断面図であり、 セパレータ 7 0は、 上側板状部 7 1、 伝熱 部 7 2及び下側板状部 7 3を備え、 燃料ガスが流路から漏れないように 上側板状部 7 1 と下側板状部 Ί 3 との間に封止部材 7 4が挟み込まれて 形成される。 また、 封止部材 7 4を上側板状部 7 1や下側板状部 7 3を 構成する材質に比べて熱伝導性の高い材質で形成することにより、 セパ レータ 7 0からの放熱効果を高めることもできる。 このよう封止部材 7 4としては、 熱伝導率が高い部材が樹脂中に埋め込まれた封止部材が好 適であり、 例えば、 コ · サーム (太陽金網社製商品名) の如き封止部材 を用いることができる。
伝熱部 7 2は放熱フィン 7 5まで延在するように形成され、 セパレー タ 7 0から発電時の熱を放熱する。 さらに伝熱部 7 2は、 上側板状部 7 1や下側板状部 7 3を形成する材質の熱伝導率に比べて高い熱伝導率を 有する材質により形成され、 セパレータ 7 0の放熱特性を高めることが できる。 伝熱部 7 2を形成する材質としては、 例えば熱伝導率が比較的 高い金属である銅を用いることができる。 さらに、 耐腐食性が高められ た無酸素銅や表面処理がされて耐腐食性が高められた銅板を用いても良 レ、。 下側板状部 7 3には、 図中垂直方向に延在する流路 7 9が形成され ており、 酸素を含む空気が流動される際の流路とされる。 また、 図 6 B に示すように、 セパレータ 7 0の端部では上側板状部 7 1 と下側板状部 7 3との間に封止部材 7 4が挟まれて伝熱部 7 2が外部から封止され、 発電反応による伝熱部 7 2の劣化が抑制される。
図 7 A乃至図 7 Cは、 セパレータ 7 0を構成する上側板状部 7 1、 伝 熱部 7 2及び下側板状部 7 3の平面図である。 図 7 Aに示すように、 上 側板状部 7 1には、 水素ガスを流動させるための流路 7 8が形成されて いる。 流路 7 8は面内全体に水素ガスを流動させるように面内で蛇行す るような形状に形成される。 また、 上側板状部 7 1は、 流路 7 8に水素 ガスを供給する供給孔 7 7 a と発電反応後の水素ガスを排出するための 排出孔 7 6 aが形成されている。 また、 図 7 Bに示すように、 伝熱部 7 2は略板状とされて、 下側板状部 7 3に嵌め込まれている。 伝熱部 7 2 は、 放熱フィン 7 5まで延在され、 セパレータ 7 0から熱を放熱する。 さらに、 下側板状部 7 3の端部には伝熱部 7 2を外部と隔絶するように 封止部材 7 4が配置され、 かかる下側板状部 7 3と上側板状部 7 1 とに より伝熱部 7 2が挟み込まれて一体のセパレータ 7 0が形成される。 ま た、 下側板状部 7 3には、 封止部材 7 4には供給孔 7 7 a及び排出孔 7 6 a と位置合わせされた供給孔 7 7 b及び排出孔 7 6 bが形成されてい る。 さらに、 下側板状部 7 3にも供給孔 7 7 a, 7 7 b及び排出孔 7 6 a, 7 6 bに合わせて孔部を形成しておく ことにより、 セパレータ 7 0 を組み上げた際に一体とされる供給孔及ぴ排出孔を形成することができ る。 さらに、 図 7 Cに示すように、 下側板状部 7 3の裏面側には酸素を 含む空気を流動させる流路 7 9が形成されると共に水素ガスを流路 7 8 に供給する供給孔 7 7 c と水素ガスを排出する排出孔 7 6 cが形成され ている。
次に、 図 8を参照しながら本例の燃料電池 1により給排気される空気 の流れについて詳細に説明する。 図 8に示すように、 燃料電池 1は、 す でに説明したように発電部 3 0の開口部 3 4が臨む側面 3 9に沿って隣 接するように配設された冷却ファン 5 1、 空気供給ファン 5 2, 5 3を 有す。 さらに、 冷却ファン 5 1によりかかる燃料電池 1の外部から取り こまれる空気の温度を検知する温度センサ 6 4及び湿度を検知する湿度 センサ 6 5、 空気供給ファン 5 2, 5 3により発電部 3 0から排出され る空気の温度を検知する温度センサ 6 1及び湿度を検知する湿度センサ 6 2を有する。 また、 発電部 3 0は、 かかる発電部 3 0の温度を検知す るための温度センサ 6 3を有する。
冷却ファン 5 1は、 図中矢印で示すように吸気口 1 4から取り込まれ た空気を吸気口 1 4から排気口 1 1まで流動させ、 燃料電池 1の外部に 排出する。 冷却ファン 5 1が吸気口 1 4と排気口 1 1 との間に配設され ると共に、 冷却ファン 5 1 と吸気口 1 4 との間に配置された放熱フィ ン 3 3は冷却ファン 5 1により流動される空気によって熱を放熱する。 ま た、 放熱フィ ン 3 3 の近傍に限定されず、 燃料電池 1内全体にて空気を 流動させることにより発電部 3 0を冷却することもできる。
空気供給ファン 5 2 , 5 3は、 吸気口 1 5、 発電部 3 0及び排気口 1 2 , 1 3に空気を流動させる。 空気供給ファン 5 2, 5 3は、 吸気口 1 5から取り込まれる酸素を含む空気を発電部 3 0に流すと共に発電部 3 0における発電反応後に排出される空気を排気口 1 2 , 1 3から燃料電 池 1の外部に排出する。 発電部 3 0は図 3乃至図 5 A及び図 5 Bを参照 しながら説明したように流路 3 8及び開口部 3 4 , 4 0を備え、 空気供 給フアン 5 2, 5 3は図中矢印で示すように吸気口 1 5から流路 3 8、 排気口 1 2 , 1 3に至る空気の流れを形成する。 また、 冷却ファン 5 1 によって形成される空気の流れと空気供給ファン 5 2, 5 3 とにより形 成される空気の流れは互いに独立した空気の流れとすることができる。 よって、 冷却ファン 5 1 と空気供給ファン 5 2, 5 3 とを独立して駆動 することにより発電部 3 0の冷却と発電部 3 0への空気の供給及ぴ排出 とを独立して行うことが可能となる。 また、 本例の燃料電池 1における 冷却ファン 5 1、 及び空気供給フアン 5 2 , 5 3の配置に限定されず、 空気を給排気するために複数の発電部の側面に形成された開口部に臨む ようにこれら冷却ファン 5 1及ぴ空気供給ファン 5 2, 5 3を配設し、 複数の発電部に対して一括して空気の給排気を行うことも可能である。 さらに、 冷却ファン 5 1及び空気供給ファン 5 2, 5 3を逆回転させ、 空気を逆向きに流動させることもできる。
