WO2004024205A1 - Verfahren zur herstellung eines antimikrobiellen kunststoffproduktes - Google Patents

Verfahren zur herstellung eines antimikrobiellen kunststoffproduktes Download PDF

Info

Publication number
WO2004024205A1
WO2004024205A1 PCT/EP2003/010049 EP0310049W WO2004024205A1 WO 2004024205 A1 WO2004024205 A1 WO 2004024205A1 EP 0310049 W EP0310049 W EP 0310049W WO 2004024205 A1 WO2004024205 A1 WO 2004024205A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
salts
sulfate
plastic
antimicrobial
Prior art date
Application number
PCT/EP2003/010049
Other languages
English (en)
French (fr)
Inventor
Josef-Peter Guggenbichler
Christoph Cichos
Original Assignee
Prof. Dr. Josef-Peter Guggenbichler, Dr. Christoph Cichos Gbr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10331324A external-priority patent/DE10331324A1/de
Application filed by Prof. Dr. Josef-Peter Guggenbichler, Dr. Christoph Cichos Gbr filed Critical Prof. Dr. Josef-Peter Guggenbichler, Dr. Christoph Cichos Gbr
Priority to AU2003270163A priority Critical patent/AU2003270163A1/en
Priority to JP2004535474A priority patent/JP5128757B2/ja
Priority to EP03750507A priority patent/EP1536848B1/de
Priority to DK03750507T priority patent/DK1536848T3/da
Priority to US10/527,157 priority patent/US20060134313A1/en
Priority to DE50308613T priority patent/DE50308613D1/de
Priority to BR0314210-8A priority patent/BR0314210A/pt
Publication of WO2004024205A1 publication Critical patent/WO2004024205A1/de
Priority to US12/569,423 priority patent/US20100068296A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • A61L2300/104Silver, e.g. silver sulfadiazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/62Encapsulated active agents, e.g. emulsified droplets
    • A61L2300/624Nanocapsules

