WO2003092065A1 - Tranche de silicium a haute resistance et son procede de production - Google Patents

Tranche de silicium a haute resistance et son procede de production Download PDF

Info

Publication number
WO2003092065A1
WO2003092065A1 PCT/JP2003/004866 JP0304866W WO03092065A1 WO 2003092065 A1 WO2003092065 A1 WO 2003092065A1 JP 0304866 W JP0304866 W JP 0304866W WO 03092065 A1 WO03092065 A1 WO 03092065A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
heat treatment
oms
silicon wafer
density
Prior art date
Application number
PCT/JP2003/004866
Other languages
English (en)
French (fr)
Inventor
Nobumitsu Takase
Hideshi Nishikawa
Makoto Ito
Kouji Sueoka
Shinsuke Sadamitsu
Original Assignee
Sumitomo Mitsubishi Silicon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Mitsubishi Silicon Corporation filed Critical Sumitomo Mitsubishi Silicon Corporation
Priority to US10/512,405 priority Critical patent/US7397110B2/en
Priority to EP03720915A priority patent/EP1501122B1/en
Priority to KR1020047017217A priority patent/KR100829767B1/ko
Publication of WO2003092065A1 publication Critical patent/WO2003092065A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3225Thermally inducing defects using oxygen present in the silicon body for intrinsic gettering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation

Definitions

  • the present invention relates to a high resistance silicon wafer used for a support substrate or the like in high frequency communication equipment and a method of manufacturing the same.
  • Silicon CMOS has high power consumption and was considered unsuitable for RF circuits.
  • the mirror surface silicon crystal using high resistance crystal by the Chiyoke Kralski method is excellent in RF characteristics such as SO I (Si i ic on 0 n I nsu 1 ater) owah, etc. and is economical.
  • High resistance silicon wafers have begun to attract attention in place of compound semiconductor substrates such as Ga As.
  • Fig. 1 shows the influence of the Saad Maldner on the resistivity of W 18
  • the influence of the thermal donor on the w-ch resistivity is minor and does not pose a problem in practical operation.
  • the resistivity decreases sharply with the increase of the number of minor donors.
  • the resistivity initially increases sharply with the increase in temperature, but if p-type is further increased, the p-type is converted to n-type and the resistivity is drastically reduced. .
  • the CZ method has a resistivity of 100 ⁇ cm or more and an initial interstitial oxygen concentration of 10 to 25 p pma [JEI DA] (7.9 to L 9).
  • a silicon single crystal rod which is 8 ⁇ 10 17 at oms / cm 3 (01 d—AS TM)) is grown, and a silicon substrate cut out from the single crystal rod is grown.
  • the oxygen precipitation heat treatment was carried out on Nne 18 to obtain a residual interstitial oxygen concentration of 8 ppma (JEI DA) (6.4 ⁇ 10 17 at oms / cm 3 (O 1 d-ASTM)
  • JEI DA ppma
  • O 1 d-ASTM The following limitations have been described:
  • the use of general purpose silicon wafer with high initial oxygen concentration reduces the manufacturing cost of the initial stage.
  • the residual oxygen concentration is lowered by performing oxygen precipitation heat treatment on silicon wafer. For this reason, the generation of oxygen donors in the heat treatment for circuit formation implemented by the device manufacturer side is effectively suppressed.
  • a large amount of oxygen precipitate (BMD) is formed. Because of this, the gettering ability of Ue-8 also improves.
  • Patent Document 1 For example, if the heat's own weight stress applied to the wye is not so large, the movement of the slip dislocation is suppressed and the strength is improved (Patent Document 1), but if the heat and its own weight stress are large, the BMD itself slips. It becomes a dislocation source, and the strength is reduced, and there is a high risk of warpage (K. Sue 0 kaeta 1., J p n. J. A p 1. P hys., 36 (1 9 9 9 7) 7 0 9 5).
  • the thermal stress applied to the actual device process • Depending on the device structure and thermal sequence, etc., it is expected that the thermal stress may increase.
  • the second problem is the resistance change associated with hydrogen or argon to remove COP [Crystal O rigated Particle] (void defect surrounded by (1 1 1) plane in the aggregate of holes). is there.
  • COP Crystal O rigated Particle
  • 0 SF a ring-like oxygen-induced stacking fault generated in part of the crystal diameter direction when subjected to an oxidation heat treatment. It is known that the ring generation position differs depending on the crystal pulling speed, and that the physical properties of the ring are different between the outside and the inside.
  • Fig. 2 is a transverse sectional view showing a general radial distribution of crystal defects
  • Fig. 3 is a longitudinal sectional view showing a positional change of the crystal defect distribution when the crystal pulling rate is changed.
  • a non-defective area exists inside the ring-shaped OS F generation area, and the COP generation area is inside it.
  • an oxygen precipitation promoting region and an oxygen precipitation suppressing region exist outside the ring-like 0 S F generation region, and the outside becomes the dislocation cluster defect generation region.
  • the C 0 P and dislocation cluster 1 defects are also referred to as g r 0 wn-i n defects because they are defects introduced into the crystal during the crystal growth process. Then, from the defect-free region inside the ring-like 0 SF generation region to the oxygen precipitation suppression region inside the dislocation cluster 1 defect generation region becomes a completely defect-free region in which neither COP nor dislocation cluster exists.
  • the ring-shaped 0 SF generation region moves to the crystal center as the pulling rate decreases, and eventually disappears at the center, but the longitudinal cross-sectional shape of the OS F generation region at this time is convex downward. Curve in the direction of V to U Ru. For this reason, it is difficult to produce completely defect-free crystals with high yield over the entire radial direction. Because of this, in actual operation, productivity should also be taken into consideration.
  • the growth conditions are often selected so as to position the 0 SF generation region at the outer periphery of the wafer outside the device formation region.
  • a large number of harmful COPs will be present on the entire surface of the Ueha.
  • the COP from the surface area to be used as a device area for COP calibration that is, COP. It is customary to apply argon or hydrogen to eliminate the problem.
  • both argon and hydrogen are basically techniques for heat treatment in a reducing atmosphere (argon also has a reducing action at high temperatures) and high temperature for a long time, both from the inside of the heat treatment furnace Pollution by heavy metal impurities in And, when high resistance w-8 is contaminated with heavy metal impurities, even a slight contamination changes the resistivity of w e 8 extremely. For this reason, it is difficult to adopt argon or hydrogen.
  • argon cyanide does not have the strong reduction effect like hydrogen cyanide, so the dopant on the surface of the UAE layer diffuses out and there is no problem that the resistivity on the surface of the WAEA increases, but conversely, There is a tendency that the natural oxide film on the surface of the wafer is removed during heat treatment, and the dopant impurities contained in the removed natural oxide film diffuse into the interior of the wafer and the resistivity of the surface portion of the wafer decreases.
  • the object of the present invention is to provide a high resistance silicon wafer which is excellent in gettering ability and can effectively suppress the generation of oxygen thermal donors in the heat treatment for circuit formation carried out by the device maker side, and has high mechanical strength. C and to provide a method of manufacturing the same.
  • Another object of the present invention is to obtain an excellent gettering capability and to effectively suppress the generation of oxygen thermal donors in the heat treatment for circuit formation carried out on the side of the device maker, and to achieve C 0 P free conversion. It is an object of the present invention to provide a high resistance silicon wafer and a method of manufacturing the same that can avoid the resistance change associated with argon and hydrogen. Disclosure of the invention
  • the present inventors have determined that it is essential to use general-purpose high-oxygen silicon 18 as an initial substrate, and the oxygen thermal donor which is a problem in the high-oxygen silicon 18 is We examined how to suppress the occurrence. As a result, it was found that the size of individual oxygen precipitates (B M D) is important together with the total precipitation amount of oxygen precipitates (B M D), specifically the precipitation density of oxygen precipitates (B M D).
  • carbon deposits are resistant to the strength reduction that is a problem when depositing a sufficient total amount of oxygen precipitates (BMD), and resistances associated with argon anions and hydrogen anions for COP-free conversion. It came to the conclusion that the use of C 0 P free crystals from which C 0 P was excluded in the crystal growth stage was effective for rate change.
  • the addition of carbon also has the effect of promoting the formation of oxygen precipitates (B M D), and also has the effect of reducing the oxygen concentration in the initial substrate o
  • the first high-resistance silicon wafer according to the present invention is a high-resistance silicon wafer having a resistivity of at least 100 ⁇ cm, and the inside of the wafer is 0.2. It is formed at a density of oxygen precipitates of size m or more (BMD) at a density of 1 x 10 4 pieces / cm 2 or more, and the oxygen concentration in the wafer is 1 2 xl 0 17 at oms / cm 3 (ASTM F -1 2 1, 1 9 7 9) or less, and the carbon concentration is 0.5 x 10 16 at oms / cm 3 or more.
  • the second high-resistance silicon wafer according to the present invention is a high-resistance silicon wafer having a resistivity of 100 0 ⁇ cm or more, and the density of gr 0 wn-in defects detected by seco etching is 1 x 1 0 3 cm- 3 or less
  • An oxygen precipitate (BMD) with a size of 0.2 izm or more is internally contained within l x 1 ha
  • ⁇ E - the oxygen concentration in the wafer is 1 2 X 1 0 17 at oms / cm- 3 (ASTM F - 12 1, 19 7 9) at those less is there.
  • the gettering ability is excellent.
  • the production cost can be reduced because a general purpose high oxygen silicon wafer can be used as the initial substrate.
  • the oxygen concentration in the water is limited to 1 2 ⁇ 10 17 at oms / cm 3 (ASTM F-1 120 1 9 7 9) or less
  • the density of oxygen precipitates (BMD) present inside the Ueha is 1 x 10 4
  • the present invention is significant in forming the large precipitate at a high density of 1 ⁇ 10 4 pieces / cm 2 or more. If the density of the large precipitates is less than 1 ⁇ 10 4 Zcm 2 , the desired effectiveness can not be obtained. Particularly preferred density is 1 ⁇ 10 5 pieces / cm 2 or more. About the upper limit of this density If the density is too high, the deformation of the surface will be reduced due to the remarkable decrease in mechanical strength, and the flatness will be reduced. From this viewpoint, 1 X 1 Q 7 pieces / cm 2 or less is preferable.
  • the residual oxygen concentration in the laser if it is more than 1 2 ⁇ 10 17 atom s / cm 3 (ASTM F-1 2 1, 1 9 7 9), it will be carried out by the device maker 1 In the heat treatment for circuit formation, the generation of oxygen thermal donors is not sufficiently suppressed. The effective oxygen concentration is shifted strictly by the resistivity.
  • the oxygen concentration is 1 2 xl 0 17 at om s / cm 3 or less, but it is more than 300 ⁇ and less than 2 0 0 ⁇ cm
  • the oxygen concentration in the case is preferably 7 x 10 17 atom s / cm 3 or less, and the oxygen concentration in the case of 200 0 ⁇ cm or more is preferably 5. 8 x 10 17 at om s / cm 3 or less. ⁇ .
  • extreme reduction of residual oxygen concentration is technically difficult and involves the addition of oxygen precipitates (BMD). This addition is a cause of the deformation of ⁇ 18 as described above. Therefore, 4 ⁇ 10 17 at om s / cm 3 or more is preferable.
  • oxygen precipitation is achieved by controlling the carbon concentration in the wafer to 0.5 ⁇ 10 16 at oms / cm 3 or more.
  • the decrease in intensity due to the formation of a large amount of substance (BMD) is suppressed.
  • the addition of carbon also has the effect of promoting the formation of oxygen precipitates (BMD).
  • Particularly preferable carbon concentration is 1 ⁇ 10 16 at oms / cm 3 or more.
  • the upper limit of the carbon concentration can be up to 4 ⁇ 10 17 at om s Zc m 3 which is the solubility of carbon in silicon, but too much addition promotes dislocation formation during crystal growth. Therefore, in practical operation, 1 ⁇ 10 17 atoms / cm 3 or less is preferable.
  • the density of gr own-in defects detected by secetching is 1 ⁇ 1 O ′ 3 c
  • COP-free crystals is limited to m one 3 or less is used, argon ⁇ Neil and hydrogen Aniru for C_ ⁇ _P pretend Ichika becomes unnecessary, the resistivity change is avoided due to these Aniru .
  • the residual oxygen concentration in the above-mentioned aha is controlled to 12 ⁇ 10 17 at oms / cm 3 (ASTM F ⁇ 1 2 1, 1 7 9 9) or less.
  • the second method for producing a high resistance silicon wafer according to the present invention has a resistivity of 100 0 ⁇ cm or more, an oxygen concentration of 14 ⁇ 10 17 atoms / cm 3 (ASTM F-12 1, 19 7 9) Using the initial silicon wafer which has the above-mentioned and the density of gr 0 wn-in defects detected by secco etching is 1 ⁇ 10 3 cm ⁇ 3 or less, oxygen precipitation nucleation heat treatment and oxygen precipitation are performed thereon. The residual oxygen concentration in the wafer is controlled to a value of 12 10 17 at oms / cm 3 (ASTM F 12 21, 19 79) or less by subjecting the substrate to a growth treatment.
  • the oxygen concentration is 1 4 X 1 0 17 at oms / cm 3 (ASTM F - 1 2 1, 1 9 7 9) above, in the case of carbon-doped 1
  • the use of high-oxygen, high-resistance silicon wafers of 2 ⁇ 10 17 at oms / cm 3 (ASTM F-12, 1 797) or more as initial substrates reduces manufacturing costs.
  • the residual oxygen concentration after heat treatment is as low as 1 2 ⁇ 10 17 at 0 ms / cm 3 (ASTM F – 12 1, 19 9 9) or less, and oxygen precipitation Two-step heat treatment, nucleation heat treatment and oxygen precipitate growth heat treatment As a result, large-sized oxygen precipitates (BMD) are formed at high density. Specifically, oxygen precipitates (BMD) of 0.2 m or more in size can be formed at a high density of 1 ⁇ 10 4 Zcm 2 or more. As a result, a high resistance silicon wafer having excellent gettering ability is manufactured.
  • the oxygen supplier in the heat treatment for circuit formation performed by the device manufacturer side can The occurrence of mulddon is suppressed.
  • oxygen outward diffusion heat treatment is carried out before depositing oxygen precipitates (BMD) to prevent precipitation growth of oxygen precipitates (BM D). It is effective to form a DZ (De ned de zone) layer on the
  • DZ De ned de zone
  • COP-free crystals it is also important to eliminate gr-own-in defects such as COP and dislocation clusters generated in the crystal growth process from the surface layer in order to improve device characteristics.
  • the atmosphere selection in the oxygen outward diffusion heat treatment is effective. .
  • the carbon dopant on the initial substrate also has the effect of promoting the formation of oxygen precipitates (BMD). Due to this effect, when carbon doping is performed, a sufficient total amount of oxygen precipitates (BMD) can be secured even if the lower limit of the oxygen concentration in the initial substrate is lowered to 12 ⁇ 10 17 at oms Z cm 3 . Particularly preferable carbon concentration is 1 ⁇ 10 16 at oms Z cm 3 or more.
  • the upper limit of the carbon concentration can be up to 4 x 10 17 at oms / cm 3 which is the solid solubility of carbon in silicon, but too much addition promotes dislocation formation during crystal growth. Therefore, in actual operation, lxl 0 17 at oms / cm 3 or less is preferable.
  • the DZ (De ned zone) layer In the device formation process, if oxygen precipitates (BMDs) become defects, the DZ (De ned zone) layer must be formed over a depth of at least 5 m from the surface of the wafer. It is preferable to form.
  • the DZ layer here is subjected to heat treatment in a dry oxygen atmosphere at 1000 ° C.
  • cleavage plane is etched by 2 ⁇ m with a light microscope and the light microscope 8 The distance from the surface until the first etch pit is observed in the depth direction.
  • the oxygen precipitation nucleation heat treatment may be carried out by adding oxygen at a temperature range of 1100 to 1250 ° C. for 1 to 5 hours before the heat treatment. It is preferable to carry out the diffusion heat treatment.
  • the surface layer of the wafer is reduced in oxygen to prevent the formation and growth of oxygen precipitates (BMD), whereby the DZ layer is formed.
  • the oxygen outward diffusion heat treatment can be performed in a nitrogen-containing gas atmosphere.
  • the reaction can be performed in a hydrogen gas atmosphere, an argon gas atmosphere, or a mixed gas atmosphere thereof.
  • a hydrogen gas atmosphere for example, in the case of p-type UA-8, carrying out in a hydrogen gas atmosphere causes the surface of the poron in the surface layer to diffuse outward, reducing the concentration and promoting the increase in resistance.
  • gr own-in defects formed during crystal growth referred to as COP, become solution, enabling size reduction and further annihilation in the surface layer, and the absence of oxygen precipitates (BMD). At the same time, the quality can be improved.
  • argon gas atmosphere gr own-in defects disappear as in the case of hydrogen gas atmosphere.
  • the inward diffusion of the porogen from the outside causes the concentration to increase in the surface layer and lower the resistivity. And are concerned.
  • these hydrogen and argonanyl are not required. That is, the oxygen outward diffusion heat treatment in the case of using COP free crystals is preferably a nitrogen-containing gas atmosphere.
  • rapid temperature rising / falling heat treatment RTA: Rapid Thermal Annealing a 1
  • This RTA process also called lamp annealing, can diffuse oxygen out of the surface layer in a very short time.
  • excess vacancies are sufficiently injected into the interior of the wafer, so that in the subsequent oxygen precipitation nucleation heat treatment, the interior of the wafer can be It has the effect of promoting oxygen precipitation nucleation.
  • oxygen precipitation and nucleation inside the reactor can also be carried out simply by performing this RTA treatment, so that the subsequent low temperature oxygen precipitation Nucleation heat treatment can also be omitted. Also, as described later, this RTA treatment is particularly effective when using a COP-Fly crystal.
  • some COP-free crystals include a region in which a vacancy-predominant region and an interstitial silicon-predominant region are mixed (for example, a 0 SF ring is generated in the plane).
  • a wafer containing such crystal regions When a wafer containing such crystal regions is used, the BMD precipitation density varies in the radial direction of the wafer, and uniform gettering ability can not be exhibited in the plane.
  • RTA treatment is performed at high temperature, vacancies are sufficiently injected from the surface of the mold, so that the vacancy concentration in the radial direction becomes uniform, and the BMD precipitation amount in the radial direction becomes uniform. .
  • the fast temperature rise / fall rate has the effect of eliminating the small size of oxygen precipitate nuclei present in asgr own, which also has the effect of making the size of oxygen precipitates formed thereafter uniform.
  • high The oxygen outward diffusion effect by the warm RTA treatment secures the DZ layer at the surface layer of the wafer.
  • the RTA treatment is not used.
  • oxygen outward diffusion heat treatment in an atmosphere containing nitrogen gas
  • RTA treatment is preferable as oxygen outward diffusion heat treatment when the C 0 P free crystal is a mixed crystal region type, and normal oxygen outward diffusion heat treatment with nitrogen (RTA treatment) in the same crystal region type (nitrogen A gas-containing atmosphere) may be used.
  • the conditions for the R T A treatment are preferably 1 150 to 1 300 ° C. X I to 60 seconds. Because, if the temperature is lower than 1150 ° C., it is not possible to secure a sufficient D Z layer thickness in the surface layer. In addition, sufficient vacancies are not injected into the interior of the chamber, and the effect of promoting the formation of oxygen precipitation nuclei can not be obtained. On the other hand, if the temperature exceeds 130 ° C., slip dislocations occur in the heat treatment during the heat treatment, which may affect the device characteristics. As the heat treatment time, heating for 60 seconds or less in the above temperature range can ensure sufficient DZ layer and sufficiently inject the amount of vacancies necessary for oxygen precipitation nucleation.
  • the heat treatment atmosphere is basically a nitrogen atmosphere having a large hole injection function, and a small amount of oxygen gas or inert gas (such as Ar gas) may be mixed with nitrogen gas or ammonia gas.
  • the oxygen precipitation nucleation heat treatment a low temperature heat treatment at a temperature of 500 to 900 ° C. for 5 hours or more is preferable, and the atmosphere is any of nitrogen, oxygen, hydrogen, argon, or a mixed gas atmosphere thereof. It may be, and is not particularly limited. If the heat treatment temperature is less than 500 ° C., the degree of supersaturation of oxygen is high ⁇ , but the diffusion rate of oxygen is slow, and it is long time to cause oxygen precipitation nucleation It takes time, and considering industrial productivity, it will be difficult to deal with. When the temperature is above 900 ° C., the diffusion rate of oxygen increases, and the degree of supersaturation is low, and it becomes difficult to achieve sufficient oxygen precipitation nucleus density.
  • the heat treatment time is related to the heat treatment temperature and the substrate oxygen, and even if the oxygen concentration is very high such as 17 x 10 17 atoms Z cm 3 or more, sufficient oxygen precipitation nuclei in the case of less than 5 hours. It is difficult to realize the density.
  • the particularly preferred oxygen precipitation nucleation heat treatment temperature is 7 '00-9 00C. This is sixty five. Even if the heat treatment for 30 minutes at 1 min. C. is performed, heat resistance may change due to the formation of new ones when staying in the temperature range around 650.degree. C. for a long time again. It is because it became clear from the investigation by the present inventors. The formation of this new donor is remarkable when the resistivity is more than 500 ⁇ cm.
  • the oxygen precipitation nucleation heat treatment at 700 ° C. to 900 ° C. is particularly effective for oxygen of 500 ⁇ cm or more.
  • a medium temperature heat treatment at a temperature of 950 to 150 ° C. for 10 hours or more is preferable.
  • the heat treatment temperature is less than 9-50 ° C
  • There is a small difference between the size of the core and the size of the core which makes it difficult to reduce the substrate oxygen concentration and to grow as an oxygen precipitate of the size required for gettering.
  • the heat treatment time is less than 10 hours, it becomes difficult to reduce the substrate oxygen concentration and to grow oxygen precipitates of the size required for gettering.
  • FIG. 1 shows the effect of the thermal donor on the resistivity of W It is.
  • FIG. 2 is a cross-sectional view showing a general radial distribution of crystal defects.
  • FIG. 3 is a longitudinal sectional view showing the change in position of the crystal defect distribution when the crystal pulling rate is changed.
  • FIG. 4 is a flowchart showing the processing procedure in the embodiment of the present invention.
  • FIG. 5 is a graph showing the heat treatment heat pattern in the embodiment.
  • Fig. 6 is a graph showing the relationship between the carbon concentration in dislocations and the dislocation migration distance.
  • FIG. 4 a flow showing a processing procedure in the embodiment of the present invention
  • FIG. 5 a graph showing a heat pattern of heat treatment in the same embodiment
  • a high oxygen and high resistance carbon doped silicon single crystal is grown by the usual CZ method, and from the silicon single crystal, an 0 SF ring is present at the outer peripheral portion, and C 0
  • the oxygen concentration at which P is present is 12 X 10 17 at om s / cm 3 (ASTM F-121, 1979) or higher, and the carbon concentration is 0.5 5 xl O “at oms Z cm 3 or higher, with high resistance (100 ⁇ Collect the initial substrate of cm or more) (S 1 to 3).
  • the initial substrate is, if necessary, subjected to oxygen outward diffusion heat treatment at 1100 to 1250 ° C. for 1 to 5 hours (S 4).
  • This oxygen outward diffusion heat treatment prevents the formation of oxygen precipitates (BMD) in the heat treatment described later.
  • BMD oxygen precipitates
  • the DZ (. De nu d ed-Zo n e) layer is formed over a depth of at least 5 or more from the surface of the product.
  • This oxygen outward diffusion heat treatment can be performed in a mixed gas atmosphere of nitrogen gas and oxygen gas as described above. It can also be performed in a hydrogen gas atmosphere. Also, it can be performed in an argon gas atmosphere. Furthermore, It can be carried out in a mixed gas atmosphere of hydrogen and argon.
  • Low temperature heat treatment is performed for at least 5 hours (S5). Preferably, it is performed at 700 ° C. or higher.
  • a medium-temperature heat treatment of 950 ° C. to 150 ° C. for 10 hours or more is performed (S 6).
  • oxygen precipitates with a size of 0.2 / m or more are formed at a density of 1 ⁇ 10 4 / cm 2 or more inside the high-resistance silicon wafer of 100 ⁇ cm or more.
  • the oxygen concentration in the water is reduced to 12 10 17 at om s / cm 3 (AS TM F ⁇ 1 2 1 1 9 7 9) or less (S 7>).
  • the specific oxygen concentration in the cluster indicates that the thermal conductivity of the thermal conductivity is more than 100%. ⁇ cm or more and 3 0 0 ⁇ cm or less, 1 2 x 10 17 atoms / cm 3 or less, 3 0 0 ⁇ cm or more 2 0 0 0 ⁇ cm or less 7 x 1 0 17 at oms / cm 3 In the following, in the case of 2 0 0 0 ⁇ cm or more, 5. 8 x 10 17 atoms / cm 3 or more and " ⁇ ".
  • the silicon wafer product thus manufactured is shipped to the device manufacturer (S 8).
  • the features of this product are as follows.
  • the general purpose silicon wafer with relatively high oxygen concentration is used as the initial substrate.
  • the large density of oxygen precipitates (BMD) is formed with a high density, so the gettering ability is excellent.
  • the final oxygen concentration is low, and the generation of oxygen thermal decomposition in the heat treatment for circuit formation performed by the device manufacturer side is suppressed.
  • carbon doping is performed in the crystal growth stage, mechanical strength is high.
  • a product in which a DZ (Denuded Z one) layer is formed on the surface layer by subjecting the initial substrate to an oxygen outward diffusion heat treatment is particularly excellent in device characteristics.
  • the C 0 P free crystals shown by AB in FIG. 3 are grown long in the direction of the pulling axis by the CZ pulling device which has been devised for the hot zone etc.
  • This initial substrate is high in oxygen (oxygen concentration 14 x 10 17 at 0 ms / cm 3 (ASTM F- 12 1, 1 9 79 or more)) and high resistance (100 0 ⁇ cm or more). is there.
  • Carbon doping (0.5 x 10 15 at oms / cm 3 or more) can be performed to improve mechanical strength (S 3).
  • the oxygen concentration in the initial substrate is 12 ⁇ 10 17 at oms / cm 3 (ASTM F) because the subsequent heat treatment promotes the growth of oxygen precipitates (BMD) in the surface layer. -1 2 1, 1 9 7 9) or more is permitted.