温度センサ 6 1 , 6 4,湿度センサ 6 2 , 6 5及び温度センサ 6 3は、 それぞれ吸気口 1 4から取り こまれる空気の温度及び湿度、排気口 1 2, 1 3から排出される空気の温度及ぴ湿度、 並びに発電部 3 0の温度を検 知する。 温度センサ 6 3は発電部 3 0の略中央部付近に配設され、 発電 部 3 0が発電を行う際のかかる発電部 3 0の温度を検知する。 温度セン サ 6 4及び湿度センサ 6 5は吸気口 1 4に近傍で吸気口 1 4から取り込 まれる空気の流路を阻害しないように配設される。 また、 温度センサ 6 1及ぴ湿度センサ 6 2は、 空気供給ファン 5 2及び 5 3に臨む発電部 3 0の空気の出口側で空気の流動を阻害しないように配設される。 温度セ ンサ 6 3により検知された発電部 3 0の温度に関するデータに基づいて 冷却ファン 5 1の駆動の制御が行われ、 発電部 3 0は好適な温度条件で 駆動される。 また、 燃料電池 1は、 温度や湿度に限定されず給排気され る空気の圧力を検知する圧力センサを備えることもできる。 さらに、 温度センサ 6 4と湿度センサ 6 5により検知された温度及び 湿度に基づいて吸気口 1 4から取りこまれた空気の相対湿度が算出され ると共に、 温度センサ 6 1 と湿度センサ 6 2により検知された温度及ぴ 湿度に基づいて排気口 1 2, 1 3から排出される空気の相対湿度が算出 される。 このように吸気口 1 5から取りこまれた空気の相対湿度と排気 口 1 2, 1 3から排気された空気の相対湿度との差をとることにより、 かかる燃料電池 1から排出される水分量を算出することが可能となる。 また、 これら温度センサ 6 1 , 6 4及び湿度センサ 6 2, 6 5は空気の 流動を阻害しないように配設されるため、 発電部 3 0による発電を支障 なく行うこともできる。
さらにまた、 発電部 3 0による発電された出力電力に基づいて発電反 応により生成された水分量が算出できる。 よって、 燃料電池 1から排出 された水分量と発電反応により生成された水分量との差をとることによ り発電部 3 0に残留する水分量を算出することが可能となる。 すでに説 明したように、 発電部 3 0を構成する接合体 3 2を適度に保湿された状 態とすることにより安定した発電反応を行うことができることから、 発 電部 3 0に残留する水分量に関するデータに基づいて空気供給フアン 5 2, 5 3を駆動し、 安定した発電を行うことが可能となる。 例えば、 発 電部 3 0に残留する水分量が過剰な場合には、 空気供給ファン 5 2, 5 3の回転数を上げることにより過剰な水分をかかる発電部 3 0から空気 と共に排出することができる。 また、 発電部 3 0の温度を制御するため の冷却ファン 5 1 と発電部 3 0に残留する水分量を制御する空気供給フ アン 5 2, 5 3とを独立して駆動させることができるだけでなく、 冷却 ファン 5 1による空気の流れと空気供給ファン 5 2, 5 3による空気の 流れを独立させることができるため、 発電部 3 0に残留する水分量の制 御及び発電部 3 0の温度上昇の抑制とを精度良く行うことが可能となる。 さらに、 図 9を参照しながら発電部 3 0の温度及びかかる発電部 3 0 に残留する水分量の制御について具体的に説明する。 図中横軸は、 発電 部 3 0の温度であり、 縦軸は発電部 3 0に残留する水分量である。 冷却 ファン 5 1 と空気供給フアン 5 2, 5 3との駆動を制御することにより、 発電の際に刻々と変化する発電部 3 0の温度及び残留水分量が図中中央 付近の安定領域になるように調整される。
例えば、 図中 Aで示される環境条件は、 安定領域の環境条件に対して 発電部 3 0の温度が高く且つ発電部 3 0における残留水分量が多い環境 条件であり、 発電部 3 0の冷却及び残留する水分量の低減が必要とされ る。 このような場合、 空気供給ファン 5 2, 5 3の回転数を上げること により発電部 3 0に残留する水分量が低減されると共に冷却ファン 5 1 の回転数を上げることにより発電部 3 0がさらに冷却され、 Aで示され る環境条件から安定した発電を行うことができる安定領域に温度及ぴ水 分量が調整される。 .
また、 図中 Bで示される環境条件は、 安定条件に対して発電部 3 0の 温度が低く且つ発電部 3 0に残留する水分量が多い環境条件とされる。 このような場合、 空気供給フアン 5 2, 5 3の回転数を上げることによ り発電部 3 0に残留する水分量が低減されると共に冷却ファン 5 1の回 転数を下げることにより発電部 3 0に対する冷却が抑制され、 Bで示さ れる環境条件から安定した発電を行うことができる安定領域に発電部 3 0の温度及び水分量が調整される。
図中 Cで示される環境条件は、 安定条件に対して発電部 3 0の温度が 低く且つ発電部 3 0に残留する水分量が少ない環境条件とされる。 この ような場合、 空気供給ファン 5 2, 5 3の回転数を下げることにより発 電部 3 0で生成される水の排出を低減すると共冷却ファン 5 1の回転数 を下げることにより発電部 3 0に対する冷却が抑制さる。 このような空 気供給ファン 5 2 , 5 3及び冷却フアン 5 1の駆動の制御により Cで示 される環境条件から安定した発電を行うことができる安定領域に発電部 3 0の温度及び水分量が調整される。