Definitions

  • the invention relates to processes for producing metal-containing antimicrobial plastic products and to products obtainable by the process, in particular products for medical needs.
  • Plastic objects are used very frequently in the medical field and for a wide variety of purposes.
  • the problem with the use of plastic products for medical purposes is that the plastics can be easily colonized with germs. The germs settle on the plastic surface and form a "biofilm".
  • the consequence of the use of micro-org a n i s me n b e s i ed plastic objects are often infections.
  • It is known that the use of plastic catheters and cannulas can easily lead to infection by bacterial immigration. Such infections are particularly serious and common. in central venous short, medium and long-term catheters as well as in the urological area, where urethral and ureteral catheters are routinely used, and in diverting valve systems. In the Federal Republic of Germany alone, around 12 to 15 patients die every day as a result of infections that can be attributed to the use of microbially contaminated catheters.
  • WO87 / 03495 and WO89 / 04682 describe the impregnation of medical devices or implants with antibiotics.
  • the problem with impregnation with antibiotics is the formation and selection of resistant microorganisms.
  • Another approach to reducing infections when using plastic products is the use of metals or metal alloys, for example in the case of catheters (DE 40 41 721, DE 27 20 776 and DE 33 02 567).
  • the antimicrobial property of silver is of particular importance. Traces of silver and its salts already show a bacteriostatic and bactericidal effect.
  • US 4,054,139 discloses a catheter in which a silver-containing, oligodynamic material has been applied to inner and outer surfaces for prophylaxis against infection.
  • the approaches described have so far not been able to achieve satisfactory results with regard to sterility with the impregnation of plastic products in every respect, in particular at the start of use.
  • the object of the present invention is therefore to provide a method for producing plastic products which have a satisfactory antimicrobial activity.
  • the combination of an antimicrobial metal colloid and a soluble, preferably sparingly soluble, salt of an antimicrobial metal gives a satisfactory antimicrobial activity.
  • the plastic products according to the invention also achieve a significantly improved immediate effect against microorganisms.
  • the antimicrobial activity is significantly improved at the beginning compared to a plastic product of the prior art, as described, for example, in WO 01/09229.
  • a significantly higher antimicrobial effectiveness of the plastic products according to the invention can be shown (cf. Table 1).
  • the plastic products according to the present invention also have no increased cytotoxicity compared to products of the prior art, a further advantage is that no thrombogenicity is observed when using the plastic products according to the invention.
  • Antimicrobial plastic products in the sense of the invention are products which have activity against microorganisms, in particular against bacteria and / or fungi. This can be both a bacteriostatic action and a bactericidal action.
  • any antimicrobial plastic product can be produced by the method according to the invention; products are preferably produced which are used in the medical field. It may, for example, catheters, tubing, tubes, especially endotracheal tubes. Objects used in urology, bone cement, preferably bone cement consisting of methyl acrylate, Goretex tissue, toothbrushes, silicone plastics, plastic foils, textiles, for example for the manufacture of work clothing, diapers and / or parts thereof. In a particularly preferred embodiment of the method according to the invention, catheters are produced.
  • any polymeric compounds which are usually used in the medical field can be used as starting materials for the production of the antimicrobial plastic products according to the invention.
  • Preferred polymers are e.g. Polyurethanes, polyethylene, polypropylene, cross-linked polysiloxanes, (meth) acrylate-based polymers, cellulose and cellulose derivatives, polycarbonates, ABS, tetrafluoroethylene polymers, polyethylene terephthalates and the corresponding copolymers.
  • Polyurethane, polyethylene and polypropylene and polyethylene / polypropylene copolymers are particularly preferably used, most preferred being polyurethane.
  • the preliminary product can comprise further additives.
  • Additives can be, for example, inorganic or organic substances.
  • the precursor can include all inorganic and organic substances that are inert and medicinal are harmless, such as barium sulfate, calcium sulfate, strontium sulfate, titanium dioxide, aluminum oxide, silicon dioxide, zeolites, calcium fluoride (CaF 2 ), mica, talc, pyrogenic silica, calcium hydroxylapatite, kaolin, zirconium and / or microcellulose.
  • Preferred inorganic substances are barium sulfate, which can also be used as an X-ray contrast medium for special application forms, and zircon.
  • one or more constituents of the preliminary product are treated with a metal colloid.
  • One or more polymeric materials and / or one or more inorganic or organic particles can be treated with the metal colloid.
  • the carrier materials for the metal colloid can be present in the preliminary product in an amount of about 5 to 50% by weight.
  • barium sulfate is used as the carrier material, it is usually present in an amount of about 5 to 30% by weight, particularly preferably in an amount of about 20% by weight.
  • silicon dioxide is used as the carrier material, it is present in an amount of approximately 30 to 50% by weight, preferably approximately 40% by weight.
  • the metal colloid with which one or more constituents of the preliminary product are treated is suitably produced by reducing metal salt solutions.
  • reducing metal salt solutions When using silver, this is mixed with a reducing agent, for example as an ammoniacal silver nitrate solution.
  • a reducing agent for example as an ammoniacal silver nitrate solution.
  • protective substances such as gelatin, silica, starch, dextrin, gum arabic, polyvinyl alcohol or complexing agents such as ethylenediaminetetraacetic acid can optionally be used. It is preferable to work without protective substances.
  • Suitable reducing agents are, for example, aldehydes (for example acetaldehyde), aldoses (for example glucose), quinones (for example hydroquinone), inorganic complex hydrides (sodium or potassium borate), reducers Nitrogen compounds (e.g. hydrazine, polyethyleneimine), ascorbic acid, tartaric acid and citric acid.
  • aldehydes for example acetaldehyde
  • aldoses for example glucose
  • quinones for example hydroquinone
  • inorganic complex hydrides sodium or potassium borate
  • Nitrogen compounds e.g. hydrazine, polyethyleneimine
  • ascorbic acid tartaric acid and citric acid.
  • the color of the coated carrier material can also be controlled by varying the reducing agents and varying or omitting the stabilizers.
  • antimicrobial metals such as, for example, silver, copper, gold, zinc, zirconium, bismuth (bismuth) or cerium, and mixtures thereof, are suitable for the process according to the invention.
  • Silver which has a high antimicrobial activity, is particularly preferred.
  • copper is preferably used, which advantageously also has an activity against fungi.
  • the amount of the metal colloid is advantageously about 0.1 to 10, preferably about 0.5 to 5% by weight.
  • the application of the metal colloid to one or more components of the preliminary product can either be carried out in one step or can be followed by drying and repeated several times.
  • a very high metal concentration can be achieved with both methods.
  • the particle size of the metal can be controlled by varying the reducing agents and varying or omitting the stabilizers. If silver is used as the metal colloid, the preferred particle size is in the range from 10 to 50 nm. Silver of this particle size is referred to as nanosilver.
  • silver remaining in the solution is precipitated by adding phosphoric acid as silver phosphate, which is referred to below as "silver phosphate in statu nascendi" and is characterized by particularly rapid onset of the antimicrobial effect.
  • the amount of the metal colloid is chosen so that a sufficient part of the surface of the plastic product consists of metal particles in order to achieve an antimicrobial effectiveness.
  • a soluble or sparingly soluble salt of an antimicrobial metal is further added to the preliminary product.
  • This is preferably a silver salt, zinc salt, copper salt, cerium salt, platinum salt, zirconium salt, bismuth salt and / or gold salt and mixtures thereof.
  • all soluble or sparingly soluble salts of antimicrobially active metals are suitable which are resistant to the action of light and are physiologically harmless.
  • the amount of the metal salt used can be from 0.1 to 5% by weight, based on the total weight of the preliminary product, preferably from 0.5 to 1% by weight.
  • the mixture obtained is processed further in order to obtain a plastic product.
  • This can be done, for example, by extrusion, injection molding, mixing, kneading or (hot) pressing.
  • Preferred molding processes are extrusion and injection molding.
  • plastic products which can be obtained by the process according to the invention. It is preferably plastic products that are used in the medical field.
  • the method according to the invention produces catheters.
  • the preferred medical products are venous catheters for short-term implantation, in which both the outside of the catheter and each lumen inside, the Luer lock and the distributor consist of the material obtained according to the invention. Experiments have shown that an inoculum size of 10 9 germs with which the surface has been contaminated is completely eliminated in less than 9 hours.
  • peripheral venous cannulas peripheral venous cannulas, Sheldon catheters for implantation over 6 weeks for hemodialysis, Hickman-type catheters for long-term implantation with a cuff made of material according to the invention (antimicrobial activity determined for at least 1 year), port catheters, with at least the port chamber made of material produced according to the invention consists, expediently, also of all other components of the same, ventricular drainage catheter (minimum duration of effectiveness 3 years), bladder catheter, cystostomy, nephrostomy catheter, urether stent (e.g.
  • polyurethane pellets with a size of approximately 1 mm 3 are used as the polymeric material.
  • Another component of the preliminary product is barium sulfate, which as
  • the barium sulfate contains about 3 to 10% by weight, possibly also deposited more nanosilver.
  • the intermediate product comprises about 0.5 to 1% by weight of silver sulfate or silver phosphate, especially in statu nascendi.
  • the components of the preliminary product are mixed, the further processing can be done by extrusion.
  • a combination of silver and copper in a silver / copper ratio of approximately 2: 1 is used as the metal salt.
  • This combination advantageously also has a satisfactory microbial activity against fungi.
  • a combination of a metal colloid, particularly preferably nanosilver, and zirconium silicate is used. Weight ratios of silver to zirconium silicate of 1: 1 -10 are particularly suitable.
  • Figures 1 to 3 show results of tests for antimicrobial activity. Staphylococcus epidermidis ATCC 14 990 with an initial bacterial count of 5 ⁇ 10 7 CFU / ml was used as the microorganism.
  • Figure 3 shows an experimental approach in which 0.8% nanosilver and no additional silver sulfate was used. Examples:
  • Comparative Example 1 Commercial plastic according to WO 01/09299 A: Production of a silver colloid
  • Example 2 10 minutes after the end of the dropwise addition, as described in Example 1, about 50 g of polyurethane pellets made from Tecothane TT-1085A are added and, for coating with colloidal silver, are stirred vigorously at 40 ° C. for 2 hours and then at room temperature for 3 hours.
  • the silver colloid is separated by rapid filtration through a pleated filter with a suitable pore size, the pellets are washed again with the filtrate and the still moist pellets are transferred to an evaporation tray. After removing excess silver colloid solution not adhering to the polymer, drying takes place at 70 ° C. for 10 hours.
  • Example 2 Plastic with improved antimicrobial activity.
  • A Adsorption of colloidal silver on barium sulfate. In 360 ml of distilled water are successively dissolved at 50 ° C: 0.6 g gelatin and 6.0 g AgNO 3 . 7.8 ml of 25% aqueous ammonia solution are added to the solution. A solution of 3.18 g of anhydrous glucose, dissolved in 120 ml of distilled water, is slowly metered in with vigorous stirring at 50.degree. When about half the amount of glucose has been added dropwise, 100 g of barium sulfate are introduced into the already formed silver colloid with vigorous stirring, and the metering of glucose is continued. After the end of the glucose addition the suspension is turbinated for a further 2 hours at 50 ° C. and then for 3 hours at 70 ° C.
  • the solid is then separated from the liquid by filtration or centrifugation.
  • the solid is washed several times with ultrapure water until it is free of electrolytes, filtered, dried at 70 ° C to 80 ° C and finely ground.
  • step B If 2.5% by weight of silver sulfate is added in step B, the plastic listed in Table 1 under A is obtained; if 5% by weight of silver sulfate is added in step B, the plastic listed in Table 1 under B is obtained.
  • Example 3 Plastic with improved antimicrobial activity A: Adsorption of colloidal silver on barium sulfate
  • Silver sulfate is added in the same way as in Example 2 B.
  • samples of the corresponding plastics were incubated at 37 ° C. with a trypcase soy broth nutrient solution containing various germs.
  • Staphylococcus epidermidis ATCC 14 990,
  • Staphylococcus aureus ATCC 25923, Escherichia coli (E. coli), fresh clinical isolate from one
  • Pseudomonas aeruginosa P. aeruginosa
  • fresh clinical isolate from a patient with catheter-associated sepsis.
  • the bacterial count was either 5 x 10 7 colony forming units (CFU) / ml (corresponds to an OD of 0.30 at 457 nm for staphylococci, an OD of 0.65 for P. aeruginosa and E. coli) or 10 9 CFU / ml (OD 0.65 for Staphylococci at 475 nm, 1, 2 for P. aeruginosa and E. coli) adjusted in the photometer.
  • CFU / ml was determined by serial dilution on agar plates and the bacterial count determined by photometric measurement was confirmed.
  • Polyurethane (Tecoflex) was used, a material from which practically all implantable central venous catheters are made. This was with nanosilver (particle size 3 to 5 nm) in an amount of 0.8 or 1, 3 wt .-% and different concentrations of silver sulfate (0.25, 0.5, 0.75 and 1, 0%) coextruded. Strands with an outside diameter of 1.6 mm were produced. Pellets of 1 mm length were cut from each, 10 pellets give a surface area of about 1 cm 2 or 50 pellets give a surface area of 5 cm 2 .
  • the plastic pieces (either with a surface area of 1 cm 2 or 5 cm 5 ) were placed in a suspension with either 5 x 10 7 CFU / ml or 10 9 CFU / ml of the germs described above in physiological saline.
  • the test tubes were shaken at a speed of 120 rotations / minute.
  • 1 eyelet (2 ⁇ ⁇ ) was removed and streaked onto an agar plate (Müller Hinton Agar). The plates were incubated at 37 ° C for 24 hours. The bacterial count on the agar plate was then determined by counting the colonies.
  • the wild strain of S. epidermidis, S. aureus ATCC 25923 and E. coli and P. aeruginosa also showed a corresponding growth behavior.
  • the test experiments showed that the addition of silver sulfate significantly increases the immediate antimicrobial effectiveness (comparison of A or B against C).
  • the increase in effectiveness through the addition of silver sulfate is dose-dependent, however, effectiveness can already be observed with the addition of 0.5% silver sulfate.
  • the plastic according to the invention shows a significantly improved antimicrobial effectiveness compared to a plastic which only contains nanosilver (approach C).
  • the carrier material barium sulfate is mixed with 20% by weight of zirconium silicate in a first test series and with 20% by weight of nanosilver and 20% by weight of zirconium silicate in a second series of tests.
  • the mixtures thus obtained are mixed with different amounts of germs and the germ growth is then recorded over 48 hours.
  • the solid obtained is washed several times with ultrapure water until it is free of electrolytes and finally dried in a drying cabinet at 70 to 80 ° C. and, if appropriate, comminuted after drying.
  • the product produced in this way is white-gray in color and has the composition 3.6% nanosilver, 5% silver phosphate on BaSO 4 .
  • the bacterial count at a concentration of 1% or 0.1% was determined according to Example 4:
  • A Adsorption of colloidal silver on barium sulfate. 9 g of silver nitrate are dissolved in 360 ml of distilled water heated to 50 ° C. and 100 g of barium sulfate are stirred vigorously entered. After stirring for 20 minutes, 12 ml of a 25% ammonia solution are added.
  • a solution of 5.25 g of glucose monohydrate in 182 ml of distilled water is then slowly metered in at a constant temperature. After the glucose metering has ended, the suspension is stirred for a further 2 to 4 hours at 50 ° C. and then for a further 1 to 3 hours at 70 ° C.
  • the solid is separated from the aqueous phase and washed several times with ultrapure water or distilled water until it is free of electrolytes.
  • the washed solid is dried in a drying cabinet at 70 to 80 ° C. and then comminuted to the primary grain size.
  • Example 7 The desired amount (1 to 5% by weight) of the purest silver phosphate is added to the solid obtained according to A and mixed intensively. The examination as described in Example 4 gave equally good results as shown in Example 7.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

Die Erfindung betrifft Verfahren zur Herstellung von metallhaltigen antimikrobiellen Kunststoffprodukten sowie durch das Verfahren erhältliche Kunststoffprodukte, insbesondere Kunststoffprodukte für den medizinischen Bedarf.