  • the initial substrate is, if necessary, subjected to oxygen outward diffusion heat treatment at 1 100 to 1250 ° CX for 1 to 5 hours (S 4).
  • This oxygen outward diffusion heat treatment prevents the formation of oxygen precipitates (BMD) in the subsequent heat treatment.
  • BMD oxygen precipitates
  • a DZ (De ned Z one) layer is formed over a depth of at least 5 m from the surface of the product u.
  • This oxygen outward diffusion heat treatment is performed in a mixed gas atmosphere of nitrogen gas and oxygen gas, and hydrogen or argon is avoided.
  • Low temperature heat treatment is performed for 5 hours or more at 500 ° C. to 900 ° C. (S 5). Preferably, it is performed at 700 ° C. or higher.
  • a high temperature heat treatment of 950 ° C. to 150 ° C. for 10 hours or more is performed (S 6).
  • RTA treatment may be performed at 115 to 130 ° C. for 1 to 60 seconds in a nitrogen gas atmosphere.
  • RTA treatment is recommended for crystals of mixed crystal region type, any of crystals of same crystal region type may be performed.
  • use an initial substrate having a high oxygen concentration for example, an initial substrate having an oxygen concentration of 15 ⁇ 10 17 atm s / cm 3 (ASTM F-1 12 1 1 7 9) or higher. In this case, oxygen precipitation nucleation heat treatment is unnecessary.
  • oxygen precipitates with a size of 0.2 m or more are formed at a density of 1 ⁇ 10 4 pieces / cm 2 or more inside the high resistance silicon wafer of 100 ⁇ cm or more,
  • the oxygen concentration in the wafer is reduced to 1 2 x 10 17 at oms / cm 3 (ASTM F- 12 1, 1 9 7 9) or less (S 7).
  • the specific oxygen concentration (ASTM F-12 1, 1 9 7 9) in the concrete is less than the resistivity of 1 18 because of the more effective suppression of the thermal treatment.
  • the value shall be 5. 8 x 10 17 at oms / cm 3 or less.
  • the characteristics of the silicon wafer products manufactured in this way are as follows.
  • the oxygen concentration (ASTM F-1 120 1, 1 9), which was cut out from the normal growth silicon single crystal and subjected to oxygen donor heat treatment at 650 ° CX 30 minutes, was performed with a resistivity of approximately 130 0 ⁇ cm. 79) prepare a plurality of 8-inch n-type test pieces of about 13 ⁇ 10 17 atoms / cm 3 , and the density of gr 0 wn— in defects existing in the pieces and 0.
  • composition ratio of the selective etching solution is HF: HN 0 3 : C r 3 3
  • the oxygen concentration (AS TM F-1 2 1, 1) was obtained by cutting out from a normally grown silicon single crystal and performing oxygen donor heat treatment at 650 ° C x 30 minutes, with a resistivity of approximately 7500 ⁇ cm.
  • a plurality of 8-inch p-type test wafers with 1 9 7 9) of about 1.5 ⁇ 10 17 at om s / cm 3 were prepared, and the gr own—in defect density was measured as in Comparative Example 1 0.2 m
  • BMD density of oxygen precipitates
  • measurements of the resistivity after thermal donor formation heat treatment were also performed.
  • the density of gr own— in defects present in the sample is 2.77 ⁇ 1 0 5 pieces / cm 3 0. 2 ⁇ m
  • the size of the oxygen precipitate (BMD) is 1 ⁇ It was less than 10 3 Zcm 2 .
  • Table 2 shows the results of measuring the resistivity after the thermal processing.
  • the residual oxygen concentration is high, and the change in resistivity due to the formation of Saunderda maldona is evident, and the inversion from p-type to n-type is observed at heat treatment temperatures of 450 ° C. and 500 ° C.
  • the In addition, the gettering ability is very poor because the density of oxygen precipitates (BM D) of 0.2 m or more is less than 1 x 10 3 pieces / cm 2 .
  • BM D density of oxygen precipitates
  • the oxygen precipitation nucleation heat treatment and the oxygen precipitate growth heat treatment were performed on an 8-inch p-type sample having a density of about 7 x 10 17 at oms / cm 3 .
  • the temperature in the reactor is raised to 85 ° C. and the temperature of 85 ° C. After holding for 1 hour, the reactor was taken out of the furnace. The heating rate, etc. was adjusted so that the total residence time from the start of the ramping up to the end of the heat treatment at 850 ° C for one hour was 56 hours.
  • the atmosphere in the furnace was a nitrogen / oxygen mixed gas atmosphere (flow rate ratio of nitrogen gas 100, oxygen gas 3).
  • the wafer was heated in a dry oxygen atmosphere at 1000 ° C. for 16 hours.
  • the oxygen concentration (ASTM F-12 1, 1) which was cut out from the normal growth silicon single crystal ingot and was subjected to oxygen donor heat treatment at 650 ° CX for 30 minutes, with a resistivity of approximately 75 0 ⁇ cm.
  • the same oxygen precipitation nucleus as described above is obtained with respect to an 8-inch p-type test sample with about 9 5 9) of about 15 x 10 17 atoms Z cm 3. Formation heat treatment and oxygen precipitate growth heat treatment were performed.
  • the density of oxygen precipitates (BMD) of 0.2 m or more in size is 3.9 to 7. 10 6 A sufficient gettering ability is secured, as many as 2 pcs / cm 2 .
  • the density of gr 0 wn— in defects was 2. 7 ⁇ 10 5 pieces / cm 3 .
  • the oxygen concentration (AS TM F) was cut out from the normal growth silicon single crystal ingot and oxygen donor heat treatment was performed at 650 ° CX 30 minutes, with a resistivity of approximately 10 0 to 150 0 ⁇ cm. - 1 2 1, 1 9 7 9) relative to about 1 4 ⁇ 1 7 x 1 0 17 at oms / cm 3 of 8 Inchi p-type test ⁇ E eighteen, after having conducted an oxygen outward diffusion heat treatment As described above, oxygen precipitation nucleation heat treatment and oxygen precipitate growth heat treatment were performed.
  • the reactor In the oxygen outward diffusion heat treatment, the reactor is held in a nitrogen / oxygen mixed gas atmosphere (flow rate ratio of nitrogen gas 100: oxygen gas 3), and the furnace is inserted into the reactor held at 900 ° C.
  • the furnace temperature was raised to 115 ° C. at a rate of 5 ° C./min, and the inside of the furnace was switched to a 100% nitrogen gas atmosphere and maintained at 115 ° C. for 2.5 hours. Thereafter, the temperature was lowered to 900 ° C. at a rate of 4 ° C./min, and the wafer was taken out.
  • the residual oxygen concentration in the wafer was measured by infrared absorption spectroscopy.
  • BMD density of oxygen precipitates
  • BMD density of oxygen precipitates
  • the cleavage plane was observed with an optical microscope, and the distance from the surface of the wafer to the first etch pit in the depth direction of the wafer was measured as the layer thickness of the DZ layer.
  • the measurement of the gr o w n 1 in defect density similar to the comparative example 1 was performed. The results are shown in Table 5.
  • the residual oxygen concentration (ASTMF-12 1, 1 9 79) is as low as about 7 to 12 X 10 17 at om s / cm 3, and the decrease in resistivity due to the formation of a uniform donor is slight.
  • the density of oxygen precipitates (BMD) of 0.2 / m size or more is as large as 1.9 to 7.1 X 1 0 6 pieces Z cm 2 and excellent in gettering ability Ru.
  • a DZ layer with a thickness of 7 ⁇ or more is formed on the surface of the waehha, and oxygen precipitates (BMD) do not penetrate the surface of the wafer. It is estimated that the layer thickness of about 9 111 was secured.
  • the support member was supported by the supporting member at the time of the oxygen outward diffusion heat treatment.
  • the occurrence of slip dislocation of about 2 O mm in length was observed at the location corresponding to the position, and the mechanical strength was very weak.
  • the density of gr ow n ⁇ in defects was about 3 ⁇ 10 5 pieces / cm 3 .
  • the residual oxygen concentration in the wafer is measured by infrared absorption spectrometry, and the resistivity of the wafer after the heat treatment for forming the silicon wafer at 450 ° C. ⁇ 1 hour is measured, and the oxygen concentration The change of resistivity was investigated. Further, in the same manner as in Comparative Example 1, the density of oxygen precipitates (BMD) having a size of 0.2 m or more present in each sample after heat treatment is measured, and the density of oxygen precipitates (BMD) is measured. After selective etching, observe the cleavage plane of the 1st HA with an optical microscope, and measure the distance from the 1st surface to the 1st etch pit in the depth direction DZ. It was measured as the layer thickness of the layer. The results are shown in Table 6.
  • Samples A, C, and E subjected to oxygen outward diffusion heat treatment in a hydrogen gas atmosphere are A, C, and E, and samples subjected to oxygen outward diffusion heat treatment in argon gas atmosphere are B, D, and F, G.
  • the density of oxygen precipitates (BMD) of 0.2 ⁇ m or more is as high as 1 ⁇ 10 8 pieces / cm 2 or more, and has excellent gettering ability. Since the DZ layer of 5 m or more was formed on the surface of the first layer and oxygen precipitates (BMD) were not penetrated to the surface of the ka-eha, the layer thickness of the DZ layer can be determined by taking into account the estimated etching amount. It is estimated that about 7 m was secured.
  • an oxygen concentration where the change in resistivity does not exceed 10 times the initial value is an initial resistivity of 1 12 x 10 17 at oms / cm 3 or less if 0 0 ⁇ or more and 3 0 0 ⁇ cm or less, 7 x 1 0 17 at oms / cm 3 if 3 0 0 ⁇ or more 2 0 0 0 ⁇ cm
  • it is 5 x 8 0 at 17 oms Z cm 3 or less.
  • the density of oxygen precipitates (BMD) of 0.2 m or more in size was measured.
  • the initial oxygen concentration (AS TM F-12 1, 19 79) was about 15 X 10 17 at. in 0 ms / cm 3, the residual oxygen concentration. - about the same 4. as a (AST MF 12 1, 1979) about 4. 5 xl 0 17 at oms / cm 3
  • Comparative example 4 was lowered until by 3 to 6 2 X 10 6 pieces / cm 2 were secured.
  • Comparative example 1 same as The density of gro n-in defects was measured.
  • the density of gro wn-in defects was 3.2 ⁇ 10 s / cm 3 .
  • each sample is subjected to heat treatment at a temperature of 150 ° CX for 30 seconds using RTA equipment, after which heat treatment at 70 ° C / sec is performed.
  • the amount of warpage was measured using a 0 (Japan ADE company). The amount of warpage was about 5 m or less on average, and the mechanical strength was excellent.
  • Oxygen concentration (ASTM F-12 1, 1 9
  • the same oxygen precipitation as in Comparative Example 3 is made with respect to an 8-inch p-type sample of 7 15) having a concentration of about 15 ⁇ 10 17 atoms / cm 3 and a carbon concentration of about 1 ⁇ 10 16 at oms / cm 3.
  • Nucleation heat treatment and oxygen precipitate growth heat treatment were performed, and the residual oxygen concentration (AST M F 12 1 19 19) was adjusted to about 4.5 ⁇ 10 17 atom zcm 3 .
  • the density of oxygen precipitates (BMD) of 0.2 m or more in size was measured, and the oxygen concentration (ASTM F- 12 1, 19 9) was about 15 X 10 in 17 at 0 ms / cm 3, the residual oxygen concentration (ASTM F - 1 2 1, 1 9 7 9) much greater than the lower girder Comparative example 4 to about 4. 5 x 1 0 17 atoms / cm 3 6. 4 to 7. 7 X 1 0 ⁇ pieces / cm 2 were confirmed.
  • the density of gro wn ⁇ in defect density was measured as in Comparative Example 1 with respect to the test sample 18 before oxygen precipitation nucleation heat treatment, the density of gro wn ⁇ in defects was 3.4 ⁇ 10 5 It was 3 cm 3 .
  • a single crystal silicon single crystal was cut out and subjected to an oxygen donor heat treatment at 650 ° CX for 30 minutes, a resistivity of 1 10 to 2 500 ⁇ cm, an oxygen concentration (ASTM F-12 1, 1 9 7 9) Force 4 to 16. 5 x 10 17 atoms Z cm 3 , carbon concentration is 0.5 to 2 0 xl 0 6 at oms / cm 3 for 8 inch p-type test wafer for comparison example 5
  • the same oxygen outward diffusion heat treatment, oxygen precipitation nucleation heat treatment, and oxygen precipitate growth heat treatment are carried out, and the residual oxygen concentration (ASTM F-12 1, 19 9 9) is adjusted to 4.5-6 x 10 17 lowered by atoms / cm 3 o
  • the oxygen concentration (ASTM F-12 1, 1, 2 was cut out from a silicon single crystal thin film and oxygen donor erase heat treatment was performed at 6 50 ° CX 3 0 minutes, with a resistivity of approximately 500 to 2500 ⁇ cm. 1 9 79) is about 15 x 10 17 at oms Zcm 3 , carbon concentration is about 1 to 2 x 10 16 at oms / cm 3
  • Three levels of 8 inch p-type After oxygen outward diffusion heat treatment was performed on 1 to Z 3), oxygen precipitation nucleation heat treatment and oxygen precipitate growth heat treatment were performed.
  • the gas atmosphere in the furnace was changed from a nitrogen / oxygen mixed gas atmosphere (flow ratio of nitrogen gas 10: oxygen gas 3) to a hydrogen gas atmosphere or an argon gas atmosphere.
  • the residual oxygen concentration in the wafer was measured by infrared absorption spectrometry. After heat treatment for forming a first thermal bond at 450 ° C x 1 hour, the resistivity was measured, and the change in resistivity due to the oxygen concentration was investigated.
  • the density of oxygen precipitates (BMD) of 0.2 zm size or more that exist in ⁇ one is measured, and after selective etching in the density measurement of oxygen precipitates (BMD), the cleavage plane is The observation was performed with an optical microscope, and the distance from the surface of the WUH until the first etch pit was observed in the depth direction of the WUH was measured as the thickness of the DZ layer. The results are shown in Table 8.
  • Z 1 and Z 2 hydrogen and Z 3: Ar are oxygen outward diffusion heat treatment in a hydrogen gas atmosphere.
  • Test samples are Z 1 and Z 2, and oxygen outside in argon gas atmosphere.
  • One of the test samples subjected to the diffusion heat treatment is Z3.
  • the decrease in resistivity due to the formation of thermal donors is slight, as the residual oxygen concentration is sufficiently reduced in all cases.
  • the density of oxygen precipitates (BMD) with a size of 0.2 m or more is as large as 5 ⁇ 10 6 Zcm 2 or more, and is excellent in gettering ability.
  • the DZ layer of 8 m or more was formed on the surface of the well and oxygen precipitates (BMD) did not penetrate to the surface of the well, considering the evaluation amount, at least the DZ
  • the layer thickness of the layer is estimated to be about 10 ⁇ ⁇ .
  • the occurrence of slip dislocation in the sample wafer after the oxygen outward diffusion heat treatment was confirmed by the X-ray topographic method.
  • the oxygen concentration (AS TM F- 1 2) was cut out from silicon single crystal ingot and oxygen donor erase heat treatment was performed at 650 ° CX for 30 minutes, with a resistivity of approximately 100 to 100 ⁇ cm. 1, 1 9 79) is approximately 13 ⁇ : L 7 X 1 0 17 at oms / cm 3, 6 levels of carbon concentration is in the range of about 1 ⁇ 2 X 1 0 16 atoms / cm 3 (H ⁇ M)
  • the sample was divided into two, and one sample was measured for the residual oxygen concentration in the wafer by infrared absorptiometry.
  • the resistivity was measured, and the change in resistivity due to the oxygen concentration was investigated.
  • the wafer is cleaved and selectively etched, and then the cleaved cross section is observed with an optical microscope, and the distance from the surface of the wafer until the first etch pit is observed in the depth direction of the wafer. was measured as the layer thickness of the DZ layer. The results are shown in Table 10.
  • the samples subjected to the oxygen outward diffusion heat treatment in a hydrogen gas atmosphere are H, I, L and M, and the samples subjected to the oxygen outward diffusion heat treatment in an argon gas atmosphere are indicated.
  • the residual oxygen concentration is controlled to about the same level, and the change in resistivity can be suppressed to the same level.
  • Example 4 Further, the occurrence of slip dislocation in the sample aha was confirmed by the X-ray topograph method in the same manner as in Example 4. As a result, the sample was subjected to oxygen outward diffusion heat treatment for 1 hour. The occurrence of the p-dislocation was not observed, and in the samples U, J and L subjected to the oxygen outward diffusion heat treatment for 5 hours, only the same slip dislocation as in Example 4 was observed.
  • the laser-particle counter measures an LPD (L ight P oint of 0.1 ⁇ m or more on the surface). The number of D effectss was investigated. The results are shown in Table 11. After heat treatment, the maximum number was 4 per unit (0. 0 per 1 per cm 2 ).
  • the density of gr 0 n-in defects is 1 x 10 3 Z cm 3 or less, and a COP-free silicon single crystal ingot consisting only of an oxygen precipitation promoting region, and also the density of gr own- in defects is 1 x 1 0 A C 0 P free silicon single crystal thin film consisting of two types of an oxygen precipitation promoting region and an oxygen precipitation suppressing region each having a size of 3 cm 3 or less was prepared. Cut from these ingots The oxygen donor annealing heat treatment was performed at 650 ° CX for 30 minutes, and the resistivity was about 10 0 to 900 ⁇ cm, and the oxygen concentration (AS TM F-12 1, 19 9 9 ) At a temperature of 1 150 ° C.
  • the oxygen precipitation nucleation heat treatment is performed for 5 to 26 hours in the temperature range of 550 to 850 ° C., and further for 16 hours at 1 G 0 Q Heat treatment for oxygen precipitate growth was performed.
  • the heat treatment conditions are described in more detail as follows. .
  • the temperature in the furnace is raised to 150 ° C. at a heating rate of 5 ° C./min. did.
  • the gas atmosphere was a nitrogen / oxygen mixed gas atmosphere (flow rate ratio of nitrogen gas 10.0: oxygen gas 3).
  • switch the gas atmosphere to 100% nitrogen gas atmosphere, hold for 2.5 hours, then lower the temperature to 900 ° C at a cooling rate of 4 ° C / min.
  • the furnace was taken out of the furnace.
  • An oxygen precipitation nucleation heat treatment following the oxygen outward diffusion treatment was also performed in a 100% nitrogen gas atmosphere.
  • the oxygen precipitation promoting region is a region having the property of generating O 2 S F when heat treatment is performed for a long time at high temperature in an oxygen gas atmosphere.
  • nitride is formed on the surface of the wafer, which is also a region where there is a concern about surface roughness problems. The gas atmosphere was examined so that these problems would not occur, and it was decided as above.
  • the sample After heat treatment, the sample is divided into two parts, and one sample is measured for the residual oxygen concentration in the sample by infrared absorption spectrometry, and then the sample is cleaved for selective etching.
  • the cleaved cross section was etched by 2 m by the following method, and then the layer thickness of the DZ layer was measured by the above-mentioned method using an optical microscope. In addition, the density of oxygen precipitates of 0.2 m or more was measured.
  • the thermal processing for forming a 1 hour Mar. 1st temperature at 450 ° C. CX was performed, and then the resistivity was measured to investigate the change in resistivity due to the oxygen concentration. Table 1 shows the results
  • T Formation from two types of regions, oxygen precipitation promotion region and oxygen precipitation suppression region
  • Samples N to S are COP-free wafers consisting only of the oxygen precipitation promoting region.
  • Sample T is a C 0 P flat one consisting of two types, an oxygen precipitation promotion area and an oxygen precipitation suppression area, and its central part is an oxygen precipitation promotion area, and oxygen precipitation is suppressed around 20 mm from the outer circumference. It is an area.
  • measurements of residual oxygen concentration, oxygen precipitate density, DZ layer thickness, and resistivity were performed at the center of the wafer and 2 O mm from the periphery. For the other samples, measurements were taken only in the central part of W-ha.
  • a DZ layer of 5 m or more was formed on the surface layer of WAE, and since oxygen precipitates (BMD) did not penetrate through the wafer surface, the evaluation etching amount In addition, it is estimated that at least the layer thickness of about 7 m was secured for the DZ layer.
  • the residual oxygen concentration can also be reduced to about 7 to 2 ⁇ 10 17 at oms / cm 3 .
  • the substrate oxygen concentration (including the residual oxygen concentration after oxygen precipitation treatment) whose type does not reverse and the change in resistivity does not exceed 10 times the initial value has an initial resistivity of 300 ⁇ cm or less in about 1 2 X 1 0 17 at oms / cm 3 or less, the initial resistivity of 2 0 0 0 Omega is less than cm to about 8 xl 0 17 at oms / cm 3 or less, the initial resistivity of 2 0 0 0 ⁇ cm or more Then it is less than 5. 8 x 10 17 atoms / cm 3 .
  • sample K which was only subjected to oxygen outward diffusion treatment in The defect density on the surface of the laser is 0. 0 0 6 cm- 2 , while the defect density in a few m measured with the previous evaluation equipment is 3.4 cm- 2 .
  • sample N COP free
  • the number measured with the above-mentioned defect evaluation device; the defect density inside the um is also as low as 0.2 cm 2. Met.
  • gr own—COP-free silicon single crystal ingot consisting of only an oxygen precipitation promoting region with a density of defects of 1 ⁇ 10 3 / cm 3 or less, and a density of gr own—in defects of 1 ⁇ 10 0
  • a C 0 P free silicon single crystal thin film consisting of two types of an oxygen precipitation promoting region and an oxygen precipitation suppressing region having 3 pieces / cm 3 or less was prepared.
  • Treatment W 120 ° C. for 30 seconds (nitrogen gas atmosphere)
  • Treatment X 120 ° C. for 1 second (nitrogen gas atmosphere)
  • the sample After heat treatment, the sample is divided into two parts, and the remaining oxygen concentration in the sample is measured by infrared absorptiometry for one of the samples, and then the part is cleaved to selectively cleave it.
  • the other sample was subjected to heat treatment at 150 ° C for 1 hour to form a uniform donor, and then the resistivity was measured to investigate the change in resistivity due to the oxygen concentration. The results are shown in Table 1 3
  • Samples U to X are COP-free with two types of oxygen precipitation promoting area and oxygen precipitation suppressing area, and the central part of the sample is an oxygen precipitation promoting area, 20 mm from the outer circumference Part is the oxygen precipitation suppression area.
  • Sample Y is a C 0 P free material consisting only of an oxygen precipitation promoting region. The measurement of the residual oxygen concentration, the oxygen precipitate density, the DZ layer thickness and the resistivity was carried out in all samples at a central portion of the wafer and at a peripheral portion of 2 O mm from the outer periphery. In any of the samples, uniform oxygen precipitates are formed in the surface, and furthermore, the resistivity is uniform in the surface. That is, RTA According to the treatment, even in the case of C 0 P free space in which the oxygen precipitation promoting region and the oxygen precipitation suppressing region are mixed, the resistivity is made uniform within the surface.
  • Upper part center part of Oeha (oxygen precipitation promotion region)
  • Lower part position of 20 mm from outer periphery of wa
  • a C 0 P-free silicon single crystal ingot comprising two types of an oxygen precipitation promoting region and an oxygen precipitation suppressing region in which the density of gr own-in defects is 1 ⁇ 10 3 pieces / cm 3 or less was prepared. It was cut out from this ingot and oxygen donor heat treatment was carried out at 650 ° C. for 30 minutes.
  • the resistivity was about 300 to 900 ⁇ cm, and the oxygen concentration (AS TM F 1 120 1, 19 79) Force 14 xl 0 17 at oms / cm 3 , carbon concentration is 0.8 8 xl 0 16 at oms / High-speed thermal treatment (RTA treatment) was performed for 30 seconds (nitrogen gas atmosphere) at 1220 ° C on a 6-inch p-type wafer that is 3 cm3.
  • RTA treatment high-speed thermal treatment
  • the residual oxygen concentration, the density of oxygen precipitates, the layer thickness and the resistivity of the DZ layer were measured in the same manner as in Examples 6 and 7.
  • Each measurement was performed at the center of the Ueha and around 20 mm from the outer circumference.
  • the central part of U-8 is the oxygen precipitation promotion area, and the peripheral part of 2 Omm from the outer circumference is the oxygen precipitation suppression area.
  • the measurement results are shown in Table 14. 'A uniform oxygen precipitate is formed in the surface, and the resistivity is uniform in the surface.
  • the high resistance silicon wafer according to the present invention has an oxygen precipitate (BMD) having a size of 0.2 m or more inside the wafer 1 x 1 0 4 pieces By being formed at a density of at least 2 cm 2 , the gettering ability is excellent.
  • BMD oxygen precipitate
  • the circuit implemented by the device manufacturer side is limited because the oxygen concentration in the chamber is limited to 12 ⁇ 10 17 at oms / cm 3 (ASTM F-1 121, 1 9 79) or less. It is possible to suppress the generation of oxygen thermal donors in the forming heat treatment.
  • the method for producing high-resistance silicon W-8 according to the present invention is an initial substrate of high-oxygen, high-resistance silicon-OH having an oxygen concentration of 14 10 17 at oms / cm 3 (ASTM F-12 1 1 9 79) or higher. By using it as a manufacturing cost can be reduced.
  • the initial oxygen concentration is high, the residual presence of oxygen concentration after heat treatment 1 2 X 1 0 17 at omsZcm 3 (ASTM F - 1 2 1, 1 9 7 9) follows low and heat treatment for forming the oxygen precipitate nucleus and By carrying out the two-step heat treatment of oxygen precipitate growth heat treatment, large-sized oxygen precipitates (BMD) can be formed at high density.
  • oxygen precipitates (BMD) of not less than 0.2 ⁇ size can be formed at a high density of 1 ⁇ 10 4 pieces / cm 2 or more. This produces a high resistance silicon wafer with excellent gettering capability. it can. And, by limiting the residual oxygen concentration to 12 X 10 17 at oms / cm 3 (ASTM F-12 1, 1 9 7 9) or less, the circuit implemented on the device maker side is It is possible to suppress the generation of oxygen in a heat treatment for formation.
  • the carbon concentration in the range to 0.5 xl 0 ls at oms / cm 3 or more, the decrease in intensity due to the formation of a large amount of oxygen precipitates (BMD) Can be suppressed.
  • the lower limit of the oxygen concentration in the initial substrate can be reduced to 12 X 10 17 at oms / cm 3 (ASTM F-1 12 1, 1 9 7 9) because the formation of oxygen precipitates (BMD) can be promoted. You can pull it down.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