らに、 図中 Dで示される環境条件は、 安定条件に対して発電部 3 0 の温度が高く且つ発電部 3 0に残留する水分量が少ない環境条件とされ る。 このよ うな場合、 空気供給ファン 5 2, 5 3の回転数を下げること により発電部 3 0で生成される水の排出を低減すると共に冷却ファン 5 1の回転数を上げることにより発電部 3 0をさらに冷却する。 このよう な空気供給ファン 5 2, 5 3及び冷却ファン 5 1の駆動の制御により D で示される環境条件から安定した発電を行うことができる安定領域に発 電部 3 0の温度及び水分量が調整される。
このように空気供給フアン 5 2, 5 3及び冷却ファン 5 1を発電部 3 0の温度及び発電部 3 0に残留する水分量に応じて独立して駆動するこ とにより、 例えばドライアップの如き発電の際の不具合を生じさせるこ となく安定した発電を行うことが可能となる。
次に、 図 1、 図 4、 図 5 A及び図 5 Bを参照しながら、 水素パージバ ルプ 5 4、 レギユレータ 5 5及び手動バルブ 5 6について説明する。 図 1に示すように、 水素パージバルブ 5 4、 レギユレータ 5 5及ぴ手動バ ルブ 5 6は、 発電部 3 0の端面に沿って隣接して配設される。 本例の燃 料電池 1においては、 発電部 3 0の端面側に各種機器を配置するための 領域を確保することが可能であり、 燃料電池 1を安定して駆動させるた めの各種機器をコンパク トに収納することが可能である。
流路 4 3に蓄積された水を排出する水排出手段とされる水素パージパ ルブ 5 4は、 流路 4 3に接繞される排出路を大気開放することにより水 が蓄積された流路 4 3から水を排出することができる。 流路 4 3が大気 開放された際には、 流路 4 3に蓄積された水に対する供給路側の水素ガ P T/JP2003/014977
25 スの圧力と大気開放された排出路側の圧力との間に圧力差が生じ、 かか る圧力差によって流路 4 3に蓄積された水が流路 4 3から排出される。 このよ うに水素ガスを供給する供給路側と水素パージバルブ 5 4により 大気開放される水の排出路側との間で圧力差を生じさせることにより、 発電部 3 0がスタック構造を有する場合でも水が蓄積され水素ガスが流 れ難くなっている任意の流路 4 3から水を排出することが可能となり、 すべてのセパレータ 3 1の流路 4 3に水素ガスを円滑に流すことができ る。 また、 複数のセパレータ 3 1を有する発電部 3 0に限定されず、 単 一のセパレータを有する発電部においても同様に水を排出することがで きる。 また、 水素パージバルブ 5 4を例えば電磁力を用いた駆動方式に より駆動することも可能であり、 水素パージバルブ 5 4を駆動させるた めの電力を発電部 3 0から供給するようにしても良い。
また、 水素ガスの圧力制御を行う圧力制御手段とされるレギュレータ 5 5は、 水素吸蔵カートリ ッジ 6 0から供給される水素ガスの圧力を所 要の圧力になるように調整し、 発電部 3 0に送り出す。 例えば、 水素吸 蔵カートリ ッジ 6 0から供給される水素ガスの圧力が 0 . 8〜 1 . 0 M P a程度である場合、 レギユレータ 5 5はこれら水素ガスの圧力を 0 . 0 5〜 0 . l O M P a程度の圧力に減圧し発電部 3 0に供給することが できる。
さらに水素ガスを発電部 3 0に供給するガス供給手段とされる手動パ ルブ 5 6は、 発電部 3 0にて発電を行う際に水素吸蔵カートリ ッジ 6 0 から発電部 3 0に水素ガスを供給するための流路を開放する。 これら水 素パージバルブ 5 4、 レギユレータ 5 5及ぴ手動バルブ 5 6は燃料電池 1に安定して発電を行わせるために重要であり、 これら機器をコンパク トに燃料電池 1に収納することにより燃料電池 1全体のサイズを小型化 することが可能となる。 次に図 1 0乃至図 1 4を参照して、 本実施形態の燃料電池装置の具体 的な構造について説明する。 先ず、 図 1 0乃至図 1 2は本例のセパレー タ部分についての裏面図、 側面図、 及ぴ表面図である。
図 1 0乃至図 1 2に図示されるように、 セパレータ 8 1はその裏面側 に酸素用の流路となる溝 8 3が形成され、 その表面側に水素用の流路と なる溝 8 6が形成されている。 なお、 セパレータ 8 1は図示しない発電 体を挟んで積層する際には、 裏面側が表面側に配されることもある。 図 1 0に示すように、 セパレータ 8 1の酸素供給側面には、 当該セパ レータ 8 1の幅方向に直線状に延長されている複数の溝 8 3が形成され ており、 これらの溝 8 3は互いに平行に延長されていることから、 セパ レータ 8 1 の長手方向では溝 8 3 と突条部 8 2が交互に位置している。 略平板状とされるセパレータ 8 1の長手方向の長さ L 6は、 7 9. 5 m mであり、 それと直交する方向の幅 L 8は 4 l mmである。 溝 8 3は当 該セパレータ 8 1の両端部では幅広となるように開口している。 ここで 具体的な寸法については、 図 1 0において、 溝 8 3は平行に延長された 中央部分の幅 L1は 2 mmであり、 隣接する突条部 8 2の幅 L2も 2 mmで ある。 この溝 8 3は幅広とされた両端部において、 テーパー状に開口し ており、 セパレータ 8 1の厚み方向にも形成されたテーパ 部分の開始 位置 L0は端部から 8 mmであり、 その開始位置 L0から 2. 1 5° の角度 で傾斜するテーパーとなっている。 溝 8 3の幅広とされた両端部では、 その面内方向では約 1 mm程度開口幅が広がるように構成されており、 溝 8 3の端部での幅 L3は 3 mmであり、 隣接する突条部 8 2の幅 L4は 1 mmに先細る形状とされている。 この突条部 8 2のテーパー開始位置 L9 は端部から 5. 5 mmである。 なお、 中央付近の開口幅 L5は螺子孔の影 響から 2. 5 mmであり、 放熱部 8 4に連続する発電体保持領域の長手 方向に幅 1 0は 5 6. 5 mm (図 1 1参照) であり、 螺子孔間の間隔 L7で 54. 5 mmである。