Description

Verfahren zur Herstellung eines antimikrobiellen Kunststoffproduktes
Beschreibung
Die Erfindung betrifft Verfahren zur Herstellung metallhaltiger antimikrobieller Kunststoffprodukte sowie durch das Verfahren erhältliche Produkte, insbesondere Produkte für den medizinischen Bedarf.
Kunststoffgegenstände werden im medizinischen Bereich sehr häufig und für verschiedenste Zwecke verwendet. Problematisch bei der Verwendung von Kunststoffprodukten für medizinische Zwecke ist die leichte Besiedelbarkeit der Kunststoffe mit Keimen. Die Keime setzen sich auf der Kunststoffoberfläche fest und bilden einen "Biofilm". Die Folge der Verwe n d u n g e i n es mit M i kro o rg a n i s me n b e s i ed e lte n Kunststoffgegenstandes sind oft Infektionen. Es ist bekannt, dass die Verwendung von Kathetern und Kanülen aus Kunststoffen leicht zu einer Infektion durch Einwanderung von Bakterien führen kann. Besonders gravierend und häufig sind solche Infektionen u.a. bei zentralvenösen Kurz-, Mittel- und Langzeitkathetern sowie im urologischen Bereich, wo Harnröhrenkatheter und Ureterenkatheter routinemäßig verwendet werden und bei ableitenden Ventikelsystemen. So sterben alleine in der Bundesrepublik Deutschland täglich ungefähr 12 bis 15 Patienten infolge von Infektionen, die auf die Verwendung von mikrobiell verunreinigten Kathetern zurückzuführen sind.
Bislang wurden zahlreiche Versuche unternommen, die Besiedelung von Kunststoffgegenständen und somit Infektionen zu verhindern. WO87/03495 und WO89/04682 beschreiben die Imprägnierung von medizinischen Vorrichtungen bzw. Implantaten mit Antibiotika. Problematisch bei der Imprägnierung mit Antibiotika ist allerdings die Bildung und Selektion von resistenten Mikroorganismen. Ein weiterer Ansatz zur Verringerung von Infektionen bei der Verwendung von Kunststoffprodukten ist die Verwendung von Metallen oder Metalllegierungen, z.B. bei Kathetern (DE 40 41 721 , DE 27 20 776 und DE 33 02 567). Von besonderer Bedeutung ist hierbei die antimikrobielle Eigenschaft von Silber. Bereits Spuren von Silber und seinen Salzen zeigen eine bakteriostatische und bakterizide Wirkung. US 4 054 139 offenbart einen Katheter, bei dem zur Infektionsprophylaxe ein silberhaltiges, oligodynamisches Material auf innere und äußere Oberflächen appliziert wurde. Allerdings gelang es in den beschriebenen Ansätzen bislang nicht, in jeder Hinsicht, insbesondere bei Beginn der Benutzung zufriedenstellende Ergebnisse hinsichtlich der Sterilität mit der Imprägnierung von Kunststoffprodukten zu erzielen.
Ein Verfahren zur Herstellung von antimikrobiellen Kunststoffkörpern mit verbessertem Langzeitverhalten wird in WO01/09229 beschrieben.
In einer klinischen Prüfung der in WO 01 /09229 beschriebenen Katheter konnte eine Reduktion septischer Komplikationen um 88 % gegenüber den durch herkömmliche Katheter verursachten Infektionen beobachtet werden. Das bedeutet, dass im Vergleich zur Verwendung der Kontrollkatheter, wobei 25 Fälle von Sepsis auftraten, die Sepsisfälle auf drei Fälle verringert werden konnten. Somit ist die Wirkung eines nach dem in WO 01 /09229 offenbarten Verfahren hergestellten Katheters zwar gegenüber dem bisherigen Stand der Technik deutlich verbessert, aber auch bei der Verwendung der in WO 01/09229 offenbarten Katheter wird eine Besiedelungsrate von 10 % beobachtet, zudem treten auch hier, insbesondere in den ersten Tagen nach der Implantation des Katheters Infektionen an der Eintrittsstelle des Katheters auf.
Somit ist es bislang nicht gelungen, eine mikrobielle Verunreinigung von medizinisch verwendeten Kunststoff Produkten, insbesondere von Kathetern in zufriedenstellendem Ausmaß zu verhindern. Die Aufgabe der vorliegenden Erfindung ist somit die Bereitstellung eines Verfahrens zur Herstellung von Kunststoffprodukten, die eine zufriedenstellende antimikrobielle Wirksamkeit aufweisen.
Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung eines antimikrobiellen Kunststoffproduktes, umfassend
A) Bilden eines Vorprodukts,
B) Behandeln von mindestens einem Bestandteil des Vorproduktes mit einem antimikrobiellen Metallkolloid, und C) Zusetzen eines löslichen oder schwerlöslichen Salzes eines antimikrobiellen Metalls.
Überraschenderweise ergibt die Kombination aus einem antimikrobiellen Metallkolloid und einem löslichen, bevorzugt schwerlöslichen Salz eines antimikrobiellen Metalls eine zufriedenstellende antimikrobielle Wirksamkeit. Neben einer ausreichenden Langzeitwirkung wird mit den erfindungsgemäßen Kunststoffprodukten auch eine deutlich verbesserte Sofortwirkung gegenüber Mikroorganismen erreicht. Insbesondere ist die antimikrobielle Wirksamkeit zu Beginn wesentlich verbessert gegenüber einem Kunststoffprodukt des Standes der Technik, wie beispielsweise in WO 01 /09229 beschrieben. So kann im direkten Vergleich der Kunststoffprodukte hergestellt gemäß WO 01 /09229 und der erfindungsgemäßen Kunststoffprodukte eine deutlich höhere antimikrobielle Wirksamkeit der erfindungsgemäßen Kunststoffprodukte gezeigt werden (vgl. Tabelle 1 ).
Die Kunststoffprodukte gemäß der vorliegenden Erfindung besitzen zudem keine erhöhte Cytotoxizität gegenüber Produkten des Standes der Technik, ein weiterer Vorteil ist es, dass bei der Verwendung der erfindungsgemäßen Kunststoffprodukte keine Thrombogenität beobachtet wird. Antimikrobielle Kunststoffprodukte im Sinne der Erfindung sind Produkte, die eine Wirksamkeit gegen Mikroorganismen aufweisen, insbesondere gegen Bakterien oder/und Pilze. Dabei kann es sich sowohl um eine bakteriostatische Wirkung als auch um eine bakterizide Wirkung handeln.
Durch das erfindungsgemäße Verfahren kann prinzipiell jedes beliebige antimikrobielle Kunststoffprodukt hergestellt werden, bevorzugt werden Produkte hergestellt, die im medizinischen Bereich Verwendung finden. Dabei kann es sich beispielsweise um Katheter, Schläuche, Tuben, insbesondere endotracheale Tuben, . in der Urologie verwendete Gegenstände, Knochenzement, bevorzugt Knochenzement, der aus Methylacrylat besteht, Goretexgewebe, Zahnbürsten, Silikonkunststoffe, Kunststofffolien, Textilien, beispielsweise zur Herstellung von Berufskleidung, Windeln oder/und Teile davon handeln. In einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden Katheter hergestellt.
Als Ausgangsmaterialien zur Herstellung der erfindungsgemäßen antimikrobiellen Kunststoffprodukte können beliebige polymere Verbindungen eingesetzt werden, die im medizinischen Bereich üblicherweise Verwendung finden. Bevorzugte Polymere sind z.B. Polyurethane, Polyethylen, Polypropylen, vernetzte Polysiloxane, Polymere auf (Meth)acrylat-Basis, Cellulose und Cellulose-Derivate, Polycarbonate, ABS, Tetrafluorethylenpolymere, Polyethylenterephthalate sowie die entsprechenden Copolymere. Besonders bevorzugt werden Polyurethan, Polyethylen und Polypropylen sowie Polyethylen/Polypropylen-Copolymere verwendet, am meisten bevorzugt ist Polyurethan.
Neben einem oder mehreren polymeren Materialien kann das Vorprodukt weitere Additive umfassen. Additive können beispielsweise anorganische oder organische Substanzen sein. Das Vorprodukt kann alle anorganischen als auch organischen Substanzen umfassen, die inert und medizinisch unbedenklich sind, so wie beispielsweise Bariumsulfat, Calciumsulfat, Strontiumsulfat, Titandioxid, Aluminiumoxid, Silicumdioxid, Zeolithe, Calciumfluorid (CaF2), Glimmer, Talk, pyrogene Kieselsäure, Caiciumhydroxylapatit, Kaolin, Zirkon oder/und Mikrocellulose. Bevorzugt verwendete anorganische Substanzen sind Bariumsulfat, welches gleichzeitig als Röntgenkontrastmittel für besondere Anwendungsformen eingesetzt werden kann, und Zirkon.
Im erfindungsgemäßen Verfahren werden ein oder mehrere Bestandteile des Vorproduktes mit einem Metallkolloid behandelt. Hierbei können ein oder mehrere polymere Materialien oder/und ein oder mehrere anorganische bzw. organische Teilchen mit dem Metallkolloid behandelt werden. Die Trägermaterialien für das Metallkolloid können im Vorprodukt in einer Menge von etwa 5 bis 50 Gew.-% vorliegen. Wenn Bariumsulfat als Trägermaterial eingesetzt wird, liegt es gebräuchlicherweise in einer Menge von etwa 5 bis 30 Gew.-% vor, besonders bevorzugt in einer Menge von etwa 20 Gew.-%. Bei der Verwendung von Siliciumdioxid als Trägermaterial liegt dieses in einer Menge von etwa 30 bis 50 Gew.-%, bevorzugt etwa 40 Gew.-% vor.
Das Metallkolloid, mit dem ein oder mehrere Bestandteile des Vorprodukts behandelt werden, wird geeigneterweise durch Reduktion von Metallsalzlösungen hergestellt. Bei der Verwendung von Silber wird dieses beispielsweise als ammonialkalische Silbernitratlösung mit einem Reduktionsmittel versetzt. Zur Stabilisierung des entstehenden Metallkolloids können gegebenenfalls zusätzlich Schutzstoffe wie Gelatine, Kieselsäure, Stärke, Dextrin, Gummi Arabicum, Polyvinylalkohol oder Komplexbildner wie Ethylendiamintetraessigsäure eingesetzt werden. Vorzugsweise wird ohne Schutzstoffe gearbeitet. Geeignete Reduktionsmittel sind beispielsweise Aldehyde (z.B. Acetaldehyd), Aldosen (z.B. Glucose), Chinone (z.B. Hydrochinon), anorganische komplexe Hyd ri d e ( N atri u m- o d e r K a l i u m b o ra n at) , red uz i ere n d e Stickstoffverbindungen (z.B. Hydrazin, Polyethylenimin), Ascorbinsäure, Weinsäure sowie Zitronensäure.