高抵抗シリコンゥェ一ハ及びその製造方法
技術分野
本発明は、 高周波通信デノ イスにおける支持基板等に使用される高抵 抗シリコンゥエーハ及びその製造方法に関する。 明
背景技術
近時、 近距離無線 L A Νに使用される高周波通信デバィスの普及に伴 い、 高抵抗基板の需要が増大している。 高抵抗が要求される RF (Ra d i o F r e qu e n cy :高周波) 回路の支持基板には、 従来は G a A sなどの化合物半導体技術が用いられることが多かった。 しかしな がら、 このような化合物半導体基板は非常に高価である。
一方、 シリコン CMOSは、 消費電力が大きく、 RF回路には不適と 考えられていたが、 近時の著しい微細化や設計の進展によって RF回路 にも適用可能となってきた。 このため、 チヨクラルスキー法 (CZ法) による高抵抗結晶を使った鏡面シリコンゥエーハゃ SO I (S i 1 i c on 0 n I n s u 1 a t e r ) ゥエーハなどの、 RF特性に優れ且 つ経済性に優れた高抵抗のシリコンゥェ一八が、 G a A sなどの化合物 半導体基板に代わって注目を集め始めた。
しかしながら、 CZ法によるシリコン単結晶の製造では、 石英ルツボ を使用して結晶育成を行っているため、 その結晶中に酸素が過飽和な状 態で含有されることになり、 この酸素がデバイスの回路形成プロセスの 熱処理過程においてサーマルドナ一を形成するため、 デバイスメーカー の側でゥェ一八の抵抗率を不安定に変動させるという大きな問題がある 図 1はサ一マルドナーがゥェ一八の抵抗率に与える影響を示している
。 ドーパントを添加された通常の低抵抗ゥェ一八の場合、 サーマルドナ —がゥェ一八の抵抗率に与える影響は軽微であり、 実操業上は問題にな らない。 ところが、 ド一パントが制限された高抵抗ゥェ一八の場合は、 n型だとサ一マルドナーの増加に伴つて抵抗率が激減する。 p型だとサ 一マルドナ一の増加に伴って当初は抵抗率が激増するが、 更にサ一マル ドナ一が増加を続けると p型が n型に転換して抵抗率が激減するように なる。
このようなサーマルドナーの増加に伴う抵抗率の顕著な変動の問題を 解決するために通常は、 1^。 2法ゃ内面3 i Cコートにより酸素の溶け 込みを抑えた特別なルツボを用いて製造された低酸素のシリコンゥェ一 ハを使用して、 サーマルドナ一の形成を抑制する対策が採られるが、 M C Z法や特別なルツポの使用を必要とする低酸素のシリコンゥェ一ハは 、 通常の C Z法により製造される比較的酸素濃度が高い汎用のシリコン ゥェ一ハと比べてコスト高になるのを避け得ない。 加えて、 その低酸素 化にも技術的な限界があり、 一般には 6 X 1 017 a t oms/cm3 以 下は困難であり、 3 0 0 mmゥェ一ハでは 8 x 1 017 a t oms/cm 3 程度が限界とされている。 しかも、 低酸素濃度のシリコンゥェ一八で は、 酸素濃度の低減による機械的強度の低下に伴うスリップなどの問題 力ある。
これらの問題を解決することを目的として、 例えば国際公開第 0 oz
5 5 3 9 7号パンフレツ 卜には、 C Z法により抵抗率が 1 0 0 Ω cm以 上で初期格子間酸素濃度が 1 0〜2 5 p pma 〔J E I DA〕 (7. 9 〜; L 9. 8 X 1 017 a t oms/cm3 〔01 d— A S TM〕 ) である シリコン単結晶ロッ ドを育成し、 該単結晶ロッドから切り出したシリコ ンゥェ一八に酸素析出熱処理を行って、 ゥェ.ーハ中の残留格子間酸素濃 度を 8 ppma 〔J E I DA〕 (6. 4 x 1017 a t oms/cm3 〔 O 1 d-ASTM] ) 以下に制限する技術が記載されている。
この技術によると、 初期酸素濃度が高い汎用のシリコンゥエーハを使 用することにより、 初期ゥェ一八の製造コストが安価となる。 初期酸素 濃度が高い汎用のシリコンゥエーハを使用するにもかかわらず、 そのシ リコンゥェ一ハに酸素析出熱処理を行うことにより、 残存酸素濃度は低 くなる。 このため、 デバイスメーカ一の側で実施される回路形成用熱処 理での酸素ドナ一の発生が効果的に抑制される。 ゥェ—ハ中の酸素濃度 を低下させる過程で、 多量の酸素析出物 (BMD) が生成される。 この ため、 ゥエー八のゲッタリング能も向上する。
しかしな力 ら、 前記パンフレツ 卜に記載された技術では、 高酸素濃度 の高抵抗初期基板を使用して多量の酸素析出物 (BMD) を生成するこ と、 及びその多量の酸素析出物 (BMD) の生成により製品シリコンゥ ェ一八の残留酸素濃度を十分に引き下げることが必須となるが、 これら に起因して以下の問題が生じる。
第 1に、 製品シリコンゥヱ一八の残留酸素濃度を下げることは、 その ゥヱ一八の機械的強度を低下させる原因となる。 これは、 熱処理中にゥ ヱーハ支持部などから発生したスリップ転位が酸素により固着され、 そ の結果、 スリップ長が酸素濃度の上昇とともに低下する 〔M. Ak a t · s u k a e t a 1. , J p n. J. A p 1. Phy s. , 36 ( 1997 ) L 1422 ] ことからも明らかである。 一方、 強度に影響す る因子として酸素析出物 (BMD) がある。 BMDの強度に与える影響 は複雑である。 たとえばゥエー八に付加される熱'自重応力がそれほど 大きくない場合は、 スリップ転位の運動を抑制し強度を向上させるが ( 特許文献 1) 、 熱,自重応力が大きい場合には、 BMD自体がスリップ 転位源となり、 強度が低下してゥヱ一八が反る危険性が高い (K. S u e 0 k a e t a 1. , J p n. J. A p 1. P h y s . , 3 6 ( 1 9 9 7 ) 7 0 9 5 ) 。 実デバイスプロセスでゥェ一八に付加される熱 •自重応力は、 デバイス構造や熱シーケンスなどに依存し、 大きくなる 場合もあると予想される。
第 2の問題は、 COP [C r y s t a l O r i g i n a t e d P a r t i c l e :空孔の集合体で (1 1 1) 面で囲まれたボイド欠陥〕 を除去するための水素ァニールやアルゴンァニールに伴う抵抗変化であ る。 一般に、 CZシリコンゥエーハでは、 酸化熱処理を受けたときに、 結晶径方向の一部に 0 S Fと呼ばれるリング状の酸素誘起積層欠陥が発 生する。 そのリング発生位置は結晶引上げ速度によって異なり、 且つリ ングの外側と内側とでは物性の異なることが知られている。
図 2は結晶欠陥の一般的な径方向分布を示す横断面図、 図 3は結晶引 上げ速度を変化させたときの結晶欠陥分布の位置変化を示す縦断面図で ある。 通常に育成した C Zシリコンゥェ一ハでは、 リング状 OS F発生 領域の内側に無欠陥領域が存在し、 その内側が COP発生領域となる。 一方、 リング状 0 S F発生領域の外側には酸素析出促進領域及び酸素析 出抑制領域が存在し、 その外側が転位クラスター欠陥発生領域となる。 この C 0 Pおよび転位クラスタ一欠陥などは結晶育成過程で結晶内に導 入される欠陥であることから g r 0 wn - i n欠陥とも言われている。 そして、 リング状 0 S F発生領域内側の無欠陥領域から転位クラスタ一 欠陥発生領域内側の酸素析出抑制領域までが、 COPも転位クラスター も存在しない完全無欠陥領域となる。
ここで、 リング状 0 S F発生領域は引上げ速度が遅くなるほど結晶中 心部に移動し、 最終的にはその中心部で消滅するが、 このときの OS F 発生領域の縦断面形状は下方へ凸の方向に湾曲する V形乃至は U形にな る。 このため、 径方向全域が完全無欠陥の結晶を高い歩留りで製造する ことは困難である。 このようなことから、 実操業では生産性も考慮して
、 0 S F発生領域をデバイス形成領域外のゥエーハ外周縁部に位置させ るように育成条件を選択することが多い。 その結果、 ゥエーハ全面に有 害な C O Pが多数存在することになり、 このようなゥェ一ハでは、 C O Pフリ一化のために、 即ちデバィス領域として使用されるゥェ一ハ表層 部から C O Pを排除するために、 アルゴンァニールや水素ァニールを施 すのが通例となっている。
しかしながら、 アルゴンァニール及び水素ァニールは、 どちらも基本 的にはゥェ一ハを還元性雰囲気 (アルゴンも高温では還元作用があり) で、 高温長時間熱処理する技術であるため、 熱処理炉内からの重金属不 純物による汚染が懸念される。 そして、 高抵抗ゥェ—八が重金属不純物 で汚染された場合には、 僅かの汚染であつてもゥェ一八の抵抗率が極端 に変わる。 このため、 アルゴンァニールや水素ァニールを採用しがたい 現実がある。
これに加え、 水素ァニールでは、 水素還元作用によってゥエーハ表層 のド一パン卜が外方拡散し、 ゥェ一ハ表層の抵抗率が高くなる傾向があ り、 所定の抵抗率範囲を有する高抵抗ゥェ一ハを精度よく製造すること が難しくなる。 一方、 アルゴンァニールでは、 水素ァニールのような強' い還元作用はないことから、 ゥエー八表層のドーパントが外方拡散し、 ゥエーハ表層の抵抗率が高くなるという問題はないものの、 逆に、 熱処 理中にゥエーハ表面の自然酸化膜が除去され、 除去された自然酸化膜中 に含まれるドーパント不純物がゥェ一ハ内部に拡散し、 ゥエーハ表層部 の抵抗率が低下するという傾向が見られる。
これらのため、 高抵抗ゥエー八の製造にあっては、 C O Pフリー化の ためのアルゴンァニールや水素ァニールは採用しがたい技術と言える。 本発明の目的は、 ゲッタリング能に優れると共に、 デバイスメーカー の側で実施される回路形成用熱処理での酸素サーマルドナーの発生を効 果的に抑制でき、 しかも機械的強度の高い高抵抗シリコンゥェ一ハ及び その製造方法を提供することにある。
本発明の別の目的は、 ゲッタリング能に優れると共に、 デバイスメ一 カーの側で実施される回路形成用熱処理での酸素サーマルドナーの発生 を効果的に抑制でき、 しかも C 0 Pフリー化のためのアルゴンァニール や水素ァニールに伴う抵抗変化を回避できる高抵抗シリコンゥエーハ及 びその製造方法を提供することにある。 発明の開示
上記目的を達成するために、 本発明者らは初期基板として汎用の高酸 素シリコンゥェ一八の使用が不可欠であると判断して、 その高酸素シリ コンゥェ一八で問題となる酸素サーマルドナ一の発生を抑制する方法に ついて検討した。 その結果、 酸素析出物 (B M D) の総析出量、 具体的 には酸素析出物 (B M D) の析出密度と共に、 個々の酸素析出物 (B M D) のサイズが重要なことが判明した。
また、 十分な総量の酸素析出物 (B M D) を析出させたときに問題と なる強度低下に対しては炭素ド一プが、 また、 C O Pフリー化のための アルゴンァニ一ルゃ水素ァニールに伴う抵抗率変化に対しては、 結晶育 成段階で C 0 Pを排除した C 0 Pフリ一結晶の使用がそれぞれ有効であ るとの結論に達した。 炭素の添加は酸素析出物 (B M D) の形成を促進 する効果もあり、 初期基板における酸素濃度を低減できる作用も奏する o
本発明の第 1の高抵抗シリコンゥエーハは、 1 0 0 Ω c m以上の抵抗 率を有する高抵抗シリコンゥェ一八であって、 ゥエーハ内部に 0 . 2 mサイズ以上の酸素析出物 (BMD) 力 1 X 1 04 個/ cm2 以上の密 度で形成され、 ゥェ—ハ中の酸素濃度が 1 2 x l 017a t oms/cm 3 (ASTM F - 1 2 1, 1 9 7 9 ) 以下であり、 炭素濃度が 0. 5 x l 0 16a t oms/cm3 以上であるものである。
本発明の第 2の高抵抗シリコンゥェ一ハは、 1 0 0 Ω c m以上の抵抗 率を有する高抵抗シリコンゥェ一ハであって、 セコエッチングによって 検出される g r 0 wn— i n欠陥の密度が 1 x 1 03 cm— 3以下であり
、 ゥェ一ハ内部に 0. 2 izmサイズ以上の酸素析出物 (BMD) が l x
1 04 個 Zcm2 以上の密度で形成され、 ゥェ—ハ中の酸素濃度が 1 2 X 1 017a t oms/cm-3 (ASTM F - 12 1, 19 7 9 ) 以下 であるものである。
いずれの高抵抗シリコンゥエー八においても、 ゥェ一ハ内部に 0. 2
〃mサイズ以上の酸素析出物 (BMD) が 1 X 1 04 個/ cm2 以上の 密度で形成されていることにより、 ゲッタリング能に優れる。 初期基板 として汎用の高酸素シリコンゥェ一ハを使用できるので、 製造コストを 低減できる。 ゥェ一ハ中の酸素濃度が 1 2 X 1 017 a t oms/cm3 (ASTM F- 1 2 1, 1 9 7 9 ) 以下に制限されていることにより
、 デバイスメーカ一の側で実施される回路形成用熱処理での酸素サ一マ ルドナ一の発生を抑制できる。
ゥエーハ内部に存在する酸素析出物 (BMD) の密度が 1 X 1 04
Zcm2 以上の高密度であっても、 サイズが 0. 2 zm未満であると、 所期の効果が得られない。 サイズが 0. 2 m以上の大型の酸素析出物 (BMD) に着目し、 この大型析出物を 1 X 1 04 個/ cm2 以上の高 密度に形成することに本発明の意義がある。 この大型析出物の密度が 1 X 1 04 個 Zcm2 未満であると、 所期の効果力心得られない。 特に好ま しい密度は 1 x 1 05 個/ cm2 以上である。 この密度の上限について は余りに高密度であると、 顕著な機械的強度の低下に起因してゥェ一ハ が変形し、 平坦度が低下する。 この観点から 1 X 1 Q 7 個/ cm2 以下 が好ましい。
ゥェ一ハ中の残存酸素濃度については、 1 2 X 1 017 a t om s/c m3 (AS TM F— 1 2 1 , 1 9 7 9 ) 超であると、 デバイスメーカ 一の側で実施される回路形成用熱処理での酸素サ一マルドナーの発生が 十分に抑制されない。 有効な酸素濃度は、 厳密にはゥェ一八の抵抗率に よってシフ卜する。 抵抗率が 1 0 0 Ω以上 3 0 0 Ω cm未満の場合の酸 素濃度は 1 2 x l 017 a t om s /c m3 以下であるが、 3 0 0 Ω以上 2 0 0 0 Ω c m未満の場合の酸素濃度は 7 x 1 017 a t om s/ c m3 以下が好ましく、 2 0 0 0 Ω c m以上の場合の酸素濃度は 5. 8 x 1 0 17 a t om s /c m3 以下が好まレぃ。 酸素濃度の下限については、 残 留酸素濃度の極端な低下は技術的に難しい上に酸素析出物 (BMD) の 增加を伴う。 この增加は前述したとおりゥェ一八の変形の原因になる。 このため 4 X 1 0 17 a t om s / cm3 以上が好ましい。
これに加え、 本発明の第 1の高抵抗シリコンゥェ一八においては、 ゥ ェ一ハ中の炭素濃度を 0. 5 X 1 0 16 a t om s/cm3 以上に管理し たことにより、 酸素析出物 (BMD) の多量形成に伴うゥェ一ハ強度の 低下が抑制される。 また、 炭素の添加は酸素析出物 (BMD) の形成を 促進する効果もある。 特に好ましい炭素濃度は 1 X 1 0 16 a t om s / cm3 以上である。 炭素濃度の上限については、 シリコン中の炭素の固 溶度である 4 X 1 0 17 a t om sZc m3 まで可能であるが、 余りに多 い添加は結晶育成時に有転位化を促進する。 このため実操業上は 1 X 1 017 a t om s/c m3 以下が好ましい。
一方、 本発明の第 2の高抵抗シリコンゥェ一ハにおいては、 セコエツ チングによって検出される g r own— i n欠陥の密度を 1 x 1 O'3 c m一3以下に制限した COPフリー結晶が使用されることにより、 C〇P フリ一化のためのアルゴンァニールや水素ァニールが不用になり、 これ らのァニールに伴う抵抗率変化が回避される。
また、 本発明の第 1の高抵抗シリコンゥエー八の製造方法は、 抵抗率 が 1 0 0 Ω cm以上で、 酸素濃度が 1 2 X 1 017 a t oms/cm3 ( ASTM F— 1 2 1, 1 9 7 9 ) 以上、 炭素濃度が 0. 5/1 016 a t oms/cm3 以上である初期シリコンゥェ一ハを用い、 これに酸素 析出核形成熱処理及び酸素析出物成長熱処理を施すことにより、 前記ゥ エーハ中の残存酸素濃度を 1 2 X 1 017 a t oms/cm3 (ASTM F— 1 2 1, 1 9 7 9 ) 以下に制御するものである。
本発明の第 2の高抵抗シリコンゥェ一八の製造方法は、 抵抗率が 1 0 0 Ω c m以上で、 酸素濃度が 1 4 X 1 017 atoms /cm3 (ASTM F - 1 2 1 , 1 9 7 9 ) 以上であり、 且つセコエッチングによって検出 される g r 0 wn— i n欠陥の密度が 1 x 1 03 cm— 3以下である初期 シリ コンゥエーハを用い、 これに酸素析出核形成熱処理及び酸素析出物 成長熱処理を施すことにより、 前記ゥェ—ハ中の残存酸素濃度を 1 2 1 017 a t oms/cm3 (ASTM F— 1 2 1, 19 79 ) 以下に 制御するものである。
本発明の高抵抗シリコンゥエー八の製造方法においては、 酸素濃度が 1 4 X 1 017 a t oms/cm3 (ASTM F - 1 2 1, 1 9 7 9 ) 以上、 炭素ドープの場合は 1 2 X 1 017 a t oms/cm3 (AS TM F— 1 2 Γ, 1 9 7 9 ) 以上の高酸素高抵抗シリコンゥェ—八が初期 基板として使用されることにより、 製造コストが低減される。 初期酸素 濃度が高いことに加え、 熱処理後の残存酸素濃度が 1 2 X 1 017 a t 0 ms/cm3 (AS TM F— 1 2 1, 1 9 7 9 ) 以下と低く、 且つ酸 素析出核形成熱処理及び酸素析出物成長熱処理の 2段熱処理が実施され ることにより、 大型の酸素析出物 (BMD) が高密度に形成される。 具 体的には、 0. 2 mサイズ以上の酸素析出物 (BMD) を 1 X 104 個 Zcm2 以上の高密度で形成できる。 これにより、 ゲッタリング能に 優れた高抵抗シリコンゥエー八が製造される。 残存酸素濃度が 12 X 1 017 a t oms/cm3 (ASTM F - 121, 1979 ) 以下に制 限されることにより、 デバイスメーカ一の側で実施される回路形成用熱 処理での酸素サ一マルドナーの発生が抑制される。
酸素析出物 (BMD) 、 特にゥェ一ハ表層部に存在する酸素析出物 ( BMD) は、 デバイス形成プロセスにおける有害な欠陥となり、 デバイ ス特性を劣化させる原因になる。 この問題に対しては、 酸素析出物 (B MD) を析出させる前に酸素外方拡散熱処理を行い、 酸素析出物 (BM D) の析出成長を阻止することにより、 ゥェ一八の表層部に DZ (D e nu d e d Zo n e) 層を形成するのが有効である。 また、 COPフ リー結晶を使用しない場合は、 デバイス特性向上の点から、 結晶成長過 程で生じる CO P、 転位クラスタ等の g r own— i n欠陥をゥェ一ハ 表層部から排除することも重要あり、 これに対しては酸素外方拡散熱処 理での雰囲気選択が有効である。 .