次に、 図 1 1に示すように、 セパレータ 8 1の厚み方向の寸法につい ては、 放熱部 84の厚み T1は 1. 3 mmであり、 溝 8 3、 8 6が形成さ れた発電体保持領域では厚み T 2が 2. 3 mmである。
図 1 2に示すように、 セパレータ 8 1の水素供給側面 8 7には水素供 給孔 8 9から水素排出孔 8 8の間に渡って 5往復する蛇行するパターン で延長される溝 8 6が形成されており、この蛇行する溝 8 6の深さは 0. 6 mmであって幅 L 1 2は 1. O mmであり、 折り返し部分の曲率半径 は 0. 9 mm (内径) 、 1. 9 mm (外径) である。 水素供給孔 8 9 と 水素排出孔 8 8 との接続部 9 0では溝 8 6よりそれぞれ細いサイズとな つており、 これら水素供給孔 8 9と水素排出孔 8 8はセパレータ 8 1の 長手方向の端部から 2. 2 5 mmの位置を中心として幅 1. 5 mmのサ ィズであり、 且つセパレータ 8 1の長手方向の端部からの細い溝の開始 位置 L 1 7が 6 mmであることから、 約 3 mmの長さとなっている。 こ の接続部 9 0での溝の幅 L 1 1は 0. 5 mmであり、 セパレータ 8 1の 幅方向の端部からの水素排出孔 8 8側の接続部 9 0の位置 L 1 5は中心 位置で 7. 9 mmであり、 水素供給孔 8 9側の接続部 9 0の位置 L 1 6 は中心位置で 3 3. 1 mmである。 また、 5往復する蛇行するパターン で延長される溝 8 6の、 セパレータ 8 1の長手方向の水素供給孔 8 9 と 水素排出孔 8 8に近い側の端部から折り返し位置 L 1 3は 7 mmである。 また、 溝 8 6の折り返し部間の長さ L 1 4は 4 2mmである。
続いて、 図 1 3及び図 1 4を参照しながら本例の燃料電池装置の構造 についてさらに詳細に説明する。 図 1 3は、 本例の燃料電池装置 1 0 0 の平面図である。 燃料電池装置 1 0 0は、 セパレータ 8 1 と発電体とが 積層されたスタック構造を有する。 図 1 3は、 スタック構造を形成する 最上部に配される板状部を透視し、 発電部 9 9が配される領域にセパレ ータの表面に形成される溝 8 6が図中破線で示されている。 発電部 9 9 を形成するセパレータの長手方向の寸法とセパレータから長手方向に延 在される放熱部 8 4の長手方向の寸法を合わせた長さ L 1 8は 7 8 mm であり、 セパレータの幅 L 8は 4 l mmである。 放熱部 8 4の端部は図 中直線状とされるが、 各種配線を通すための切り欠き部が形成されてい ても良い。 また、 燃料電池装置 1 0 0を構成し、 発電部 9 9を含む各部 を収納する筐体 9 1の長手方向の長さ L 2 1は 9 5. 5 mmであり、 幅 L 2 0は 5 7 mmとされる。 筐体 9 1の長手方向の長さ L 2 1及び幅 L 2 0は燃料電池装置 1 0 0の長手方向の長さ及ぴ幅とされことから、 本 例の燃料電池装置 1 0 0のサイズは平面上で長手方向の長さが 9 5. 5 mm、 幅力 S 5 7 mmとされる。
さらに、 図 1 4を参照しながら本例の燃料電池装置 1 0 0の構造を具 体的に説明する。 尚、 図 1 4は筐体 9 1を取り外した状態の燃料電池装 置 1 0 0を側面からみた側面図である。 発電部 9 9は、 セパレータ 8 1 を 9枚積層してセパレータ 8 1の間に発電体 9 6を挟みこんで形成され るスタック構造を有し、 発電セルを 8個直列に接続した構造を有する。 発電部 9 9は、 燃料電池装置 1 0 0の底部とされる基台 9 8の上に配置 される。 基台 9 8の底面から発電部 9 9の最上部に配設される板状部の 表面までの高さ T 4は、 3 4. 6 2 mmとされる。 また、 基台 9 8の底 面から発電部 9 9の中央部に積層されるセパレータ 8 1の厚み方向の中 央までの高さ T 5は 1 7. 7 8 mmとされ、 基台 9 8の底面から発電部 9 9の側面側に配設される冷却ファン 9 2、 空気供給ファン 9 3, 9 4 の中央までの高さと略一致する。 基台 9 5、 板状部 9 7、 積層されたセ パレータ 8 1及ぴ発電体 9 6の厚みを合わせた発電部 9 9の高さ T 6は、 2 9. 6 2 mmである。 冷却ファン 9 2の高さは、 発電部 9 9の最上部 に配設された放熱部 8 4と最下部に配設された放熱部 8 4との間の高さ と略一致し、 放熱部 8 4全体に冷却用の空気を供給することができる。 空気供給フアン 9 3, 9 4の高さは、 発電部 9 9の最上部の溝 8 2と最 下部の溝 8 2との間の高さと略一致し、 溝 8 2に全体に酸素を含む空気 を十分に供給することができる。
以上説明したように、 本発明にかかる燃料電池はかかる燃料電池を駆 動するための各種機器をコンパク トに収納することができ、 ノート型パ ソコン、 携帯電話及び P D Aの如き携帯型電子機器を駆動するための電 力を供給する電源として好適なものである。 また、 これら携帯型電子機 器に限定されず、 本発明の燃料電池 1を各種電子機器を駆動するための 電源として利用することもできる。 産業上の利用可能性
本発明にかかる燃料電池によれば、 発電部の温度上昇の抑制とかかる 発電部に残留する水分量の制御を行うことにより、 ドライアップの如き 発電の際の不具合を生じさせることなく安定した発電を行うことができ る。 さらに、 発電部の温度制御と発電部に残留する水分量の制御とを独 立して精度良く行うことができ、 信頼性の高い燃料電池を提供すること ができる。 また、 このような燃料電池によれば、 発電を行うための各種 機器を燃料電池にコンパク トに収納することが可能であり、 かかる燃料 電池を小型化することができる。
さらに、 本発明にかかる電子機器によれば、 携帯可能なサイズとされ た燃料電池を搭載することにより携帯型電子機器においても燃料電池に よる駆動を行うことができ、 所要の電子機器に燃料電池を搭載すること が可能となる。