Durch Variation der Reduktionsmittel sowie Variation oder Weglassen der Stabilisatoren kann zudem die Färbung des beschichteten Trägermaterials gesteuert werden.
Für das erfindungsgemäße Verfahren sind alle antimikrobiell wirkenden Metalle, so wie beispielsweise Silber, Kupfer, Gold, Zink, Zirkonium, Wismut (Bismut) oder Cer sowie Gemische davon geeignet. Besonders bevorzugt ist Silber, welches eine hohe antimikrobielle Wirksamkeit aufweist. Weiterhin wird bevorzugt Kupfer verwendet, wodurch vorteilhafterweise auch eine Wirksamkeit gegenüber Pilzen erreicht wird.
Die Menge des Metallkolloids beträgt vorteilhafterweise etwa 0,1 bis 10, bevorzugt etwa 0,5 bis 5 Gew.-%.
Das Aufbringen des Metallkolloids auf einen oder mehrere Bestandteile des Vorprodukts kann entweder in einem Schritt erfolgen oder kann von einer Trocknung gefolgt werden und mehrmals wiederholt werden. Mit beiden Methoden kann eine sehr hohe Metallkonzentration erreicht werden. Durch Variation der Reduktionsmittel sowie Variation oder Weglassen der Stabilisatoren kann die Partikelgröße des Metalls gesteuert werden. Wenn Silber als Metallkolloid verwendet wird, liegt die bevorzugte Teilchengröße im Bereich von 10 bis 50 nm. Silber dieser Teilchengröße wird als Nanosilber bezeichnet. In einer bevorzugten Ausführungsform wird nach der Zugabe des Reduktionsmittels und der Abscheidung des Nanosilbers in der Lösung verbliebenes Silber durch Zugabe von Phosphorsäure als Silberphosphat gefällt, welches nachstehend als "Silberphosphat in statu nascendi" bezeichnet wird und sich durch besonders raschen Eintritt der antimikrobiellen Wirkung auszeichnet. Die Menge des Metallkolloids wird so gewählt, dass ein ausreichender Teil der Oberfläche des Kunststoffproduktes aus Metallteilchen besteht, um eine antimikrobielle Wirksamkeit zu erreichen.
Erfindungsgemäß wird dem Vorprodukt weiterhin ein lösliches oder schwerlösliches Salz eines antimikrobiellen Metalls zugesetzt. Hierbei handelt es sich bevorzugt um ein Silbersalz, Zinksalz, Kupfersalz, Cersalz, Platinsalz, Zirkoniumsalz, Wismutsalz oder/und Goldsalz sowie Gemische davon. Besonders bevorzugt wird ein Silbersalz, insbesondere Silbersulfat oder/und Silberphosphat in statu nascendi, verwendet. Grundsätzlich sind alle löslichen oder schwerlöslichen Salze antimikrobiell wirksamer Metalle geeignet, die gegenüber Lichteinwirkung beständig und physiologisch unbedenklich sind. Die Menge des verwendeten Metallsalzes kann von 0, 1 bis 5 Gew.-% bezogen auf das Gesamtgewicht des Vorproduktes betragen, bevorzugt von 0,5 bis 1 Gew.-%.
Nach dem Mischen der zumindest teilweise mit einem Metallkolloid behandelten Bestandteile des Vorproduktes mit dem schwerlöslichen Metallsalz wird das erhaltene Gemisch weiterverarbeitet, um ein Kunststoffprodukt zu erhalten. Dies kann beispielsweise durch Extrudieren, Spritzgießen, Mischen, Kneten oder (Heiß-)Pressen erfolgen. Bevorzugte Formungsverfahren sind Extrudieren sowie Spritzgießen.
Ein weiterer Gegenstand der vorliegenden Erfindung sind Kunststoffprodukte, die durch das erfindungsgemäße Verfahren erhältlich sind. Bevorzugt handelt es sich um Kunststoff produkte, die im medizinischen Bereich Verwendung finden. In einer besonders bevorzugten Ausführungsform werden durch das erfindungsgemäße Verfahren Katheter hergestellt. Beispiele für die bevorzugten Medizinprodukte sind Venenkatheter zur Kurzzeitimplantation, bei denen sowohl die Außenseite des Katheters als auch jedes Lumen innen, der Luer Lock und der Verteiler aus dem erfindungsgemäß erhaltenen Material bestehen. Versuche haben gezeigt, dass eine Inokulumgröße von 109 Keimen, mit denen die Oberfläche kontaminiert wurde, innerhalb von weniger als 9 Stunden vollständig eliminiert wird. Weiterhin sind periphere Venenkanülen, Sheldon-Katheter zur Implantation über 6 Wochen zur Hämodialyse, Hickman-Typ-Katheter zur Langzeitimplantation mit einem aus erfindungsgemäß hergestellten Material bestehenden Cuff (Antimikrobielle Wirksamkeit mindestens 1 Jahr festgestellt), Portkatheter, wobei mindestens die Portkammer aus erfindungsgemäß hergestelltem Material besteht, zweckmäßig auch alle weiteren Bestandteile desselben, ableitende Ventrikelkatheter (minimale Wirksamkeitsdauer 3 Jahre) , Blasenkatheter, Cystostomie, Nephrostomiekatheter, Uretherstents (z.B. aus Polyuretahn- oder Silikongrundmaterial; zweckmäßig besteht auch das gesamte Harnsammeisystem und die Konnektoren aus diesem Material), Thoraxdrainagen sowie das angeschlossene Saugsystem, endotracheale Tuben, Tenckhof-Katheter mit Cuff, Knochenzemente (z.B. auf Basis von Methylacrylat), Zahnbürsten (Borsten und Griff), chirurgisches Nahtmaterial, Fadenmaterial zur Herstellung von antimikrobiellen Textilien, Lacke zur antimikrobiellen Beschichtung, z.B. von Schläuchen für Beatmung, antimikrobielle Wundabdeckungen und Dressings bei Brandverletzungen.
Im Folgenden werden bevorzugte Ausführungsformen des erfindungsgemäßen Verfahrens beschrieben.
In einer bevorzugten Ausführungsform werden als polymeres Material Polyurethanpellets mit einer Größe von etwa 1 mm3 verwendet. Ein weiterer Bestandteil des Vorprodukts ist Bariumsulfat, welches als
Trägermaterial fungiert. Auf dem Bariumsulfat sind etwa 3 bis 10 Gew.-%, gegebenenfalls auch mehr Nanosilber abgeschieden. Außerdem umfasst das Vorprodukt etwa 0,5 bis 1 Gew.-% Silbersulfat oder Silberphosphat, insbesondere in statu nascendi. Die Bestandteile des Vorproduktes werden gemischt, die weitere Verarbeitung kann durch Extrudieren erfolgen.
In einer weiteren bevorzugten Ausführungsform wird als Metallsalz eine Kombination aus Silber und Kupfer in einem Silber/Kupfer-Verhältnis von etwa 2:1 verwendet. Diese Kombination besitzt vorteilhafterweise auch eine zufriedenstellende mikrobielle Wirksamkeit gegenüber Pilzen.
Gemäß einer weiteren bevorzugten Ausführungsform wird eine Kombination aus einem Metallkolloid, besonders bevorzugt Nanosilber, und Zirkonsilikat verwendet. Besonders geeignet sind Gewichtsverhältnisse Silber zu Zirkonsilikat von 1 : 1 -10.
Die Erfindung wird weiterhin durch die nachfolgenden Figuren und Beispiele veranschaulicht.
Die Figuren 1 bis 3 zeigen Ergebnisse von Versuchen zur antimikrobiellen Wirksamkeit. Als Mikroorganismus wurde jeweils Staphylokokkus epidermidis ATCC 14 990 mit einer Ausgangskeimzahl von 5 x 107 CFU/ml verwendet.
In dem in Figur 1 gezeigten Versuchsansatz wurden 0,8 % Nanosilber und 0,5 % Silbersulfat verwendet.
In dem in Figur 2 gezeigten Versuchsansatz wurden 0,8 % Nanosilber und 1 ,0 % Silbersulfat eingesetzt.
Figur 3 zeigt einen Versuchsansatz, worin 0,8 % Nanosilber und kein zusätzliches Silbersulfat eingesetzt wurde. Beispiele:
Vergleichsbeispiel 1 : Handelsüblicher Kunststoff gemäß WO 01/09299 A: Herstellung eines Silberkolloids
In 100 ml destilliertem Wasser werden 1 ,0 g (5,88 mmol) AgNO3 p.a. gelöst, die Lösung wird mit 1 ,0 ml (14,71 mmol) 25 %-igem NH3-Wasser versetzt. Zu dieser Lösung wird zur Darstellung des Silberkolloids bei 40 °C über einen Zeitraum von 30 Minuten langsam eine Lösung aus 258,7 mg (5,88 mmol, 330 μ\) Acetaldehyd in 50 ml aqua dest. getropft.
B: Beschichtung von Polyurethanpellets
10 Minuten nach dem Beenden des Zutropfens, wie in Beispiel 1 beschrieben, werden ca. 50 g Polyurethanpellets aus Tecothane TT-1085A zugesetzt und zur Beschichtung mit kolloidalem Silber zunächst für 2 Stunden bei 40 °C und anschließend für 3 Stunden bei Raumtemperatur kräftig gerührt. Das Silberkolloid wird durch rasche Filtration über einen Faltenfilter mit geeigneter Porengröße abgetrennt, die Pellets werden noch einmal mit dem Filtrat nachgewaschen und die noch feuchten Pellets werden in eine Abdampfschale überführt. Nach dem Enfernen überschüssiger nicht am Polymer haftender Silberkolloidlösung erfolgt eine Trocknung für 10 Stunden bei 70 °C.
Beispiel 2: Kunststoff mit verbesserterer antimikrobieller Wirksamkeit. A: Adsorption von kolloidalem Silber an Bariumsulfat In 360 ml destilliertem Wasser werden bei 50 °C nacheinander gelöst: 0,6 g Gelatine und 6,0 g AgNO3. Die Lösung wird mit 7,8 ml 25 %-iger wässriger Ammoniaklösung versetzt. Unter kräftigem Rühren wird bei 50 °C langsam eine Lösung aus 3, 18 g wasserfreier Glucose, in 120 ml destilliertem Wasser gelöst, zudosiert. Wenn etwa die Hälfte der Glucosemenge zugetropft wurde, werden in das bereits gebildete Silberkolloid unter starkem Rühren 100 g Bariumsulfat eingetragen, und die Glucosedosierung wird fortgesetzt. Nach Beendigung der Glucosezugabe wird die Suspension noch für weitere 2 Stunden zunächst bei 50 °C und danach noch 3 Stunden bei 70 °C turbiniert.
Anschließend wird der Feststoff durch Filtration oder Zentrifugation von der Flüssigkeit getrennt. Der Feststoff wird mehrfach bis zur Elektrolytfreiheit mit Reinstwasser gewaschen, filtriert, bei 70 °C bis 80 °C getrocknet und fein zerkleinert.
B: Zumischen von Silbersulfat Dem getrockneten und zerkleinertem Bariumsulfat werden 2,5 Gew.-% bzw. 5 Gew.-% fein aufgemahlenes Silbersulfat zugefügt und intensiv vermischt.