初期基板に対する炭素ド一プは、 酸素析出物 (BMD) の形成を促進 する作用も有する。 この作用のため、 炭素ドープを行う場合は、 初期基 板における酸素濃度の下限を 1 2 X 1 017 a t omsZcm3 まで下げ ても、 十分な総量の酸素析出物 (BMD) が確保される。 特に好ましい 炭素濃度は 1 X 1 016a t omsZcm3 以上である。 炭素濃度の上限 については、 シリコン中の炭素の固溶度である 4 x l 017a t oms/ cm3 まで可能であるが、 余りに多い添加は結晶育成時に有転位化を促 進する。 このため実操業上は l x l 017a t oms/cm3 以下が好ま しい。 デバイス形成プロセスにおいて酸素析出物 (BMD) が欠陥部になる 事態に対しては、 ゥェ一ハ表面から少なくとも 5 m以上の深さにわた り DZ (De nu d e d Zon e :無欠陥) 層を形成することが好ま しい。 ここにおける DZ層は、 乾燥酸素雰囲気中において 10 00 °Cx 1 6時間の熱処理後、 ゥェ一ハを劈開し、 選択エッチング液 〔HF: H N03 : C r 03 : Cu (N03 ) 2 : H2 0: CH3 COOH= 12 0 0 c c : 6 00 c c : 250 g : 40 g : 1700 c c : 1200 c c〕 でゥェ一ハ劈開面を 2〃mエッチングし、 光学顕微鏡にてゥエー八 表面からゥェ一ハ深さ方向に 1点目のエッチピッ卜が観察されるまでの 距離で規定する。
このような DZ層をゥェ一ハ表層部に形成する方法としては、 酸素析 出核形成熱処理の前に、 ゥェ一八に 1100〜1250°Cの温度範囲で 1〜 5時間の酸素外方拡散熱処理を施すのが好ましい。 この酸素外方拡 散熱処理により、 ゥエーハ表層部が低酸素化し、 酸素析出物 (BMD) の形成成長が阻止されることにより、 DZ層が形成される。
酸素外方拡散熱処理は、 窒素含有ガス雰囲気で行うことができる。 又 、 水素ガス雰囲気、 又はアルゴンガス雰囲気、 若しくはこれらの混合ガ ス雰囲気で行うことができる。 例えば p型ゥエー八の場合、 水素ガス雰 囲気で行うことでゥェ一ハ表層部のポロンが外方拡散して濃度低下がお こり、 高抵抗化が推進される。 また、 COPと称される結晶育成時に形 成される g r own— i n欠陥が溶体化し、 ゥェ一ハ表層部ではサイズ の縮小化、 更には消滅が可能となり、 酸素析出物 (BMD) の不在と併 せてゥェ一ハ品質を向上させることができる。 一方、 アルゴンガス雰囲 気で行うことにより、 水素ガス雰囲気の場合と同様に g r own- i n 欠陥が消滅する。 その反面、 熱処理を行う環境によっては外部からポロ ンが内方拡散し、 ゥェ一ハ表層部で濃度が高くなり、 抵抗率を下げるこ とが懸念される。 COPフリー結晶を使用した場合は、 これらの水素ァ ニールゃァルゴンァニールが不用になることは前述したとおりである。 即ち、 COPフリー結晶を使用する場合の酸素外方拡散熱処理は、 窒素 含有ガス雰囲気が好ましい。
酸素外方拡散熱処理については、 前述した高温長時間の熱処理に代え て急速昇降温熱処理 (RTA : Ra p i d The rma l Ann e a 1) を行うことができる。 ランプアニールとも呼ばれるこの RT A処 理は、 非常に短時間でゥェ一ハ表層部の酸素を外方拡散させることがで きる。 更には、 この RT A処理を高温の窒素ガス含有雰囲気で行うこと で、 ゥェ一ハ内部に過剰の空孔が十分に注入されることから、 その後の 酸素析出核形成熱処理においてゥエーハ内部への酸素析出核形成を促進 させる効果がある。 しかも、 使用するゥェ一ハの初期酸素濃度が非常に 高い場合には、 この R T A処理を行うだけでゥェ一ハ内部への酸素析出 核形成も行われることから、 その後の低温の酸素析出核形成熱処理を省 略することもできる。 また後述するように、 この RT A処理は COPフ リ一結晶を使用する場合に特に有効である。
即ち、 COPフリー結晶のなかには、 空孔が優勢な領域と格子間シリ コンが優勢な領域とが混在したゥェ一ハ (例えば 0 S Fリングが面内に 発生したゥェ一ハなど) もあり、 このような結晶領域が混在するゥエー ハを使用した場合、 ゥェ一ハの径方向において BMDの析出密度にばら つきが生じ、 面内で均一なゲッタリング能が発揮されない。 しかるに、 高温で RT A処理を施すと、 ゥェ一ハ表面から空孔が十分に注入される ため、 径方向の空孔濃度が均一化し、 径方向の BMD析出量が均一化す る作用がある。 加えて昇降温速度が速いことによる a s g r ownで 存在するサイズの小さな酸素析出核の消滅作用があることから、 その後 に形成される酸素析出物のサイズが均一化する効果もある。 そして、 高 温 R T A処理による酸素外方拡散効果により、 ゥェ—ハ表層部に D Z層 が確保される。
また、 ゥエーハ全面が同一結晶領域からなる C O Pフリー結晶 (例え ば 0 S Fリングが閉じた酸素析出促進領域のみからなるゥェ一ハ) を使 用する場合には、 R T A処理を用いなくても、 酸素外方拡散熱処理 (窒 素ガス含有雰囲気) を実施することによってゥェ一ハ径方向の B M Dの 均一化を達成することができる。
即ち、 C 0 Pフリー結晶が結晶領域混在型の場合は、 酸素外方拡散熱 処理として R T A処理が好適であり、 同一結晶領域型の場合は、 R T A 処理でも通常の酸素外方拡散熱処理 (窒素ガス含有雰囲気) でもよい。
R T A処理の条件は 1 1 5 0〜 1 3 0 0 °C X I〜 6 0秒が好ましい。 なぜなら 1 1 5 0 °Cよりも低い温度では、 ゥェ一ハ表層部に十分な D Z 層厚みを確保することができない。 また、 ゥェ一ハ内部に十分な空孔が 注入されず、 酸素析出核の形成促進効果が得られない。 一方、 1 3 0 0 °Cを超える温度では、 熱処理時にゥェ一八にスリップ転位が発生してし まい、 デバイス特性に支障をきたすことになる。 熱処理時間としては、 上記の温度範囲において 6 0秒以下の加熱で、 十分な D Z層の確保と、 酸素析出核形成に必要な空孔量を十分に注入することができる。 熱処理 雰囲気は 空孔注入作用の大きい窒素雰囲気を基本とし、 窒素ガスある いはアンモニアガスに少量の酸素ガス或いは不活性ガス (A rガス等) を混合させてもよい。
酸素析出核形成熱処理としては、 5 0 0〜9 0 0 °Cの温度で 5時間以 上の低温熱処理が好ましく、 雰囲気は窒素、 酸素、 水素、 アルゴン、 或 いはこれらの混合ガス雰囲気のいずれであってもよく、 特に限定するも のではない。 熱処理温度が 5 0 0 °C未満の場合は、 酸素の過飽和度が高 ^、ものの酸素の拡散速度が遅く、 酸素析出核形成を起こさせるには長時 間を要し、 工業生産性を考えると対応が困難となる。 9 0 0 °C超の場合 は、 酸素の拡散速度は増すカ^ 過飽和度が低く、 十分な酸素析出核密度 を実現することが困難となる。 また、 熱処理時間は熱処理温度、 基板酸 素と関係し、 酸素濃度が 1 7 x l 0 1 7 a t o m s Z c m 3 以上と非常に 高い場合であっても、 5時間未満の場合は十分な酸素析出核密度を実現 することが困難である。 特に好ましい酸素析出核形成熱処理温度は 7' 0 0〜9 0 0 °Cである。 これは 6 5 ひ。 Cで 3 0分のサ一マルドナ一消去熱 処理を行っても、 再度 6 5 0 °C近傍の温度域に長時間滞在すると、 ニュ ―ドナ一が形成され、 抵抗率の変化を生じることが本発明者らによる調 査から判明したことによる。 このニュードナーの形成は抵抗率が 5 0 0 Ω c m以上のゥェ一ハで顕著である。 従って、 7 0 0 ~ 9 0 0 °Cの酸素 析出核形成熱処理は、 5 0 0 Ω c m以上のゥエー八に特に有効である。 酸素析出核形成熱処理に続く酸素析出物成長熱処理としては、 9 5 0 〜1 0 5 0 °Cの温度で 1 0時間以上の中温熱処理が好ましい。 熱処理温 度が 9 -5 0 °C未満の場合は、 5 0 0 ~ 9 0 0 °Cの温度範囲の酸素析出核 形成熱処理で形成した酸素析出核サイズと、 9 5 0 °C未満で成長する核 サイズとの差が小さく、 基板酸素濃度の低減、 及びゲッタリングに必要 な大きさの酸素析出物として成長することが困難になる。 1 0 5 0 °C超 の場合は、 5 0 0〜9 0 0 °Cの温度範囲の酸素析出核形成熱処理で形成 した酸素析出核サイズと、 9 5 0 °C未満で成長する核サイズとの差が大 きく、 作り込んだ酸素析出核が消滅し、 密度が低下する。 熱処理時間が 1 0時間未満の場合は、 基板酸素濃度の低減、 及びゲッタリングに必要 な大きさの酸素析出物まで成長することが困難になる。 図面の簡単な説明
図 1はサーマルドナーがゥェ一八の抵抗率に与える影響を示すダラフ である。 図 2は結晶欠陥の一般的な径方向分布を示す横断面図である。 図 3は結晶引上げ速度を変化させたときの結晶欠陥分布の位置変化を示 す縦断面図である。 図 4は本発明の実施形態における処理手順を示すフ 口一である。 図 5は同実施形態における熱処理のヒ一トパターンを示す グラフである。 図 6はゥェ一ハ中の炭素濃度と転位移動距離との関係を 示すグラフである。 発明の実施の形態
以下に本発明の実施形態を図 4 (本発明の実施形態における処理手順 を示すフロー) 及び図 5 (同実施形態における熱処理のヒートパターン を示すグラフ) に基づいて説明する。
(第 1実施形態)
本実施形態では、 先ず通常の C Z法により、 高酸素 ·高抵抗の炭素ド —プシリコン単結晶を育成し、 そのシリコン単結晶から、 外周縁部に 0 S Fリングが存在し、 その内側に C 0 Pが存在した酸素濃度が 12 X 1 017 a t om s/cm3 (AS TM F - 121, 1979 ) 以上、 炭 素濃度が 0. 5 x l O "a t omsZcm3 以上で、 高抵抗 ( 100 Ω cm以上) の初期基板を採取する (S 1〜3) 。
初期基板には、 必要に応じ、 1100〜1250°Cx l〜5時間の酸 素外方拡散熱処理を施す (S 4) 。 この酸素外方拡散熱処理により、 後 述する熱処理で酸素析出物 (BMD) の形成を阻止する。 これにより、 製品ゥェ一八の表面から少なくとも 5 以上の深さにわたって DZ (. De nu d e d- Z o n e ) 層を开成する。
この酸素外方拡散熱処理は、 前述したとおり、 窒素ガスと酸素ガスの 混合ガス雰囲気で行うことができる。 また、 水素ガス雰囲気中で行うこ とができる。 また、 アルゴンガス雰囲気中で行うことができる。 更に、 水素とアルゴンの混合ガス雰囲気中で行うことができる。
以上のごとき初期基板に対して、 まず酸素析出核形成熱処理として、
5 0 0〜9 Q 0°CX 5時間以上の低温熱処理を行う (S 5) 。 好ましく は 7 0 0 °C以上で行う。 次いで、 酸素析出物成長熱処理として、 9 5 0 〜 1 0 5 0 °C X 1 0時間以上の中温熱処理を行う (S 6 ) 。
これらの熱処理により、 1 0 0 Ω c m以上の高抵抗シリコンゥエーハ の内部に 0. 2 / mサイズ以上の酸素析出物 (BMD) を 1 x 1 04 個 /cm2 以上の密度で形成し、 且つゥェ一ハ中の酸素濃度を 12 10 17 a t om s/cm3 (A S TM F— 1 2 1, 1 9 7 9 ) 以下に低減 する (S 7 >。
具体的なゥヱ一ハ中の酸素濃度 (AS TM F— 1 2 1, 1 9 7 9 ) は、 サーマルドナ一のより効果的な抑制のために、 ゥェ一八の抵抗率が 1 0 0 Ω c m以上 3 0 0 Ω c m未満の場合は 1 2 x 1 017 a t o m s / c m 3 以下、 3 0 0 Ω c m以上 2 0 0 0 Ω c m未満の場合は 7 x 1 017 a t oms/cm3 以下、 2 0 0 0 Ω c m以上の場合は 5. 8 x 1 017 a t o m s / cm3 以" と "^る。
こうして製造されたシリコンゥェ一ハ製品がデバイスメーカ一に出荷 される (S 8) 。 この製品の特徴ば以下のとおりである。
. 第 1に、 酸素濃度が比較的高い汎用のシリコンゥエーハを初期基板と するので経済性に優れる。 第 2に、 大型の酸素析出物 (BMD) が高密 度に形成されることによりゲッタリング能に優れる。 第 3に、 最終酸素 濃度が低く、 デバイスメーカ一の側で実施される回路形成用熱処理での 酸素サ—マルドナ一の発生が抑制される。 第 4に、 結晶育成段階で炭素 ドープを行ったため、 機械的強度が高い。 第 5に、 初期基板に対して酸 素外方拡散熱処理を施すことにより、 表層部に DZ (D e n u d e d Z o n e) 層を形成した製品は、 デバイス特性に特に優れる。 第 6に、 酸素外方拡散熱処理での雰囲気として水素ガス、 アルゴンガスを選択し たものでは、 g r own— i n欠陥の縮小、 更には消滅も可能であり、 ゥェ一ハ表面上で観察される 0. 1 2 サイズ以上の L PD (L i g h t P o i n t D e f e c t ) の密度を 0. 2個/ cm2 以下に低 減することができる。
(第 2実施形態)
本実施形態では、 ホッ トゾーンなどに工夫を講じた CZ引上げ装置に より、 図 3中に A— Bで示す C 0 Pフリ一結晶を引上げ軸方向に長く成 長させ、 その結晶部分から全面完全無欠陥のシリコンゥェ一ハを採取す る (S l, 2) 。 具体的には、 セコエッチングによって検出される g r o n- i n欠陥の密度が 1 x 1 03 c m— 3以下である完全無欠陥ゥェ 一八を採取する。 この初期基板は高酸素 〔酸素濃度 1 4 X 1 017 a t 0 ms/cm3 (ASTM F- 1 2 1, 1 9 79 ) 以上〕 で、 且つ高抵 抗 (1 0 0 Ω cm以上) である。
機械強度の向上を目的として、 炭素ドープ (0. 5 X 1 015a t om s/cm3 以上) を行うことができる (S 3) 。 この場合、 後の熱処理 でゥェ一ハ表層部の酸素析出物 (BMD) の成長が促進されるため、 初 期基板中の酸素濃度が 1 2 X 1 017 a t oms/cm3 (ASTM F - 1 2 1, 1 9 7 9 ) 以上まで許容される。
初期基板には、 必要に応じ、 1 1 0 0〜1 2 50 °CX 1〜5時間の酸 素外方拡散熱処理を施す (S 4) 。 この酸素外方拡散熱処理により、 後 の熱処理での酸素析出物 (BMD) の形成を阻止する。 これにより、 製 品ゥエー八の表面から少なくとも 5 m以上の深さにわたって DZ (D e n u d e d Z o n e) 層を形成する。 この酸素外方拡散熱処理は、 窒素ガスと酸素ガスの混合ガス雰囲気で行い、 水素ァニールやアルゴン ァニールは避ける。 以上のごとき初期基板に対して、 まず酸素析出核形成熱処理として、
5 0 0〜9 0 0 °CX 5時間以上の低温熱処理を行う (S 5) 。 好ましく は 7 0 0 °C以上で行う。 次いで、 酸素析出物成長熱処理として、 9 5 0 〜 1 0 5 0 °C X 1 0時間以上の高温熱処理を行う (S 6 ) 。
前記外方拡散熱処理に代えて、 窒素ガス雰囲気中で 1 1 50〜1 3 0 0°CX 1〜6 0秒の RTA処理を行うこともできる。 結晶領域混在型の 結晶の場合は R T A処理が推奨されるが、 同一結晶領域型の結晶の場合 は何れを実施してもよい。 なお、 前述したように、 酸素濃度の高い初期 基板、 例えば酸素濃度が 1 5 X 1 017 a t om s/cm3 (ASTM F- 1 2 1, 1 9 7 9 ) 以上の初期基板を使用する場合には、 酸素析出 核形成熱処理は不要である。
これらの熱処理により、 1 0 0 Ω cm以上の高抵抗シリコンゥエーハ の内部に 0. 2 mサイズ以上の酸素析出物 (BMD) を 1 x 1 04 個 /cm2 以上の密度で形成し、 且つゥェ—ハ中の酸素濃度を 1 2 x 1 0 17 a t oms/cm3 (ASTM F— 12 1, 1 9 7 9 ) 以下に低減 する (S 7) 。
具体的なゥェ一ハ中の酸素濃度 (ASTM F - 1 2 1, 1 9 7 9 ) は、 サ一マルドナ一のより効果的な抑制のために、 ゥェ一八の抵抗率が 1 0 0 Ω c m以上 3 0 0 Ω c m未満の場合は 1 2 x l 017a t oms/ cm3 以下、 3 0 0 Ω c m以上 2 0 0 0 Ω c m未満の場合は 7 1 017 a t oms/cm3 以下、 2 0 0 0 Ω cm以上の場合は 5. 8 x 1 017 a t oms/cm3 以下とする。
こうして製造されたシリコンゥェ一ハ製品の特徵は以下のとおりであ 。
第 1に、 酸素濃度が比較的高い汎用のシリコンゥエーハを初期基板と するので経済性に優れる。 第 2に、 大型の酸素析出物 (BMD) が高密 度に形成されることによりゲッタリング能に優れる。 第 3に、 最終酸素 濃度が低く、 デバイスメ一力一の側で実施される回路形成用熱処理での 酸素サ一マルドナーの発生が抑制される。 第 4に、 COPフリーの結晶 を使用していることにより、 酸素外方拡散熱処理を行う場合も、 窒素ガ ス含有雰囲気で行うことができ、 水素ァニールやアルゴンァニールを回 避できる。 したがって、 これらのァニールによる抵抗変化も回避される 。 それにもかかわらず、 g r o wn— i n欠陥がなく、 ゥエーハ表面上 で観察される 0. 1 2 サイズ以上の L PD (L i g h t P o i n t D e f e c t) の密度を 0. 2個 Z c m2 以下に低減することがで きる。
結晶育成段階で炭素ド―プを行った場合は、 機械的強度が高い。 初期 基板に対して酸素外方拡散熱処理や RT A処理を実施し、 表層部に D Z (D e n u d e d Z o n e) 層を形成した製品は、 デバイス特性に特 に優れる。
次に、 本発明の実施例を示し、 比較例と対比することより、 本発明の 効果を明らかにする。
(比較例 1 )
通常育成シリコン単結晶ィンゴッ 卜から切り出し、 6 5 0 °CX 3 0分 の酸素ドナ一消去熱処理を行った、 抵抗率が約 130 0 Ω cmで、 酸素 濃度 (ASTM F— 1 2 1, 1 9 79 ) が約 13 x 1 017 a t o m s /cm3 の 8インチ n型供試ゥェ一ハを複数枚用意し、 ゥェ一ハ中に存 在する g r 0 wn— i n欠陥の密度及び 0. 2 //mサイズ以上の酸素析 出物 (BMD) の密度を測定した。 測定は以下の要領で行った。 ゥェ— ハ中に存在する g r own- i n欠陥の密度は 3. 0 5 X 1 05 個 Z c m3 であり、 酸素析出物は 1 X 1 03 個/ cm2 以下であった。
(g r o wn- i n欠陥密度の測定法) ① ゥェ一ハ表面の g r o wn— i n欠陥を顕在ィ匕させるため、 ゥエー ハをエッチング液に浸漬する。 エッチング液の配合比は、 HF : K2 C r 2 Οτ (0. 1 5 m ο 1 ) = 2 : 1であり、 浸漬時間は 30分間であ ο
② エッチング後に光学顕微鏡にてゥェ一ハ表面におけるエッチピット
(g r own- i n欠陥) 密度を測定。
(BMD密度の測定法)
① 乾燥酸素雰囲気中において 1 0 0 0 °Cx 1 6時間の評価熱処理を実 施。
② 評価熱処理で形成された熱酸化膜を HF : H2 0= 1 : 1のエッチ ング液で除去。
③ ゥェ一ハを劈開した後、 酸素析出物を顕在化させるための選択エツ チングを行う。 選択エッチング液の配合比は HF : HN03 : C r〇3