Claims

請求の範囲
1 . 少なく とも酸素を含む酸化剤ガスの流路が設けられた発電部と、 前記発電部に接続され当該発電部から熱を放熱する放熱部と、 前記流路において前記酸化剤ガスを流動させるガス流動手段と、 前記ガス流動手段と互いに独立して駆動され前記放熱部を冷却する冷 却手段とを有すること
を特徴とする燃料電池。
2 . 前記発電部は、 イオン伝導性を有する伝導体と当該伝導体を挟ん で対峙する電極とを備える接合体と、
前記接合体を挟装するセパレータとを有すること
を特徴とする請求項 1記載の燃料電池。
3 . 前記伝導体は、 プロ トン伝導体であること
を特徴とする請求項 2記載の燃料電池。
4 . 前記セパレータは、 当該セパレータの内部から前記放熱部に延在 する伝熱部を有すること
を特徴とする請求項 2記載の燃料電池。
5 . 前記セパレータは、 前記流路から水を吸水して除去するための吸 水手段を有すること
を特徴とする請求項 2記載の燃料電池。
6 . 前記発電部は、 前記接合体と前記セパレータとが積層されてなる スタック構造を有すること
を特徴とする請求項 2記載の燃料電池。
7 . 前記セパレータは、 当該セパレータが前記接合体と接する面内に 燃料を供給するための面内流路を有すること
を特徴とする請求項 6記載の燃料電池。
8 . 前記セパレータは、 前記面内流路に燃料を供給するための供給孔 及び当該面内流路から燃料を排出するための排出孔を有すること
を特徵とする請求項 7記載の燃料電池。
9 . 隣接する各セパレータ間において前記供給孔が互いに接続されて 各セパレータに燃料を供給するための供給路が形成されると共に、 前記 排出孔が互いに接続されて各セパレータから燃料を排出する排出路が形 成されること
を特徴とする請求項 8記載の燃料電池。
1 0 . 前記面內流路が前記供給路に接続される接続部の断面積は、 前 記面內流路の断面積に比べて小さいこと
を特徴とする請求項 7記載の燃料電池。
1 1 . 前記面內流路が前記排出路に接続される接続部の断面積は、 前 記面内流路の断面積に比べて小さいこと
を特徴とする請求項 7記載の燃料電池。
1 2 . 前記面内流路が前記供給路に接続される接続部の断面積は、 当 該面内流路が前記排出路に接続される接続部の断面積に比べて小さいこ と
を特徴とする請求項 7記載の燃料電池。
1 3 . 水が蓄積された前記面内流路において前記水に対する供給路側 と排出路側との間に圧力差を生じさせることにより当該水を当該面内流 路から排出する水排出手段を有すること
を特徴とする請求項 7記載の燃料電池。
1 4 . 前記水排出手段は前記排出路の一部を大気開放することにより 前記圧力差を生じさせて前記水を前記面内流路から排出すること
を特徴とする請求項 1 1記載の燃料電池。
1 5 . 前記冷却手段は、 少なく とも前記放熱部の近傍に滞留するガス を流動させることにより当該放熱部から熱を放熱させること
を特徴とする請求項 1記載の燃料電池。
1 6 . 前記ガス流動手段及び前記冷却手段の駆動を制御するための環 境条件を検知する検知手段を有すること
を特徴する請求項 1記載の燃料電池。
1 7 . 前記検知手段は、 前記環境条件として少なく とも温度及び Z又 は湿度を検知すること
を特徴とする請求項 1 6記載の燃料電池。
1 8 . 前記検知手段は、 前記発電部に供給される酸化剤ガスの温度及 ぴ湿度、 前記発電部から排出される酸化剤ガスの温度及ぴ湿度、 並びに 前記発電部の温度を検知可能な位置にそれぞれ配設されること
を特徴とする請求項 1 6記載の燃料電池。
1 9 . 前記環境条件に基づいて少なく とも前記ガス流動手段及び前記 冷却手段の駆動を制御する制御回路を搭載した制御基板を有すること を特徴とする請求項 1 6記載の燃料電池。
2 0 . 前記環境条件と前記発電部により発電された電力量とに基づい て算出された前記発電部に残留する水分量に応じて前記ガス流動手段及 ぴ前記冷却手段の駆動が制御されること
を特徴とする請求項 1 6記載の燃料電池。
2 1 . 前記発電部を駆動する際に、 前記酸化剤ガスと反応させるため の燃料を燃料貯蔵部から前記発電部に供給する燃料供給手段を有するこ と
を特徴とする請求項 1記載の燃料電池。
2 2 . 前記発電部に供給される燃料の圧力を制御する圧力制御手段を 有すること
を特徴とする請求項 1記載の燃料電池。
2 3 . 側面に少なく とも酸素を含む酸化剤ガスの流路の開口部が設け られた発電部と、
前記発電部に接続され当該発電部から熱を放熱する放熱部とを備え、 前記流路において前記酸化剤ガスを流動させるガス流動手段が前記発 34 電部の側面に沿って配設され、
前記放熱部を冷却する冷却手段が前記側面に沿って前記ガス流動手段 と隣接するように配設されていること
を特徴とする燃料電池。
2 4 . 当該燃料電池は、 少なく とも前記発電部、 前記放熱部、 前記ガ ス流動手段、 及び前記冷却手段を覆う筐体を有すること
を特徴とする請求項 2 3記載の燃料電池。
2 5 . 前記ガス流動手段は、 前記開口部から前記酸化剤ガスを吸気す ると共に前記筐体に設けられた第 1の排気口から当該酸化剤ガスを排出 することにより前記流路において前記酸化剤ガスを流動させること を特徴とする請求項 2 3記載の燃料電池。