C: Mischen der einzelnen Bestandteile 20 Gew.-% des beschichteten Bariumsulaft/Silbersuifatgemisches werden mit 77,6 Gew.-% Polyurethanpellets und 2,4 Gew.-% eines weiteren, anorganischen unbeschichteten Materials, z.B. Titandioxid, gründlich gemischt und das Gemisch wird einer weiteren Bearbeitung, z.B. einer Extrusion unterzogen.
Werden in Schritt B 2,5 Gew.-% Silbersulfat zugesetzt, erhält man den in Tabelle 1 unter A aufgeführten Kunststoff, werden in Schritt B 5 Gew.-% Silbersulfat zugegeben, wird der in Tabelle 1 unter B aufgeführte Kunststoff erhalten.
Beispiel 3: Kunststoff mit verbesserter antimikrobieller Wirksamkeit A: Adsorption von kolloidalem Silber an Bariumsulfat
In 1080 ml destilliertem Wasser werden bei 50 °C 18 g AgNO3 gelöst und 200 g Bariumsulfat zugesetzt. Die Suspension wird für ca. 20 Minuten kräftig gerührt und danach mit 23,4 ml einer 25 %-igen wässrigen Ammoniaklösung versetzt. Unter ständigem Rühren werden bei gleichbleibender Tempratur 9,6 g wasserfreie Glucose in 360 ml gelöst langsam zugetropft. Nach Beendigung der Glucosedosierung wird analog Beispiel 2A bis zur Mahlung des getrockneten Bariumsulfates weiterverfahren.
B: Zumischen von Silbersulfat
Die Zumischung von Silbersulfat erfolgt analog Beispiel 2 B.
C: Mischen der einzelnen Bestandteile Analog Beispiel 2 wird, das mit Silbersulfat vermischte Bariumsulfat mit den anderen Bestandteilen gemischt und weiterverarbeitet.
Beispiel 4: Bestimmung der antimikrobiellen Wirksamkeit
Zur Bestimmung der antimikrobiellen Wirksamkeit der erfindungsgemäßen Kunststoffe wurden Proben der entsprechenden Kunststoffe mit einer verschiedene Keime enthaltenden Trypcase-Soy-Broth-Nährlösung bei 37 °C inkubiert.
Verwendete Mikroorganismen:
Staphylokokkus epidermidis (S. epidermidis) ATCC 14 990,
S. epidermidis, frisches klinisches Isolat von einem Patienten mit einer Katheter-assoziierten Sepsis,
Staphylokokkus aureus (S. aureus) ATCC 25923, Escherichia coli (E.coli), frisches klinisches Isolat von einem
Patienten mit einer Katheter-assoziierten Sepsis,
Pseudomonas aeruginosa (P. aeruginosa), frisches klinisches Isolat von einem Patienten mit einer Katheter-assoziierten Sepsis.
Die Keimzahl wurde entweder auf 5 x 107 colony forming units (CFU)/ml (entspricht bei Staphylokokken einer OD von 0,30 bei 457 nm, bei P. aeruginosa und E. coli einer OD von 0,65) oder 109 CFU/ml (OD 0,65 für Staphylokokken bei 475 nm, 1 ,2 für P. aeruginosa und E. coli) im Fotometer eingestellt. Parallel wurde eine Bestimmung der CFU/ml durch Serienverdünnung auf Agarplatten durchgeführt und die durch fotometrische Messung ermittelten Keimzahlen bestätigt.
Kunststoffmaterialien:
Es wurde Polyurethan (Tecoflex) verwendet, ein Material, aus dem praktisch alle implantierbaren zentralvenösen Katheter gefertigt werden. Dieses wurde mit Nanosilber (Partikelgröße 3 bis 5 nm) in einer Menge von 0,8 bzw. 1 ,3 Gew.-% und unterschiedlichen Konzentrationen von Silbersulfat (0,25, 0,5, 0,75 und 1 ,0 %) coextrudiert. Es wurden Stränge mit einem Außendurchmesser von 1 ,6 mm gefertigt. Davon wurden Pellets von jeweils 1 mm Länge abgeschnitten, 10 Pellets ergeben eine Oberfläche von etwa 1 cm2 bzw. 50 Pellets ergeben eine Oberfläche von 5 cm2.
Testmethode:
Die Kunststoffstückchen (entweder mit einer Oberfläche von 1 cm2 oder 5 cm5) wurden in eine Suspension mit entweder 5 x 107 CFU/ml oder 109 CFU/ml der oben beschriebenen Keime in physiologischer Kochsalzlösung eingebracht. Die Eprouvetten wurden mit einer Geschwindigkeit von 120 Rotationen/Minute geschüttelt. Zu Beginn der Untersuchung (Ausgangskeimzahl) und nach 6, 12, (18), 24, 36 und (48) Stunden wurde jeweils 1 Öse (2 μ\) entnommen und auf eine Agarplatte (Müller Hinton Agar) ausgestrichen. Die Platten wurden bei 37 °C für 24 Stunden bebrütet. Anschließend wurde die Keimzahl auf der Agarplatte durch Zählung der Kolonien bestimmt.
Alle Versuche wurden dreifach wiederholt, die folgenden Daten stellen jeweils die Mittelwerte der drei korrespondierenden Versuchsansätze dar. Ergebnisse:
In der folgenden Tabelle 1 sind die ermittelten Kolonienzahlen des
Testversuchs, die mit S. epidermidis ATCC 14 990 erhalten wurden, aufgelistet.
Tabelle 1
A 0,8 % Nanosilber, 0,5 % Silbersulfat,
Zeit in Stunden 0 6 12 24 3 48 5 x 107 CF/ml
1 cm2* 5 x 107 2 x 103 103 O 0
5 cm2 5 x 107 103 O O 0
109 CFU
1 cm2 109 107 0 0 0
5 cm2 109 105 0 0 0
B 0,8 % Nanosilber, 1 ,0 % Silbersulfat
Zeit in Stunden 0 6 12 24 3 48 5 x 107 CFU/ml
1 cm2 5 x 107 104 0 0 0
5 cm2 5 x 107 103 0 0 0
109 CFU
1 cm2 109 106 102 0 0
5 cm2* * 109 104 0 0 0
0,8 Nanosilber (handesüblicher Kunststoff gemäß WO 01 /09229; Fa. Medex)
Zeit in Stunden 0 6 12 24 36 48 5 x 107 CFU/ml
1 cm2 5 x 107 107 106 104 103 0
5 cm2 5 x 107 106 105 103 102 0
109 CFU
1 cm2 109 109 109 109 109 108+
5 cm2 ** * 109 109 109 109 109 1 0e+
* schwaches Wachstum der Kolonien nach 48 Stunden Bebrütung * in Figur 1 abgebildet * * in Figur 2 abgebildet * * * in Figur 3 abgebildet
Ein entsprechendes Wachstumsverhalten zeigten auch der Wildstamm von S. epidermidis, S. aureus ATCC 25923 sowie E. coli und P. aeruginosa. Die Testversuche zeigten, dass die Zugabe von Silbersulfat die sofortige antimikrobielle Wirksamkeit deutlich steigert (Vergleich von A oder B gegenüber C). Die Steigerung der Wirksamkeit durch Zugabe von Silbersulfat ist dosisabhängig, jedoch kann bereits bei der Zugabe von 0,5 % Silbersulfat eine Wirksamkeit beobachtet werden . Der erfindungsgemäße Kunststoff zeigt eine deutlich verbesserte antimikrobielle Wirksamkeit im Vergleich zu einem Kunststoff, der lediglich Nanosilber enthält (Ansatz C). Bei dem getesteten Kunststoff des Standes der Technik (gemäß WO 01 /09229) kann bei einer Ausgangskeimzahl von 5 x 107 CFU/ml erst nach 48 Stunden eine Sterilität beobachtet werden. Bei einer Ausgangskeimzahl von 109 CFU/ml tritt selbst nach 48 Stunden noch ein schwaches Wachstum der Kolonien auf.
Beispiel 5
Untersuchung von Zirkonsilikat-haltigem Trägermaterial
Das Trägermaterial Bariumsulfat wird in einer ersten Versuchsreihe mit 20 Gew.-% Zirkonsilikat, in einer zweiten Versuchsreihe mit 20 Gew.-% Nanosilber und 20 Gew.-% Zirkonsilikat versetzt. Die so erhaltenen Mischungen werden mit unterschiedlichen Mengen an Keimen versetzt und dann das Keimwachstum über 48 Stunden aufgezeichnet.
Figure imgf000017_0001
+ = Wachstum - = steril + /- = kein Wachstum aber auch noch nicht steril
Beispiel 6
Vergleichende Untersuchung der antimikrobiellen Wirksamkeit von
Zirkoniumsilikat auf Bariumsulfat als Träger alleine oder mit Nanosilber
Figure imgf000018_0001
Beispiel 7
Untersuchung der antimikrobiellen Wirksamkeit bei Verwendung von Nanosilber und Silberphosphat in statu nascendi auf Bariumsulfatträger (3,6 % Ag; 5 % Silberphosphat
Adsorption von kolloidalem Silber an Bariumsulfat und Erzeugung von feinstverteiltem Silberphosphat in statu nascendi
In 360 ml destilliertem Wasser werden bei 50 °C 14,45 g Silbernitrat gelöst und anschließend unter kräftigem Rühren 100 g Bariumsulfat eingetragen. Die Suspension wird ca. 20 Minuten gerührt. Danach werden 19,3 ml einer 25 %-igen Ammoniaklösung zugesetzt.
Unter ständigem Rühren und bei gleichbleibender Temperatur wird in die Suspension langsam eine Lösung aus 5,25 g Glucosemonohydrat in 182 ml destilliertem Wasser dosiert. Nach Beendigung der Glucosezugabe wird weiter 2 bis 4 Stunden bei 50 °C gerührt und schließlich mit ca. 50 ml einer 0,1 molaren Phosphorsäure das noch vorhandene nicht reduzierte Silber gefällt und die Suspension auf pH = ca. 6 gebracht.
Das Rühren wird bis zur Abkühlung auf Zimmertemperatur fortgesetzt. Anschließend erfolgt die Feststoffabtrennung durch Sedimentation, Filtration oder Zentrifugation.
Der erhaltene Feststoff wird bis zur Elektrolytfreiheit mehrfach mit Reinstwasser gewaschen und zuletzt bei 70 bis 80 °C im Trockenschrank getrocknet und gegebenenfalls nach dem Trocknen zerkleinert.
Das auf diese Weise hergestellte Produkt ist von weißgrauer Farbe, es hat die Zusammensetzung 3,6 % Nanosilber, 5 % Silberphosphat auf BaSO4. Die Keimzahl bei einer Konzentration von 1 % bzw. 0,1 % wurde gemäß Beispiel 4 bestimmt:
Zeit (Std) 1 2 3
1 % 107 105
0,1 % 108 107 106
Beispiel 8
A: Adsorption von kolloidalem Silber an Bariumsulfat In 360 ml auf 50 °C erwärmtem destilliertem Wasser werden 9 g Silbernitrat gelöst und unter kräftigem Rühren 100 g Bariumsulfat eingetragen. Nach 20 Minuten Rühren werden 12 ml einer 25 %-igen Ammoniaklösung zugesetzt.
Anschließend wird bei gleichbleibender Temperatur eine Lösung aus 5,25 g Glucosemonohydrat in 182 ml destilliertem Wasser langsam zudosiert. Nach Beendigung der Glucosedosierung wird die Suspension noch weitere 2 bis 4 Stunden bei 50 °C und anschließend noch 1 bis 3 Stunden bei 70 °C gerührt.
Nach der kompletten Reaktion wird der Feststoff aus der wässrigen Phase abgetrennt und bis zur Elektrolytfreiheit noch mehrmals mit Reinstwasser oder destilliertem Wasser gewaschen. Der gewaschene Feststoff wird bei 70 bis 80 °C im Trockenschrank getrocknet und danach auf die Primärkorngröße zerkleinert.
B: Zumischen von Silberphosphat
Dem nach A erhaltenen Feststoff wird die gewünschte Menge (1 bis 5 Gew.-%) reinstes Silberphosphat zugesetzt und intensiv vermischt. Die Untersuchung wie in Beispiel 4 beschrieben ergab ebenso gute Resultate wie in Beispiel 7 gezeigt.