: C u (N03 ) 2 : H2 0 : CH3 COOH= 1 2 0 0 c c : 6 0 0 c c : 2 5 0 g : 4 0 g : 1 7 0 0 c c : 1 2 0 0 c c。 エツチング量 はゥエーハ劈開面で 2 / m。
④ 選択ェッチング後に光学顕微鏡にてゥエーハ劈開面におけるエッチ ピッ ト密度を測定。
また、 供試ゥェ一ハに対して 3 5 0〜5 0 0 °CX 1時間のサーマルド ナー形成熱処理を行った後、 抵抗率を測定した。 結果を表 1に示す。 残存酸素濃度が高く、 サ—マルドナ—の形成による抵抗率の低下が顕 著である 0. 2; サイズ以上の酸素析出物 (B.MD) が観察されなか つたため、 ゲッタリング能は非常に乏しく、 無いに等しい。 表 1
Figure imgf000023_0001
(比較例 2 )
通常育成シリコン単結晶ィンゴッ 卜から切り出し、 6 5 0 °Cx 3 0分 の酸素ドナ一消去熱処理を行った、 抵抗率が約 75 0 Ω cmで、 酸素濃 度 (AS TM F - 1 2 1, 1 9 7 9 ) が約 1.5 X 1 017 a t om s / cm3 の 8インチ p型供試ゥエーハを複数枚用意し、 比較例 1と同様に g r own— i n欠陥密度の測定 0. 2 mサイズ以上の酸素析出物 ( BMD) の密度の測定を行うと共に、 サ—マルドナー形成熱処理後の抵 抗率の測定を行った。 供試ゥェ—ハ中に存在する g r own— i n欠陥 の密度は 2. 7 7 X 1 0 5 個/ cm3 0. 2 ^ mサイズ以上の酸素析 出物 (BMD) の密度は 1 X 1 03 個 Zcm2 以下であった。
サ—マルドナ一形成処理後の抵抗率を測定した結果を表 2に示す。 残存酸素濃度が高く、 サ一マルドナ一の形成による抵抗率の変化が顕 著であり、 熱処理温度が 45 0 °C及び 5 0 0 °Cの場合は p型から n型へ の反転が見られた。 加えて、. 0. 2 mサイズ以上の酸素析出物 (BM D) の密度が 1 X 1 0 3 個/ cm2 以下であるため、 ゲッタリング能は 非常に乏しい。 表 2
Figure imgf000024_0001
(比較例 3 )
通常育成シリ コン単結晶ィンゴッ 卜から切り出し、 6 5 0 °C X 3 0分 の酸素ドナ一消去熱処理を行った、 抵抗率が約 17 5 Ω cmで、 酸素濃 度 (ASTM F - 1 2 1 , 19 7 9) が約 7 x l 017a t oms/c m3 である 8インチ p型供試ゥェ一八に対して、 酸素析出核形成熱処理 及び酸素析出物成長熱処理を行つた。
酸素析出核形成熱処理では、 温度 5 5 0 °Cに保持された反応炉内にゥ エーハを揷入した後、 反応炉内を 8 5 0 °Cまで昇温して 8 5 0 °Cの温度 で 1時間保持した後、 ゥェ一ハを炉外へ取り出した。 昇温速度等はラン ビング昇温開始から 8 5 0 °C 1時間の熱処理が終了するまでの延べ滞 在時間が 5 2 6時間になるように調整した。 炉内雰囲気は窒素♦酸素 混合ガス雰囲気 (窒素ガス 1 0 0、 酸素ガス 3の流量比) とした。 また 酸素析出物成長熱処理では、 ゥェ—ハを乾燥酸素雰囲気中で 1 0 0 0°C X 1 6時間加熱した。
熱処理後、 比較例 1と同様にゥェ一ハ中に存在する g r 0 wn— i n 欠陥の密度及び 0. 2 サイズ以上の酸素析出物 (BMD) の密度を 測定すると共に、 'サ一マルドナ一形成熱処理後の抵抗率を測定した。 ま た、 酸素析出核形成熱処理前の供試ゥエーハについて比較例 1と同様の g r own— i n欠陥密度の測定を行った。 結果を表 3に示す。
表 3
Figure imgf000025_0001
初期酸素濃度の低いゥェ一ハを使用したことから、 サ一マルドナーの 形成による抵抗率の変化は軽微であるが、 0. 2 サイズ以上の酸素 析出物 (BMD) が観察されなかったため、 ゲッタリング能は全く期待 できない。 g r 0 wn— i n欠陥の密度は 3. 15 X 1 05 個/ cm3 しめった。
初期酸素濃度の低いゥェ一ハを使用したことから、 サーマルドナーの 形成による抵抗率の変化は軽微であるが、 0. 2 μπιサイズ以上の酸素 析出物 (BMD) が観察されなかったため、 ゲッタリング能は全く期待 できない。 g r own— i η欠陥の密度は 3. 15 X 1 05 個/ cm.3 。、あった。
(比較例 4 )
通常育成シリコン単結晶インゴッ 卜から切り出し、 6 5 0 °CX 3 0分 の酸素ドナ一消去熱処理を行った、 抵抗率が約 75 0 Ω cmで、 酸素濃 度 (ASTM F - 1 2 1, 1 9 7 9 ) が約 1 5 x 1 017 a t o m s Z cm3 の 8インチ p型供試ゥエー八に対して、 前記と同様の酸素析出核 形成熱処理及び酸素析出物成長熱処理を行った。
熱処理後、 赤外吸光分析法によりゥエーハ中の残存酸素濃度を測定し
、 比較例 1と同様にゥェ一ハ中に存在する 0. 2 ^mサイズ以上の酸素 析出物 (BMD) の密度を測定すると共に、 3 5 0〜5 0 0 °CX 1時間 のサ一マルドナ一形成熱処理後の抵抗率を測定した。 また、 酸素析出核 形成熱処理前の供試ゥェ一八について比較例 1と同様の g r own— i n欠陥密度の測定を行った。 結果を表 4に示す。
表 4
Figure imgf000026_0001
残存酸素濃度が低く、 サーマルドナ一の形成による抵抗率の低下が軽 微であることに加え、 0. 2 mサイズ以上の酸素析出物 (BMD) の 密度が 3. 9〜 7. 1 1 0 6 個/ cm2 と多く、 十分なゲッタリング 能が確保される。 また、 g r 0 wn— i n欠陥の密度は 2. 7 7 X 1 0 5 個/ cm3 であった。 し力、し、 熱処理後の各供試ゥェ一八に対して、 RT A装置を用いて 1 1 5 0 °Cx 3 0秒で降温レ一ト 7 0 °C/ s e cの 熱処理を施した後、 A D E 9 6 0 0 (日本 ADE社製) によりゥェ一ハ の反り量を測定したところ、 平均約 5 0 m程度の反りが発生し、 機械 的強度が弱いことが確認された。
(比較例 5 )
通常育成シリコン単結晶インゴッ 卜から切り出し、 6 5 0 °CX 3 0分 の酸素ドナ—消去熱処理を行つた、 抵抗率が約 1 0 0〜 1 5 0 0 Ω c m で、 酸素濃度 (AS TM F - 1 2 1, 1 9 7 9 ) が約 1 4〜 1 7 x 1 017 a t oms/cm3 の 8ィンチ p型供試ゥェ一八に対して、 酸素外 方拡散熱処理を行つた後、 前記と同様に酸素析出核形成熱処理及び酸素 析出物成長熱処理を行った。
酸素外方拡散熱処理では、 窒素 ·酸素混合ガス雰囲気 (窒素ガス 1 0 0 :酸素ガス 3の流量比) に保持され、 且つ 9 0 0 °Cに保持された反応 炉内にゥエーハを揷入し、 速度 5°C/分で 1 1 50°Cまで炉内温度を高 め、 炉内を 1 0 0 %窒素ガス雰囲気に切り替え、 1 1 5 0°Cで 2. 5時 間保持した。 その後、 9 0 0 °Cまで 4°C/分の速度で降温して、 ゥエー ハを取り出した。
熱処理後、 赤外吸光分析法によりゥェ—ハ中の残存酸素濃度を'測定し た。 また比較例 1と同様にゥェ一ハ中に存在する 0. 2 πιサイズ以上 の酸素析出物 (BMD) の密度を測定すると共に、 酸素析出物 (BMD ) の密度測定における選択エッチング後、 ゥエーハ劈開面を光学顕微鏡 にて観察し、 ゥエーハ表面からゥェ一ハ深さ方向に 1点目のエッチピッ 卜が観察されるまでの距離を DZ層の層厚として測定した。 また、 酸素 析出核形成熱処理前の供試ゥエー八について比較例 1と同様の g r o w n一 i n欠陥密度の測定を行った。 結果を表 5に示す。
残存酸素濃度 (AS TM F - 1 2 1, 1 9 79 ) が約 7〜 1 2 X 1 017 a t om s/cm3 と低く、 サ一マルドナーの形成による抵抗率の 低下が軽微である。 0. 2 / mサイズ以上の酸素析出物 (BMD) の密 度が 1. 9〜7. 1 X 1 06 個 Z cm2 と多く、 ゲッタリング能に優れ る。 加えて、 ゥエーハの表層に 7 μηι厚以上の DZ層が形成されており 、 且つ酸素析出物 (BMD) がゥェ—ハ表面に突き抜けていなかつたこ とから、 評価エッチング量を加味すると、 02層の層厚は9 111程度は 確保されていたと推定される。 但し、 酸素外方拡散熱処理後の供試ゥェ —八へのスリツプ転位の発生状況について X線トポグラフ法により確認 したところ、 酸素外方拡散熱処理時に支持部材によつてゥェ一ハが支持 される位置に対応する箇所において、 長さ約 2 Omm程度のスリップ転 位の発生が観察され、 機械的強度が非常に弱いものであった。 g r ow n— i n欠陥の密度は約 3 x 1 05 個/ cm3 であった。
表 5
Figure imgf000028_0001
(比較例 6 )
シリコン単結晶インゴッ トから切り出し、 650。CX 3 0分の酸素ド ナ一消去熱処理を行った、 抵抗率が約 1 0 0〜1 3 0 0 Ω cmで、 酸素 濃度 (ASTM F- 1 2 1, 1 9 7 9 ) が約 13〜; L 7 x 1 017a t oms/cm3 の範囲にある 7水準 (A〜G) の 8インチ p型供試ゥェ —ハを用意した。 各ゥェ一八に対して、 酸素外方拡散熱処理を行った後 、 酸素析出核形成熱処理及び酸素析出物成長熱処理を行った。 酸素外方 拡散熱処理は、 比較例 5において、 炉内ガス雰囲気を窒素 ·酸素混合ガ ス雰囲気 (窒素ガス 1 0 0 :酸素ガス 3の流量比) から、 水素ガス雰囲 気又はアルゴンガス雰囲気に変更したものとした。
熱処理後、 赤外吸光分析法によりゥエーハ中の残存酸素濃度を測定し 、 4 5 0 °Cx 1時間のサ一マルドナ一形成熱処理後のゥェ一ハの抵抗率 を測定して、 酸素濃度による抵抗率の変化を調査した。 また、 比較例 1 と同様に熱処理後の各サンプルゥェ一ハ中に存在する 0. 2 mサイズ 以上の酸素析出物 (BMD) の密度を測定すると共に、 酸素析出物 (B MD) の密度測定における選択エッチング後、 ゥェ一ハ劈開面を光学顕 微鏡にて観察し、 ゥェ一ハ表面からゥェ一ハ深さ方向に 1点目のエッチ ピッ トが観察されるまでの距離を DZ層の層厚として測定した。 結果を 表 6に す。
水素ガス雰囲気中で酸素外方拡散熱処理を行った供試ゥエーハは A, C, Eであり、 アルゴンガス雰囲気中で酸素外方拡散熱処理を行った供 試ゥェ一ノ、は B, D, F, Gである。 0. 2〃mサイズ以上の酸素析出 物 (BMD) の密度は 1 X 1 08 個/ cm2 以上と多く、 ゲッタリン グ能に優れる。 ゥェ一ハの表層に 5 m厚以上の DZ層が形成されてお り、 且つ酸素析出物 (BMD) カゥエーハ表面に突き抜けていなかった ことから、 評価エッチング量を加味すると、 DZ層の層厚は 7 m程度 は確保されていたと推定される。 但し、 酸素外方拡散熱処理後の供試ゥ エー八へのスリップ転位の発生状況について X線トポグラフ法により確 忍したところ、 酸素外方拡散熱処理時に支持部材によってゥェ一八が支 持される位置に対応する箇所において、 長さ約 2 0 mm程度のスリップ 転位の発生が観察され、 機械的強度が非常に弱いものであつた。
表 6
Figure imgf000030_0001
また、 酸素濃度による抵抗率の変化を調査した結果によると、 n型— P型の反転がなく、 且つ抵抗率の変化が初期値の 1 0倍を超えない酸素 濃度は、 初期抵抗率が 1 0 0 Ω以上 3 0 0 Ω c m未満の場合は 12 x 1 017 a t oms/cm3 以下、 3 0 0 Ω以上 2 0 0 0 Ω c m未満の場合 は 7 x 1 017 a t oms /cm3 以下、 2 0 0 0 Ω c m以上の場合は 5 . 8 x 1 017 a t omsZcm3 以下である。 すなわち、 酸素析出核熱 処理によって、 初期の抵抗率に対する残存酸素濃度 (ASTM F - 1 2 1, 1 9 7 9 ) が上記の適正範囲に低下されている供試ゥエーハ ~ Fでは、 サ一マルドナーの形成による抵抗率の変化は軽微であるものの 、 供試ゥエーハ Gでは、 酸素析出核熱処理時間が短いことから、 初期抵 抗率に対する残存酸素濃度が高く、 サーマルドナー熱処理後に n型への 反転が見られた。 更に、 サンプル A, C, Fの各 3枚に対して酸素外方拡散熱処理前後 でレーザーパーティクルカウンタ一によりゥェ一ハ表面上の 0. 12 μ mサイズ以上の L P D (L i g h t Po i n t De f e c t) め個 数を調査した。 結果を表 7に示す。 熱処理後は最大個数が 3個/ゥェ一 ハ ( 0. 0 1個/ cm2 ) であった。
表 7
Figure imgf000031_0001
(実施例 1 )
通常育成シリコン単結晶ィンゴッ 卜から切り出し、 650 °CX 30分 の酸素ドナ—消去熱処理を行つた、 抵抗率が約 750 Ω c m、 酸素濃度 (ASTM F— 121, 1979 ) が約 11 X 1017 a t oms/c m 3 、 炭素濃度が約 l x l 016a t oms/cm3 の 8インチ p型供試 ゥエー八に対して、 比較例 3.と同様の酸素析出核形成熱処理及び酸素析 出物成長熱処理を行い、 残存酸素濃度 (A S TM F- 121, 197 9 ) を約 4. 5 X 1 017 a t oms/cm3 とした。
ゥェ一ハ中に存在する 0. 2 ^mサイズ以上の酸素析出物 (BMD) の密度を測定したところ、 初期酸素濃度 (AS TM F— 12 1, 19 79 ) が約 15 X 1017 a t 0 m s / c m3 で、 残存酸素濃度 (AST M F - 12 1 , 1979 ) を約 4. 5 x l 017a t oms/cm3 ま で下げた比較例 4とほぼ同じ 4. 3〜6. 2 X 106 個/ cm2 が確保 された。 酸素析出核形成熱処理前の供試ゥエーハについて比較例 1と同 様の g r o n- i n欠陥密度の測定を行ったところ、 g r o wn— i n欠陥の密度は 3. 2 x 1 0 s 個/ cm3 であった。 また、 熱処理後の 各供試ゥエー八に対して、 RTA装置を用いて 1 1 5 0°CX 3 0秒で降 温レ一ト 7 0°C/ s e cの熱処理を施した後、 ADE 9 6 0 0 (日本 A DE社製) によりゥェ一八の反り量を測定したところ、 反り量は平均約 5 m以下であり機械的強度に優れていた。
(実施例 2 )
通常育成シリコン単結晶ィンゴッ 卜から切り出し、 6 5 0°CX 3 0分 の酸素ドナ—消去熱処理を行った、 抵抗率が約 7 5 0 Ω cm. 酸素濃度 (ASTM F - 1 2 1, 1 9 7 9 ) が約 1 5 x 1 017 a t o m s / c m3 、 炭素濃度が約 1 x 1 016 a t oms/cm3 の 8インチ p型供試 ゥエーハに対して、 比較例 3と同様の酸素析出核形成熱処理及び酸素析 出物成長熱処理を行い、 残存酸素濃度 (A S TM F- 1 2 1, 1 9 7 9) を約 4. 5 X 1 017 a t om sZcm3 とした。
ゥヱ一ハ中に存在する 0. 2 mサイズ以上の酸素析出物 (BMD) の密度を測定したところ、 酸素濃度 (ASTM F- 1 2 1, 1 9 7 9 ) が約 1 5 X 1 017 a t 0 m s / c m 3 で、 残存酸素濃度 (ASTM F - 1 2 1 , 1 9 7 9 ) を約 4. 5 x 1 017 a t o m s / c m3 まで下 げた比較例 4より格段に多い 6. 4〜7. 7 X 1 0 δ 個 /cm2 が確認 された。 酸素析出核形成熱処理前の供試ゥェ一八について比較例 1と同 様の g r o wn— i n欠陥密度の測定を行ったところ、 g r o wn— i n欠陥の密度は 3. 4 X 1 05 個/ cm3 であった。 また、 熱処理後の 各供試ゥエー八に対して、 尺丁八装置を用ぃて1 1 5 0。C X 3 0秒で降 温レ一ト 7 0 °C/ s e cの熱処理を施した後、 ADE 9 6 0 0 (日本 A DE社製) によりゥェ一ハの反り量を測定したところ、 反り量は平均約 5 m以下であり機械的強度に優れていた。 (実施例 3 )
シリコン単結晶ィンゴッ 卜から切り出し、 6 50 °C X 3 0分の酸素ド ナ一消去熱処理を行った、 抵抗率が 1 1 0〜2 50 0 Ω cm、 酸素濃度 (ASTM F - 1 2 1 , 1 9 7 9) 力 4〜16. 5 x 1017 a t o m s Z c m 3 、 炭素濃度が 0. 5〜2 0 x l 06 a t oms/cm3 の 8インチ p型供試ゥエーハに対して、 比較例 5と同様の酸素外方拡散熱 処理、 酸素析出核形成熱処理及び酸素析出物成長熱処理を行い、 残存酸 素濃度 (ASTM F - 1 2 1, 1 9 7 9) を 4. 5〜6 x l 017a t o m s / c m 3 .で下げた o
熱処理後の供試ゥェ—八に室温でビッカース圧痕を導入した後、 9 0 0°CX 3 0分の熱処理を行い、 熱処理後に圧痕跡から発生した転位の移 動距離を前記選択ェッチング後に光学顕微鏡で測定した。 測定した転位 の移動距離とゥェ一ハ中の炭素濃度との関係を図 6に示す。 ゥェ一ハ中 に大型の酸素析出物 (BMD) が高密度に存在するにもかかわらず、 炭 素濃度の増大に伴ってゥエー八の機械的強度が効果的に向上する。
(実施例 4 )
シリコン単結晶ィンゴッ 卜から切り出し、 6 50 °C X 3 0分の酸素ド ナー消去熱処理を行った、 抵抗率が約 5 0 0〜25 0 0 Ω cmで、 酸素 濃度 (ASTM F - 1 2 1, 1 9 79 ) が約 15 X 1 017a t oms Zcm3 、 炭素濃度が約 1~2 x 1 016a t oms/cm3 の範囲にあ る 3水準の 8インチ p型ゥェ一ハ (Z 1〜Z 3) に対して、 酸素外方拡 散熱処理を行つた後、 酸素析出核形成熱処理及び酸素析出物成長熱処理 を行った。 酸素外方拡散熱処理は、 実施例 3において、炉内ガス雰囲気 を窒素 ·酸素混合ガス雰囲気 (窒素ガス 1 0 0 :酸素ガス 3の流量比) から、 水素ガス雰囲気又はアルゴンガス雰囲気に変更した。
熱処理後、 赤外吸光分析法によりゥェ—ハ中の残存酸素濃度を測定し 、 450 °C x 1時間のサ一マルドナ一形成熱処理を行った後、 抵抗率を 測定し、 酸素濃度による抵抗率の変化を調査した。 また、 ゥェ一ハ中に 存在する 0. 2 zmサイズ'以上の酸素析出物 (BMD) の密度を測定す ると共に、 酸素析出物 (BMD) の密度測定における選択エッチング後 、 ゥエーハ劈開面を光学顕微鏡にて観察し、 ゥエーハ表面からゥエーハ 深さ方向に 1点目のエッチピッ 卜が観察されるまでの距離を D Z層の層 厚として測定した。 結果を表 8に示す。
表 8
Figure imgf000034_0001