2 6 . 前記ガス流動手段は、 前記筐体に設けられた第 1の吸気口から 前記酸化剤ガスを当該燃料電池内に吸気することにより前記冷却手段に よる酸化剤ガスの流動と独立した酸化剤ガスの流れを形成すること を特徴とする請求項 2 4記載の燃料電池。
2 7 . 前記第 1の吸気口は前記第 1の排気口と対面する位置に設けら れると共に、 前記ガス流動手段が当該第 1の吸気口と当該第 1の排気口 との間に配設されること
を特徴とする請求項 2 6記載の燃料電池。
2 8 . 前記冷却手段は、 前記筐体に設けられた第 2の排気口から酸化 剤ガスを排気することにより前記放熱部の近傍において前記酸化剤ガス を流動させること
を特徴とする請求項 2 4記載の燃料電池。
2 9 . 前記冷却手段は、 前記筐体に設けられた第 2の吸気口から前記 酸化剤ガスを当該燃料電池内に吸気すること
を特徴とする請求項 2 4記載の燃料電池。
3 0 . 前記第 2の吸気口は、 前記第 2の排気口と対面する位置に設け られると共に前記冷却手段が前記第 2の吸気口と前記第 2の排気口との 間に配設されること
を特徴とする請求項 2 9記載の燃料電池。
3 1 . 前記開口部は、 前記酸化剤ガスの流路の奥行き方向に沿って狭 くなるテーパー形状とされること
を特徴とする請求項 2 3記載の燃料電池。
3 2 . 前記開口部の開口幅は、 前記酸化剤ガスの流路の流路幅に比べ て大きいこと
を特徴とする請求項 2 3記載の燃料電池。
3 3 . 前記開口幅は、前記流路幅と比べて横方向及び/又は縦方向につ いて幅広とされること
を特徴とする請求項 3 2記載の燃料電池。
3 4 . 前記ガス流動手段及び前記冷却手段の駆動を制御するための環 境条件を検知する検知手段を有することを特徴とする請求項 2 3記載の 燃料電池。
3 5 . 前記検知手段は、 前記環境条件として少なく とも温度及び/又 は湿度を検知すること
を特徴とする請求項 3 4記載の燃料電池。
3 6 . 前記検知手段は、 前記発電部に供給される酸化剤ガスの温度及 ぴ湿度、 前記発電部から排出される酸化剤ガスの温度及ぴ湿度、 並びに 前記発電部の温度を検知可能な位置にそれぞれ配設されること
を特徴とする請求項 3 4記載の燃料電池。
3 7 . 前記環境条件に基づいて少なく とも前記ガス流動手段及び前記 冷却手段の駆動を制御する制御回路を搭載した制御基板が配設されてい ること
を特徴とする請求項 3 4記載の燃料電池。
3 8 . 前記酸化剤ガスと反応きせるために前記発電部に供給される燃 料の流路から水を排出する水排出手段が前記発電部の端面に沿って配設 されていること
を特徴とする請求項 2 3記載の燃料電池。
3 9 . 前記発電部を駆動する際に前記燃料を燃料貯蔵部から前記発電 部に供給する燃料供給手段が前記発電部の端面に沿って配設されている こと
を特徴とする請求項 3 8記載の燃料電池。
4 0 . 少なく とも酸素を含む酸化剤ガスの流路が設けられた発電部と、 前記発電部に接続され当該発電部から熱を放熱する放熱部と、 前記流路において前記酸化剤ガスを流動させるガス流動手段と、 前記ガス流動手段と互いに独立して駆動され前記放熱部を冷却する冷 却手段とを有する燃料電池を備え、
前記燃料電池から電力を供給されることにより駆動されることを特徴 とする電子機器。
4 1 . 側面に少なく とも酸素を含む酸化剤ガスの流路の開口部が設け られた発電部と、
前記発電部に接続され当該発電部から熱を放熱する放熱部と有し、 前記流路において前記酸化剤ガスを流動させるガス流動手段が前記発 電部の側面に沿って配設され、
前記放熱部を冷却する冷却手段が前記側面に沿って前記ガス流動手段 と隣接するように配設されている燃料電池を備え、
前記燃料電池から電力を供給されることにより駆動されることを特徴 とする電子機器。
PCT/JP2003/014977 2002-12-12 2003-11-25 燃料電池及びこれを搭載した電子機器 WO2004054026A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2508457A CA2508457C (en) 2002-12-12 2003-11-25 Fuel cell and electronic equipment mounting it
KR1020057010694A KR101107649B1 (ko) 2002-12-12 2003-11-25 연료 전지 및 이것을 탑재한 전자기기
US10/536,599 US8101311B2 (en) 2002-12-12 2003-11-25 Fuel cell and electronic apparatus with the same mounted thereon
AU2003284661A AU2003284661A1 (en) 2002-12-12 2003-11-25 Fuel cell and electronic equipment mounting it
EP03774186A EP1571722A4 (en) 2002-12-12 2003-11-25 FUEL CELL AND ELECTRONIC EQUIPMENT FOR THEIR ASSEMBLY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-361449 2002-12-12
JP2002361449A JP4292368B2 (ja) 2002-12-12 2002-12-12 燃料電池及びこれを搭載した電子機器