Claims

Ansprüche
1 . Verfah ren zu r H erstel l u ng ei n es a ntim i kro biell en Kunststoffproduktes, umfassend
A) Bilden eines Vorprodukts,
B) Behandeln von mindestens einem Bestandteil des Vorproduktes mit einem antimikrobiellen Metallkolloid, und
C) Zusetzen eines löslichen oder schwerlöslichen Salzes eines antimikrobiellen Metalls.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das schwerlösliche Metallsalz ausgewählt ist aus der Gruppe, bestehend aus Silbersalzen, Zinksalzen, Kupfersalzen, Cersalzen,
Zirkoniumsalzen, Wismutsalzen, Platinsalzen oder/und Goldsalzen.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Metallsalz Silbersulfat oder/und Silberphosphat umfasst.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das Metallsalz in einer Menge von 0, 1 bis 1 ,0 Gew.-% bezogen auf das Gesamtgewicht des Vorprodukts vorliegt.
5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Metallsalz in einem Silber/Kupfer-Verhältnis von etwa 2: 1 vorliegt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Vorprodukt ein oder mehrere polymere Materialien umfasst.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Vorprodukt Polyurethan umfasst.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Vorprodukt weitere Additive umfasst.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Additive anorganische oder organische Teilchen umfassen.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die anorganischen oder/und organischen Teilchen ausgewählt sind aus der Gruppe, bestehend aus Bariumsulfat, Calciumsulfat, Strontiumsulfat, Titandioxid, Aluminiumoxid, Siliciumdioxid, Zeolithe,
Calciumfluorid (CaF2), Glimmer, Talk, pyrogene Kieselsäure, Caiciumhydroxylapatit, Kaolin oder/und Mikrocellulose.
1 1 . Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die anorganischen Teilchen Bariumsulfat oder/und pyrogene Kieselsäure umfassen.
12. Verfahren nach einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass polymere Materialien und anorganische Teilchen mit einem Metallkolloid behandelt werden.
13. Verfahren nach einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass anorganische Teilchen mit einem Metallkolloid behandelt werden.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Metallkolloid kolloidales Silber umfasst.
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gemisch aus behandeltem Vorprodukt und schwerlöslichem Metallsalz durch Extrudieren, Spritzgießen, Mischen, Kneten oder (Heiß-) Pressen geformt wird.
16. Kunststoffprodukte, erhältlich nach einem der Ansprüche 1 bis 15.
17. Kunststoffprodukt nach Anspruch 16 in Form eines Katheters.
PCT/EP2003/010049 2002-09-10 2003-09-10 Verfahren zur herstellung eines antimikrobiellen kunststoffproduktes WO2004024205A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2003270163A AU2003270163A1 (en) 2002-09-10 2003-09-10 Methods for producing an anti-microbial plastic product
JP2004535474A JP5128757B2 (ja) 2002-09-10 2003-09-10 抗菌性プラスチック製品の製造方法
EP03750507A EP1536848B1 (de) 2002-09-10 2003-09-10 Verfahren zur herstellung eines antimikrobiellen kunststoffproduktes
DK03750507T DK1536848T3 (da) 2002-09-10 2003-09-10 Fremgangsmåde til fremstilling af et antimikrobielt plastprodukt
US10/527,157 US20060134313A1 (en) 2002-09-10 2003-09-10 Methods for producing an anti-microbial plastic product
DE50308613T DE50308613D1 (de) 2002-09-10 2003-09-10 Verfahren zur herstellung eines antimikrobiellen kunststoffproduktes
BR0314210-8A BR0314210A (pt) 2002-09-10 2003-09-10 Métodos para a produção de um produto plástico antimicrobiano
US12/569,423 US20100068296A1 (en) 2002-09-10 2009-09-29 Methods for producing an anti-microbial plastic product