Z 1 , Z 2 :水素ァニ一ル, Z 3 : A rァニール 水素ガス雰囲気中で酸素外方拡散熱処理を行った供試ゥエーハは Z 1 と Z 2であり、 アルゴンガス雰囲気中で酸素外方拡散熱処理を行った供 試ゥェ一ハは Z 3である。 何れのゥエーハも残存酸素濃度が十分に低減 されていることから、 サーマルドナ一の形成による抵抗率の低下は軽微 である。 0. 2 mサイズ以上の酸素析出物 (BMD) の密度が 5 X 1 06 個 Zcm2 以上と多く、 ゲッタリング能に優れる。 ゥェ一ハの表層 に 8 m厚以上の DZ層が形成されており、 且つ酸素析出物 (BMD) がゥェ一ハ表面に突き抜けていなかったことから、 評価ェッチング量を 加味すると、 少なくとも DZ層の層厚は 10 μηι程度は確保されていた と推定される。 また、 酸素外方拡散熱処理後の供試ゥエーハにおけるスリップ転位の 発生状況について X線トポグラフ法により確認したところ、 酸素外方拡 散熱処理時に支持部材によってゥエーハが支持される位置に対応する箇 所において、 長さ 2〜3 mm程度のスリップ転位の発生が僅かに観察さ れるだけで、 その後に 1 1 5 0°Cの温度で 1時間の追加熱処理を施して もスリップ転位の長さに変化は見られず、 非常に機械的強度に優れてい 更に、.全サンプル Z 1〜Z 3に対して酸素外方拡散熱処理前後でレ一 ザ—パーティクルカウンタ一によりゥエーハ表面上の 1 2 μπサイ ズ以上の L PD (L i g h t P o i n t D e f e c t) の個数を調 査した。 結果を表 9に示す。 熱処理後は最大個数が 3個/ゥェ—ハ (0 . 0 1個/ cm2 ) であった。
表 9
Figure imgf000035_0001
(実施例 5 )
シリコン単結晶インゴッ 卜から切り出し、 6 50 °CX 3 0分の酸素ド ナー消去熱処理を行った、 抵抗率が約 1 0 0〜1 0 0 0 Ω cmで、 酸素 濃度 ( A S TM F- 1 2 1 , 1 9 79 ) が約 13〜: L 7 X 1 017 a t oms/cm3 、 炭素濃度が約 1〜2 X 1 016 a t o m s / c m3 の範 囲にある 6水準 (H〜M) の 8インチ p型ゥェ一八に対して、 実施例 4 と同様の酸素外方拡散熱処理を行った後、 酸素析出核形成熱処理及び酸 素析出物成長熱処理を行った。 但し、 酸素外方拡散熱処理は、 処理温度
•時間を、 実施例 4で実施した 1 1 5 0 °C X 2 . 5時間のときと酸素拡 散距離がほぼ等しくなるように、 1 1 0 0 °Cでは 5時間保持、 1 2 0 0 °Cでは 1時間保持とした。
熱処理後、 供試ゥェ一ハを 2分割し、 一方のサンプルについて赤外吸 光分析法によりゥエーハ中の残存酸素濃度を測定した。 また、 4 5 0 °C X 1時間のサ一マルドナ一形成熱処理を行った後、 抵抗率を測定し、 酸 素濃度による抵抗率の変化を調査した。 他方のサンプルではゥエーハを 劈開して選択エッチング後、 劈開断面を光学顕微鏡にて観察し、 ゥェ一 ハ表面からゥェ一ハ深さ方向に 1点目のエッチピッ 卜が観察されるまで の距離を D Z層の層厚として測定した。 結果を表 1 0に示す。
表 1 0
Figure imgf000036_0001
水素ガス雰囲気中で酸素外方拡散熱処理を行った供試ゥェ—ハは H, I , L, Mであり、 アルゴンガス雰囲気中で酸素外方拡散熱処理を行つ た供試ゥェ一ハは J , Kである。 1 1 0 0 °C X 5時間から 1 2 0 0 °C X 1時間まで酸素拡散条件を変更しても、 D Z層の層厚は実施例 4と同等 に確保され、 残存酸素濃度もほぼ同じ程度に制御され、 抵抗率の変化も 同じ程度に抑えることが可能である。
また、 実施例 4と同様に供試ゥエーハにおけるスリップ転位の発生状 況について X線トポグラフ法により確認したところ、 1時間の酸素外方 拡散熱処理した供試ゥェ—ハ I, K, Μではスリ ップ転位の発生は観察 されず、 5時間の酸素外方拡散熱処理した供試ゥエーハ Η, J, Lでは 実施例 4と同じ程度のスリップ転位が観察されるだけであった。
サンプル H, J, K, Μの各 4枚に対して酸素外方拡散熱処理前後で レーザ—パーティクルカウンタ一によりゥェ一ハ表面上の 0. 1 2〃m サイズ以上の L P D (L i g h t P o i n t D e f e c t ) の個数 を調査した。 結果を表 1 1に示す。 熱処理後は最大個数が 4個/ゥエー ノヽ (0. 0 1個/ cm2 ) であった。
表 1 1
Figure imgf000037_0001
(実施例 6 )
g r 0 n- i n欠陥の密度が 1 x 1 03 個 Zcm3 以下である酸素 析出促進領域のみからなる COPフリーのシリコン単結晶インゴッ卜と 、 同じく g r own— i n欠陥の密度が 1 x 1 03 個ノ c m 3 以下であ る酸素析出促進領域及び酸素析出抑制領域の 2種類からなる C 0 Pフリ —のシリコン単結晶ィンゴッ トを用意した。 これらのインゴットから切 り出し、 6 5 0 °C X 3 0分の酸素ドナー消去熱処理を行った、 抵抗率が 約 1 0 0〜 9 0 0 Ω c mで、 酸素濃度 (A S TM F - 1 2 1 , 1 9 7 9) が約 1 4〜: L 7 X 1 017 a t omsZcm3 の範囲にある 7水準 ( N〜T) の 6インチ p型ゥェ一八に対して、 1 1 5 0°Cで 2. 5時間の 酸素外方拡散熱処理を行つた後、 5 5 0 ~ 8 5 0 °Cの温度範囲で 5〜 2 6時間の酸素析出核形成熱処理を行い.、 更に 1 G 0 Q で 1 6時間の酸 素析出物成長熱処理を行った。 熱処理条件について更に詳細に述べると 、 以下のとおりである。 .
酸素外方拡散処理では、 温度 9 0 0°Cに保持された反応炉内にゥエー ハを揷入した後、 昇温速度 5°C/分で 1 1 5 0°Cまで炉内温度を上昇し た。 この間のガス雰囲気は、 窒素♦酸素混合ガス雰囲気 (窒素ガス 1 0. 0 :酸素ガス 3の流量比) とした。 そして 1 1 5 0°Cまで昇温後、 ガス 雰囲気を 1 0 0 %窒素ガス雰囲気に切替え、 2. 5時間保持した後、 9 0 0 °Cまで 4°C/分の冷却速度で降温し、 9 0 0 °Cでゥェ一ハを炉内か ら取り出した。 酸素外方拡散処理に続く酸素析出核形成熱処理も 1 0 0 %窒素ガス雰囲気で行つた。
酸素析出促進領域は、 酸素ガス雰囲気で高温長時間の熱処理を行うと 、 O S Fが発生する性質を有する領域である。 また、 1 0 0%窒素ガス 雰囲気で熱処理を行うと、 ゥェ—ハ表面に窒化物が形成され、 表面粗れ の問題が懸念される領域でもある。 これらの問題が生じないようにガス 雰囲気の検討を行い、 上記のように決定した。
熱処理後、 供試ゥェ一ハを 2分割し、 一方のサンプルについて赤外吸 光分析法によりゥェ—ハ中の残存酸素濃度を測定した後、 ゥェ一ハを劈 開して選択エッチングにより劈開断面を 2 mエッチングし、 その後、 光学顕微鏡を用いた前述の方法により DZ層の層厚を測定した。 また 0 . 2 mサイズ以上の酸素析出物の密度を測定した。 他方のサンプルに ついては、 4 5 0 °C X 1時間のサ一マルドナ一形成熱処理を行った後、 抵抗率を測定し、 酸素濃度による抵抗率の変化を調査した。 結果を表 1
2 ί ] ^す o
表 1 2
Figure imgf000039_0001
N S :酸素析出促進領域のみで形成
T : 酸素析出促進領域と酸素析出抑制領域の 2種類の領域から形成
サンプル N〜Sは酸素析出促進領域のみからなる C O Pフリーのゥェ —ハである。 サンプル Tは酸素析出促進領域及び酸素析出抑制領域の 2 種類からなる C 0 Pフリ一のゥエーハであり、 そのゥエーハ中心部は酸 素析出促進領域、 外周から 2 0 mmの周辺部が酸素析出抑制領域である 。 サンプル S及び Tについては、 残存酸素濃度、 酸素析出物密度、 D Z 層厚及び抵抗率の各測定を、 ゥエーハ中心部と外周から 2 O mmの周辺 部で行った。 他のサンプルではゥェ—ハの中心部のみで測定を行った。 いずれのサンプル、 測定箇所でも、 ゥエー八の表層に 5 m厚以上の DZ層が形成されており、 且つ酸素析出物 (BMD) がゥェ—ハ表面に 突き抜けていなかったことから、 評価エッチング量を加味すると、 少な くとも DZ層の層厚は 7 m程度は確保されていたと推定される。 残存 酸素濃度も 7〜 2 X 1 017a t oms/cm3 程度まで低減させるこ とが可能である。
また、 タイプが反転せず、 抵抗率の変化が初期値の 1 0倍を超さない 基板酸素濃度 (酸素析出処理後の残存酸素濃度も含む) は、 初期抵抗率 が 3 0 0 Ω c m以下では約 1 2 X 1 017 a t oms/cm3 以下、 初期 抵抗率が 2 0 0 0 Ω c m未満では約 8 x l 017a t oms/cm3 以下 、 初期抵抗率が 2 0 0 0 Ω c m以上では 5. 8 x 1 017 a t o m s / c m3 以下である。
ゥェ一ハ全面が酸素析出促進領域からなるサンプル N〜 Sについては 、 ゥェ一八面内で均一に酸素析出物が形成されており、 抵抗率のばらつ きも少ない力 酸素析出促進領域と酸素析出抑制領域とが混在するサン プル Tについては、 ゥェ一八面内で酸素析出物の密度に差が生じ、 低密 度である酸素析出抑制領域 (ゥェ一ハ周辺部) でのサーマルドナ一形成 による抵抗率の変化が大きく、 ゥェ一ハ面内で均一な抵抗率が得られな カヽつた。
前述した実施例 5においてアルゴン雰囲気で酸素外方拡散処理のみを 行ったサンプル Kと、 本実施例にお 、て酸素外方拡散処理のみを行つた サンプル Nについて、 ゥェ一ハ表層における g r 0 wn_ i n欠陥密度 を三井金属鉱業製 MO 6 0 1欠陥評価装置を用いて測定した。 この欠陥 評価装置はゥェ一ハ表面から数 m内部に存在する欠陥を検出すること ができる。 結果は以下のとおりである。
了ルゴン雰囲気で酸素外方拡散処理のみを行つたサンプル Kおいては 、 ゥェ一ハ表面の欠陥密度は 0. 0 0 6 cm— 2であるのに対し、 前言改 陥評価装置で測定した数 m内部における欠陥密度は 3. 4 cm— 2であ る。 これに対し、 本実施例において酸素外方拡散処理のみを行ったサン プル N (COPフリー) においては、 前記欠陥評価装置で測定した数; u m内部における欠陥密度も 0. 0 2 cm_2と低位であった。
これから分かるように、 アルゴン雰囲気での熱処理では、 ゥェ一ハ表 層のごく表面に近い部分に存在する g r own - i n欠陥しか消滅 ·縮 小させることができない。 また、 水素ガス 'アルゴンガス雰囲気で高温 熱処理を行うと、 熱処理前のゥエーハ洗浄によって表面に形成されてい る自然酸化膜が除去され、 活性なシリコン表面が露出するため、 熱処理 時の環境から混入する鉄などの重金属や、 ボロン ' リンなどのゥェ一ハ 抵抗率を変化させるドーパント不純物がゥエーハ内部に混入することが 懸念される。 したがって、 より高品質化を実現するには、 結晶育成時か ら g r own.— i n欠陥を低減させた C 0 Pフリー結晶の使用が好まし い。
(実施例 7 )
g r own— i n欠陥の密度が 1 x 1 03 個/ cm3 以下である酸素 析出促進領域のみからなる COPフリーのシリコン単結晶インゴッ 卜と 、 同じく g r own— i n欠陥の密度が 1 x 1 03 個/ cm3 以下であ る酸素析出促進領域及び酸素析出抑制領域の 2種類からなる C 0 Pフリ —のシリコン単結晶ィンゴッ 卜とを用意した。 これらのインゴッ 卜から 切り出し、 6 5 0 °CX 3 0分の酸素ドナー消去熱処理を行った、 抵抗率 が約 3 0 Q〜 9 0 0 Ω c mで、 酸素濃度 (A S TM F - 1 2 1, 1 9 79) が約 1 3〜1 5 X l 017a t oms/cm3 の範囲にある 5水準 (U〜Y) の 6インチ p型ゥェ一ハに対して下記の高速昇降温熱処理 ( RTA処理) を行った。 6 0 0 °Cに保持された炉内にゥェ一ハを投入した後、 5 0 °CZ秒の昇 温速度で所定温度まで加熱し、 所定時間保持の後、 3 3 °C/秒の降温速 度で 6 0 0 °Cまで冷却し、 炉内からゥェ一ハを取り出した。 各ゥェ一ハ に対する加熱温度、 保持時間及び雰囲気は以下のとおりである。
ゥェ一ハ U : 1 2 8 0。Cで 1秒処理 (窒素ガス雰囲気)
ゥェ—ハ V : 1 2 2 0 °Cで 3 0秒処理 (窒素ガス雰囲気)
ゥェ一ハ W : 1 2 2 0 °Cで 3 0秒処理 (窒素ガス雰囲気)
ゥェ一ハ X : 1 2 8 0 °Cで 1秒処理 (窒素ガス雰囲気)
ゥエーハ Y : 1 1 5 0 °Cで 6 0秒処理 (アンモニア +アルゴン混合雰 囲気)
熱処理後、 供試ゥェ一ハを 2分割し、 一方のサンプルについて赤外吸 光分析法によりゥェ一ハ中の残存酸素濃度を測定した後、 ゥエーハを劈 開して選択エッチングにより劈開面を 2 mエッチングし、 その後、 光 学顕微鏡を用いた前述の方法により D Z層の層厚を測定した。 また 2 mサイズ以上の酸素析出物の密度を測定した。 他方のサンプルにつ いては、 4 5 0 °C X 1時間のサ一マルドナー形成熱処理を行った後、 抵 抗率を測定し、 酸素濃度による抵抗率の変化を調査した。 結果を表 1 3
Jこ/
サンプル U〜Xは酸素析出促進領域及び酸素析出抑制領域の 2種類か らなる C O Pフリーのゥェ一ハであり、 そのゥェ一ハ中心部は酸素析出 促進領域、 外周から 2 0 mmの周辺部が酸素析出抑制領域である。 また サンプル Yは酸素析出促進領域のみからなる C 0 Pフリーのゥェ一八で ある。 残存酸素濃度、 酸素析出物密度、 D Z層厚及び抵抗率の各測定は 、 全サンプルでゥェ一ハの中心部と外周から 2 O mmの周辺部で行った 。 何れのサンプルにおいても、 ゥェ一八面内で均一な酸素析出物が形成 されており、 しかも抵抗率がゥエー八面内で均一である。 即ち、 R T A 処理によると、 酸素析出促進領域及び酸素析出抑制領域が混在する C 0 Pフリ一ゥェ一ハにおいても抵抗率がゥエー八面内で均一化されるので める。
表 1 3
Figure imgf000043_0001
上段: ゥエーハ中心部 (酸素析出促進領域) 下段:ゥェ—ハ外周から 2 0 mmの位置
(実施例 8 )
g r own- i n欠陥の密度が 1 x 1 03 個/ cm3 以下である酸素 析出促進領域及び酸素析出抑制領域の 2種類からなる C 0 Pフリーのシ リコン単結晶インゴッ トを用意した。 このインゴットから切り出し、 6 5 0°C 3 0分の酸素ドナ一消去熱処理を行った、 抵抗率が約 30 0〜 9 0 0 Ω cmで、 酸素濃度 (AS TM F— 1 2 1, 1 9 79 ) 力 14 x l 017 a t oms/cm3 、 炭素濃度が 0. 8 x l 016a t oms/ cm3 である 6インチの p型ゥエーハに対して 12 2 0 °Cで 30秒 (窒 素ガス雰囲気) の高速昇降温熱処理 (RTA処理) を行った。
熱処理後、 実施例 6及び 7と同様に残存酸素濃度、 酸素析出物の密度 、 DZ層の層厚及び抵抗率を測定した。 各測定はゥエーハの中心部と外 周から 2 0 mmの周辺部で行った。 ゥエー八の中心部は酸素析出促進領 域、 外周から 2 Ommの周辺部は酸素析出抑制領域である。 測定結果を 表 1 4に示す。'ゥエー八面内で均一な酸素析出物が形成されており、 し かも抵抗率がゥェ一八面内で均一である。
表 1 4
Figure imgf000044_0001
上段: ゥエーハ中心部 (酸素析出促進領域) 下段: ゥェ—ハ外周から 2 0 mmの位置 また、 酸素外方拡散熱処理後の供試ゥェ—ハにおけるスリップ転位の 発生状況について X線トポグラフ法により確認したところ、 酸素外方拡 散熱処理時に支持部材によってゥエー八が支持される位置に対応する箇 所において、 0. 5 mm程度の支持跡が僅かに観察される程度であった 。 このことから、 g r own— i n欠陥の密度が 1 x 1 03 個/ cm3 以下である C 0 Pフリ一のゥェ一八においても炭素ドープが機械的強度 の改善に有効であることが分かる。
産業上の利用可能性
以上に説明したとおり、 本発明の高抵抗シリコンゥェ一ハは、 ゥェ一 ハ内部に 0. 2 mサイズ以上の酸素析出物 (BMD) 力 1 x 1 04 個 /cm2 以上の密度で形成されていることにより、 ゲッタリング能に優 れる。 初期基板として汎用の高酸素シリコンゥェ一ハを使用できるので 、 製造コストを低減できる。 ゥェ一ハ中の酸素濃度が 1 2 X 1017 a t oms/cm3 (ASTM F- 1 2 1, 1 9 79 ) 以下に制限されて いることにより、 デバイスメーカ一の側で実施される回路形成用熱処理 での酸素サ一マルドナーの発生を抑制できる。
これに加え、 ゥェ一ハ中の炭素濃度を 0. 5 x l 016 a t oms/c m3 以上に管理することにより、 酸素析出物 (BMD) の多量形成に伴 ぅゥエーハ強度の低下を抑制できる。 酸素析出物 (BMD) の形成を促 進できることにより、 初期基板中の酸素濃度の下限を 1 2 X 1 017a t oms/cm3 (ASTM F— 1 2 1, 1 9 79 ) まで引下げできる また、 セコエッチングによって検出される g r 0 wn— i n欠陥の密 度が 1 x 1 03 cm— 3以下である COPフリーの結晶を使用することに より、 C 0 Pフリー化のためのアルゴンァニールや水素ァニールに伴う 抵抗変化を回避できる。
本発明の高抵抗シリコンゥエー八の製造方法は、 酸素濃度が 14 1 017 a t oms/cm3 (ASTM F— 1 2 1, 1 9 79 ) 以上の高 酸素高抵抗シリコンゥエーハを初期基板として使用することにより、 製 造コストを低減できる。 初期酸素濃度が高いことに加え、 熱処理後の残 存酸素濃度が 1 2 X 1 017a t omsZcm3 (ASTM F - 1 2 1 , 1 9 7 9 ) 以下と低く、 且つ酸素析出核形成熱処理及び酸素析出物成 長熱処理の 2段熱処理が実施されることにより、 大型の酸素析出物 (B MD) を高密度に形成できる。 具体的には、 0. 2 πιサイズ以上の酸 素析出物 (BMD) を 1 X 104 個/ cm2 以上の高密度で形成できる 。 これにより、 ゲッタリング能に優れた高抵抗シリコンゥエーハを製造 できる。 そして、 残存酸素濃度が 1 2 X 1 017 a t oms/cm3 (A S TM F— 1 2 1, 1 9 7 9 ) 以下に制限されることにより、 デバイ スメ一カーの側で実施される回路形成用熱処理での酸素サ一マルドナ一 の発生を抑制できる。
これに加え、 ゥェ一ハ中の炭素濃度を 0. 5 x l 0 lsa t oms/c m3 以上に管理することにより、 酸素析出物 (BMD) の多量形成に伴 うゥェ一ハ強度の低下を抑制できる。 また、 酸素析出物 (BMD) の形 成を促進できることにより、 初期基板中の酸素濃度の下限を 1 2 X 1 0 17 a t oms/cm3 (AS TM F— 1 2 1, 1 9 7 9 ) まで引下げ できる。
また、 セコエッチングによって検出される g r 0 wn— i n欠陥の密 度が 1 x 1 03 cm— 3以下である COPフリー結晶を使用することによ り、 C 0 Pフリ一化のためのアルゴンァニールや水素ァニールに伴う抵 抗変化を回避できる。