Publications (1)

Publication Number Publication Date
WO2004054026A1 true WO2004054026A1 (ja) 2004-06-24

Family

ID=32501047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014977 WO2004054026A1 (ja) 2002-12-12 2003-11-25 燃料電池及びこれを搭載した電子機器

Country Status (9)

Country Link
US (1) US8101311B2 (ja)
EP (1) EP1571722A4 (ja)
JP (1) JP4292368B2 (ja)
KR (1) KR101107649B1 (ja)
CN (1) CN100444447C (ja)
AU (1) AU2003284661A1 (ja)
CA (1) CA2508457C (ja)
TW (1) TWI238558B (ja)
WO (1) WO2004054026A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4329425B2 (ja) * 2003-06-23 2009-09-09 株式会社ニコン 電子機器およびカメラ
JP2006032007A (ja) * 2004-07-13 2006-02-02 Nissan Motor Co Ltd 燃料電池
JP4876533B2 (ja) * 2005-10-31 2012-02-15 株式会社エクォス・リサーチ 燃料電池スタック及びその制御方法
US20070099047A1 (en) * 2005-11-02 2007-05-03 Chun-Chin Tung Regulated fuel cell device
KR100806582B1 (ko) 2006-07-07 2008-02-28 엘지전자 주식회사 연료 전지의 선택적 스택 단열장치
JP5139850B2 (ja) * 2008-03-14 2013-02-06 株式会社日立製作所 固体酸化物形燃料電池
JP2009245818A (ja) * 2008-03-31 2009-10-22 Equos Research Co Ltd 燃料電池装置
GB2470875B (en) * 2008-04-11 2012-03-21 Gen Electric Combustor component and method of manufacture
JP2009283150A (ja) * 2008-05-19 2009-12-03 Toshiba Corp 燃料電池
US7662501B2 (en) * 2008-06-30 2010-02-16 Intel Corporation Transpiration cooling and fuel cell for ultra mobile applications
JP5382325B2 (ja) * 2009-04-13 2014-01-08 スズキ株式会社 燃料電池を搭載した小型車両
KR101090715B1 (ko) * 2009-05-27 2011-12-08 현대자동차주식회사 연료전지의 공기 공급량 제어 방법
JP5406622B2 (ja) * 2009-08-07 2014-02-05 株式会社フジクラ 燃料電池用双極板
US20110136030A1 (en) * 2009-12-03 2011-06-09 Enerfuel, Inc. High temperature pem fuel cell with thermal management system
JP5652719B2 (ja) * 2011-05-02 2015-01-14 スズキ株式会社 燃料電池車両
FR2982085B1 (fr) * 2011-10-28 2014-05-16 Commissariat Energie Atomique Systeme electrochimique type electrolyseur ou pile a combustible haute temperature a gestion thermique amelioree
GB2499417A (en) * 2012-02-15 2013-08-21 Intelligent Energy Ltd A fuel cell assembly
KR102120831B1 (ko) * 2018-12-27 2020-06-09 레드원테크놀러지 주식회사 수소연료전지 시스템
CN110931824B (zh) * 2019-11-29 2021-08-31 中国第一汽车股份有限公司 一种燃料电池冷却液流量分配***及其控制方法
JP7405623B2 (ja) * 2020-01-16 2023-12-26 株式会社Subaru 燃料電池システムおよびその排気湿度推定方法
CN111361858A (zh) * 2020-03-15 2020-07-03 河北源泷科技有限公司 一种危险原料安全转移装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922719A (ja) * 1995-07-05 1997-01-21 Sanyo Electric Co Ltd ポータブル燃料電池及びその運転方法
JPH09312165A (ja) * 1996-05-23 1997-12-02 Aqueous Res:Kk 燃料電池発電装置およびその運転方法
JPH10162842A (ja) * 1996-11-29 1998-06-19 Matsushita Electric Works Ltd 固体高分子型燃料電池用セパレータ、及びこれを用いた固体高分子型燃料電池スタック
JP2000251908A (ja) * 1999-02-24 2000-09-14 Sanyo Electric Co Ltd 固体高分子型燃料電池
WO2001013441A2 (en) * 1999-08-16 2001-02-22 Alliedsignal Inc. Fuel cell having improved condensation and reaction product management capabilities
EP1132986A2 (en) * 2000-03-08 2001-09-12 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method for operating fuel cell
JP2002134154A (ja) * 2000-10-20 2002-05-10 Sony Corp 燃料電池を備えた電気で駆動される装置
JP2002231292A (ja) * 2001-01-31 2002-08-16 Daikin Ind Ltd 燃料電池及び燃料電池駆動式冷却冷凍装置
JP2002260704A (ja) * 2001-03-05 2002-09-13 Nissan Motor Co Ltd 燃料電池の制御装置および電気自動車
JP2002313381A (ja) * 2001-04-19 2002-10-25 Mitsubishi Heavy Ind Ltd 燃料電池発電設備