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10241962.0 2002-09-10
DE10241962 2002-09-10
DE10331324.9 2003-07-10
DE10331324A DE10331324A1 (de) 2002-09-10 2003-07-10 Verfahren zur Herstellung eines antimikrobiellen Kunststoffproduktes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/569,423 Continuation US20100068296A1 (en) 2002-09-10 2009-09-29 Methods for producing an anti-microbial plastic product

Publications (1)

Publication Number Publication Date
WO2004024205A1 true WO2004024205A1 (de) 2004-03-25

Family

ID=31995058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/010049 WO2004024205A1 (de) 2002-09-10 2003-09-10 Verfahren zur herstellung eines antimikrobiellen kunststoffproduktes

Country Status (11)

Country Link
US (2) US20060134313A1 (de)
EP (1) EP1536848B1 (de)
JP (1) JP5128757B2 (de)
CN (1) CN100342925C (de)
AT (1) ATE378078T1 (de)
AU (1) AU2003270163A1 (de)
BR (1) BR0314210A (de)
DE (1) DE50308613D1 (de)
DK (1) DK1536848T3 (de)
ES (1) ES2297196T3 (de)
WO (1) WO2004024205A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004052203A1 (de) * 2004-10-20 2006-05-04 Aesculap Ag & Co. Kg Trägermaterial mit Silberpartikeln, Bereitstellung des Trägermaterials, medizintechnisches Produkt enthaltend das erfindungsgemäße Material und Verfahren zur Detektion des Trägermaterials sowie von Adhäsionen
WO2006092155A1 (de) * 2005-03-02 2006-09-08 Christoph Cichos Antimikrobiell wirkendes präparat zur äusserlichen anwendung
EP2018867A1 (de) * 2007-07-26 2009-01-28 Spirig Pharma AG Verfahren zur Herstellung einer antimikrobiell wirkender kosmetischen und/oder pharmazeutischen Zusammensetzung zur topischen Anwendung
WO2009013016A1 (de) * 2007-07-26 2009-01-29 Spiegelberg (Gmbh & Co.) Kg Antimikrobielles kunststoffprodukt und verfahren zu dessen herstellung
EP2108384A1 (de) 2008-04-08 2009-10-14 Bayer MaterialScience AG Medizinische Geräte mit einer antibakteriellen Polyurethanharnstoffbeschichtung
EP2108389A1 (de) 2008-04-08 2009-10-14 Bayer MaterialScience AG Medizinische Geräte mit einer antimikrobiellen Polyurethanharnstoffbeschichtung
EP2108388A1 (de) 2008-04-08 2009-10-14 Bayer MaterialScience AG Wässrige silberhaltige nichtionische Polyurethandispersionen
EP2108382A1 (de) 2008-04-08 2009-10-14 Bayer MaterialScience AG Silberhaltige Polyurethanharnstofflösung
EP2411480A1 (de) * 2009-03-27 2012-02-01 Panadur GmbH Antimikrobieller beschichtungsstoff auf der basis eines amino- oder hydroxylgruppenfunktionellen reaktionspartners für isocyanate
DE102011102635A1 (de) 2011-05-27 2012-11-29 Spiegelberg GmbH & Co. KG Verfahren zur Herstellung eines antimikrobiellen Kunststoffproduktes unter Verwendung eines Reduktons
WO2012163806A1 (de) 2011-05-27 2012-12-06 Spiegelberg (Gmbh & Co.) Kg Verfahren zur herstellung eines antimikrobiellen kunststoffproduktes
DE102005053295C5 (de) * 2005-11-08 2013-03-07 Spiegelberg GmbH & Co. KG Verfahren zur Herstellung eines steril verpackten, metallhaltigen Kunststoffkörpers mit antimikrobiell wirkender Oberfläche

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2646639A1 (en) 2005-03-17 2006-09-21 Impactcare Aps Article to be inserted in a body cavity having biologically inhibiting surfaces
US20080086096A1 (en) * 2006-10-05 2008-04-10 Voznyakovski Alexander Petrovi Nano particle additives for venous access catheter
AT12981U1 (de) * 2006-11-13 2013-03-15 Josef Peter Dr Guggenbichler Stoff mit antimikrobieller wirkung
EP2136645B1 (de) * 2007-04-18 2013-06-19 Basf Se Antimikrobielle kunststoffe und beschichtungen
US20100150979A1 (en) * 2008-12-16 2010-06-17 Cooper Technologies Company Antimicrobial wiring devices
IL203403A (en) * 2010-01-19 2016-08-31 Cupron Inc Biofilm resistant materials
DE102010063342A1 (de) 2010-12-17 2012-06-21 Laser Zentrum Hannover E.V. Verfahren zur Herstellung von mikro-nanokombinierten Wirksystemen
KR101944126B1 (ko) * 2010-12-23 2019-04-17 프랑코 도크마노비치 해리스 항균성 콜로이드 실버 및 골드 제품 및 그의 제조 방법
US10138038B2 (en) * 2014-06-05 2018-11-27 Thomas & Betts International, Llc Antimicrobial detectable cable tie
AU2016243634B2 (en) 2015-03-30 2020-04-02 C. R. Bard, Inc. Application of antimicrobial agents to medical devices
CN106178062B (zh) * 2016-07-08 2018-01-23 苏州宝迪海斯医疗器械技术开发有限公司 一种具有持久抗菌性能的材料及其制备方法
WO2020010152A1 (en) 2018-07-02 2020-01-09 C.R. Bard, Inc. Antimicrobial catheter assemblies and methods thereof
MX2021006375A (es) * 2018-11-29 2021-08-11 Ethicon Inc Aplicador y metodo para revestimiento de sala de operaciones.
JP2022550418A (ja) 2019-10-07 2022-12-01 パーティクル・メージャーリング・システムズ・インコーポレーテッド 抗菌粒子検出器
US11479669B2 (en) 2020-05-28 2022-10-25 Ethicon, Inc. Topical skin closure compositions and systems
US11712229B2 (en) 2020-05-28 2023-08-01 Ethicon, Inc. Systems, devices and methods for dispensing and curing silicone based topical skin adhesives
US11518604B2 (en) 2020-05-28 2022-12-06 Ethicon, Inc. Systems, methods and devices for aerosol spraying of silicone based topical skin adhesives for sealing wounds
US11718753B2 (en) 2020-05-28 2023-08-08 Ethicon, Inc. Topical skin closure compositions and systems
US11589867B2 (en) 2020-05-28 2023-02-28 Ethicon, Inc. Anisotropic wound closure systems
EP4101893A1 (de) * 2021-06-08 2022-12-14 SHPP Global Technologies B.V. Thermoplastische zusammensetzungen und daraus geformte artikel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994004202A1 (de) * 1992-08-13 1994-03-03 Theodor Krall Bakterizide und/oder fungizide kunststoffgegenstände für den medizinischen bedarf
WO1998031404A1 (en) * 1997-01-22 1998-07-23 St. Jude Medical, Inc. Medical article with adhered antimicrobial metal ions
DE19936059A1 (de) * 1999-07-30 2001-02-01 J Peter Guggenbichler Verfahren zur Herstellung von antimikrobiellen Kunststoffkörpern
WO2001024839A1 (en) * 1999-10-01 2001-04-12 Acrymed Silver-containing compositions, devices and methods for making
WO2001043788A2 (en) * 1999-12-15 2001-06-21 C.R. Bard, Inc. Polymer compositions containing colloids of silver salts