Claims

請 求 の 範 囲
1. 1 0 0 Ω cm以上の抵抗率を有する高抵抗シリコンゥエーハであつ て、 ゥェ一ハ内部に 0. 2 mサイズ以上の酸素析出物 (BMD) が 1 X 1 04 個/ c m2 以上の密度で形成され、 ゥエーハ中の酸素濃度が 1
2 X 1 0 17 a t oms/cm3 (ASTM F - 1 2 1 , 1 9 7 9 ) 以 下であり、 炭素濃度が 0. 5 X 1 016a t oms/cm3 以上である高 抵抗シリコンゥェ一ハ。
2. 前記ゥェ一ハ表面上で観察される 0. 1 2 ^mサイズ以上の LPD (L i g h t P o i n t D e f e c t ) 密度が 0. 2個/ cm2 以 下に制御された請求の範囲第 1項記載の高抵抗シリコンゥェ一ハ。
3. 1 0 0 Ω cm以上の抵抗率を有する高抵抗シリコンゥエーハであつ て、 セコエツチングによつて検出される g r own— i n欠陥の密度が 1 X 1 03 cm— 3以下であり、 ゥェ一ハ内部に 0. 2 mサイズ以上の 酸素析出物 (BMD) 力 1 X.I 04 個/ cm2 以上の密度で形成され、 ゥエーハ中の酸素濃度が 1 2 X 1 0 17 a t oms/cm3 (ASTM F— 1 2 1, 1 9 7 9 ) 以下である高抵抗シリコンゥェ一ハ。
4. 前記ゥエーハ中の炭素濃度が 0. 5 X 1 016 a t oms/cm3 以 上である請求の範囲第 3項記載の高抵抗シリコンゥェ—ハ。
5. 前記ゥエー八表面から少なくとも 5 以上の深さにわたって DZ (D e n u d e d Z o n e) 層が形成された請求の範囲第 1項又は第 3項記載の高抵抗シリコンゥェ—ハ。
6. 前記抵抗率が 1 0 0 Ω c m以上 3 0 0 Ω c m未満、 3 0 0 Ω c m以 上 2 0 0 0 Ω cm未満、 2 0 0 0 Ω c m以上の各範囲にあるゥェ一ハ中 の酸素濃度 (ASTM F— 1 2 1, 1 9 79 ) の値が、 それぞれ 1 2 X I 017 a t oms/cm3 以下、 7 x l 017a t oms/cm3 以下 、 5. 8 x 1 017 a t om s/cm3 以下の範囲に制御された請求の範 囲第 1項又は第 3項記載の高抵抗シリコンゥエーハ。
7. 抵抗率が 1 0 0 Ω c m以上で、 酸素濃度が 1 2 X l 017a t oms /cm3 (ASTM F- 1 2 1, 1 9 7 9 ) 以上、 炭素濃度が 0. 5 XI 016 a t oms/cm3 以上である初期シリコンゥエーハを用い、 これに酸素析出核形成熱処理及び酸素析出物成長熱処理を施すことによ り、 前記ゥェ一ハ中の残存酸素濃度を 1 2 X 1 017 a t oms/cm3 (ASTM F- 1 2 1, 1 9 79 ) 以下に制御することを特徽とする 高抵抗シリコンゥェ一ハの製造方法。
8. 抵抗率が 1 0 0 Ω c m以上で、 酸素濃度が 14 x l 017a t oms /cm3 (ASTM F— 1 2 1, 1 9 7 9 ) 以上であり、 且つセコ工. ッチングによつて検出される g r 0 w n— i n欠陥の密度が 1 x 1 03 cm 3以下である初期シリコンゥエーハを用い、 これに酸素析出核形成 熱処理及び酸素析出物成長熱処理を施すことにより、 前記ゥェ一ハ中の 残存酸素濃度を 1 2 X 1 017a t oms/cm3 (ASTM F - 1
I, 1 9 7 9 ) 以下に制御することを特徴とする高抵抗シリコンゥェ一 ハの製造方法。
9. 前記酸素析出核形成熱処理が 5 Q 0〜9 0 0 °Cの温度で 5時間以上 の低温熱処理である請求の範囲第 7項又は第 8項記載の高抵抗シリコン ゥェ—八の製造方法。
1 0. 前記低温熱処理の条件が 70 0〜9 0 0 °CX 5時間以上である請 求の範囲第 9項記載の高抵抗シリコンゥエー八の製造方法。
I I . 前記酸素析出物成長熱処理が 9 5 0〜 1 05 0 °Cの温度で 1 0時 間以上の高温熱処理である請求の範囲第 7項又は第 8項記載の高抵抗シ リコンゥェ一八の製造方法。
1 . 前記酸素析出核形成熱処理の前に、 前記ゥエー八に 1 1 0 0〜1 2 5 0 °Cの温度範囲で 1〜5時間の酸素外方拡散熱処理を施すことを特 徵とする請求の範囲第 7項又は第 8項記載の高抵抗シリコンゥエーハの 製造方法。
1 3. 前記酸素外方拡散熱処理を窒素含有ガス雰囲気で行うことを特徵 とする請求の範囲第 1 2項記載の高抵抗シリコンゥェ一八の製造方法。
1 4. 前記酸素外方拡散熱処理を水素ガス又はアルゴンガス若しくはこ れらの混合ガス雰囲気で行うことを特徵とする請求の範囲第 1 2項記載 の高抵抗シリコンゥエーハの製造方法。
1 5. 前記酸素析出核形成熱処理の前に、 前記ゥェ—八に急速昇降温熱 処理を行うことを特徵とする請求の範囲第 7項又は第 8項記載の高抵抗 シリコンゥェ一八の製造方法。
1 6. 前記急速昇降温熱処理の条件が窒素含有雰囲気中で 1 1 5 0〜1
3 0 0 °C X 1 ~ 6 0秒である請求の範囲第 1 5項記載の高抵抗シリコン ゥェ—八の製造方法。
1 7. 前記初期シリコンゥエーハ中の炭素濃度が 0. 5Z1 016a t o ms/cm3 以上である請求の範囲第 8項記載の高抵抗シリコンゥェ一 八の製造方法。
PCT/JP2003/004866 2002-04-26 2003-04-16 Tranche de silicium a haute resistance et son procede de production WO2003092065A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/512,405 US7397110B2 (en) 2002-04-26 2003-04-16 High resistance silicon wafer and its manufacturing method
EP03720915A EP1501122B1 (en) 2002-04-26 2003-04-16 High resistance silicon wafer and method for production thereof
KR1020047017217A KR100829767B1 (ko) 2002-04-26 2003-04-16 고저항 실리콘 웨이퍼 및 이의 제조방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002127509 2002-04-26
JP2002-127509 2002-04-26
JP2002360731A JP2004006615A (ja) 2002-04-26 2002-12-12 高抵抗シリコンウエーハ及びその製造方法
JP2002-360731 2002-12-12

Publications (1)

Publication Number Publication Date
WO2003092065A1 true WO2003092065A1 (fr) 2003-11-06

Family

ID=29272382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004866 WO2003092065A1 (fr) 2002-04-26 2003-04-16 Tranche de silicium a haute resistance et son procede de production

Country Status (6)

Country Link
US (1) US7397110B2 (ja)
EP (1) EP1501122B1 (ja)
JP (1) JP2004006615A (ja)
KR (1) KR100829767B1 (ja)
TW (1) TWI311375B (ja)
WO (1) WO2003092065A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005038899A1 (ja) * 2003-10-21 2005-04-28 Sumco Corporation 高抵抗シリコンウェーハの製造方法、並びにエピタキシャルウェーハおよびsoiウェーハの製造方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1542269B1 (en) * 2002-07-17 2016-10-05 Sumco Corporation A method of manufacturing a high-resistance silicon wafer
EP1667209B1 (en) * 2003-09-08 2012-05-09 SUMCO Corporation Method for manufacturing soi wafer
JP4731136B2 (ja) 2004-07-05 2011-07-20 株式会社ニックス 液体送受用ジョイント装置
JP4617751B2 (ja) * 2004-07-22 2011-01-26 株式会社Sumco シリコンウェーハおよびその製造方法
JP5160023B2 (ja) * 2005-03-25 2013-03-13 株式会社Sumco シリコンウェーハ及びシリコンウェーハの製造方法
CN101228301A (zh) 2005-05-19 2008-07-23 Memc电子材料有限公司 高电阻率硅结构和用于制备该结构的方法
JP2007045662A (ja) * 2005-08-10 2007-02-22 Sumco Corp 半導体シリコンウェーハおよびその製造方法
JP5076326B2 (ja) * 2006-01-31 2012-11-21 株式会社Sumco シリコンウェーハおよびその製造方法
JP5103745B2 (ja) * 2006-01-31 2012-12-19 株式会社Sumco 高周波ダイオードおよびその製造方法
TW200821417A (en) * 2006-09-07 2008-05-16 Sumco Corp Semiconductor substrate for solid state imaging device, solid state imaging device, and method for manufacturing them
TW200818327A (en) * 2006-09-29 2008-04-16 Sumco Techxiv Corp Silicon wafer heat treatment method
US20080292523A1 (en) 2007-05-23 2008-11-27 Sumco Corporation Silicon single crystal wafer and the production method
JP2009164155A (ja) * 2007-12-28 2009-07-23 Siltronic Ag シリコンウエハの製造方法
JP5374883B2 (ja) * 2008-02-08 2013-12-25 富士電機株式会社 半導体装置およびその製造方法
JP2010114211A (ja) * 2008-11-05 2010-05-20 Shin Etsu Handotai Co Ltd エピタキシャルシリコンウェーハの製造方法
EP2449595B1 (en) 2009-06-30 2017-07-26 Semiconductor Energy Laboratory Co, Ltd. Method for manufacturing semiconductor device
FR2953640B1 (fr) 2009-12-04 2012-02-10 S O I Tec Silicon On Insulator Tech Procede de fabrication d'une structure de type semi-conducteur sur isolant, a pertes electriques diminuees et structure correspondante
US8753961B2 (en) * 2011-01-10 2014-06-17 Texas Instruments Incorporated Thermal budget optimization for yield enhancement on bulk silicon wafers
JP5621791B2 (ja) * 2012-01-11 2014-11-12 信越半導体株式会社 シリコン単結晶ウェーハの製造方法及び電子デバイス
TWI614808B (zh) * 2012-11-19 2018-02-11 太陽愛迪生公司 藉由活化非活性氧沉澱核製造高沉澱密度晶圓之方法
US10141413B2 (en) 2013-03-13 2018-11-27 Taiwan Semiconductor Manufacturing Co., Ltd. Wafer strength by control of uniformity of edge bulk micro defects
US9064823B2 (en) * 2013-03-13 2015-06-23 Taiwan Semiconductor Manufacturing Co., Ltd. Method for qualifying a semiconductor wafer for subsequent processing
JP2015140270A (ja) * 2014-01-28 2015-08-03 グローバルウェーハズ・ジャパン株式会社 シリコンウェーハ
US20150294868A1 (en) * 2014-04-15 2015-10-15 Infineon Technologies Ag Method of Manufacturing Semiconductor Devices Containing Chalcogen Atoms
CN104596829A (zh) * 2015-01-20 2015-05-06 苏州同冠微电子有限公司 硅片二次缺陷检测液及检测方法
CN107154353B (zh) * 2016-03-03 2020-01-24 上海新昇半导体科技有限公司 晶圆热处理的方法
FR3051968B1 (fr) 2016-05-25 2018-06-01 Soitec Procede de fabrication d'un substrat semi-conducteur a haute resistivite
JP2019094224A (ja) 2017-11-21 2019-06-20 信越半導体株式会社 シリコン単結晶の育成方法
US11739437B2 (en) * 2018-12-27 2023-08-29 Globalwafers Co., Ltd. Resistivity stabilization measurement of fat neck slabs for high resistivity and ultra-high resistivity single crystal silicon ingot growth
US11695048B2 (en) * 2020-04-09 2023-07-04 Sumco Corporation Silicon wafer and manufacturing method of the same
CN113845917B (zh) * 2021-09-24 2022-09-16 上海提牛机电设备有限公司 弯曲晶圆的清洗液及清洗方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469937A (ja) * 1990-07-10 1992-03-05 Sumitomo Metal Ind Ltd 半導体基板及びその製造方法
US5502331A (en) * 1993-02-23 1996-03-26 Kabushiki Kaisha Toshiba Semiconductor substrate containing bulk micro-defect
JPH10150048A (ja) * 1996-11-15 1998-06-02 Sumitomo Sitix Corp 半導体基板
EP1087041A1 (en) * 1999-03-16 2001-03-28 Shin-Etsu Handotai Co., Ltd Production method for silicon wafer and silicon wafer
JP2001217251A (ja) * 1999-11-26 2001-08-10 Mitsubishi Materials Silicon Corp シリコンウェーハの熱処理方法
WO2002025717A1 (fr) * 2000-09-20 2002-03-28 Shin-Etsu Handotai Co.,Ltd. Tranche de silicium, tranche epitaxiale de silicium et procedes de fabrication

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5788763A (en) * 1995-03-09 1998-08-04 Toshiba Ceramics Co., Ltd. Manufacturing method of a silicon wafer having a controlled BMD concentration
US6503594B2 (en) * 1997-02-13 2003-01-07 Samsung Electronics Co., Ltd. Silicon wafers having controlled distribution of defects and slip
JP2002009081A (ja) * 2000-06-26 2002-01-11 Toshiba Corp 半導体装置及びその製造方法
JP2004537161A (ja) * 2001-04-11 2004-12-09 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド 高抵抗率czシリコンにおけるサーマルドナー生成の制御

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0469937A (ja) * 1990-07-10 1992-03-05 Sumitomo Metal Ind Ltd 半導体基板及びその製造方法
US5502331A (en) * 1993-02-23 1996-03-26 Kabushiki Kaisha Toshiba Semiconductor substrate containing bulk micro-defect
JPH10150048A (ja) * 1996-11-15 1998-06-02 Sumitomo Sitix Corp 半導体基板
EP1087041A1 (en) * 1999-03-16 2001-03-28 Shin-Etsu Handotai Co., Ltd Production method for silicon wafer and silicon wafer
JP2001217251A (ja) * 1999-11-26 2001-08-10 Mitsubishi Materials Silicon Corp シリコンウェーハの熱処理方法
WO2002025717A1 (fr) * 2000-09-20 2002-03-28 Shin-Etsu Handotai Co.,Ltd. Tranche de silicium, tranche epitaxiale de silicium et procedes de fabrication

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005038899A1 (ja) * 2003-10-21 2005-04-28 Sumco Corporation 高抵抗シリコンウェーハの製造方法、並びにエピタキシャルウェーハおよびsoiウェーハの製造方法
US7803228B2 (en) 2003-10-21 2010-09-28 Sumco Corporation Process for producing high-resistance silicon wafers and process for producing epitaxial wafers and SOI wafers

Also Published As

Publication number Publication date
EP1501122A1 (en) 2005-01-26
US7397110B2 (en) 2008-07-08
TWI311375B (en) 2009-06-21
EP1501122B1 (en) 2013-04-03
KR100829767B1 (ko) 2008-05-16
US20050253221A1 (en) 2005-11-17
KR20040102178A (ko) 2004-12-03
EP1501122A4 (en) 2008-12-10
JP2004006615A (ja) 2004-01-08
TW200400642A (en) 2004-01-01

Similar Documents

Publication Publication Date Title
WO2003092065A1 (fr) Tranche de silicium a haute resistance et son procede de production
TWI398927B (zh) 矽晶圓及其製造方法
JP5072460B2 (ja) 半導体用シリコンウエハ、およびその製造方法
JP5693680B2 (ja) 単結晶シリコンからなる半導体ウエハおよびその製造方法
KR101389058B1 (ko) 실리콘 웨이퍼 및 그 제조방법
CN107210223B (zh) 硅晶圆的制造方法
KR100971163B1 (ko) 어닐 웨이퍼 및 어닐 웨이퍼의 제조방법
CN1697130A (zh) 硅晶片以及用于制造硅晶片的方法
JP2016193818A (ja) シリコン単結晶ウェーハ
JP2007176732A (ja) アニールウエハ及びアニールウエハの製造方法
JP2007045662A (ja) 半導体シリコンウェーハおよびその製造方法
JP5542383B2 (ja) シリコンウェーハの熱処理方法
KR20130072144A (ko) 실리콘 단결정 기판 및 이의 제조 방법
JP2007235153A (ja) 高抵抗シリコンウエーハ及びその製造方法
JP2003297839A (ja) シリコンウエーハの熱処理方法
TWI614808B (zh) 藉由活化非活性氧沉澱核製造高沉澱密度晶圓之方法
JP2003115491A (ja) シリコン半導体基板の熱処理方法
KR20100061360A (ko) 실리콘 단결정 및 그 육성방법, 실리콘 웨이퍼 및 그 제조방법
JP2002110683A (ja) シリコン半導体基板の熱処理方法
JP5262021B2 (ja) シリコンウェーハ及びその製造方法
TWI523107B (zh) 矽晶圓之熱處理方法
JP5997552B2 (ja) シリコンウェーハの熱処理方法
JP5944643B2 (ja) シリコンウェーハの熱処理方法
JP2010003922A (ja) シリコンウェーハの製造方法
JP4038910B2 (ja) 半導体シリコンウェーハの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003720915

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047017217

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020047017217

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003720915

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10512405

Country of ref document: US