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01186768A (ja) 1988-01-19 1989-07-26 Meidensha Corp 電解液循環形二次電池の電極構造
US4950566A (en) 1988-10-24 1990-08-21 Huggins Robert A Metal silicide electrode in lithium cells
JPH0690881B2 (ja) 1989-11-27 1994-11-14 工業技術院長 炭素質固体電解質材料およびこれを用いた固体電解質電池
JP3553101B2 (ja) 1993-03-15 2004-08-11 三菱重工業株式会社 固体高分子電解質燃料電池
US6054228A (en) 1996-06-06 2000-04-25 Lynntech, Inc. Fuel cell system for low pressure operation
JPH1064567A (ja) 1996-06-14 1998-03-06 Matsushita Electric Ind Co Ltd 燃料電池用水素供給システム及び携帯用電気機器
US6277508B1 (en) * 1998-07-17 2001-08-21 International Fuel Cells Corporation Fuel cell power supply with exhaust recycling for improved water management
EP1030396B8 (en) * 1998-09-04 2012-03-14 Kabushiki Kaisha Toshiba Solid polymer type fuel cell system
JP2000256007A (ja) 1999-03-11 2000-09-19 Jsr Corp プロトン伝導性材料の製造方法
JP2000353536A (ja) 1999-06-09 2000-12-19 Nippon Telegr & Teleph Corp <Ntt> 燃料電池及びその運転方法
JP3416578B2 (ja) 1999-06-25 2003-06-16 三洋電機株式会社 固体高分子電解質型燃料電池
JP3485840B2 (ja) 1999-06-30 2004-01-13 三洋電機株式会社 燃料電池システム
EP1249051B1 (en) * 2000-01-19 2004-04-07 Manhattan Scientifics, Inc. Fuel cell stack with cooling fins and use of expanded graphite in fuel cells
JP2001250569A (ja) * 2000-03-06 2001-09-14 Toyota Motor Corp 燃料電池及びその集電板
DE10037825A1 (de) * 2000-08-03 2002-05-16 Xcellsis Gmbh Brennstoffzellensystem
WO2002027814A2 (en) * 2000-09-28 2002-04-04 Proton Energy Systems, Inc. Regenerative electrochemical cell system and method for use thereof
JP2005502981A (ja) * 2001-01-19 2005-01-27 ワールド プロパティーズ インク. 電池部品のための装置および方法
US6649290B2 (en) * 2001-05-11 2003-11-18 Cellex Power Products, Inc. Fuel cell thermal management system and method
JP3894026B2 (ja) * 2001-05-18 2007-03-14 株式会社デンソー 燃料電池内部の水分測定方法
JP2002352817A (ja) 2001-05-25 2002-12-06 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池
US6861167B2 (en) * 2001-07-25 2005-03-01 Ballard Power Systems Inc. Fuel cell resuscitation method and apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0922719A (ja) * 1995-07-05 1997-01-21 Sanyo Electric Co Ltd ポータブル燃料電池及びその運転方法
JPH09312165A (ja) * 1996-05-23 1997-12-02 Aqueous Res:Kk 燃料電池発電装置およびその運転方法
JPH10162842A (ja) * 1996-11-29 1998-06-19 Matsushita Electric Works Ltd 固体高分子型燃料電池用セパレータ、及びこれを用いた固体高分子型燃料電池スタック
JP2000251908A (ja) * 1999-02-24 2000-09-14 Sanyo Electric Co Ltd 固体高分子型燃料電池
WO2001013441A2 (en) * 1999-08-16 2001-02-22 Alliedsignal Inc. Fuel cell having improved condensation and reaction product management capabilities
EP1132986A2 (en) * 2000-03-08 2001-09-12 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method for operating fuel cell
JP2002134154A (ja) * 2000-10-20 2002-05-10 Sony Corp 燃料電池を備えた電気で駆動される装置
JP2002231292A (ja) * 2001-01-31 2002-08-16 Daikin Ind Ltd 燃料電池及び燃料電池駆動式冷却冷凍装置
JP2002260704A (ja) * 2001-03-05 2002-09-13 Nissan Motor Co Ltd 燃料電池の制御装置および電気自動車
JP2002313381A (ja) * 2001-04-19 2002-10-25 Mitsubishi Heavy Ind Ltd 燃料電池発電設備

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1571722A4 *

Also Published As

Publication number Publication date
TW200423466A (en) 2004-11-01
EP1571722A4 (en) 2009-01-28
CA2508457A1 (en) 2004-06-24
CN100444447C (zh) 2008-12-17
US8101311B2 (en) 2012-01-24
TWI238558B (en) 2005-08-21
CA2508457C (en) 2013-04-02
JP2004193027A (ja) 2004-07-08
CN1745493A (zh) 2006-03-08
JP4292368B2 (ja) 2009-07-08
KR20050085585A (ko) 2005-08-29
EP1571722A1 (en) 2005-09-07
AU2003284661A1 (en) 2004-06-30
KR101107649B1 (ko) 2012-01-20
US20050255340A1 (en) 2005-11-17

Similar Documents

Publication Publication Date Title
WO2004054026A1 (ja) 燃料電池及びこれを搭載した電子機器
JP4042101B2 (ja) 燃料電池および燃料電池を用いた電力供給方法
US20080138692A1 (en) Fuel cell apparatus
US20060105213A1 (en) Separator, fuel cell device, and temperature control method for fuel cell device
US20050266295A1 (en) Fuel cell separator, fuel cell device, and electronic applied device
KR100990750B1 (ko) 연료 전지 시스템
CN117616619A (zh) 液体冷却模块的热管理
JP4839565B2 (ja) 燃料電池システム
JP2004273140A (ja) セパレータ、燃料電池装置及び燃料電池装置の温度調整方法
JP4645007B2 (ja) 燃料電池
JP2004192985A (ja) 燃料電池用セパレータ及びこれを用いた燃料電池
JP2004311149A (ja) 燃料電池運転方法および燃料電池
CN111989810B (zh) 燃料电池
JP2006221868A (ja) 燃料電池
JP5007622B2 (ja) 燃料電池及びこれを搭載した電子機器
JP2004281079A (ja) セパレータ、燃料電池装置及び燃料電池装置の温度調整方法
US20050069744A1 (en) Fuel cell
JP4304575B2 (ja) 燃料電池
KR101658974B1 (ko) 팩 하우징 및 이를 포함하는 배터리 팩
JP2004193012A (ja) 燃料電池用セパレータ及び燃料電池
CN111937206B (zh) 燃料电池
JP6605107B2 (ja) 燃料電池スタック
JP4525015B2 (ja) 電子機器
JP2007123163A (ja) 燃料電池及び電源供給システム
JP2007265819A (ja) 燃料電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2508457

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003774186

Country of ref document: EP

Ref document number: 1020057010694

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10536599

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038A95634

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057010694

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003774186

Country of ref document: EP