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US516480A (en) * 1894-03-13 Coupling apparatus for air or steam pipes
US4054139A (en) * 1975-11-20 1977-10-18 Crossley Kent B Oligodynamic catheter
US4677143A (en) * 1984-10-01 1987-06-30 Baxter Travenol Laboratories, Inc. Antimicrobial compositions
GB8616294D0 (en) * 1986-07-03 1986-08-13 Johnson Matthey Plc Antimicrobial compositions
US5019096A (en) * 1988-02-11 1991-05-28 Trustees Of Columbia University In The City Of New York Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
US5236649A (en) * 1988-12-23 1993-08-17 The Dow Chemical Extrudable thermoplastic particulates
FI95816C (fi) * 1989-05-04 1996-03-25 Ad Tech Holdings Ltd Antimikrobinen esine ja menetelmä sen valmistamiseksi
US5418056A (en) * 1989-11-24 1995-05-23 Mitsuboshi Belting Ltd. Polymer composite with dispersed fine grains and a method for manufacturing the same
JPH03200702A (ja) * 1989-12-28 1991-09-02 Toray Ind Inc 抗菌性樹脂組成物およびその製造方法
US5236646A (en) * 1991-02-28 1993-08-17 The United States Of America As Represented By The Secretary Of The Navy Process for preparing thermoplastic composites
US5662913A (en) * 1991-04-10 1997-09-02 Capelli; Christopher C. Antimicrobial compositions useful for medical applications
US5180585A (en) * 1991-08-09 1993-01-19 E. I. Du Pont De Nemours And Company Antimicrobial compositions, process for preparing the same and use
US5503840A (en) * 1991-08-09 1996-04-02 E. I. Du Pont De Nemours And Company Antimicrobial compositions, process for preparing the same and use
GEP20002074B (en) * 1992-05-19 2000-05-10 Westaim Tech Inc Ca Modified Material and Method for its Production
US5681575A (en) * 1992-05-19 1997-10-28 Westaim Technologies Inc. Anti-microbial coating for medical devices
US5312685A (en) * 1992-07-06 1994-05-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Atomic oxygen protective coating with resistance to undercutting at defect sites
US5476881A (en) * 1993-02-15 1995-12-19 Suh; Kang I. Antimicrobial composition for manufacturing nipples
JPH06305906A (ja) * 1993-04-23 1994-11-01 Nikko:Kk 抗菌材、抗菌性樹脂組成物、抗菌性合成繊維、抗菌性を有する紙、抗菌性塗料、化粧品および抗菌材の製造方法
US5976562A (en) * 1994-02-01 1999-11-02 Krall; Theodor Process for producing bactericidal/fungicidal plastic bodies
DE69521082T2 (de) * 1994-08-01 2002-03-07 Maruwa Kck Co Ltd Metallisches bakterizides Mittel
JP3547259B2 (ja) * 1996-06-26 2004-07-28 松下電器産業株式会社 抗菌性複合体樹脂組成物並びにその製造方法
EP1066825A1 (de) * 1999-06-17 2001-01-10 The Procter & Gamble Company Antimikrobielles Körperpflegemittel
AU6685900A (en) * 1999-07-30 2001-02-19 J. Peter Guggenbichler Method of producing antimicrobial synthetic bodies with improved long-term behavior

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994004202A1 (de) * 1992-08-13 1994-03-03 Theodor Krall Bakterizide und/oder fungizide kunststoffgegenstände für den medizinischen bedarf
WO1998031404A1 (en) * 1997-01-22 1998-07-23 St. Jude Medical, Inc. Medical article with adhered antimicrobial metal ions
DE19936059A1 (de) * 1999-07-30 2001-02-01 J Peter Guggenbichler Verfahren zur Herstellung von antimikrobiellen Kunststoffkörpern
WO2001024839A1 (en) * 1999-10-01 2001-04-12 Acrymed Silver-containing compositions, devices and methods for making
WO2001043788A2 (en) * 1999-12-15 2001-06-21 C.R. Bard, Inc. Polymer compositions containing colloids of silver salts

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004052203A1 (de) * 2004-10-20 2006-05-04 Aesculap Ag & Co. Kg Trägermaterial mit Silberpartikeln, Bereitstellung des Trägermaterials, medizintechnisches Produkt enthaltend das erfindungsgemäße Material und Verfahren zur Detektion des Trägermaterials sowie von Adhäsionen
WO2006092155A1 (de) * 2005-03-02 2006-09-08 Christoph Cichos Antimikrobiell wirkendes präparat zur äusserlichen anwendung
DE102005053295C5 (de) * 2005-11-08 2013-03-07 Spiegelberg GmbH & Co. KG Verfahren zur Herstellung eines steril verpackten, metallhaltigen Kunststoffkörpers mit antimikrobiell wirkender Oberfläche
EP2018867A1 (de) * 2007-07-26 2009-01-28 Spirig Pharma AG Verfahren zur Herstellung einer antimikrobiell wirkender kosmetischen und/oder pharmazeutischen Zusammensetzung zur topischen Anwendung
WO2009013343A1 (de) * 2007-07-26 2009-01-29 Spirig Pharma Ag Antimikrobiell wirkende kosmetische und/oder pharmazeutische zusammensetzungen zur topischen anwendung, verfahren zu deren herstellung und ihre anwendung in der behandlung von krankheiten
WO2009013016A1 (de) * 2007-07-26 2009-01-29 Spiegelberg (Gmbh & Co.) Kg Antimikrobielles kunststoffprodukt und verfahren zu dessen herstellung
DE102007035063A1 (de) 2007-07-26 2009-01-29 Spiegelberg (Gmbh & Co.) Kg Verfahren zur Herstellung eines antimikrobiellen Kunststoffproduktes
US8673441B2 (en) 2007-07-26 2014-03-18 Spiegelberg (Gmbh & Co.) Kg Antimicrobial plastics product and process for production thereof
EP2108386A1 (de) 2008-04-08 2009-10-14 Bayer MaterialScience AG Medizinische Geräte mit einer antimikrobiellen Polyurethanharnstoffbeschichtung
EP2108383A1 (de) 2008-04-08 2009-10-14 Bayer MaterialScience AG Medizinische Geräte mit einer antibakteriellen Polyurethanharnstoffbeschichtung
EP2108388A1 (de) 2008-04-08 2009-10-14 Bayer MaterialScience AG Wässrige silberhaltige nichtionische Polyurethandispersionen
EP2108382A1 (de) 2008-04-08 2009-10-14 Bayer MaterialScience AG Silberhaltige Polyurethanharnstofflösung
EP2108385A1 (de) 2008-04-08 2009-10-14 Bayer MaterialScience AG Silberhaltige Polyurethanharnstofflösung
EP2108387A1 (de) 2008-04-08 2009-10-14 Bayer MaterialScience AG Wässrige silberhaltige nichtionische Polyurethandispersionen
EP2108389A1 (de) 2008-04-08 2009-10-14 Bayer MaterialScience AG Medizinische Geräte mit einer antimikrobiellen Polyurethanharnstoffbeschichtung
EP2108384A1 (de) 2008-04-08 2009-10-14 Bayer MaterialScience AG Medizinische Geräte mit einer antibakteriellen Polyurethanharnstoffbeschichtung
EP2411480A1 (de) * 2009-03-27 2012-02-01 Panadur GmbH Antimikrobieller beschichtungsstoff auf der basis eines amino- oder hydroxylgruppenfunktionellen reaktionspartners für isocyanate
DE102011102635A1 (de) 2011-05-27 2012-11-29 Spiegelberg GmbH & Co. KG Verfahren zur Herstellung eines antimikrobiellen Kunststoffproduktes unter Verwendung eines Reduktons
WO2012163806A1 (de) 2011-05-27 2012-12-06 Spiegelberg (Gmbh & Co.) Kg Verfahren zur herstellung eines antimikrobiellen kunststoffproduktes
WO2012163809A1 (de) 2011-05-27 2012-12-06 Spiegelberg (Gmbh & Co.) Kg Verfahren zur herstellung eines antimikrobiellen kunststoffproduktes unter verwendung eines reduktons

Also Published As

Publication number Publication date
ES2297196T3 (es) 2008-05-01
CN100342925C (zh) 2007-10-17
US20100068296A1 (en) 2010-03-18
CN1684724A (zh) 2005-10-19
BR0314210A (pt) 2005-06-28
DK1536848T3 (da) 2008-03-17
EP1536848A1 (de) 2005-06-08
US20060134313A1 (en) 2006-06-22
AU2003270163A1 (en) 2004-04-30
DE50308613D1 (de) 2007-12-27
JP2006509054A (ja) 2006-03-16
EP1536848B1 (de) 2007-11-14
ATE378078T1 (de) 2007-11-15
JP5128757B2 (ja) 2013-01-23

Similar Documents

Publication Publication Date Title
EP1536848B1 (de) Verfahren zur herstellung eines antimikrobiellen kunststoffproduktes
EP0655002B1 (de) Bakterizide und/oder fungizide kunststoffgegenstände für den medizinischen bedarf
DE3725728C2 (de)
EP2091333B1 (de) Stoff mit antimikrobieller wirkung
EP1790224B1 (de) Antimikrobielles Schichtmaterial
EP2176329B1 (de) Antimikrobielles kunststoffprodukt und verfahren zu dessen herstellung
DE19936059A1 (de) Verfahren zur Herstellung von antimikrobiellen Kunststoffkörpern
EP1210386B1 (de) Verfahren zur herstellung von antimikrobiellen kunststoffkörpern mit verbessertem langzeitverhalten
EP0433961A2 (de) Medizinische Vorrichtung mit einem oligodynamisch wirkenden Material
EP2217296B1 (de) Chirugisches Nahtmaterial
EP2498833B1 (de) Verwendung polymerer oder oligomerer wirkstoffe für medizinische artikel
EP2498834B1 (de) Verwendung von polyoxyalkylendiamin-basierten polyguanidinderivaten für medizinische artikel
EP2185208B1 (de) Brust-implantat mit antibakterieller wirkung
DE10331324A1 (de) Verfahren zur Herstellung eines antimikrobiellen Kunststoffproduktes
WO2014138885A1 (en) Polymeric coatings having antimicrobial properties
DE10013248A1 (de) Verfahren zur Herstellung von antimikrobiellen Kunststoffkörpern mit verbessertem Langzeitverhalten
WO2004063099A1 (de) Kaltkeramik

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006134313

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10527157

Country of ref document: US

Ref document number: 345/CHENP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2004535474

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038233320

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003750507

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003750507

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10527157

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003750507

Country of ref document: EP